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Abstract

The fundamental constants of Nature play a crucial role in our understanding of the Universe.
They represent the limits of our knowledge of the laws of Physics but at the same time encode new
phenomena yet to be discovered. In recent years, an enormous observational effort has been devoted
to study the possible variation in space and time of some of these fundamental constants. Such a
discovery would have deep consequences in our current models for physical interactions, and in
particular for the theoretical framework behind gravitation. Astrophysics and Cosmology provide
us with a great window to look for any variation, with space and time scales ranging from the Solar
System to the whole observable Universe and its origin. On the other side, theoretical models to
accommodate variation of fundamental constants are also being actively explored.

This thesis is divided into an observational analysis and a theoretical study. First, we present
the most precise observational constraint to date for the cosmological variation of the fine structure
constant using emission lines present in quasar spectra up to redshift z = 1. From the Sloan
Digital Sky Survey Quasar Catalog (Data Release 12), we build a sample of 13 175 quasar spectra
showing the [O iii] doublet (λλ 4960, 5008Å). Then, by measuring the separation between both
lines we obtain the following relative constraint on the time variation of the fine structure constant
∆α/α = (0.9 ± 1.8) × 10−5. We also impose limits on its variation in redshift bins (∆z ≈ 0.06)
over the last 7.9 Gyr at the 10−4 level. Several sources of systematics are analyzed including sky
contamination and line blendings.

In the second part, we explore a theoretical mechanism producing expectations values of scalar
fields to depend on the gravitational potential. To have varying expectation values is one of the
usual ways to accommodate variation of fundamental constants. We develop a formalism that
enables us to compute the complete one-loop quantum corrections to the effective potential and
energy momentum tensor of scalar fields arising in the presence of gravity. This formalism provides
the local part, usually computed with the well-known DeWitt-Schwinger expansion, but it would
also allow to obtain the non-local contributions. Assuming weak and slowly varying gravitational
fields, we obtain a complete set of mode solutions for the Klein-Gordon equation in perturbed
Friedmann-Robertson-Walker geometries at leading order in the adiabatic approximation. Then, we
compute the corresponding expectation values of a self-interacting scalar field as a mode summation
in different quantum states and apply dimensional regularization to obtain the final contributions.
Although there is no effect due to metric perturbation in vacuum states, there are thermal corrections
that could modify the expectation value of scalar fields.
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Resumen

Las constantes fundamentales de la Naturaleza desempeñan un papel crucial en la comprensión del
Universo. Representan los límites de nuestro conocimiento de las leyes de la física, y al mismo
tiempo podrían esconder nuevos fenómenos que están aún por descubrir. En los últimos años, se ha
realizado un enorme esfuerzo observacional dirigido a estudiar la variación espacial y temporal de
algunas de estas constantes fundamentales. Un descubrimiento en este sentido tendría profundas
consecuencias en los modelos actuales que describen las interacciones físicas, y en particular
afectaría al marco teórico en el que se sustenta la gravitación. La Astrofísica y la Cosmología nos
brindan una gran oportunidad para buscar estas variaciones en un rango muy amplio de escalas
espaciales y temporales, abarcando desde el Sistema Solar hasta la totalidad delUniverso observable,
incluyendo su origen. Por otro lado, los modelos teóricos que permiten acomodar la variación de
constantes fundamentales también se están desarrollando de forma activa.

La presente tesis se compone de un análisis observacional y un estudio teórico. Primero, pre-
sentamos la cota observacional más precisa hasta la fecha a la variación cosmológica de la constante
de estructura fina utilizando líneas de emisión en espectros de cuásares con redshift z . 1. A partir
del catálogo de cuásares elaborado por el Sloan Digital Sky Survey (Data Release 12), construimos
una muestra de 13 175 espectros de cuásares que presentan el doblete [O iii] (λλ 4960, 5008 Å)
en emisión. Posteriormente, midiendo la separación entre ambas líneas obtenemos la siguiente
cota relativa a la variación temporal de la constante de estructura fina ∆α/α = (0.9 ± 1.8) × 10−5.
Además imponemos cotas a diferentes desplazamientos al rojo (∆z ≈ 0.06) a lo largo de los últimos
7.9 Ga, alcanzando una precisión relativa de 10−4. Por último, analizamos varias fuentes de errores
sistemáticos, como por ejemplo la contaminación del cielo y la superposición de diferentes líneas.

En la segunda parte, estudiamos un mecanismo teórico en el que es posible obtener valores
esperados de campos escalares que dependen del potencial gravitatorio. Esta es una de las formas
habituales para producir una variación de constantes fundamentales. Desarrollamos un formalismo
que permite calcular las correcciones cuánticas a un loop al potencial efectivo y al tensor energía-
momento de campos escalares que surgen en presencia de gravedad. Este formalismo proporciona
la parte local, que generalmente se calcula a partir de la conocida expansión de DeWitt-Schwinger,
pero también permitiría obtener las contribuciones no locales. Para este cálculo asumimos que los
campos gravitatorios son débiles y que varían lentamente, así obtenemos un conjunto completo de
modos hasta el primer orden adiabático dominante para la ecuación de Klein-Gordon en geometrías
Friedmann-Robertson-Walker perturbadas. Finalmente, calculamos los valores esperados de un
campo escalar con autointeracciones como una suma de modos en diferentes estados cuánticos

3



y aplicamos regularización dimensional para obtener las contribuciones finitas. Aunque no hay
ningún efecto debido a la perturbación métrica en los estados de vacío, hay correcciones térmicas
que podrían modificar el valor esperado de los campos escalares.
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Notation

In this thesis, the following symbols are used:

c speed of light
h (~) Planck constant (reduced Planck constant)
G Newton gravitational constant
α the fine structure constant
αs coupling constant for the strong interactions
me mass of the electron
mp mass of the proton
mn mass of the neutron
µ =

mp

me
proton-to-electron mass ratio

e electron charge (absolute value)
gp proton gyromagnetic factor
R∞ Rydberg constant
H0 Hubble constant
z redshift
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Introduction

The fundamental constants of Nature have been defined as any parameter involved in a given theory
whose numerical value cannot be computed with our present knowledge of Physics (Weinberg,
1983).1 As a consequence of our ignorance about their ultimate origin, it is natural to consider
whether observations could challenge the main property by which they are defined.

After some historical picture, we discuss the role played by constants in the conceptual structure
of Physics. A revision of theCopernican Principlewhen applied to the variation of physical constants
is commented. Next, the distinction between dimensionful and dimensionless constants brings in
the actual definition of physical dimension and considerations about the process of measurement.
Then, a well known classification of fundamental constants is presented in order to come across
with a list of the fundamental constants of Nature. Finally, theoretical models able to accommodate
a possible variation of fundamental constants are briefly reviewed.

Historical background

The beginning of this branch of physics is usually attributed to Dirac (1937, 1938), who argued in
favour of a variation of the fundamental constants of Nature with his Large Number Hypothesis.
Dirac’s idea is based on the unlikely fact that the most fundamental constants in the Universe have a
certain fixed numerical value which cannot be explained with our current understanding of physics,
for instance the value of the fine structure constant α being approximately 1/137. It is more likely
to think that their present values are the result of a dynamical process which had left the value of
the fundamental constants as they are today. Then, they should be considered as characterizing the
state of the Universe.

In particular, Dirac argued that the dimensionless ratio between the electromagnetic force and
the gravitational force is of the same order of magnitude as the age of the Universe measured in
classical atomic units,2 i.e.

e2

G mp me
∼

1/H0

e2/mec3 ∼ 1040 . (1)

1“(...) constants whose value we cannot calculate with precision in terms of more fundamental constants, not just
because the calculation is too complicated (as for the viscosity of water or the mass of the proton) but because we do
not know of anything more fundamental.”

2Or as the size of the observable Universe (c/H0) expressed in terms of the classical radius of the electron (e2/mec2).
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Introduction

For him, this fact suggests that these dimensionless numbers are somehow related. Since the age
of the Universe is not a constant, the electromagnetic/gravitational ratio is expected to vary in time
in the same way. This would imply that the strength of the gravitational interaction is decreasing
in time with respect to the electromagnetic one. This led him to propose a time variation of the
Newton constant G. He also noticed that the number of protons in the Universe is of the same order
of magnitude as the square of the age of the Universe measured in atomic units, therefore suggesting
a continuous creation of particles (Dirac, 1974).3

Teller (1948) refuted Dirac’s hypothesis about a decreasing Newton constant G arguing that
such variation would have led to a steep increase in the Earth’s surface temperature in the past
contradicting paleontological evidence (Barrow, 2005; Uzan, 2003).

Later works by Dicke (1961) and Carter (1974, 1983) explained the numerical coincidences
found by Dirac in terms of the anthropic principle, i.e. the presence of an observer in the Universe
places constraints on the relation between those numbers. Since then, several bounds for fundamental
constants have been derived based on anthropic arguments (Hogan, 2000). For instance, quite
stringent constraints for the strong (< 0.5%) and electromagnetic (< 4%) forces are obtained due to
the fine tuning of certain nuclear reactions in order to produce the observed abundances of atomic
elements, in particular Carbon and Oxygen4 (Rozental and Estrin, 1988; Oberhummer et al., 2000).

One of the first theoreticalmodel to include a variation of fundamental constantswas proposed by
Jordan (1937), and later studied in detail by Fierz (1956), and Brans and Dicke (1961). This model,
known as Brans-Dicke theory, describes a scalar field coupled to the gravitational field (a coupling
with the electromagnetic field was explicitly discarded by Fierz in order to prevent spacetime
dependence of atomic spectra). This model represents a particular example of a general class of
relativistic field theories known as scalar-tensor theories (Faraoni, 2004). These theories provide
alternative ways to explain the accelerated expansion of the Universe besides accommodating
variation of fundamental constants in a natural way. Later on, further theoretical developments,
including higher dimensional and string inspired theories, provided several scenarios where a
variation of fundamental constants is expected on general grounds.

Besides the real physical content in Dirac’s arguments, his early concerns about the fundamental
constants of Nature emphasized the importance of testing the attribute explicitly given by their own
name. A new horizon to look for unexpected physics was uncovered.5

3Note that the first relation established by Dirac (a) together with the Friedmann equation (b) imply the connection
between the number of protons and the age of the Universe if the remaining cosmological fluids (including curvature)
are at most of the same order as the dust contribution

(a) e2

Gmp me
∼

me c3

H0 e2

(b) H2
0 ∼ G ρ0 ∼ G N mp

(c/H0)3

 ⇒ N ∼
(

me c3

H0 e2

)2

∼ 1080 , (2)

where N is the number of protons in the observable Universe (Eddington number). This is an alternative anthropic
explanation of Dirac’s second relation from a cosmological perspective in contrast to the astrophysical one given by
Dicke (1957) based on the lifetime of main-sequence stars.

4The involved nuclear process is the 3α → 12C reaction taking place inside helium-burning red giant stars.
5We refer to Uzan (2003, 2011) for a more detailed historical perspective of the topic.
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Introduction

Constants in Physics

The role played by the fundamental constants of Nature in the logical or conceptual structure of
Physics well deserves some discussion (or may be not, see Tisza (1963)).

Theoretical physics studies the fundamental laws of Nature by building mathematical models
that describe the physical world.6 Following the scientific method, it is through observations and
experiments that we are able to carry out this task. The different existing models to describe
physical phenomena are not completely independent from one another. In fact, it turns out that it
is possible to accommodate many different models under the same set of basic principles. These
basic principles, known as theoretical frameworks, provide a logical and mathematical structure in
order to study the consequences and predictions of a wide variety of models.

For example, let us consider Newton’s equation, the first theoretical framework developed in
Physics. Through the appropriate mathematical tools, it describes the dynamics of any object using
as a starting point straight paths traveled with constant velocity. Any observed deviation from
such behavior is parameterized by including a term in Newton equation, known as a force. Forces
are not an absolute concept, instead they are tied up with the chosen starting description for the
evolution of a system. Within this framework, particular models are only expected to propose a
certain function of some variables of the system, dubbed “force”, in order to explain observations.
In this way, we get to know Newtonian gravitation, electro and magnetostatics; all of them different
models for interactions that follow the same logical structure, Newton’s equation. In the same way,
non-relativistic quantum mechanics relies on the interacting part of the Hamiltonian to play the
same role. In this sense, theoretical frameworks in general could be considered as useful and simple
mathematical parameterizations that encapsulate a wide variety of physical interactions.

Once our mathematical abstractions, namely theoretical frameworks with specific models, are
built and providing accurate predictions, one may wonder about the fingerprint left by Nature in our
construction. This question is an epistemological one and any attempt to give a naive answer is well
outside the scope of this discussion. However, there is a clear distinction among the set of principles
defining a theoretical framework or model. Some of them are completely necessary in order to
obtain correct predictions, but they do not affect the conceptual or logical structure at all. These
principles are the ones which fix the value of the free parameters involved in our model according
to the outcomes of the experiments. In this way, these parameters settle down a scale (which
indeed could be dimensionless) that connects pure numbers with physical phenomena. These free
parameters are the fundamental constants of Nature and they are good candidates to be considered as
evident links between experiments and our models since they are eventually responsible for correct
quantitative predictions.

The fact that this connection is manifested through numerical constants may not be an accidental

6A somehow reverse, but very interesting, point of view is expressed in Tegmark (1998), where a classification
scheme of the physical world is proposed on the basis of being completely mathematical or not. The second possibility
is discarded because of the lost of predictive power (very much related with religious beliefs). In our opinion, even the
principle of causality and the logical self-consistency of the physical world is an experimental fact. To identify Nature
with mathematical models could be a quite restrictive limitation.
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one, but a logical consequence of our philosophical conception of aesthetics. This conception is
partially based on the Occam’s razor principle and leads us to consider a theory to be more powerful
compared to another one if the former needs less input from experiment than the later (once the
model is already established of course). Then, the aim of theoretical physics can be thought of
as the effort to find mathematical models whose defining principles are minimally connected with
the physical world. A good starting point for this minimal connection could be a set of numerical
constants.

Let us consider an analogywith linear algebra. Given a linear operator, it is not straightforward to
describe its action over every element of the vector space. However, if the operator is diagonalizable,
we can find its eigenvalues and a basis of eigenvectors over which the action of the linear operator
is very simple. To know how the linear operator acts over any element, we only have to express the
element in terms of this basis. Following this analogy, our description of the complex phenomena
taking place in Nature could be thought of as a search for a “basis” of mathematical models and
its eigenvalues, i.e. the fundamental constants of Nature, that simplify the task. In this scenario, a
varying fundamental constant means a not appropriate selection of our basis.

This analogy also works for some epistemological concerns arising in Theoretical Physics.
Nature well could be non-diagonalizable or a non-linear operator, in the sense of being impossible
to describe the full physical phenomena according to the same set of principles.7 Only linear
approximations of the operator or “boxes” could be diagonalized. This could be the case for
gravitation and quantum phenomena.

From a practical point of view, theoretical physics has developed two major frameworks to
describe the physical world, Special Relativity8 and Quantum Mechanics. Each of them have an
associated fundamental constant of Nature, namely the speed of light c and Planck constant h,
respectively; which are very deep rooted on their foundations. The speed of light establishes a
scale for causal relationships, while the Planck constant sets the level of intrinsic uncertainty and
the threshold of determinism. Both frameworks have demonstrated by their own to be extremely
useful and precise when applied to the description of experiments and even more powerful when
combined into quantum field theory.

Within these theoretical frameworks, two models have been constructed in order to explain
the electromagnetism, the weak and strong nuclear interactions and gravity which are up-to-know
the only interactions observed in Nature (besides the Yukawa coupling of the Higgs field with
fermions). One of them is General Relativity9 that explains gravitational interactions. The other
one is the Standard Model of Particle Physics10 that describes all the constituents of matter and their
interactions, except gravitation. Both models involve several constants which are measured from
experiments. For the moment, let us delay the discussion of a complete list of current fundamental
constants to a following section.

7Nature could be unintelligible, at least in a tiny amount.
8In this work, Special Relativity is understood as the theoretical framework identifying space and time with a

4-dimensional manifold with lorentzian metric properties.
9Wald (1984).
10Halzen and Martin (1984).
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The Copernican Principle

A variation of a fundamental constant stands for a space or time variation or both. When the laws
of Physics are considered to be spacetime dependent, the Copernican Principle is often mentioned.
This principle states that our place in the Universe is not special, and hence the fundamental laws
of physics are the same in every location of space and every instant of time. This idea fits within
the Newtonian conception11 of space and time as absolute entities which are independent of the
physical phenomena.

From a naive perspective it seems that this principle is not compatible with a variation of the
fundamental constants of Nature but this is subject to interpretation. For instance, let us consider
that the laws of electromagnetism, Maxwell’s equations, are the same in every point of spacetime but
the coupling constant of this interaction with charged particles, the fine structure constant α, varies
according to a well defined law, for example depending on the gravitational potential. In this case,
the law for the variation of α would not violate the Copernican Principle since the variation obeys
a fundamental law that apply to every location of spacetime, and it is explained by a different value
for the gravitational potential in different locations. This example is well suited in the framework of
General Relativity where space and time are not absolute but a unified dynamical entity, spacetime,
that evolves according to its energy and momentum content.

Spacetime properties affect the propagation of particles and it could also affect the interactions
between them by an effective modification of the coupling constants. Since the properties of
spacetime are not homogeneous nor isotropic, a spacetime dependence of the fundamental constants
of Nature is expected on general grounds. This consideration suggests to soften the implications of
the Copernican Principle over the fundamental constants of Nature, and therefore to be aware that
a variation of the later does not necessary come together with a violation of this principle.

On the other hand, the variation of fundamental constants is not to be confused with the running
of constants with energy in quantum field theory12. The actual value of the fundamental constants
are defined in terms of its conversion into reality. Then, in order to measure with accuracy any
constant, the specific circumstances under which the experiment should be carried out have to
be precisely defined. Energy (momentum transfer, indeed) is a fundamental variable in order
to describe any particle physics experiment and it turns out that it modifies the values of some
constants, for instance the coupling strengths, according to quantum field theory predictions. It is
important to note that while the dependence with energy is predicted by the theory, the particular
numerical value at a certain energy is not, and hence it has the properties for being considered a
constant of Nature.

11“Absolute, true, andmathematical time, of itself, and from its own nature, flows equably without relation to anything
external (...). Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable”, Newton et al. (1729).

12Itzykson and Zuber (2012).
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Dimensionless/ful constants

An important distinction among the fundamental constants of Nature is that some of them are
dimensionless while others do have dimensions. Physical dimension is a concept first used by
Joseph Fourier in 1822 in his famous treatise “The Analytical Theory of Heat”13where he highlights
the importance of dimensional homogeneity in physical equations.14 However, physical dimensions
do not have an absolute and independent meaning but they are identified according to our subjective
perception of the external world. In fact, our current theoretical understanding of Physics has
reduced the number of physical dimensions considered in Newtonian Physics, for instance length
and time are considered to have the same dimension in Special Relativity.

Another example of the relative character of a physical dimension is the following. Electric
charge is generally considered to have dimension and there is a unit associated with it (the Coulomb
in the SI system). On the other side, color or hypercharge are not considered to have dimensions
and there are no units associated with them. However, the theory of gauge interactions tells us
that there is no conceptual difference between them, all of them are gauge charges. The reason
underlying this asymmetry on assigning them a dimension or not could be identified with the fact
that color and hypercharge do not manifest as macroscopic quantities, because of color confinement
and massive mediators of the weak interaction; and there has not been a practical need to define a
new dimension.

A further logical consequence of this argument based on the relative meaning of dimension
is that dimensionless quantities are not either an absolute concept. This challenges the more
fundamental status usually attributed to them for being independent of human constructs like units.
However, this statement relies on the identification of some physical magnitudes as having the same
dimension (therefore relying on a particular theoretical framework) and on using the same unit to
measure them, and eventually to compute our dimensionless constant. An example that illustrates
this idea is the dimensionful/less speed of light.

Hopefully, these three examples have helped to convince the reader that physical dimension is
not an absolute concept, neither a necessary one from a purely theoretical point of view.

However, dimensions are important in physics. The reason why it is so is their connection with
measurements. The process of measurement basically consists in a comparison between what we
want to measure and a standard for that measurement, known as unit. A set of standards for different
physical magnitudes/dimensions is known as a system of units. From what the following pragmatic
definition of dimension is derived: two physical magnitudes that can be compared have the same
dimension.15

This definition encompasses the experimental side of a dimension when the comparison could
be done through measurements, but it also has some useful extensions on the theoretical side. For
instance, the coupling constants of the gauge interactions have the same dimension because they can
be compared in a meaningful way within the gauge interaction formalism. However, to compare

13Fourier (2009).
14The formal statement of this idea is known as the Buckingham Pi theorem (Buckingham, 1914).
15It is clear that the problem of defining what is a physical dimension has been moved to the meaning of comparison.
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the fine structure constant α and the Yukawa couplings of the Higgs field with fermions may not
be appropriate since one of them is a gauge coupling while the other is not, then according to the
previous definition they would not have the same dimension.

Back to the topic of measurements; given a system of units, physical quantities can be expressed
as the number of times k that a given standard S of that magnitude is contained in the measurement.
Therefore, the variation of a physical constant may result from the variation of the quantity itself,
manifested by a variation of k, or by a variation of our standard S (Uzan, 2003). Then, in order
to fully understand the theoretical implications of a variation of constants, it is mandatory to know
how a standard or unit is defined.

According to Metrology,16 there are three methods to bring a unit of measurement into reality
which are defined in the International Vocabulary of Metrology (Köhler, 2010):

• a physical realisation of the unit from its definition,

• a highly-reproducible measurement as a reproduction of the definition,

• the use of a material object as the measurement method.

The SI system of units defines seven standards for practical purposes, which are in fact interde-
pendent. Let us focus on only three magnitudes, namely time, length and mass. Their standards,
namely second, meter and kilogram, are defined17 as the duration of 9192631770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the ground state of the
caesium-133 atom, the length travelled by light in vacuum during a time interval of 1/299792458
of a second, and the mass of the international prototype kilogram, respectively. Each of these
definitions falls into one of the previous categories, in fact the second is defined in terms of a
physical realization, the meter in terms of a highly-reproducible measurement and the kilogram by
using a material object.

In this system of units, a spacetime dependence of the speed of light and/or the standard
of time, the second, would modify the standard of length. This implies that, for instance, if a
previously calibrated 1-meter ruler is observed to increase when measured in meters, we cannot
unambiguously conclude that it is the ruler or the speed of light or the frequency of the caesium
transition what is actually varying. In the same way, the definition of the second involves details
of the electromagnetic interaction between the electrons and nuclei, in particular the fine structure
constant α and the masses of electrons and nucleons (in fact, it only involves some combinations of
these parameters). Therefore, any variation of these constants would show up in any time interval
measured in seconds. The definition of the kilogram is much more complex in this sense, since
the mass attributed to the international prototype kilogram is mainly dependent on the mass of the
proton mp and the neutron mn, which at the same time are a result of the collective interactions of
its constituents, the quarks, through the strong interaction.

In general, it is not straightforward to accept that the physics involved in the definition of a
particular system of units is spacetime independent. In fact, it is necessary to assume even much

16Metrology is the science ofmeasurement, it is concernedwith the definition of units of measurements, its realization
in practice and applying chains of traceability.

17www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
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more than that since measurements are not performed using the actual definition of the units but
using calibrated apparatus. These devices possibly work under different physical principles than the
ones appearing in the definition of the standards. Therefore, assuming the constancy of a physical
standard in space and time for a real measurement implies the constancy of several laws of physics,
may be even the one that we want to check.

It should be clear by now that from a single measurement it is not possible to disentangle the
actual variation of a physical magnitude from a possible variation of our standards of measurements,
and hence of the physics involved in their definition and/or in our measuring devices. Therefore,
from an observational point of view it is sensible to consider only the variation of dimensionless
quantities. In this way, it is guaranteed that the actual measured variation, if any, is independent of
the foundations of our system of units and of our measuring instruments, while it only depends on
the physics involved in the observed phenomena and on the assumed theoretical framework.

The idea expressed above does not imply that the ultimate origin of a variation could not be
found in a varying dimensionful constant. It does not even imply that asking for the variation
of dimensionful constants is confusing or operationally not well defined (see Duff, 2015, for an
opposite view). It only highlights the mixture between the physics involved in the definition of our
units and the physics under studywhenmeasuring variation of dimensionful constants. In particular,
to use a specific set of units where c, h and/or G are equal to unity does not imply anything about
those fundamental constants, because units are human constructs and they are arbitrary.18 On the
other side, the fact that the speed of light c enters in the definition of the meter does not mean that
we are not able to measure a variation of c, it only means that we have to use another unit. It is even
not necessary to find a standard of length that is independent of the speed of light, but one having a
different functional dependence on c than the meter has.

Which constants are fundamental?

From the actual definition of the fundamental constants of Nature referred to at the beginning of this
introduction, it is obvious that they are very related with our knowledge of the physical world. As
theoretical progress is made, some constants could be explained in terms of even more fundamental
constants by new and more powerful models, or new constants may appear and old ones disappear
due to a change of paradigm in our theoretical frameworks. Therefore, the list of fundamental
constants is not close neither definitive.

Physics is full of constants, but not all of them seem to have the same status. The question
arises about which criteria could be used to classify them. One of such classification established by
Levy-Leblond (1977) considers the following categories:

• Class A: Constants which are specific of a particular object.

• Class B: Constants which describe a particular phenomenon.

• Class C: Constants which are universal.

18For instance, to use units where G = 1 to measure a variation of Newton constant G does not imply anything about
the variation of G, they just do not seem to be an appropriate set of units to measure a variation of Newton constant.
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These categories can be rephrased as a constant either belonging to a general theoretical framework
(Class C), appearing in the description of a particular physical interaction (Class B), or describing
the characteristic of the different entities involved in the interactions (Class A).

This classification also depends on our current theoretical understanding of physics. For instance,
the character of a constant could change, the speed of light being a good historical example (Uzan,
2003) since it was first considered a Class A constant, describing a property of light, then it
was realized that it was also present in Maxwell’s equations thus describing the electromagnetic
interaction, and nowadays it is considered a Class C constant since it imposes limits on causality.

The possible theoretical implications of the variation of a fundamental constant could be quite
different depending on the category of that constant. The variation of a Class C constant would
entail the modification of a complete theoretical framework and of the models built within that
framework. Instead, any variation of the constants falling under the Class B category would imply a
modification of the details of the interactions, which could be fitted without changing the theoretical
framework. Finally, from the perspective of fundamental physics, a variation of a Class A constant,
those that describe specific objects, can be interpreted as a variation of the interactions of that object
with external entities. This may force us to consider interactions that are unique for some objects,
for instance the Yukawa couplings of the Higgs field with fermions.

Moreover, in relation with microscopic Class A constants, the postulates of quantum mechanics
constrain us to assume any elementary particle to be identical among themselves given the exper-
imental evidence in favor of quantum statistical mechanics. The charges of elementary particles,
understood as the properties defining the specific transformation rules under the action of an el-
ement of the gauge groups, should be considered identical among particles of the same kind and
fixed. For example, it does not make sense to consider the variation of the electron charge e within
the framework of quantum mechanics, but it does to consider the variation of the strength of the
electromagnetic interaction described by the coupling constant of the gauge group α. For the same
reason, it does not make sense to look for a variation of hypercharge or color, but it does for the
corresponding gauge couplings.

Let us mention here that there are several theories implementing a varying electron charge e,
varying speed of light c or varying Planck constant h (see, for instance, Magueijo et al., 2002, and
references therein). In fact these models could be mapped into one another by a suitable redefinition
of units (Barrow and Magueijo, 1998). However, although these models start by imposing an
effective variation of these constants, the underlying physical mechanism is a new scalar field
coupled to different terms of the action/Lagrangian. Referring them to as varying e, c or h, despite
of being usual in the literature, could be misleading (see Ellis and Uzan, 2005; Ellis, 2007, for a
similar remark in the case of varying speed of light theories).

A truly variation of e, c or h would result for instance in a violation of the Pauli Exclusion
Principle, a breakdown of the local Lorentz invariance, and a reformulation of the wave-particle
duality, respectively. These phenomena would entail a full revision of Physics and the mathematical
tools we are used to; starting for instancewith the identification of physical entities as representations
of symmetry groups, spacetime as a manifold or even the use of fields. In this sense, c and h have
been referred to as kinematical variables in an attempt to recognize their profound meaning in our
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current theoretical frameworks. On the other side, from the point of view of current knowledge,
the measured electron charge e has nothing to do with the electron itself but with the strength of
the electromagnetic interactions, namely the fine structure constant α. Varying α theories although
they are also usually implemented with scalar field couplings could not be interpreted as having
such deep consequences in our mathematical formulation of Physics like the violation of the Pauli
Exclusion Principle. Further details about these theories will be given in a following section.

Considering this hierarchical classification of fundamental constant and the constraints imposed
by Special Relativity and Quantum Mechanics, it is natural to look first for a variation of Class
B constants, namely coupling constants of interactions, in order to advance in this field without
changing a complete theoretical framework, a much more formidable task. Furthermore, trying to
find variations on Class C constants without a proper generalized theoretical paradigm could lead
to wrong conclusions since we lack of the appropriate tools to interpret our experiments. Moreover,
there are no contradictions in the interpretation of experiments that suggest a modification of our
theoretical frameworks.

It should be noted that although it is almost accepted that the speed of light and Planck constant
are universal constants and therefore belong to the Class C category, it is still a subject of debate
whether Newton constant should also be considered a Class C constant (Uzan, 2011). There is a
famous representation of different physical models and its range of applicability as a cube, where
each axis stands for h (Quantum Mechanics), 1/c (Special Relativity) and G (Newton gravity)
(Okun, 1991). Then, the coordinate planes represent their combination. This construction suggests
that these three constants have the same logical status in our understanding of Nature. However,
from a purely conceptual perspective, theoretical frameworks (Special Relativity and Quantum
Mechanics) and models (Newtonian and Einstein gravity) are mixed in this cube, therefore the axis
are not on the same footing.

It has also been argued that while the speed of light establishes a relation between space and time,
and Planck constant makes a connection between energy and frequency (or time), Newton constant
establishes a connection between matter and spacetime curvature (Ellis and Uzan, 2005). However,
the electroweak or strong gauge couplings indeed can be interpreted as establishing a connection
between the gauge charge and the curvature of the corresponding internal space. The fact that
spacetime and mass have macroscopic effects, making our senses participant in the discussion,
does not entitled them for a higher logical status. The property of these constants being “concept
synthesizer”, a role that still remains even when they have been set to unity, only expresses that the
these constants are related with wide theoretical frameworks while others only appear in specific
interactions. The presence of G in a list of universal constants of Nature has likely more to do
with the absence of a satisfactory quantum theory of Gravity than with its fundamental status in
our current theoretical frameworks. Although it does provide us with a useful scale, dubbed as
Planck mass, its ultimate role, either hiding a Class C or Class B fundamental constant, is yet to be
discovered.

There is also an interesting discussion about the number of fundamental dimensionful constants
in Physics in Duff et al. (2002), where arguments in favor of three, two and zero fundamental
dimensionful constants are given. In a previous section we have developed the idea that physical
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dimensions are not an absolute concept, they depend on our perception of the external world as well
as on the considered theoretical framework. In our opinion, both ideas are well illustrated in that
discussion for being mainly responsible for the disagreement among the authors.

A list of constants

According to the previous discussion, given the two theoretical frameworks available, Special
Relativity and Quantum Mechanics, its associated constants, the speed of light c and the Planck
constant h, are considered universal constants of Nature (Class C).

Within these two theoretical frameworks, two models, General Relativity and the Standard
Model of Particle Physics, describe the whole physical interactions that we are aware of, except
for some evidence of new physics for which we lack of an accepted theory/model yet, for instance
the fact that the neutrinos are massive or the observed dark matter and dark energy in galactic
and cosmological scales. The Standard Model respects the principles of Quantum Mechanics and
Special Relativity since it is built on top of the foundations of Quantum Field Theory (QFT), a
framework that encompasses Quantum Mechanics and Special Relativity.19 In contrast, General
Relativity is a classical theory which does not take into account Quantum Mechanics.

The free parameters involved in these two models are 20: the Newton constant G, 6 Yukawa
couplings for quarks and other 3 for leptons, 2 parameters for the Higgs potential, 4 parameters for
the Cabibbo-Kobayashi-Maskawa matrix, 3 coupling constants for the gauge groups describing the
electroweak and strong interactions, and a phase for the QCD vacuum. From this list, a new one
could be built with a unique dimensionful parameter, for example the Planck mass mP (=

√
~c/G)

and 19 dimensionless combinations.
Nevertheless, this list is not very useful from the ground of observations. The complexity

in looking for a variation in some of them, for instance in the Yukawa coupling for quarks, is
well beyond the available observational methods. The experimental efforts in order to seek for
a spacetime variation of fundamental constants have been focused in the Newton constant G, the
proton-to-electron mass ratio µ and the electromagnetic α and strong αs gauge couplings. However,
there have also been attempts to constrain variations of the speed of light c, the Planck constant h
and the electron charge e.

