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Abstract Astrophysical observations are pointing out huge amounts of “dark
matter” and “dark energy” needed to explain the observed large scale structure
and cosmic dynamics. The emerging picture is a spatially flat, homogeneous Uni-
verse undergoing the today observed accelerated phase. Despite of the good qual-
ity of astrophysical surveys, commonly addressed as Precision Cosmology, the
nature and the nurture of dark energy and dark matter, which should constitute the
bulk of cosmological matter-energy, are still unknown. Furthermore, up to now,
no experimental evidence has been found, at fundamental level, to explain such
mysterious components. The problem could be completely reversed considering
dark matter and dark energy as “shortcomings” of General Relativity in its sim-
plest formulation (a linear theory in the Ricci scalar R, minimally coupled to the
standard perfect fluid matter) and claiming for the “correct” theory of gravity as
that derived by matching the largest number of observational data, without impos-
ing any theory a priori. As a working hypothesis, accelerating behavior of cosmic
fluid, large scale structure, potential of galaxy clusters, rotation curves of spiral
galaxies could be reproduced by means of extending the standard theory of Gen-
eral Relativity. In other words, gravity could acts in different ways at different
scales and the above “shortcomings” could be due to incorrect extrapolations of
the Einstein gravity, actually tested at short scales and low energy regimes. After a
survey of what is intended for Extended Theories of Gravity in the so called “met-
ric” and “Palatini” approaches, we discuss some cosmological and astrophysical
applications where the issues related to the dark components are addressed by
enlarging the Einstein theory to more general f (R) Lagrangians, where f (R) is a
generic function of Ricci scalar R, not assumed simply linear. Obviously, this is
not the final answer to the problem of “dark-components” but it can be consid-
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ered as an operative scheme whose aim is to avoid the addition of unknown exotic
ingredients to the cosmic pie.

Keywords Extended theories of gravity, Dark energy, Dark matter, Observations

1 Introduction

General Relativity (GR) is a comprehensive theory of spacetime, gravity and mat-
ter. Its formulation implies that space and time are not “absolute” entities, as in
Classical Mechanics, but dynamical quantities strictly related to the distribution
of matter and energy. As a consequence, this approach gave rise to a new concep-
tion of the Universe itself which, for the first time, was considered as a dynamical
system. In other words, Cosmology has been enclosed in the realm of Science
and not only of Philosophy, as before the Einstein work. On the other hand, the
possibility of a scientific investigation of the Universe has led to the formulation
of the Standard Cosmological Model [1] which, quite nicely, has matched with
observations.

Despite of these results, in the last 30 years, several shortcomings came out
in the Einstein theory and people began to investigate whether GR is the only
fundamental theory capable of explaining the gravitational interaction. Such issues
come, essentially, from cosmology and quantum field theory. In the first case,
the presence of the Big Bang singularity, the flatness and horizon problems [2]
led to the statement that Cosmological Standard Model, based on the GR and
the Standard Model of Particle Physics, is inadequate to describe the Universe at
extreme regimes. On the other hand, GR is a classical theory which does not work
as a fundamental theory, when one wants to achieve a full quantum description of
spacetime (and then of gravity).

Due to these facts and, first of all, to the lack of a definitive quantum gravity
theory, alternative theories have been considered in order to attempt, at least, a
semi-classical scheme where GR and its positive results could be recovered. One
of the most fruitful approaches has been that of Extended Theories of Gravity
(ETG) which have become a sort of paradigm in the study of gravitational inter-
action. They are based on corrections and enlargements of the Einstein theory.
The paradigm consists, essentially, in adding higher-order curvature invariants and
minimally or non-minimally coupled scalar fields into dynamics which come out
from the effective action of quantum gravity [3].

Other motivations to modify GR come from the issue of a full recovering of
the Mach principle which leads to assume a varying gravitational coupling. The
principle states that the local inertial frame is determined by some average of the
motion of distant astronomical objects [4]. This fact implies that the gravitational
coupling can be scale-dependent and related to some scalar field. As a conse-
quence, the concept of “inertia” and the Equivalence Principle have to be revised.
For example, the Brans–Dicke theory [5] is a serious attempt to define an alterna-
tive theory to the Einstein gravity: it takes into account a variable Newton grav-
itational coupling, whose dynamics is governed by a scalar field non-minimally
coupled to the geometry. In such a way, Mach’s principle is better implemented
[5; 6; 7].
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Besides, every unification scheme as Superstrings, Supergravity or Grand Uni-
fied Theories, takes into account effective actions where non-minimal couplings
to the geometry or higher-order terms in the curvature invariants are present. Such
contributions are due to one-loop or higher-loop corrections in the high-curvature
regimes near the full (not yet available) quantum gravity regime [3]. Specifically,
this scheme was adopted in order to deal with the quantization on curved space-
times and the result was that the interactions among quantum scalar fields and
background geometry or the gravitational self-interactions yield corrective terms
in the Hilbert–Einstein Lagrangian [8]. Moreover, it has been realized that such
corrective terms are inescapable in order to obtain the effective action of quantum
gravity at scales closed to the Planck one [9]. All these approaches are not the
“full quantum gravity” but are needed as working schemes toward it.

In summary, higher-order terms in curvature invariants (such as R2, Rµν Rµν ,
Rµναβ Rµναβ , R�R, or R�kR) or non-minimally coupled terms between scalar
fields and geometry (such as φ 2R) have to be added to the effective Lagrangian of
gravitational field when quantum corrections are considered. For instance, one can
notice that such terms occur in the effective Lagrangian of strings or in Kaluza–
Klein theories, when the mechanism of dimensional reduction is used [10].

On the other hand, from a conceptual viewpoint, there are no a priori reason to
restrict the gravitational Lagrangian to a linear function of the Ricci scalar R, min-
imally coupled with matter [11]. Furthermore, the idea that there are no “exact”
laws of physics could be taken into serious account: in such a case, the effec-
tive Lagrangians of physical interactions are “stochastic” functions. This feature
means that the local gauge invariances (i.e., conservation laws) are well approx-
imated only in the low energy limit and the fundamental physical constants can
vary [12].

Besides fundamental physics motivations, all these theories have acquired a
huge interest in cosmology due to the fact that they “naturally” exhibit inflationary
behaviors able to overcome the shortcomings of Cosmological Standard Model
(based on GR). The related cosmological models seem realistic and capable of
matching with the CMBR observations [13; 14; 15]. Furthermore, it is possible
to show that, via conformal transformations, the higher-order and non-minimally
coupled terms always correspond to the Einstein gravity plus one or more than one
minimally coupled scalar fields
[16; 17; 18; 19; 20].

More precisely, higher-order terms appear always as contributions of order two
in the field equations. For example, a term like R2 gives fourth order equations
[21], R �R gives sixth order equations [20; 22], R�2R gives eighth order equa-
tions [23] and so on. By a conformal transformation, any second-order derivative
term corresponds to a scalar field:1 for example, fourth-order gravity gives Ein-
stein plus one scalar field, sixth-order gravity gives Einstein plus two scalar fields
and so on [20; 24].

Furthermore, it is possible to show that the f (R)-gravity is equivalent not only
to a scalar-tensor one but also to the Einstein theory plus an ideal fluid [25]. This
feature results very interesting if we want to obtain multiple inflationary events
since an early stage could select “very” large-scale structures (clusters of galax-

1 The dynamics of such scalar fields is usually given by the corresponding Klein–Gordon
Equation, which is second order.
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ies today), while a late stage could select “small” large-scale structures (galaxies
today) [22]. The philosophy is that each inflationary era is related to the dynamics
of a scalar field. Finally, these extended schemes could naturally solve the prob-
lem of “graceful exit” bypassing the shortcomings of former inflationary models
[15; 26].

In addition to the revision of Standard Cosmology at early epochs (leading to
the Inflation), a new approach is necessary also at late epochs. ETGs could play a
fundamental role also in this context. In fact, the increasing bulk of data that have
been accumulated in the last few years have paved the way to the emergence of a
new cosmological model usually referred to as the Concordance Model.

The Hubble diagram of Type Ia Supernovae (hereafter SNeIa), measured by
both the Supernova Cosmology Project [27; 28] and the High-z Team [29; 30]
up to redshift z ∼ 1, has been the first evidence that the Universe is undergoing
a phase of accelerated expansion. On the other hand, balloon born experiments,
such as BOOMERanG [31] and MAXIMA [32], determined the location of the
first and second peak in the anisotropy spectrum of the cosmic microwave back-
ground radiation (CMBR) strongly pointing out that the geometry of the Universe
is spatially flat. If combined with constraints coming from galaxy clusters on the
matter density parameter ΩM , these data indicate that the Universe is dominated
by a non-clustered fluid with negative pressure, generically dubbed dark energy,
which is able to drive the accelerated expansion. This picture has been further
strengthened by the recent precise measurements of the CMBR spectrum, due to
the WMAP experiment [33; 34; 35], and by the extension of the SNeIa Hubble
diagram to redshifts higher than 1 [36].

After these observational evidences, an overwhelming flood of papers has
appeared: they present a great variety of models trying to explain this phenomenon.
In any case, the simplest explanation is claiming for the well known cosmological
constant Λ [37]. Although it is the best fit to most of the available astrophysical
data [33], the ΛCDM model fails in explaining why the inferred value of Λ is
so tiny (120 orders of magnitude lower!) if compared with the typical vacuum
energy values predicted by particle physics and why its energy density is today
comparable to the matter density (the so called coincidence problem).

As a tentative solution, many authors have replaced the cosmological con-
stant with a scalar field rolling down its potential and giving rise to the model
now referred to as quintessence [38; 39]. Even if successful in fitting the data, the
quintessence approach to dark energy is still plagued by the coincidence problem
since the dark energy and matter densities evolve differently and reach compa-
rable values for a very limited portion of the Universe evolution coinciding at
present era. To be more precise, the quintessence dark energy is tracking matter
and evolves in the same way for a long time. But then, at late time, somehow it has
to change its behavior into no longer tracking the dark matter but starting to domi-
nate as a cosmological constant. This is the coincidence problem of quintessence.

Moreover, it is not clear where this scalar field originates from, thus leaving a
great uncertainty on the choice of the scalar field potential. The subtle and elusive
nature of dark energy has led many authors to look for completely different scenar-
ios able to give a quintessential behavior without the need of exotic components.
To this aim, it is worth stressing that the acceleration of the Universe only claims
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for a negative pressure dominant component, but does not tell anything about the
nature and the number of cosmic fluids filling the Universe.

This consideration suggests that it could be possible to explain the accelerated
expansion by introducing a single cosmic fluid with an equation of state causing it
to act like dark matter at high densities and dark energy at low densities. An attrac-
tive feature of these models, usually referred to as Unified Dark Energy (UDE) or
Unified Dark Matter (UDM) models, is that such an approach naturally solves,
atleast phenomenologically, the coincidence problem. Some interesting examples
are the generalized Chaplygin gas [40], the tachyon field [41] and the condensate
cosmology [42]. A different class of UDE models has been proposed [43; 44]
where a single fluid is considered: its energy density scales with the redshift in
such a way that the radiation dominated era, the matter era and the accelerating
phase can be naturally achieved. It is worth noticing that such class of models are
extremely versatile since they can be interpreted both in the framework of UDE
models and as a two-fluid scenario with dark matter and scalar field dark energy.
The main ingredient of the approach is that a generalized equation of state can be
always obtained and observational data can be fitted.

Actually, there is still a different way to face the problem of cosmic acceler-
ation. As stressed in [45], it is possible that the observed acceleration is not the
manifestation of another ingredient in the cosmic pie, but rather the first signal
of a breakdown of our understanding of the laws of gravitation (in the infra-red
limit).

From this point of view, it is thus tempting to modify the Friedmann equations
to see whether it is possible to fit the astrophysical data with models compris-
ing only the standard matter. Interesting examples of this kind are the Cardassian
expansion [46] and the DGP gravity [47]. Moving in this same framework, it is
possible to find alternative schemes where a quintessential behavior is obtained
by taking into account effective models coming from fundamental physics giving
rise to generalized or higher-order gravity actions [48; 49; 50; 51] (for a compre-
hensive review see [52]).

For instance, a cosmological constant term may be recovered as a consequence
of a non-vanishing torsion field thus leading to a model which is consistent with
both SNeIa Hubble diagram and Sunyaev-Zel’dovich data coming from clusters
of galaxies [53]. SNeIa data could also be efficiently fitted including higher-order
curvature invariants in the gravity Lagrangian [54; 56; 57; 58]. It is worth noticing
that these alternative models provide naturally a cosmological component with
negative pressure whose origin is related to the geometry of the Universe thus
overcoming the problems linked to the physical significance of the scalar field.

It is evident, from this short overview, the high number of cosmological models
which are viable candidates to explain the observed accelerated expansion. This
abundance of models is, from one hand, the signal of the fact that we have a
limited number of cosmological tests to discriminate among rival theories, and,
from the other hand, that a urgent degeneracy problem has to be faced. To this
aim, it is useful to remark that both the SNeIa Hubble diagram and the angular
size–redshift relation of compact radio sources [59] are distance based methods to
probe cosmological models so then systematic errors and biases could be iterated.
From this point of view, it is interesting to search for tests based on time-dependent
observables.
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For example, one can take into account the lookback time to distant objects
since this quantity can discriminate among different cosmological models. The
lookback time is observationally estimated as the difference between the present
day age of the Universe and the age of a given object at redshift z. Such an estimate
is possible if the object is a galaxy observed in more than one photometric band
since its color is determined by its age as a consequence of stellar evolution. It is
thus possible to get an estimate of the galaxy age by measuring its magnitude in
different bands and then using stellar evolutionary codes to choose the model that
reproduces the observed colors at best.

Coming to the weak-field-limit approximation, which essentially means con-
sidering Solar System scales, ETGs are expected to reproduce GR which, in any
case, is firmly tested only in this limit [61]. This fact is matter of debate since sev-
eral relativistic theories do not reproduce exactly the Einstein results in the New-
tonian approximation but, in some sense, generalize them. As it was firstly noticed
by Stelle [64], a R2-theory gives rise to Yukawa-like corrections in the Newtonian
potential. Such a feature could have interesting physical consequences. For exam-
ple, some authors claim to explain the flat rotation curves of galaxies by using such
terms [65]. Others [66] have shown that a conformal theory of gravity is noth-
ing else but a fourth-order theory containing such terms in the Newtonian limit.
Besides, indications of an apparent, anomalous, long-range acceleration revealed
from the data analysis of Pioneer 10/11, Galileo, and Ulysses spacecrafts could
be framed in a general theoretical scheme by taking corrections to the Newtonian
potential into account [67; 68].

In general, any relativistic theory of gravitation yields corrections to the New-
ton potential (see for example [69]) which, in the post-Newtonian (PPN) formal-
ism, could be a test for the same theory [61]. Furthermore the newborn gravi-
tational lensing astronomy [70] is giving rise to additional tests of gravity over
small, large, and very large scales which soon will provide direct measurements
for the variation of the Newton coupling [71], the potential of galaxies, clusters of
galaxies and several other features of self-gravitating systems.

Such data will be, very likely, capable of confirming or ruling out the physical
consistency of GR or of any ETG. In summary, the general features of ETGs are
that the Einstein field equations result to be modified in two senses: (i) geometry
can be non-minimally coupled to some scalar field, and/or (ii) higher than second
order derivative terms in the metric come out. In the former case, we generically
deal with scalar-tensor theories of gravity; in the latter, we deal with higher-order
theories. However combinations of non-minimally coupled and higher-order terms
can emerge as contributions in effective Lagrangians. In this case, we deal with
higher-order-scalar-tensor theories of gravity.

Considering a mathematical viewpoint, the problem of reducing more general
theories to Einstein standard form has been extensively treated; one can see that,
through a “Legendre” transformation on the metric, higher-order theories, under
suitable regularity conditions on the Lagrangian, take the form of the Einstein one
in which a scalar field (or more than one) is the source of the gravitational field
(see for example [11; 72; 73; 74]); on the other side, as discussed above, it has
been studied the mathematical equivalence between models with variable grav-
itational coupling with the Einstein standard gravity through suitable conformal
transformations (see [75; 76]).
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In any case, the debate on the physical meaning of conformal transformations
is far to be solved (see [78] and references therein for a comprehensive review).
Several authors claim for a true physical difference between Jordan frame (higher-
order theories and/or variable gravitational coupling) since there are experimental
and observational evidences which point out that the Jordan frame could be suit-
able to better match solutions with data. Others state that the true physical frame is
the Einstein one according to the energy theorems [74]. However, the discussion
is open and no definitive statement has been formulated up to now.

The problem should be faced from a more general viewpoint and the Palatini
approach to gravity could be useful to this goal. The Palatini approach in grav-
itational theories was firstly introduced and analyzed by Einstein himself [79].
It was, however, called the Palatini approach as a consequence of an historical
misunderstanding [80; 81].

The fundamental idea of the Palatini formalism is to consider the (usually
torsion-less) connection Γ , entering the definition of the Ricci tensor, to be inde-
pendent of the metric g defined on the spacetime M . The Palatini formulation for
the standard Hilbert–Einstein theory results to be equivalent to the purely metric
theory: this follows from the fact that the field equations for the connection Γ ,
firstly considered to be independent of the metric, give the Levi-Civita connec-
tion of the metric g. As a consequence, there is no reason to impose the Palatini
variational principle in the standard Hilbert–Einstein theory instead of the metric
variational principle.

However, the situation completely changes if we consider the ETGs, depend-
ing on functions of curvature invariants, as f (R), or non-minimally coupled to
some scalar field. In these cases, the Palatini and the metric variational principle
provide different field equations and the theories thus derived differ [74; 82]. The
relevance of Palatini approach, in this framework, has been recently proven in
relation to cosmological applications [48; 49; 50; 51; 52; 83; 84; 85].

It has also been studied the crucial problem of the Newtonian potential in alter-
native theories of Gravity and its relations with the conformal factor [87; 88]. From
a physical viewpoint, considering the metric g and the connection Γ as indepen-
dent fields means to decouple the metric structure of spacetime and its geodesic
structure (being, in general, the connection Γ not the Levi-Civita connection of g).
The chronological structure of spacetime is governed by g while the trajectories
of particles, moving in the spacetime, are governed by Γ .

