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Strongly coupled quark gluon plasma in a magnetic

field
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Instituto de F́ısica, Universidade de São Paulo Rua do Matão Travessa R, 187, 05508-090 São
Paulo, SP, Brazil

E-mail: navarra@if.usp.br

Abstract.

We derive the equation of state of a strongly coupled quark gluon plasma at finite
temperature and high baryon density in a strong magnetic field. The formalism presented
here is an extension of our previous works. We derive analytical expressions for the pression
and energy density.

1. Introduction

After the analysis of RHIC and LHC data on heavy ion collisions, it became a consensus that
the quark gluon plasma at high (but not asymptotic) temperatures is a strongly interacting
system (which is now called strongly interacting quark gluon plasma or sQGP). This finding
motivated a reanalysis of the previousy used equations of state (EOS), most of them based on
the assumption of weak coupling between quarks and gluons. It is also reasonable to assume
that the yet untested cold quark gluon plasma, which presumably exists in the core of dense
stars, is also a strongly interacting system. In [1] we developed a mean field approach to the
cold sQGP, which is inspired in the old relativistic mean field Walecka model. As in that model,
because of the strong coupling and the large number of fermion sources, the vector boson is
assumed to behave as a classical field. In contrast to the Walecka model, because of asymptotic
freedom the low and high momentum modes of the gluon field have a different behavior. This
justifies their separation into low (“soft”) and high (“hard”) momentum components already at
the level of the Lagrangian. For the “hard” gluons we use the mean field approximation. The
“soft” gluons are replaced by their vacuum expectation values, the in-medium gluon condensates.
Using this approach we obtained the pressure and energy density of the sQGP. They both have
a term similar to the bag constant usually found in the MIT bag model. Due to the strongly
repulsive interaction of the vector field our EOS is much harder than the MIT one. The details
of the derivation can be found in [1], where we discuss these approximations. In a subsequent
paper, Ref.[2], we have applied our EOS [1] to the calculation of the structure of compact quark
stars. We found that the inclusion of gluon interaction creates pressure and energy density large
enough to generate stars wiht masses and radii consistent with the most recent astrophysical
observations.

It is well accepted [3, 4, 5, 6, 7] that in astrophysical compact objects, such as magnetars,
there is a strong magnetic field of intensity of 1012G to 1018G. It is then natural to extend our
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formalism and include the effects of the magnetic field. This will be done in the next sections.

2. Equation of state

2.1. Effective Lagrangian

In what follows, we employ natural units: h̄ = c = kB = 1 and the metric is given by
gμν = diag(+,−,−,−). We first consider the homogeneous magnetic field in the Cartesian
z direction:

�B = Bẑ and hence Aμ = (0, yB, 0, 0) (1)

Including this magnetic field in the QCD Lagrangian we obtain:

LQCD = +
∑
f

ψ̄f
i

[
iγμ(δij∂μ + iδijQfAμ − igT a

ijG
a
μ)− δijmf

]
ψf
j

−
1

4
F a
μνF

aμν −
1

4
FμνF

μν (2)

The summation in f runs over all quark flavors, mf is the mass of the quark of flavor f ,
Qf is the charge of the quark of flavor f , i and j are the color indices of the quarks, T a

are the SU(3) generators and fabc are the SU(3) antisymmetric structure constants. The
object F aμν = ∂μGaν − ∂νGaμ + gfabcGbμGcν is the gluon field tensor and the electromagnetic
Lagrangian term is Fμν = ∂μAν − ∂νAμ, with Aμ given by (1).