Finally, it has been historically considered that microphysics is more fundamental than macro-
physics since the later could be explained by an effective average of micro degrees of freedom.
However, the discovery of the accelerated expansion of the Universe has revealed a new constant of
cosmological origin, the cosmological constant, for which no microscopic explanation is available.
Many experiments, including galaxy lensing and clustering (Abbott et al., 2018) and the Cosmic
Microwave Background (Planck Collaboration et al., 2016), have tested the equation of state of this
new cosmological fluid, yet no departure from the theoretical equation of state corresponding to a
constant has been observed. The cosmological constant still remains as a macroscopic fundamental
constant.

19However, the formulation on curved backgrounds of QFT is not free of ambiguities and it is still a subject of
research. A more detailed discussion about this topic will be given at the beginning of Part II.
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Theoretical models

As discussed in the historical section, the first theories accommodating a variation of fundamental
constants were formulated in terms of a scalar field interaction. This scalar field being coupled to
the spacetime curvature would mimic a variation of the Newton constant in the particular case of
Brans-Dicke theory. Variation of other coupling constants could also be achieved by these means,
i.e. by coupling scalar fields to the kinetic terms of the gauge fields (see for instance Magueijo,
2003). In a similar way, models involving not only scalar, but vector or tensor interactions, could be
thought of. In the same line, modified gravity theories ( f (R), bimetric theories, Horava-Lifschitz
gravity, ...) are capable of producing varying fundamental constants (Clifton et al., 2012).

On the other side, higher-dimensional theories (Kaluza-Klein, Randall-Sundrum, ...) or string
theory (Maeda, 1988) involve fundamental constants in the higher dimensional level, but the effective
4-dimensional constants may encode the dynamics of scalar fields and/or scales, i.e. curvature or
other geometrical properties, related with the higher dimensions. Therefore, the variation of a
4-dimensional constant could be easily accommodated.

Another possibility could be that the dynamics of spacetime itself modified the details of the
interactions giving rise to a variation in the coupling constants. This scenario has the advantage of
not postulating any new interaction, either scalar or of a different nature.

General Relativity, the theory that explains the dynamics of spacetime, has been stayed with
us for a long time, more than a century ago. Furthermore, quantum field theory, the model that
combines the postulates of Quantum Mechanics and Special Relativity is also very well known
and it has collected an amazing success with Quantum Electrodynamics. Then, it may seem
straightforward to postulate a spacetime variation of the coupling constants of the interactions.

However, we lack for the right tool, namely a quantum theory of gravity, to give a complete
theoretical answer to this hypothesis about the spacetime variation of fundamental constant. Never-
theless, we have an effective theory to deal with this topic given the different scales involved in the
gravitational and quantum interactions, known as Quantum Field Theory in curved spacetimes. In
fact, it is well known since the eighties (Birrell and Davies, 1984) that expectation values of fields
in curved backgrounds have a contribution proportional to the curvature. Therefore, an expectation
value like the one of the Higgs field is predicted to vary in space and time according to the curvature
of spacetime, and consequently, the masses of the fermions would be affected by this effect and
would also acquire a spacetime variation. However, the relative size of these contributions is given
by the curvature divided by the square of the mass of the field which, in the case of the Higgs field,
is negligible during the most part of the history of the Universe. We continue this discussion in
Part II.
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Thesis overview

This thesis is presented as a compendium of three publications derived from two branches of
research centered around the variation of the fundamental constants of Nature. The first one was
focused on the observational side of the topic. Thanks to the Institute of Theoretical Physics (IFT)
membership, throughout the funding support of the MultiDark Consolider Project, to the Sloan
Digital Sky Survey (SDSS-III/IV), we benefited from early access to observational data and the
collaboration expertise to obtain a competitive cosmological constraint upto redshift z = 1 for
the relative variation of the fine structure constant. For this result, we used more than 13 000
optical quasar spectra from the SDSS-III/BOSS20 Data Release 12. This scientific project ended up
producing one publication which is presented in this thesis after a brief introduction to some of the
astrophysical methods to constraint the fine structure constant. We also attach a scientific proposal
‘APOGEE-Q’ written for the Ancillary Science Projects within the SDSS-IV/APOGEE-2 Survey
to take infrared spectra from high redshift 2.0 < z < 2.4 quasars using the APOGEE spectrograph.
This proposal was approved by the scientific committee of APOGEE-2, but the program finally did
not pass through the observation phase because of low S/N ratio in the preliminary spectra.

The aim of the second part of the thesis was to consider a straightforward mechanism to obtain
a spacetime variation of fundamental constants without introducing new interactions nor extending
the current paradigm of Particle Physics. Within the effective framework of Quantum Field Theory
(QFT) in curved spacetimes, non-homogeneous effects could arise as quantum corrections to the
dynamics of physical fields due to the spacetime properties. In order to explain this statement, we
discuss the basics of QFT in curved spacetimes before presenting the two publications concerning
this part. In the first one, we computed the one-loop quantum contribution to the effective potential
and energy-momentum tensor of a scalar field in vacuum in perturbed flat Friedmann-Robertson-
Walker and static spacetimes. In the second one, we calculate the effects of a thermal bath on these
contributions and study low and high temperature regimes.

Finally, this thesis ends presenting general conclusions about both research topics.

20The SDSS-III project consists of four different surveys: BOSS, SEGUE-2, APOGUEE and MARVELS. The
SDSS-IV project is divided into the APOGEE-2, eBOSS and MaNGA surveys. See www.sdss.org.
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Thesis overview

Authorship Papers

Paper I: MNRAS 452, 4153-4168 (2015).

“Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12
quasar sample”
Franco D. Albareti, Johan Comparat, Carlos M. Gutiérrez, Francisco Prada, Isabelle Pâris, David
Schlegel,MartínLópez-Corredoira, Donald P. Schneider, ArturoManchado, D.A.García-Hernández,
Patrick Petitjean and Jian Ge.

In this paper, I did the full analysis of the quasar spectra from SDSS-III/BOSS DR12 and SDSS-II
DR7 in order to obtain a cosmological constraint for the fine structure constant. This analysis in-
cluded continuum subtraction, identification of emission lines (in particular, [O iii] and [Ne iii] dou-
blets), precise determination of theirwavelength through different fitting procedures, and simulations
for testing our methodology. Several samples were considered, and a detailed study about systematic
effects, for instance sky contamination and line blendings, was performed. I wrote the full paper.

Paper II: Physical Review D 95, 044030 (2017).

“Gravitational perturbations of the Higgs field”
Franco D. Albareti, Antonio L. Maroto and Francisco Prada.

I was responsible for the detailed calculation of the one-loop quantum contribution to the effective
potential of theHiggs field in perturbed flat FRWspacetimes. For this aim, new computationalmeth-
ods were developed including dimensional regularization techniques for non-standard integrands.
The same techniques also allowed us to compute the quantum corrections to the energy-momentum
tensor of a scalar field. I wrote a major part of this paper.

Paper III: Physical Review D 97, 125017 (2018).

“Finite-temperature corrections to the energy-momentum tensor at one loop in static spacetimes”
Franco D. Albareti, Antonio L. Maroto and Francisco Prada.

In this work, I did the full computations of the thermal one-loop contribution to the effective
potential of a scalar field in static spacetimes. Approximation techniques were used to obtain closed
analytical expressions in the ultrarelativistic and non-relativistic regimes. This analysis was also
applied to the energy momentum tensor of scalar fields in thermal states. I wrote a major part of
this paper.
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Thesis overview

Co-authored Publications

As a member of the SDSS Collaboration, I coauthored the following publications:

• The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from
SDSS-III, SDSS Collaboration (+ Franco D. Albareti) et al., ApJS 219 1, 12 (2015).

• The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data,
Kyle Dawson (+ Franco D. Albareti) et al., AJ 151, 44 (2016).

• The Thirteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data
from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory, SDSS
Collaboration (+ Franco D. Albareti) et al., ApJS 233 2, 25 (2017).

• The Sloan Digital Sky Survey Quasar Catalog: twelfth data release, Isabelle Pâris (+ Franco
D. Albareti) et al., A&A 597, A79 (2017).

• Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies and the Distant
Universe, Michael R. Blanton (+ Franco D. Albareti) et al., AJ 154, 28 (2017).

Besides, I contributed to the following paper

• Density distribution of the cosmological matter field, Anatoly Klypin, Francisco Prada, Juan
Betancort-Rijo and Franco D. Albareti, MNRAS 481, 4588-4601 (2018).
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Part I
Observational methods

Whether fundamental constants do vary in time or space or both, the answer is to be found
in observations. In the following, a brief overview of the different methodologies employed to
constrain fundamental constants in different regimes is given. Then, we focus on the astrophysical
methods to constrain the fine structure constant in order to provide the reader with a preliminary
context before reading Paper I.

Overview of methodologies

Observations looking for a spacetime variation of fundamental constants have been mainly focused
in four fundamental constants:

• proton-to-electron mass ratio µ,

• Newton constant G,

• the fine structure constant α

• the strong gauge coupling αs

The last three fall into the Class B category of fundamental constants from the point of view of
our current models of Nature. The proton-to-electron mass ratio is a relative measurement of Class
B constants (Yukawa couplings of fermions with the Higgs field) mixed with the Higgs vacuum
expectation value and hidden under the complex dynamics of the strong interaction.

The experimental methods to test the variation of fundamental constants are usually divided
into atomic, nuclear and gravitational ones (Uzan, 2003).

Atomic methods mainly involve measurements from atomic clocks, quasar absorption spectra
and the Cosmic Microwave Background (CMB). They are based on comparing wavelengths or
frequencies corresponding to different atomic transitions. In particular, they play an important role
in constraining the variation of the fine structure constant since the electromagnetic force is the
dominant interaction responsible for the atomic structure. However, they can also be used to put
constraints on the proton-to-electron mass ratio and the gyromagnetic factor of the proton.

Nuclear methods are related with alpha and beta decay, Big Bang Nucleosynthesis and the Oklo
reactor. The observables are abundances, lifetimes and cross-sections of different nuclear species.
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When using nuclear methods, one cannot disentangle the effects of the electromagnetic and strong
interactions in a clean manner. Further assumptions are necessary, for instance a model for their
respective contribution to the nucleus mass.

Finally, gravitational methods include from tests of the universality of free fall to stellar and
galactic evolution. They usually compare a gravitational time scalewith other one that is independent
of the gravitational interaction.

The constraints obtained from atomic methods have the advantage of being quite model in-
dependent in comparison with nuclear methods, where it is not possible to isolate the effects of
electromagnetic, strong and weak interactions.

Besides, these methods can be further divided into truly experimental, where a better control of
the systematics is possible, or observational which allow for huge time and/or space scales to look
for a variation. Along this line, it is important to note that the compatibility of these measurements
is not straightforward and it should be kept in mind that every constraint on the variation of a
fundamental constant is obtained as a result of several assumptions, for instance assumptions about
the sample, the theoretical model, the variation of other involved fundamental constants, etc.

In the remaining, we will focus on the astrophysical methods based on the observation of optical
spectra from quasars to set constraints on the fine structure constant α. We refer to excellent reviews
such as Uzan (2003, 2011); García-Berro et al. (2007) for the methodologies and experimental
constraints imposed on the remaining constants and for non-astrophysical constraints on α. On the
other side, for a recent review of spectroscopic measurements of α, µ and gp we refer to Martins
(2017).

Constraining α with quasar optical spectra

Astrophysical observations to test the variation of fundamental constants mostly rely on atomic
methods, which are based on the comparison between wavelengths corresponding to different
transitions. In the nonrelativistic approximation, all the transition energies have the same α-
dependence, which cannot be disentangled from a Doppler shift of the lines due to the peculiar
velocity of the astronomical object or the cosmological expansion. Therefore, one has to consider
the relativistic spectrum. The first to point out this fact was Savedoff (1956). The fine and hyper-
fine structure together with molecular transitions allow to test the variation of α, µ and the proton
gyromagnetic factor gp.

Following Dzuba et al. (1999a), the α-dependence of the transition frequencies could be param-
eterized as

ω = ω0 + q1

[(
α

α0

)2
− 1

]
+ q2

[(
α

α0

)4
− 1

]
, (3)

where ω is the transition frequency in the rest-frame of the observed astrophysical object, ω0 is
the transition frequency measured in the laboratory, α is the value of the fine structure constant
when and where the transition happens, α0 is the value of the fine structure constant involved in the
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laboratory measurements of the frequencies, and q1 and q2 include relativistic corrections, many-
body effects and spin-orbit interactions. The relativistic and many-body corrections are computed
using a relativistic Hartree-Fock (or Dirac-Hartree-Fock) method and many-body perturbation
theory (Dzuba et al., 1996), while the spin-orbit effects are derived from experimental data. The
coefficient q1 dominates since it is usually an order of magnitude larger than the coefficient q2.
Several methods have been developed in order to take advantage of the different values of q1 and
q2 for a number of atomic elements (see Dzuba et al., 1999b, and Berengut et al., 2011, for a list of
these coefficients).

Let us describe the principal methods used in the literature.

Alkali doublet method

This was the first method used to constrain the time variation of the fine structure constant. It is
based on the fact that the fine structure doublet splitting obeys

∆ν ∝
α2 Z4 R∞

2 n3 , (4)

where Z is the atomic number, R∞ is the Rydberg constant and n is the principal quantum number.
From the last expression it can be deduced that

∆α

α
=

cr

2

[
(λ2 − λ1)/(λ1 + λ2)|z

(λ2 − λ1)/(λ1 + λ2)|0
− 1

]
, (5)

where cr ≈ 1 takes into account relativistic corrections.21
This method is mainly used on quasar absorption spectra and it has been applied to several

species including C iv, Mg ii, Al iii, Si ii and Si iv (Potekhin and Varshalovich, 1994; Murphy et al.,
2001b; Martínez Fiorenzano et al., 2003).

One of the most stringent constraints using this method was obtained by Chand et al. (2005).
They apply the alkali doublet method on 15 Si iv absorption systems observed with the UVES
spectrograph at the ESO-VLT to obtain

∆α

α
= (0.15 ± 0.43) × 10−5 (7)

over a redshift range of 1.59 ≤ z ≤ 2.92.

21In fact, cr can be related with the previously defined q1 and q2 coefficients, i.e.

cr =
δq1 + δq2

δq1 + 2 δq2
, (6)

where δq stands for the difference between the q coefficients for the doublet transitions (Uzan, 2011).
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Many multiplet method

This is a generalization of the alkali doublet method where as the name suggests, several multiplets
are used, not only doublets. It was proposed by Dzuba et al. (1999c).

Depending on the value of the q1 and q2 coefficients for different transitions, it happens to be
that some atoms are fairly insensitive to a variation of the fine structure constant, while others are
more suitable to detect a variation of α. This allows to use some species as “anchors” in order to
compare with other transitions. In this way an order of magnitude increase in accuracy is achieved
(∼ 10−6). This idea was carried out by Webb et al. (1999) where they compare, in a sample of
quasars, the shifts in several Fe ii multiplets, which are very sensitive to a variation in α, with a
Mg ii doublet which acts as anchor. There are two implicit assumptions made when applying this
method. The first one is ionization and chemical homogeneity among the several ions employed.
The second one concerns the isotopic abundance of Mg ii being close to the terrestrial value.

This method attracted much attention because of the claim of a variation of the fine structure
constant made by Webb et al. (1999). Since then, several analysis were performed using more
observations from Keck/HIRES (Murphy et al., 2001a; Webb et al., 2001; Murphy et al., 2003) and
VLT/UVES (Chand et al., 2004; Srianand et al., 2004) where a non-zero and a null variation were
found respectively. It was suggested that a possible explanation could be a spatially varying fine
structure constant due to the fact that Keck and VLT data do not correspond to the same hemisphere.
Indeed, a dipole model was fitted at the 4σ confidence level to the spatial variation of α (Webb
et al., 2011; King et al., 2012). Recently, systematic errors have been found on the Keck, VLT and
Subaru telescopes. In particular, they show long-range distortions in the wavelength range of quasar
spectra (Evans et al., 2014; Whitmore and Murphy, 2015). When these distortions are corrected,
no evidence for a variation of α is found (Evans et al., 2014; Murphy et al., 2016; Kotuš et al.,
2017). Nevertheless, this methodology is still active and providing new constraints using spectra
from quasars in different locations of the sky and taken with different telescopes (e.g. Murphy and
Cooksey 2017).

Single ion differential measurement

This method is a modification of the many multiplet method and it was proposed by Levshakov et al.
(2005). It only considers transitions from a single ion in high-resolution spectra taken in individual
exposures. In this way, it avoids the assumption of chemical and ionization homogeneity and the
non-zero offsets between different exposures. In particular, the selected ion is Fe ii which provides
transitions with positive and negative q-coefficients therefore enhancing the effect produced by a
variation of the fine structure constant. In fact, the level of precision achieved is similar to the
many-multiplet method (∼ 10−6).

This method was applied to quasar spectra taken with the VLT/UVES spectrograph (Levshakov
et al., 2006, 2007) and also spectra from theHARPS instrument (Chand et al., 2006). The constraints
are compatible with no variation of α.
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Emission spectra

All of the methods described above use absorption lines instead of emission ones. The main reason
is that emission lines in quasars are usually broader than absorption ones and show more complex
structure. They are originated in different regions of quasars, therefore they show superimposed
profiles, typically a narrow and a broader one. As a consequence, the individual error of each
measurement is larger than in absorption spectra, but it is possible to achieve comparable precision
using larger samples.

Emission lines were used very early by Bahcall and Salpeter (1965) and Bahcall et al. (1967)
to put constraints on the variation of the fine structure constant. In particular, the [O iii] doublet
(λλ 4960, 5008Å) was first proposed by Bahcall and Schmidt (1967) as a good candidate in order
to look for a variation in α with emission lines. At that time they were able to constrain a possible
variation of the fine structure constant at the level of 10−3. More recently, Bahcall et al. (2004)
analyzed the [O iii] doublet from a sample of 165 quasars from the Sloan Digital Sky Survey (SDSS,
York et al. 2000) achieving a relative precision of 10−4. Later on, the method was applied by Grupe
et al. (2005) to several optical emission lines ([Ne iii], [Ne iv], [O iii], [O i], [S ii]) all at once in order
to increase the accuracy. Following works (Rahmani et al., 2014; Gutiérrez and López-Corredoira,
2010) took advantage of the increase in the number of quasar spectra observed by the SDSS getting
an order of magnitude improvement in the errors (10−5).

Following this line of research, Paper I presents the most competitive constraint to date on the
variation of the fine structure constant using the [O iii] doublet detected on emission in more than
13 000 quasars spectra from the SDSS between redshift 0.02 and 0.8.
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Paper I

“Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12
quasar sample”
Monthly Notices of the Royal Astronomical Society, Volume 452, Issue 4, 4153-4168.
Authors: Franco D. Albareti, Johan Comparat, Carlos M. Gutiérrez, Francisco Prada, Isabelle
Pâris, David Schlegel, Martín López-Corredoira, Donald P. Schneider, Arturo Manchado, D. A.
García-Hernández, Patrick Petitjean and Jian Ge.

Motivation

Since the claim in 1999 of a variation of the fine structure constant at redshift z ∼ 1.3 measured
through quasar absorption spectra, the field has attracted much attention from the scientific com-
munity. Different observational procedures have been designed in order to confirm or discard that
claim. Among the astrophysical methods, a major part of them relies on absorption spectra instead
of emission ones. Emission lines present a more complex structure which translates into greater
uncertainty in the measurements. However, large statistical samples help us to reduce those errors.
In the light of the huge amount of quasar spectra observed by SDSS-II and especially by SDSS-III,
in this paper we analyse the largest sample of quasars considered to date up to redshift z = 1, which
show [O iii] emission lines, to set a constraint on the variation of the fine structure constant at the
∼ 10−5 level.
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ABSTRACT
From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic
Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the
fine-structure constant over cosmological time-scales. We analyse the largest quasar sample
considered so far in the literature, which contains 13 175 spectra (10 363 from SDSS-III/BOSS
DR12 + 2812 from SDSS-II DR7) with redshift z < 1. We apply the emission-line method on
the [O III] doublet (λλ 4960, 5008 Å) and obtain �α/α = (0.9 ± 1.8) × 10−5 for the relative
variation of the fine-structure constant. We also investigate the possible sources of systematics:
misidentification of the lines, sky OH lines, H β and broad line contamination, Gaussian and
Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order
for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty
of the measurement is dominated by the sky subtraction. The results presented in this work,
being systematics limited, have sufficient statistics to constrain robustly the variation of the
fine-structure constant in redshift bins (�z ≈ 0.06) over the last 7.9 Gyr. In addition, we study
the [Ne III] doublet (λλ 3869, 3968 Å) present in 462 quasar spectra and discuss the systematic
effects on using these emission lines to constrain the fine-structure constant variation. Better
constraints on �α/α (< 10−6) using the emission-line method would be possible with high-
resolution spectroscopy and large galaxy/qso surveys.

Key words: line: profiles – surveys – quasars: emission lines – cosmology: observations –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Since Dirac’s philosophical argument (Dirac 1937) against the fixed
value of fundamental constants of Nature, several experiments have

�‘la Caixa’-Severo Ochoa Scholar.
†E-mail: franco.albareti@uam.es

been performed to constrain possible variations on dimensionless
constants of physical theories. Fundamental constants of physics
could be thought of as parameters which enter in our description of
Nature but they cannot be predicted with our current theories and
should be measured. Dirac’s idea is based on the unlikely fact that
the most fundamental constants of the Universe have a certain fixed
value (at a given energy) with no apparent relation with the real
world. It is more likely that their present values are the result of

C© 2015 The Authors
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Table 1. Summary of the results obtained by recent works based on the [O III] emission-line method for the possible variation of the fine-structure constant.

Reference Quasar spectra SDSS release zmin zmax Time ago (Gyr)(a) �α/α (×10−5)

Bahcall, Steinhardt & Schlegel (2004) 42 EDR (Stoughton et al. 2002) 0.16 0.80 7.0 7 ± 14
Gutiérrez & López-Corredoira (2010) 1568 DR6 (Adelman-McCarthy et al. 2008) 0.00 0.80 7.0 2.4 ± 2.5
Rahmani, Maheshwari & Srianand (2014) 2347 DR7 (Abazajian et al. 2009) 0.02 0.74 6.7 − 2.1 ± 1.6
This work (2015) 13 175 DR12 (Alam et al. 2015) 0.04 1.00 7.9 0.9 ± 1.8(b)

Notes. (a) For a �CDM cosmology with H0 = 67.8 km s−1 Mpc−1, �m = 0.31 and �� = 0.69 from Planck+WMAP-9+BAO (Planck Collaboration et al.
2014).
(b) Note: Since we have a larger sample than Gutiérrez & López-Corredoira (2010), we expect a factor ≈ 2.5 of improvement in the error just from purely
statistical reasons. In Figs 9 and 10, it is shown that the error is dominated by the sky subtraction algorithm, which suggests that the performed analysis have
reached the maximum precision with the available data.

a dynamical process, which had yielded the fundamental constants
as they are measured today. Therefore, they should be considered
as characterizing the state of the Universe (Uzan 2003). There are
many current theoretical frameworks which allow for such variation
of the fundamental constants, for instance, string theory (Maeda
1988), modified gravity and theories with extra dimensions (e.g.
Clifton et al. 2012). Moreover, the experimental bounds on their
variation have become a stringent test for those theoretical models
(Thompson 2012; Leal, Martins & Ventura 2014). The most studied
fundamental constants are the fine-structure constant α, the Newton
gravitational constant G and the electron-to-proton mass ratio μ

(Uzan 2003, 2011; Garcı́a-Berro, Isern & Kubyshin 2007).
The fine-structure constant governs the electromagnetic coupling

between photons and charged particles α = e2/(�c). The current
constraint on its relative variation �α/α, over geological time-
scales, is |�α/α| < 7 × 10−8 up to z ≈ 0.15 (2 Gyr ago); obtained
from the Oklo phenomenon (e.g. Petrov et al. 2006). It has also been
reported |�α/α| < 3 × 10−7 up to z ≈ 0.45 (4–5 Gyr ago) from
meteorites (Olive et al. 2002); which also excludes possible varia-
tions on the scales of the Solar system. On the other hand, there are
also constraints, |�α/α| � 10−2, based on the cosmic microwave
background (CMB; Landau & Scóccola 2010; Planck Collabora-
tion et al. 2014) at z ≈ 1100 and from big bang nucleosynthesis,
the latter being model-dependent. By measuring fine-structure mul-
tiplets at different redshift in the absorption or emission spectra of
galaxies and quasars, located at different directions in the sky, one
can measure an estimate of the variation of α with time or space
over cosmological scales.

The first measurements on the variation of α from astronomical
observations reached an accuracy of �α/α ≈ 10−2–10−3 (Savedoff
1956; Bahcall & Salpeter 1965; Bahcall & Schmidt 1967; Bah-
call, Sargent & Schmidt 1967). Since then, the methodology and
understanding of systematics has dramatically improved. Current
measurements of absorption multiplets along the line of sight of
three quasars around redshift 1.5, observed with spectral resolving
power R ≈ 60 000 at UVES/ESO-VLT, reached the ≈ 5 × 10−6 level
(Evans et al. 2014). Using emission lines, an accuracy of ≈ 2 × 10−5

was achieved analysing 1500–2300 quasar spectra at z ≈ 0.6
(Gutiérrez & López-Corredoira 2010; Rahmani et al. 2014), taken
with the Sloan Digital Sky Survey (SDSS) R ≈ 2000 spectrograph.

The measurements on absorption features on a quasar spectrum
are currently limited by the precision in the absolute wavelength
calibration of the spectra, i.e. 50–200 m s−1 using spectra with
R ≈ 60 000 (Molaro et al. 2013; Evans et al. 2014; Whitmore &
Murphy 2015). Furthermore, the so-called many-multiplet (MM)
method used in Evans et al. (2014), although more precise, remains
controversial as several assumptions are made, the most important
one being ionization and chemical homogeneity. These assumptions
may induce systematic biases on the value of α.

In this article, we use the method based on the [O III] emission
lines, first proposed by Bahcall & Salpeter (1965), which is less
affected by systematics. In particular, there is no need for assuming
ionization and chemical homogeneity, since the studied lines have
the same profile (the transitions originate at the same upper energy
level). Furthermore, the emission-line method suffers of much less
spectral distortion, since the measurements of �α/α are done on
a spectral window ∼100 Å as compared to ∼1000 Å when the
MM method is used. With a large ensemble of quasars and/or using
high-resolution spectroscopy, the uncertainty can be reduced signif-
icantly, and will compete with the absorption method when using
high-resolution spectroscopy.

The beginning of the SDSS survey opened a new era of precision,
allowing us to use big samples of quasars; thus, reducing the statis-
tical uncertainty of the measurement of �α/α (see Table 1). Here,
we extend these works by using the SDSS-III/BOSS Data Relase
12 (SDSS-DR12; Alam et al. 2015), which covers the full Baryonic
Oscillation Spectroscopic Survey (BOSS) survey footprint with an
area coverage of 10 000 deg2. In contrast to these previous investiga-
tions, we use spectra obtained with the current BOSS spectrograph
(Smee et al. 2013) instead of the previous SDSS-I/II instrument,
making our BOSS sample totally independent from previous works.
Moreover, the spectral range of the BOSS spectrograph allows an
extension of the redshift interval for the [O III] doublet from z = 0.8
to z = 1. The number of quasar spectra is increased by a factor of
5 with respect to SDSS-DR7. All these spectra have been visually
inspected and classified as quasars by the BOSS collaboration, and
their products are provided in the SDSS-III/BOSS Data Release
12 Quasar catalogue (DR12Q; see Pâris et al., in preparation). For
the final constraint on �α/α, we combine in this work the BOSS
sample with the previously studied SDSS-II DR7 quasar sample.

There are several emission doublets, in addition to [O III]
(λλ 4960, 5008 Å), that can be used to measure �α/α as noted
by Bahcall et al. (2004), and first used by Grupe, Pradhan & Frank
(2005). Gutiérrez & López-Corredoira (2010) analysed different
doublets and found that the [Ne III] (λλ 3869, 3968 Å) and [Si II]
(λλ 6719, 6733 Å) doublets appear in quasar spectra with sufficient
frequency to have a meaningful sample. Results for [Si II] are con-
sistent with no variation of the fine-structure constant, although the
uncertainty is an order of magnitude bigger than for [O III] , and this
doublet can only be used at low redshift <0.4 for optical spectra.
However, they obtained a positive variation of the fine-structure
constant, �α/α = (34 ± 1) × 10−4, when the [Ne III] lines are used.
No explanation was found for this positive variation. In this work,
we also analyse the [Ne III] lines to check whether the same effect
is present in our BOSS quasar sample.

There are investigations which use Si IV absorption lines
(λλ 1394, 1403 Å) to obtain a precision of 4 × 10−6 (Chand et al.
2005). This method also avoids the assumption of ionization and
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Figure 1. Left-hand panel: sky distribution of the full SDSS-III/BOSS DR12Q quasars (297 301) in J2000 equatorial coordinates. Right-hand panel: number
of quasars with [O III] emission lines in our fiducial sample (10 363 quasars) in �z = 0.05 bins. S/N[O III] 5008 > 10 (10 363 quasars), black solid line;
S/N[O III] 5008 > 25 (4015 quasars), blue dashed line; and S/N[O III] 5008 > 50 (1498 quasars), red dotted line.

chemical homogeneity. However, since the separation between both
lines is only ≈9 Å, the wavelength precision needed in the labora-
tory for the separation between both lines is five times higher than
using [O III] lines. Nevertheless, these constraints apply to the red-
shift interval 1.59 < z < 2.92, which does not overlap with our
range, thus they are complementary to the ones reported in this
research.

Finally, in the light of the upcoming large galaxy surveys, like
eBOSS and DESI, that will provide millions of high-redshift galaxy
spectra, we also discuss using galaxies instead of quasars to set
constraints on the fine-structure constant.

The paper is organized as follows. First, in Section 2, we de-
scribe the data set used for our analysis. Next, in Section 3, the
methodology is presented, the emission-line method is explained,
and the code and simulations to analyse the spectra are described.
In Section 4, we study several samples to check for systematics.
Then, our results are presented in Section 5. Finally, we provide in
Section 6 a summary of the main conclusions achieved with this
research project.

2 SA M PLE D ESCRIPTION

All the spectra used in this investigation were downloaded from
the SDSS Database. This survey (York et al. 2000), which began
taking observations in 1998, consists of a massive collection of op-
tical images and spectra from astronomical objects including stars,
galaxies and quasars. For this purpose, there is a dedicated 2.5-m
wide-angle optical telescope at Apache Point Observatory in New
Mexico (USA; for more details, see Gunn et al. 2006). The third
phase of this project (SDSS-III; Eisenstein et al. 2011) includes
BOSS (Dawson et al. 2013) among its four main surveys. The
data analysed in this research were provided by BOSS, and it is
used for measuring �α/α for the first time. The SDSS-III/BOSS
pipeline (Bolton et al. 2012) classifies the objects as quasars with
a χ2 minimization procedure to fit the observed spectrum to multi-
ple galaxy and quasar spectrum templates for all allowed redshifts.
Then, a visually-inspected quasar catalogue is built from these ob-
jects. Our fiducial sample is obtained from the DR12Q catalogue
version (Pâris et al., in preparation).

The wavelength coverage of the SDSS-III/BOSS spectrograph
is 3600–10 400 Å and that of the SDSS-II spectrograph is

3800–9200 Å. The BOSS sample is homogeneous since all the
spectra have been obtained with the same instrument, and it is in-
dependent from previous investigations. The wider coverage of the
new spectra allows consideration of higher redshifts (up to z = 1 for
[O III] doublet) than in the previous SDSS-II analysis based on the
same method (see Table 1). The BOSS spectrograph has two chan-
nels (blue and red) whose wavelength coverage is 3600–6350 Å
and 5650–10 400 Å, respectively. The resolving power ranges from
1560 at 3700 Å to 2270 at 6000 Å (blue channel) and from 1850 at
6000 Å to 2650 at 9000 Å (red channel). For our sample, the [O III]
lines fall in the red channel for >96 per cent of the quasars. The
number of pixels of each spectrum is about 4600 for the BOSS
spectra and 3800 for the SDSS-I/II spectra. The pixel spacing is
uniform in log-wavelengths (� log λ = 10−4 dex). More complete
information about the SDSS-I/II and BOSS spectrographs can be
found in Smee et al. (2013).

2.1 Data selection

The SDSS-III/BOSS DR12Q catalogue contains 297 301 objects.
Fig. 1 (left-hand panel) shows the quasar distribution in the sky. We
summarize below the main selection criteria in order to define our
fiducial sample from this catalogue.

(i) Redshift <1. This limitation is imposed by the wavelength
range of the BOSS optical spectrograph and the position of the
[O III] lines. This criterion decreases the sample down to 45 802
quasars.

(ii) S/N[O III] 5008 > 10. We impose a mild constraint on the

signal-to-noise ratio (S/N) of the stronger [O III] line (5008 Å) in
order to preserve a large number of spectra. Constraints on the ex-
pected width and amplitudes of the lines help in avoiding misidenti-
fications of the [O III] doublet (see Section 4). This selection reduces
the sample from 45 802 to 13 023 objects.