This decoupling enriches the geometric structure of spacetime and generalizes
the purely metric formalism. This metric-affine structure of spacetime is naturally
translated, by means of the same (Palatini) field equations, into a bi-metric struc-
ture of spacetime. Beside the physical metric g, another metric h is involved. This
new metric is related, in the case of f (R)-gravity, to the connection. As a matter
of fact, the connection Γ results to be the Levi-Civita connection of h and thus
provides the geodesic structure of spacetime.

If we consider the case of non-minimally coupled interaction in the gravita-
tional Lagrangian (scalar-tensor theories), the new metric h is related to the non-
minimal coupling. The new metric h can be thus related to a different geometric
and physical aspect of the gravitational theory. Thanks to the Palatini formalism,
the non-minimal coupling and the scalar field, entering the evolution of the gravi-
tational fields, are separated from the metric structure of spacetime. The situation
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mixes when we consider the case of higher-order-scalar-tensor theories. Due to
these features, the Palatini approach could greatly contribute to clarify the physi-
cal meaning of conformal transformation [86].

In this review paper, without claiming for completeness, we want to give a sur-
vey on the formal and physical aspects of ETGs in metric and Palatini approaches,
considering the cosmological and astrophysical applications of some ETG models.

The layout is the following. Section 2 is a rapid overview of GR. We summa-
rize what a good theory of gravity is requested to do and what the foundations
of the Einstein theory are. The goal is to demonstrate that ETGs have the same
theoretical bases but, in principle, could avoid some shortcomings of GR which is
nothing else but a particular case of ETG, f (R) = R.

The field equations for generic ETGs are derived in Sect. 3. Specifically, we
discuss two interesting cases: f (R) and scalar-tensor theories considering their
relations with GR by conformal transformations.

The Palatini approach and its intrinsic conformal structure is discussed in
Sect. 4 giving some peculiar examples.

Cosmological applications are considered in Sect. 5. After a short summary of
ΛCDM model, we show that dark energy and quintessence issues can be addressed
as “curvature effects”, if ETGs (in particular f (R) theories) are considered. We
work out some cosmological models comparing the solutions with data coming
from observational surveys. As further result, we show that also the stochastic
cosmological background of gravitational waves could be “tuned” by ETGs. This
fact could open new perspective also in the issues of detection and production of
gravitational waves which should be investigated not only in the standard frame-
work of GR.

Section 6 is devoted to the galactic dynamics under the standard of ETGs. Also
in this case, we show that flat rotation curves and haloes of spiral galaxies could
be explained as curvature effects which give rise to corrections to the Newton
potential without taking into account huge amounts of dark matter. Discussion
and conclusions are drawn in Sect. 7.

2 What a good theory of gravity has to do: general relativity and its
extensions

From a phenomenological point of view, there are some minimal requirements
that any relativistic theory of gravity has to match. First of all, it has to explain
the astrophysical observations (e.g., the orbits of planets, the potential of self-
gravitating structures).

This means that it has to reproduce the Newtonian dynamics in the weak-
energy limit. Besides, it has to pass the classical Solar System tests which are all
experimentally well founded [61].

As second step, it should reproduce galactic dynamics considering the observed
baryonic constituents (e.g., luminous components as stars, sub-luminous compo-
nents as planets, dust and gas), radiation and Newtonian potential which is, by
assumption, extrapolated to galactic scales.

Thirdly, it should address the problem of large scale structure (e.g., clustering
of galaxies) and finally cosmological dynamics, which means to reproduce, in a
self-consistent way, the cosmological parameters as the expansion rate, the Hubble
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constant, the density parameter and so on. Observations and experiments, essen-
tially, probe the standard baryonic matter, the radiation and an attractive overall
interaction, acting at all scales and depending on distance: the gravity.

The simplest theory which try to satisfies the above requirements was for-
mulated by Albert Einstein in the years 1915–1916 [89] and it is known as the
Theory of General Relativity. It is firstly based on the assumption that space and
time have to be entangled into a single spacetime structure, which, in the limit of
no gravitational forces, has to reproduce the Minkowski spacetime structure. Ein-
stein profitted also of ideas earlier put forward by Riemann, who stated that the
Universe should be a curved manifold and that its curvature should be established
on the basis of astronomical observations [90].

In other words, the distribution of matter has to influence point by point the
local curvature of the spacetime structure. The theory, eventually formulated by
Einstein in 1915, was strongly based on three assumptions that the Physics of
Gravitation has to satisfy.

The “Principle of Relativity”, that amounts to require all frames to be good
frames for Physics, so that no preferred inertial frame should be chosen a priori (if
any exist).

The “Principle of Equivalence”, that amounts to require inertial effects to be
locally indistinguishable from gravitational effects (in a sense, the equivalence
between the inertial and the gravitational mass).

The “Principle of General Covariance”, that requires field equations to be
“generally covariant” (today, we would better say to be invariant under the action
of the group of all spacetime diffeomorphisms) [91].

And—on the top of these three principles—the requirement that causality has
to be preserved (the “Principle of Causality”, i.e., that each point of spacetime
should admit a universally valid notion of past, present and future).

Let us also recall that the older Newtonian theory of spacetime and gravitation–
that Einstein wanted to reproduce at least in the limit of small gravitational forces
(what is called today the “post-Newtonian approximation”)—required space and
time to be absolute entities, particles moving in a preferred inertial frame follow-
ing curved trajectories, the curvature of which (i.e., the acceleration) had to be
determined as a function of the sources (i.e., the “forces”).

On these bases, Einstein was led to postulate that the gravitational forces have
to be expressed by the curvature of a metric tensor field ds2 = gµν dxµ dxν on
a four-dimensional spacetime manifold, having the same signature of Minkowski
metric, i.e., the so-called “Lorentzian signature”, herewith assumed to be (+,−,−,−).
He also postulated that spacetime is curved in itself and that its curvature is
locally determined by the distribution of the sources, i.e.,—being spacetime a
continuum—by the four-dimensional generalization of what in Continuum Mechan-
ics is called the “matter stress-energy tensor”, i.e., a rank-two (symmetric) tensor
T m

µν .
Once a metric gµν is given, its curvature is expressed by the Riemann (curva-

ture) tensor

Rα
β µν = Γ

α

βν ,µ −Γ
α

β µ ,ν +Γ
σ

βν
Γ

α
σ µ −Γ

σ

β µ
Γ

α
σν (1)

where the comas are partial derivatives. Its contraction

Rα
µαν = Rµν , (2)
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is the “Ricci tensor” and the scalar

R = Rµ
µ = gµν Rµν (3)

is called the “scalar curvature” of gµν . Einstein was led to postulate the following
equations for the dynamics of gravitational forces

Rµν =
κ

2
T m

µν (4)

where κ = 8πG, with c = 1 is a coupling constant. These equations turned out to
be physically and mathematically unsatisfactory.

As Hilbert pointed out [91], they were not of a variational origin, i.e., there
was no Lagrangian able to reproduce them exactly (this is slightly wrong, but this
remark is unessential here). Einstein replied that he knew that the equations were
physically unsatisfactory, since they were contrasting with the continuity equation
of any reasonable kind of matter. Assuming that matter is given as a perfect fluid,
that is

T m
µν = (p+ρ)uµ uν − pgµν (5)

where uµ uν is a comoving observer, p is the pressure and ρ the density of the
fluid, then the continuity equation requires T m

µν to be covariantly constant, i.e., to
satisfy the conservation law

∇
µ T m

µν = 0, (6)

where ∇µ denotes the covariant derivative with respect to the metric.
In fact, it is not true that ∇µ Rµν vanishes (unless R = 0). Einstein and Hilbert

reached independently the conclusion that the wrong field equations (4) had to be
replaced by the correct ones

Gµν = κT m
µν (7)

where

Gµν = Rµν −
1
2

gµν R (8)

that is currently called the “Einstein tensor” of gµν . These equations are both
variational and satisfy the conservation laws (6) since the following relation holds

∇
µ Gµν = 0, (9)

as a byproduct of the so-called “Bianchi identities” that the curvature tensor of
gµν has to satisfy [1].

The Lagrangian that allows to obtain the field equations (7) is the sum of a
“matter Lagrangian” Lm, the variational derivative of which is exactly T m

µν , i.e.,
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T m
µν =

δLm

δgµν
(10)

and of a “gravitational Lagrangian”, currently called the Hilbert–Einstein Lagrangian

LHE = gµν Rµν

√
−g = R

√
−g, (11)

where
√
−g denotes the square root of the value of the determinant of the metric

gµν .
The choice of Hilbert and Einstein was completely arbitrary (as it became clear

a few years later), but it was certainly the simplest one both from the mathemat-
ical and the physical viewpoint. As it was later clarified by Levi-Civita in 1919,
curvature is not a “purely metric notion” but, rather, a notion related to the “linear
connection” to which “parallel transport” and “covariant derivation” refer [92].

In a sense, this is the precursor idea of what in the sequel would be called a
“gauge theoretical framework” [93], after the pioneering work by Cartan in 1925
[94]. But at the time of Einstein, only metric concepts were at hands and his solu-
tion was the only viable.

It was later clarified that the three principles of relativity, equivalence and
covariance, together with causality, just require that the spacetime structure has
to be determined by either one or both of two fields, a Lorentzian metric g and a
linear connection Γ , assumed to be torsionless for the sake of simplicity.

The metric g fixes the causal structure of spacetime (the light cones) as well as
its metric relations (clocks and rods); the connection Γ fixes the free-fall, i.e., the
locally inertial observers. They have, of course, to satisfy a number of compatibil-
ity relations which amount to require that photons follow null geodesics of Γ , so
that Γ and g can be independent, a priori, but constrained, a posteriori, by some
physical restrictions. These, however, do not impose that Γ has necessarily to be
the Levi-Civita connection of g [95].

This justifies—at least on a purely theoretical basis—the fact that one can
envisage the so-called “alternative theories of gravitation”, that we prefer to call
“Extended Theories of Gravitation” since their starting points are exactly those
considered by Einstein and Hilbert: theories in which gravitation is described by
either a metric (the so-called “purely metric theories”), or by a linear connection
(the so-called “purely affine theories”) or by both fields (the so-called “metric-
affine theories”, also known as “first order formalism theories”). In these theories,
the Lagrangian is a scalar density of the curvature invariants constructed out of
both g and Γ .

The choice (11) is by no means unique and it turns out that the Hilbert–Einstein
Lagrangian is in fact the only choice that produces an invariant that is linear in sec-
ond derivatives of the metric (or first derivatives of the connection). A Lagrangian
that, unfortunately, is rather singular from the Hamiltonian viewpoint, in much
than same way as Lagrangians, linear in canonical momenta, are rather singular
in Classical Mechanics (see e.g., [96]).

A number of attempts to generalize GR (and unify it to Electromagnetism)
along these lines were followed by Einstein himself and many others (Eddington,
Weyl, Schrodinger, just to quote the main contributors; see, e.g., [97]) but they
were eventually given up in the 1950s of twentieth Century, mainly because of
a number of difficulties related to the definitely more complicated structure of a
non-linear theory (where by “non-linear” we mean here a theory that is based on
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non-linear invariants of the curvature tensor), and also because of the new under-
standing of Physics that is currently based on four fundamental forces and requires
the more general “gauge framework” to be adopted (see [98]).

Still a number of sporadic investigations about “alternative theories” continued
even after 1960 (see [61] and references quoted therein for a short history). The
search of a coherent quantum theory of gravitation or the belief that gravity has
to be considered as a sort of low-energy limit of string theories (see, e.g., [99])—
something that we are not willing to enter here in detail—has more or less recently
revitalized the idea that there is no reason to follow the simple prescription of Ein-
stein and Hilbert and to assume that gravity should be classically governed by a
Lagrangian linear in the curvature.

Further curvature invariants or non-linear functions of them should be also
considered, especially in view of the fact that they have to be included in both the
semi-classical expansion of a quantum Lagrangian or in the low-energy limit of a
string Lagrangian.

Moreover, it is clear from the recent astrophysical observations and from the
current cosmological hypotheses that Einstein equations are no longer a good test
for gravitation at Solar System, galactic, extra-galactic and cosmic scale, unless
one does not admit that the matter side of Eqs. 7 contains some kind of exotic
matter-energy which is the “dark matter” and “dark energy” side of the Universe.

The idea which we propose here is much simpler. Instead of changing the
matter side of Einstein Equations (7) in order to fit the “missing matter-energy”
content of the currently observed Universe (up to the 95% of the total amount!),
by adding any sort of inexplicable and strangely behaving matter and energy, we
claim that it is simpler and more convenient to change the gravitational side of the
equations, admitting corrections coming from non-linearities in the Lagrangian.
However, this is nothing else but a matter of taste and, since it is possible, such
an approach should be explored. Of course, provided that the Lagrangian can be
conveniently tuned up (i.e., chosen in a huge family of allowed Lagrangians) on
the basis of its best fit with all possible observational tests, at all scales (solar,
galactic, extragalactic and cosmic).

Something that—in spite of some commonly accepted but disguised opinion—
can and should be done before rejecting a priori a non-linear theory of gravitation
(based on a non-singular Lagrangian) and insisting that the Universe has to be nec-
essarily described by a rather singular gravitational Lagrangian (one that does not
allow a coherent perturbation theory from a good Hamiltonian viewpoint) accom-
panied by matter that does not follow the behavior that standard baryonic matter,
probed in our laboratories, usually satisfies.

3 The extended theories of gravity

With the above considerations in mind, let us start with a general class of higher-
order-scalar-tensor theories in four dimensions2 given by the action

2 For the aims of this review, we do not need more complicated invariants like Rµν Rµν ,
Rµναβ Rµναβ , CµναβCµναβ which are also possible.
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A =
∫

d4x
√
−g
[
F(R,�R,�2R, ..�kR,φ)− ε

2
gµν

φ;µ φ;ν +Lm

]
, (12)

where F is an unspecified function of curvature invariants and of a scalar field φ .
The term Lm, as above, is the minimally coupled ordinary matter contribution.
We shall use physical units 8πG = c = h̄ = 1; ε is a constant which specifies the
theory. Actually its values can be ε = ±1,0 fixing the nature and the dynamics
of the scalar field which can be a standard scalar field, a phantom field or a field
without dynamics (see [133; 134] for details).

In the metric approach, the field equations are obtained by varying (12) with
respect to gµν . We get

Gµν =
1
G

[
T µν +

1
2

gµν(F−G R)+(gµλ gνσ −gµν gλσ )G;λσ

+
1
2

k

∑
i=1

i

∑
j=1

(gµν gλσ +gµλ gνσ )(� j−i);σ

(
�i− j ∂F

∂�iR

)
;λ

−gµν gλσ

(
(� j−1R);σ�i− j ∂F

∂�iR

)
;λ

]
, (13)

where Gµν is the above Einstein tensor and

G ≡
n

∑
j=0

� j
(

∂F
∂� jR

)
. (14)

The differential Eqs. 13 are of order (2k + 4). The stress-energy tensor is due to
the kinetic part of the scalar field and to the ordinary matter:

Tµν = T m
µν +

ε

2

[
φ;µ φ;ν −

1
2

φ
α
; φ;α

]
. (15)

The (eventual) contribution of a potential V (φ) is contained in the definition of F .
From now on, we shall indicate by a capital F a Lagrangian density containing also
the contribution of a potential V (φ) and by F(φ), f (R), or f (R,�R) a function of
such fields without potential.

By varying with respect to the scalar field φ , we obtain the Klein–Gordon
equation

ε�φ =−∂F
∂φ

. (16)

Several approaches can be used to deal with such equations. For example, as we
said, by a conformal transformation, it is possible to reduce an ETG to a (multi)
scalar-tensor theory of gravity [69; 18; 19; 20; 100].

The simplest extension of GR is achieved assuming

F = f (R), ε = 0, (17)

in the action (12); f (R) is an arbitrary (analytic) function of the Ricci curvature
scalar R. We are considering here the simplest case of fourth-order gravity but
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we could construct such kind of theories also using other invariants in Rµν or
Rα

β µν
. The standard Hilbert–Einstein action is, of course, recovered for f (R) = R.

Varying with respect to gαβ , we get the field equations

f ′(R)Rαβ −
1
2

f (R)gαβ = f ′(R);µν (
gαµ gβν −gαβ gµν

)
, (18)

which are fourth-order equations due to the term f ′(R);µν ; the prime indicates the
derivative with respect to R. Equation (18) is also the equation for Tµν = 0 when
the matter term is absent.

By a suitable manipulation, the above equation can be rewritten as:

Gαβ =
1

f ′(R)

{
1
2

gαβ

[
f (R)−R f ′(R)

]
+ f ′(R);αβ −gαβ � f ′(R)

}
, (19)

where the gravitational contribution due to higher-order terms can be simply rein-
terpreted as a stress-energy tensor contribution. This means that additional and
higher-
order terms in the gravitational action act, in principle, as a stress-energy ten-
sor, related to the form of f (R). Considering also the standard perfect-fluid matter
contribution, we have

Gαβ =
1

f ′(R)

{
1
2

gαβ

[
f (R)−R f ′(R)

]
+ f ′(R);αβ −gαβ � f ′(R)

}
+

T m
αβ

f ′(R)
= T curv

αβ
+

T m
αβ

f ′(R)
, (20)

where T curv
αβ

is an effective stress-energy tensor constructed by the extra curvature
terms. In the case of GR, T curv

αβ
identically vanishes while the standard, minimal

coupling is recovered for the matter contribution. The peculiar behavior of f (R) =
R is due to the particular form of the Lagrangian itself which, even though it is a
second order Lagrangian, can be non-covariantly rewritten as the sum of a first
order Lagrangian plus a pure divergence term. The Hilbert–Einstein Lagrangian
can be in fact recast as follows:

LHE = LHE
√
−g =

[
pαβ (Γ ρ

ασΓ
σ

ρβ
−Γ

ρ

ρσΓ
σ

αβ
)+∇σ (pαβ uσ

αβ )
]

(21)

where:

pαβ =
√
−ggαβ =

∂L

∂Rαβ

(22)

Γ is the Levi-Civita connection of g and uσ

αβ
is a quantity constructed out with the

variation of Γ [1]. Since uσ

αβ
is not a tensor, the above expression is not covari-

ant; however a standard procedure has been studied to recast covariance in the
first order theories [101]. This clearly shows that the field equations should conse-
quently be second order and the Hilbert–Einstein Lagrangian is thus degenerate.