Performing the gluon field decomposition discussed above[1]:

Gaμ = Aaμ + αaμ

and repeating the steps described in [1] we rewrite (2) as the effective Lagrangian:

L0 =
mG

2

2
αa
0α

a
0 −

B2

2
− BQCD

+
∑
f

ψ̄f
i

{
iγμ

[
δij∂μ + iδijQfAμ

]
+ ghγ

0T a
ijα

a
0 − δijmf

}
ψf
j (3)

where BQCD is our equivalent of the bag constant given by BQCD ≡ 9φ0
4/136 and mG is the

dynamical gluon mass given by mG
2 ≡ 9μ0

2/32, where μ0 is an energy scale associated with
〈A2〉, which is the gluon condensate of dimension two [1]:

〈A2〉 ≡ 〈g2sA
aμAbν〉 = 〈g2sA

2〉 = −
δabgμν

32
μ0

2 (4)

and since 〈g2sA
2〉 < 0 we always have mG

2 > 0. The constant φ0 is associated with 〈F 2〉, which
is the gluon condensate of dimension four [1]:

BQCD = bφ4
0 = 〈

1

4
F aμνF a

μν〉 =
π2

g2s
〈F 2〉 (5)

In the above expression we have two QCD coupling constants given by gs and gh. The coupling
gs is associated to the soft gluons, while gh is associated to the hard gluons as in [1].
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2.2. Equations of motion and Landau levels

The equations of motion calculated from (3) are:

[
iγμ

(
∂μ + iQfAμ

)
+ ghγ

0T aαa
0 −mf

]
ψf = 0 (6)

mG
2αa

0 = −gh
∑
f

ρaf = −gh ρ
a (7)

∂μF
μν =

∑
f

Qf (ψ̄
fγνψf ) (8)

The color vector current jaν is given by:

jaν =
∑
f

ψ̄f
i γ

νT a
ijψ

f
j (9)

and its temporal component ρa which appears in (7) is:

ja0 = ρa =
∑
f

ψ̄f
i γ

0T a
ijψ

f
j =

∑
f

ψ†
i

f
T a
ijψ

f
j (10)

In order to solve (6), we perform the steps described in [8] and write ψf
j as follows:

ψf
j = cje

−iEt
(

Φf

χf

)
(11)

where cj is the quark color vector used in some textbooks [9]:

c1 =

⎛
⎝ 1

0
0

⎞
⎠ for red, c2 =

⎛
⎝ 0

1
0

⎞
⎠ for blue, c3 =

⎛
⎝ 0

0
1

⎞
⎠ for green (12)

From the above definitions it follows that:

c†iδijcj = c†1c1 + c†2c2 + c†3c3 = 3 (13)

For future purposes we will replace the above sum by the following average:

c†iδijcj →
c†iδijcj

(number of quark colors)
=

c†1c1 + c†2c2 + c†3c3
3

= 1 (14)

From the exact solution [8] of the Dirac equation (6) with magnetic field and hard gluon terms,
we have the following expression for the eigenvalues:

(
Ef

ν + ghA

)2

= m2
f + k2z + (2ν + 1)|Qf |B −QfBs (15)

where ν = 0, 1, 2, 3, 4, 5 . . . and s = +1 or s = −1, for the projection up or down of the spin
states, respectively. The momentum component along the magnetic field direction is given by kz.

As in our previous work [1] the constant A in (15) is the “algebra valued” result, A = c†iT
a
ijcjα

a
0

with the implicit summation over i, j = 1, 2, 3 and a = 1, . . . , 8 .
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With the help of (12) we are able to calculate the relation between ρa previously identified
in (10) and the net quark density ρ. We perform the product ρaρa considering the average over
the number of SU(3) generators, which is 8, as follows:

ρaρa =
∑
f

ρaf
∑
f ′

ρaf ′ −→ 〈
∑
f

ρaf
∑
f ′

ρaf ′〉 =
1

8

∑
f

ρaf
∑
f ′

ρaf ′

=
1

8

∑
f

(ψ† f
i T a

ijψ
f
j )

∑
f ′

(ψ† f ′

k T a
klψ

f ′

l ) =
1

8

∑
f

(c†iT
a
ijcj)ψ

† fψf
∑
f ′

(c†kT
a
klcl)ψ

† f ′

ψf ′

The result (c†iT
a
ijcj)(c

†
kT

a
klcl) = 3 is obtained from the Gell-Mann matrices and from the color

vectors (12):

ρaρa =
∑
f

ρaf
∑
f ′

ρaf ′ =
3

8

∑
f

(ψ† fψf )
∑
f ′

(ψ† f ′

ψf ′

)

As
∑

f (ψ
† fψf ) =

∑
f ρf = ρ, where f = u, d, s and ρ is the total net quark density, we have:

ρaρa =
3

8
ρ2 (16)

The baryon density ρB is related to net quark density through:

ρB =
1

3
ρ (17)

Returning now to (15) and rescaling the single particle energy as:

Ẽf
ν ≡ Ef

ν + ghA (18)

we are able to rewrite (15) as:

(
Ẽf

ν

)2
= m2

f + k2z +
[
2ν + 1− s× sgn(Qf )

]
|Qf |B (19)

where Qf = sgn(Qf )× |Qf |. Defining 2ν + 1− s× sgn(Qf ) ≡ 2n, (19) becomes:

Ẽf(±)
n = ±

√
m2

f + k2z + 2n|Qf |B (20)

and n denotes the nth Landau level. We note that, except for the rescaling (18), the equation
above is the one usually found in the literature.

2.3. Thermodynamical quantities

We next follow the calculations presented in [6, 10, 11] and starting from (3) we arrive at the
following thermodynamical potential:

Ω =

[
−

mG
2

2
αa
0α

a
0 + BQCD +

B2

2

]
V

+T
∑
f

∑
�k,s,n

{
ln

(
1− df

)
+ ln

(
1− d̄f

)}
(21)
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where V is the volume, T is the temperature and the fermion distribution functions are:

df ≡
1

1 + e(E
f
n−νf )/T

and d̄f ≡
1

1 + e(E
f
n+νf )/T

(22)

Using (20) in the evaluation of (21) the energy is now defined as:

Ef
n =

√
m2

f + k2z + 2n|Qf |B (23)

and the effective chemical potential for the quark f is defined as:

νf ≡ μf + gh(c
†
iT

a
ijcj)α

a
0 (24)

For a magnetic field pointing along the z direction, the momentum of a charged particle is
restricted to discrete Landau levels [6, 12] and hence:

S

(2π)2

∫ ∫
dkx dky =

S|Qi|B

2π

with S being the area in the x− y plane. From this last expression we have:∫ ∫
dkx dky = 2π|Qi|B (25)

and the statistical sum becomes:

1

V

∑
�k,s,n

−→
γf

(2π)3

∑
n

∫
d3k =

γf |Qi|B

2π2

∑
n

∫ ∞

0
dkz (26)

where γf is the statistical degeneracy factor of the quark f . The parallel pressure (p‖) to the
magnetic field, the magnetization (M) and perpendicular pressure (p⊥) are given respectively
by [6, 12]:

p‖ = −
Ω

V
, M = −

1

V

∂Ω

∂B
=

∂p‖
∂B

and p⊥ = p‖ −MB (27)

The quark density ρ and the entropy density s read [10, 11]:

ρ = −
1

V

∂Ω

∂μf
and s = −

1

V

∂Ω

∂T
(28)

The energy density ε is calculated from the Gibbs relation [10, 11]:

ε = −p‖ + Ts+
∑
f

μfρf (29)

The evaluation of (27) to (29) with the potential (21) gives the following results:

p‖ =
3gh

2

16mG
2
ρ2 − BQCD −

B2

2
+

∑
f

γf |Qf |B

2π2

∑
n

∫ ∞

0
dkz

kz
2

Ef
n

(
df + d̄f

)
(30)

M = −B − T
∑
f

γf |Qf |

2π2

∑
n

∫ ∞

0
dkz

[
ln(1− df ) + ln(1− d̄f )

]
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−
∑
f

γf |Qf |B

2π2

∑
n

∫ ∞

0
dkz

[
df n|Qf |

Ef
n

+
d̄f n|Qf |

Ef
n

]
(31)

p⊥ =
3gh

2

16mG
2
ρ2 − BQCD +

B2

2
+

∑
f

γf |Qf |B
2

2π2

∑
n

∫ ∞

0
dkz

[
df n|Qf |

Ef
n

+
d̄f n|Qf |

Ef
n

]
(32)

ρ =
∑
f

γf |Qf |B

2π2

∑
n

∫ ∞

0
dkz

(
df − d̄f

)
(33)

s = −
∑
f

γf |Qf |B

2π2

∑
n

∫ ∞

0
dkz

{
df ln(df ) + (1− df ) ln(1− df ) + d̄f ln(d̄f ) + (1− d̄f ) ln(1− d̄f )