(iii) Non-converging fits. Since we analyse spectra with low S/N,
there are some cases where the Gaussian fit to the lines does not
converge. 1244 spectra are discarded, leaving us with 11 779 spectra.

(iv) Sky emission lines. Strong atmospheric lines, for instance the
O I 5578 Å line, are poorly or not completely removed by the SDSS
sky subtraction algorithm. This may lead to a wrong identification
of the [O III] lines and to include low S/N[O III] spectra (Gutiérrez
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Figure 2. Left-hand panel: data points (1416) for which |ε| = |δλz/(1 + z) − δλ0|, namely the absolute value of the difference between the measured line
separation at redshift z in rest frame and the local one, is bigger than 1 Å plotted as a function of redshift (and the wavelength observed for [O III] 4960). We
compare with a typical sky spectrum: the [O III] positions for these spectra correlate with the sky emission lines. Hence, these high values of |ε| are due to bad
sky subtractions and/or low S/N. These spectra are removed. Right-hand panel: a spectrum removed from the sample because of the sky emission-line criteria.
For this quasar, we get ε = 1.2 ± 0.6 Å. The weak [O III] line is affected by the subtraction of the 7995 Å OH sky emission line, indicated by the vertical red
dashed line.

& López-Corredoira 2010). Both effects will produce outliers. We
use the SDSS sky mask for Lyα forest studies which contains 872
lines (see Delubac et al. 2015 for more details) to remove spectra
whose [O III] lines lie within a particular distance from the strongest
sky lines. Even though we vary the distance [O III] – sky lines, use
different set of sky lines (according to their intensity), or evaluate
other conditions (S/N, fit errors, etc.) to remove affected spectra; we
usually eliminate 3–5 good spectra for each bad spectra eliminated.
Thus, these tests decrease significantly the number of quasars while
not being very effective: typically 50 per cent of the outliers are not
removed. Thus, we decided to eliminate all spectra for which the
separation between both lines differ by more than 1 Å from the
local value (see the last paragraph in Section 3.3). Fig. 2 (left-hand
panel) shows that the distribution of these outliers is correlated with
a typical sky spectrum. From a visual inspection, we observed that
these spectra have low S/N, and they are in fact contaminated
by sky emission line subtraction (see right-hand panel of Fig. 2).
This effect causes us to discard 1416 spectra (12 per cent of the
previous 11 779 quasars). Finally, we have 10 363 quasar spectra
(our ‘fiducial sample’).

The presence of broad H β emission line (4861 Å) near the weak
[O III] line 4960 Å could produce a blueshift in the determination
of the [O III] line position. This could mimic a positive variation on
the fine-structure constant. Therefore, a constraint on the strength
and/or width of the H β emission line has been imposed on previous
investigations (Bahcall et al. 2004; Gutiérrez & López-Corredoira
2010; Rahmani et al. 2014). However, we do not restrict any charac-
teristic of the H β line in our fiducial sample. We obtain a weighted
mean for �α/α using as weights the uncertainty in �α/α computed
with the standard errors for the position of the lines derived from
the Gaussian fits. The contamination of H β is automatically taken
into account. For instance, a broad H β line near the [O III] 4960
line means a bad Gaussian fit. Thus, we obtain larger errors in the
position of the line centroids and, consequently, in �α/α. In Sec-
tion 4, we analyse several samples where the S/NH β is constrained

to check that the H β contamination has little weight on the final
constraint value.

An electronic table is published along with the paper which con-
tains all the information of each spectrum from our fiducial sample
of 10 363 quasars (see Appendix A).

The distribution of the selected quasars in redshift according to
their selected S/N[O III] 5008 is plotted in Fig. 1 (right-hand panel).
Fig. 3 (left-hand panel) displays a composite image built with all the
spectra from our fiducial sample sorted by redshift. The right-hand
panel shows the [O III] doublet in rest frame.

3 M E T H O D O L O G Y

3.1 Measurement method

To first order, the difference between the energy levels of an atom
is proportional to α2. Transitions between energy levels of the same
atom at a given ionization level, with the same principal quantum
number and different total angular momentum J, have an energy
difference proportional to α4. These groups of transitions are called
fine-structure multiplets. Savedoff (1956) first realized that the fine
structure of these energy levels could be used to break the degener-
acy between the redshift effect and a possible variation of α.

The value of the fine-structure constant can be measured through
the separation between absorption or emission multiplets in the
spectra of distant quasars (Uzan 2003) as

�α

α
(z) ≡ 1

2

{
[(λ2 − λ1) / (λ2 + λ1)]z
[(λ2 − λ1) / (λ2 + λ1)]0

− 1

}
, (1)

where λ1, 2 (λ2 > λ1) are the wavelengths of the transitions and
subscript 0 and z stand for their value at redshift zero (theoreti-
cal/laboratory values) and at redshift z, respectively. For illustrative
purposes, expression (1) can be approximated by

�α

α
≈ ε

2 δλ0
, (2)

MNRAS 452, 4153–4168 (2015)



Fine-structure constant with BOSS 4157

Figure 3. Composite image with our fiducial sample of 10 363 BOSS quasar spectra sorted by redshift. Left-hand panel: the whole range of wavelengths is
shown. From right to left, the strongest emission lines are H α 6565 Å; [O III] λλ 4960, 5008 Å; H β 4861 Å; H γ 4341 Å; [Ne III] λλ 3869, 3968 Å; [O II]
3730 Å; [Ne V] 3426 Å; Mg II 2796 Å and C III] 1906 Å. The narrow straight line at 5579 Å is the strong [O I] atmospheric line. Right-hand panel: wavelength
interval centred at the [O III] doublet in rest frame.

where δλ0 = [λ2 − λ1]0 is the local z = 0 separation between both
wavelengths, and ε = δλz/(1 + z) − δλ0 is the difference between
the measured line separation at redshift z in rest frame and the local
one. Thus, in principle, the larger the difference between the pair of
lines, the better the precision for measuring �α/α.

Concerning emission lines, the most suitable pair of lines is the
[O III] doublet, which is often present in quasar spectra with rela-
tively high-S/N. The vacuum values for the [O III] doublet wave-
lengths are

λ
[O III]
1 = 4960.295 Å λ

[O III]
2 = 5008.240 Å (3)

δλ
[O III]
0 = 47.945 Å , (4)

which are published in the NIST Atomic Spectra Database.1 These
transitions are forbidden (they correspond to magnetic dipole and
electric quadrupole transitions), and they are not observed in the
laboratory. The wavelength experimental values are obtained indi-
rectly by first computing the energy levels from observed wave-
lengths using a theta-pinch discharge (Pettersson 1982). The wave-
length separation has directly been measured in the infrared from
H II regions using a balloon-borne telescope and Michelson in-
terferometer (Moorwood et al. 1980). Both measurements of the
wavelength separation, indirectly with the theta-pinch discharge and
directly with the Michelson interferometer, are in good agreement,
being the Michelson interferometer more accurate with an error
<5 × 10−4 Å.

From equation (2), a determination of ε with a precision of 1 Å
allows for an uncertainty of 10−2 in �α/α when using the [O III]
doublet. The precision from the NIST atomic data allows for a
determination of �α/α up to 10−5, which is a bit less than the

1 http://physics.nist.gov/PhysRefData/ASD/lines_form.html

uncertainty in our result. One could perform a blind analysis in
order to search for a possible variation on α, where the absolute
wavelength values are not required, if one had a large enough sam-
ple distributed in redshift. However, the precision on the absolute
wavelengths limits the usefulness of high-resolution spectroscopy
until better measurements of the [O III] lines (or just their separation)
are available.

3.2 Implementation

The code developed for the analysis of the quasar spectra follows the
one described in Gutiérrez & López-Corredoira (2010), although
there are some modifications and more information has been ex-
tracted from the analysis. We describe the main characteristics of
our code below.

3.2.1 Wavelength sampling

We consider only the experimental data together with their errors
as processed by the SDSS pipeline to obtain the constraint on the
possible variation of α. We do not resample the wavelength range
by using an interpolation method. Since the pixel spacing is uniform
in log-wavelengths, a given range of wavelengths in rest frame (λ−,
λ+) has the same number of pixels N, i.e.

N ∝
∫ λ+ (1+z)

λ− (1+z)
d (log λ) = log

λ+ (1 + z)

λ− (1 + z)
= log

λ+
λ−

, (5)

and is independent of the redshift of the object. All the wavelength
intervals with the same width in rest frame will have the same
number of experimental points.
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Figure 4. Seventh-order polynomial fits (red) to the continuum spectrum with their residuals for three typical quasar spectra at different redshift. The gaps in
the residuals are the masked regions corresponding to (from right to left) H α, the [O III] doublet, H β, H γ , H δ and Mg II (black dashed lines).

3.2.2 Fit of the continuum spectrum

First, we fit a seventh-order polynomial to subtract the continuum
spectrum while masking regions where strong and wide emission
lines are present (H α, H β, H γ , H δ, Mg II and the [O III] doublet).
Our method differs from Gutiérrez & López-Corredoira (2010) in
that they use a cubic local spline to fit the continuum masking strong
emission lines. The chosen order of the polynomial provides enough
degrees of freedom to reproduce different continuum features. In
Section 3, we test how our measurement for �α/α is affected by
changing the polynomial order. Hundreds of continuum spectra fits
were checked by eye. The residuals from the fits are smaller than
the errors on the flux densities. Fig. 4 shows three different spectra
with their continuum fit and residuals.

3.2.3 Signal-to-noise ratio

We follow Gutiérrez & López-Corredoira (2010) for the determina-
tion of S/N. Hence, we compute the standard deviation of the flux
between 5040 (1 + z) and 5100 (1 + z) Å (where z is the redshift
of the quasar) where there are no strong emission or absorption
lines. Then, we search for the maximum of the [O III] 5008 line, and
determine S/N[O III] 5008 as the ratio between the maximum of the
line and the previously computed standard deviation. Although for a
more reliable determination of the S/N, it is better to use a Gaussian
fit to the line. This procedure avoids possible issues related when
fitting data with very low S/N. This S/N is used in the criterion ii
(Section 2) to build our fiducial sample.

3.2.4 Measurement of the emission-line wavelengths

To measure the wavelengths of the [O III] doublet, our fitting code
needs as input an accurate estimate of the redshift of the quasar,
at least with an error �z < 3 × 10−3. This allows a search for the
emission lines in a 15 Å window around the expected location of
the [O III] lines. The SDSS pipeline provides a determination of
the redshift based on a χ2 fit to different templates; we refer to
Bolton et al. (2012) for more details. These redshift estimates have
errors between 10−4 and 10−5, which are sufficient for our purposes.
Moreover, there is also a visual redshift estimation which can be
found in the quasar catalogue DR12Q (Paris et al., in preparation).

The difference between both redshift estimates (if any) is usually
|zvis − zpipe| ≈ 5 × 10−4. We decided to adopt the visual redshifts.

The centroid positions of the [O III] emission lines are determined
by four different methods.

(i) Gaussian profile method.
First, we search for the maximum flux value in an ∼15 (1 + z) Å
window around the expected position of the line (according to the
redshift provided by the DR12Q catalogue). This procedure auto-
matically erases any bias produced by the redshift value. Then, we
make an initial Gaussian fit around the position of the maximum
flux value using a fixed width of ∼10 (1 + z) Å. From this first fit,
we obtain a new position for the line centroid and a Gaussian width.
These values are used as initial parameters for the final fit of the
lines; namely, the wavelength range considered to perform the final
fit is centred around the position of the line centroid, and it is four
times the Gaussian width of the lines. This approach means that we
consider pixels up to 2σ away from the centre of the line. Hence,
some lines are fitted using ∼4–5 pixels, while others with ∼15–
20 pixels depending on the line width. The fit takes into account the
flux errors for each pixel, i.e. we use the ivar column found in each
spectrum as weights for the fit. Our final centroid measurement for
each considered line corresponds to the centroid of the Gaussian fit
done in the last step of the adopted procedure. We also derive an
error for �α/α using the standard errors for the centre position of
the Gaussians. This is our main method for measuring α.

(ii) Voigt profile method.
Following the same procedure than when using a Gaussian profile,
we make the fit with a Voigt profile instead of a Gaussian. More pre-
cisely, we use a pseudo-Voigt profile which is a linear combination
of a Gaussian and a Lorentzian profile. Then, we have one more
parameter, i.e. the amplitude of the Lorentzian function, while its
width and its position are the same as those for the Gaussian profile.
In Fig. 5, we depict the [O III] and [Ne III] lines for the same quasar
spectrum to illustrate the Gaussian and Voigt fitting methods.

(iii) Integration method.
Here, the centroids of the lines are obtained by integrating around
1σ from the position of the fitted Gaussian profile. This technique
provides indications of whether there is H β contamination. How-
ever, due to the mid-resolution of the spectra R ≈ 2000, this method
is not very accurate.
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Figure 5. [O III] (left-hand panel) and [Ne III] (right-hand panel) lines for SDSS-J121417.80+293143.4, at redshift z = 0.063. The measured �α/α for this
quasar is �α/αGauss

[O III] = (2.3 ± 7.6) × 10−4, �α/α
Voigt
[O III] = (3.3 ± 12.6) × 10−4 and �α/αGauss

[Ne III] = (39 ± 8) × 10−4, �α/α
Voigt
[Ne III] = (37 ± 9) × 10−4.

The measured �α/α for [Ne III] is not consistent with zero regardless of the profile; see Fig. 14 and last paragraph of Section 4 for discussion. Each panel shows
the flux density for each pixel with their respective error bars (solid symbols), together with the Gaussian fit (dotted red curve) and the pseudo-Voigt profile
(thick grey curve) to each of the lines. The fitting procedure (described in the text) only takes into account the experimental data (solid symbols) weighted by
their error bars. Notice how the deviation of the line centroid position derived from our Gaussian fit (vertical solid line) with respect to the expected position of
the line (vertical dashed line) according to the visual redshift provided by the DR12Q catalogue are well correlated for the same pair of [O III] and [Ne III] lines,
and for the different set of lines. The green shaded vertical areas highlight the uncertainty for the expected position of the lines due to the quasar redshift error
(≈ 5 × 10−4). Also shown is a fourth-order spline interpolation to the spectrum after subtracting the continuum (thin solid line). The [Ne III] lines are weaker
by one order of magnitude than the [O III] lines, which is usually the case for all the spectra showing both pair of lines. The weak line near the stronger [Ne III]
line is blended with He I (3889.75 Å) and H ζ (3890.16 Å ).

(iv) Modified Bahcall method.
In Bahcall et al. (2004) the authors used a different approach to
compute the line positions. They performed a third-order spline
interpolation to the stronger [O III] 5008 line, then fitted this inter-
polation to the weaker 4960 line by adjusting the amplitude and
separation of the profile. We have modified this method by using a
Gaussian fit to the stronger line rather than a third-order spline.

Although we have described four different methods, the main
results for �α/α presented in this work are based on the Gaussian
fitting method, while the other three are used only for comparison
(see Section 4).

Finally, our final result for �α/α and its error is obtained in the
same way as in Chand et al. (2005), namely we compute a weighted
mean and a weighted standard deviation, where the errors for �α/α

of each spectrum are used as weights.

3.3 Simulated spectra

In order to test the robustness and accuracy of our methodology, we
generate realizations of quasar spectra using as noise a normal distri-
bution centred at the flux value, and taking the error in each pixel as
the standard deviation. From our fiducial sample (10 363 quasars),
we simulate 100 realizations for each spectrum (> a million in to-
tal). This number of realizations provides reasonable statistics to
derive an error from the standard deviation of the measurements on
the realizations of each real spectrum, while the computation time
remains reasonable (∼ 2 d) using a standard-size computer. The es-

timated error derived from the simulations �(�α/α)sim includes

�(�α/α)2
sim = �(�α/α)2

fit + �(�α/α)2
continuum + �(�α/α)2

code,

(6)

where �(�α/α)fit is the error derived from the Gaussian fits, which
is our error estimate for each real spectrum; �(�α/α)continuum is
the error from different continuum subtraction due to the Gaussian
noise, and �(�α/α)code is the systematic error of our code. Then,
we expect �(�α/α)sim > �(�α/α)fit and their difference will be
an indication of the continuum and systematic errors.

Fig. 6 (left-hand panel) shows the correlation between the error in
�α/α from the Gaussian fits of each real spectrum and the standard
deviation for �α/α of its 100 realizations. The standard deviations
from the simulations are within a factor of 0.5–2 of the standard er-
rors from the fits for 97 per cent (84 per cent) of the cases when both
quantities are <5 × 10−3 (<50 × 10−3). This shows that our code
and the continuum subtraction do not introduce noticeable system-
atic errors compared to the Gaussian fitting. However, there is a set
of spectra (9 per cent of the total) for which the simulations provide
much larger errors �(�α/α) > 0.1. Fig. 6 (right-hand panel) shows
the errors from the simulations as a function of redshift for our fidu-
cial sample. Red crosses stand for spectra whose Gaussian fit error
�(�α/α)fit > 5 × 10−3 (24 per cent). The errors are distributed in
two clouds of points. For the cloud with �(�α/α)sim ∼ 1, the vir-
tual realizations of each spectrum seem to differ significantly from
the real spectrum. Since we use the error in each pixel to build the
realizations, the relative error is large for these spectra, which is an
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Figure 6. Left-hand panel: errors for �α/α obtained from the simulations (standard deviation of the �α/α measurements on 100 realizations of each real
spectrum) and standard errors from the Gaussian fits for our fiducial sample. The solid line represents a one-to-one correspondence, while the dashed lines
have slopes of 2 and 0.5. Only the simulation and fit errors smaller than <5 × 10−3 are shown. Right-hand panel: errors estimated from the simulations as a
function of redshift. Spectra with �(�α/α)fit > 5 × 10−3 are shown as red crosses (24 per cent of the total). There is a clear division between two different set
of spectra which correlates with the sky emission lines (see discussion in the main text).

indication of a low S/N ratio or large absolute errors in the pixels,
for instance in wavelength regions with sky emission lines. In fact,
the cloud with bigger errors mimics the sky spectrum. Note also the
strong correlation between this cloud of points and the spectra with
large Gaussian fitting errors (red crosses). The other set of points
with �(�α/α)sim ∼ 10−3 are close to our error estimation on the
measurement of �α/α based on the Gaussian fits.

As a further proof, we also simulate realizations of the 1416
dropped spectra because of sky emission lines (criterion iv, see
Section 2). We found that more than 80 per cent of the spectra have
�(�α/α)sim > 0.1. This confirms that these spectra have very low
S/N and/or large pixels error due to the proximity of the lines to
strong sky emission lines.

3.4 Gaussian versus Voigt fitting profiles

The results obtained when using Voigt profiles instead of Gaussian
ones are compared in Fig. 7. The Voigt and Gaussian measurements
are 1σ -compatible for the 93.5 per cent of the cases (98.3 per cent

at 2σ ). Regarding the errors, there is no clear improvement when
using either of both methods. However, Voigt profiles have one more
parameter and restrict the number of degrees of freedom. Due to
the spectral mid-resolution and the fact that the [O III] lines are very
narrow, there are often only a few pixels to fit, which frequently lead
to non-convergent fits. This reduces the quasar sample in ≈1000
quasars. Further discussion about both profiles can be found in
Section 4.

4 SYSTEMATICS

In this section, we examine the possible unnoticed systematic er-
rors by analysing different quasar samples. Table 2 summarizes all
the samples considered together with their mean redshifts and the
measured value for �α/α.

We consider the following sources of systematic errors.

(i) Misidentification of the lines. The expected line widths
and amplitudes are useful to avoid misidentification of the

Figure 7. Left-hand panel: measurements of �α/α using Gaussian and Voigt fitting profiles. Non-compatible measurements at 1σ are shown as red crosses
(6.5 per cent of the total). Right-hand panel: errors from the Gaussian and Voigt fitting. Non-compatible measurements at 1σ are shown as red crosses.
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Table 2. Results for �α/α considering several samples with different con-
straints. The number of quasar spectra, the mean and standard deviation of
the redshift and the value for �α/α are shown.

σ 4960/5008 − 1 No. of quasar spectra Redshift �α/α (×10−5)

<50 per cent 10 028 0.56 ± 0.21 1.6 ± 2.3
<25 per cent 8877 0.56 ± 0.21 1.9 ± 2.3
<10 per cent 5846 0.56 ± 0.21 1.7 ± 2.5
<5 per cent 3458 0.54 ± 0.22 −0.9 ± 3.0

[Fλ × σ ]5008/4960 No. of quasar spectra Redshift �α/α (×10−5)

2.98 ± 0.50 8327 0.56 ± 0.21 1.8 ± 2.4
2.98 ± 0.25 5761 0.55 ± 0.21 −0.4 ± 2.6
2.98 ± 0.10 2658 0.54 ± 0.21 0.0 ± 3.4
2.98 ± 0.05 1411 0.52 ± 0.22 5.2 ± 4.6

Fit width No. of quasar spectra Redshift �α/α (×10−5)

2σ 10 363 0.56 ± 0.21 1.4 ± 2.3
3σ 10 252 0.59 ± 0.20 5.5 ± 2.5
4σ 9978 0.59 ± 0.20 7.1 ± 2.7
5σ 9726 0.59 ± 0.20 5.3 ± 2.6

S/NH β/[Oiii]4960 No. of quasar spectra Redshift �α/α (×10−5)

<5 10 338 0.57 ± 0.21 1.4 ± 2.3
<2 9831 0.57 ± 0.21 0.6 ± 2.3
<1 8162 0.57 ± 0.21 0.1 ± 2.5
<0.5 5831 0.58 ± 0.21 −0.7 ± 2.8

Pol. order (cont.) No. of quasar spectra Redshift �α/α (×10−5)

3 10 528 0.57 ± 0.21 1.0 ± 2.3
5 10 550 0.57 ± 0.21 1.3 ± 2.3
7 10 363 0.56 ± 0.21 1.4 ± 2.3
9 10 471 0.56 ± 0.21 −1.1 ± 2.3

R2 (both fits) No. of quasar spectra Redshift �α/α (×10−5)

>0.9 9254 0.56 ± 0.21 1.5 ± 2.4
>0.97 6045 0.56 ± 0.21 2.8 ± 2.7
>0.99 2301 0.54 ± 0.21 2.0 ± 3.5
>0.995 845 0.51 ± 0.22 −0.4 ± 4.8

[O III] 5008 (km s−1) No. of quasar spectra Redshift �α/α (×10−5)

<1000 10 353 0.56 ± 0.21 1.4 ± 2.3
<500 8990 0.56 ± 0.21 0.2 ± 2.4
<300 2798 0.52 ± 0.22 −6.8 ± 3.9
<200 150 0.52 ± 0.24 21 ± 18

Method No. of quasar spectra Redshift �α/α (×10−5)

Gaussian (weighted) 4537 0.58 ± 0.20 −0.4 ± 2.8
Gaussian 4537 0.58 ± 0.20 1.2 ± 4.5
Integration 4537 0.58 ± 0.20 3.6 ± 4.8
Modified Bahcall 4537 0.58 ± 0.20 0.8 ± 4.4
Median 4537 0.58 ± 0.20 1.8 ± 1.4

Gauss versus Voigt No. of quasar spectra Redshift �α/α (×10−5)

Gaussian profiles 8485 0.55 ± 0.19 0.4 ± 2.5
Voigt profiles 8485 0.55 ± 0.19 −1.1 ± 2.8
Mixed profiles 8485 0.55 ± 0.19 1.3 ± 2.4

[O III] emission lines. (a) Line widths: since both lines originate on
the same upper energy level, their width must coincide. We check
that this is the case by considering quasars whose [O III] line widths
are the same within a relative fraction. For more than half of our fidu-
cial sample, the [O III] line widths differ by less than 10 per cent (see
Table 2). (b) Amplitude ratio: atomic physics states that the am-

plitude ratio between the [O III] 5008 and [O III] 4960 lines is
2.98 (Storey & Zeippen 2000, as quoted in Section 5, we obtain
2.96 ± 0.02syst). Thus, we consider different samples where this ra-
tio differs by less than a certain amount from 2.98 (see Table 2).
All the samples considered in this test yield results for �α/α com-
patible with zero. Fig. 8 displays the Gaussian widths and fluxes of
both [O III] emission lines for our fiducial sample.

(ii) Windows for the Gaussian fits. We use a wavelength range
of 2σ around each [O III] line in order to obtain the final Gaussian
fit to the line profiles. We study how our results depend on this
choice. By considering a larger wavelength interval, the results are
more affected by the H β contamination and possible asymmetries
on the line wings. The differences in the number of spectra for these
samples [which are obtained by applying the selection criteria (i)–
(iv) discussed in Section 2.1] arise because of the criteria concerning
the non-converging fits and the sky emission lines described in
Section 2.

(iii) H β contamination. We analyse samples where the ratio be-
tween S/NH β and S/N[O III] 4960 is constrained. Despite the fact
that the value for �α/α decreases as we place more stringent con-
straints on H β, it is always consistent with no variation in α within
the errors. This analysis demonstrates that the strength and/or width
of the H β line do not affect substantially the result for �α/α when
a weighted mean is adopted.

(iv) Continuum subtraction. We use a seventh-order polynomial
to subtract the continuum spectrum. We examine if the polynomial
order has important effects on our measurements. Our values for
�α/α and their errors are only slightly affected by the chosen
polynomial order.

(v) Goodness of Gaussian fits. We quantify the quality of the
Gaussian fits by the R2 coefficient. All the considered samples show
values for �α/α consistent with no variation in α.

(vi) Broad lines. We also study samples where the width of both
lines is less than a certain value (in km s−1). These samples are
consistent with no variation of α. Samples built from narrow lines
<300 km s−1 may be more affected by misidentification of [O III]
lines as sky lines.

(vii) Different methods for measuring the [O III] line position.
We compare the results obtained by the methods to measure the
position of the [O III] lines described in Section 3.2.4. Since not
all the methods provide an error for the measurement, we cannot
calculate a weighted mean, and it is necessary to select a more
restricted sample. Then, we consider a sample where the difference
between the widths of the lines is less than 25 per cent, the amplitude
ratio is constrained to differ from the theoretical value 2.98 (Storey
& Zeippen 2000) by less than 0.5, and the S/NH β is smaller than
half the S/N[O III] 4960.

(viii) Gaussian versus Voigt profiles. We compare the results for
8485 quasars from our fiducial sample after dropping 1878 spectra
with non-converging Voigt fits (this reduction increases the statis-
tical error). We also compute a ‘mixed’ value for �α/α where for
each spectrum we use the value for the variation of the fine-structure
constant with smaller error, either (�α/α)Gauss or (�α/α)Voigt.

We have also analysed the standard deviation and errors of the
results for �α/α as a function of redshift (Fig. 9). Even though we
have imposed a constraint on our initial sample based on the sky
emission lines, the standard deviation and errors still correlate with
the sky. In particular, for the correlation with the moving standard
deviation, this means that the precision in our measurement of �α/α

along the whole redshift interval is limited by the sky subtraction
algorithm.
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Figure 8. Left-hand panel: Gaussian widths (in km s−1) for both [O III] lines. Both lines originate on the same upper energy level, then their widths must
coincide (red dashed line). Right-hand panel: fluxes for both [O III] lines. The theoretical flux ratio is 2.98 (red dashed line). The entire fiducial quasar sample
is shown.

Figure 9. Errors for �α/α derived from the Gaussian fits (grey points) for
our fiducial sample, moving mean of the these errors (blue line) using over-
lapping bins (100 spectra per bin, � z ≈ 0.025), moving standard deviation
of �α/α measurements using the same bins (red line) and a typical sky
spectrum.

5 R ESU LTS

5.1 [O III] lines

We used a total of 10 363 quasar spectra, drawn from the SDSS-
III/BOSS DR12Q catalogue, after applying the selection criteria
(i)–(iv) (see Section 2), to measure the possible variation of the
fine-structure constant. The following measurement is obtained:

�α

α
= (1.4 ± 2.3) × 10−5 .

This value is consistent with the previous results reported in different
investigations based on the same method: Bahcall et al. (2004),
Gutiérrez & López-Corredoira (2010), and Rahmani et al. (2014).
The redshift dependence of the measurements is shown in Fig. 10
(left-hand panel), where several bins have been made taking into
account the redshift intervals affected by the sky (shaded zones).
In the right-hand panel, we show the results obtained from the
simulations described in Section 3, using the same redshifts intervals
for the bins. The main differences between the real results and the

simulations are in the regions where there are strong sky lines
(shaded regions), while being in agreement in the remaining zones.
Detailed information about each bin for the real data can be found
in Table 3.

Our results are little affected by the specific constraints imposed
in our sample as discussed in Section 4. For instance, we vary the
width for the Gaussian fits, the contamination of Hβ, the polynomial
order used to fit the continuum spectrum, the quality of the Gaussian
fits and test different methods to measure �α/α. The most important
effect found is that by considering broader widths for the Gaussian
fits, the results are more affected by the contamination from Hβ and
possible asymmetries in the line wings. We have also checked for
possible misidentifications of the [O III] emission lines using their
expected widths and amplitude ratio.

Table 4 contains the results for �α/α when the lower bound on
the S/N[O III] 5008 is increased. All the results remain consistent with
no variation of the fine-structure constant. In Fig. 11, the measured
�α/α for our fiducial sample as a function of the S/N[O III] 5008 are
plotted together with their errors.

The distribution of BOSS quasars in the sky (see Fig. 1, left-hand
panel) suggests to divide the sample into two, one for the North
galactic cap and one for the South galactic cap. Table 5 describes the
results for each galactic hemisphere, and no statistical meaningful
difference is found. In order to look for a spatial variation, we
also carried out a more precise analysis by fitting a dipole. First,
we fixed the direction on the sky of the dipole and performed a
linear fit (�α/α(θ ) = acos θ + b) of the measurements of the
variation of the fine-structure constant as a function of cos θ , where
θ is the angle between the dipole axis and a quasar in the sky.
Different fits were done for the dipole axis lying in a grid in RA and
Dec. (∼1◦ × 1◦). However, there is not statistical significance to
determine the dipole axis with a meaningful error, i.e. smaller than
the whole sky. There has been a claim on a significant deviation
of α from being a constant as a function of space (King et al.
2012), with a dipole amplitude 0.97+0.22

−0.20 × 10−5 in the direction
RA = 17.3 ± 1.0 h and Dec. = −61◦ ± 10◦. Fixing the dipole in
that direction, we get (−4.3 ± 3.4) × 10−5 for the dipole amplitude
and (0.8 ± 2.3) × 10−5 for the monopole term, which are not precise
enough to compare with that work.

We are inclined to parametrize the possible time variation of α

with redshift z. This is justified since any possible variation on α

must be dominated by the local geometry of space–time (at least
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Figure 10. Left-hand panel: �α/α versus redshift (real data). Details about each bin are listed in Table 3. Right-hand panel: (�α/α)sim versus redshift
(simulations). A typical sky spectrum and shadowed regions where the sky contamination is expected to be large, are shown as reference.

Table 3. Detailed information about the bins in Fig. 10.

Redshift interval No. of quasar spectra Redshift �α/α (×10−5)

0.390–0.460 817 0.42 ± 0.02 −5.2 ± 6.8
0.460–0.520 723 0.49 ± 0.02 5.5 ± 8.9
0.520–0.580 757 0.55 ± 0.02 0.4 ± 9.2
0.580–0.625 843 0.60 ± 0.01 40.4 ± 9.4
0.625–0.675 988 0.65 ± 0.01 −3.5 ± 7.4
0.675–0.715 1299 0.69 ± 0.01 −8.2 ± 7.4
0.715–0.765 1117 0.74 ± 0.01 1.7 ± 7.1
0.765–0.820 1444 0.79 ± 0.02 18.1 ± 8.3
0.820–0.880 644 0.84 ± 0.02 4.7 ± 9.2
0.880–1.000 580 0.93 ± 0.03 17.0 ± 13.3

Table 4. Results for several samples with different constraints on the
S/N[O III] 5008. For each sample, the number of quasar spectra, the mean
redshift, together with its standard deviation and the value for �α/α are
shown.

S/N[O III] 5008 No. of quasar spectra Redshift �α/α (×10−5)

>10 10 363 0.56 ± 0.21 1.4 ± 2.3
>20 5270 0.53 ± 0.21 −0.5 ± 2.5
>50 1498 0.47 ± 0.20 −3.4 ± 3.1
>100 451 0.41 ± 0.19 −2.0 ± 3.6
>500 12 0.24 ± 0.19 6 ± 12

if we consider the dynamics of the Universe as the main reason
for such variation). Therefore, one is led to consider the possible
variation of α as a function of redshift (z = 1/a(t) − 1) or the Ricci
scalar (R(t) = 6H(t)2[1 − q(t)]), where a(t) is the scale factor, H(t)
the Hubble parameter and q(t) is the deceleration parameter. Since
the Ricci scalar is not known for each quasar, it is straightforward
to consider a possible variation with redshift. In contrast, for a time
parametrized model of the variation of α the analysis depends on
the particular cosmology considered. Since there is no significant
clear dependence, we use a linear model in redshift. Then, for

�α/α = a z + b, (7)

we obtain

a = (0.7 ± 2.1) × 10−4 ; b = (0.7 ± 1.4) × 10−4 ; (8)

which do not show any dependence of �α/α with redshift.

