Application of three-body model to study double- Λ hypernuclei using a variational approach

S. Mahapatra^{*}

Mallikpur A. S. Institution, Kolkata 700145, INDIA

Introduction

Very recently, the new experimental data have come up with the values of double- Λ binding energy $B_{\Lambda\Lambda} = 7.25 \pm 0.14$ MeV and $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.2$ MeV [1] which are substantially lower than the old data of 1966 [2]. This prompted us to study the double- Λ binding energies $B_{\Lambda\Lambda}$ anew using the earlier model [3].

The three body model

In this model, the hypernucleus is treated as a three-body system consisting of a core and the two Λ particles. The wave function for the internal motion of the three-body system is considered as

$$\Psi(r_1, r_2, r_3) = \Phi(R).$$
(1)

The new space coordinate R is defined as $R = (r_1 + r_2 + \eta r_3)/2$ where r_1 , r_2 , r_3 are the distances between the particle pairs 1-2, 1-3 and 2-3 respectively. 1 refers to the core and 2,3 refer to the two Λ particles. Scaling parameter η controls the way the wave function depends on r_1 , r_2 , r_3 . Defining $F(R) = R^{5/2}\Phi(R)$, the problem simplifies to an effective two-body equation in F(R) along with a long range potential $V_{eff}(R)$ given by

$$\frac{d^2F}{dR^2} + \Big[\frac{4(\eta^2 + 5\eta + 8)}{D'}E - \frac{V_{eff}(R)}{D} - \frac{15}{4R^2}\Big]F = 0$$
(2)

Numerical solution of Eq.(2) gives the eigen value E and F(R). The $\Lambda - \Lambda$ potential 3-G2 [4] and 3G3 [5] has been fitted with the new $B_{\Lambda\Lambda}$ value of ${}^{6}_{\Lambda\Lambda}He$ which acts as a constraint on the potential. In continuation of our recent work on double- Λ hypernuclei, we report here our study on ${}^{6}_{\Lambda\Lambda}He$, ${}^{26}_{\Lambda\Lambda}Mg$, ${}^{30}_{\Lambda\Lambda}Si$, ${}^{34}_{\Lambda\Lambda}S$, ${}^{40}_{\Lambda\Lambda}Ar$. The core is even-even for all the double- Λ hypernuclei listed here. The Λ -separation energy B_{Λ} , has been calculated using the empirical formula

$$B_{\Lambda}(A) = 27.0 - 81.9A^{-2/3} \pm 1.5.$$
 (3)

where A is mass number of the core. The core- Λ potential is considered to be Woods-Saxon

$$V_{core-\Lambda} = -\frac{V_0}{1 + \exp(\frac{r-c}{a})} \tag{4}$$

where $c=r_0A^{1/3}$, $r_0=1.128+0.439A^{-2/3}$ fm.

Calculations and Results

Using this potential in the Schrodinger's equation for the core and the Λ particle, the differential equation is numerically solved to determine the Λ -separation energy. V_0 and a are adjusted till the Λ -separation energy so obtained tallies with the value determined from the empirical relation of Eq.(3). The values of V_0 and a thus obtained lie within the limits of the best fit values predicted by the RMF calculation [6]. Core mass is calculated using the relation

$$\text{Mass excess} = (\text{Mass} - A)\chi_0 \tag{5}$$

where $\chi_0 = (93148\pm 5)$ keV and mass excess is tabulated in mass tables. With the core- Λ and the Λ - Λ potentials η is varied to get E_{min} . Here $B_{\Lambda\Lambda} = -E_{min}$. We have achieved convergence in the two- Λ separation energy $B_{\Lambda\Lambda}$ for each hypernucleus. From the function F(R), the r.m.s values of core- Λ separation $< r_{core-\Lambda} >$ and the Λ - Λ separation $< r_{\Lambda\Lambda} >$ are calculated. The results are given in the Table-1.

Summary and Conclusion

In summary, with regard to finding double- Λ binding energies $B_{\Lambda\Lambda}$, the present approach

^{*}Electronic address: mahapatra.s2005@rediffmail.com

double- Λ	B_{Λ}	Λ - Λ	$B_{\Lambda\Lambda}$	$< r_{core-\Lambda}$	$< r_{\Lambda\Lambda} >$	H-H method [7]	H-H method [7]
hypernuclei	(MeV)	(Potn.)	(MeV)	(fm)	(fm)	B_{Λ}	$B_{\Lambda\Lambda}$
$^{6}_{\Lambda\Lambda}He$	2.94	3G2	7.476	2.815	3.353	3.12	10.80
		3G3	7.425	2.787	3.204		
$^{26}_{\Lambda\Lambda}Mg$	17.403	3G2	36.635	2.312	2.894	17.423	40.59
		3G3	36.739	2.281	2.814		
$^{30}_{\Lambda\Lambda}Si$	18.325	3G2	38.274	2.358	2.923	18.33	42.19
		3G3	38.394	2.331	2.825		
$^{34}_{\Lambda\Lambda}S$	19.041	3G2	39.567	2.387	2.89	19.04	43.43
		3G3	39.674	2.376	2.88		
$^{40}_{\Lambda\Lambda}Ar$	19.875	3G2	41.130	2.581	2.98		
		3G3	41.243	2.441	2.959		

TABLE I: Results of the present calculations for double- Λ hypernuclei.

appears to work well over a wide mass range of double- Λ hypernuclei with even-even cores. **References**

- H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
- [2] D. J. Prowse, Phys. Rev. Lett. 17, 782 (1966).
- [3] S. Mahapatra , J. Nag, D. P. Sural and S. N. Mukherjee, Pramana J. Phys. 57, 717 (2001).
- [4] T. Motoba, H. Bando, T. Fukuda and J.

Zofka, Nucl. Phys. A534, 597 (1991).

- [5] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Prog.Theor. Phys. 97, 881 (1997).
- [6] Y. K. Gambhir, Nuclear physics at intermediate energies: Lectures of III SERC School on nuclear physics edited by S. Pal (Narosa PublishingHouse, 1999) p.89.
- [7] M. D. Abdul khan, T. K. Das, Pramana J. Phys. 56, 57 (2001).