From the action (12), it is possible to obtain another interesting case by choos-
ing

F = F(φ)R−V (φ), ε =−1. (23)
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In this case, we get

A =
∫

d4x
√
−g
[

F(φ)R+
1
2

gµν
φ;µ φ;ν −V (φ)

]
(24)

V (φ) and F(φ) are generic functions describing respectively the potential and the
coupling of a scalar field φ . The Brans–Dicke theory of gravity is a particular case
of the action (24) for V (φ) = 0 [102]. The variation with respect to gµν gives the
second-order field equations

F(φ)Gµν = F(φ)
[

Rµν −
1
2

Rgµν

]
=−1

2
T φ

µν −gµν�gF(φ)+F(φ);µν , (25)

here �g is the d’Alembert operator with respect to the metric g. The energy-
momentum tensor relative to the scalar field is

T φ

µν = φ;µ φ;ν −
1
2

gµν φ;α φ
α
; +gµνV (φ) (26)

The variation with respect to φ provides the Klein–Gordon equation, i.e., the field
equation for the scalar field:

�gφ −RFφ (φ)+Vφ (φ) = 0 (27)

where Fφ = dF(φ)/dφ , Vφ = dV (φ)/dφ . This last equation is equivalent to the
Bianchi contracted identity [103]. Standard fluid matter can be treated as above.

3.1 Conformal transformations

Let us now introduce conformal transformations to show that any higher-order or
scalar-tensor theory, in absence of ordinary matter, e.g.. a perfect fluid, is con-
formally equivalent to an Einstein theory plus minimally coupled scalar fields.
If standard matter is present, conformal transformations allow to transfer non-
minimal coupling to the matter component [74]. The conformal transformation on
the metric gµν is

g̃µν = e2ω gµν (28)

in which e2ω is the conformal factor. Under this transformation, the Lagrangian in
(24) becomes

√
−g
(

FR+
1
2

gµν
φ;µ φ;ν −V

)
=
√
−g̃e−2ω

(
FR̃−6F�g̃ω−6Fω;α ω

α
; +

1
2

g̃µν
φ;µ φ;ν − e−2ωV

)
(29)

in which R̃ and �g̃ are the Ricci scalar and the d’Alembert operator relative to the
metric g̃. Requiring the theory in the metric g̃µν to appear as a standard Einstein
theory [77], the conformal factor has to be related to F , that is

e2ω =−2F. (30)
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where F must be negative in order to restore physical coupling. Using this relation
and introducing a new scalar field φ̃ and a new potential Ṽ , defined respectively
by

φ̃;α =

√
3Fφ

2−F
2F2 φ;α , Ṽ (φ̃(φ)) =

V (φ)
4F2(φ)

, (31)

we see that the Lagrangian (29) becomes

√
−g
(

FR+
1
2

gµν
φ;µ φ;ν −V

)
=
√
−g̃
(
−1

2
R̃+

1
2

φ̃;α φ̃
α
; −Ṽ

)
(32)

which is the usual Hilbert–Einstein Lagrangian plus the standard Lagrangian rel-
ative to the scalar field φ̃ . Therefore, every non-minimally coupled scalar-tensor
theory, in absence of ordinary matter, e.g., perfect fluid, is conformally equiva-
lent to an Einstein theory, being the conformal transformation and the potential
suitably defined by (30) and (31). The converse is also true: for a given F(φ),
such that 3Fφ

2−F > 0, we can transform a standard Einstein theory into a non-
minimally coupled scalar-tensor theory. This means that, in principle, if we are
able to solve the field equations in the framework of the Einstein theory in pres-
ence of a scalar field with a given potential, we should be able to get the solutions
for the scalar-tensor theories, assigned by the coupling F(φ), via the conformal
transformation (30) with the constraints given by (31). Following the standard ter-
minology, the “Einstein frame” is the framework of the Einstein theory with the
minimal coupling and the “Jordan frame” is the framework of the non-minimally
coupled theory [74].

In the context of alternative theories of gravity, as previously discussed, the
gravitational contribution to the stress-energy tensor of the theory can be reinter-
preted by means of a conformal transformation as the stress-energy tensor of a
suitable scalar field and then as “matter” like terms. Performing the conformal
transformation (28) in the field equations (19), we get:

G̃αβ =
1

f ′(R)

{
1
2

gαβ

[
f (R)−R f ′(R)

]
+ f ′(R);αβ −gαβ � f ′(R)

}
+2
(

ω;α;β +gαβ �ω−ω;α ω;β +
1
2

gαβ ω;γ ω
;γ
)

. (33)

We can then choose the conformal factor to be

ω =
1
2

ln | f ′(R)|, (34)

which has now to be substituted into (20). Rescaling ω in such a way that

kφ = ω, (35)

and k =
√

1/6, we obtain the Lagrangian equivalence

√
−g f (R) =

√
−g̃
(
−1

2
R̃+

1
2

φ̃;α φ̃
α
; −Ṽ

)
(36)



Extended theories of gravity and their cosmological and astrophysical applications 17

and the Einstein equations in standard form

G̃αβ = φ;α φ;β −
1
2

g̃αβ φ;γ φ
;γ + g̃αβV (φ), (37)

with the potential

V (φ) =
e−4kφ

2

[
P(φ)−N

(
e2kφ

)
e2kφ

]
=

1
2

f (R)−R f ′(R)
f ′(R)2 . (38)

Here N is the inverse function of P ′(φ) and P(φ) =
∫

exp(2kφ)dN . However,
the problem is completely solved if P ′(φ) can be analytically inverted. In sum-
mary, a fourth-order theory is conformally equivalent to the standard second-order
Einstein theory plus a scalar field (see also [11; 72]).

This procedure can be extended to more general theories. If the theory is
assumed to be higher than fourth order, we may have Lagrangian densities of
the form [20; 80],

L = L (R,�R, . . . ,�kR). (39)

Every � operator introduces two further terms of derivation into the field equa-
tions. For example a theory like

L = R�R, (40)

is a sixth-order theory and the above approach can be pursued by considering a
conformal factor of the form

ω =
1
2

ln
∣∣∣∣∂L

∂R
+�

∂L

∂�R

∣∣∣∣ . (41)

In general, increasing two orders of derivation in the field equations (i.e., for every
term �R), corresponds to adding a scalar field in the conformally transformed
frame [20]. A sixth-order theory can be reduced to an Einstein theory with two
minimally coupled scalar fields; a 2n-order theory can be, in principle, reduced
to an Einstein theory plus (n− 1)-scalar fields. On the other hand, these consid-
erations can be directly generalized to higher-order-scalar-tensor theories in any
number of dimensions as shown in [17].

As concluding remarks, we can say that conformal transformations work at
three levels: (i) on the Lagrangian of the given theory; (ii) on the field equations;
(iii) on the solutions. The table below summarizes the situation for fourth-order
gravity (FOG), non-minimally coupled scalar-tensor theories (NMC) and standard
Hilbert–Einstein (HE) theory. Clearly, direct and inverse transformations correlate
all the steps of the table but no absolute criterion, at this point of the discussion,
is able to select which is the “physical” framework since, at least from a mathe-
matical point of view, all the frames are equivalent [74]. This point is up to now
unsolved even if wide discussions are present in literature [78].

LFOG ←→ LNMC ←→ LHE
l l l

FOG Eqs. ←→ NMC Eqs. ←→ Einstein Eqs.
l l l

FOG Solutions ←→ NMC Solutions ←→ Einstein Solutions



18 S. Capozziello, M. Francaviglia

4 The Palatini approach and the intrinsic conformal structure

As we said, the Palatini approach, considering g and Γ as independent fields, is
“intrinsically” bi-metric and capable of disentangling the geodesic structure from
the chronological structure of a given manifold. Starting from these considera-
tions, conformal transformations assume a fundamental role in defining the affine
connection which is merely “Levi-Civita” only for the Hilbert–Einstein theory.

In this section, we work out examples showing how conformal transformations
assume a fundamental physical role in relation to the Palatini approach in ETGs
[86].

Let us start from the case of fourth-order gravity where Palatini variational
principle is straightforward in showing the differences with Hilbert–Einstein vari-
ational principle, involving only metric. Besides, cosmological applications of
f (R) gravity have shown the relevance of Palatini formalism, giving physically
interesting results with singularity—free solutions [83]. This last nice feature is
not present in the standard metric approach.

An important remark is in order at this point. The Ricci scalar entering in f (R)
is R≡ R(g,Γ ) = gαβ Rαβ (Γ ) that is a generalized Ricci scalar and Rµν(Γ ) is the
Ricci tensor of a torsion-less connection Γ , which, a priori, has no relations with
the metric g of spacetime. The gravitational part of the Lagrangian is controlled
by a given real analytical function of one real variable f (R), while

√
−g denotes

a related scalar density of weight 1. Field equations, deriving from the Palatini
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variational principle are:

f ′(R)R(µν)(Γ )− 1
2

f (R)gµν = T m
µν (42)

∇
Γ
α (
√
−g f ′(R)gµν) = 0 (43)

where ∇Γ is the covariant derivative with respect to Γ . As above, we assume
8πG = 1. We shall use the standard notation denoting by R(µν) the symmetric part
of Rµν , i.e., R(µν) ≡ 1

2 (Rµν +Rνµ).
In order to get (43), one has to additionally assume that Lm is functionally

independent of Γ ; however it may contain metric covariant derivatives
g
∇ of fields.

This means that the matter stress-energy tensor T m
µν = T m

µν(g,Ψ) depends on the
metric g and some matter fields denoted here by Ψ , together with their derivatives
(covariant derivatives with respect to the Levi-Civita connection of g). From (43)
one sees that

√
−g f ′(R)gµν is a symmetric twice contravariant tensor density of

weight 1. As previously discussed in [82; 86], this naturally leads to define a new
metric hµν , such that the following relation holds:

√
−g f ′(R)gµν =

√
−hhµν . (44)

This ansatz is suitably made in order to impose Γ to be the Levi-Civita connection
of h and the only restriction is that

√
−g f ′(R)gµν should be non-degenerate. In

the case of Hilbert–Einstein Lagrangian, it is f ′(R) = 1 and the statement is trivial.
The above Eq. 44 imposes that the two metrics h and g are conformally equiv-

alent. The corresponding conformal factor can be easily found to be f ′(R) (in dim
M = 4) and the conformal transformation results to be ruled by:

hµν = f ′(R)gµν (45)

Therefore, as it is well known, Eq. 43 implies that Γ = ΓLC(h) and R(µν)(Γ ) =
Rµν(h)≡ Rµν . Field equations can be supplemented by the scalar-valued equation
obtained by taking the trace of (42), (we define τ = trT̂ )

f ′(R)R−2 f (R) = gαβ T m
αβ
≡ τ

m (46)

which controls solutions of (43). We shall refer to this scalar-valued equation as
the structural equation of the spacetime. In the vacuum case (and spacetimes filled
with radiation, such that τm = 0) this scalar-valued equation admits constant solu-
tions, which are different from zero only if one add a cosmological constant. This
means that the universality of Einstein field equations holds [82], corresponding
to a theory with cosmological constant [104].

In the case of interaction with matter fields, the structural equation (45), if
explicitly solvable, provides an expression of R = F(τ), where F is a generic func-
tion, and consequently both f (R) and f ′(R) can be expressed in terms of τ . The
matter content of spacetime thus rules the bi-metric structure of spacetime and,
consequently, both the geodesic and metric structures which are intrinsically dif-
ferent. This behavior generalizes the vacuum case and corresponds to the case of a
time-varying cosmological constant. In other words, due to these features, confor-
mal transformations, which allow to pass from a metric structure to another one,
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acquire an intrinsic physical meaning since “select” metric and geodesic structures
which, for a given ETG, in principle, do not coincide.

Let us now try to extend the above formalism to the case of non-minimally
coupled scalar-tensor theories. The effort is to understand if and how the bi-metric
structure of spacetime behaves in this cases and which could be its geometric and
physical interpretation.

We start by considering scalar-tensor theories in the Palatini formalism, calling
A1 the action functional. After, we take into account the case of decoupled non-
minimal interaction between a scalar-tensor theory and a f (R) theory, calling A2
this action functional. We finally consider the case of non-minimal-coupled inter-
action between the scalar field φ and the gravitational fields (g,Γ ), calling A3 the
corresponding action functional. Particularly significant is, in this case, the limit
of low curvature R. This resembles the physical relevant case of present values of
curvatures of the Universe and it is important for cosmological applications.

The action (24) for scalar-tensor gravity can be generalized, in order to better
develop the Palatini approach, as:

A1 =
∫ √
−g [F(φ)R+

ε

2

g
∇µ φ

g
∇

µ

φ −V (φ)+Lm(Ψ ,
g
∇ Ψ)]d4x. (47)

As above, the values of ε =±1 selects between standard scalar field theories and
quintessence (phantom) field theories. The relative “signature” can be selected by
conformal transformations. Field equations for the gravitational part of the action
are, respectively for the metric g and the connection Γ :F(φ)[R(µν)− 1

2 Rgµν ] = T φ

µν +T m
µν

∇Γ
α (
√
−gF(φ)gµν) = 0

(48)

R(µν) is the same defined in (42). For matter fields we have the following field
equations: {

ε�φ =−Vφ (φ)+Fφ (φ)R

δLm
δΨ

= 0
. (49)

In this case, the structural equation of spacetime implies that:

R =−τφ + τm

F(φ)
(50)

which expresses the value of the Ricci scalar curvature in terms of the traces of
the stress-energy tensors of standard matter and scalar field (we have to require
F(φ) 6= 0). The bi-metric structure of spacetime is thus defined by the ansatz:

√
−gF(φ)gµν =

√
−hhµν (51)

such that g and h result to be conformally related

hµν = F(φ)gµν . (52)



Extended theories of gravity and their cosmological and astrophysical applications 21

The conformal factor is exactly the interaction factor. From (50), it follows that in
the vacuum case τφ = 0 and τm = 0: this theory is equivalent to the standard Ein-
stein one without matter. On the other hand, for F(φ) = F0 we recover the Einstein
theory plus a minimally coupled scalar field: this means that the Palatini approach
intrinsically gives rise to the conformal structure (52) of the theory which is trivial
in the Einstein, minimally coupled case.

As a further step, let us generalize the previous results considering the case of
a non-minimal coupling in the framework of f (R) theories. The action functional
can be written as:

A2 =
∫ √
−g [F(φ) f (R)+

ε

2

g
∇µ φ

g
∇

µ

φ −V (φ)+Lm(Ψ ,
g
∇ Ψ)]d4x (53)

where f (R) is, as usual, any analytical function of the Ricci scalar R. Field equa-
tions (in the Palatini formalism) for the gravitational part of the action are:F(φ)[ f ′(R)R(µν)− 1

2 f (R)gµν ] = T φ

µν +T m
µν

∇Γ
α (
√
−gF(φ) f ′(R)gµν) = 0.

(54)

For scalar and matter fields we have, otherwise, the following field equations:{
ε�φ =−Vφ (φ)+

√
−gFφ (φ) f (R)

δLm
δΨ

= 0
(55)

where the non-minimal interaction term enters into the modified Klein–Gordon
equations. In this case the structural equation of spacetime implies that:

f ′(R)R−2 f (R) =
τφ + τm

F(φ)
. (56)

We remark again that this equation, if solved, expresses the value of the Ricci
scalar curvature in terms of traces of the stress-energy tensors of standard matter
and scalar field (we have to require again that F(φ) 6= 0). The bi-metric structure
of spacetime is thus defined by the ansatz:

√
−gF(φ) f ′(R)gµν =

√
−hhµν (57)

such that g and h result to be conformally related by:

hµν = F(φ) f ′(R)gµν . (58)

Once the structural equation is solved, the conformal factor depends on the values
of the matter fields (φ ,Ψ ) or, more precisely, on the traces of the stress-energy
tensors and the value of φ . From equation (56), it follows that in the vacuum case,
i.e., both τφ = 0 and τm = 0, the universality of Einstein field equations still holds
as in the case of minimally interacting f (R) theories [82]. The validity of this
property is related to the decoupling of the scalar field and the gravitational field.
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Let us finally consider the case where the gravitational Lagrangian is a general
function of φ and R. The action functional can thus be written as:

A3 =
∫ √
−g [K(φ ,R)+

ε

2

g
∇µ φ

g
∇

µ

φ −V (φ)+Lm(Ψ ,
g
∇ Ψ)]d4x (59)

Field equations for the gravitational part of the action are:


[

∂ K(φ ,R)
∂R

]
R(µν)− 1

2 K(φ ,R)gµν = T φ

µν +T m
µν

∇Γ
α

(√
−g
[

∂ K(φ ,R)
∂R

]
gµν

)
= 0.

(60)

For matter fields, we have:

{
ε�φ =−Vφ (φ)+

[
∂ K(φ ,R)

∂φ

]
δLmat

δΨ
= 0.

(61)

The structural equation of spacetime can be expressed as:

∂K(φ ,R)
∂R

R−2K(φ ,R) = τ
φ + τ

m (62)

This equation, if solved, expresses again the form of the Ricci scalar curvature
in terms of traces of the stress-energy tensors of matter and scalar field (we have
to impose regularity conditions and, for example, K(φ ,R) 6= 0). The bi-metric
structure of spacetime is thus defined by the ansatz:

√
−g

∂K(φ ,R)
∂R

gµν =
√
−hhµν (63)

such that g and h result to be conformally related by

hµν =
∂K(φ ,R)

∂R
gµν (64)
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Again, once the structural equation is solved, the conformal factor depends just
on the values of the matter fields and (the trace of) their stress energy tensors.
In other words, the evolution, the definition of the conformal factor and the bi-
metric structure is ruled by the values of traces of the stress-energy tensors and
by the value of the scalar field φ . In this case, the universality of Einstein field
equations does not hold anymore in general. This is evident from (62) where the
strong coupling between R and φ avoids the possibility, also in the vacuum case,
to achieve simple constant solutions.