Figure 11. �α/α versus S/N[O III] 5008 (top panel) with the moving stan-
dard deviation (black lines) using overlapping bins (100 spectra per bin) and
the error on �α/α (bottom panel) in linear-log scale for our fiducial sample.
The deviation of �α/α from zero and its error steadily decreases as the S/N
increases.

Table 5. Results for the North and South galactic hemispheres.

Galactic hemisphere No. of quasar spectra Redshift �α/α (×10−5)

North 8069 0.56 ± 0.21 2.6 ± 2.6
South 2294 0.59 ± 0.20 −3.1 ± 4.9

From this sample, we also obtain a value for the line ratio
[Fλ × σ ]5008/[Fλ × σ ]4960 = 2.96 ± 0.02syst, where Fλ is the max-
imum flux density of the line, and σ is the Gaussian width. The
value reported is a weighted mean where the S/N[O III] 5008 is used
as weights. The quoted systematic error is computed from the anal-
ysis of samples with different polynomial orders for the continuum
fit and different widths for the line fitting (see Table 6), since this
quantity is more affected by these two parameters. The value we
obtain is in agreement with the best current theoretical value, i.e.
2.98 (Storey & Zeippen 2000).
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Table 6. Results for the line ratio when polynomials of different orders
are used to subtract the continuum and different range for the Gaus-
sian fits are used. For each sample, the number of quasar spectra, the
mean redshift together with its standard deviation and the value for
[Fλ × σ ]5008/[Fλ × σ ]4960 are shown.

Polynomial No. of Redshift [Fλ × σ ]5008/4960

order quasar spectra

3 10 528 0.57 ± 0.21 2.96
5 10 550 0.57 ± 0.21 2.94
7 10 363 0.56 ± 0.21 2.96
9 10 471 0.56 ± 0.21 2.98

Fit width No. of quasar spectra Redshift [Fλ × σ ]5008/4960

2σ 10 363 0.56 ± 0.21 2.96
3σ 10 252 0.59 ± 0.20 2.92
4σ 9978 0.59 ± 0.20 2.98
5σ 9726 0.56 ± 0.21 2.98

Table 7. Results for SDSS-II/DR7 and BOSS (SDSS-III/DR12) samples.
For each sample, the number of quasar spectra, the mean redshift, together
with its standard deviation and value for �α/α are shown.

Sample No. of quasar spectra Redshift �α/α (×10−5)

DR7 2853 0.38 ± 0.15 0.5 ± 2.8
DR7 (SDSS cont.) 3009 0.38 ± 0.15 −0.4 ± 2.7
BOSS (DR12) 10 363 0.56 ± 0.21 1.4 ± 2.3
BOSS + DR7 13 175 0.51 ± 0.21 0.9 ± 1.8

Finally, we have also considered quasar spectra from the SDSS-
II/DR7, which were observed using the previous spectrograph in-
stead of the upgraded BOSS spectrograph (see Section 2). From
the DR7 quasar catalogue (Schneider et al. 2010), which contains
105 783 quasars, we select a sample of 2853 quasars up to redshift
z = 0.8 using the same criteria described in Section 2. This number
is similar to the quasar spectra considered by Rahmani et al. (2014,
Table 1) . We re-analyse this sample using the methodology pre-
sented in this work, and we find �α/α = (0.5 ± 2.8) × 10−5. By
combining this DR7 sample with our fiducial BOSS (DR12) quasar
sample (after eliminating 41 spectra which were re-observed by
BOSS), we obtain our final sample which contains a total of 13 175
quasars. The value obtained for this combined sample is reported
as a final result of this investigation:

�α

α
= (0.9 ± 1.8) × 10−5 .

Table 7 shows the results for DR7, DR7 using the continuum fit
provided by the SDSS pipeline,2 BOSS (DR12) and the com-
bined BOSS+DR7. It can be seen that the mean redshift for
the DR7 sample is lower than that for BOSS. Note that there is
also a big difference on the mean S/N[O III] 5008 of both samples:

S/NDR7
[O III] 5008

= 60 and S/NBOSS
[O III] 5008

= 33, which also explains
why the statistical errors for �α/α do not reflect the expected re-
duction due to the increase in the number of quasars of our BOSS
sample. Table 8 shows the results of �α/α using the combined
sample in the same redshift bins considered for our fiducial sample.
Fig. 12 shows the difference of the values obtained for �α/α for the
41 re-observed quasars. Both BOSS and DR7 measurements are in

2 The SDSS pipeline provides a continuum fit for the DR7 spectra. The good
agreement between the value for �α/α obtained with the SDSS continuum
fit and our continuum fit is a good test for our code.

Table 8. Values of �α/α using the combined sample BOSS+DR7 for the
same redshift bins as in Table 3.

Redshift interval No. of quasar spectra Redshift �α/α (×10−5)

0.390–0.460 1279 0.42 ± 0.02 −2.5 ± 4.8
0.460–0.520 1076 0.49 ± 0.02 7.2 ± 6.4
0.520–0.580 1071 0.55 ± 0.02 1.1 ± 7.1
0.580–0.625 1025 0.60 ± 0.01 30.8 ± 8.1
0.625–0.675 1191 0.65 ± 0.01 −5.1 ± 6.5
0.675–0.715 1424 0.69 ± 0.01 −6.2 ± 7.0
0.715–0.765 1220 0.74 ± 0.01 1.4 ± 6.8
0.765–0.820 1519 0.79 ± 0.02 15.0 ± 8.1
0.820–0.880 644 0.84 ± 0.02 4.7 ± 9.2
0.880–1.000 580 0.93 ± 0.03 17.0 ± 13.3

Figure 12. Difference between (�α/α)BOSS and (�α/α)DR7 measure-
ments for the 41 quasars observed by SDSS-I/II that were re-observed by
BOSS. Both values for �α/α are consistent.

perfect agreement within the error bars. This test is a good check for
the reliability of our code and the consistency of the SDSS spectra
obtained with different spectrographs.

There are massive galaxy surveys to be carried out during the
next decade. For instance, eBOSS and DESI will take spectra from
millions of galaxies. Therefore, it is interesting to give an estimation
of the accuracy that will be obtained when using galaxy spectra
instead of quasars. For this, we have analysed the galaxy spectra
collected by the DEEP2 survey (Newman et al. 2013) taken with
resolving power ≈6000. From this sample, we found 4056 galaxies
with strong [OIII] lines. Naively, one would expect that the error on
�α/α should be

� (�α/α)galaxies,DEEP2 ≈ fsample × finst × fobject

× � (�α/α)quasars,BOSS , (9)

where fsample(= √
10 363/4056) takes into account the different

number of objects in each sample, finst( ≈ 2000/6000) stands for
the different resolution of the spectra and fobject is an extra factor due
to the different characteristics of quasar and galaxy emission lines
which affect the uncertainty of the line positions. This last factor
is proportional to the line widths and inversely proportional to the
line fluxes:

fobject ≈ FWHMgalaxies

FWHMquasars
×

(
Fluxgalaxies

Fluxquasars

)−1

. (10)

These numbers for the [O III] 5008 line are approximately
FWHMgalaxies ≈ 120 km s−1, FWHMquasars ≈ 420 km s−1,
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Figure 13. Errors on �α/α as a function of the FWHM of [O III] 5008 for
our fiducial BOSS quasar sample (blue points) and for the DEEP2 galaxy
sample (red crosses).

Fluxgalaxies ≈ 70 and Fluxquasars ≈ 210 in units of 10−17 erg cm−2 s−1,
obtained from the DEEP2 sample and from our fiducial sample.
Thus, the expected error is 1.1 × 10−5, where we have considered
the error of our fiducial sample �(�α/α)quasars, BOSS = 2.3 × 10−5.
Applying the same criteria described in Section 2 to the DEEP2
galaxy sample, we get �α/α = (−0.9 ± 1.6) × 10−5. Thus, the
upcoming future galaxy surveys will be quite competitive for con-
straining the variation of the fine-structure constant at low redshift
z < 2. Fig. 13 shows the error on �α/α for the DEEP2 and BOSS
samples.

5.2 [Ne III] lines

We also measure from 462 quasar spectra with [Ne III] emission
lines the following constraint on the fine-structure constant:

�α/α[Ne III] = (34 ± 1) × 10−4 , (11)

to be compared with

�α/α[Ne III] = (36 ± 1) × 10−4 (12)

obtained by Gutiérrez & López-Corredoira (2010). The analysis
of the [Ne III] lines reveals the same systematic effect previously
observed, namely a clear tendency for a positive variation of α.
Fig. 14 compares the results obtained for �α/α for spectra where
both [O III] and [Ne III] lines are present. To account for this effect,
a shift ∼0.6 Å on the theoretical or observed values of the wave-
lengths for the [Ne III] lines is necessary. There are experimental
(Bowen 1955) and indirect (Kramida & Nave 2006) values for the
wavelengths of the [Ne III] lines which are in agreement with errors
≈3 × 10−2 Å. We use the NIST values for the [Ne III] lines

λ
[Ne III]
1 = 3869.86 Å λ

[Ne III]
2 = 3968.59 Å (13)

δλ
[Ne III]
0 = 98.73 Å. (14)

The results for the [O III] doublet guarantee the good calibration
of the SDSS spectra (and many more independent scientific re-
sults based on the SDSS spectra). Thus, we have measured the
[Ne III] lines using a high-resolution optical spectrum from the
planetary nebula IC 418. The IC 418 optical spectrum (3600–7200
Å) was taken under service time at the Nordic Optical Telescope
(NOT; Roque de los Muchachos, La Palma) in 2013 March with
the FIES spectrograph. We used FIES in the low-resolution mode

Figure 14. [Ne III] and [O III] measurements for �α/α. Empty symbols
stand for spectra with S/N[Ne III] 3869 < 35 and solid squares for spectra
with S/N[Ne III] 3869 > 35. [Ne III] measurements have a clear tendency to
a positive variation of α, which is due to a systematic effect affecting the
[Ne III] measurement. The same effect has already been noticed by Gutiérrez
& López-Corredoira (2010), and it is explained in Section 5.2.

(R ≈ 25 000) with the 2.5 arsecfibre (centred at the central star of
IC 418). Three exposures of 1200 s each were combined into a final
IC 418 spectrum, reaching a S/N (in the stellar continuum) of ∼60
at 4000 Å and in excess of ∼150 at wavelengths longer than 5000
Å (see Dı́az-Luis et al. 2015, for more observational details). To
measure �α/α, we need to know the ratio

R = [(λ2 − λ1) / (λ2 + λ1)]0 , (15)

which is independent of the peculiar velocity of the planetary nebula.
From our data, we obtain

R = (1259561 ± 4) × 10−8, (16)

compared to the one using NIST values for the wavelengths

RNIST = 1259560 × 10−8. (17)

The difference between the two values translates into a variation
on �α/α < 10−6. Thus, the measured wavelength separation for
the [Ne III] doublet does not account for the positive variation on
α observed using these lines. Fig. 15 (left-hand panel) shows the
Gaussian fit to the [Ne III] line profiles present in the IC 418 spec-
trum.

The IC 418 spectrum shows two different lines near the [Ne III]
3968 Å line (see Fig. 15, right-hand panel). The stronger one
is H ε 3971 Å, the other one is He I 3965 Å. Hence, we
search for a possible blending of the [Ne III] line 3968 with these
two lines in our much lower spectral resolution quasar spectra.
Fig. 16 (left-hand panel) shows stack quasar spectra with broad
[Ne III] emission lines. It can be seen that the weak [Ne III] line is
blended.

To quantify the displacement produced by the blending with
Hε line, we did a Gaussian convolution of the Planetary Nebula
spectrum to lower the resolution down to R ≈ 2000. Since the line
intensity ratio of [Ne III] and H ε may differ in the quasar narrow
emission-line region and the Planetary Nebula, we show in Fig. 16
(right-hand panel) the shift produced by the H ε line as a function
of the ratio [Ne III] /H ε. We get a shift ∼0.6 Å when H ε/[Ne III] is
∼0.5. This explains the systematic found when using [Ne III] lines
to measure the variation of the fine-structure constant �α/α in
previous studies (Gutiérrez & López-Corredoira 2010; Grupe et al.
2005).
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Figure 15. Left-hand panel: [Ne III] 3869 and [Ne III] 3968 together with our Gaussian fits (solid line) from a high-resolution (R ≈ 25 000) spectrum of the
Planetary Nebula IC 418 obtained with the FIES spectrograph at the NOT telescope. Right-hand panel: IC 418 spectrum centred at [Ne III] 3968 line. The two
close lines are H ε 3971 Å and He I 3965 Å.

Figure 16. Left-hand panel: median-stacked quasar spectra with broad [Ne III] lines (increasing line width from bottom to top). Both [Ne III] lines are shown
(λλ 3869, 3968 Å). The weak [Ne III] line is blended with the two lines H ε 3971 Å and He I 3965 Å. Right-hand panel: shift produced by the H ε line in the
[Ne III] 3968 line as a function of the line intensity ratio of both lines as measured from the Planetary Nebula convolved spectrum.

6 SU M M A RY

The main conclusions of this work are as follows.

(i) From 45 802 objects at z < 1 classified as quasars in the SDSS-
III/BOSS DR12 quasar catalogue, we have extracted a sample of
10 363 quasars with [O III] emission lines. Combining this fiducial
sample with a sample of 2853 previously studied SDSS-II/DR7
quasars, we got a final sample of 13 175 after eliminating 41 re-
observed quasars.

(ii) With this combined sample, we have estimated a value
for the possible variation of the fine-structure constant of
�α/α = (0.9 ± 1.8) × 10−5, which represents the most accurate
result obtained with this methodology.

(iii) We have also studied how much our results change when
analysing the fiducial sample according to different properties
(width, amplitude, S/N and R2 coefficient of the [O III] lines), and
when modifying some parameters of the analysis (polynomial order
for the continuum subtraction, different methods to determine the
line position, e.g. Gaussian/Voigt profiles). We conclude that our
results are quite robust, and they are consistent with no variation of
the fine-structure constant.

(iv) From over one million simulated realizations of quasar spec-
tra, we conclude that the precision of our emission-line method is
dominated by the error from the Gaussian fits. Hence, the error from
the continuum subtraction and any possible systematics from our
code are small.

(v) The standard deviation of the results as a function of redshift
correlates with the sky. This result suggests that our main source of
uncertainty is determined by the sky subtraction algorithm.

(vi) We have determined the ratio of the [O III] transition lines
to be 2.96 ± 0.02syst, which is in good agreement with previous
experimental and theoretical values.

(vii) The same systematic effect previously noticed by Gutiérrez
& López-Corredoira (2010) has been found on the [Ne III] lines
measurement. Incorrect measurement for the separation of the
[Ne III] has been excluded as a possible explanation, and a blending
of the H ε and the [Ne III] 3968 has been identified as the source of
this effect.

(viii) The measurement of �α/α using SDSS-III/BOSS spec-
tra has reached the maximum precision unless better sky sub-
traction algorithms are developed. To obtain better constraints
(<10−6) using the emission-line method, high-resolution spec-
troscopy (R ≈ 100 000) is mandatory.
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(ix) We note that future large galaxies survey like eBOSS or DESI
could provide quite stringent constraint for �α/α at low redshift,
following our analysis of galaxy spectra taken from the DEEP2
survey.
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APPENDI X A

We publish along with this paper an electronic table with the com-
bined SDSS-III/BOSS DR12 and SDSS-II/DR7 sample of 13 175
quasars used in this work. Table A1 describes the information and
format of each column.

MNRAS 452, 4153–4168 (2015)



4168 F. D. Albareti et al.

Table A1. Description of the electronic table with the combined sample (13 175 quasars) published along with the paper.

Column Name Format Description

1 SDSS_NAME STRING SDSS-DR12 designation hhmmss.ss+ddmmss.s (J2000)
2 RA DOUBLE Right Ascension in decimal degrees (J2000)
3 DEC DOUBLE Declination in decimal degrees (J2000)
4 THING_ID INT32 Thing_ID
5 PLATE INT32 Spectroscopic plate number
6 MJD INT32 Spectroscopic MJD (>55000 SDSS-III/BOSS spectra, <55000 SDSS-II spectra)
7 FIBER INT32 Spectroscopic fibre number
8 Z_VI DOUBLE Redshift from visual inspection
9 Z_PIPE DOUBLE Redshift from BOSS pipeline
10 ERR_ZPIPE DOUBLE Error on BOSS pipeline redshift
11 ALPHA FLOAT �α/α from the Gaussian fits
12 ERR_ALPHA FLOAT Standard error for �α/α from the Gaussian fits
13 SN_O1 FLOAT S/N for the [O III] 4960 line
14 SN_O2 FLOAT S/N for the [O III] 5008 line
15 O1_FIT FLOAT Line centroid for the [O III] 4960 line
16 O2_FIT FLOAT Line centroid for the [O III] 5008 line
17 ERR_O1 FLOAT Error on the line centroid for the [O III] 4960 line
18 ERR_O2 FLOAT Error on the line centroid for the [O III] 5008 line
19 O1_AMPLITUDE FLOAT Gaussian amplitude at the centre for the [O III] 4960 line
20 O2_AMPLITUDE FLOAT Gaussian amplitude at the centre for the [O III] 5008 line
21 O1_WIDTH FLOAT Gaussian width for the [O III] 4960 line
22 O2_WIDTH FLOAT Gaussian width for the [O III] 5008 line
23 FILE_NAME STRING File name to download from the SDSS server

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Observational proposal for the SDSS

“APOGEE Quasar Survey (APOGEE-Q)”
Authors: Franco D. Albareti, Johan Comparat, Francisco Prada, Isabelle Pâris, Andreu Font, David
Schlegel, Joseph Hennawi and Jean-Paul Kneib

Motivation

In order to extend at higher redshift the constraint on the variation of the fine structure constant
with the same method used in Paper I, we presented the following observational proposal for the
APOGEE Ancillary Science Projects within the SDSS-IV Collaboration. Besides, the survey had
two other main goals: 1) Calibrate methods based on Mg ii and C iv emission lines to determine
Super Massive Black Hole masses and 2) Reduce systematic and dispersion errors on the redshift
measurements when using broad emission lines (C iv, C iii] and [Mg ii]). The three goals were
to be accomplished by observation of the Hβ line and [O iii] doublet falling in the infrared part
of the electromagnetic spectrum in high redshift quasars for which an optical spectra was already
available from the SDSS-II/SDSS-III. The APOGEE infrared spectrograph and the APOGEE-II
survey observational plan represented a good opportunity to carry out these observations.
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APOGEE-Q

APOGEE Quasar Survey

Letter of Intent

P.I.: F.D. Albareti
Instituto de F́ısica Teórica UAM/CSIC, Cantoblanco, C/ Nicolás Cabrera, 13-15, 28049 Madrid

franco.albareti@uam.es

Co-Is: J. Comparat (IFT-UAM/CSIC), F. Prada (IFT-UAM/CSIC), I. Pâris (INAF/OATS),
A. Font (LBNL), D. Schlegel (LBNL), JP. Kneib (EPFL)

February 1, 2015

Science goal

We propose the observation of high redshift quasars (2.0 < z < 2.4) with APOGEE-2 to detect [OIII] emission lines
λ4960, 5008 Å in the near-IR. It is known for a long time that there is a discrepancy between the redshifts measured from
different quasar emission lines [1]. Redshifs obtained from broad emission lines, e.g. CIV λ1550 Å or CIII] λ1909 Å are
the most affected with typical blueshifts of 500 km/s with respect to the quasar systemic redshift, e.g. [2]. The broad
MgII λ2800 Å emission line was thought to be a good tracer of quasar redshifts and was used in the SDSS-III/BOSS
quasar catalog [3]. However, different studies have shown that the MgII line is also affected by a systematic shift of the
order of ∼ 200 km/s [4], and that this effect depends on quasar luminosity [5]. One of the best tracers of quasar systemic
redshifts is the [OIII] λ4960, 5008 Å doublet [6]. This doublet cannot be observed with the BOSS spectrograph at redshifts
larger than 1, where most of our quasars lie. The APOGEE spectrograph wavelength range allows the detection of these
prominent lines for quasars with redshifts in the range 2.0 < z < 2.4 (we count 81,392 out of the total 297,301 quasars
taken from DR12Q). A careful study of the emission line redshifts measured from broad emission lines observed in the
BOSS spectra (CIV, CIII] and MgII), and [OIII] emission lines in the APOGEE spectra will allow to significantly reduce
both systematic and dispersion of errors on redshift measurements, which is crucial for many quasar science studies,
including quasar clustering analyses. In addition, we will obtain a competitive constraint (< 10−5) on the possible time
and/or spatial variation of the fine structure constant at redshift z ≈ 2.2 using the [Oiii] emission line method, thanks to
the 10x higher spectral resolution of the APOGEE spectrograph as compared to our previous work using the BOSS quasar
DR12 sample [7]. This constraint will be the first at high-z using emission lines and it will compete and test the results
from the absorption line method using the VLT/UVES, Keck/HIRES and Subaru/HDS spectrographs, which are highly
affected by different systematics [8]. In summary, this Ancillary Science program will provide scientific results from large
scale structure to fundamental physics, broadening the scientific scope of the APOGEE-2 survey, while having a minimal
impact on the main survey goals as discussed in the observational strategy, below.

Observational strategy

This is a Type-1 proposal, we request fiber placement on specific targets in already-specified APOGEE-2 (or MaNGA-led)
survey pointings. From the 81,392 quasars of DR12Q with redshift 2.0 < z < 2.4 (see Figure 1, left panel), we plan
to perform a careful selection of targets based on the properties of the MgII/CIII]/CIV lines (see Figure 1, right panel)
to maximize the probability to detect the [OIII] doublet, while taking into account the APOGEE plates. The collision
diameter of APOGEE-2N fibers and the problems to observe targets in the center of the field-of-view can easily be taken
into account in the target selection process. Therefore, this program has a minimal impact on the main APOGEE survey
and it could easily fit to any possible change in the APOGEE targeting plan.

We estimate the [OIII] emission lines to be observed to have a mean flux density 2×10−16 erg/cm2/s/A, that extends
over 10 pixels. With APOGEE, such a flux would be detected at a signal-to-noise ratio of 5 within a 3-hour exposure.
We are interested in APOGEE fields with a large number of visits to increase the S/N of the lines. Because of the
galactic extinction effects, quasars are observed outside the galactic plane. Thus, we request ancillary fibers of Halo and
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Figure 1: Left panel: Sky distribution of the SDSS-III/BOSS DR12Q quasars with 2.0 < z < 2.4 (81,392) in J2000
equatorial coordinates and overlapping APOGEE fields of view. Right panel: BOSS spectra of the 81,392 quasars with
2.0 < z < 2.4 sorted by redshift. These spectra will be used for an effective target selection.

Stream+dSph fields distributed in 105 <RA< 260 and −5 <Dec< 70, which are planned to have >20 visits and they
overlap with the quasar sky distribution of the North Galactic Cap (see Figure 1, left panel).

We acknowledge advice about the possible inter-fiber contamination affecting our observation (because of the low flux
of our targets, this does not affect the main APOGEE survey).
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Scientific & Technical Justification

Science case
We propose the observation of ∼1,200 high redshift quasars (2.0 < z < 2.4) within the SDSS-IV/APOGEE-2 survey to detect the
rest-frame optical Hβ-[OIII] emission lines (Hβ λ4960 Å; [OIII] λ4960, λ5008 Å), which lies in the near-IR H-band (1.5 − 1.7 µm)
at the quoted redshift. These lines cannot be observed with the BOSS spectrograph (3600-10400 Å) at redshifts larger than 1.

The detection of these lines will enable us to push further the investigations on three hot topics in the field of cosmology. First,
we will measure the possible variation of the fine-structure constant at redshift 2.2 with unprecedented accuracy using the [OIII]
emission lines. Secondly, we will calibrate different methods for computing the mass of super massive black holes (SMBHs) to test
the “anti-hierarchical” scenario for growth of black holes. Last, this sample will enable a robust investigation on the existing redshift
systematic discrepancy between Magnesium and Oxygen lines.

This Ancillary Science program will provide self-standing scientific results in the fields of fundamental physics and extra-galactic
astrophysics. Furthermore, this program has a minimal impact on the main survey goals.

Variation of the fine structure constant

The fine structure constant governs the electromagnetic coupling between photons and charged particles α = e2/~c. Current con-
straints on its relative variation ∆α/α over geological time scales are |∆α/α| < 7 × 10−8 up to z ≈ 0.15 (2 Gyrs ago), obtained from
the Oklo phenomenon [2]; and |∆α/α| < 3 × 10−7 up to z ≈ 0.45 (4-5 Gyrs ago) from meteorites [3]; which also excludes possible
variations on the scales of the solar system. By measuring fine-structure multiplets at different redshift in the absorption or emission
spectra of galaxies, located in different directions of the extragalactic Universe, we can measure an eventual cosmological variation
of α with time or space.

The [OIII] emission lines could be used to obtain a competitive constraint, < 10−5 with about ∼300 quasars, on the possible time
and/or spatial variation of the fine structure constant at redshift z ≈ 2.2. The [OIII] lines could be centered within a 0.14 Å accuracy
in rest-frame with a S/Nλ5007 ≈ 25 using the BOSS spectrograph (R ∼ 2, 000), see Albareti et al. (2015), in contrast to the 0.009 Å
accuracy level that will be achieved by the APOGEE spectrograph, thanks to its 10× higher spectral resolution and twice higher S/N
due to longer exposure times. With a single APOGEE-2 quasar spectrum, we can produce a measurement of the relative variation of
the fine structure constant of ∼ 9 × 10−5 at z ≈ 2.2; to be compared with our previous work using the BOSS quasar DR12 sample
∆α/α < 2.5 × 10−5 at z ≈ 0.6 obtained from > 10, 000 quasars [4]. The APOGEE constraint will be the first obtained at high-z
using emission lines and it will compete and test the results from the absorption line method using the VLT/UVES, Keck/HIRES and
Subaru/HDS spectrographs, which are affected by different systematics [5].

SMBH mass determination

The discovery of tight correlations between the masses of SMBHs and their host galaxy bulges [e.g. 6] resulted in a new industry of
studies of black hole growth over cosmic time, and the concomitant evolution of their host galaxies. In the now popular picture of
cosmic downsizing or so-called “anti-hierarchical” black hole growth [e.g. 7, 8], the most massive M ∼ 109 M� SMBHs grew at early
times (z∼3) during the peak of the luminous quasar activity, whereas at lower redshift (z<1) the less massive M ∼107 M� systems
are growing at the centers of quasars. As stellar dynamics based black hole masses estimates are impossible for distant objects, the
reverberation mapping technique has emerged as a means for measuring black hole masses in more distant quasars [e.g. 9-12].

At low-redshift, these studies have correlated the Hβ line width against black hole mass MBH, but Hβ is redshifted out of the
optical spectral window at z > 1, forcing reliance on the rest-frame ultraviolet emission lines like MgII λ2798 (1 < z < 2.3) and CIV
λ1549 (z > 2.3). These emission lines are associated with larger uncertainties on the derived masses, particularly when using the high
ionization CIV line [13, 14], which is believed to have contributions from non-gravitational motions possibly due to accretion disk
winds [e.g. 14, 15]. Because so far only ∼ 10 quasars have been reverberation mapped in CIV [9-12], all work based on black hole
masses at z > 2.5, such as the Eddington ratio distribution and studies of black hole and host scaling relations, are highly susceptible
to a systematic offset in the black hole mass scale due to poor reverberation mapping calibration.

The APOGEE measurements of the Hβ line λ4860 Å in >300 quasars, with known MgII, will greatly enhance today’s SMBH
calibration sample. We will combine the measurement of the FWHM of Hβ with the continuum luminosity (and hence broad-line
region size) to measure black hole masses and therefore further calibrate the MgII and/or CIV determined black holes masses. This
will enable us to characterize the Eddington ratio distribution and the black hole mass function for the entire SDSS sample with the
systematics due to poorly understood MgII and CIV black hole masses minimized.

Redshift systematics

It is known for a long time that there is a discrepancy between the redshifts measured from different quasar emission lines [16].
Redshifts obtained from broad emission lines, e.g. CIV λ1550 or CIII] λ1909 Å are the most affected with typical blueshifts of 500
km/s with respect to the quasar systemic redshift, e.g. [17]. The broad MgII λ2800 Å emission line was thought to be a good tracer of
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Figure 1: Flux-calibrated IR quasar spectra with Hβ and [OIII] lines taken with the Palomar 200” telescope and the Triplespec
instrument (R ∼ 3, 000). These lines are the strongest features that are present in H-band spectra for quasar at redshift z ∼ 2.2.

quasar redshifts and was used in the SDSS-III/BOSS quasar catalog [18]. However, different studies have shown that the MgII line is
also affected by a systematic shift of the order of ∼ 200 km/s [19], and that this effect depends on quasar luminosity [20]. One of the
best tracers of quasar systemic redshifts is the [OIII] λ4960, λ5008 Å doublet [21], which are strong emission lines, easily detected,
and because they are emitted from the narrow-line region, they trace the systemic redshift of the quasar to an accuracy of z = 44
km s−1 [22, 23]. A careful study of the emission line redshifts measured from broad emission lines observed in the BOSS spectra
(CIV, CIII] and MgII), and from [OIII] emission lines in the APOGEE spectra will allow to significantly reduce both systematic
and dispersion of errors on the redshift measurements, which is crucial for many quasar science studies, including quasar clustering
analyses.

Figure 1 shows flux-calibrated IR spectra with strong Hβ and [OIII] lines.

Feasibility assessment
This is a Type-1 proposal, we request fiber placement on optically observed SDSS-III/BOSS quasars in already-specified APOGEE-
2/North survey pointings.

BOSS quasars in the redshift range 2.0 < z < 2.4 have Vega magnitudes in the H-band >16. Besides, because of the galactic
extinction effects, quasars are best to be observed outside the galactic plane. For these reasons, ancillary fibers of halo, halo_stream
and halo_dsph fields distributed in 105 < RA < 260 and −5 < Dec < 70, which are planned to have ≥ 6 visits and overlap with
the BOSS quasar sky distribution of the North Galactic Cap (see Figure 2, left panel) are the best suitable pointings to this ancillary
science project. The large number of visits will increase the final S/N of the spectra. From the quasar sample with [OIII] lines analized
in [4], we derive a mean flux of 6.0×10−17, 4.2×10−17 and 1.5×10−17 erg/cm2/s for Hβ λ4960, [OIII] λ5007 and λ4960 respectively.
Their FWHM extend over ∼ 200 (Hβ) and ∼ 30 ([OIII]) pixels. Converting to Vega H-band magnitudes we get 15.7, 16.1 and 17.3
respectively. Hence, from the typical signal-to-noise ratio per pixel achieved by the APOGEE spectrograph,1 we estimate the lines
to be detected with a S/N ∼ 62, ∼ 45 and ∼ 20 respectively if 24 visits are completed. We note that even with 6 visits the lines will
be detected at half the S/N quoted above, which is enough to reach for instance a competitive error on ∆α/α, and reach the other
scientific goals since a factor 1/2 on the S/N will translate into a factor

√
2 in the error for the position of the lines. Furthermore,

the S/N of the continuum will be detected with S/N > 6 for quasars with H-band magnitudes H<19, and S/N > 23 for magnitudes
H<17.

The possible inter-fiber cross-talk does not affect typical APOGEE targets since their H-band magnitudes are brighter than the
magnitudes of our quasar targets.

1From https://trac.sdss.org/wiki/APOGEE2/AncillaryCall2015.
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Figure 2: Left panel: SDSS-III/BOSS DR12Q quasars (1,265) with 2.0 < z < 2.4 in J2000 equatorial coordinates overlapping with
the APOGEE-2-North halo, stream and dsph fields. Right panel: UKIDSS H-band magnitudes (Vega) and the SDSS r, i and z band
magnitudes of our Sample 1 (215 quasars). The solid line is the weighted linear fit between all quasars with UKIDSS magnitude
< 21 (22,420) used to estimate the H-band magnitude for quasars without UKIDSS data, while the dotted line is the same fit using
only our Sample 1, shown for comparison.

Data reduction
The APOGEE-2 data reduction and analysis pipeline will provide us 1-D extracted calibrated spectra corrected from airglow emission,
telluric absorption, and instrumental response.

The code for the analysis of the Hβ and [OIII] lines is already written. As a first guess, the code uses the redshift of the object
which is already known from the BOSS optical spectra.

We will need to implement the code to co-add the spectra from the different visits. The method will be calibrated after the first
quasar are observed multiple times. We estimate the implementation to last about a week.

Previous ancillary science programs
JP. K. was the PI of the Sloan Extended QUasar, ELG and LRG Survey (SEQUELS), where J. C., A. F. and D. S. were also involved
in. This ancillary science project consisted in a ∼ 1000 deg2 survey to study the physical and clustering properties of galaxies and
quasars in the z > 0.6 Universe. Three principal classes of targets were observed: i) Luminous Red Galaxies (LRG) identified
using SDSS combined with the all-sky WISE survey; ii) Quasars detected in the SDSS and WISE data, as well as using PTF and
PanSTARRS variability criteria; iii) Emission Line Galaxies (ELG) identified from U-band and SDSS data. The SEQUELS sample
helped in starting the SDSS-IV/eBOSS survey, and enhanced the legacy value of the SDSS and BOSS surveys.

