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A considerable amount of the standard model’s three-generation structure can be realised from just the 
8 C-dimensional algebra of the complex octonions. Indeed, it is a little-known fact that the complex 
octonions can generate on their own a 64 C-dimensional space. Here we identify an su(3) ⊕ u(1)

action which splits this 64 C-dimensional space into complexified generators of SU (3), together with 
48 states. These 48 states exhibit the behaviour of exactly three generations of quarks and leptons under 
the standard model’s two unbroken gauge symmetries. This article builds on a previous one, [1], by 
incorporating electric charge.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Why three generations?

Upon the 2012 discovery of a 125 GeV Higgs, the most straight-
forward four-generation chiral extension to the standard model 
was ruled out, [2–5]. Of course, the possibility of eventually finding 
a fourth generation is not excluded for every imaginable scenario, 
e.g. [6], [7]. However, given this new data, it seems increasingly 
likely that nature’s game of replicating particle content comes to 
an end at three generations.

Although three-generation models can be relatively easy to jus-
tify experimentally, they are substantially more difficult to moti-
vate theoretically. That is, few mathematical objects exhibit (effi-
ciently) the group representations necessary to describe three full 
generations.

Indeed, it is no secret that the most well-known extensions of 
the standard model: SU (5), Spin(10) grand unified theories, and 
the Pati–Salam model are all naturally one-generation models. For 
the standard model and its most well-studied extensions, the exis-
tence of three families need be imposed by hand.

With this being said, a variety of proposals have material-
ized over the years, e.g. [8–21], in order to explain the curious 
pattern. This includes in particular a recent three-generation pro-
posal put forward by Dubois-Violette and Todorov, based on the 
27-dimensional (octonionic) exceptional Jordan algebra.
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The intention of our article here is not to present a completed 
three-generation quantum field theory. Instead we will demon-
strate a significant portion of an algebraic framework on which 
such a theory might be built.

Rather unconventionally, this framework does not begin with 
a larger mathematical object, which is then subsequently broken 
down into the known quark and lepton representations of the 
standard model. On the contrary, we will make use of just an 
8 C-dimensional algebra—an algebra whose degrees of freedom are 
far outweighed by the number of states which we aim to describe.

We will begin by introducing the algebra of the complex oc-
tonions, C ⊗O. This 8 C-dimensional algebra will then be seen to 
generate the complex Clifford algebra Cl(6), via its left-action maps. 
Within this 64 C-dimensional Clifford algebra, we next identify a 
pair of complexified su(3)c Lie algebras. These SU (3)c generators 
will then be applied to the rest of the Clifford algebra, which con-
sequently breaks down into exactly the SU (3)c representations one 
would expect for three full generations of quarks and leptons, [1].

Finally, we demonstrate how the action of these generators may 
be generalized so as to include a new u(1). This U (1) action then 
distributes 48 eigenvalues which are found to coincide with elec-
tric charge.

Hence, it is shown that a single eight-dimensional algebra can 
encode the behaviour of three full generations under nature’s two 
unbroken gauge symmetries.

This article builds on [1] by (1) demonstrating that the gen-
erators of G2 may be described in terms of associators, (2) by 
redefining the operation of Lie algebras on Cl(6) in terms of a sin-
gle action, (3) by further specifying the projection properties of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Octonionic multiplication rules, [32].

quark and lepton states, and finally (4) by incorporating electric 
charge.

Over the years, there has been quite a number of authors who 
have used Cl(6) to describe one generation of standard model 
fermions. These include, but are likely not limited to [22–30].

2. Introduction to CCC⊗OOO

The complex octonions form an 8-dimensional algebra over C, 
spanned by basis vectors e j for j = 0, . . . 7. The basis vector e0

plays the role of the multiplicative identity, whereas the ek for 
k = 1, . . . 7 are imaginary units with e2

k = −1. The remaining oc-
tonionic multiplication rules may be described succinctly by spec-
ifying e1e2 = e4, and then invoking the rules, [31],

eie j = −e jei i �= j,

eie j = ek ⇒ ei+1e j+1 = ek+1,

eie j = ek ⇒ e2ie2 j = e2k.