We consider, furthermore, the case of small values of R, corresponding to small
curvature spacetimes. This limit represents, as a good approximation, the present
epoch of the observed Universe under suitably regularity conditions. A Taylor
expansion of the analytical function K(φ ,R) can be performed:

K(φ ,R) = K0(φ)+K1(φ)R+o(R2) (65)

where only the first leading term in R is considered and we have defined:K0(φ) = K(φ ,R)R=0

K1(φ) =
(

∂K(φ ,R)
∂R

)
R=0

. (66)

Substituting this expression in (62) and (64) we get (neglecting higher order approx-
imations in R) the structural equation and the bi-metric structure in this particular
case. From the structural equation, we get:

R =
1

K1(φ)
[−(τφ + τ

m)−2K0(φ)] (67)

such that the value of the Ricci scalar is always determined, in this first order
approximation, in terms of τφ ,τm,φ . The bi-metric structure is, otherwise, simply
defined by means of the first term of the Taylor expansion, which is

hµν = K1(φ)gµν . (68)

It reproduces, as expected, the scalar-tensor case (52). In other words, scalar-
tensor theories can be recovered in a first order approximation of a general theory
where gravity and non-minimal couplings are any (compare (67) with (56)). This
fact agrees with the above considerations where Lagrangians of physical interac-
tions can be considered as stochastic functions with local gauge invariance prop-
erties [12].

Finally we have to say that there are also bi-metric theories which cannot be
conformally related (see for example the summary of alternative theories given
in [61]) and torsion field should be taken into account, if one wants to consider
the most general viewpoint [62; 63]. We will not take into account these general
theories in this review.

After this short review of ETGs in metric and Palatini approach, we are going
to face some remarkable applications to cosmology and astrophysics. In particular,
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we deal with the straightforward generalization of GR, the f (R) gravity, showing
that, in principle, no further ingredient, a part a generalized gravity, could be nec-
essary to address issues as missing matter (dark matter) and cosmic acceleration
(dark energy). However what we are going to consider here are nothing else but toy
models which are not able to fit the whole expansion history, the structure growth
law and the CMB anisotropy and polarization. These issues require more detailed
theories which, up to now, are not available but what we are discussing could be
a useful working paradigm as soon as refined experimental tests to probe such
theories will be proposed and pursued. In particular, we will outline an indepen-
dent test, based on the stochastic background of gravitational waves, which could
be extremely useful to discriminate between ETGs and GR or among the ETGs
themselves. In this latter case, the data delivered from ground-based interferome-
ters, like VIRGO and LIGO, or the forthcoming space interferometer LISA, could
be of extreme relevance in such a discrimination.

Finally, we do not take into account the well known inflationary models based
on ETGs (e.g., [13; 15]) since we want to show that also the last cosmological
epochs, directly related to the so called Precision Cosmology, can be framed in
such a new “economic” scheme.

5 Applications to cosmology

As discussed in the Introduction, many rival theories have been advocated to fit
the observed accelerated expansion and to solve the puzzle of dark energy.

As a simple classification scheme, we may divide the different cosmological
models in three wide classes. According to the models of the first class, the dark
energy is a new ingredient of the cosmic Hubble flow, the simplest case being the
ΛCDM scenario and its quintessential generalization (the QCDM models).

This is in sharp contrast with the assumption of UDE models (the second class)
where there is a single fluid described by an equation of state comprehensive of
all regimes of cosmic evolution [43; 44] (the parametric density models or gener-
alized EoS3 models).

Finally, according to the third class of models, accelerated expansion is the first
evidence of a breakdown of the Einstein GR (and thus of the Friedmann equations)
which has to be considered as a particular case of a more general theory of gravity.
As an example of this kind of models, we will consider the f (R)-gravity [48; 49;
50; 51; 52; 54; 56].

Far from being exhaustive, considering these three classes of models allow to
explore very different scenarios proposed to explain the observed cosmic accel-
eration [105; 106; 118]. However, from the above considerations, it is possible to
show that one of the simplest extension of GR, the f (R) gravity can, in principle,
address the dark energy issues both in metric and Palatini approach. In this sec-
tion, without claiming for completeness, we sketch some f (R) models matching
solutions against some sets of data. The goal is to show that the dark energy issue
could be addressed as a curvature effect in ETGs.

3 EoS for Equation of State.
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5.1 The ΛCDM model: the paradigm

Cosmological constant Λ has become a textbook candidate to drive the acceler-
ated expansion of the spatially flat Universe. Despite its conceptual problems, the
ΛCDM model turns out to be the best fit to a combined analysis of completely
different astrophysical data ranging from SNeIa to CMBR anisotropy spectrum
and galaxy clustering [33; 119]. As a simple generalization, one may consider the
QCDM scenario in which the barotropic factor w ≡ p/ρ takes at a certain epoch
a negative value with w = −1 corresponding to the standard cosmological con-
stant. Testing whether such a barotropic factor deviate or not from −1 is one of
the main issue of modern observational cosmology. How such a negative pressure
fluid drives the cosmic acceleration may be easily understood by looking at the
Friedmann equations:

H2 ≡
(

ȧ
a

)2

=
1
3
(ρm +ρΛ ), (69)

2
ä
a

+H2 =−pΛ =−wρΛ , (70)

where a(t) is the scale factor of the Universe, the dot denotes differentiation with
respect to cosmic time t, H is the Hubble parameter and the Universe is assumed
spatially flat as suggested by the position of the first peak in the CMBR anisotropy
spectrum (see also Fig. 1) [31; 32; 33].

From the continuity equation, ρ̇ +3H(ρ + p) = 0, we get for the ith fluid with
pi = wiρi:

Ωi = Ωi,0a−3(1+wi) = Ωi,0(1+ z)3(1+wi), (71)

where z ≡ 1/a− 1 is the redshift, Ωi = ρi/ρcrit is the density parameter for the
ith fluid in terms of the critical density which, defined in standard units, is ρcrit =
3H2

0 /8πG and, hereafter, we label all the quantities evaluated today with a sub-
script 0. It is important to stress that Eq. 71 works only for wi = constant. Inserting
this result into Eq. 69, one gets:

H(z) = H0

√
ΩM,0(1+ z)3 +ΩΛ ,0(1+ z)3(1+w). (72)

The subscript M means all the matter content, inclusive of dark and baryonic
components. Using Eqs. 69, 70 and the definition of the deceleration parameter
q≡−aä/ȧ2, one finds:

q0 =
1
2

+
3
2

w(1−ΩM,0). (73)

The SNeIa Hubble diagram, the large scale galaxy clustering and the CMBR
anisotropy spectrum can all be fitted by the ΛCDM model with (ΩM,0,ΩΛ ) '

Fig. 1 The CMBR anisotropy spectrum for different values of w. Data points are the WMAP
measurements and the best fit is obtained for w ' −1. If w 6= −1 the clustering of dark energy
has been considered in this plot
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(0.3,0.7) thus giving q0 '−0.55, i.e., the Universe turns out to be in an acceler-
ated expansion phase. The simplicity of the model and its capability of fitting the
most of the data are the reasons why the ΛCDM scenario is the leading candidate
to explain the dark energy cosmology. Nonetheless, its generalization, QCDM
models, i.e., mechanisms allowing the evolution of Λ from the past are invoked to
remove the Λ -problem and the coincidence problem.

Here, we want to show that assuming f (R) gravity, not strictly linear in R as
GR, it is possible to give rise to the evolution of the barotropic factor w = p/ρ ,
today leading to the value w = −1, and to obtain models capable of matching
with the observations. However, also if the paradigm could result valid, it is very
difficult to address, in the same comprehensive f (R) model, different issues as
structure formation, nucleosynthesis, Hubble diagram, radiation and matter dom-
inated behaviors as we shall discuss below.

Before considering specific f (R) theories, let us discuss methods to constrain
models by samples of data.

5.2 Methods to constrain models by distance and time indicators

In principle, cosmological models can be constrained using suitable distance and/or
time indicators. As a general remark, solutions coming from cosmological models
have to be matched with observations by using the redshift z as the natural time
variable for the Hubble parameter, i.e.,
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H(z) =− ż
z+1

. (74)

Data can be obtained for various values of redshift z: for example, CMB probes
recombination at z ' 1,100 and z ' 1 via the late integrated Sachs-Wolfe effect;
for 10 < z < 100 the planned 21 cm observations could give detailed information
[150; 151; 152]; futuristic LSS surveys and SNe could probe the Universe up to
z ' 4. The method consists in building up a reasonable patchwork of data com-
ing from different epochs and then matching them with the same cosmological
solution ranging, in principle, from inflation to present accelerated era.

In order to constrain the parameters characterizing the cosmological solution,
a reasonable approach is to maximize the following likelihood function:

L ∝ exp
[
−χ2(p)

2

]
(75)

where p are the parameters characterizing the cosmological solution. The χ2 merit
function can be defined as:

χ
2(p) =

N

∑
i=1

[
yth(zi,p)− yobs

i
σi

]2

+
[
R(p)−1.716

0.062

]2

+
[
A (p)−0.469

0.017

]2

. (76)

Terms entering Eq. 76 can be characterized as follows. For example, the dimen-
sionless coordinate distances y to objects at redshifts z are considered in the first
term. They are defined as:

y(z) =
z∫

0

dz′

E(z′)
(77)

where E(z) = H(z)/H0 is the normalized Hubble parameter. This is the main quan-
tity which allows to compare the theoretical results with data. The function y is
related to the luminosity distance DL = (1+ z)y(z).

A sample of data at y(z) for the 157 SNeIa is discussed in the Riess et al.
[36] Gold dataset and 20 radio-galaxies are in [121]. These authors fit with good
accuracy the linear Hubble law at low redshift (z < 0.1) obtaining the Hubble
dimensionless parameter h = 0.664±0.008, with h the Hubble constant in units
of 100 km s−1 Mpc−1. Such a number can be consistently taken into account at
low redshift. This value is in agreement with H0 = 72±8 km s−1 Mpc−1 given by
the HST Key project [122] based on the local distance ladder and estimates com-
ing from time delays in multiply imaged quasars [123] and Sunyaev-Zel’dovich
effect in X-ray emitting clusters [124; 125]. The second term in Eq. 76 allows to
extend the z-range to probe y(z) up to the last scattering surface (z ≥ 1,000).
The shift parameter [126; 127] R ≡

√
ΩMy(zls) can be determined from the

CMBR anisotropy spectrum, where zls is the redshift of the last scattering surface
which can be approximated as zls = 1048

(
1+0.00124ω

−0.738
b

)(
1+g1ω

g2
M

)
with

ωi = Ωih2 (with i = b,M for baryons and total matter respectively) and (g1,g2)
given in [128]. The parameter ωb is constrained by the baryogenesis calculations
contrasted to the observed abundances of primordial elements. Using this method,
the value ωb = 0.0214±0.0020 is found [129].
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In any case, it is worth noticing that the exact value of zls has a negligible
impact on the results and setting zls = 1,100 does not change constraints and pri-
ors on the other parameters of the given model. The third term in the function
χ2 takes into account the acoustic peak of the large scale correlation function at
100 h−1 Mpc separation, detected by using 46,748 luminous red galaxies (LRG)
selected from the SDSS Main Sample [130; 131]. The quantity

A =
√

ΩM

zLRG

[
zLRG

E(zLRG)
y2(zLRG)

]1/3

(78)

is related to the position of acoustic peak where zLRG = 0.35 is the effective red-
shift of the above sample. The parameter A depends on the dimensionless coor-
dinate distance (and thus on the integrated expansion rate), on ΩM and E(z). This
dependence removes some of the degeneracies intrinsic in distance fitting meth-
ods.

Due to this reason, it is particularly interesting to include A as a further con-
straint on the model parameters using its measured value A = 0.469±0.017
[130]. Note that, although similar to the usual χ2 introduced in statistics, the
reduced χ2 (i.e., the ratio between the χ2 and the number of degrees of freedom)
is not forced to be 1 for the best fit model because of the presence of the priors
on R and A and since the uncertainties σi are not Gaussian distributed, but take
care of both statistical errors and systematic uncertainties. With the definition (75)
of the likelihood function, the best fit model parameters are those that maximize
L (p).

In order to implement the above sketched method, much attention, has been
devoted to standard candles, i.e., astrophysical objects whose absolute magni-
tude M is known (or may be exactly predicted) a priori so that a measurement
of the apparent magnitude m immediately gives the distance modulus µ = m−M.
Specifically, the distance to the object, estimated in Mpc, is:

µ(z) = 5logDL(z)/Mpc+25 (79)

with DL(z) the luminosity distance and z the redshift of the object. The number
25 depends on the distance modulus calculated in Mpc. The relation between µ

and z is what is referred to as Hubble diagram and it is an open window on the
cosmography of the Universe. Furthermore, the Hubble diagram is a powerful
cosmological test since the luminosity distance is determined by the expansion
rate as:

DL(z) =
c

H0
(1+ z)

z∫
0

dz′

E(z′)
(80)

with E(z) defined above. Being the Hubble diagram related to the luminosity dis-
tance and being DL determined by the expansion rate H(z), it is clear why it may
be used as an efficient tool to test cosmological models and constrain their param-
eters.

To this aim, however, it is mandatory that the relation µ = µ(z) is measured
up to high enough redshift since, for low z, DL reduces to a linear function of the
redshift (thus recovering the Hubble law) whatever the background cosmological
model is. This necessity claims for standard candles that are bright enough to be
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visible at such high redshift that the Hubble diagram may discriminate among
different rival theories. SNeIa are, up to now, the objects that best match these
requirements.

It is thus not surprising that the first evidences of an accelerating Universe
came from the SNeIa Hubble diagram and dedicated survey (like the SNAP satel-
lite [132]) have been planned in order to increase the number of SNeIa observed
and the redshift range probed.

A reliable compilation of SNeIa is the Gold dataset released by Riess et al.
[36]. The authors have compiled a catalog containing 157 SNeIa with z in the
range (0.01,1.70) and visual absorption AV < 0.5. The distance modulus of each
object has been evaluated by using a set of calibrated methods so that the sample
is homogenous in the sense that all the SNeIa have been re-analyzed using the
same technique in such a way that the resulting Hubble diagram is indeed reli-
able and accurate. Given a cosmological model assigned by a set of parameters
p = (p1, . . . , pn), the luminosity distance may be evaluated with Eq. 80 and the
predicted Hubble diagram contrasted with the observed SNeIa one. Constraints
on the model parameters may then be extracted by mean of a χ2-based analysis
defining, in this case, the above χ2 as:

χ
2
SNeIa =

NSNeIa

∑
i=1

[
µ(zi,p)−µobs(zi)

σi

]2

(81)

where σi is the error on the distance modulus at redshift zi and the sum is over
the NSNeIa SNeIa observed. It is worth stressing that the uncertainty on measure-
ments also takes into account errors on the redshifts and they are not Gaussian
distributed.

As a consequence, the reduced χ2 (i.e., χ2
SNeIa divided by the number of degrees

of freedom) for the best fit model is not forced to be close to unity. Nonetheless,
different models may still be compared on the basis of the χ2 value: the lower is
χ2

SNeIa, the better the model fits the SNeIa Hubble diagram.
The method outlined is a simple and quite efficient way to test whether a given

model is a viable candidate to describe the late time evolution of the Universe.
Nonetheless, it is affected by some degeneracies that could be only partially bro-
ken by increasing the sample size and extending the probed redshift range. A
straightforward example may help in elucidating this point. Let us consider the
flat concordance cosmological model with matter and cosmological constant. It
is:

E2(z) = ΩM(1+ z)3 +(1−ΩM)

so that χ2
SNeIa will only depend on the Hubble constant H0 and the matter density

parameter ΩM . Actually, we could split the matter term in a baryonic and a non-
baryonic part denoting with Ωb the baryon density parameter. Since both baryons
and non baryonic dark matter scales as (1 + z)3, E(z) and thus the luminosity
distance will depend only on the total matter density parameter and we could
never constrain Ωb by fitting the SNeIa Hubble diagram. Similar degeneracies
could also happen with other cosmological models thus stressing the need for
complementary probes to be combined with the SNeIa data. For a review, see the
contribution by Bob Nichols in this volume.
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To this aim, a recently proposed test, based on the gas mass fraction in galaxy
clusters, can be considered. We briefly outline here the method referring the inter-
ested reader to the literature for further details [135; 136; 137; 138]. Both theoret-
ical arguments and numerical simulations predict that the baryonic mass fraction
in the largest relaxed galaxy clusters should be invariant with the redshift (see,
e.g., Ref. [140]).

However, this will only appear to be the case when the reference cosmology
in making the baryonic mass fraction measurements matches the true underlying
cosmology. From the observational point of view, it is worth noticing that the
baryonic content in galaxy clusters is dominated by the hot X-ray emitting intra-
cluster gas so that what is actually measured is the gas mass fraction fgas and it
is this quantity that should be invariant with the redshift within the caveat quoted
above. Moreover, it is expected that the baryonic fraction in clusters equals the
universal ratio Ωb/ΩM so that fgas should indeed be given by b×Ωb/ΩM where
the multiplicative factor b is motivated by simulations that suggest that the gas
fraction is slightly lower than the universal ratio because of processes that convert
part of the gas into stars or eject it outside the cluster itself.