JP. K. was also the PI of “Luminous Blue Galaxies at 0.7 < z < 1.7, “Do They Reside in Massive Dark Matter Halos?”, where J.
C. and D. S. where also involved in.

J. C. was the PI of “S3/eBOSS ELG target selection with S3-like or DES-like photometry”, where JP. K. was also involved.

Target information
Using the APOGEE-2 field list published in https://trac.sdss.org/wiki/APOGEE2/TargetingPlan and cross-matching with the list of
plates updated by G. Zasowski and provided by K. Covey (which includes expected number of visits and starting year), we selected
those plates which will be observed by the APOGEE-North spectrograph observed during and after year 3 (August 2016-July 2017),
whose type is halo, halo_stream or halo_dsph; and will be visited ≥ 6 times. We are left with 30 fields (20 halo, 9 halo_stream
and 1 halo_dsph).

From the 297,301 quasars of DR12Q, 81,392 have a redshift 2.0 < z < 2.4, and 1,265 are located in the selected fields (within a
radius of 1.4 degrees from the center of the field); see Figure 2, left panel. Only 255 have H-band flux measurements from UKIDSS
(neither of them have 2MASS H-band magnitude measurements2). Using the UKIDSS measurements, we further restrict our targets
to have H-band magnitudes < 20. In this way, we are left with 215 targets which are distributed in 6 fields (5 halo, 1 halo_stream,
0 halo_dsph). This defines Sample 1.

2The H-band magnitude limit in this survey was 15.1, our sources have H-band magnitudes > 16.
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Table 1: Summary of targets.

Field name Type Year Quasars Fiber hours

GD1-2 halo_stream 3 37 444
GD1-3 halo_stream 4 58 1044
ORPHAN-5 halo_stream 6 80 1920
160+45 halo 4 58 1392
ORPHAN-3 halo_stream 5 73 1752
210+60 halo 4 66 792
180+60 halo 5 47 1128
GD1-4 halo_stream 6 62 1488
ORPHAN-1 halo_stream 4 22 528
240+60 halo 4 40 960
270+60 halo 3 52 312
180+75 halo 3 38 456
240+75 halo 3 47 1128
300+60 halo 3 19 456
300+75 halo 3 48 576
120+75 halo 3 50 600
330+60 halo 5 38 456
060+75 halo 5 51 1224
GD1-5 halo_stream 5 69 1242
090+60 halo 4 51 1224
030+60 halo 3 35 840
060+60 halo 6 29 696
040+45 halo 3 56 672
080+45 halo 3 49 1176

The UKIDSS H-band photometric survey only covers 6 out of the 30 plates with possible quasar targets. To increase the possible
number of targets, we studied the correlation between the UKIDSS H-band measurements and the r, i, z-band magnitudes from the
SDSS photometry using all quasars (22,420) with UKIDSS H-band magnitude H< 21 and redshift 2.0 < z < 2.4 (not only the ones
overlapping with APOGEE fields of view), and derived a correlation that can be used to estimate H-band magnitudes (see Figure 2,
right panel). Thus, constraining the estimated H-band magnitude to be < 20, we define our Sample 2 which contains 960 quasars
distributed in 24 fields (17 halo, 7 halo_stream, 0 halo_dsph).

Using both samples, we build a complete sample of 1,175 quasars. In each plate, the targets are given priority ranking according
to their H-band magnitudes obtained either from UKIDSS or estimated from the SDSS z-band photometry. 726 of them are expected
to be observed during the years 3-4 while the remaining ones 449 are to be observed in the period 5-6. The total fiber hours are
22,506 (12,600 for years 3-4; 9,906 for years 5-6). However, we will reduce this sample, keeping the brightest quasars, according to
the number of allocated fiber hours, if any.

Table 1 describes the distribution of quasars per plate. Table 2 contains the brightest 21 targets in the H-band, with H<16.7.
Please, find the complete list of targets (1,175) at

https://trac.sdss3.org/attachment/wiki/QSOalphaVar/apogee q targets.txt.
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Part II
QFT in curved spacetimes

Quantum Field Theory (QFT) in curved spacetimes is an effective theory where matter and its non-
gravitational interactions are fully quantized. The gravitational field is treated in a classical way.
QFT in curved spacetimes works in a very well-defined range of energy scales because of the huge
difference in the coupling strength between non-gravitational interactions and gravity. Due to the
lack of a full quantum theory of gravity, this framework is useful to deal with quantum fields in the
presence of gravitational interactions. Nevertheless, it has also provided us with the first predictions
on quantum and gravitational effects, the most notorious one being the Hawking radiation.

Formulation of QFT in curved spacetimes

To extend the formulation of classical field theory from flat to curved spacetimes is straightforward.
However, it is highly non-trivial to extend the quantum version. One of the main reasons is that
the notion of particles or, in general, of states is not invariant under diffeomorphism, i.e. general
coordinate transformations. Therefore, there is no way to define a canonical vacuum state unless
the spacetime has some symmetry, for instance a timelike (conformal) Killing vector field. This
imposes a quite restrictive and unrealistic limitation on the theory. One can relax this assumption
by requiring the spacetime to be only asymptotically stationary. In this way, an asymptotic notion of
particles can be defined and creation/annihilation of particles in the presence of gravitational fields
be studied, for instance by defining an S-matrix between early (〈in|) and late (|out〉) asymptotic
states.

The axiomatic formulation of QFT in Minkowski spacetime is based on the Wightman axioms
(Streater and Wightman, 1989). Those axioms make heavy use of Poincaré invariance of flat
spacetime and the existence of a preferred vacuum state. None of these statements holds for a
general spacetime.22

It seems that the most promising approach to define QFT in curved spacetimes is through the
algebraic formulation of QFT. This formulation was first developed by Haag and Kastler (1964)
for flat spacetimes. Wald (1995) discussed its application to curved spacetimes. It turns out
that all Wightman axioms, except one, could be generalized in a relative straightforward manner

22For a detailed discussion of the difficulties encountered when trying to extend Wightman axioms to curved
spacetimes see Wald (2009).

59



QFT in curved spacetimes

to curved spacetimes in the algebraic formulation. The remaining axiom states the existence of
a unique Poincaré invariant vacuum state. Hollands and Wald (2010) proposed to replace this
axiom by the existence of an Operator Product Expansion (OPE) whose coefficients satisfy some
properties. OPE’s have been shown to hold order by order in perturbation theory in the presence
of renormalizable interactions in curved spacetimes (Hollands, 2007). Furthermore, several results
have been proved within the algebraic formulation, for instance that renormalized perturbation
theory can be constructed in curved spacetimes (Hollands and Wald, 2001, 2002, 2003), including
Yang-Mills fields (Hollands, 2008).

This is still an open area of research. We refer to Wald (2006) for further details and references
about the topic.

Canonical formulation

In contrast to the algebraic formulation, the canonical formulation of QFT in curved spacetimes
(Birrell and Davies, 1984; Ford, 1997) is a straightforward way to generalize the theory from flat to
curved spacetimes. This formulation is useful from a physical point of view when the spacetime has
a symmetry or at least an approximate symmetry that enables us to decompose the field into positive
and negative frequency parts for a physically relevant observer. In cosmological scenarios the
spacetime metric is well described by (flat) FRW spacetimes which in fact do possess a conformal
Killing vector field that singles out a preferred vacuum state (Bunch-Davies vacuum).

In the following we introduce very briefly this formulation for a scalar field. Assuming no
coupling between the field and curvature, the classical action for real scalar field φ with potential
V(φ) in arbitrary (D + 1)-dimensional curved spacetime is given by

S[φ,gµν] =
∫

dD+1x
√
g

(
1
2
gµν ∂µφ ∂νφ − V(φ)

)
(8)

where gµν is the spacetime metric. The equations of motion derived from the previous action are

� φ + V ′(φ) = 0 . (9)

In order to implement the canonical quantization for the field φ, a complete set of mode solutions
{φk} for eq. (9) has to be found. However, solutions of the field equations are not a covariant concept
and therefore a preferred frame of reference, a particular coordinate system (η,x), is selected from
the beginning. The solutions have to be orthonormal, i.e.

(φk, φk ′) = δD(k − k′) , (10)

with respect to the standard scalar product in curved spacetime

(φk, φk ′) = i
∫
Σ

[
φ∗k ′

(
∂µφk

)
−

(
∂µφ

∗
k ′
)
φk

] √
gΣ dΣµ, (11)
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where dΣµ = nµdΣ, nµ is a unit timelike vector directed to the future and orthogonal to the
spatial hypersurface Σ, whereas √gΣ is the determinant of the metric on Σ. This scalar product is
independent of the choice of the spatial hypersurface Σ.

In terms of the orthonormal modes, the scalar field φ can be expanded as

φ(η,x) =
∫

dDk
[
ck φk(η,x) + c†k φ

∗
k(η,x)

]
. (12)

Next, the quantum field is promoted to a quantum operator by identifying the c-numbers c†k′ and ck

with the creation a†k′ and annihilation ak operators that satisfy the standard commutation relations

[ak,a
†

k′] = δD(k − k′) . (13)

The vacuum state associated to the (quantum) modes {φk} is defined by

ak |0〉 = 0 ∀k , (14)

from which the whole Fock space is constructed by applying {a†k′} operators.
In spite of the simplicity of equation (14) in defining the vacuum state, it is important to

highlight that the vacuum state depends on the mode solutions {φk} and consequently on the frame
of reference (η,x) chosen at the beginning in order to solve the Klein-Gordon equation. In flat
spacetime, it is natural to consider inertial observers in order to pick up a vacuum, that can be shown
to be equivalent for every inertial observer.23 In cosmological spacetimes, comoving observers are
also relevant observers from a physical point of view. However, in a general spacetime there is
no well motivated election of a vacuum state. This problem, as recognized long ago, cannot be
overcome because states are not covariant objects to start with, which implies that the concept of
particles is ambiguous and observer dependent.24

Another important issue is that, in general, it is not possible to obtain explicit expressions for
set of solutions {φk}, which is mandatory in order to quantize the theory. However, there are
perturbative methods (Zeldovich and Starobinsky, 1972; Birrell and Davies, 1980). For instance, a
WKB ansatz

φk(η,x) = fk(η,x) eiθk (η,x) , (15)

where fk(η,x) is assumed to evolve slowly in space and time, provides a good starting point. This
enables us to simplify the equation of motion. Such an adiabatic ansatz works whenever the
Compton wavelength of the field is much smaller than the typical astrophysical or cosmological

23In inertial coordinates, the mode solutions of the Klein-Gordon equation are given by plane waves which are indeed
covariant under Lorentz transformations, i.e. plane waves are solutions in any inertial frame. Therefore, the vacuum
state defined by pane waves is the same for any inertial observer.

24This phenomenon is well illustrated by the Unruh effect (see Crispino et al., 2008, for a recent review).
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scales involved.
Despite the problems encountered when trying to formulate QFT in curved spacetimes, this

formulation of the theory is enough to obtain some non-trivial results. For example, estimations of
the amount of particle creation produced by gravitational fields25 in expanding universes could be
obtained in a fairly straightforward way (Parker, 1969, 1971). In this regard, Bogolubov coefficients
play an important role (Bogolyubov, 1947). These coefficients express the creation and annihilation
operators defined by a particular set of solutions in terms of the corresponding operators defined by
another set of solutions.

Another far-reaching theoretical result is the Hawking radiation (Hawking, 1974, 1975). This
result together with the subject of black hole thermodynamics introduced by Bekenstein (1973)
have led to the developments of new areas of research like Holography (Bousso, 2002).

Green functions

Large efforts have been devoted to the study of Green functions in curved spacetimes. General
properties of vacuum states could be studied within this approach. The most important advantage
is that it is a covariant way to deal with quantum fields in curved spacetime. Important results as
the DeWitt-Schwinger and Hadamard representations for a Green function in curved spacetimes are
also worthwhile to mention. We follow Albareti (2014) in part of this section.

Green functions are vacuum expectations values of products of free field operators in a particular
vacuum state. The simplest ones are

G+(x, x′) = 〈0|φ(x)φ(x′)|0〉 Positive frequency function (16)
G−(x, x′) = 〈0|φ(x′)φ(x)|0〉 Negative frequency function , (17)

which are known asWightman functions. Two important ones because of their symmetry properties
are

i G(x, x′) = 〈0| [φ(x), φ(x′)] |0〉 Pauli-Jordan or Schwinger function (18)
G(1)(x, x′) = 〈0| {φ(x), φ(x′)} |0〉 Hadamard’s elementary function , (19)

which are antisymmetric and symmetric in their arguments respectively.26 The most important
because of its role in flat QFT is the Feynman propagator

i GF(x, x′) = 〈0|T (φ(x)φ(x′)) |0〉 , (22)

25This idea was first suggested by Schrodinger (1939).
26They can be written in terms of the Wightman functions as

i G(x, x ′) = G+(x, x ′) − G−(x, x ′) (20)
G(1)(x, x ′) = G+(x, x ′) + G−(x, x ′) . (21)
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where the T operator stands for the time ordered product of the fields.
One of the main reason for considering Green function is that the ultraviolet divergences of QFT

are related with the short distance properties of vacuum expectation values of field operators (Ford,
1997). It is reasonable to expect on physical grounds that the high frequency behavior of the field is
independent of the global structure of spacetime and of the particular quantum state, which indeed
is globally defined. Instead, it should only depends on the local geometry. This is a quite important
requirement for applying regularization and renormalization procedures. These considerations also
apply to Green functions. The importance of this short-distance behavior was pointed out by DeWitt
(1964) at the classical and quantum levels. DeWitt introduced the so-called DeWitt-Schwinger and
Hadamard representation of the Feynman propagator based on previous considerations found in the
work of Schwinger (1951) and Hadamard (1923).

In the following a short revision of both representations is presented.

Hadamard representation

The Hadamard representation is built from a set of two-point coefficients which are defined by
recursive relations derived from the Klein-Gordon equation. In this sense, it is similar to DeWitt-
Schwinger representation, however it is more general since it can also encode additional physical
information about the field such as the effect of boundary conditions and the dependence on the
quantum state.

The Hadamard expansion is given by

GH
F (x, x

′) =
i

8π2

[
U(x, x′)
−σx,x′ + iε

+ V(x, x′) ln
[
−σx,x′ + iε

]
+W(x, x′)

]
, (23)

where U(x, x′), V(x, x′) and W(x, x′) are symmetric in x, x′ and regular as x′ → x, and σp,q is the
Synge’s world function (or geodetic distance) defined as

σp,q =


1
2 (∆τ)

2
p,q p and q timelike related

−1
2 (∆s)2p,q p and q spacelike related

0 p and q nulllike related

(24)

where (∆τ)p,q and (∆s)p,q are the proper time and proper length respectively between the points p
and q. V(x, x′) and W(x, x′) could be expanded as follows

V(x, x′) =
∞∑

n=0
Vn(x, x′)σn

x,x′ (25)

W(x, x′) =
∞∑

n=0
Wn(x, x′)σn

x,x′ . (26)
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The coefficientsVn(x, x′) andWn(x, x′) are determined by recursive relations derived from the Klein-
Gordon equation. However, the termW0(x, x′) is undetermined by the recursive relations and it may
encode additional information about the field.

The divergent structure of (23) is known as the Hadamard behaviour and the vacuum state
derived from it is called a Hadamard state (Carroll, 2004). This expansion is more useful to study
the divergent structure of the Green function. In particular, we can compare in a straightforward
way if a specific Green function behaves as expected from the Minkowski case.

However, we should comment that it is not completely obvious that we must recover the
Minkowski behaviour in curved spacetimes at high frequencies. For instance, if the field is non-
minimally coupled to gravity there may exist non-trivial differences with the flat case. An example
is given by the stress-energy tensor of a scalar field with a conformal coupling to curvature which
differs from the stress-energy tensor of theminimally coupled field evenwhen the curvature vanishes
(Tagirov, 2005).

DeWitt-Schwinger representation

This representation also known as the heat kernel expansion of the Feynman Green function in
general curved spacetimes has a great number of applications. It is of fundamental importance
in Mathematics in order to study the relation between the spectral decomposition of a differential
operator and the properties of the underlyingmanifold. We refer the reader to the extensive treatment
Vassilevich (2003) for more details. For us, this expansion is useful to study the short-distance
behaviour x → x′.

We follow Birrell and Davies (1984) in its derivation. Let us consider normal coordinates with
origin at x′ in a d-dimensional spacetime. Then, for x (xα) in the neighbourhood of x′

gµν(x) = ηµν +
1
3

Rµανβ xα xβ −
1
6

Rµανβ γ xα xβ xγ + ... (27)

where ηµν is Minkowski metric, and Rµανβ is the Riemann tensor. Then, the geodetic distance is
given by

σx,x′ = −
1
2
ηµν xµ xν (28)

at leading order. Next, we define

GF(x, x′) = (−g(x))1/4 GF(x, x′) , (29)

where g(x) = |det gµν | and its Fourier transform as

GF(x, x′) =
1
(2π)d

∫
dkd eik ·x GF(k) , (30)
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where k · x = ηµν k µ xν. Then, using the expansion of the metric around x′ in normal coordinates
it is possible to solve the Klein-Gordon equation by iteration in momentum space to any adiabatic
order, i.e. derivatives of the metric. By returning to coordinate space, the following expression is
obtained27

GF(x, x′) =
1

(4π)d/2

∫ ∞

0

1
(is)d/2

exp
(
−im2s +

σx,x′

2is

)
F(x, x′; is) , (32)

where F(x, x′; is) can be expanded as

F(x, x′; is) =
∞∑

j=0
a j(x, x′) (is) j . (33)

The functions a j(x, x′) are called the heat-kernel coefficients and they are computed using recursive
relations derived from the Klein-Gordon equation. Finally, it is possible to show that the DeWitt-
Schwinger representation reads

GDS
F (x, x

′) =
∆1/2(x, x′)
(4π)d/2

∫ ∞

0

1
(is)d/2

exp
(
−im2s +

σx,x′

2is

)
F(x, x′; is) , (34)

where ∆ is the Van Vleck determinant

∆(x, x′) = −
det

[
∂µ∂νσx,x′

]√
g(x)g(x′)

(35)

which coincides with (−g(x))−1/2 in normal coordinates. If the expansion (33) is replaced in (34)
the integral in s can be performed and we get the adiabatic expansion of the DeWitt-Schwinger
representation

GDS
F (x, x

′) =
−iπ ∆1/2(x, x′)
(4πi)d/2

∞∑
j=0

a j(x, x′)
(
−

∂

∂m2

) j (
2m2

−σx,x′ + iε

) (d−2)/4

×H(2)
(d−2)/2

(
(2m2(σx,x′ − iε))1/2

)
, (36)

where the −iε prescription ensures that the Green function represents the expectation value of a
time ordered product of fields in some set of states. The first term of eq. (36) is the same as the

27The integral representation

1
k2 − m2 + iε

= −i
∫ ∞

0
eis(k

2−m2+iε ) (31)

have been used to obtain equation (32) in going from momentum to coordinate space. In this way, the integration in k
and s can be interchanged and a closed expression in coordinate space is obtained.
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Feynman propagator in flat spacetime. The heat-kernel coefficients a j(x, x′) cannot be determined
exactly and they are computed by expanding them in terms of σx,x′ and its covariant derivatives.
This is a formidable task. It is important to note that they are purely geometrical two-points objects
formally independent of the spacetime dimension. They are also important in connection with
spectral geometry, topology of manifolds and the Atiyah-Singer index theorem (Gilkey, 1984).

With the asymptotic expansion given by eq. (34), one can obtain an expression for the one-loop
effective Lagrangian, given by28

Leff =
i
2

lim
x′→x

∫ ∞

m2
dm2 GDS

F (x, x
′) , (37)

as

Leff = lim
x′→x
−i
∆1/2(x, x′)
2(4π)d/2

∞∑
j=0

a j(x, x′)
∫ ∞

0

(is) j−1

(is)d/2
exp

(
−im2s +

σx,x′

2is

)
. (38)

Let us notice that the first d/2 + 1 terms in the previous expression are divergent as σx,x′ → 0. By
performing an analytical continuation over the complex plane of the dimension d, the coincidence
limit x′→ x can be computed to get

Leff =
1

2(4π)d/2

∞∑
j=0

a j(x) (m2)d/2− j
Γ( j − d/2)

=
1

2(4π)d/2

(
m
µ

)d−4 ∞∑
j=0

a j(x)m4−2 j
Γ( j − d/2) , (39)

where a j(x) ≡ a j(x, x) and µ is an arbitrary mass scale. In d = 4 dimensions, the first three terms of
eq. (39) are divergent because of the poles of the Gamma functions. Expanding around the poles,
the effective Lagrangian reads

Leff = −
1

(4π)d/4

[
1

d − 4
+
γ

2
+

1
2

ln
(
m2

µ2

)] (
4m4

d(d − 2)
a0 −

2m2

d − 2
a1 + a2

)
. (40)

The first three a j(x) coefficients are given by

a0(x) = 1 (41)

a1(x) =
(
1
6
− ξ

)
R (42)

a2(x) =
1

180

(
RαβγδRαβγδ − RαβRαβ

)
−

1
6

(
1
5
− ξ

)
�R +

1
2

(
1
6
− ξ

)2
R2 , (43)

28In Paper II, we provide a derivation of this expression.
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where Rµν = Rαµαν is the Ricci tensor, R = gµνRµν is the Ricci scalar and ξ is the coupling of the
field φ with the Ricci scalar.29

The result of eq. (40) can be renormalized by absorbing the divergences into the gravitational
Lagrangian or into the matter Lagrangian. In any case, the renormalized parameters eventually
depend on the curvature, for instance through the coefficient a1(x). The relative size of the
curvature corrections is given by ∼ R/m2. This effect is currently negligible for any of the fields
of the Standard Model. In the case of neutrinos and depending on their mass, this effect could be
relevant after the electroweak phase transition. Concerning the Higgs field, the contribution due to
a1(x) results in a correction to its effective potential proportional to m2(φ) R that would produce a
spacetime dependence of the Higgs vacuum expectation value. However, this effect is negligible
after the electroweak transition.

DeWitt-Schwinger vs Hadamard

Both representation could be used in connection with the regularization and renormalization of the
stress-energy tensor and the calculation of the renormalized effective action of a quantum field on
a curved spacetime. The DeWitt-Schwinger expansion was used jointly with the point-splitting
prescription to obtain important results concerning the renormalization of the stress-energy tensor
(Christensen, 1976, 1978; Bunch and Davies, 1978a,b). This method has been modified using the
Hadamard representation resulting in a more general and efficient method (see Décanini and Folacci
(2006) and references therein). It is also more rigorous because of its axiomatic foundation.

Let us notice that it is possible to relate both representations through expressing the Hadamard
coefficients Un(x, x′) and Vn(x, x′) in terms of the adiabatic coefficients a j(x, x′) of the DeWitt-
Schwinger expression. For instance, Un(x, x′) and Vn(x, x′) are expressed as a function of the first
n and n + 1 adiabatic coefficients a j(x, x′), respectively. However, this does not fix completely
the Hadamard representation of the Feynman propagator since we still have the freedom to choose
W0(x, x′). It can be proved that the DeWitt-Schwinger expansion is recovered from the Hadamard
form when a specific W0(x, x′) is chosen.

The more general character of the Hadamard representation highlights the fact that the DeWitt-
Schwinger representation is a local expansionwhich depends on curvature alone and it is independent
of the vacuum state. But, the effective action is in general a non-local functional which can depend
on the particular choice of vacuum and the global properties of the spacetime.

In this respect, the effect of curvature on the expectation values of fields in curved backgrounds
predicted by the DeWitt-Schwinger expansion may not be the only or even the dominant effect due
to the structure of spacetime. There could be effects due to the properties of the vacuum state and
the topological structure of spacetime. It is important to note that these effect may not be expressed
in a covariant way, for instance in terms of the curvature, because of the non-covariant nature of

29The equation of motion for a field with a non-minimal coupling to gravity (ξ , 0) is given by

� φ + V ′(φ) + ξRφ = 0 .
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the vacuum state itself. Therefore, these contributions may not be suppressed as the curvature
terms given by the local expansion. They may be expressed directly in terms of the components of
the metric gµν. This lead us to compute, in this thesis, these effects on particular spacetimes and
quantum states with a different approach in order to take into account the properties of particular
vacuum states.
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“Gravitational perturbations of the Higgs field”
Physical Review D, Volume 95, 044030.
Authors: Franco D. Albareti, Antonio L. Maroto and Francisco Prada.

Motivation

The discovery at the Large Hadron Collider of the Higgs boson in 2012 is one of the greatest success
of Particle Physics in recent years. According to the Standard Model prediction, its existence also
implies the presence of a classical scalar field that permeates all of space and generates the masses of
quarks, leptons and gauge bosons. The effects of classical gravitational fields on its evolution, which
eventually impacts on the masses of elementary particles, are believed to be dependent on curvature
and therefore to be negligible at macroscopic scales. However, although local contributions do
depend on curvature alone and are independent of the vacuum state, the effective action is in general
a non-local functional which can depend on the particular choice of vacuum and the global properties
of the space-time. In this work, we present a formalism based on mode summation which allows
to compute the complete one-loop effective potential of self-interacting scalar fields in perturbed
Robertson-Walker spacetimes using adiabatic approximation.
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We study the possible effects of classical gravitational backgrounds on the Higgs field through the
modifications induced in the one-loop effective potential and the vacuum expectation value of the energy-
momentum tensor. We concentrate our study on the Higgs self-interaction contribution in a perturbed FRW
metric. For weak and slowly varying gravitational fields, a complete set of mode solutions for the Klein-
Gordon equation is obtained to leading order in the adiabatic approximation. Dimensional regularization
has been used in the integral evaluation, and a detailed study of the integration of nonrational functions in
this formalism has been presented. As expected, the regularized effective potential contains the same
divergences as in flat spacetime, which can be renormalized without the need of additional counterterms.
We find that, in contrast with other regularization methods, even though metric perturbations affect the
mode solutions, they do not contribute to the leading adiabatic order of the potential. We also obtain explicit
expressions of the complete energy-momentum tensor for general nonminimal coupling in terms of the
perturbed modes. The corresponding leading adiabatic contributions are also obtained.

DOI: 10.1103/PhysRevD.95.044030

I. INTRODUCTION

There are two equally fundamental aspects of the Higgs
mechanism for electroweak symmetry breaking which have
received remarkably different attention in the last years. On
one hand, we have the prediction that a new scalar boson
should be present in the spectrum of the theory. Such a
new particle has been recently discovered by the ATLAS
and CMS experiments at the LHC [1,2]. The most precise
measurement to date of its mass comes from a combination
of data from both experiments and is given by mH ¼
125.09� 0.21ðstatÞ � 0.11ðsystÞ GeV [3]. A large deal of
experimental effort is being devoted to the study of the
properties of the Higgs boson. Apart from improving the
precision in the determination of its mass, measurements
of its production and decay channels, self-coupling and
couplings to other particles are being performed. So far,
all of them are in excellent agreement with the predictions
of the Standard Model (SM) [4–6].
On the other hand, the mechanism also predicts the

existence of a Higgs field, i.e., a constant classical field
ϕ̂ ¼ v with v the Higgs vacuum expectation value
(VEV).1 given by v ¼ 246.221� 0.002 GeV [7]. It is
precisely the interaction with the Higgs field what

generates the masses of quarks, leptons and gauge bosons.
The presence of this nonvanishing field which permeates
all of space is a distinctive feature with respect to the rest
of SM fields which have vanishing VEVs. Moreover,
together with the homogeneous gravitational field created
by the cosmological energy density, the Higgs field is the
only SM field which is present today in the Universe on its
largest scales. This fact opens the interesting possibility of
probing the Higgs field not only by exciting its quanta in
colliders, but by directly perturbing its VEV. Thus,
for example, the fact that the Higgs field is a dynamical
field sourced by massive particles suggests that the
presence of a heavy particle could induce shifts in the
masses of neighboring ones [8]. This effect does not need
the production of on-shell Higgs particles, but because of
the short range of the corresponding Yukawa interaction,
it is negligible at distances beyond the Compton wave-
length of the Higgs boson. Existing data does not seem to
contain enough kinematic information in order to confirm
or exclude it. A similar approach has been proposed in [9]
in order to probe the Higgs couplings to electrons and
light quarks. The idea of generating peculiar Higgs shifts
was also considered in a different context in [10]. In that
work a nonminimal coupling of the Higgs field to the
spacetime curvature was considered. The nonminimal
coupling modifies the effective potential inducing shifts
of the VEV in high-curvature regions such as those near
neutron stars or black holes [11].
In this work, we explore further the effects of classical

gravitational fields on the Higgs VEV. We consider the

*‘la Caixa’-Severo Ochoa Scholar, franco.albareti@csic.es
†maroto@ucm.es
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1In the SM, the Higgs VEV is related to the Fermi coupling

constant by v ¼ ð ffiffiffi
2

p
GFÞ−1=2. The value of this constant is known

since the original works of Fermi in the early 30’s.
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SM Higgs minimally coupled to gravity. The Higgs VEV
corresponds to the constant field configuration that
minimizes the effective potential. This potential contains
not only the classical (tree-level) contribution, but also
loop corrections introduced by quantum effects of all the
particles that couple to the Higgs, including the Higgs self-
interactions [12]. More relevant from the point of view of
the present paper is the fact that these quantum corrections
are sensitive to the spacetime geometry. The aim of this
work is precisely to start the study of the Higgs one-loop
effective potential in weak and slowly varying gravitational
backgrounds. For simplicity and as a first step, we limit
ourselves to the contributions of the Higgs self-interactions.
The fact that we assume weak gravitational backgrounds,
i.e., whose curvature scale is much smaller than the Higgs
mass, allows us to use an adiabatic approximation and
avoid the problems generated by mode mixing and particle
production typical of quantum field theory in curved
spacetime. For the same reason, we can still define an
effective quasi-potential [13,14] instead of using the full
effective action since all the kinetic terms are suppressed
with respect to the potential ones.
Our work deals with the calculation of vacuum expect-

ation values of quadratic operators in curved spacetime
[15,16]. These are divergent objects whose renormalization
requires the introduction of additional counterterms
depending on the curvature tensors. Different techniques
have been used in the literature to work out these diver-
gences which, because of the fact that they are determined
by the short-distance physics, depend locally on the
geometry of spacetime [17–26]. But, apart from the local
divergent contributions, there are also finite nonlocal terms
which are sensitive to the large-scale structure of the
manifold and, in general, depend on the quantum state
on which the expectation value is evaluated. In some
particular simple geometries, such as conformally flat
metrics, these finite contributions can be exactly computed
in some cases from the knowledge of the trace anomaly,
but in general only brute force methods, such as mode
summation, are available to evaluate them [27–30]. This is
precisely the approach we follow in this work. In particular,
we extend the analysis performed in [31] to arbitrary
dimension in order to calculate the integrals over the
quantum modes using dimensional regularization. Several
errors in [31] are also corrected in the present paper.
The work is organized as follows: in Sec. II, the effective

action formalism is briefly reviewed. The field quantization
in arbitrary Dþ 1 dimensions in the adiabatic approxima-
tion is discussed in Sec. III. Section IV contains the full
mode solutions to first order in metric perturbations. The
general results for the Higgs effective potential and the
method used to obtain them are described in Sec. V.
The vacuum expectation value of the energy-momentum
tensor is calculated in Sec. VI. The paper ends in Sec. VII
with some discussions and conclusions.