(1)

Please see Fig. 1.
The octonions are perhaps best known for their property of 

non-associativity, meaning that there exists an a, b, and c in the 
algebra such that a(bc) �= (ab)c. Hence, brackets should typically 
be specified whenever multiplication involves three or more el-
ements. With this being said, readers should realise that non-
associativity is by no means a foreign concept in physics. It is an 
under-appreciated fact that both Lie algebras and Jordan algebras 
likewise constitute non-associative algebras.1

Symmetries of the algebra: the derivations of C ⊗ O are given 
by the complexified 14-dimensional exceptional Lie algebra g2. 
These g2 elements can be seen to act on a generic element f ∈
C ⊗O as

�1 f = i
2 {e1, e5, f } − i

2 {e3, e4, f }
�2 f = i

2 {e4, e1, f } − i
2 {e3, e5, f }

�3 f = − i
2 {e1, e3, f } + i

2 {e4, e5, f }
�4 f = i

2 {e2, e5, f } + i
2 {e4, e6, f }

1 As an example, consider the elements a = iσx , b = iσx , c = iσy in the su(2) Lie 
algebra, where multiplication is given by the commutator.
�5 f = − i
2 {e2, e4, f } + i

2 {e5, e6, f }
�6 f = i

2 {e1, e6, f } + i
2 {e2, e3, f }

�7 f = i
2 {e1, e2, f } + i

2 {e3, e6, f }
�8 f = i

2
√

3
{e1, e3, f } + i

2
√

3
{e4, e5, f } − i√

3
{e2, e6, f }

g9 f = − i
2
√

3
{e1, e5, f } − i

2
√

3
{e3, e4, f } − i√

3
{e2, e7, f }

g10 f = − i
2
√

3
{e4, e1, f } − i

2
√

3
{e3, e5, f } + i√

3
{e6, e7, f }

g11 f = − i
2
√

3
{e4, e6, f } − i

2
√

3
{e5, e2, f } + i√

3
{e7, e1, f }

g12 f = − i
2
√

3
{e2, e4, f } − i

2
√

3
{e5, e6, f } + i√

3
{e3, e7, f }

g13 f = − i
2
√

3
{e6, e1, f } − i

2
√

3
{e2, e3, f } + i√

3
{e7, e4, f }

g14 f = − i
2
√

3
{e1, e2, f } − i

2
√

3
{e6, e3, f } + i√

3
{e5, e7, f }

(2)

over C. Here, we have made use of the associator, defined as 
{a, b, c} ≡ a(bc) − (ab)c. Readers should note that, when taken over 
the field of the real numbers, the first eight � j generate SU (3). 
In this case, we have chosen this SU (3) so that it holds the octo-
nionic imaginary unit e7 constant.

3. From 8 dimensions to 64

Given the definition of the associator, it is straightforward to 
see that the 14 generators of equations (2) are constructed from 
chains of octonions acting from the left on f . In fact, the most 
general left-action map, M , may be described as

M f ≡ c0 f +∑6
i=1 ci ei f + ∑6

j=2
∑ j−1

i=1 ci j ei(e j f )

+ ∑6
k=3

∑k−1
j=2

∑ j−1
i=1 ci jk ei(e j(ek f )) + . . .

+ c123456 e1(e2(e3(e4(e5(e6 f ))))),

(3)

where the coefficients c0, ci , · · · ∈ C. Readers may have noticed 
that the imaginary unit e7 is not explicitly expressed in these 
maps. This is due to the fact that

e7 f = e1(e2(e3(e4(e5(e6 f ))))) ∀ f ∈ C⊗O, (4)

thereby making e7 redundant as a left-action map. Of course, e7
itself holds no preferred status within the octonions, and the space 
of left-action maps may equivalently be generated by any six of the 
seven imaginary units.