Following Ref. [139], we adopt the SCDM model (i.e., a flat Universe with
ΩM = 1 and h = 0.5, being h the Hubble constant in units of 100 km s−1 Mpc−1)
as reference cosmology in making the measurements so that the theoretical expec-
tation for the apparent variation of fgas with the redshift is [139]:

fgas(z) =
bΩb

(1+0.19
√

h)ΩM

[
DSCDM

A (z)
Dmod

A (z)

]1.5

(82)

where DSCDM
A and Dmod

A is the angular diameter distance for the SCDM and the
model to be tested respectively. DA(z) may be evaluated from the luminosity dis-
tance DL(z) as:

DA(z) = (1+ z)−2DL(z) (83)

with DL(z) given by Eq. 80 above.
In [139], it has been extensively analyzed the set of simulations in Ref. [140] to

get b = 0.824±0.089. For values in the 1σ range quoted above, the main results
are independent on b. It is worth noticing that, while the angular diameter dis-
tance depends on E(z) and thus on h and ΩM , the prefactor in Eq. 82 makes fgas
explicitly depending on Ωb/ΩM so that a direct estimate of Ωb is (in principle)
possible. Actually, for the models which we are going to consider, the quantity
that is constrained by the data is the ratio Ωb/ΩM rather than Ωb itself.

To simultaneously take into account both the fit to the SNeIa Hubble diagram
and the test on the fgas data, it is convenient to perform a likelihood analysis
defining the following likelihood function:
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L (p) ∝ exp
[
−χ2(p)

2

]
(84)

with:

χ
2 = χ

2
SNeIa + χ

2
gas +

(
h−0.72

0.08

)2

+
(

Ωb/ΩM−0.16
0.06

)2

(85)

where it is possible to define:

χ
2
gas =

Ngas

∑
i=1

[
fgas(zi,p)− f obs

gas (zi)
σgi

]2

(86)

being f obs
gas (zi) the measured gas fraction in a galaxy clusters at redshift zi with

an error σgi and the sum is over the Ngas clusters considered. In order to avoid
possible systematic errors in the fgas measurement, it is desirable that the cluster
is both highly luminous (so that the S/N ratio is high) and relaxed so that both
merging processes and cooling flows are absent. A catalog of 26 large relaxed
clusters, with a measurement of both the gas mass fraction fgas and the redshift z
is in [139]. These data can be used to perform a suitable likelihood analysis.

Note that, in Eq. 85, we have explicitly introduced two Gaussian priors to bet-
ter constrain the model parameters. First, there is a prior on the Hubble constant h
determined by the results of the HST Key project [141] from an accurate calibra-
tion of a set of different local distance estimators. Further, we impose a constraint
on the ratio Ωb/ΩM by considering the estimates of Ωbh2 and ΩMh2 obtained
by Tegmark et al. [142] from a combined fit to the SNeIa Hubble diagram, the
CMBR anisotropy spectrum measured by WMAP and the matter power spectrum
extracted from over 200,000 galaxies observed by the SDSS collaboration. It is
worth noticing that, while our prior on h is the same as that used by many authors
when applying the fgas test [137; 138; 139], it is common to put a second prior
on Ωb rather than Ωb/ΩM . Actually, this choice can be motivated by the peculiar
features of the models which one is going to consider.

With the definition (84) of the likelihood function, the best fit model parame-
ters are those that maximize L (p). However, to constrain a given parameter pi,
one resorts to the marginalized likelihood function defined as:

Lpi(pi) ∝

∫
dp1 · · ·

∫
dpi−1

∫
dpi+1 · · ·

∫
dpnL (p) (87)

that is normalized at unity at maximum. The 1σ confidence regions are determined
by δ χ2 = χ2−χ2

0 = 1, while the condition δ χ2 = 4 delimited the 2σ confidence
regions. It is worth stressing that δ χ2 = 1 for 1-dimensional likelihoods. Here, χ2

0
is the value of the χ2 for the best fit model. Projections of the likelihood function
allow to show eventual correlations among the model parameters.

Using the method sketched above, the classes of models which we are going to
study can be constrained and selected by observations. However, most of the tests
recently used to constrain cosmological parameters (such as the SNeIa Hubble
diagram and the angular size–redshift) are essentially distance-based methods.
The proposal of Dalal et al. [143] to use the lookback time to high redshift objects
is thus particularly interesting since it relies on a completely different observable.
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The lookback time is defined as the difference between the present day age of the
Universe and its age at redshift z and may be computed as:

tL(z,p) = tH

z∫
0

dz′

(1+ z′)E(z′,p)
(88)

where tH = 1/H0 = 9.78h−1 Gyr is the Hubble time, and, as above, E(z,p) is the
dimensionless Hubble parameter, where the set of parameters characterizing the
cosmological model, {p}, can be taken into account. It is worth noticing that, by
definition, the lookback time is not sensible to the present day age of the Universe
t0 so that it could be possible that a model fits well the data on the lookback time,
but nonetheless it predicts a wrong value for t0. This latter parameter can be eval-
uated from Eq. 88 by changing the upper integration limit from z to infinity. This
shows that it is a different quantity indeed since it depends on the full evolution
of the Universe and not only on how the Universe evolves from the redshift z to
now. That is why this quantity can be explicitly introduced as a further constraint.
However, it is possible to show from the observations that tL(z) converges to t0
already at low z and then the method can be considered reliable.

As an example, let us now sketch how to use the lookback time and the age
of the Universe to test a given cosmological model. To this end, let us consider an
object i at redshift z and denote by ti(z) its age defined as the difference between
the age of the Universe when the object was born, i.e., at the formation redshift
zF , and the one at z. It is:

ti(z) =
∞∫

z

dz′

(1+ z′)E(z′,p)
−

∞∫
zF

dz′

(1+ z′)E(z′,p)

=
zF∫
z

dz′

(1+ z′)E(z′,p)
= tL(zF)− tL(z). (89)

where, in the last row, we have used the definition (88) of the lookback time.
Suppose now we have N objects and we have been able to estimate the age ti of
the object at redshift zi for i = 1,2, . . . ,N. Using the previous relation, we can
estimate the lookback time tobs

L (zi) as:

tobs
L (zi) = tL(zF)− ti(z)

= [tobs
0 − ti(z)]− [tobs

0 − tL(zF)]

= tobs
0 − ti(z)−∆ f , (90)

where tobs
0 is the today estimated age of the Universe and a delay factor can be

defined as:
∆ f = tobs

0 − tL(zF). (91)

The delay factor is introduced to take into account our ignorance of the formation
redshift zF of the object. Actually, what can be measured is the age ti(z) of the
object at redshift z. To estimate zF , one should use Eq. 89 assuming a background
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cosmological model. Since our aim is to determine what is the background cos-
mological model, it is clear that we cannot infer zF from the measured age so that
this quantity is completely undetermined.

It is worth stressing that, in principle, ∆ f should be different for each object
in the sample unless there is a theoretical reason to assume the same redshift at
the formation of all the objects. If this is indeed the case (as we will assume later),
then it is computationally convenient to consider ∆ f rather than zF as the unknown
parameter to be determined from the data. Again a likelihood function can be
defined as:

Llt(p,∆ f ) ∝ exp [−χ
2
lt(p,∆ f )/2] (92)

with:

χ
2
lt =

1
N−Np +1


[

t theor
0 (p)− tobs

0
σtobs

0

]2

+
N

∑
i=1

 t theor
L (zi,p)− tobs

L (zi)√
σ2

i +σ2
t

2
 (93)

where Np is the number of parameters of the model, σt is the uncertainty on tobs
0 , σi

the one on tobs
L (zi) and the superscript theor denotes the predicted values of a given

quantity. Note that the delay factor enters the definition of χ2
lt since it determines

tobs
L (zi) from ti(z) in virtue of Eq. 90, but the theoretical lookback time does not

depend on ∆ f .
In principle, such a method should work efficiently to discriminate among the

various dark energy models. Actually, this is not exactly the case due to the paucity
of the available data which leads to large uncertainties on the estimated parame-
ters. In order to partially alleviate this problem, it is convenient to add further
constraints on the models by using Gaussian priors4 on the Hubble constant, i.e.,
redefining the likelihood function as:

L (p) ∝ Llt(p)exp

[
−1

2

(
h−hobs

σh

)2
]

∝ exp [−χ
2(p)/2] (94)

where we have absorbed ∆ f in the set of parameters p and have defined:

χ
2 = χ

2
lt +

(
h−hobs

σh

)2

(95)

with hobs the estimated value of h and σh its uncertainty. The HST Key project
results [122] can be used setting (h,σh) = (0.72,0.08). Note that this estimate
is independent of the cosmological model since it has been obtained from local
distance ladder methods. The best fit model parameters p may be obtained by
maximizing L (p) which is equivalent to minimize the χ2 defined in Eq. 95.

It is worth stressing again that such a function should not be considered as a
statistical χ2 in the sense that it is not forced to be of order 1 for the best fit model

4 The need for priors to reduce the parameter uncertainties is often advocated for cosmolog-
ical tests. For instance, in Ref. [144] a strong prior on ΩM is introduced to constrain the dark
energy equation of state. It is likely, that extending the dataset to higher redshifts and reducing
the uncertainties on the age estimate will allow to avoid resorting to priors.
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to consider a fit as successful. Actually, such an interpretation is not possible since
the errors on the measured quantities (both ti and t0) are not Gaussian distributed
and, moreover, there are uncontrolled systematic uncertainties that may also dom-
inate the error budget.

Nonetheless, a qualitative comparison among different models may be obtained
by comparing the values of this pseudo χ2 even if this should not be considered
as a definitive evidence against a given model. Having more than one parameter,
one obtains the best fit value of each single parameter pi as the value which maxi-
mizes the marginalized likelihood for that parameter defined in Eq. 87. After hav-
ing normalized the marginalized likelihood to 1 at maximum, one computes the
1σ and 2σ confidence limits (CL) on that parameter by solving Lpi = exp(−0.5)
and Lpi = exp(−2) respectively. In summary, taking into account the above pro-
cedures for distance and time measurements, one can reasonably constrain a given
cosmological model. In
any case, the main and obvious issue is to have at disposal sufficient and good
quality data sets.

5.3 Samples of data to constrain models: the case of LSS for lookback time

In order to apply the method outlined above, we need a set of distant objects
whose distances and ages can be somehow estimated. As an example for the look-
back time method, let us consider the clusters of galaxies which seem to be ideal
candidates since they can be detected up to high redshift and their redshift, at for-
mation epoch5 is almost the same for all the clusters. Furthermore, it is relatively
easy to estimate their age from photometric data only. To this end, the color of
their component galaxies, in particular the reddest ones, is needed.

Actually, the stellar populations of the reddest galaxies become redder and
redder as they evolve. It is just a matter, then, to assume a stellar population syn-
thesis model, and to look at how old the latest episode of star formation should be
happened in the galaxy past to produce colors as red as the observed ones. This
is what is referred to as color age. The main limitation of the method relies in the
stellar population synthesis model, and on a few (unknown) ingredients (among
which the metallicity and the star formation rate).

The choice of the evolutionary model is a key step in the estimate of the color
age and the main source of uncertainty [145]. An alternative and more robust route
to cluster age is to consider the color scatter (see [146] for an early application of
this approach). The argument, qualitatively, goes in this way: if galaxies have an
extreme similarity in their color and nothing is conspiring to make the color scatter
surreptitiously small, then the latest episode of star formation should happen in the
galaxy far past, otherwise the observed color scatter would be larger.

5 It is worth stressing that, in literature, the cluster formation redshift is defined as the redshift
at which the last episode of star formation happened. In this sense, we should modify our defini-
tion of ∆ f by adding a constant term which takes care of how long is the star formation process
and what is the time elapsed from the beginning of the Universe to the birth of the first cluster
of galaxies. For this reason, it is still possible to consider the delay factor to be the same for all
clusters, but it is not possible to infer zF from the fitted value of ∆ f because we do not know the
detail of star formation history. This approach is particular useful since it allows to overcome
the problem to consider lower limits of the Universe age at z rather than the actual values.
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Table 1 Main properties of the cluster sample used for the analysis

Color age Scatter age

z N Age (Gyr) References z N Age (Gyr) References
0.60 1 4.53 [147] 0.10 55 10.65 [149]
0.70 3 3.93 [147] 0.25 103 8.89 [149]
0.80 2 3.41 [147] 1.27 1 1.60 [153]

The

data in the left part of the Table refers to clusters whose age has been estimated from the color
of the reddest galaxies (color age), while that of clusters in the right part has been obtained
by the color scatter (scatter age). For each data point, we give the redshift z, the number N of
clusters used, the age estimate and the relevant reference

Quantitatively, the scatter in color should thus be equal to the derivative of
color with time multiplied the scatter of star formation times. The first quantity
may be predicted using population synthesis models and turns out to be almost
the same for all the evolutionary models thus significantly reducing the systematic
uncertainty. We will refer to the age estimated by this method as scatter age. The
dataset we need to apply the method may be obtained using the following pro-
cedure. First, for a given redshift zi, we collect the colors of the reddest galaxies
in a cluster at that redshift and then use one of the two methods outlined above
to determine the color or the scatter age of the cluster. If more than one cluster
is available at that redshift, we average the results from different clusters in order
to reduce systematic errors. Having thus obtained ti(zi), we then use Eq. 90 to
estimate the value of the lookback time at that redshift.

Actually, what we measure is tobs
L (zi) + d∆ f that is the quantity that enters

the definition (93) of χ2
lt and then the likelihood function. To estimate the color

age, following [147], it is possible to choose, among the various available stellar
population synthesis models, the Kodama and Arimoto one [148], which, unlike
other models, allows a chemical evolution neglected elsewhere. This gives us three
points on the diagram z vs. tobs

L obtained by applying the method to a set of six
clusters at three different redshifts as detailed in Table 1.

Using a large sample of low redshift SDSS clusters, it is possible to evaluate
the scatter age for clusters age at z = 0.10 and z = 0.25 [149]. Blakeslee et al. [153]
applied the same method to a single, high redshift (z = 1.27) cluster. Collecting
the data using both the color age and the scatter age, we end up with a sample
of ∼160 clusters at six redshifts (listed in Table 1) which probe the redshift range
(0.10,1.27). This nicely overlaps the one probed by SNeIa Hubble diagram so that
a comparison among our results and those from SNeIa is possible. We assume a
σ = 1 Gyr as uncertainty on the cluster age, no matter what is the method used to
get that estimate.

Note that this is a very conservative choice. Actually, if the error on the age
were so large, the color-magnitude relation for reddest cluster galaxies should have
a large scatter that is not observed. We have, however, chosen such a large error
to take qualitatively into account the systematic uncertainties related to the choice
of the evolutionary model.

Finally, we need an estimate of tobs
0 to apply the method. Following Rebolo

et al. [120], one can choose (tobs
0 ,σt) = (14.4,1.4) Gyr as obtained by a combined

analysis of the WMAP and VSA data on the CMBR anisotropy spectrum and
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SDSS galaxy clustering. Actually, this estimate is model dependent since Rebolo
et al. [120] implicitly assumes that the ΛCDM model is the correct one. However,
this value is in perfect agreement with tobs

0 = 12.6+3.4
−2.4 Gyr determined from glob-

ular clusters age [71] and tobs
0 > 12.5±3.5 Gyr from radioisotopes studies [154].

For this reason, one is confident that no systematic error is induced on the adopted
method using the Rebolo et al. estimate for tobs

0 even when testing cosmological
models other than the ΛCDM one.

5.4 Dark energy as a curvature effect

The methods outlined above allow to constrain dark energy models without con-
sidering the nature of dark constituents. In [106], it is shown that the most popu-
lar quintessence (dark energy) models can be reproduced, in principle, only con-
sidering “curvature effects” i.e., only generalizing the theory of gravity to some
f (R) which is not supposed to be simply linear in R. From our point of view, this
approach seems “economic” and “conservative” and does not claim for unknown
fundamental ingredients, up to now not detected, in the cosmic fluid.6 As it is
clear, from Eq. 20, the curvature stress-energy tensor formally plays the role of a
further source term in the field equations so that its effect is the same as that of an
effective fluid of purely geometric origin. Let us rewrite it here for convenience:

T curv
αβ

=
1

f ′(R)

{
1
2

gαβ

[
f (R)−R f ′(R)

]
+ f ′(R);µν(gαµ gβν −gαβ gµν)

}
. (96)

Our aim is to show that such a quantity provides all the ingredients we need to
tackle with the dark side of the Universe. In fact, depending on the scales, such a
curvature fluid can play, in principle, the role of dark matter and dark energy. To be
more precise, also the coupling 1/ f ′(R) in front of the matter stress energy tensor,
see Eqs. 20, plays a fundamental role in the dynamics since it affects, in principle,
all the physical processes (e.g., the nucleo-synthesis) and the observable (lumi-
nous, clustered, baryonic) quantities. This means that the whole problem of the
dark side of the Universe could be addressed considering a comprehensive theory
where the interplay between the geometry and the matter has to be reconsidered
assuming non-linear contributions and non-minimal couplings in curvature invari-
ants.

From the cosmological point of view, in the standard framework of a spatially
flat homogenous and isotropic Universe, the cosmological dynamics is determined
by its energy budget through the Friedmann equations. In particular, the cosmic
acceleration is achieved when the r.h.s. of the acceleration equation remains posi-
tive. Specifically the Friedmann equation, in physical units, is

ä
a

=−1
6

(ρtot +3ptot) . (97)

The subscript tot denotes the sum of the curvature fluid and the matter contribu-
tion to the energy density and pressure. From the above relation, the acceleration

6 Following the Occam razor prescription: “Entia non sunt multiplicanda praeter necessi-
tatem.”
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Fig. 2 Best fit curve to the SNeIa Hubble diagram for the power law Lagrangian model. Only
data of “Gold” sample of SNeIa have been used

Fig. 3 The Hubble diagram of 20 radio galaxies together with the “Gold” sample of SNeIa, in
term of the redshift as suggested in [155]. The best fit curve refers to the Rn-gravity model with-
out dark matter (left), while in the right panel it is shown the difference between the luminosity
distances calculated without dark matter and in presence of this component in term of redshift.
It is evident that the two behaviors are quite indistinguishable

condition, for a dust dominated model, leads to:

ρcurv +ρm +3pcurv < 0→ wcurv <− ρtot

3ρcurv
(98)

so that a key role is played by the effective quantities:

ρcurv =
1

f ′(R)

{
1
2
[

f (R)−R f ′(R)
]
−3HṘ f ′′(R)

}
, (99)

and

wcurv =−1+
R̈ f ′′(R)+ Ṙ

[
Ṙ f ′′′(R)−H f ′′(R)

]
[ f (R)−R f ′(R)]/2−3HṘ f ′′(R)

, (100)

deduced from Eq. 96. As a first simple choice, one may neglect ordinary matter
and assume a power-law form f (R) = f0Rn, with n a real number, which rep-
resents a straightforward generalization of Einstein GR in the limit n = 1. One
can find power-law solutions for a(t) providing a satisfactory fit to the SNeIa
data and a good agreement with the estimated age of the Universe in the range
1.366 < n < 1.376 [54; 105]. On the other side, one can develop the same analysis
in presence of the ordinary matter component, although in such a case, one has
to solve numerically the field equations. Then, it is still possible to confront the
Hubble flow described by such a model with the Hubble diagram of SNeIa using
the above mentioned methods (Fig. 2). The data fit turns out to be significant (see
Fig. 3) improving the χ2 value and it fixes the best fit value at n = 3.46 when
it is accounted only the baryon contribute Ωb ≈ 0.04 (according with BBN pre-
scriptions). It has to be remarked that considering dark matter does not modify the
result of the fit, as it is evident from Fig. 3, in some sense positively supporting
the assumption of no need for dark matter in this model. A part the simplicity of
the power law model, the theoretical implications of the best fit values found for
n are telling us that dynamics related to cosmological constant (whose theoretical
shortcomings are well known) could be seriously addressed by finding a reliable
f (R) gravity model (see also [55]).