II. ONE-LOOP EFFECTIVE ACTION

The classical action for a minimally coupled real scalar
field with potential VðϕÞ in arbitrary (Dþ 1)-dimensional
curved spacetime reads

S½ϕ; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

In the case of the real Higgs field, the classical potential is
given by

VðϕÞ ¼ V0 þ
1

2
M2ϕ2 þ λ

4
ϕ4 ð2Þ

with M2 < 0. The minimum corresponds to ϕ ¼ v with
v2 ¼ −M2=λ. The mass of the Higgs boson at tree-level
is given by m2

H ¼ V 00ðvÞ ¼ −2M2 and from the recently
measured value of mH at the LHC, the Higgs self-coupling
is λ≃ 1=8.
The action is minimized by the solutions ϕ ¼ ϕ̂ of the

classical equation of motion:

□ϕ̂þ V 0ðϕ̂Þ ¼ 0: ð3Þ
The quantum fluctuations around the classical solution
δϕ ¼ ϕ − ϕ̂ satisfy the equation of motion

ð□þm2ðϕ̂ÞÞδϕ ¼ 0 ð4Þ
with

m2ðϕ̂Þ ¼ V 00ðϕ̂Þ ¼ M2 þ 3λϕ̂2: ð5Þ
The effective action which takes into account the effect of
quantum fluctuations on the dynamics of the classical field
can be written as

W½ϕ̂; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p
Leff ð6Þ

which can be expanded up to one-loop order as

W½ϕ̂; gμν� ¼ S½ϕ̂; gμν� þWð1Þ½ϕ̂; gμν�: ð7Þ
The one-loop correction Wð1Þ can be written as [21]

Wð1Þ½ϕ̂; gμν� ¼
i
2
ln detð−KÞ ¼ i

2
Tr lnð−KÞ ð8Þ

where Tr denotes the functional trace and K is the quadratic
operator associated to the quantum fluctuations

Kðx; yÞ ¼ ð□x þm2ðϕ̂ÞÞ δ
Dþ1ðx; yÞffiffiffi

g
p : ð9Þ

The corresponding Feynman’s Green function

iGFðx; yÞ ¼ h0jTðδϕðxÞδϕðyÞÞj0i ð10Þ
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satisfies

Kðx; yÞGFðy; zÞ ¼ −
δDþ1ðx; zÞffiffiffi

g
p ð11Þ

where the de Witt repeated indices rule has been assumed.
Following [32,33], let us consider the derivative of the

one-loop effective action with respect to the mass param-
eter m2, so that from (11) we can write

dWð1Þ

dm2
¼ −

i
2
TrGF ð12Þ

or writing the trace explicitly

dWð1Þ

dm2
¼ −

1

2

Z
dDþ1x

ffiffiffi
g

p
iGFðx; xÞ

¼ −
1

2

Z
dDþ1x

ffiffiffi
g

p h0jδϕ2ðxÞj0i: ð13Þ

Thus, we can finally get a formal expression for the one-
loop contribution to the effective Lagrangian as

Lð1Þ
eff ðxÞ ¼ −

1

2

Z
m2ðϕ̂Þ

0

dm2h0jδϕ2ðxÞj0i: ð14Þ

In general, in a static homogeneous spacetime, ϕ̂ is a
constant field and the effective Lagrangian defines the

effective potential V1ðϕ̂Þ ¼ −Lð1Þ
eff ðϕ̂Þ. In time-dependent or

inhomogeneous spacetimes, ϕ̂ changes in time or space
and the effective potential is ill defined. In this case, the
effective Lagrangian is a function of the classical fields; i.e.,
it will, in general, depend on ϕ̂ and gμν and arbitrary order
derivatives,

Leff ¼ Leff ½ϕ̂; gμν; ∂ϕ̂; ∂2ϕ̂; ∂gμν; ∂2gμν;…�: ð15Þ

However, in the case in which the background fields
(ϕ̂, gμν) evolve very slowly in space and time compared to
the evolution of the fluctuations, the derivative terms in
the effective Lagrangian are negligible, and the effective
Lagrangian can be considered as an effective quasipotential
[13,14]. As we will explicitly show in the next section, this
is indeed the case for Higgs fluctuations in weak gravita-
tional backgrounds so that we can still define the one-loop
effective potential as

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ V1ðϕ̂Þ; ð16Þ

where

V1ðϕ̂Þ ¼ −Lð1Þ
eff ðϕ̂Þ ¼

1

2

Z
m2ðϕ̂Þ

0

dm2h0jδϕ2j0i: ð17Þ

The equation of motion for the classical field, thus,
reduces to

V 0
effðϕ̂Þ≃ 0; ð18Þ

i.e., the effective (quasi)potential correctly determines the
VEV for a slowly varying background metric.
The central object in this calculation is the vacuum

expectation value of a quadratic operator (14). The standard
Schwinger–de Witt representation [15,16] allows us to
obtain a local expansion of GF in curvatures over the mass
parameter m2. However, as mentioned before, this repre-
sentation does not provide the full nonlocal finite contri-
butions of the effective action in which we are interested
in this work. Thus we will follow [15] and evaluate the
expectation value from the explicit mode expansion of the
quantum fields.

III. QUANTIZATION AND ADIABATIC
APPROXIMATION

We will consider quantum fluctuations of the Higgs field
in a (Dþ 1)-dimensional spacetime metric which can be
written as a scalar perturbation around a flat Robertson-
Walker background

ds2 ¼ a2ðηÞf½1þ 2Φðη;xÞ�dη2 − ½1 − 2Ψðη;xÞ�dx2g;
ð19Þ

where η is the conformal time, aðηÞ the scale factor, and Φ
andΨ are the scalar perturbations in the longitudinal gauge.
This metric describes the spacetime geometry in cosmo-
logical contexts with density perturbations, but also, in
the aðηÞ ¼ 1 case, it provides a good description of weak
gravitational fields generated by slowly rotating astrophysi-
cal objects like the Sun.
Up to first order in metric perturbations, Eq. (4) for the

fluctuation field δϕ reads

δϕ00 þ ½ðD − 1ÞH − Φ0 −DΨ0�δϕ0 − ½1þ 2ðΦþΨÞ�∇2δϕ

− ∇δϕ · ∇½Φ − ðD − 2ÞΨ� þ a2ð1þ 2ΦÞm2ðϕ̂Þδϕ ¼ 0;

ð20Þ

where H ¼ a0=a is the comoving Hubble parameter.
In order to evaluate V1ðϕ̂Þ, we need to quantize the

fluctuation field. Because of the inhomogeneities of the
metric tensor, exact solutions for the perturbed Eq. (20)
are not expected to be found. Nevertheless, a perturbative
expansion of the solution in powers of metric perturbations
can be obtained. Moreover, when the mode frequency ω is
larger than the typical temporal or spatial frequency of the
background metric, i.e., ω2 ≫ H2 and ω2 ≫ f∇2Φ;∇2Ψg,
one can consider an adiabatic approximation in order to
quantize the field fluctuations δϕ. Since ω ≥ mH, the
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adiabatic approximation is extremely good during the
whole matter and acceleration eras until present, and also
during most of the radiation era, for all cosmological and
astrophysical scales of interest.
Let us start with the canonical quantization procedure

for the field perturbations δϕ. Thus, following [34,35], we
build a complete set of mode solutions for (20), which are
orthonormal with respect to the standard scalar product in
curved spacetime [15],

ðδϕk; δϕk0 Þ ¼ i
Z
Σ
½δϕ�

k0 ð∂μδϕkÞ − ð∂μδϕ
�
k0 Þδϕk�

ffiffiffiffiffi
gΣ

p
dΣμ;

ð21Þ

with dΣμ ¼ nμdΣ. Here nμ is a unit timelike vector directed
to the future and orthogonal to the η ¼ const hypersurface
Σ, i.e.,

dΣμ ¼ dDx

�
1 − Φ
a

; 0

�
; ð22Þ

whereas the determinant of the metric on the spatial
hypersurface reads to first order in metric perturbations

ffiffiffiffiffi
gΣ

p ¼ aDð1 −DΨÞ: ð23Þ

With this definition, the scalar product is independent on
the choice of spatial hypersurface Σ.
In terms of orthonormal modes,

ðδϕk; δϕk0 Þ ¼ δDðk − k0Þ; ð24Þ

the fluctuation field δϕ can be expanded as

δϕðη;xÞ ¼
Z

dDk½akδϕkðη;xÞ þ a†kδϕ
�
kðη;xÞ�: ð25Þ

The corresponding creation and annihilation operators
satisfy the standard commutation relations

½ak; a†k0 � ¼ δDðk − k0Þ ð26Þ

and the vacuum state associated to the quantum modes
fδϕkg is defined as usual by akj0i ¼ 0 ∀k.
In order to construct the orthonormal set, we use a WKB

ansatz,

δϕkðη;xÞ ¼ fkðη;xÞeiθkðη;xÞ; ð27Þ

and assume that fkðη;xÞ evolves slowly in space and time,
whereas the evolution of θkðη;xÞ is rapid. In general, as
mentioned above, such an adiabatic ansatz works whenever
the Compton wavelength of the field perturbation is much
smaller than the typical astrophysical or cosmological

scales involved. In particular, in the adiabatic expansion
we assume ∂θ ∼ma and ∂f ∼Hf.
Substituting (27) in (20), we obtain to the leading

adiabatic order Oðð∂θÞ2Þ
−θ02k þ ½1þ 2ðΦþΨÞ�ð∇θkÞ2 þm2a2ð1þ 2ΦÞ ¼ 0

ð28Þ
and to the next-to-leading order Oð∂θÞ

fkθ00k þ 2f0kθ
0
k þ ½ðD − 1ÞH − Φ0 −DΨ0�fkθ0k

− fk∇2θk − 2∇fk · ∇θk
− fk∇θk · ∇½Φ − ðD − 2ÞΨ� ¼ 0: ð29Þ

Notice that ∂2θ ∼H∂θ and that, in the adiabatic expan-
sion, H ∼ ∂Φ.

IV. PERTURBATIVE EXPANSION
AND MODE SOLUTIONS

To solve these two equations, (28) and (29), we look for
a perturbative expansion in the metric potentials. To obtain
the lowest-order solution; i.e., in the absence of metric
perturbations, we write (20) in the limit Φ ¼ Ψ ¼ 0 and get

δϕð0Þ00 þ ðD − 1ÞHδϕð0Þ0 −∇2δϕð0Þ þ a2m2ðϕ̂Þδϕð0Þ ¼ 0;

ð30Þ

where a2m2ðϕ̂Þ only depends on time. Fourier transforming
the spatial coordinates, the following positive frequency
solution with momentum k is obtained

δϕð0Þ
k ðη;xÞ ¼ FkðηÞeik·x−i

R
η
ωkðη0Þdη0 ð31Þ

with

ω2
k ¼ k2 þm2a2 ð32Þ

and

FkðηÞ ¼
1

ð2πÞD=2

1

aðD−1Þ=2 ffiffiffiffiffiffiffiffi
2ωk

p ; ð33Þ

which is fixed by the normalization condition (24).
Once the unperturbed solution is known, we can look for

the first-order corrections. Thus, the amplitude and phase of
(27) are expanded in metric perturbations as follows

fkðη;xÞ ¼ FkðηÞ þ δfkðη;xÞ

θkðη;xÞ ¼ k · x −
Z

η
ωkðη0Þdη0 þ δθkðη;xÞ ð34Þ

where δfk and δθk are first order in perturbations.
Substituting (35) in the leading equation (28), we obtain
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(32) to the lowest order as expected, and to first order
we get

ωkδθ
0
k þ k · ∇δθk þ k2ðΦþΨÞ þm2a2Φ ¼ 0: ð35Þ

On the other hand, by substituting in the next-to-leading
equation (30), we recover (33) to the lowest perturbative
order, whereas to first order we get

Fkδθ
00
k þ 2F0

kδθ
0
k þ ðD − 1ÞHFkδθ

0
k − Fk∇2δθk

− 2ωkδf0k − 2k · ∇δfk − ðD − 1ÞωkHδfk − ω0
kδfk

þ ωkFkΦ0 þDωkFkΨ0 − Fkk · ∇½Φ − ðD − 2ÞΨ� ¼ 0:

ð36Þ
The two new equations (35) and (36) can also be solved

by performing an additional Fourier transformation in the
spatial coordinates since the equations coefficients only
depend on time.

A. Phase solution δθk
Equation (35) in Fourier space reads

δθ0kðη;pÞ þ i
k · p
ωk

δθkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
;

ð37Þ

where

δθkðη;pÞ ¼
1

ð2πÞ3=2
Z

d3xδθkðη;xÞe−ip·x ð38Þ

and analogous definitions apply for Φðη;pÞ, Ψðη;pÞ and
δfkðη;pÞ.2 Defining

βkðηf; ηiÞ ¼
Z

ηf

ηi

dη0

ωkðη0Þ

Gkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
; ð39Þ

the solution of (37) is

δθkðη;pÞ

¼
Z

η

0

e−ik·pβkðη;η0ÞGkðη0;pÞdη0 þ e−ik·pβkðη;0Þδθkð0;pÞ:

ð40Þ
The term δθkð0;pÞ stands for the initial boundary condition
of the modes or, equivalently, the phase difference of the
modes at the initial time. In principle, δθkð0;pÞ is not
completely arbitrary since the orthonormalization condition

of the modes (24) may constrain its functional dependence.
We discuss this point at the end of this section.

B. Amplitude solution δf k
Let us write

δfkðη;pÞ ¼ FkðηÞPkðη;pÞ ð41Þ

and following a similar procedure with the next-to-leading-
order equation (36), it can be rewritten in Fourier space as

P0
kðη;pÞ þ i

k · p
ωk

Pkðη;pÞ ¼
Hkðη;pÞ
2ωk

; ð42Þ

where

Hkðη;pÞ ¼ ωkQ0
kðη;pÞ þ Tkðη;pÞ ð43Þ

with

Qkðη;pÞ ¼ −i
k · p
ω2
k

δθkðη;pÞ þ
�
D −

k2

ω2
k

�
Ψðη;pÞ ð44Þ

and

Tkðη;pÞ ¼ p2δθkðη;pÞ
− ik · p½Φðη;pÞ − ðD − 2ÞΨðη;pÞ�: ð45Þ

The corresponding solution is given by

Pkðη;pÞ

¼
Z

η

0

e−ik·pβkðη;η0Þ
Hkðη0;pÞ
2ωkðη0Þ

dη0 þ e−ik·pβkðη;0ÞPkð0;pÞ:

ð46Þ

The integration constant Pkð0;pÞ is fixed by the normali-
zation condition (24).

1. Time-independent gravitational potentials

For simplicity, in the rest of the work we focus on time-
independent gravitational potentials. This case encom-
passes super-Hubble modes in both matter and radiation
era, and also sub-Hubble modes in the matter era. This is
also a good approximation to describe the gravitational
potentials in the Solar System. In such a case, the constants
Pkð0;pÞ are given by

Pkð0;pÞ ¼
1

2

�
D −

k2

ωkð0Þ2
�
ΨðpÞ: ð47Þ

Integrating by parts in (46), the integration constant can
be eliminated and the following expression is obtained:

2In the following, the wave vector of the quantum modes is
denoted by k, and p is used for that of metric perturbations.
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Pkðη;pÞ ¼
1

2
Qkðη;pÞ

− i
Z

η

0

�
k · p

2ωkðη0Þ
e−ik·pβkðη;η0Þ

×

�
Qkðη0;pÞ þ

Tkðη0;pÞ
k · p

��
dη0: ð48Þ

There are three types of contributions to Pk, depending
on the number of time integrals involved. Thus, we can
write

Pkðη;pÞ ¼ Pð0Þ
k ðη;pÞ þ Pð1Þ

k ðη;pÞ þ Pð2Þ
k ðη;pÞ ð49Þ

where

Pð0Þ
k ðη;pÞ ¼ 1

2

�
D −

k2

ωkðηÞ2
�
ΨðpÞ ð50Þ

Pð1Þ
k ðη;pÞ ¼

Z
η

0

e−ik·pβkðη;η0ÞNð1Þ
k ðη; η0;pÞdη0 ð51Þ

Pð2Þ
k ðη;pÞ ¼

Z
η

0

Z
η0

0

e−ik·pβkðη;η00ÞNð2Þ
k ðη0; η00;pÞdη00dη0

ð52Þ

with

Nð1Þ
k ðη;η0;pÞ¼ ik ·p

2ω2
kðηÞωkðη0Þ

�
½ω2

kðη0Þ−ω2
kðηÞ�ΦðpÞ

þ
�
k2þω2

kðηÞ
�

k2

ω2
kðη0Þ

−2

��
ΨðpÞ

�
ð53Þ

Nð2Þ
k ðη0; η00;pÞ ¼ ðk · pÞ2 − p2ω2

kðη0Þ
2ω3

kðη0Þωkðη00Þ
× ½ω2

kðη00ÞΦðpÞ þ k2ΨðpÞ� ð54Þ

where p ¼ jpj.

C. Orthonormalization condition

In order to quantize the field canonically, we must check
that the modes δϕk used to define the creation and
annihilation operators are orthonormal (24). This may
restrict the functional dependence of the initial conditions
of our solution, i.e., Pkð0;pÞ and δθkð0;pÞ.3 We already
fixed Pkð0;pÞ when imposing the correct normalization of
the modes; hence, we can only play with δθkð0;pÞ to have
orthogonal modes. The scalar product (21) can be com-
puted using (27), (35), (40), and (46) to get

ðδϕk; δϕk0 Þ ¼ δDðk − k0Þ þ τΨðk;k0Þ þ τδθðk;k0Þ; ð55Þ

where τΨ;δθ are first order in metric perturbation. The
explicit expressions for τΨ;δθ are given in Appendix A.
In this appendix it is shown that they are zero for ∀k;k0
up to corrections beyond the leading adiabatic order for
slowly varying gravitational fields. This result does not
impose any restriction on the functional dependence
of δθkð0;pÞ.
Different initial conditions δθkð0;pÞ amount to different

definitions of the vacuum. The discussion above guarantees
that the modes given by (27), (35), (40), (46), are
orthonormal for any choice of the vacuum. In the following
we take δθkð0;pÞ ¼ 0 as the initial condition for the
modes.

V. HIGGS EFFECTIVE POTENTIAL

Once we have the expressions for the mode solutions of
the perturbative equations, namely (40) and (41) [together
with (46)]; we can proceed to calculate the one-loop
contribution to the effective potential (17).
Let us first calculate h0jδϕ2ðη;xÞj0i to first order in

metric perturbations. Because of the inhomogeneity of the
background, this quantity depends on ðη;xÞ as follows

h0jδϕ2ðη;xÞj0i ¼ hδϕ2ihðηÞ þ hδϕ2iiðη;xÞ ð56Þ
where

hδϕ2ihðηÞ ¼
Z

dDkF2
kðηÞ ð57Þ

and

hδϕ2iiðη;xÞ ¼ 2

Z
dDkF2

kðηÞ½RePkðη;xÞ − Imδθkðη;xÞ�:

ð58Þ

A. Homogeneous contribution hδϕ2ih
The homogeneous contribution hδϕ2ih reads

hδϕ2ihðηÞ ¼
1

2ð2πÞDaD−1ðηÞ
Z

dDkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
¼ 1

2ð2πÞDaD−1ðηÞ
2πD=2

ΓðD=2Þ
Z

∞

0

dkkD−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
ð59Þ

which is analogous to the Minkowskian result, except for
the scale-factor dependence.

B. Nonhomogeneous contribution hδϕ2ii
The inhomogeneous component hδϕ2ii can be dealt with

more easily in momentum space. The only angular
dependence of the quantum fluctuation wave vector k

3Pkð0;xÞ and δθkð0;xÞ are assumed to be real. If this were not
the case, the phase of Pkð0;xÞ could be absorbed into δθkð0;xÞ
and the imaginary part of δθkð0;xÞ could also be absorbed into
Pkð0;xÞ in a trivial way.
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enters as k · p ¼ kpx̂ with x̂ ¼ cos θ, where we have taken
the kz direction along p. On the other hand, the contribution
from δθ in (58) vanishes after integrating in x̂. Then, we
have

hδϕ2iiðη;pÞ ¼
1

ð2πÞDaD−1ðηÞ
Z

dDk
Pkðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2a2ðηÞ
p :

ð60Þ

Since the integration on x̂ can be performed in a straight-
forward way, let us define

P̂kðη;pÞ ¼
Z

1

−1
dx̂ð1 − x̂2ÞðD−3Þ=2Pkðη;pÞ; ð61Þ

where we have included the general integration measure in
D dimensions. Hence, we can write (see Appendix B)

hδϕ2iiðη;pÞ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ

×
Z

∞

0

dk
kD−1P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p : ð62Þ

Both integrals (60) and (62) are divergent in D ¼ 3
dimensions, and they should be regularized as discussed in
the next section.

C. Regularization

Let us now discuss the regularization procedure based on
standard dimensional regularization techniques.

1. Regularized homogeneous contribution hδϕ2ihðηÞ
The momentum integral in hδϕ2ih (60) can be done using

(B3) of Appendix B. After expanding for small ϵ with
D ¼ 3 − ϵ dimensions, the final result is

hδϕ2ihðηÞ ¼
m2ðϕ̂Þ
16π2

�
ln

�
m2ðϕ̂Þ
μ2

�
− Nϵ −

3

2

�
; ð63Þ

where μ is the renormalization scale and

Nϵ ¼
2

ϵ
þ log 4π − γ ð64Þ

with γ the Euler-Mascheroni constant.

2. Regularized nonhomogeneous
contribution hδϕ2iiðη; xÞ

Let us now consider the inhomogeneous contribution
(62). We cannot apply directly standard dimensional
regularization formulas because of the nontrivial k depend-
ence of P̂kðη;pÞ. Thus, additional work is necessary.

First, it should be noticed that the dependence of
P̂kðη;pÞ on the direction of p only enters through the
potentials,ΦðpÞ andΨðpÞ. Therefore, it can be expanded in
the following way:

P̂kðη;pÞ ¼
�X∞
l¼0

PΦ
k;lðηÞp2l

�
ΦðpÞ þ

�X∞
l¼0

PΨ
k;lðηÞp2l

�
ΨðpÞ:

ð65Þ

The coefficients PfΦ;Ψg
k;l ðηÞ are given in Appendix C. The

l ¼ 0 terms only get contributions from the Pð0Þ
k ðη;pÞ term

given in (50), and its integral vanishes in dimensional
regularization. The l > 0 terms involve time integrals of the
form

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

�
k2α

ωkðηÞaωkðη0Þb
ð66Þ

for the contributions coming from Pð1Þ
k ðη;pÞ in (51), and

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

�
k2α

ωkðηÞaωkðη0Þbωkðη00Þc

ð67Þ

for those coming from Pð2Þ
k ðη;pÞ in (52), with α, a, b,

c ∈ Z. In order to simplify the functional dependence on k,
we apply the generalized Feynman trick,

1

Ad1
1 � � �Adn

n
¼ Γðd1 þ � � � þ dnÞ

Γðd1Þ � � �ΓðdnÞ

×
Z

1

0

dx1 � � �
Z

1

0

dxn × δðx1 þ…þ xn − 1Þ

×
xd1−11 � � � xdn−1n

ðx1A1 þ � � � þ xnAnÞd1þ���þdn
: ð68Þ

Then, let the parameters of the Feynman formula be
defined by

n ¼ 2lþ 1 ð69Þ

Aj ¼
8<
:

ω2
kðηÞ if j ¼ 1

ω2
kðη0Þ if j ¼ 2

ω2
kðηj−2Þ if 3 ≤ j ≤ 2lþ 1

ð70Þ

dj ¼
8<
:

a=2 if j ¼ 1

b=2 if j ¼ 2

1=2 if 3 ≤ j ≤ 2lþ 1

ð71Þ

for the case (66) [with a trivial modification for the
expression (67)]. In this way, the k dependence only
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appears in
P

2lþ1
i¼1 xiω2

k;i which can be simplified in the
following way,

X2lþ1

i¼1

xiω2
k;i ¼

X2lþ1

i¼1

xiðk2þm2a2i Þ¼ k2þm2
X2lþ1

i¼1

xia2i ; ð72Þ

where we have used
P

2lþ1
i¼1 xi ¼ 1. Now, the k dependence

is simple enough to use standard dimensional regulariza-
tion formulas (Appendix B). The integration over the fxig
and the time integrals can be performed analytically
(Appendix D).
As we did with P̂kðη;pÞ, we now decompose

hδϕ2iiðη;pÞ into two terms proportional to ΦðpÞ and
ΨðpÞ, respectively,

hδϕ2iiðη;pÞ ¼ hδϕ2iΦi ðη;pÞΦðpÞ þ hδϕ2iΨi ðη;pÞΨðpÞ:
ð73Þ

Then, integrating in dimensional regularization, we see that
the Oð1=ϵÞ terms cancel out, and the results are finite,

hδϕ2ifΦ;Ψg
i ðη;pÞ ¼ m2

4π2a2ðηÞ
�X∞
l¼1

RfΦ;Ψg
l ðηÞp2l

�
; ð74Þ

where RfΦ;Ψg
l are the already regularized integrals in k of

PfΦ;Ψg
k;l divided by m2 for convenience. The coefficients

RfΦ;Ψg
l can be written as

RfΦ;Ψg
l ðηÞ ¼ RfΦ;Ψg

l;pol ðηÞ þ RfΦ;Ψg
l;log ðηÞ; ð75Þ

where, as shown in Appendix D, RfΦ;Ψg
l;pol are polynomials in

η, and RfΦ;Ψg
l;log involve a logarithmic dependence on η.

The most important aspect of (74) is that all the divergent
parts have canceled out. In particular, the divergent terms

coming from Pð1Þ
k ðη;pÞ cancel exactly the ones from

Pð2Þ
k ðη;pÞ order by order in p. This means that the UV

behavior is the same as in an unperturbed FRW background
and the inhomogeneous contributions are finite to the
leading adiabatic order.

D. Nonhomogeneous contribution: Particular cases

1. Nonexpanding spacetimes

Let us consider weak gravitational fields generated by
static sources. For the corresponding spacetime metric, we
can take (19) with aðηÞ ¼ 1 and static potentials ΦðxÞ and
ΨðxÞ which allow us to use the previous results. This
simplifies the calculations in several of the steps discussed
above. For instance, all the time integrals can be done in a
straightforward way, there is no need to apply the Feynamn

trick since the ω’s are all the same, and the coefficients

RfΦ;Ψg
l;log are zero (see Appendix D).
The results for a nonexpanding geometry read

RΦ
l ðηÞ ¼ RΦ

l;polðηÞ ¼ 0 ð76Þ

RΨ
l ðηÞ ¼ RΨ

l;polðηÞ ¼ 0; ð77Þ

which imply

hδϕ2iΦi ðη;pÞ ¼ 0 ð78Þ

hδϕ2iΨi ðη;pÞ ¼ 0 ð79Þ

and

hδϕ2iiðη;pÞ ¼ 0: ð80Þ

Thus, to the leading adiabatic order, the metric perturba-
tions do not contribute to the Higgs effective potential in
dimensional regularization. This is in contrast with pre-
vious results [31] using cutoff regularization, in which
nonvanishing inhomogeneous contributions were obtained.
Although we have considered a particular coordinate

choice in (19), corresponding to the longitudinal gauge,
since in the absence of metric perturbations Vh

effðϕ̂Þ is a
constant, the Stewart-Walker lemma [36] guarantees that
the obtained effective potential is gauge invariant.

2. Expanding spacetimes: Cosmology

Now we consider the case of a perturbed expanding
universe with scale factor aðηÞ and constant metric pertur-
bationsΦðxÞ andΨðxÞ. In particular, we will concentrate in
the matter-dominated era, in which the metric perturbations
are constant both for sub-Hubble and super-Hubble modes.
In addition, we will also provide results for super-Hubble
modes in the radiation era for which the metric perturba-
tions are also constant.
For the Ψ contribution, we get for the matter and

radiation eras with a ∝ η2 and a ∝ η, respectively,

RΨ
l;polðηÞ ¼ 0; RΨ

l;logðηÞ ¼ 0: ð81Þ

The Φ terms are harder to compute since the RΦ
l;log

contribution is not zero, and the integration over the
Feynman parameters fxig and the time integrals has to
be performed by Taylor expanding the logarithm (see
Appendix D). An exact analytical expression can be
obtained for each order of the logarithm expansion given
in terms of finite sums, which can be computed numerically
for practical purposes. We have checked that the relative
difference between RΦ

l;pol and RΦ
l;log terms is ∼10−4 for

l ¼ 1, 2, 3 and ∼10−2 for l ¼ 4, 5. Then,
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RΦ
l;polðηÞ þ RΦ

l;logðηÞ
RΦ
l;polðηÞ

≤ 10−2 for l ¼ 1; 2; 3; 4; 5:

This suggests that the exact Φ contribution also may be
zero, as for theΨ terms, so that for expanding geometries as
well, static perturbations do not contribute to the Higgs
effective potential to the leading adiabatic order.

E. Higgs effective potential

Taking into account (17), the one-loop contribution to
the effective potential can be expressed as

V1ðη;xÞ ¼ Vh
1ðηÞ þ V i

1ðη;xÞ: ð82Þ
Given the fact that, to the leading order, the nonhomo-

geneous contribution vanishes, the potential reads

V1 ¼ Vh
1ðηÞ ¼

1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2ihðηÞ; ð83Þ

and substituting (63), we get

V1ðϕ̂Þ ¼
m4ðϕ̂Þ
64π2

�
ln

�
m2ðϕ̂Þ
μ2

�
− Nϵ −

3

2

�
: ð84Þ

As expected from previous works [17–26], the homo-
geneous contribution is constant even though the geometry
is expanding. The Nϵ term is proportional to m4ðϕ̂Þ, so that
we have three kinds of divergences: constant, quadratic in ϕ̂
and quartic, which can be reabsorbed in the renormalization
of the tree-level potential parameters V0, M2 and λ. This
means that at the leading adiabatic order we obtain exactly
the same divergences as in flat spacetime and we do not
need additional counterterms to renormalize the effective
potential.
Following the minimal subtraction scheme MS, we

remove the terms proportional to Nϵ. Thus, we are left
with the complete renormalized homogeneous effective
potential,

Veffðϕ̂Þ ¼ V0þ
1

2
M2ϕ̂2þ λ

4
ϕ̂4þm4ðϕ̂Þ

64π2

�
ln

�
m2ðϕ̂Þ
μ2

�
−
3

2

�
;

ð85Þ

which agrees with the standard result in flat spacetime.
Here, the physical mass M and coupling constant λ are
defined at a given physical scale μ. Since the renormalized
effective potential is independent of the renormalization
scale μ, M2 and the coupling constant should depend on μ
according to the renormalization group equations

βðλÞ≡ dλ
dðlog μÞ ¼

18λ2

ð4πÞ2

γMðλÞ≡ dðlogM2Þ
dðlog μÞ ¼ 6λ

ð4πÞ2 : ð86Þ

VI. ENERGY-MOMENTUM TENSOR

In the previous sections, we have considered the one-
loop correction to the effective potential. The complete set
of perturbed modes obtained also allows us to evaluate the
vacuum expectation value of the energy-momentum tensor.
For the sake of completeness wewill include also a possible
nonminimal coupling to curvature, so that the equation for
an arbitrary massive scalar field now reads

ð□þm2 þ ξRÞφ ¼ 0; ð87Þ

Notice that, to the leading adiabatic order, the curvature
term is not going to modify the mode solutions found in
Sec. IV; however, the energy-momentum tensor acquires
new contributions. Thus,

Tμ
ν ¼ −δμν

�
1

2
− 2ξ

�
ðgρσ∂ρφ∂σφ −m2φ2Þ

þ ð1 − 2ξÞgμρ∂ρφ∂νφ − 2ξφ∇μ∇νφ

þ 2

Dþ 1
ξgμνðφ□φþm2φ2Þ

− ξ

�
Rμ
ν −

1

2
Rgμν þ 2D

Dþ 1
ξRgμν

�
φ2: ð88Þ

Considering perturbations over a flat Robertson-Walker
background (19), the vacuum expectation value of this
tensor, hTμ

νi, can be explicitly written to the leading
adiabatic order in Fourier space as a mode sum in terms
of the expansion (35) as

hT0
0ðη;pÞi ¼ ρðη;pÞ ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

ωk

2

�
1þ 2

k2

ω2
k

ΨðpÞ þ 2Pkðη;pÞ þ 2i
k · p
ω2
k

δθkðη;pÞ −
2ξ

ω2
k

P00
kðη;pÞ

�
ð89Þ

hTi
iðη;pÞi ¼−piðη;pÞ ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
k2i
2ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ 2i
kipi

2ωk
δθkðη;pÞ þ ξ

p2
i

ωk
Pkðη;pÞ

�
ð90Þ

hTi
0ðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
ki
2

�
1þ 2Pkðη;pÞ þ 2i

k · p
2ω2

k

δθkðη;pÞ
�
þ i
2
piδθkðη;pÞ þ ξ

ipi

ωk
P0
kðη;pÞ

�
ð91Þ
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hTi
jðη;pÞi ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
kikj
2ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ i
kipj þ kjpi

2ωk
δθkðη;pÞ þ ξ

pipj

ωk
Pkðη;pÞ

�
ð92Þ

hTμ
μðη;pÞi ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

�
m2

2ωk
ð1þ 2Pkðη;pÞÞ −

ξ

ωk
ðP00

kðη;pÞ þ p2Pkðη;pÞÞ
�
: ð93Þ

The integration over the quantum modes can be per-
formed using the same methods applied above and some
tricks to reduce the integrals involving the components of
k, ki or kikj, to integrals of scalar character in k
(Appendix B). After doing that, the homogeneous part is
found to be diagonal, and the energy ρ and pressure p are
given in the minimal substraction scheme MS by

ρ ¼ −p ¼ m4

64π2

�
log

�
m2

μ2

�
−
3

2

�
; ð94Þ

where μ is the renormalization physical scale.
On the other hand, much as for the effective potential, the

nonhomogeneous part of the energy-momentum tensor
vanishes to this order.
While classical and weak gravitational fields are not able

to change the UV behavior of quantum effects, it is
expected that gravity should modify the IR parts of all
quantum corrections. The result presented in this work
shows that, within the dimensional regularization scheme,
there are no gravitational corrections arising from a
perturbed FRW metric up to first order in perturbations,
and to the leading order in the adiabatic expansion, to the
vacuum expectation value of the energy-momentum tensor
of a scalar field. Then, gravitational corrections may appear
beyond the leading adiabatic order, or through nonlin-
ear terms.
In the considered regime, namely the one in which the