The octonionic chains (3) describe all possible complex-linear 
maps from C ⊗ O to itself. Said more precisely, they faithfully 
represent the full 64 C-dimensional space of complex endomor-
phisms. Indeed, even right multiplication may be re-expressed in 
the form of equation (3). For example,

f e7 = 1

2
(e1(e3 f ) + e2(e6 f ) + e4(e5 f ) − e7 f ) (5)

∀ f ∈ C ⊗O.
So in summary, we have shown how it is possible to build up a 

64 C-dimensional space, using only the 8 C-dimensional C ⊗O op-
erating on itself from the left. For examples of earlier work which 
make reference to this 64-dimensional algebra, see [22], [33], [10].
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Fig. 2. Octonionic imaginary units e1, e2, . . . e6 generate the Clifford algebra Cl(6). 
These six generators may be rewritten in terms of a basis of ladder operators, 
α1, α2, α3, α†

1, α†
2, α†

3, which have U (3) = SU (3) × U (1)/Z3 symmetry.

4. The Clifford algebra CCCl(6)

It is reasonably straightforward to show that

ei(e j f ) =
⎧⎨
⎩

−e j(ei f ) when i �= j

− f when i = j
(6)

∀ f ∈ C ⊗ O, and for i, j = 1, . . . 6. (This should be recognizable 
to the reader as Clifford algebraic structure.) In fact, the linear 
maps (3) give a faithful representation of the complex Clifford al-
gebra Cl(6).

Readers concerned about the potential conflict between the in-
herent associativity of a Clifford algebra, and the non-associativity 
of the octonions should note that multiplication of left-action maps 
is given by the composition of maps. Of course, the composition of 
maps is associative, by definition; F ◦ (G ◦ H) = (F ◦ G) ◦ H .

Consider now for a moment complex Clifford algebras of the 
form Cl(2n) for n ∈ Z > 0. It is known that the generating space 
of such algebras may be partitioned into an n-dimensional sub-
space spanned by raising operators {α†

i } and an n-dimensional 
subspace spanned by lowering operators {αi}. These n-dimensional 
subspaces are known as maximal totally isotropic subspaces, whose 
basis vectors obey

{αi,α j} = 0 = {α†
i ,α

†
j}, {αi,α

†
j} = δi j (7)

for i, j = 1, . . .n, under the anticommutator: {a, b} ≡ ab + ba. For 
further details, please see [34].

In the case of our octonionic representation of Cl(6), (3), the 
generating space is spanned by the linear maps ei for i = 1, . . . 6. 
These may be reorganized into a set of lowering operators

α1 ≡ −e5 + ie4

2
, α2 ≡ −e3 + ie1

2
, α3 ≡ −e6 + ie2

2
, (8)

and a set of raising operators,

α
†
1 ≡ e5 + ie4

2
, α

†
2 ≡ e3 + ie1

2
, α

†
3 ≡ e6 + ie2

2
, (9)

where † maps the complex i �→ −i and the octonionic e j �→ −e j , 
while reversing the order of multiplication, (ab)† = b†a†. Readers 
may confirm that these ladder operators obey equations (7), as 
maps acting on any f ∈C ⊗O.

The structure of these ladder operators is preserved by the uni-
tary group U (3) = SU (3) × U (1)/Z3, as depicted in Figure (2). 
This U (3) symmetry may be realised as Gαi G−1 and Gα

†G−1, for 
i
G ≡ exp
(

ir j� j + ir0 Q
) ∈ Cl(6). Here, rk ∈ R for k = 0, . . . 8, and 

the SU (3) generators, � j , are defined as in equations (2). The U (1)

generator is defined as

Q f ≡ N

3
f = 1

3

3∑
i=1

α
†
i (αi f ) , (10)

acting on any f ∈ C ⊗ O. This Q is proportional to the number 
operator, N , for the system, and can be seen to commute with 
the � j . In [26], Q was identified as the generator of electric charge, 
in the context of a one-generation model.

Before moving on, we will first simplify our notation. From 
here forward, it will now be implicitly assumed that equations 
in Cl(6) hold ∀ f ∈ C ⊗ O. That is, we will no longer write f
explicitly. Furthermore, we will cease to write the nested brack-
ets of octonionic left-action maps, (3). That is, right-to-left brack-
eting will also be implicitly assumed. Hence, equations such as 
Q f ≡ 1

3

∑3
i=1 α

†
i (αi f ) will now simply read Q ≡ 1

3

∑3
i=1 α

†
i αi .