From the evolution of the Hubble parameter in term of redshift, one can even
calculate the age of Universe. In Fig. 4, it is sketched the age of the Universe as
a function of the correlation between the deceleration parameter q0 and the model
parameter n. The best fit value n = 3.46 provides tuniv ≈ 12.41 Gyr.

It is worth noticing that considering f (R) = f0 Rn gravity is only the simplest
generalization of the Einstein theory. In other words, it has to be considered that
Rn-gravity represents just a working hypothesis as there is no overconfidence that
such a model is the correct final gravity theory. In a sense, we want only to suggest
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Fig. 4 Contour plot in the plane (q0, n) describing the Universe age as induced by Rn-gravity
model without dark matter. The contours refer to age ranging from 11 to 16 Gyr from up to
down. The dashed curves define the 1−σ region relative to the best fit Universe age suggested
by the last WMAP release (13.73+0.13

−0.17 Gyr) in the case of Λ -CDM model [156]. At the best fit
n' 3.5 for SNeIa, the measured q0 '−0.5 gives a rather short age (about 11.5 Gyr) with respect
to the WMAP constraint. This is an indication that the f (R) model has to be further improved

that several cosmological and astrophysical results can be well interpreted in the
realm of a power law extended gravity model.

As matter of fact, this approach gives no rigidity about the value of the power
n, although it would be preferable to determine a model capable of working at
different scales. Furthermore, we do not expect to be able to reproduce the whole
cosmological phenomenology by means of a simple power law model, which has
been demonstrated to be not sufficiently versatile [157; 158; 159].

For example, we can easily demonstrate that this model fails when it is ana-
lyzed with respect to its capability of providing the correct evolutionary conditions
for the perturbation spectra of matter overdensity. This point is typically addressed
as one of the most important issues which suggest the need for dark matter. In fact,
if one wants to discard this component, it is crucial to match the experimental
results related to the Large Scale Structure of the Universe and the CMBR which
show, respectively at late time and at early time, the signature of the initial matter
spectrum.

As important remark, we notice that the quantum spectrum of primordial per-
turbations, which provides the seeds of matter perturbations, can be positively
recovered in the framework of Rn-gravity. In fact, f (R) ∝ R2 can represent a
viable model with respect to CMBR data and it is a good candidate for cosmo-
logical Inflation (see [162; 163] and references therein).

In order to develop the matter power spectrum suggested by this model, we
resort to the equation for the matter contrast obtained in [164] in the case of fourth
order gravity (see even [165] for a review on cosmological perturbations in f (R)-
theories). This equation can be deduced considering the conformal Newtonian
gauge for the perturbed metric [164]:

ds2 = (1+2ψ)dt2−a2(1+2φ)Σ 3
i=1(dxi). (101)

where ψ and φ are now gravitational perturbation potentials. In GR, it is φ =−ψ ,
since there is no anisotropic stress; in ETGs, this relation breaks, in general, and
the i 6= j components of field equations give new relations between φ and ψ .

In particular, for f (R) gravity, due to the non-vanishing derivatives fR;i; j (with
i 6= j), the φ −ψ relation becomes scale dependent. Instead of the perturbation
equation for the matter contrast δ , we provide here its evolution in term of the
growth index F = dlnδ/dlna, which is the directly measured quantity at z ∼
0.15:

F ′(a)−F (a)2

a
+
[

2
a

+
1
a

E ′(a)
]
F (a)− 1−2Q

2−3Q
· 3Ωm a−4

nE(a)2R̃n−1 = 0, (102)

(the prime, in this case, means the derivative with respect to a, n is the model
parameter, being f (R) ∝ Rn), E(a) = H(a)/H0, R̃ is the dimensionless Ricci
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Fig. 5 Scale factor evolution of the growth index: (left) modified gravity, in the case Ωm =
Ωbar ∼ 0.04, for the SNeIa best fit model with n = 3.46, (right) the same evolution in the case
of a ΛCDM model. In the case of Rn-gravity it is shown also the dependence on the scale k. The
three cases k = 0.01, 0.001, 0.0002 have been checked. Only the latter case shows a very small
deviation from the leading behavior. Clearly, the trend is that the growth law saturates to F = 1
for higher redshifts (i.e., a ∼ 0.001 to 0.01). This behavior agrees with observations since we
know that comparing CMB anisotropies and LSS, we need roughly δ ∝ a between recombina-
tion and z∼ 5 to generate the present LSS from the small fluctuations at recombination seen in
the CMB

scalar, and

Q = −2 fRR k2

fR a2 . (103)

For n = 1 the previous expression gives the ordinary growth index relation for the
Cosmological Standard Model. It is clear, from Eq. 102, that such a model sug-
gests a scale dependence of the growth index which is contained into the corrective
term Q so that, when Q→ 0, this dependence can be reasonably neglected.

In the most general case, one can resort to the limit aH < k < 10−2 hMpc−1,
where Eq. 102 is a good approximation, and non-linear effects on the matter power
spectrum can be neglected. Studying numerically Eq. 102, one obtains the growth
index evolution in term of the scale factor; for the sake of simplicity, we assume
the initial condition F (als) = 1 at the last scattering surface as in the case of
matter-like domination. The results are summarized in Figs. 5 and 6, where we
have displayed, in parallel, the growth index evolution in Rn-gravity and in the
ΛCDM model. In the case of Ωm = Ωbar ∼ 0.04, one can observe a strong dis-
agreement between the expected rate of the growth index and the behavior induced
by power law fourth order gravity models.

This negative result is evidenced by the predicted value of F (az=0.15), which
has been observationally estimated by the analysis of the correlation function for
220,000 galaxies in 2dFGRS dataset sample at the survey effective depth z = 0.15.
The observational result suggests F = 0.58±0.11 [166], while our model gives
F (az=0.15) ∼ 0.117 (k = 0.01), 0.117 (k = 0.001), 0.122 (k = 0.0002).

Although this result seems frustrating with respect to the underlying idea to
discard the dark matter component from the cosmological dynamics, it does not
give substantial improvement in the case of Rn-gravity model plus dark matter.
In fact, as it is possible to observe from Fig. 6, even in this case the growth index
prediction is far to be in agreement with the ΛCDM model and again, at the obser-
vational scale z = 0.15, there is not enough growth of perturbations to match
the observed Large Scale Structure. In such a case one obtains: F (az=0.15) ∼
0.29 (k = 0.01), 0.29 (k = 0.001), 0.31 (k = 0.0002), which are quite increased
with respect to the previous case but still very far from the experimental estimate.

It is worth noticing that no significant different results are obtained if one
varies the power n. Of course in the case of n→ 1, one recovers the standard
behavior if a cosmological constant contribution is added. These results seem to
suggest that an ETG model which considers a simple power law of Ricci scalar,
although cosmologically relevant at late times, is not viable to describe the evolu-
tion of Universe at all scales.

In other words such a scheme seems too simple to give account of the whole
cosmological phenomenology. In fact, in [164] a gravity Lagrangian considering
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Fig. 6 The evolution of the growth index in terms of the scale factor when dark matter is
included in the whole energy budget. Again, the left plot shows the modified gravity evolu-
tion for the SNeIa best fit model with n = 3.46, while the right one refers to ΛCDM model

an exponential correction to the Ricci scalar, f (R) = R + Aexp(−BR) (with A, B
two constants), gives a grow factor rate which is in agreement with the observa-
tional results at least in the dark matter case. To corroborate this point of view,
one has to consider that when the choice of f (R) is performed starting from
observational data (pursuing an inverse approach) as in [106], the reconstructed
Lagrangian is a non-trivial polynomial in term of the Ricci scalar, as we shall see
below.

A result which directly suggests that the whole cosmological phenomenology
can be accounted only by a suitable non-trivial function of the Ricci scalar rather
than a simple power law function. In this case, cosmological equations, coming
from an f (R) action, can be reduced to a linear third order differential equation for
the function f (R(z)), where z is the redshift. The Hubble parameter H(z) inferred
from the data and the relation between z and R can be used to finally work out
f (R).

This scheme provides even another interesting result. Indeed, one may con-
sider the expression for H(z) in a given dark energy model as the input for the
reconstruction of f (R) and thus work out a f (R) theory giving rise to the same
dynamics as the input model.

This suggests the intriguing possibility to consider observationally viable dark
energy models (such as ΛCDM and quintessence) only as effective parameteriza-
tions of the curvature fluid [106; 157]. As matter of fact, the results obtained with
respect to the study of the matter power spectra in the case of Rn-gravity do not
invalidate the whole approach, since they can be referred to the too simple form
of the model. Similar considerations can be developed for cosmological solutions
derived in Palatini approach (see [167] for details).

An important remark is in order at this point. If the power n is not a natural
number, Rn models could be not analytic for R→ 0. In this case, the Minkowski
space is not a solution and, in general, the post-Minkowskian limit of the theory
could be bad defined. Actually this is not a true shortcoming if we consider Rn-
gravity as a toy model for a (still unknown) self-consistent and comprehensive
theory working at all scales.

However, the discussion is not definitely closed since some authors support
the point of view that no f (R) theories with f = R+αRn, n 6= 1 can evolve from
a matter-dominated epoch a(t) ∝ t2/3 to an accelerated phase [159]. This result

Fig. 7 Comparison between predicted and observed values of τ = tL(z) + ∆ f for the best fit
ΛCDM model. Data in Table 1 have been used

Fig. 8 Comparison between predicted and observed values of τ = tL(z)+∆ f for the best fit f (R)
power-law model as in Fig. 3. Data in Table 1 have been used. Also for this test, it is evident the
strict concordance with ΛCDM model in Fig. 7
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could be the end of such theories, if the phase space analysis of cosmological
solutions is not correctly faced (Figs. 7, 8, 9, 10, 11).

In [160], and recently in [161], it is shown that transient matter-dominated
evolutions evolving toward accelerated phases are actually possible and the lack
of such solutions in [159] depends on an incomplete parameterization of the phase
space.

In general, by performing a conformal transformation on a generic f (R) grav-
ity theory, it is possible to achieve, in the Einstein frame, dust matter behaviors
which are compatible with observational prescriptions. In addition, by exploiting
the analogy between the two frames and between modified gravity and scalar-
tensor gravity, one can realize that physical results, in the two conformally related
frames, could be completely different. In other words one can pass from a non-
phantom phase behavior (Einstein frame) to a phantom regime (Jordan frame)
[25].

Now, we can suppose to change completely the point of view. In fact, we can
rely directly with the Jordan frame and we can verify if a dust matter regime is
intrinsically compatible with modified gravity.

As a first example, one can cite the exact solution provided in [54], which has
been deduced working only in the Jordan Frame (FRW Universe). In particular,
one is able to find a power law regime for the scale factor whose rate is connected
with the power n of the Lagrangian f (R) = f0Rn.

In other words, one has a(t) = a0tα with α = 2n2−3n+1
2−n . Such an exact solu-

tion is found out when only baryonic matter is considered [175; 176]. It is evident
that such a solution allows to obtain an ordinary matter behavior (α = 2/3) for
given values of the parameter n (i.e., n∼−0.13, n∼ 1.29).

Such solutions are nevertheless stable and no transition to acceleration phase
then occurs. In general, it is possible to show that solutions of the type

a = a0(t− t0)
2n

3(1+w) , (104)

where w is the barotropic index of standard perfect fluid, arises as a transient
phase, and this phase evolves into an accelerated solution representing an attractor
for the system [160]. In any case, a single solution exactly matching, in sequence,
radiation, matter and accelerated phases is unrealistic to be found out in the frame-
work of simple f (R)-power law theories. The discussion can be further extended
as follows.

Modified gravity can span a wide range of analytic functions of the Ricci
scalar where f (R) = f0Rn only represents the simplest choice. In general, one can
reverse the perspective and try to derive the form of gravity Lagrangian directly
from the data or mimicking other cosmological models.

Such an approach has been developed in [106], and allows to recover modified
gravity Lagrangians by the Hubble flow dynamics H(z): in particular, it is possible
to show that wide classes of dark energy models worked out in the Einstein frame
can be consistently reproduced by f (R)-gravity as quintessence models with expo-
nential potential [107].

Clearly the approach works also for the case of coupled quintessence scalar
fields. In other words, the dynamics of H(z), considered in the Jordan frame, is
reconstructed by observational data considered in the Einstein frame then assum-
ing one of the two frames as the “physical frame” could be misleading. Here we
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further develop this approach with the aim to show, in general, the viability of
f (R) gravity to recover a matter-dominated phase capable of evolving in a late
accelerating phase.

From a formal point of view, the reconstruction of the gravity Lagrangian from
data is based on the relation which expresses the Ricci scalar in terms of the Hub-
ble parameter:

R =−6
(

Ḣ +2H2 +
k
a2

)
. (105)

Now, starting from the above the f (R) field equations (20) one can reconstruct the
form of f (R) from the Hubble parameter as a function of the redshift z exploiting
the relation (105) after this expression has been rewritten in term of the redshift
itself.

A key role in this discussion is played by the conservation equation for the
curvature and the matter fluids which, in the case of dust matter, (i.e., pm = 0)
gives:

ρ̇curv +3H(1+wcurv)ρcurv =− 1
f ′(R)

(ρ̇m +3Hρm)−ρm
d f ′(R)

dt
. (106)

In particular, one may assume that the matter energy density is conserved:

ρm = ΩMρcrita−3 = 3H2
0 ΩM(1+ z)3 (107)

with z = 1/a−1 the redshift (having set a(t0) = 1), ΩM the matter density param-
eter (also here, quantities labelled with the subscript 0 refers to present day (z = 0)
values). Equation (107) inserted into Eq. 106, allows to write a conservation equa-
tion for the effective curvature fluid:

ρ̇curv +3H(1+wcurv)ρcurv = 3H2
0 ΩM(1+ z)3 Ṙ f ′′(R)

[ f ′(R)]2
. (108)

Actually, since the continuity equation and the field equations are not independent
[106], one can reduce to the following single equation

Ḣ =− 1
2 f ′(R)

{
3H2

0 ΩM(1+ z)3 + R̈ f ′′(R)+ Ṙ
[
Ṙ f ′′′(R)−H f ′′(R)

]}
,

(109)

where all quantities can be expressed in term of redshift by means of the relation
d
dt =−(1+ z)H d

dz . In particular, for a flat FRW metric, one has:

R =−6
[

2H2− (1+ z)H
dH
dz

]
, (110)

f ′(R) =
(

dR
dz

)−1 d f
dz

, (111)

f ′′(R) =
(

dR
dz

)−2 d2 f
dz2 −

(
dR
dz

)−3 d2R
dz2

d f
dz

, (112)
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f ′′′(R) =
(

dR
dz

)−3 d3 f
dz3 +3

(
dR
dz

)−5(d2R
dz2

)2 d f
dz

−
(

dR
dz

)−4(
3

d2R
dz2

d2 f
dz2 +

d3R
dz3

d f
dz

)
. (113)

Now, we have all the ingredients to reconstruct the shape of f (R) by data or, in
general, by the definition of a suitable H(z) viable with respect to observational
results. In particular, we can show that a standard matter regime (necessary to clus-
ter large scale structure) can arise, in this scheme, before the accelerating phase
arises as, for example, in the so called quiessence model.

A quiessence model is based on an ordinary matter fluid plus a cosmological
component whose equation of state w is constant but can scatter from w = −1.
This approach represents the easiest generalization of the cosmological constant
model, and it has been successfully tested against the SNeIa Hubble diagram
and the CMBR anisotropy spectrum so that it allows to severely constraint the
barotropic index w [108; 109; 110].

It is worth noticing that these constraints extend into the region w <−1, there-
fore models (phantom models) violating the weak energy condition are allowed.
From the cosmological dynamics viewpoint, such a model, by definition, has to
display an evolutionary rate of expansion which moves from the standard matter
regime to the accelerated behavior in relation to the value of w. In particular, this
quantity parameterizes the transition point to the accelerated epoch.

Actually, if it is possible to find out a f (R)-gravity model compatible with the
evolution of the Hubble parameter of the quiessence model, this result suggests
that modified gravity is compatible with a phase of standard matter domination.
To be precise, let us consider the Hubble flow defined by this model, where, as
above:

H(z) = H0

√
ΩM(1+ z)3 +ΩX (1+ z)3(1+w) (114)

with ΩX = (1−ΩM) and w the constant parameter defining the dark energy
barotropic index. This definition of the Hubble parameter implies:

R =−3H2
0

[
ΩM(1+ z)3 +ΩX (1−3w)(1+ z)3(1+w)

]
. (115)

The ansatz in Eq. 114 allows to obtain from Eq. 109 a differential relation for
f (R(z)) which can be solved numerically by choosing suitable boundary condi-
tions.
In particular we choose: (

d f
dz

)
z=0

=
(

dR
dz

)
z=0

, (116)(
d2 f
dz2

)
z=0

=
(

d2R
dz2

)
z=0

. (117)

f (z = 0) = f (R0) = 6H2
0 (1−ΩM)+R0. (118)

A comment is in order here. We have derived the present day values of d f /dz and
d2 f /dz2 by imposing the consistency of the reconstructed f (R) theory with local
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Solar System tests. One could wonder whether tests on local scales could be used
to set the boundary conditions for a cosmological problem. It is easy to see that
this is indeed meaningful.