Hubble scale is much smaller than the mass of the quantum
field, corrections beyond the zero adiabatic order are
negligible and they are unlikely to belong to the exper-
imental realm in the near future.
On the other hand, although nonlinear contributions

are expected to be smaller than the linear ones, they will
be more important than the contribution from the first
adiabatic order. Nevertheless, the computation of the
second-order corrections to the energy-momentum tensor
is a formidable task which is well beyond the scope of
this work.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have computed the one-loop corrections
to the effective potential due to the self-interactions of the
Higgs field and the vacuum expectation value of its energy-
momentum tensor in a perturbed FRW background. Unlike
previous results based on the Schwinger–de Witt approxi-
mation, we have calculated explicitly a complete

orthonormal set of modes of the perturbed Klein-Gordon
equation and the dimensional regularization procedure
was used for the mode summation to the leading adiabatic
order. The integrals containing metric perturbations
involved nonrational functions of the momenta so that
standard formulas in dimensional regularization were not
suitable to evaluate them. New expressions have been
developed for those cases which applied both to static
and expanding backgrounds.
We have checked that the homogeneous contribution

agrees with the Minkowski result as expected. On the other
hand, we have found that to the leading adiabatic order, and
to first order in metric perturbations, no additional con-
tributions appear either in the regularized effective potential
nor in the energy-momentum tensor. This is in contrast with
previous results obtained with a cutoff regularization [31],
in which quartic and quadratic inhomogeneous divergences
appear in the calculation. Thus, we see that dimensional
regularization ensures that the theory can be renormalized
just absorbing the divergences in the tree-level parameters
(at the leading adiabatic order).
We expect additional contributions from the metric

perturbations at the next-to-leading adiabatic orders. Unlike
the Schwinger–de Witt method which provides a local
expansion of the effective action. The mode summation
method used in this work could allow to determine the
corresponding finite nonlocal contributions. In this sense,
the explicit mode calculation obtained here together
with the method developed to perform the integrals in
dimensional regularization of nonrational functions of the
momenta are a fundamental first step in this program. The
results presented in this work would also allow to calculate
the temperature effects on the Higgs effective potential
using the explicit mode summation and, in general, the
complete expressions of other expectations values in
perturbed metric backgrounds. Work is in progress in these
directions.
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APPENDIX A: ORTHONORMALIZATION CONDITION: τΨ ðk; k0Þ AND τδθðk; k0Þ
In this appendix, we show that τΨðk;k0Þ and τδθðk;k0Þ appearing in (55) are zero to the leading adiabatic order. This

implies that the modes given by (27), (35), (40), (41), (46) are orthonormal and, therefore, the scalar field δϕ can be
quantized within the canonical formalism.
The explicit expressions for τΨðk;k0Þ and τδθðk;k0Þ are

τΨðk;k0Þ ¼
Z

dDx
ðωk − ωk0 Þðk2ω2

k0 − k02ω2
kÞ

4ðωkωk0 Þ5=2
ΨðxÞ e

iðk−k0Þ·x

ð2πÞD ðA1Þ

τδθðk;k0Þ ¼
Z

dDx
ðωk − ωk0 Þðω2

k0k ·∇δθkð0;xÞ − ω2
kk

0 · ∇δθk0 ð0;xÞÞ
4ðωkωk0 Þ5=2

eiðk−k0Þ·x

ð2πÞD : ðA2Þ

First, let us focus on τΨ in Fourier space:

τΨðk;k0Þ ¼
Z

dDx
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

ΨðpÞ e
iðk−k0þpÞ·x

ð2πÞD

¼
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

ΨðpÞδDðk − k0 þ pÞ

¼ 1

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

Ψðk − k0Þ: ðA3Þ

Since Ψ varies over macroscopic scales, we can a assume an exponential damping for Ψ when jk − k0j ≫ j∇Ψj ∼H;
therefore, τΨðk;k0Þ ≈ 0 in this case. For jk − k0j ∼H, we can Taylor expand the coefficient in front of Ψðk − k0Þ
in H=ωk to get

τΨðk;k0Þ ≈ 1

ð2πÞD=2

m2k2

2ω4
k

�
H
ωk

�
2

Ψðk − k0Þ; ðA4Þ

which is beyond the leading adiabatic order.
The same procedure works for τδθ, for instance,

τδθðk;k0Þ ¼
Z

dDx
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þip · ðω2
k0kδθkð0;pÞ − ω2

kk
0δθk0 ð0;pÞÞ

4ðωkωk0 Þ5=2
eiðk−k0þpÞ·x

ð2πÞD

¼
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þip · ðω2
k0kδθkð0;pÞ − ω2

kk
0δθk0 ð0;pÞÞ

4ðωkωk0 Þ5=2
δDðk − k0 þ pÞ

¼ 1

ð2πÞD=2

ðωk − ωk0 Þiðk − k0Þ · ðω2
k0kδθkð0;k − k0Þ − ω2

kk
0δθk0 ð0;k − k0ÞÞ

4ðωkωk0 Þ5=2
: ðA5Þ

The initial condition is supposed to not introduce power at
small scales; therefore, δθkð0;k − k0Þ is also exponentially
damped for modes jk − k0j ≫ H. For jk − k0j ∼H, we can
Taylor expand in H=ωk to get

τδθðk;k0Þ ≈ i

ð2πÞD=2

1

4ω3
k

k ·
k − k0

jk − k0j
�
H
ωk

�
3

× ððm2 − k2Þδθkð0;k − k0Þ
þ ω2

kk ·∇δθkð0;k − k0ÞÞ: ðA6Þ

Thus, for jk − k0j ∼H, τδθ is also beyond the leading
adiabatic order. Note that the nabla operator in (A6) is to be
understood as acting over the index variable k, not over the
argument k − k0.

APPENDIX B: DIMENSIONAL
REGULARIZATION FORMULAS

The fundamental formula used in dimensional regulari-
zation in Euclidean space is [37,38]
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Z
dDk
ð2πÞD

k2α

ðk2 þm2Þβ ¼ m2ðα−βÞ
�
m2

4π

�
D=2

×
ΓðD=2þ αÞΓðβ − α −D=2Þ

ΓðβÞΓðD=2Þ :

ðB1Þ

This expression has been used to compute hδϕ2ih in (60)
in D ¼ 3 − ϵ. The left-hand side of the equation can be
written as

Z
dDk
ð2πÞD

k2α

ðk2 þm2Þβ ¼
1

ð2πÞD
2πD=2

ΓðD=2Þ
Z

∞

0

dk
kD−1k2α

ðk2 þm2Þβ ;

ðB2Þ

then

Z
∞

0

dk
kD−1k2α

ðk2 þm2Þβ ¼
�

1

ð2πÞD
2πD=2

ΓðD=2Þ
�−1

m2ðα−βÞ
�
m2

4π

�
D=2

×
ΓðD=2þ αÞΓðβ − α −D=2Þ

ΓðβÞΓðD=2Þ :

ðB3Þ

On the other hand, for the hδϕ2ii term in (60), we have to
deal with integrals of the following form,

Z
dDk
ð2πÞD

fðk · pÞ
ðk2 þm2Þβ ; ðB4Þ

where fðk · pÞ is an analytical function. Taking the kz
direction along p, we have fðk · pÞ ¼ fðkpx̂Þ with
k ¼ jkj, p ¼ jpj and x̂ ¼ cosðθD−2Þ, θD−2 being the angle
between k and p. When using spherical coordinates in D
dimensions fϕ; θ; θ2;…; θD−2g, the volume element can be
expressed as

dDk ¼ kD−1sinD−2ðθD−2ÞsinD−3ðθD−3Þ…
× sinðθÞdkdϕdθ…dθD−2: ðB5Þ

The integrand of (B4) depends on cosðθD−2Þ, so we can
integrate in all the angular variables but θD−2. With that
purpose, notice that the area of a sphere in aD-dimensional
space is

Z
π

0

� � �
Z

π

0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{D−2 Z
2π

0

sinD−2ðθD−2ÞsinD−3ðθD−3Þ…

× sin2ðθ2Þ sinðθÞdϕdθdθ2…dθD−2 ¼
2πD=2

ΓðD=2Þ : ðB6Þ

Since all the integrals involved can be factorized, the
integration over all the angular variables but θD−2 is simply

given by the area of a sphere in (D − 1)-dimensional space,
i.e., 2πðD−1Þ=2

ΓððD−1Þ=2Þ. Therefore, Eq. (B4) can be expressed as

Z
dDk
ð2πÞD

fðk · pÞ
ðk2 þm2Þβ ¼

1

ð2πÞD
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

∞

0

dk

×
kD−1

ðk2 þm2Þβ f̂ðkpÞ; ðB7Þ

where f̂ðkpÞ ¼ R
1
−1 dx̂ð1 − x̂2ÞðD−3Þ=2fðkpx̂Þ. Finally,

Taylor expanding f̂ðkpÞ, the expression can be regularized
order by order using Eq. (B3).
To regularize physical quantities like hδϕ2ih and hδϕ2ii,

two important aspects should be taken into consideration.
First of all, the full physical expression should be computed
in D dimensions, so that when taking D ¼ 3 − ϵ, all the
terms are expanded in ϵ. Moreover, a physical scale μϵ

should be introduced to compensate the physical
dimensions.

1. Integrals involving ki or kikj
Finally, we explain how to compute the integrals

involving the components of k, ki, and kikj, appearing
in the expression of the energy-momentum tensor in
Sec. VI. For these cases, the other vector quantity, namely
the wave vector of the metric perturbations p, can be used
to produce scalar quantities that can be easily computed in
terms of the expressions given above. For instanceZ

dDkgðk;k · pÞki ¼ Api; ðB8Þ

taking the scalar product with p in each member we get that

A ¼
Z

dDkgðk;k · pÞk · p
p2

ðB9Þ

which can be integrated using the expression (B7). For the
remaining case, we have

Z
dDkgðk;k · pÞkikj ¼ Bδij þ Cpipj; ðB10Þ

where B and C can be computed solving the system
obtained by taking the trace and contracting with pipj.
The results are

B ¼ 1

ðD − 1Þ
Z

dDkgðk;k · pÞ ðkpÞ
2 − ðk · pÞ2
p2

ðB11Þ

C ¼ 1

ðD − 1Þ
Z

dDkgðk;k · pÞDðk · pÞ2 − ðkpÞ2
p4

:

ðB12Þ

ALBARETI, MAROTO, and PRADA PHYSICAL REVIEW D 95, 044030 (2017)

044030-12



APPENDIX C: PfΦ;Ψg
k;l

In this appendix, the exact expressions for the PfΦ;Ψg
k;l ðηÞ

coefficients of Eq. (65) are given. First, let us separate these
coefficients as

PΦ
k;lðηÞ ¼ PΦ;ð0Þ

k;l ðηÞ þ PΦ;ð1Þ
k;l ðηÞ þ PΦ;ð2Þ

k;l ðηÞ; ðC1Þ

where the indices (0), (1), (2) stand for the contribution

coming from Pð0Þ
k in (50), Pð1Þ

k in (51), and Pð2Þ
k in (52),

respectively. The same definition applies for the terms PΨ
k;l.

The l ¼ 0 coefficients are given by

PΦ
k;0ðηÞ ¼ 0 ðC2Þ

PΨ
k;0ðηÞ ¼ PΨ;ð0Þ

k;0 ðηÞ ¼ 1

2

ffiffiffi
π

p
ΓððD − 1Þ=2Þ
ΓðD=2Þ

�
D −

k2

ω2
kðηÞ

�
:

ðC3Þ

For l > 0, we have

PΦ
k;lðηÞ ¼ PΦ;ð1Þ

k;l ðηÞ þ PΦ;ð2Þ
k;l ðηÞ ðC4Þ

PΨ
k;lðηÞ ¼ PΨ;ð1Þ

k;l ðηÞ þ PΨ;ð2Þ
k;l ðηÞ ðC5Þ

with

PΦ;ð1Þ
k;l ðηÞ ¼ ð−1Þl

22l

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ lÞ k
2l

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

��
1

ωkðη0Þ
−
ωkðη0Þ
ω2
kðηÞ

�
ðC6Þ

PΨ;ð1Þ
k;l ðηÞ ¼ ð−1Þl

22l

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ lÞ k
2l

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

��
2

ωkðη0Þ
−

k2

ω2
kðηÞωkðη0Þ

−
k2

ω3
kðη0Þ

�
ðC7Þ

PΦ;ð2Þ
k;l ðηÞ ¼ ð−1Þl

22l−1

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ l − 1Þ k
2l

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

��
ωkðη00Þ
k2ωkðη0Þ

−
ð2l − 1Þωkðη00Þ

ðD − 2l − 2Þω3
kðη0Þ

�
ðC8Þ

PΨ;ð2Þ
k;l ðηÞ ¼ ð−1Þl

22l−1

ffiffiffi
π

p
ΓððD− 1Þ=2Þ

ðl− 1Þ!ΓðD=2þ l− 1Þk
2l

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

��
1

ωkðη0Þωkðη00Þ
−

ð2l− 1Þk2
ðD− 2l− 2Þω3

kðη0Þωkðη00Þ
�
:

ðC9Þ

The integral over k of all these terms can be regularized
with the expressions given in Appendix B after applying
the generalized Feynman trick discussed in Sec. V. After
regularization, we are left with two terms: one polynomic in
η, the other one logarithmic in η. The integration over the
Feynman parameters fxig and the time integrals can be
done following the procedure discussed in Appendix D.

APPENDIX D: INTEGRATION
OVER fxig AND fηig

This appendix shows how to compute the integrals over

fxig and fηig appearing in the RfΦ;Ψg
l coefficients in (74).

These terms have the general form

Z
dη1 � � �

Z
dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{2N Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2Nþ1

δ

�X2Nþ1

k¼1

xk − 1

��
Pol1ðfxig; fηigÞ þ log

�X2Nþ1

k¼1

xka2ðηkÞ
�
Pol2ðfxig; fηigÞ

�
;

ðD1Þ
where the logarithmic contribution is included in the RfΦ;Ψg

l;log part of (75), whereas the pure polynomic one coming from Pol1
is included in RfΦ;Ψg

l;pol . Notice that we have redefined 2l appearing in expression (74), namely the power of p, to be 2N in
(D1) in order to highlight its importance in the following discussion. Since the polynomials only introduce trivial
modifications of the following formulas, let us focus on the expression

Z
dη1 � � �

Z
dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{2N Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2Nþ1

δ

�X2Nþ1

k¼1

xk − 1

�
log

�X2Nþ1

k¼1

xka2ðηkÞ
�
: ðD2Þ
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There are 2N þ 1 variables xi from the Feynman trick and
all of them are integrated from 0 to 1. There are also 2N þ 1
time variables ηi, but only 2N of them are integrated. In
particular, η2Nþ1 is not integrated. In order to recover the
expressions given in the text, we have renamed η as η2Nþ1,
η0 as η2N and η00 as η2N−1. From the general expression (D2),
it is straightforward to prove that for aðηÞ¼ 1, the logarithm

vanishes since
P

2Nþ1
k¼1 xk¼1. Therefore, RfΦ;Ψg

l;log ¼0 in
nonexpanding spacetimes.
First, we deal with the integration over the fxig. Defining

new variables y2i ¼ xi for i ¼ 1;…; 2N þ 1, this integra-
tion can be written over the 2N sphere

Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p δ

�X2Nþ1

k¼1

xk − 1

�
¼ 22N

Z
S2N

d2NΩ:

ðD3Þ
Then, the logarithm can be expressed as

log

�X2Nþ1

k¼1

y2ka
2ðηkÞ

�
¼ log ½a2ðη2Nþ1Þ�

þ log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��
;

ðD4Þ
where we have used that y22Nþ1 ¼ 1 −

P
2N
k¼1 y

2
k. The first

logarithm on the right-hand side is the usual logarithm of
the scale factor which appears in dimensional regulariza-
tion in a FRW metric and it cancels out at the end. On the
other hand, since η2Nþ1 is an upper limit in all the time
integrations (see next subsection), we have ηk ≤ η2Nþ1 for

k ¼ 1;…; 2N. Thus, considering expanding universes, the
argument of the logarithm is of the form 1þ x with
−1 < x ≤ 1. Hence, it can be Taylor expanded as

log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��

¼
X∞
j¼1

ð−1Þjþ1

j

�X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��j
; ðD5Þ

where the last factor on the right-hand side can also be
expanded using the multinomial theorem

�X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��j

¼
Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

j!
l1!l2! � � � l2N!

Y2N
m¼1

�
y2m

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

��
lm
:

ðD6Þ

Therefore, the integration over the 2N-sphere reduces to an
integration of this kind:

Z
S2N

d2NΩy2l11 y2l22 � � � y2l2N2N ¼
ffiffiffi
π

p Q
2N
i¼1 Γð12 þ liÞ

22NΓðN þ 1
2
þP

2N
i¼1 liÞ

≡ 1

22N
Γ½flig; 2N�: ðD7Þ

Then,

22N
Z
S2N

d2NΩ log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��
¼
X∞
j¼1

ð−1Þjþ1

j

Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

j!
l1!l2! � � � l2N!

Γ½flig;2N�
Y2N
m¼1

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

�
lm
:

ðD8Þ
Applying the binomial theorem to the last factors,

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

�
lm ¼

Xlm
im¼0

ð−1Þlm−im
�
lm
im

��
a2ðηmÞ

a2ðη2Nþ1Þ
�
im
; ðD9Þ

and gathering all the results, we get

22N
Z
S2N

d2NΩ log
�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��

¼ −
X∞
j¼1

Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

ðj − 1Þ!
l1!l2! � � � l2N!

Γ½flig; 2N�
Xl1;l2;…;l2N

i1;i2;…;i2N¼0

ð−1Þ
P

2N
m¼1

im
Y2N
m¼1

�
lm
im

��
a2ðηmÞ

a2ðη2Nþ1Þ
�
im
: ðD10Þ

Finally, the time integrations can be done in a straightforward way since the dependence on ηm of the scale factor is
polynomial for the cosmologies considered in this work.
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1. RΨ
l; log = 0 for all cosmologies

In Sec. V D, it is mentioned that the RΨ
l;log coefficients

are all zero for all the cases considered. In fact, these
expressions vanish not because of the integration over fxig
but because the polynomial Pol2ðfxig; fηigÞ in (D1) is zero
for the Ψ contribution. This can be shown by summing
the already regularized expression for (C5). Although the
limits of integration are apparently different in each of the
terms (C7), (C9), the region of integration is the same. For
instance, the first integral can be written as

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0
dηi

�
¼

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

0

dηiθðηi − η0Þ
�
;

ðD11Þ

where θ is the step function, while

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00
dηi

�

¼
Z

η

0

dη0
Z

η

0

dη00θðη0 − η00Þ
�Y2l−2

i¼1

Z
η

0

dηiθðηi − η00Þ
�
:

ðD12Þ
Then, redefining in the last integral η0 as η2l−1 and η00 as η0,
both integrals have the same form

Z
η

0

dη1 � � �
Z

η

0

dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2N Y2N−1

i¼1

θðηi − η2NÞ: ðD13Þ
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“Finite-temperature corrections to the energy-momentum tensor at one loop in static spacetimes”
Physical Review D, Volume 97, 125017.
Authors: Franco D. Albareti, Antonio L. Maroto and Francisco Prada.

Motivation

Following the line of research developed in Paper II, we continue the study of quantum corrections
to the dynamics of scalar fields arising in non-trivial geometries. In this paper, we consider the
one-loop effective potential and expectation value of the energy-momentum tensor in a thermal
state in a perturbed static background. We derive analytical expressions in the high and low
temperature regimes and study the effects of the gravitational potentials on the expectation value of
a self-interacting scalar field.
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Finite-temperature corrections to the effective potential and the energy-momentum tensor of a scalar
field are computed in a perturbed Minkoswki spacetime. We consider the explicit mode decomposition of
the field in the perturbed geometry and obtain analytical expressions in the nonrelativistic and
ultrarelativistic limits to first order in scalar metric perturbations. In the static case, our results are in
agreement with previous calculations based on the Schwinger-DeWitt expansion which indicate that
thermal effects in a curved spacetime can be encoded in the local Tolman temperature at leading order in
perturbations and in the adiabatic expansion. We also study the shift of the effective potential minima
produced by thermal corrections in the presence of static gravitational fields. Finally, we discuss the
dependence on the initial conditions set for the mode solutions.

DOI: 10.1103/PhysRevD.97.125017

I. INTRODUCTION

Finite-temperature corrections to the effective potential
in quantum field theory play a fundamental role in the
description of phase transitions in the early Universe. In
particular, symmetry restoration at high temperatures is an
essential ingredient of the Higgs mechanism for electroweak
symmetry breaking. In flat spacetime, such thermal correc-
tions were computed for the first time in the seminal papers
of Dolan and Jackiw [1] and Weinberg [2] using thermal
Green functions methods. The possibility of extending those
methods to more realistic scenarios incorporating spacetime
curvature meets certain difficulties since finite-temperature
field theory is only well defined provided the geometry
possesses a global timelike Killing field. Thus, for example,
for static or stationary spacetimes, the thermal Green
functions method has been applied for homogeneous and
isotropic Einstein static spaces in [3]. These methods were
extended to conformally static Robertson-Walker back-
grounds in [4]. The conditions for the construction of a

thermal field theory in more general expanding universes
(not strictly static) were discussed in [5,6], where the
adiabatic techniques were introduced.
An alternative approach to the adiabatic expansion for

thermal field theory in general curved spacetime is the so-
called Schwinger-DeWitt [7,8] expansion of the effective
action. Both approaches are known to agree in the results
for the ultraviolet divergences in zero-temperature field
theory. The Schwinger-DeWitt expansion, being a local
curvature expansion, is manifestly covariant, but it is not
sensitive to the global properties of the spacetime such as
the presence of boundaries and does not contain informa-
tion about the nonlocal part of the effective action. Going
beyond the Schwinger-DeWitt approximation requires
brute force methods based on explicit mode summation
[9]. Thus, for example, in [10], phase transitions in
homogeneous but anisotropic Bianchi I and Kasner cos-
mologies were studied using explicit modes sum. In recent
works [11,12], we started this program in the case of weak
inhomogeneous gravitational fields by studying the one-
loop corrections to the vacuum expectation value (VEV) of
the energy-momentum tensor and the effective potential of
a massive scalar field. Thus, in [11], using a regularization
procedure based on a simple comoving cutoff, a non-
vanishing contribution of metric perturbations to the
effective potential was obtained. However, the renormal-
ization procedure required the use of noncovariant counter-
terms. In contrast, dimensional regularization was used in
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[12] to isolate the divergences, applying techniques devel-
oped specifically to deal with nonrational integrands. In this
case, the renormalized effective potential, being explicitly
covariant, did not contain contributions from the inhomo-
geneous gravitational fields at the leading order in metric
perturbation and in the adiabatic expansion in both static
and cosmological spacetimes.
In this work, we extend these methods to include

finite-temperature effects. The inclusion of the Bose-
Einstein factor, accounting for the statistical distribution
of the energy states, produces a smooth behavior of all
quantities involved at large energies, making it unnec-
essary to apply any regularization technique (once the
vacuum contribution is renormalized). As mentioned
above, in order to compute the aforementioned contri-
bution, we apply the “brute force” method described in
[11,12], i.e., performing a summation over the perturbed
modes of the quantum field obtained as solutions of the
Klein-Gordon equation. We are able to get analytical
expressions for the effective potential and the energy-
momentum tensor in the nonrelativistic and the ultra-
relativistic limits. In the static limit, we find that local
gravitational effects can be taken into account through the
Tolman temperature [13]. This is in accordance with
computations of the energy-momentum tensor of a scalar
field at finite temperature in a static spacetime using the
Schwinger-DeWitt approach, [14,15]. However, we also
obtain the explicit time dependence of the expectation
values for finite times, which shows that the Tolman
temperature can only be defined in the asymptotic time
regions.
The work is organized as follows. Section II describes

the general approach to compute an expectation value over
a thermal state in a perturbed FRW metric. The particular
expressions to be computed in the case of static spacetimes
are presented in Sec. III. Sections IV and V explain the
approximations applied to obtain the final result in the
nonrelativitic and ultrarelativistic limits, respectively. Shifts
in the minimum of the effective potential produced by
thermal correction are discussed in Sec. VI. Our conclu-
sions are presented in Sec. VII.

II. FINITE-TEMPERATURE CORRECTIONS

Given a scalar field ϕ, with potential VðϕÞ, its classical
action in a (Dþ 1)-dimensional spacetime with metric
tensor gμν can be written as

S½ϕ; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

As is well known, the solutions ϕ ¼ ϕ̂ of the classical
equation of motion,

□ϕ̂þ V 0ðϕ̂Þ ¼ 0; ð2Þ

are those that minimize the action. On the other hand,
quantum fluctuations around the classical solution
δϕ ¼ ϕ − ϕ̂ satisfy the equation of motion,

ð□þm2ðϕ̂ÞÞδϕ ¼ 0; ð3Þ

with

m2ðϕ̂Þ ¼ V 00ðϕ̂Þ: ð4Þ

Let us consider a metric which can be written as a
scalar perturbation around a flat Robertson-Walker back-
ground,

ds2¼a2ðηÞf½1þ2Φðη;xÞ�dη2− ½1−2Ψðη;xÞ�dx2g; ð5Þ

where η is the conformal time, aðηÞ the scale factor, and Φ
andΨ are the scalar perturbations in the longitudinal gauge.
Given this geometry, the mode solutions δϕk to (3) can be
found using a WKB approximation to first order in metric
perturbations and to the leading adiabatic order as [12]

δϕkðη;xÞ ¼ δϕð0Þ
k ðη;xÞð1þ Pkðη;xÞ þ iδθkðη;xÞÞ; ð6Þ

where

δϕð0Þ
k ðη;xÞ ¼ 1

ð2πÞD=2

1

aðηÞðD−1Þ=2 ffiffiffiffiffiffiffiffi
2ωk

p eik·x−i
R

η
ωkðη0Þdη0

ð7Þ

are the unperturbed mode solutions with

ω2
kðηÞ ¼ k2 þm2a2ðηÞ: ð8Þ

The explicit expressions for Pkðη;xÞ and δθkðη;xÞ in
Fourier space are shown in Appendix A.
The effects of quantum fluctuations on the classical field

configuration can be taken into account using the one-loop
effective potential [12,16]

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ 1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2i; ð9Þ

where Vðϕ̂Þ is the tree-level potential and the expectation
value of the operator hδϕ2i is taken over a particular
quantum state of the field. Taking into account (6) and (7)
and assuming that the quantum state has a fixed number of
particles per mode nk, the one-loop contribution to the
effective potential reads
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1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2i ¼ 1

ð2πÞDaD−1ðηÞ
1

2

Z
m2ðϕ̂Þ

0

dm2

Z
dDk

�
1

2
þ nk

�
1þ 2Pkðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
¼ 2

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
1

2

Z
m2ðϕ̂Þ

0

dm2

Z
∞

0

dkkD−1
�
1

2
þ nk

�
1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ð10Þ

where we have defined

P̂kðη;pÞ ¼
Z

1

−1
dx̂ð1 − x̂2ÞðD−3Þ=2Pkðη;pÞ; ð11Þ

where x̂ ¼ k · p=ðkpÞ and including the general integration
measure in D dimensions.
From now on, we consider a thermal quantum state.

Then, the number of particles per mode is given by the
Bose-Einstein distribution,

nTk ¼ 1

eωk=T − 1
; ð12Þ

where T is the temperature of the state, for the moment
understood as a parameter of the Bose-Einstein distribution
(see next section).
Let us define V1ðϕ̂Þ as the one-loop quantum vacuum

contribution, i.e.,

V1ðϕ̂Þ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

m2ðϕ̂Þ

0

dm2

×
Z

∞

0

dkkD−1 1

2

1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ; ð13Þ

and VTðϕ̂Þ as the term that includes finite-temperature
corrections,

VTðϕ̂Þ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

m2ðϕ̂Þ

0

dm2

×
Z

∞

0

dkkD−1nTk
1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ; ð14Þ

so that we can write the one-loop effective potential at finite
temperature as

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ V1ðϕ̂Þ þ VTðϕ̂Þ: ð15Þ

It is important to notice that both the vacuum and the
thermal contributions have a homogeneous term, corre-
sponding to the background geometry, and an inhomo-
geneous one, proportional to the perturbations. Then,

V1ðϕ̂Þ ¼ Vh
1ðϕ̂Þ þ V i

1ðϕ̂Þ; ð16Þ

VTðϕ̂Þ ¼ Vh
Tðϕ̂Þ þ V i

Tðϕ̂Þ: ð17Þ

The homogeneous part due to vacuum effects Vh
1ðϕ̂Þ, after

applying the minimal substraction scheme MS in dimen-
sional regularization with D ¼ 3þ ϵ, is given by [12]

Vh
1ðϕ̂Þ ¼

m4ðϕ̂Þ
64π2

�
ln
�
m2ðϕ̂Þ
μ2

�
−
3

2

�
: ð18Þ

A detailed analysis of the inhomogeneous part of the
vacuum V i

1ðϕ̂Þ was performed in [11] with a cutoff
regularization and in [12] using dimensional regularization.
When a cutoff Λ is used, the result turns out to be
proportional to m2ðϕ̂ÞΛ2Φ in the static case; i.e., only
the quadratic divergence appears. In dimensional regulari-
zation, we find to first order in perturbations and to the
leading adiabatic order that

V i
1ðϕ̂Þ ¼ 0 ð19Þ

in agreement with the absence of logarithmic divergences
in the cutoff case.
In this work, we focus on the thermal contribution

VTðϕ̂Þ. The corresponding inhomogeneous contribution
can, in turn, be split in the terms proportional toΦ andΨ as

VTðϕ̂Þ ¼ Vh
Tðϕ̂Þ þ VΦ

T ðϕ̂Þ þ VΨ
T ðϕ̂Þ ð20Þ

It is important to note that expression (9) defines the
potential except for the addition of an arbitrary function
which could depend on the spacetime coordinates and the
temperature. This function does not modify the dynamics
of the field (2) since it does not introduce any dependence
on mðϕ̂Þ.
In the same fashion, the thermal contribution to the

components of the energy-momentum tensor can be
obtained from the expressions given in Ref. [12] including
the number of particles per mode nTk , thus,

hT0
0ðη;pÞi ¼ ρðη;pÞ ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

�
ωk

�
1þ 2

k2

ω2
k

ΨðpÞ þ 2Pkðη;pÞ þ 2i
k · p
ω2
k

δθkðη;pÞ
�

ð21Þ
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hTi
iðη;pÞi ¼ − piðη;pÞ ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
k2i
ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ 2i
kipi

ωk
δθkðη;pÞ

�
ð22Þ

hTi
0ðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
ki

�
1þ 2Pkðη;pÞ þ 2i

k · p
ω2
k

δθkðη;pÞ
�
þ ipiδθkðη;pÞ

�
ð23Þ

hTi
jðη;pÞi ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
kikj
ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ i
kipj þ kjpi

ωk
δθkðη;pÞ

�
ð24Þ

hTμ
μðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
m2

ωk
ð1þ 2Pkðη;pÞÞ

�
: ð25Þ

Let us divide the energy-momentum tensor, in the same
way as for the potential case, in a vacuum contribution,
which does not depend on the number of particles per mode
nTk , and a thermal contribution.

hTμ
νðη;pÞi ¼ hTμ

νðη;pÞivac þ hTμ
νðη;pÞiT: ð26Þ

each one having a homogeneous and an inhomogeneous
part. It can be shown [12] that the energy-momentum tensor
of the vacuum is given by hTμ

νðη;pÞivac ¼ ρvacδ
μ
ν, where

the energy density ρvac and pressure pvac are given in the
M̄S renormalization scheme with D ¼ 3þ ϵ by

ρvac ¼ −pvac ¼
m4

64π2

�
log

�
m2

μ2

�
−
3

2

�
: ð27Þ

This implies that the inhomogeneous part of the vacuum
contribution is zero when dimensional regularization is
used, therefore metric perturbations do not contribute to the
leading adiabatic order. In this paper, we compute the
homogeneous and inhomogeneous parts of hTμ

νðη;pÞiT .

III. STATIC SPACETIMES

Although the expressions for the perturbed solutions
given in Appendix A are valid for general perturbed FRW
spacetimes, in this work we focus on static spacetimes; i.e.,
we will take a ¼ 1 and Φ ¼ ΦðxÞ, Ψ ¼ ΨðxÞ. The general
case is of great interest for cosmological scenarios, never-
theless the time dependence of the scale factor increases the
complexity of the computations, making extremely difficult
to obtain analytical expressions. In addition, in order to
define a thermodynamic temperature, there must be a
timelike Killing vector field; namely, the spacetime must
be static or stationary.
In order to compute VTðϕ̂Þ and the energy-momentum

tensor hTμ
νðη;pÞiT thermal contributions, our first step will

be to expand the Pkðη;pÞ and δθkðη;pÞ functions in powers
of pη (Appendix B). These expansions allow us to find a
common structure of the integrals involved.