}

(34)

ε =
3gh

2

16mG
2
ρ2 + BQCD +

B2

2
+

∑
f

γf |Qf |B

2π2

∑
n

∫
dkz E

f
n (df + d̄f ) (35)

2.4. Zero temperature

In the zero temperature limit [6, 10, 12], applied to astrophysics, we have the distributions (22)
given by:

df = Θ(νf − Ef
n ) and d̄f = 0 (36)

and also [10]:

lim
T→0

T ln
(
1− df

)
= (Ef

n − νf ) and lim
T→0

T ln
(
1− d̄f

)
= 0 (37)

The quark density at zero temperature is obtained by inserting (36) into (33) [6]:

ρ =
∑
f

γf |Qf |B

2π2

nf
max∑
n=0

kfz,F (n) (38)

From Θ(νf − Ef
n ) and using (23) we have the Fermi momentum for the quark f :

kfz,F (n) =
√
νf 2 −m2

f − 2n|Qf |B (39)

The summation over the Landau levels is calculated on the condition that the expression under
the square root in (39) is positive, i.e., νf

2 ≥ m2
f + 2n|Qf |B [6]. Thus

n ≤ nf
max = int

[
(νf

2 −m2
f )/(2|Qf |B)

]
(40)

where int [a] denotes the integer part of a. Inserting the results (36) to (39) into (30), (31), (32)
and (35) we find the energy density and the pressure components:

ε =
3gh

2

16mG
2
ρ2 + BQCD +

B2

2

+
∑
f

γf |Qf |B

2π2

nf
max∑
n=0

∫ kf
z,F

(n)

0
dkz

√
m2

f + k2z + 2n|Qf |B (41)

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012027 doi:10.1088/1742-6596/630/1/012027

6



p‖ =
3gh

2

16mG
2
ρ2 − BQCD −

B2

2

+
∑
f

γf |Qf |B

2π2

nf
max∑
n=0

∫ kf
z,F

(n)

0
dkz

kz
2√

m2
f + k2z + 2n|Qf |B

(42)

and

p⊥ =
3gh

2

16mG
2
ρ2 − BQCD +

B2

2

+
∑
f

γf |Qf |
2B2

2π2

nf
max∑
n=0

n

∫ kf
z,F

(n)

0

dkz√
m2

f + k2z + 2n|Qf |B
(43)

As in [6], the pressure components p‖ and p⊥ are different for any value of the magnetic field

B. In the limit B >> (νf
2 −m2

f )/2|Qf | expression (40) may be rewritten as:

lim
B→∞

n ≤ lim
B→∞

nf
max = lim

B→∞
int

[ (
νf

2 −m2
f

)
2|Qf |B

]
= 0 (44)

which implies that only the lowest Landau level (n = 0) contributes. In this limit (39) becomes:

k
f (B→∞)
z,F =

√
νf 2 −m2

f (45)

In the large magnetic field limit (41) to (43) are finally written as:

ε (B→∞) =
3gh

2

16mG
2
ρ2 + BQCD +

B2

2
+

∑
f

γf |Qf |B

2π2

∫ k
f (B→∞)
z,F

0
dkz

√
m2

f + k2z (46)

p‖ (B→∞)
=

3gh
2

16mG
2
ρ2 − BQCD −

B2

2
+

∑
f

γf |Qf |B

2π2

∫ k
f (B→∞)
z,F

0
dkz

kz
2√

m2
f + k2z

(47)

p⊥ (B→∞) =
3gh

2

16mG
2
ρ2 − BQCD +

B2

2
(48)

and the quark density (38) reads:

ρ (B→∞) =
∑
f

γf |Qf |B

2π2

√
νf 2 −m2

f (49)

3. Conclusions

We have derived the equation of state of the strongly interacting QGP at finite temperature
under uniform magnetic field. In all expressions the term proportional to gh

2/mG
2 is new with

respect to other works in the field and comes from the EOS [1]. Special attention was given to
the zero temperature case, which will be applied to stellar structure calculations.
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