Actually, the isotropy and homogeneity of the Universe ensure that the present
day value of a whatever cosmological quantity does not depend on where the
observer is. As a consequence, hypothetical observers living in the Andromeda
galaxy and testing gravity in his planetary system should get the same results. As
such, the present day values of d f /dz and d2 f /dz2 adopted by these hypothetical
observers are the same as those we have used, based on our Solar System exper-
iments. Therefore, there is no systematic error induced by our method of setting
the boundary conditions.

Once one has obtained the numerical solution for f (z), inverting again numer-
ically Eq. 115, we may obtain z = z(R) and finally get f (R) for several values of
w.

It turns out that f (R) is the same for different models for low values of R and
hence of z. This is a consequence of the well known degeneracy among different
quiessence models at low z that, in the standard analysis, leads to large uncertain-
ties on w. This is reflected in the shape of the reconstructed f (R) that is almost
w-independent in this redshift range.

An analytic representation of the reconstructed fourth order gravity model, can
be obtained considering that the following empirical function

ln(− f ) = l1 [ln(−R)]l2 [1+ ln(−R)]l3 + l4 (119)

approximates very well the numerical solution, provided that the parameters (l1, l2,
l3, l4) are suitably chosen for a given value of w. For instance, for w =−1 (the cos-
mological constant) it is:

(l1, l2, l3, l4) = (2.6693,0.5950,0.0719,−3.0099).

At this point, one can wonder if it is possible to improve such a result considering
even the radiation, although energetically negligible. Rather than inserting radia-
tion in the (114), a more general approach in this sense is to consider the Hubble
parameter descending from a unified model like those discussed in [43; 44]. In
such a scheme one takes into account energy density which scales as:

ρ(z) = A
(

1+
1+ z
1+ zs

)β−α [
1+
(

1+ z
1+ zb

)α]
(120)

having defined:
zs = 1/s−1, zb = 1/b−1. (121)

This model, with the choice (α,β ) = (3,4), is able to mimic a Universe undergo-
ing first a radiation dominated era (for z� zs), then a matter dominated phase (for
zb� z� zs) and finally approaching a de Sitter phase with constant energy.

In other words, it works in the way we are asking for. In such a case, the Hubble

parameter can be written, in natural units, as H =
√

ρ(z)
3 and one can perform the

same calculation as in the quiessence case.
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Fig. 9 Evolution of the GW amplitude for some power-law behaviors of a(t) ∼ ts, φ ∼ tm and
f (R) ∼ Rn. The scales of time and amplitude strictly depend on the cosmological background
giving a “signature” for the model

As a final result, it is again possible to find out a suitable f (R)-gravity model
which, for numerical reasons, it is preferable to interpolate as f (R)/R:

f (R)
R

= 1.02× R
R0

[
1+

(
−0.04×

(
R
R0

)0.31

+0.69×
(

R
R0

)−0.53
)
× ln

(
R
R0

)]
, (122)

where R0 is a normalization constant. This result once more confutes issues address-
ing modified gravity as incompatible with structure formation prescriptions. In
fact, also in this case, it is straightforward to show that a phase of ordinary matter
(radiation and dust) domination can be obtained and it is followed by an acceler-
ated phase.

Furthermore, several recent studies are pointing out that large scale structure
and CMBR anisotropy spectrum are compatible with f (R) gravity as discussed in
details in [111; 112] for the metric approach and in [113] for the Palatini approach.

In particular, in [111], it is shown that several classes of f (R) theories can tune
the large-angle CMB anisotropy, the shape of the linear matter power spectrum,
and qualitatively change the correlations between the CMB and galaxy surveys.
All these phenomena are accessible with current and future data and will soon
provide stringent tests for such theories at cosmological scales [114; 115; 116;
117].

5.5 The stochastic background of gravitational waves “tuned” by f (R) gravity

As we have seen, a pragmatic point of view could be to “reconstruct” the suitable
theory of gravity starting from data. The main issues of this “inverse ” approach is
matching consistently observations at different scales and taking into account wide
classes of gravitational theories where “ad hoc” hypotheses are avoided. In prin-
ciple, as discussed in the previous section, the most popular dark energy cosmo-
logical models can be achieved by considering f (R) gravity without considering
unknown ingredients. The main issue to achieve such a goal is to have at disposal
suitable datasets at every redshift. In particular, this philosophy can be taken into
account also for the cosmological stochastic background of gravitational waves
(GW) which, together with CMBR, would carry, if detected, a huge amount of
information on the early stages of the Universe evolution [168; 169; 170]. Here, we
want to show that cosmological information coming from cosmological stochas-
tic background of GWs could constitute a benchmark for cosmological models
coming from ETGs, in particular for f (R).

As well known, GWs are perturbations hµν of the metric gµν which transform
as 3-tensors. The GW-equations in the transverse-traceless gauge are

�h j
i = 0. (123)
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Latin indexes run from 1 to 3. Our task is now to derive the analog of Eqs. 123 for
a generic f (R). As we have seen from conformal transformation, the extra degrees
of freedom related to higher order gravity can be recast into a scalar field being

g̃µν = e2φ gµν with e2φ = f ′(R). (124)

and
R̃ = e−2φ

(
R−6�φ −6φ;δ φ

;δ
)

. (125)

The GW-equation is now
�̃h̃ j

i = 0 (126)

where
�̃ = e−2φ

(
�+2φ

;λ
∇;λ

)
. (127)

Since no scalar perturbation couples to the tensor part of gravitational waves, we
have

h̃ j
i = g̃l j

δ g̃il = e−2φ gl je2φ
δgil = h j

i (128)

which means that h j
i is a conformal invariant. As a consequence, the plane-wave

amplitudes h j
i (t) = h(t)e j

i exp(ikmxm), where e j
i is the polarization tensor, are the

same in both metrics. This fact will assume a key role in the following discussion.
In a FRW background, Eq. 126 becomes

ḧ+
(
3H +2φ̇

)
ḣ+ k2a−2h = 0 (129)

being a(t) the scale factor, k the wave number and h the GW amplitude. Solutions
are combinations of Bessel’s functions. Several mechanisms can be considered for
the production of cosmological GWs. In principle, we could seek for contributions
due to every high-energy process in the early phases of the Universe.

In the case of inflation, GW-stochastic background is strictly related to dynam-
ics of cosmological model. This is the case we are considering here. In particular,
one can assume that the main contribution to the stochastic background comes
from the amplification of vacuum fluctuations at the transition between the infla-
tionary phase and the radiation era. However, we can assume that the GWs gener-
ated as zero-point fluctuations during the inflation undergo adiabatically damped
oscillations (∼ 1/a) until they reach the Hubble radius H−1. This is the parti-
cle horizon for the growth of perturbations. Besides, any previous fluctuation is
smoothed away by the inflationary expansion. The GWs freeze out for a/k�H−1

and reenter the H−1 radius after the reheating. The reenter in the Friedmann era
depends on the scale of the GW. After the reenter, GWs can be constrained by the
Sachs-Wolfe effect on the temperature anisotropy4T/T at the decoupling. More
precisely, such fluctuations are degenerated with scalar fluctuations, but GWs can,
in principle, be measured via B-polarization of the CMB. The measurement is
very hard to be performed, but many experiments in this direction are presently
planned. In any case,4T/T can always be used to derive constraints.

If φ acts as the inflaton, we have φ̇ � H during the inflation. Adopting the
conformal time dη = dt/a, Eq. 129 reads

h′′+2
χ ′

χ
h′+ k2h = 0 (130)
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where χ = aeφ . The derivation is now with respect to η . Inside the radius H−1,
we have kη� 1. Considering the absence of gravitons in the initial vacuum state,
we have only negative-frequency modes and then the solution of (130) is

h = k1/2
√

2/π
1

aH
C exp(−ikη). (131)

C is the amplitude parameter. At the first horizon crossing (aH = k) the averaged
amplitude Ak

h = (k/2π)3/2 |h| of the perturbation is

Ak
h =

1
2π2 C. (132)

When the scale a/k becomes larger than the Hubble radius H−1, the growing
mode of evolution is constant, i.e., it is frozen. It can be shown that4T/T . Ak

h,
as an upper limit to Ak

h, since other effects can contribute to the background
anisotropy. From this consideration, it is clear that the only relevant quantity is
the initial amplitude C in Eq. 131, which is conserved until the reenter. Such
an amplitude depends on the fundamental mechanism generating perturbations.
Inflation gives rise to processes capable of producing perturbations as zero-point
energy fluctuations. Such a mechanism depends on the gravitational interaction
and then (4T/T ) could constitute a further constraint to select a suitable theory
of gravity. Considering a single graviton in the form of a monochromatic wave, its
zero-point amplitude is derived through the commutation relations:

[h(t,x), πh(t,y)] = iδ 3(x− y) (133)

calculated at a fixed time t, where the amplitude h is the field and πh is the conju-
gate momentum operator. Writing the Lagrangian for h

L̃ =
1
2

√
−g̃g̃µν h;µ h;ν (134)

in the conformal FRW metric g̃µν , where the amplitude h is conformally invariant,
we obtain

πh =
∂L̃

∂ ḣ
= e2φ a3ḣ (135)

Equation (133) becomes

[
h(t,x), ḣ(y,y)

]
= i

δ 3(x− y)
a3e2φ

(136)

and the fields h and ḣ can be expanded in terms of creation and annihilation oper-
ators

h(t,x) =
1

(2π)3/2

∫
d3k
[
h(t)e−ikx +h∗(t)e+ikx

]
, (137)

ḣ(t,x) =
1

(2π)3/2

∫
d3k
[
ḣ(t)e−ikx + ḣ∗(t)e+ikx

]
. (138)
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The commutation relations in conformal time are

[
hh′∗−h∗h′

]
=

i(2π)3

a3e2φ
. (139)

From (131) and (132), we obtain C =
√

2π2He−φ , where H and φ are calculated
at the first horizon-crossing and, being e2φ = f ′(R), the remarkable relation

Ak
h =

H√
2 f ′(R)

, (140)

holds for a generic f (R) theory at a given k. Clearly the amplitude of GWs pro-
duced during inflation depends on the theory of gravity which, if different from
GR, gives extra degrees of freedom. On the other hand, the Sachs-Wolfe effect
could constitute a test for gravity at early epochs. This probe could give further
constraints on the GW-stochastic background, if ETGs are independently probed
at other scales.

In summary, the amplitudes of tensor GWs are conformally invariant and their
evolution depends on the cosmological background. Such a background is tuned
by a conformal scalar field which is not present in the standard GR. Assuming
that primordial vacuum fluctuations produce stochastic GWs, beside scalar per-
turbations, kinematical distortions and so on, the initial amplitude of these ones
is a function of the f (R)-theory of gravity and then the stochastic background
can be, in a certain sense “tuned” by the theory. Viceversa, data coming from the
Sachs-Wolfe effect could contribute to select a suitable f (R) theory which can be
consistently matched with other observations. However, further and accurate stud-
ies are needed in order to test the relation between Sachs-Wolfe effect and f (R)
gravity. This goal could be achieved very soon through the forthcoming space
(LISA) and ground-based (VIRGO, LIGO) interferometers.

6 Applications to galactic dynamics

The results obtained at cosmological scales motivates further applications of ETGs,
in particular of f (R) theories. In general, one is wondering whether ETG models,
working as dark energy models, can also play a role to explain the dark matter
phenomenology at scales of galaxies and clusters of galaxies.

Several studies have been pursued in this direction [171; 172] but the main
goal remains that to seek a unified model capable of explain dynamics at every
scale without introducing ad hoc components.

6.1 Dark matter as a curvature effect: the case of flat rotation curves of LSB
galaxies

It is well known that, in the low energy limit, higher order gravity implies modified
gravitational potentials [69; 173]. By considering the case of a pointlike mass m
and solving the vacuum field equations for a Schwarzschild-like metric [174; 176],
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one gets as exact solution from a theory f (R) = f0Rn, the modified gravitational
potential:

Φ(r) =−Gm
2r

[
1+
(

r
rc

)β
]

(141)

where

β =
12n2−7n−1−

√
36n4 +12n3−83n2 +50n+1
6n2−4n+2

(142)

which corrects the ordinary Newtonian potential by a power-law term. As we will
see, it has to be β > 0 and then n > 0. In particular, the best fit value will be β ' 0.8
and then n = 3.2. Standard units have been considered here. In particular, this cor-
rection sets in on scales larger than rc which value depends essentially on the mass
of the system [176]. This quantity deserves some discussion. As shown in [176], it
is derived from the initial conditions of the models and it correlates with the core
masses of the LSB galaxies which we have taken into account. In some sense, it
is a sort of further gravitational radius, beside the standard Schwarzschild radius,
which rules the central mass of the galaxies, and then it is different for different
systems. It is interesting to note that, given a generic 2n-order theory of gravity,
it is possible to find out n characteristic radii [69] and it is intriguing to suspect
that they could likely rule the structure and the stability of the astrophysical self-
gravitating structures (S. Capozziello, E. De Filippis, V. Salzano, in preparation).
But this is a working hypothesis which has to be firmly demonstrated.

The corrected potential (141) reduces to the standard Φ ∝ 1/r for n = 1 as it
can be seen from the relation (142). The generalization of Eq. 141 to extended
systems is straightforward. We simply divide the system in infinitesimal mass ele-
ments and sum up the potentials generated by each single element. In the contin-
uum limit, we replace the sum with an integral over the mass density of the system

Table 2 Properties of sample galaxies

Id D µ0 rd rHI MHI Type
UGC 1230 51 22.6 4.5 101 58.0 Sm
UGC 1281 5.5 22.7 1.7 206 3.2 Sdm
UGC 3137 18.4 23.2 2.0 297 43.6 Sbc
UGC 3371 12.8 23.3 3.1 188 12.2 Im
UGC 4173 16.8 24.3 4.5 178 21.2 Im
UGC 4325 10.1 21.6 1.6 142 7.5 SAm
NGC 2366 3.4 22.6 1.5 439 7.3 IB(s)m
IC 2233 10.5 22.5 2.3 193 13.6 SBd
NGC 3274 6.7 20.2 0.5 225 6.6 SABd
NGC 4395 3.5 22.2 2.3 527 9.7 SAm
NGC 4455 6.8 20.8 0.7 192 5.4 SBd
NGC 5023 4.8 20.9 0.8 256 3.5 Scd
DDO 185 5.1 23.2 1.2 136 1.6 IBm
DDO 189 12.6 22.6 1.2 167 10.5 Im
UGC 10310 15.6 22.0 1.9 130 12.6 SBm

Explanation

of the columns: name of the galaxy, distance in Mpc; disk central surface brightness in the R
band (corrected for galactic extinction); disk scalelength in kpc; radius at which the gas surface
density equals 1 M�/pc2 in arcsec; total HI gas mass in 108 M�; Hubble type as reported in the
NED database
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taking care of eventual symmetries of the mass distribution [176]. Once the grav-
itational potential has been computed, one may evaluate the rotation curve v2

c(r)
and compare it with the data. For extended systems, one has typically to resort to
numerical techniques, but the main effect may be illustrated by the rotation curve
for the pointlike case:

v2
c(r) =

Gm
2r

[
1+(1−β )

(
r
rc

)β
]

. (143)

Compared with the Newtonian result v2
c = Gm/r, the corrected rotation curve is

modified by the addition of the second term in the r.h.s. of Eq. 143. For 0 < β < 1,
the corrected rotation curve is higher than the Newtonian one. Since measure-
ments of spiral galaxies rotation curves signal a circular velocity higher than those
which are predicted on the basis of the observed luminous mass and the Newtonian
potential, the above result suggests the possibility that such a modified gravita-
tional potential may fill the gap between theory and observations without the need
of additional dark matter. It is worth noticing that the corrected rotation curve is
asymptotically vanishing as in the Newtonian case, while it is usually claimed that
observed rotation curves are flat (i.e., asymptotically constant). Actually, observa-
tions do not probe vc up to infinity, but only show that the rotation curve is flat
within the measurement uncertainties up to the last measured point. This fact by
no way excludes the possibility that vc goes to zero at infinity.

In order to observationally check the above result, one can take into account
samples of low surface brightness (LSB) galaxies with well measured HI + Hα

rotation curves extending far beyond the visible edge of the system. LSB galaxies
are known to be ideal candidates to test dark matter models since, because of their
high gas content, the rotation curves can be well measured and corrected for pos-
sible systematic errors by comparing 21-cm HI line emission with optical Hα and
[NII] data. Moreover, they are supposed to be dark matter dominated so that fitting
their rotation curves without this elusive component could be a strong evidence
in favor of any successful alternative theory of gravity. The considered sample
(Table 2) contains 15 LSB galaxies with data on the rotation curve, the surface
mass density of the gas component and
R- photometric band, disk photometry extracted from a larger sample selected by
de Blok and Bosma [177]. We assume the stars are distributed in a thin and
circularly symmetric disk with surface density Σ(r) = ϒ?I0 exp(−r/rd) where
the central surface luminosity I0 and the disk scalelength rd are obtained from fit-
ting
to the stellar photometry. The gas surface density has been obtained by interpolat-
ing the data over the range probed by HI measurements and extrapolated outside
this range.