5. Three generations under S U (3)c

For our first result, we will now show how the SU (3)c ir-
reducible representations corresponding to three generations of 
quarks and leptons may be found, using only the action of C ⊗ O

on itself.
We begin by splitting Cl(6) into two 32 C-dimensional pieces: 

Cl(6)s and Cl(6)s∗ , where s is given by the linear map s ≡ 1/2 (1 +
ie7) ∈ Cl(6). Readers may confirm that both s and s∗ are idempo-
tents, and that ss∗ = s∗s = 0.

Within the subalgebra Cl(6)s, we find a faithful representation 
of the Lie algebra su(3), generated by eight objects of the form 
� j s. Seeing as how 

[
� j, s

] = 0, it may be confirmed that
[

�i

2
s,

� j

2
s

]
= ici jk

�k

2
s (11)

holds, where ci jk are the usual SU (3) structure constants.
Now, given this representation of the SU (3) Lie algebra, we 

may subsequently apply the � j s generators to the remainder 
of Cl(6)s. Under the action [ i� j s, Cl(6)s ], the 32 C-dimensional 
Cl(6)s is found to break down as

Cl(6)s �→ 8 ⊕ 3 ⊕ (
5 × 3∗) ⊕ (

6 × 1
)

(12)

over C. For a sample calculation, please see [1]. Invoking the com-
plex conjugate, i �→ −i, sends particles to antiparticles, and vice 
versa. In other words, the commutator [ −i�∗

j s∗, Cl(6)s∗ ] induces

Cl(6)s∗ �→ 8 ⊕ 3∗ ⊕ (
5 × 3

) ⊕ (
6 × 1

)
. (13)

Finally, these actions may be trivially combined into one single 
action on the full 64 C-dimensional Cl(6). Under [ i� j s, Cl(6)s ] +
[ −i�∗

j s∗, Cl(6)s∗ ], the algebra Cl(6) breaks down into a pair of 
complexified SU (3) Lie algebras, together with the SU (3) repre-
sentations
(
6 × 3

) ⊕ (
6 × 3∗) ⊕ (

6 × 1
) ⊕ (

6 × 1
)
. (14)

Readers should recognize these as the SU (3)c representations nec-
essary to describe three full generations of quarks and leptons.

6. Three generations under S U (3)c × U (1)em/ZZZ3

Now, given the ladder operator symmetry U (3) = SU (3)c ×
U (1)em/Z3 described earlier, it is natural to wonder if these 
SU (3)c results may be extended so as to include U (1)em . The most 
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obvious electromagnetic extension to the action [ i� j s, Cl(6)s ] +
[ −i�∗

j s∗, Cl(6)s∗ ] is clearly [ i Q s, Cl(6)s ] + [ −i Q ∗s∗, Cl(6)s∗ ]. 
However, we find that this action fails to assign the correct electric 
charges.

Hence, we are then left to ask: Could there be a way to generalize 
this action so that Q produces the electric charges of standard model 
fermions?

In what is to follow, we will need to introduce an idempotent, 
S , which is the right-multiplication analogue of s.

S f ≡ f 1
2 (1 + ie7)

= 1
2 f − i

4 e7 f + i
4 e1(e3 f ) + i

4 e2(e6 f ) + i
4 e4(e5 f )

(15)

acting on f ∈ C ⊗O, or more simply,

S ≡ 1

2
+ 1

4
(−ie7 + ie13 + ie26 + ie45) , (16)

where eab f is shorthand for ea(eb f ). Readers will find that equa-
tion (15) is easily confirmed given equation (5). As before, S S∗ =
S∗ S = 0, and furthermore, [ s, S ] = [ s, S∗ ] = 0.

Given that S + S∗ = 1, it is straightforward to see that the action 
[ i� j s, Cl(6)s ] + [ −i�∗

j s∗, Cl(6)s∗ ] is equal to

[
i� j s, S Cl(6)s

] +
[
−i�∗

j s∗, S∗
Cl(6)s∗

]

+ [
i� j s, S∗

Cl(6)s
] +

[
−i�∗

j s∗, S Cl(6)s∗
]
.