When fitting to the theoretical rotation curve, there are three quantities to be
determined, namely the stellar mass-to-light (M/L) ratio, ϒ? and the theory param-

Fig. 10 Best fit theoretical rotation curve superimposed to the data for the LSB galaxy NGC
4455 (left) and NGC 5023 (right). These two cases are considered to better show the effect of
the correction to the Newtonian gravitational potential. We report the total rotation curve vc(r)
(solid line), the Newtonian one (short dashed) and the corrected term (long dashed)
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Fig. 11 Best fit curves superimposed to the data for the total sample of 15 LSB galaxies consid-
ered

eters (β ,rc). It is worth stressing that, while fit results for different galaxies should
give the same β , rc is related to one of the integration constants of the field equa-
tions. As such, it is not a universal quantity and its value must be set on a galaxy-
by-galaxy basis. However, it is expected that galaxies having similar properties in
terms of mass distribution have similar values of rc so that the scatter in rc must
reflect somewhat the scatter in the terminal circular velocities. In order to match
the model with the data, we perform a likelihood analysis for each galaxy, using,
as fitting parameters β , logrc (with rc in kpc) and the gas mass fraction7 fg. As
it is evident considering the results from the different fits summarized in Table 3,
the experimental data are successfully fitted by the model. In particular, the best
fit range of β (β = 0.80 ± 0.08), corresponding to Rn gravity with 2.3 < n < 5.3
(best fit value n = 3.2), seems well overlaps the above mentioned range of n fitting
SNeIa Hubble diagram.

However, these are only preliminary results which do not completely solve
the problem of dark matter in galaxies by models coming from ETGs and do
not fit the growth of structures. In any case, further evidences on the same line
of thinking are coming from other samples of galaxies (where also high surface
brightness galaxies are considered) [178], or from galaxy clusters, where the dark
matter range is completely different (S. Capozziello, E. De Filippis, V. Salzano, in
preparation).

7 This is related to the M/L ratio as ϒ? = [(1− fg)Mg]/( fgLd) with Mg = 1.4MHI the gas (HI
+ He) mass, Md = ϒ?Ld and Ld = 2πI0r2

d the disk total mass and luminosity.

Table 3 Best fit values of the model parameters from minimizing χ2(β , logrc, fg)

Id β logrc fg ϒ? χ2/do f σrms
UGC 1230 0.83 ± 0.02 −0.39 ± 0.09 0.15 ± 0.01 15.9 ± 0.5 2.97/8 0.96
UGC 1281 0.38 ± 0.01 −3.93 ± 0.80 0.65 ± 0.08 0.64 ± 0.33 3.48/21 1.05
UGC 3137 0.72 ± 0.03 −1.86 ± 0.06 0.65 ± 0.02 9.8 ± 0.9 48.1/26 1.81
UGC 3371 0.78 ± 0.05 −1.85 ± 0.01 0.41 ± 0.01 3.3 ± 0.2 0.48/15 1.30
UGC 4173 0.94 ± 0.02 −0.97 ± 0.22 0.34 ± 0.01 9.37 ± 0.04 0.12/10 0.52
UGC 4325 0.79 ± 0.07 −2.85 ± 0.44 0.70 ± 0.02 0.50 ± 0.05 0.09/13 1.19
NGC 2366 0.96 ± 0.14 −0.58 ± 0.42 0.64 ± 0.01 14.5 ± 0.9 28.6/25 1.10
IC 2233 0.42 ± 0.01 −3.50 ± 0.05 0.64 ± 0.01 1.29 ± 0.06 6.1/22 2.10
NGC 3274 0.71 ± 0.03 −2.30 ± 0.19 0.55 ± 0.03 2.3 ± 0.3 17.6/20 2.7
NGC 4395 0.13 ± 0.02 −3.68 ± 0.31 0.14 ± 0.01 7.6 ± 0.3 37.7/52 1.40
NGC 4455 0.87 ± 0.05 −2.32 ± 0.07 0.83 ± 0.01 0.42 ± 0.04 3.3/17 1.12
NGC 5023 0.81 ± 0.02 −2.54 ± 0.05 0.53 ± 0.02 0.91 ± 0.06 8.9/30 2.50
DDO 185 0.92 ± 0.10 −2.75 ± 0.35 0.90 ± 0.03 0.21 ± 0.07 5.03/5 0.81
DDO 189 0.54 ± 0.08 −2.40 ± 0.61 0.63 ± 0.04 4.2 ± 0.7 0.44/8 1.08
UGC 10310 0.72 ± 0.04 −1.87 ± 0.04 0.59 ± 0.02 1.39 ± 0.04 2.90/13 1.02

The

values of ϒ?, the χ2/do f are reported for the best fit parameters (with do f = N− 3 and N the
number of datapoints) and the root mean square σrms of the fit residuals. Errors on the fitting
parameters and the M/L ratio are estimated through the jacknife method hence do not take into
account parameter degeneracies [176]
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6.2 Dark matter haloes inspired by f (R)-gravity

At this point, it is worth wondering whether a link may be found between f (R)
gravity and the standard approach based on dark matter haloes since both theo-
ries fit equally well the same data. The trait-de-union between these two different
schemes can be found in the modified gravitational potential which induces a cor-
rection to the rotation curve in a similar manner as a dark matter halo does. As a
matter of fact, it is possible to define an effective dark matter halo by imposing
that its rotation curve equals the correction term to the Newtonian curve induced
by f (R) gravity. Mathematically, one has to split the total rotation curve derived
from f (R) gravity as v2

c(r) = v2
c,N(r)+ v2

c,corr(r) where the second term is the cor-
rection. Considering, for simplicity a spherical halo where a thin exponential disk
is embedded, one can write the total rotation curve as v2

c(r) = v2
c,disk(r)+v2

c,DM(r)
with v2

c,disk(r) the Newtonian disk rotation curve and v2
c,DM(r) = GMDM(r)/r the

dark matter one, MDM(r) being its mass distribution. Equating the two expres-
sions, we get:

MDM(η) = Mvir

(
η

ηvir

)
2β−5η

−β
c (1−β )η

β−5
2 I0(η)−Vd(η)

2β−5η
−β
c (1−β )η

β−5
2 I0(ηvir)−Vd(ηvir)

. (144)

with η = r/rd , Σ0 = ϒ?i0, Vd(η) = I0(η/2)K0(η/2)× I1(η/2)K1(η/2) and:8

I0(η ,β ) =
∞∫

0

F0(η ,η ′,β )k3−β
η
′ β−1

2 e−η ′dη
′ (145)

with F0 only depending on the geometry of the system and “vir” indicating
virial quantities. Equation (144) defines the mass profile of an effective spheri-
cally symmetric dark matter halo whose ordinary rotation curve provides the part
of the corrected disk rotation curve due to the addition of the curvature corrective
term to the gravitational potential. It is evident that, from an observational view-
point, there is no way to discriminate between this dark halo model and a f (R)
power-law gravity model. Having assumed spherical symmetry for the mass dis-
tribution, it is straightforward to compute the mass density for the effective dark
halo as ρDM(r) = (1/4πr2)dMDM/dr. The most interesting features of the den-
sity profile are its asymptotic behaviors that may be quantified by the logarithmic
slope αDM = dlnρDM/dlnr which can be numerically computed as function of
η for fixed values of β (or n). As expected, αDM depends explicitly on β , while
(rc,Σ0,rd) enter indirectly through ηvir. The asymptotic values at the center and
at infinity denoted as α0 and α∞ result particularly interesting. It turns out that α0
almost vanishes so that in the innermost regions the density is approximately con-
stant. Indeed, α0 = 0 is the value corresponding to models having an inner core
such as the cored isothermal sphere [179] and the Burkert model [180; 181; 182].
Moreover, it is well known that galactic rotation curves are typically best fitted
by cored dark halo models (see, e.g., [183] and references therein). On the other
hand, the outer asymptotic slope is between −3 and −2, that are values typi-
cal of most dark halo models in literature. In particular, for β = 0.80 one finds

8 Here Il and Kl , with l = 1,2 are the Bessel functions of first and second type.
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(α0,α∞) = (−0.002,−2.41), which are quite similar to the value for the Burkert
model (0,−3). It is worth noticing that the Burkert model has been empirically
proposed to provide a good fit to the LSB and dwarf galaxies rotation curves.
The values of (α0,α∞) we find for our best fit effective dark halo therefore sug-
gest a possible theoretical motivation for the Burkert-like models. Due to the con-
struction, the properties of the effective dark matter halo are closely related to the
disk one. As such, we do expect some correlation between the dark halo and the
disk parameters. To this aim, exploiting the relation between the virial mass and
the disk parameters, one can obtain a relation for the Newtonian virial velocity
Vvir = GMvir/Rvir:

Md ∝
(3/4πδthΩmρcrit)

1−β

4 r
1+β

2
d η

β
c

2β−6(1−β )G
5−β

4

V
5−β

2
vir

I0(Vvir,β )
. (146)

One can numerically check that Eq. 146 may be well approximated as Md ∝ V a
vir

which has the same formal structure as the baryonic Tully–Fisher (BTF) relation
Mb ∝ V a

flat with Mb the total (gas + stars) baryonic mass and Vflat the circular veloc-
ity on the flat part of the observed rotation curve. In order to test whether the BTF
can be explained thanks to the effective dark matter halo we are proposing, we
should look for a relation between Vvir and Vflat. This is not analytically possible
since the estimate of Vflat depends on the peculiarities of the observed rotation
curve such as how far it extends and the uncertainties on the outermost points.
Therefore, for given values of the disk parameters, it is possible to simulate the-
oretical rotation curves for some values of rc and measure Vflat finally choosing
the fiducial value for rc which gives a value of Vflat as similar as possible to the
measured one. Inserting the relation thus found between Vflat and Vvir into Eq. 146
and averaging over different simulations, one finally gets:

logMb = (2.88±0.04) logVflat +(4.14±0.09) (147)

while a direct fit to the observed data gives [184]:

logMb = (2.98±0.29) logVflat +(3.37±0.13). (148)

The slope of the predicted and observed BTF are in good agreement leading fur-
ther support to the f (R) gravity model. The zeropoint is markedly different with
the predicted one being significantly larger than the observed one, but it is worth
stressing, however, that both relations fit the data with similar scatter. A discrep-
ancy in the zeropoint may be due to the approximate treatment of the effective
halo which does not take into account the gas component. Neglecting this term,
one should increase the effective halo mass and hence Vvir which affects the rela-
tion with Vflat leading to a higher than observed zeropoint. Indeed, the larger is
Mg/Md , the more the point deviate from our predicted BTF thus confirming our
hypothesis. Given this caveat, we may therefore conclude with confidence that
f (R) gravity offers a theoretical foundation even for the empirically found BTF
relation.

All these results converge toward the picture that data coming from observa-
tions at galactic, extragalactic and cosmological scales could be seriously framed
in ETGs without considering huge amounts of dark energy and dark matter.
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7 Discussion and conclusions

Extended Theories of Gravity can be considered as the natural extension of Gen-
eral Relativity. Also if they are not the final theory of gravity at fundamental level
(i.e., quantum gravity), they could be a useful approach to address several short-
comings of GR. In fact, also at Solar System scales, where GR has been strongly
confirmed, some conundrums come out as the indications of an apparent, anoma-
lous, long-range acceleration revealed from the data analysis of Pioneer 10/11,
Galileo, and Ulysses spacecrafts. Such results are difficult to be framed in the
standard theory of GR and in its low energy limit [67].

Furthermore, at galactic scales, huge bulks of dark matter are needed to pro-
vide realistic models matching with observations. In this case, retaining GR and
its low energy limit, implies the introduction of an actually unknown ingredient (a
huge amount of missing matter).

We face a similar situation even at larger scales: clusters of galaxies are grav-
itationally stable and bound only if large amounts of dark matter are supposed in
their potential wells.

Finally, an unknown form of dark energy is required to explain the observed
accelerated expansion of cosmic fluid. Summarizing, almost 95% of matter-energy
content of the Universe is unknown while we can experimentally probe only grav-
ity and ordinary (baryonic and radiation) matter.

Considering another point of view, anomalous acceleration (Solar System),
dark matter (galaxies, galaxy clusters and clustered structures in general), dark
energy (cosmology) could be nothing else but the indications that gravity is an
interaction depending on the scale and the assumption of a linear Lagrangian den-
sity in the Ricci scalar R, as the Hilbert–Einstein action, could be too simple for a
comprehensive picture at any scale.

Due to these facts, several motivations suggest to generalize GR by consider-
ing gravitational actions where generic functions of curvature invariants and scalar
fields are present. This viewpoint is physically motivated by several unification
schemes and by field quantization on curved spacetime [8]. Furthermore, it is well
known that revisions of GR can solve shortcomings at early cosmological epochs
(giving rise to suitable inflationary behaviors [13; 15]) and explain the today
observed accelerated behavior [48; 49; 50; 51; 52]. These results can be achieved
in metric and Palatini approaches [185; 186; 187; 188; 189; 190; 191; 192; 193].

In addition, reversing the problem, one can reconstruct the form of the grav-
ity Lagrangian by observational data of cosmological relevance through a “back
scattering” procedure [106].

All these facts suggest that the theory should be more general than the linear
Hilbert–Einstein one implying that extended gravity could be a suitable approach
to solve GR shortcomings without introducing mysterious ingredients as dark
energy and dark matter which seem without explanation at fundamental level.
However, changing gravitational side could be nothing else but a matter of taste
since final probes for dark energy and dark matter could come out from the forth-
coming experiments as LHC.

Furthermore, in recent papers, some authors have confronted this kind of theo-
ries even with the PPN prescriptions considering both metric and Palatini approaches.
The results seem controversial since in some cases [194; 195] it is argued that
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Table 4 A schematic resume of recent experimental constraints on the PPN-parameters

Mercury Perihelion shift |2γ−β −1|< 3×10−3

Lunar laser ranging 4β − γ−3 = −(0.7±1)×10−3

Very long baseline interf. |γ−1| = 4×10−4

Cassini spacecraft γ−1 = (2.1±2.3)×10−5

They

are the perihelion shift of Mercury [200], the Lunar Laser Ranging [202], the upper limit
coming from the Very Long Baseline Interferometry [201] and the results obtained by the
estimate of the Cassini spacecraft delay into the radio waves transmission near the Solar
conjunction [203]

GR is always valid and there is no room for other theories while other studies
[196; 197; 198] find that recent experiments as Cassini and Lunar Laser Rang-
ing allow the possibility that ETGs could be taken into account. In particular, it
is possible to define generalized PPN-parameters and several ETGs could result
compatible with experiments in Solar System [61; 197; 100].

In principle, any analytic ETGs can be compared with the Hilbert–Einstein
Lagrangian provided suitable values of the coefficients. This consideration sug-
gests to take into account, as physical theories, functions of the Ricci scalar which
slightly deviates from GR, i.e., f (R) = f0R(1+ε) with ε a small parameter which
indicates how much the theory deviates from GR and then approximate as

f0|R|(1+ε) ' f0|R|
(

1+ ε ln |R|+ ε2 ln2 |R|
2

+ · · ·
)

. (149)

Actually, the PPN-Eddington parameters β and γ may represent the key param-
eters to discriminate among relativistic theories of gravity. In particular, these
quantities should be significatively tested at Solar System scales by forthcoming
experiments like LATOR [199] while the today available releases are far, in our
opinion, to be conclusive in this sense, as a rapid inspection of Table 4 suggests.
In other words, ETGs cannot be a priori excluded also at Solar System scales.

In this paper, we have outlined what one should intend for ETGs in the metric
and in the Palatini approach. In particular, we have discussed the higher-order and
the
scalar-tensor theories of gravity showing the relations between them and their con-
nection to GR via the conformal transformations.

In the so called Einstein frame, any ETG can be reduced to the Hilbert–
Einstein action plus one or more than one scalar field(s). The physical meaning
of conformal transformations can be particularly devised in the Palatini approach,
as discussed in Sect. 4. After, we have discussed some cosmological and astro-
physical applications of ETGs.

Although the results outlined are referred to the simplest class of ETGs, power
law f (R), they could represent an interesting paradigm. Assuming both metric and
Palatini approach, it is possible to investigate the viability of f (R) cosmological
models. The expansion rate H = ȧ/a may be analytically expressed as a function
of the redshift z, so that it is possible to contrast the model predictions against
the observations. In particular, the SNeIa Hubble diagram, the gas mass fraction
in relaxed galaxy clusters, the lookback time to galaxy clusters, and radio galax-
ies can be used to constrain cosmological parameters by distance and time-based
methods.
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Also if such models are, up to now, not completely satisfactory to match all the
observations, they allow to recover accelerated behavior of Hubble fluid without
any unknown form of dark energy. However, the issue of structure formation has
to be seriously faced in order to understand if such toy models could give rise to a
self-consistent alternative theory to GR.

Furthermore, it is possible to “tune” the stochastic background of GWs and
this occurrence could constitute a further cosmological test capable of confirming
or ruling out ETGs once data from interferometers, like VIRGO, LIGO and LISA,
will be available.

In addition, the modification of the gravitational potential arising as a natural
effect in the framework of ETGs can represent a fundamental tool to interpret the
rotation curves of spiral galaxies. Besides, if one considers the model parameters
settled by the fit over the observational data on rotation curves, it is possible to
construct a phenomenological analogous of dark matter halo whose shape is sim-
ilar to the one of the so called Burkert model. Since Burkert’s model has been
empirically introduced to give account for the dark matter distribution in the case
of LSB and dwarf galaxies, this result could represent an interesting achievement
since it provides a theoretical foundation to such a model.

By investigating the relation between dark halo and the galaxy disk parame-
ters, a relation between Md and Vflat, reproducing the baryonic Tully–Fisher, can
be deduced. In fact, exploiting the relation between the virial mass and the disk
parameters, one obtains a relation for the virial velocity which can be satisfactory
approximated as Md ∝ V a

vir. Even such a result seems intriguing since it provides
a theoretical interpretation for a phenomenological relation.

As a matter of fact, although not definitive, these phenomenological issues can
represent a viable approach for future, more exhaustive investigations of ETGs. In
particular, they support the quest for a unified view of the dark side of the Uni-
verse. In summary, these results seem to motivate a careful search for a funda-
mental theory of gravity capable of explaining the full cosmic dynamics by the
only “ingredients” which we can directly and firmly experience, namely the back-
ground gravity, the baryonic matter, the radiation and also the neutrinos [204].
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