(17)

Furthermore, from equations (2), it is clear that �∗
j = −� j , and 

hence the action (17) is identical to

[
−i�∗

j s, S Cl(6)s
]
+ [

i� j s∗, S∗
Cl(6)s∗ ]

+ [
i� j s, S∗

Cl(6)s
] +

[
−i�∗

j s∗, S Cl(6)s∗
]
.

(18)

However, this new action is not the same as the old action when 
we extend these generators so as to include Q . Unlike with the � j

operators, Q ∗ �= −Q .
Upon finally including Q ,

[
−i(r j�

∗
j + r0 Q ∗)s, S Cl(6) s

]

+ [
i(r j� j + r0 Q )s∗, S∗

Cl(6) s∗ ]
+ [

i(r j� j + r0 Q )s, S∗
Cl(6) s

]
+

[
−i(r j�

∗
j + r0 Q ∗)s∗, S Cl(6) s∗

]
,

(19)

we find that Cl(6) breaks down as

Cl(6) �→
8 0 ⊕ (3 × 3 2

3
) ⊕ (3 × 3− 1

3
) ⊕ (3 × 1 0) ⊕ (3 × 1−1) ⊕

8 0 ⊕ (3 × 3∗
− 2

3
) ⊕ (3 × 3∗

1
3
) ⊕ (3 × 1 0) ⊕ (3 × 1 1).

(20)

To be more explicit, three generations of particles may be de-
scribed by complex linear combinations of the states
3 2
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uR
1 ≡ sS∗ (−ie12 − e16 + e23 + ie36) sS

uG
1 ≡ sS∗ (−ie24 − e25 + e46 − ie56) sS

uB
1 ≡ sS∗ (ie14 + e15 + e34 − ie35) sS

3 2
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uR
2 ≡ s∗S∗ (−ie12 − e16 + e23 + ie36) s∗ S

uG
2 ≡ s∗ S∗ (−ie24 − e25 + e46 − ie56) s∗ S

uB
2 ≡ s∗ S∗ (ie14 + e15 + e34 − ie35) s∗ S

3 2
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uR
3 ≡ sS (−ie4 + e5 + e134 + ie135) s∗ S

uG
3 ≡ sS (−ie1 + e3 + e126 + e145) s∗ S

uB
3 ≡ sS (−ie2 + e6 − e123 + ie136) s∗ S

3− 1
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dR
1 ≡ sS∗ (−ie1 − e3 + e126 − e145) s∗ S

dG
1 ≡ sS∗ (ie4 + e5 + e134 − ie135) s∗ S

dB
1 ≡ sS∗ (−ie124 − e125 − e146 + ie156) s∗ S

3− 1
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dR
2 ≡ sS∗ (ie2 + e6 + e123 + ie136) s∗S

dG
2 ≡ sS∗ (−ie124 − e125 + e146 − ie156) s∗ S

dB
2 ≡ sS∗ (−ie4 − e5 + e134 − ie135) s∗S

3− 1
3

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dR
3 ≡ sS∗ (−ie124 + e125 + e146 + ie156) s∗ S

dG
3 ≡ sS∗ (−ie2 − e6 + e123 + ie136) s∗ S

dB
3 ≡ sS∗ (ie1 + e3 + e126 − e145) s∗ S

1 0 → ν1 ≡ sS (1 + ie13 + ie26 + ie45) sS

1 0 → ν2 ≡ sS∗ (3 − ie13 − ie26 − ie45) sS∗

1 0 → ν3 ≡ s∗ S∗ (−ie124 − e125 + e146 − ie156) sS

1−1 → e−
1 ≡ sS∗ (ie1 − e3 + e126 + e145) s∗ S∗

1−1 → e−
2 ≡ sS∗ (−ie2 + e6 + e123 − ie136) s∗ S∗

1−1 → e−
3 ≡ sS∗ (−ie4 + e5 − e134 − ie135) s∗ S∗.

(21)

From here, finding anti-particle states is remarkably easy. As with 
previous work, [32], [1], [26], [27], one simply invokes the complex 
conjugate, i �→ −i.

Readers should note that we are not distinguishing between the 
generations at this point. Hence, for example, the three 3 2

3
repre-

sentations are labelled arbitrarily as u1, u2, u3, instead of u, c, t .
Finally, we mention that the electric charge assignments of 

equations (21) can easily be confirmed by the reader. This is fa-
cilitated by the fact that Q may be decomposed as

Q = 1

3
s∗ S + 2

3
sS∗ + s∗ S∗. (22)

For example, Q may be applied to the state uR
1 by setting r j = 0

and r0 = 1 in the action (19):

[
i Q s, S∗uR

1 s
] = i

[
2
3 sS∗, sS∗ uR

1 sS
]

= i 2
3 uR

1 .

(23)

Hence, the action (19) assigns to uR a Q charge of 2 .
1 3
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7. Summary

This article demonstrates how the SU (3)c × U (1)em/Z3 repre-
sentations for three full generations of quarks and leptons may be 
generated, using just an 8 C-dimensional algebra. In order to arrive 
at these 48 states, we did not simply replicate copies of C ⊗O. In-
stead, we considered the action of this one algebra on itself.

For those more accustomed to grand unified theories, this 
method should indeed seem unfamiliar. That is, it runs backwards 
to the usual direction of the prototypical unified theory. Stan-
dard grand unified theories begin with a sizeable Lie group, and 
then implement an appropriate mechanism in order to scale the 
symmetry group down. In contrast, this article shows how a low-
dimensional algebra may act autonomously in order to scale the 
degrees of freedom up.

Although we have not proposed a grand unified theory here, 
these results do seem to point towards unification of another form. 
It is clear that the SU (3)c × U (1)em/Z3 group elements, and also 
these 48 states, owe their existence to the same algebra. Ideally, 
all objects in such a model should likewise arise from the same 
algebra.

8. Outlook

While C ⊗ O did supply a reasonable portion of the stan-
dard model’s group representation structure, we have by no means 
achieved a full description. For instance, nowhere in this paper 
have we discussed spin or chirality. And so we ask, in what ways 
may these results be extended?

In the third chapter of [27], it was shown that each of the 
Lorentz representations of the standard model can be identified 
as invariant subspaces of the algebra of the complex quaternions, 
C ⊗ H. To be more precise, this 4 C-dimensional algebra yields: 
Lorentz scalars, φ, left- and right-handed Weyl spinors, �L , �R , 
Majorana spinors, �M , Dirac spinors, �D , four-vectors, pμ , and the 
field strength tensor, Fμν , [35]. These Lorentz (or S L(2, C)) repre-
sentations were identified as invariant subspaces of C ⊗ H under 
various actions of the algebra on itself. In each case, they were 
found to arise as a result of the outer automorphism and anti-
automorphisms of the algebra, [27].

In the context of these findings, we then propose that Lorent-
zian degrees of freedom such as spin and chirality be described by 
C ⊗H, while other internal degrees of freedom such as colour and 
electric charge be described by C ⊗O, [29].

It is straightforward to see that C ⊗H and C ⊗O may be com-
bined, via a tensor product over C, into the algebra (C⊗H) ⊗C

(C⊗O) = R ⊗ C ⊗ H ⊗ O. The Dixon algebra R ⊗ C ⊗ H ⊗ O is 
the tensor product of the only four normed division algebras over 
the real numbers. (For an alternate three-generation model which 
makes use of tensor products of column vectors over division al-
gebras, see [10].)

Once spin and chirality are incorporated into this model, we 
might then be in a position to address some obvious outstanding 
questions. For example,

• How is electroweak symmetry to be described in this model? How 
might it incorporate Q ?

• How do we interpret the 80 representations in Cl(6)?
• What brings about the form of the action (19)?
• What is the connection between the recent one-generation results 

of [29] and this model? Or should [29] prompt the reconsideration 
of a 4-generation model?

• If the standard model’s group representation structure is indeed a 
result of the algebras R, C, H, and O, then what is it exactly that is 
so special about these algebras?
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