A. Effective potential

Taking into account (B1) and (10), it is clear that we have
to deal with the following kind of integrals,

1

2

Z
m2ðϕ̂Þ

0

dm2

Z
∞

0

dkkD−1 1

eωk=T − 1

1

ωk

�
k
ωk

�
2α
�
m
ωk

�
2n

α ¼ 0; 1; 2;… n ¼ 0; 1; 2; ð28Þ

to compute the finite-temperature correction to the effective
potential.
It is convenient to use the dimensionless variables

u ¼ ωk=T and x ¼ m=T instead of k and m, respectively.
In terms of these new variables, the integral reduces to
(extracting a global factor TDþ1)

IXα;n≡
Z

X

0

dx
Z

∞

x
du

1

eu−1

x1þ2n

u2αþ2n ðu2−x2ÞD=2þα−1; ð29Þ

where X ≡mðϕ̂Þ=T.
It is also useful to interchange the order of integration of

this integral and divide it in the following way,

IXα;n ¼
�Z

X

0

du
Z

u

0

dxþ
Z

∞

X
du

Z
X

0

dx

�

×

�
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1
�
; ð30Þ

where the first part takes into account the contribution from
modes with energies below the mass of the field, while the
second part includes the contribution from modes with
energies above the mass of the field.

B. Energy-momentum tensor

To compute the energy-momentum tensor, the following
integrals appear:
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Z
∞

0

dkkD−1 1

eωk=T − 1
ωk

�
k
ωk

�
2α
�
m
ωk

�
2n

α ¼ 0; 1; 2;… n ¼ 0; 1; 2: ð31Þ

Using the same dimensionless variables u and x, we get
(also extracting a global factor TDþ1)

JXα;n ≡
Z

∞

X
du

1

eu − 1

X2n

u2αþ2n−2 ðu2 − X2ÞD=2þα−1: ð32Þ

Only modes with energies above the mass of the field
contribute to the energy-momentum tensor.
In the following, we compute the integrals IXα;n (30) and

JXα;n (32) in the nonrelativistic and the ultrarelativistic
limits.

IV. NONRELATIVISTIC LIMIT

A. Effective potential

In the nonrelativistic limit mðϕ̂Þ=T → ∞ (or X → ∞),
the contribution from modes with energies above the
mass of the field is exponentially damped because of the
Bose-Einstein factor; hence, the leading contribution in the
nonrelativistic limit is given by the first part of (30) when
taking X ¼ ∞,

I∞α;n ¼
Z

∞

0

du
Z

u

0

dx
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼ ΓðD=2þ αÞn!
2ΓðD=2þ αþ nþ 1ÞD!ζðDþ 1Þ; ð33Þ

where ζðxÞ is the Riemann Zeta function.
Therefore, using expression (10) together with the result

for the integral (33) and the expansion of P̂kðη;pÞ (B1), we
obtain (assumingD ¼ 3) for the leading contributions after
resummation of the series in pη

Vh
TðLÞðϕ̂Þ ¼

π2

90
T4 ð34Þ

VΦ
TðLÞðϕ̂Þ ¼

π2

90
T4ΦðpÞ × 4

�
3
sinðpηÞ
ðpηÞ3 − 3

cosðpηÞ
ðpηÞ2 − 1

�
ð35Þ

VΨ
TðLÞðϕ̂Þ ¼

π2

90
T4ΨðpÞ × 12

��
6

ðpηÞ4 −
1

ðpηÞ2
�
cosðpηÞ

þ
�

3

ðpηÞ3 −
6

ðpηÞ5
�
sinðpηÞ

�
: ð36Þ

Note that there is no dependence on the field (which may
appear through mass terms). Therefore, these expressions
do not affect the field dynamics and they can be neglected.
On the other hand, even though we are considering static

backgrounds, there is an explicit time dependence of the
result. This can be traced back to the particular mode choice
in (A1) and (A2). In particular, taking the η → ∞ limit,
which corresponds to setting initial conditions for the
modes in the remote past, we recover static results for
the effective potential.
In the static limit η → ∞, the following expression is

obtained:

VTðLÞðϕ̂Þ ¼
π2

90
T4ð1 − 4ΦðpÞÞ: ð37Þ

It can be shown that the leading inhomogeneous effect in
the static limit only depends on the Φ potential and, in fact,
it can be obtained from the homogeneous result replacing
the temperature by the local Tolman temperature [13],

TTolman ¼
Tffiffiffiffiffiffi
g00

p ≃ Tð1 −ΦðpÞÞ: ð38Þ

Notice, however, that in the results for finite time given
in (35) and (36), the explicit time dependence of the
effective potential prevents the introduction of a Tolman
temperature.

The next-to-leading correction, VðNLÞ
T , including terms

OðT=mðϕ̂ÞÞ, can be obtained by applying a modified
version of the Laplace method to the following integral,1

IXα;n − I∞α;n ≃ −
Z

∞

X
du

Z
u

X
dxe−u

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼
Z

∞

X
du

1

2
e−uuD

�
BX2=u2ð1þ n;D=2þ αÞ

−
Γð1þ nÞΓðD=2þ αÞ
ΓðD=2þ αþ nþ 1Þ

�
; ð39Þ

where we have replaced the Bose-Einstein factor by the
Boltzmann factor. Bzða; bÞ is the incomplete Beta function.
When u=X ≫ 1, the integrand is exponentially damped as
e−u=X. Then, we Taylor expand the expression inside the
brackets around X2=u2 ¼ 1 to obtain

IXα;n − I∞α;n ∼ −
Z

∞

X
du

1

Dþ 2α
e−uuD

�
1 −

X2

u2

�
D=2þα

¼ −
Z

∞

X
du

1

Dþ 2α
exp

�
−uþD logðuÞ

þ
�
D
2
þ α

�
log

�
1 −

X2

u2

��
: ð40Þ

1The symbol ≃ stands for an approximation in the Taylor
sense, while ∼ stands for an asymptotic approximation, namely
the quotient between both results equals 1 in the appropriate limit.
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The expression inside the exponential has a maximum at
u ∼ X when X → ∞.2 Taylor expanding the argument of
the exponential around u ¼ X up to order OðuÞ (including
the logarithmic divergence), the integration in u can be
performed to get the following result,

IXα;n − I∞α;n ∼ −23ðD=2þαÞþ1ΓðD=2þ αÞe−X

×
XDþ1

ð4X −Dþ 6αÞD=2þαþ1

∼ −2D=2þα−1ΓðD=2þ αÞe−XXD=2−α; ð41Þ

which does not depend on n. Because of the factor XD=2−α

in the last expression, the expansion in pη mixes with the
expansion in Xð¼ mðϕ̂Þ=TÞ.
Finally, the next-to-leading contribution to the potential

for pη ≪ 1 is given by

VTðNLÞðϕ̂Þ ¼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1þ 3ΨðpÞ − ðpηÞ2

2
ΦðpÞ

�
: ð42Þ

A better approximation for smaller values of X is obtained
if we do not drop α in the denominator in (41). This
improved approximation is shown in Fig. 1 (right panel). It

is important to note that each order in ðpηÞ is suppressed by
a factor ½T=mðϕ̂Þ� with respect to the previous order,
because of the mixing discussed above. For instance, the
correction proportional to Ψ does not depend on ðpηÞ to
leading order in ½T=mðϕ̂Þ� [see Eq. (42)], then the depend-
ence on ðpηÞ2 proportional to Ψ is suppressed by a factor
½T=mðϕ̂Þ� with respect to the ðpηÞ2 correction proportional
to Φ, as shown in Fig. 1 (right panel).
Because of the mixing between the expansion in

Xð¼ mðϕ̂Þ=TÞ and pη we cannot obtain a result valid
for arbitrary scales p and times η. However, it is possible to
obtain the static result by taking the limit η → ∞ directly on
(10). According to this procedure, we get

VTðNLÞðϕ̂Þ ¼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1 −

35

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
: ð43Þ

As can be checked in a straightforward way from (43),
also for the next to leading contribution in the static limit,
the inhomogeneous correction can be obtained from the
homogeneous result by replacing the temperature with the
Tolman temperature [13].

B. Energy-momentum tensor

The leading order of the energy-momentum tensor is
already exponentially damped, since only modes with
energies above the mass of the field contribute. We write
the integral (32) as

JXα;n ≃
Z

∞

X
due−u

X2n

u2αþ2n−2 ðu2 − X2ÞD=2þα−1 ð44Þ
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m T eq. 35
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FIG. 1. Left panel: Points correspond to the numerical value of the thermal contributions to the potential proportional to Φ and Ψ
taking mðϕ̂Þ=T ¼ 10, whereas the solid lines represent the leading approximations (35) and (36). Right panel: Points are the difference
between the numerical values of the potential and the approximations (35) (blue points) and (36) (black points) for mðϕ̂Þ=T ¼ 10. The
next-to-leading correction for mðϕ̂Þ=T ¼ 10 up to ðpηÞ2 (dashed lines) and ðpηÞ30 (solid lines) is shown for comparison.

2Here we are dropping a term linear in α in the expression for
the maximum. This means that we cannot allow α → ∞. Since α
is related with the order of the expansion in pη, the results are
only valid if the series appearing in (B1) is truncated at some
order such that α ≪ X. Although it could be done for arbitrary α,
it would not be very useful if the expression cannot be resummed.
Nevertheless, it will be shown that the l-term is suppressed by a
factor 1=Xl, thus only the first terms are relevant in this limit
(X → ∞).
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where the Bose-Einstein factor has been replaced by the Boltzmann factor. Applying the Laplace’s method again
we get

JXα;n ≃ X2n

Z
∞

X
du exp

�
−u − 2ðαþ n − 1Þ logðuÞ þ

�
D
2
þ α − 1

�
log ðu2 − X2Þ

�

∼ 23ðD=2þαÞ−1ΓðD=2þ αÞe−X XDþ1

ð4X −Dþ 6αþ 8n − 6ÞD=2þα

∼ 2D=2þα−1ΓðD=2þ αÞe−XXD=2−αþ1 ð45Þ

Then, taking into account the expressions given in Sec. II
and the result (45), the energy-momentum tensor for
pη ≪ 1 is given by

ρT ≡ hT0
0ðη;pÞiT

∼
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2

×

�
1þ 3ΨðpÞ − ðpηÞ2

2
ΦðpÞ

�
ð46Þ

−pT ≡ hTi
iðη;pÞiT

∼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1þ 5ΨðpÞ − 5ðpηÞ2

6
ΦðpÞ

�
ð47Þ

hTi
0ðη;pÞiT∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2

ðipiÞηΦðpÞ

ð48Þ

hTi
jðη;pÞiT ∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

× ði2pipjÞη2ΦðpÞ i ≠ j ð49Þ

where ρT and pT are the energy density and pressure
produced by the thermal corrections. We have only retained
the leading order inmðϕ̂Þ=T. Further correctionsOððpηÞ2lÞ
are suppressed by a factor ðmðϕ̂Þ=TÞl.
In the nonrelativistic case, it is not possible to take the

static limit in the final expressions since we only have the
results for pη ≪ 1 as discussed before. However, the static
expression can be obtained by taking the static limit in the
original expressions (25)

ρT ≡ hT0
0ðη;pÞiT ∼

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2�
1 −

39

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
ð50Þ

−pT ≡ hTi
iðη;pÞiT ∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2�
1 −

35

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
: ð51Þ

Once again, in the static limit, the inhomogeneous correc-
tions, depending only on the Φ potential and can be
obtained from the homogenous one by introducing the
Tolman temperature.

V. ULTRARELATIVISTIC LIMIT

A. Effective potential

In the ultrarelativistic limit,mðϕ̂Þ=T → 0 (or X → 0), the
dominant contribution comes from modes with energies
higher than the mass of the field. Therefore, the second part
of (30) gives

IXα;n ≃
Z

∞

X
du

Z
X

0

dx
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼
Z

∞

X
du

1

2

uD

eu − 1
BX2=u2ð1þ n;D=2þ αÞ

≃
Z

∞

X
du

1

2

uD−2n−2

eu − 1

X2þ2n

1þ n
ð52Þ

where we have expanded the incomplete Beta function
Bzða; bÞ for X ≪ 1 in the last line. The leading contribution
comes from n ¼ 0. Replacing the lower limit of integration
by 0 we get in that limit
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IXα;0 ≃
Z

∞

0

du
1

2

uD−2

eu − 1
X2

¼ 1

2
ΓðD − 1ÞLiD−1ð1ÞX2 ð53Þ

where LinðzÞ is the polylogarithm function.
Therefore, from (30) and using the expansion of P̂kðη;pÞ

in (B1) and the result (53), we can resum this contribution
to get the leading contribution

Vh
TðLÞðϕ̂Þ ¼

T4

24

�
mðϕ̂Þ
T

�2

ð54Þ

VΦ
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΦðpÞ ×
�
sinðpηÞ
pη

− 1

�
ð55Þ

VΨ
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨðpÞ ×
�
sinðpηÞ
pη

�
ð56Þ

The explicit time dependence of the general results
obtained in a static metric can be traced back to the initial
conditions of the modes. Taking the limit η → ∞ in (55)
and (56), the initial conditions are washed out and the
remaining correction in Fourier space is

VTðLÞðϕ̂Þ ¼
T4

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ: ð57Þ

In this case we can also obtain the inhomogeneous result by
replacing the temperature by the local Tolman temperature
[13] in the homogeneous result.
To get the real space result in the static limit, one has to

compute the Fourier transform of the complete expression
and then take the static limit, η → ∞. Following this
procedure, it is possible to get the real space result for
arbitrary perturbation (see Appendix C) which reads

VTðLÞðϕ̂Þ ¼
T4

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðrÞÞ: ð58Þ

Therefore, as expected, the static limit and the Fourier
transform commute [compare (57) and (58)]. This is a
general conclusion for the functions in Fourier space
appearing in this paper due to the results of Appendix C.
In real space, the corrections due to Newtonian pertur-

bations ΦNðpÞ and ΨNðpÞ given by

ΦNðpÞ ¼ ΨNðpÞ ¼ −4π
GM
p2

ð59Þ

ΦNðrÞ ¼ ΨNðrÞ ¼ −
GM
r

; ð60Þ

inside the light cone (r < jηj) are

VΦN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΦNðrÞ ×
�

r
jηj − 1

�
ð61Þ

VΨN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨNðrÞ ×
�

r
jηj

�
ð62Þ

while on and outside the light cone (r ≥ jηj) are

VΦN
TðLÞðϕ̂Þ ¼ 0 ð63Þ

VΨN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨNðrÞ: ð64Þ

The next-to-leading order corrections can be obtained by
computing the first part of Eq. (30) plus next-to-leading
terms coming from Eq. (52) (see Appendix D). Finally,
after resummation of the series expansion (B1) we get for
VTðNLÞ, [up to Oððm=TÞ5Þ]

Vh
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3�
−

1

12π
þ 1

32π2

�
mðϕ̂Þ
T

��
log

�
T
M

�
þ 3

4
− γ þ logð4πÞ

��
ð65Þ

VΦ
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΦðpÞ
�
−

1

12π
ðJ0ðpηÞ − 1Þ þ 1

32π2

�
mðϕ̂Þ
T

�
ðcosðpηÞ − 1Þ þ 1

720π

�
mðϕ̂Þ
T

�2

pηJ1ðpηÞ
�

ð66Þ

VΨ
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨðpÞ
�
−

1

12π

�
J0ðpηÞ þ

J1ðpηÞ
pη

�
þ 1

32π2

�
mðϕ̂Þ
T

��
cosðpηÞ þ 2 sinpη

pη

�

þ 1

720π

�
mðϕ̂Þ
T

�2

ðpηJ1ðpηÞ − 3J0ðpηÞÞ
�

ð67Þ

where γ is Euler’s constant and JnðxÞ Bessel functions. The leading and next-to-leading inhomogeneous thermal corrections
of VT are shown in Fig. 2.
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Considering Newtonian perturbations ΦN and ΨN , in
real space we get for the region inside the light cone
(r < jηj)

VΦN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΦNðrÞ

×

�
1

12π
−

1

6π2
arcsin

�
r
jηj

��
ð68Þ

VΨN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨNðrÞ

×

�
−

1

12π2
r
η

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

η2

s
−

1

4π2
arcsin

�
r
jηj

��
;

ð69Þ

and outside and on the light cone (r ≥ jηj)

VΦN
TðNLÞðϕ̂Þ ¼ 0 ð70Þ

VΨN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨNðrÞ ×
�
−

1

8π

�
: ð71Þ

Here for simplicity we have only shown the Oðm=TÞ3
contributions.

In the static limit η → ∞ one gets

VTðNLÞðϕ̂Þ ¼ −
T4

12π

�
mðϕ̂Þ
T

�3

ð1 −ΦðpÞÞ; ð72Þ

which is also valid in real space replacing ΦðpÞ by ΦðrÞ
(see Appendix C). Here again we find that the inhomo-
geneous result can be obtained by replacing the temperature
in the homogeneous contribution by the local Tolman
temperature.

B. Energy-momentum tensor

The leading contribution is given by the integral (32)
when n ¼ 0

JXα;0 ¼
Z

∞

X
du

1

eu − 1

1

u2α−2
ðu2 − X2ÞD=2þα−1

≃
Z

∞

0

du
uD−2

eu − 1
ðu2 þ ð1 −D=2 − αÞX2Þ

¼ ΓðD − 1Þ½ðD − 1ÞDζðDþ 1Þ
þ ð1 −D=2 − αÞζðD − 1ÞX2� ð73Þ

where we have replaced the lower limit of integration by 0
and expanded the integrand around X ¼ 0 in the second
line. Therefore, we get for the energy-momentum tensor

ρT
T4

¼ hT0
0ðη;pÞiT
T4

≃
π2

30

�
1 − 4ΦðpÞ þ 4 sinðpηÞ

pη
ðΦðpÞ þ ΨðpÞÞ

�

−
1

24

�
mðϕ̂Þ
T

�2�
1þ

�
2 cosðpηÞ þ 4 sinðpηÞ

pη

�
ΨðpÞ þ ð2 cosðpηÞ − 2ÞΦðpÞ

�
ð74Þ

pT

T4
¼ −

hTi
iðη;pÞiT
T4

≃
π2

90

�
1 − 4ΦðpÞ þ 4 sinðpηÞ

pη
ðΦðpÞ þΨðpÞÞ

�

−
1

24

�
mðϕ̂Þ
T

�2�
1þ

�
2

3
cosðpηÞ þ 8 sinðpηÞ

3pη

�
ΨðpÞ þ

�
2

3
cosðpηÞ þ 4 sinðpηÞ

3pη
− 2

�
ΦðpÞ

�
ð75Þ

hTi
0ðη;pÞiT
T4

≃
�
i
pi

p

�
2π2

15

�
cosðpηÞ

pη
−
sinðpηÞ
ðpηÞ2

�
ðΦðpÞ þ ΨðpÞÞ

þ
�
i
pi

p

�
1

12

�
mðϕ̂Þ
T

�2�
sinðpηÞΦðpÞ þ

�
sinðpηÞ þ 2

sinðpηÞ
ðpηÞ2 − 2

cosðpηÞ
pη

�
ΨðpÞ

�
ð76Þ

hTi
jðη;pÞiT
T4

≃
�
i2
pipj

p2

�
2π2

15

�
sinðpηÞ
pη

þ 3
cosðpηÞ
ðpηÞ2 − 3

sinðpηÞ
ðpηÞ3

�
ðΦðpÞ þΨðpÞÞ þ

�
i2
pipj

p2

�
1

12

�
mðϕ̂Þ
T

�2

×

��
sinðpηÞ
pη

− cosðpηÞ
�
ΦðpÞ þ

�
6
sinðpηÞ
ðpηÞ3 −

sinðpηÞ
pη

− 6
cosðpηÞ
ðpηÞ2 − cosðpηÞ

�
ΨðpÞ

�
i ≠ j ð77Þ
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hTμ
μðη;pÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2�
1þ

�
2 sinðpηÞ

pη
− 2

�
ΦðpÞ þ 2 sinðpηÞ

pη
ΨðpÞ

�
; ð78Þ

which does not correspond to a perfect fluid.3

In real space, we have for Newtonian perturbations inside the light cone (r < jηj)

ρT
T4

¼ hT0
0ðη; rÞiT
T4

≃
π2

30

�
1 − 4

��
1 −

r
jηj

�
ΦNðrÞ −

r
jηjΨNðrÞ

��
−

1

24

�
mðϕ̂Þ
T

�2�
1 − 2ΦNðrÞ þ 4

r
jηjΨNðrÞ

�
ð79Þ

pT

T4
¼ −

hTi
iðη; rÞiT
T4

≃
π2

90

�
1− 4

��
1−

r
jηj

�
ΦNðrÞ−

r
jηjΨNðrÞ

��
−

1

24

�
mðϕ̂Þ
T

�2�
1− 2

�
1−

2

3

r
jηj

�
ΦNðrÞ þ

8

3

r
jηjΨNðrÞÞ

�
ð80Þ

hTi
0ðη; rÞiT
T4

≃
π2

45η2
∂i½r3ðΦNðrÞ þ ΨNðrÞÞ� −

1

36η2

�
mðϕ̂Þ
T

�2

∂iðr3ΨNðrÞÞ ð81Þ

VT for m Φ T 0.1

Eq. 55 for m Φ T 0.1
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FIG. 2. Left upper panel: Points show the numerical value of the thermal contribution to the potential taking mðϕ̂Þ=T ¼ 0.1 and the
continuous line corresponds to the approximations in (55) and (56). Right upper panel: Difference between the numerical value of the
potential for mðϕ̂Þ=T ¼ 0.1 and the approximations (55) (blue points) or (56) (black points). The next-to-leading corrections
[Oððm=TÞ3Þ] given by (66) (green solid line) and (67) (red solid line) for mðϕ̂Þ=T ¼ 0.1. Left bottom panel: Difference between the
numerical value and the Oððm=TÞ3Þ approximation (blue and black points). The Oððm=TÞ4Þ correction is plotted as a solid line. Right
bottom panel: Difference between the numerical value and the Oððm=TÞ4Þ approximation (blue and black points). The Oððm=TÞ5Þ
correction is plotted as a solid line.

3The energy-momentum tensor given by Eqs. (74)–(77) is conserved.
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hTi
jðη; rÞiT
T4

≃ −
π2

300jηj3 ∂i∂j½r5ðΦNðrÞ þ ΨNðrÞÞ�

þ 1

240jηj3
�
mðϕ̂Þ
T

�2

∂i∂jðr5ΨNðrÞÞ i ≠ j

ð82Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2�
1 − 2

�
1 −

r
jηj

�
ΦNðrÞ

þ 2
r
jηjΨNðrÞ

�
: ð83Þ

Outside the light cone (r > jηj), we get

ρT
T4

¼ hT0
0ðη; rÞiT
T4

≃
π2

30
ð1þ 4ΨNðrÞÞ −

1

24

�
mðϕ̂Þ
T

�2

½1þ 6ΨNðrÞ� ð84Þ

pT

T4
¼ −

hTi
iðη; rÞiT
T4

≃
π2

90
ð1þ 4ΨNðrÞÞ

−
1

24

�
mðϕ̂Þ
T

�2�
1þ 10

3
ΨNðrÞÞ

�
ð85Þ

hTi
0ðη;rÞiT
T4

≃−
2π2η

45
∂iðΦNðrÞþΨNðrÞÞ

þ η

12

�
mðϕ̂Þ
T

�2

∂i

�
ΦNðrÞþ

5

3
ΨNðrÞ

�
ð86Þ

hTi
jðη;rÞiT
T4

≃−
2π2η2

225
∂i∂jðΦNðrÞþΨNðrÞÞ

þ η2

36

�
mðϕ̂Þ
T

�2

∂i∂j

�
ΦNðrÞþ

7

5
ΨNðrÞ

�
i≠ j

ð87Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

½1þ 2ΨNðrÞ�; ð88Þ

and on the light cone (r ¼ jηj), the results are

ρT
T4

¼hT0
0ðη;rÞiT
T4

≃
π2

30
ð1þ4ΨNðrÞÞ−

1

24

�
mðϕ̂Þ
T

�2

½1−ΦNðrÞþ5ΨNðrÞ�

ð89Þ

pT

T4
¼−

hTi
iðη;rÞiT
T4

≃
π2

90
ð1þ4ΨNðrÞÞ−

1

24

�
mðϕ̂Þ
T

�2�
1−

1

3
ΦNðrÞþ3ΨNðrÞ

�
ð90Þ

hTi
0ðη; rÞiT
T4

≃ −
2π2η

45
∂iðΦNðrÞ þ ΨNðrÞÞ

þ η

12

�
mðϕ̂Þ
T

�2

∂i

�
ΦNðrÞ þ

5

3
ΨNðrÞ

�
ð91Þ

hTi
jðη; rÞiT
T4

≃ −
2π2η2

225
∂i∂jðΦNðrÞ þ ΨNðrÞÞ

þ η2

36

�
mðϕ̂Þ
T

�2

∂i∂j

�
ΦNðrÞ þ

7

5
ΨNðrÞ

�
i ≠ j ð92Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

½1þ 2ΨNðrÞ�: ð93Þ

In the static limit, the energy density and pressure are

ρT
T4

¼ hT0
0ðη;pÞiT
T4

≃
π2

30
ð1 − 4ΦðpÞÞ − 1

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ ð94Þ

pT

T4
¼ −

hTi
iðη;pÞiT
T4

≃
π2

90
ð1 − 4ΦðpÞÞ − 1

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ ð95Þ

hTμ
μðη;pÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ; ð96Þ

the nondiagonal terms being zero. Once again, these results
can be interpreted as being the corresponding energy
density and pressure for a classical gas at the local
Tolman temperature [13] in agreement with [14,15]. The
same expressions for the static limit apply in real space (see
Appendix C).

VI. THERMAL SHIFT OF THE EFFECTIVE
POTENTIAL MINIMA

Once the effective potential is obtained, the value of the
field for which

Veff
0ðϕ̂Þ ¼ 0 ð97Þ

FINITE-TEMPERATURE CORRECTIONS TO THE ENERGY- … PHYS. REV. D 97, 125017 (2018)

125017-11



determines the value attained by the classical field ϕ̂.
The inhomogeneous contributions to the effective potential
will now induce a spatial dependence on ϕ̂ which can be
written as

ϕ̂ðη;xÞ ¼ ϕ̂0 þ Δϕ̂ðη;xÞ; ð98Þ

where ϕ̂0 is the minimum of the potential in the absence of
metric perturbations, but including the one-loop correc-
tions, i.e.,

Vh
eff

0ðϕ̂0Þ ¼ V 0ðϕ̂0Þ þ Vh
1
0ðϕ̂0Þ þ Vh

T
0ðϕ̂0Þ ¼ 0; ð99Þ

then to first order in metric perturbations and taking into
account that Vi

1 ¼ 0 in dimensional regularization, we get

Δϕ̂ ¼ −
V i
T
0ðϕ̂0Þ

Vh
eff

00ðϕ̂0Þ
¼ −

1

Vh
eff

00ðϕ̂0Þ
dm2

dϕ̂

				
ϕ̂¼ϕ̂0

dV i
T

dm2

				
ϕ̂¼ϕ̂0

:

ð100Þ

Thus, the relative classical field variation is given by the
temperature correction

Δϕ̂ ¼ −
V 000ðϕ̂0Þ
Vh
eff

00ðϕ̂0Þ
dV i

T

dm2

				
ϕ̂¼ϕ̂0

: ð101Þ

The perturbation is therefore proportional to the third
derivative of the tree-level potential, so that variations in
the field expectation value are only generated in theories
with self-interactions.
In the nonrelativistic limit and in the static limit we get in

Fourier space

Δϕ̂Tðη;pÞ ¼
e−mðϕ̂Þ=T

4
ffiffiffi
2

p
π3=2

�
mðϕ̂Þ
T

�3=2

× V 000ðϕ̂0Þ
�

T2

Vh
eff

00ðϕ̂0Þ

�
ΦðpÞ: ð102Þ

In the ultrarelativistic limit, we obtain for arbitrary η

Δϕ̂ðη;pÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

���
sinðpηÞ
pη

− 1

�
ΦðpÞ

þ
�
sinðpηÞ
pη

�
ΨðpÞ

�
: ð103Þ

which in the static limit reduces to

Δϕ̂ðpÞ ¼ V 000ðϕ̂0Þ
12

�
T2

Vh
eff

00ðϕ̂0Þ

�
ΦðpÞ; ð104Þ

valid also in real space replacing ΦðpÞ by ΦðrÞ. In
particular, in real space, we get for Newtonian potentials
inside the light cone (r < jηj)

Δϕ̂ðη; rÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

�

×

��
r
jηj − 1

�
ΦNðrÞ þ

r
jηjΨNðrÞ

�
; ð105Þ

while outside and on the light cone (r ≥ jηj)

Δϕ̂ðη; rÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

�
ΨNðrÞ: ð106Þ

Thus, we see that outside and on the light cone (r ≥ jηj), the
result reduces to minus the static limit result (104). Inside
the light cone (r < jηj), the thermal shift depends on time
and approaches asymptotically the static case.
From these results we see that there is a negligible shift in

the classical field ϕ̂ at low temperature because of the
exponential suppression, however, depending on the form
of the tree-level potential, the shift generated by metric
perturbations in the ultrarelativistic limit could be relevant
in certain cases.
Now, let us focus on the critical temperature of the phase

transition Tc defined by [16]

Veffðϕ̂0 þ Δϕ̂Þ ¼ Veffð0Þ ð107Þ

where Veff , ϕ̂0 and Δϕ̂ depend on the temperature T.
Expanding Eq. (107) around the critical temperature in
the absence of metric perturbations T0

c , we get for the
leading order

Vh
effðϕ̂0Þ ¼ Vh

effð0Þ ð108Þ

which is the definition of T0
c . Considering the next to

leading order and solving for δTc ¼ Tc − T0
c, we obtain the

following expression for the shift in the critical temperature
produced by metric perturbations4

δTc ¼ −
V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ

				
T¼T0

c

: ð109Þ

It can be shown (see Appendix E) that in the static limit

4To get this expression we have redefined the effective
potential by adding a function of the temperature in such a
way that Vh

effð0Þ ¼ 0 and d
dT V

h
effð0Þ ¼ 0 for every T. This does

not change the dynamics of the field since the aforementioned
function of the temperature does not depend on the field ϕ
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V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ
¼ −TΦðpÞ ð110Þ

therefore, in that case, the shift in the critical temperature is
given by

δTc

T0
c
¼ ΦðpÞ: ð111Þ

i.e., once again the curvature perturbation Ψ does not
contribute to the shift.

VII. CONCLUSIONS

Considering a scalar field at finite temperature in an
inhomogeneous static spacetime, we have computed the
one-loop corrections to the effective potential and to the
energy-momentum tensor induced by static scalar metric
perturbations around a Minkowski background to first
order in metric perturbations. To this aim, we have applied
the formalism developed in [11,12]. In particular we have
used the explicit expressions for the perturbed field modes
together with the assumptions of adiabatic evolution of the
field. In order to obtain analytical expressions, the non-
relativistic and ultrarelativistic limits have been considered.
In the nonrelativistic limit, we obtained the corresponding

expressions in the static limit and also the limits for large-
scale perturbations (small p) or times close to the initial time.
In the ultrarelativistic limit, we obtain the complete results
for arbitrary p and η up to Oðm=TÞ5. In the static limit, our
results agree with those in [14,15] which were obtained by
means of the Schwinger-DeWitt expansion. The energy
density and pressure in the static limit are consistent with
a local thermal distributions at the local Tolman temperature.
Besides, our results are sensitive to the initial conditions set
at the initial time for the mode solutions.
We have also discussed the space-dependent shift in

the classical field induced by the metric perturbations. As
expected, in the nonrelativistic limit the shift is Boltzmann
suppressed. However, in the ultrarelativistic case and
depending on the shape of the potential, the shift could
be non-negligible.
The results of the paper have shown that mode summa-

tion is a useful technique to obtain explicit expressions for
one-loop quantities at zero and finite temperature. Unlike
the more standard Schwinger-DeWitt expansion, this
method allows to calculate not only the local contributions
to the effective action, but also the finite nonlocal ones
which will appear at second order in the perturbative
expansion. Future work along this line will allow to explore
this possibility.
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APPENDIX A: PERTURBED MODE SOLUTION

The expression for Pkðη;pÞ and δθkðη;pÞ is given by
[12] (see also [17,18]),

Pkðη;pÞ ¼
Z

η

0

e−ik·pβkðη;η0Þ
Hkðη0;pÞ
2ωkðη0Þ

dη0

þ e−ik·pβkðη;0ÞPkð0;pÞ; ðA1Þ

δθkðη;pÞ ¼
Z

η

0

e−ik·pβkðη;η0ÞGkðη0;pÞdη0

þ e−ik·pβkðη;0Þδθkð0;pÞ; ðA2Þ

where Pkð0;pÞ, δθkð0;pÞ are the initial conditions, and

βkðηf; ηiÞ ¼
Z

ηf

ηi

dη0

ωkðη0Þ
ðA3Þ

Hkðη;pÞ ¼ ωkQ0
kðη;pÞ þ Tkðη;pÞ ðA4Þ

Qkðη;pÞ ¼ −i
k · p
ω2
k

δθkðη;pÞ þ
�
D −

k2

ω2
k

�
Ψðη;pÞ ðA5Þ

Tkðη;pÞ ¼ p2δθkðη;pÞ − ik · p½Φðη;pÞ − ðD − 2ÞΨðη;pÞ�
ðA6Þ

Gkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
: ðA7Þ

Pkð0;pÞ is fixed by the orthonormalization condition of
the modes while δθkð0;pÞ remains arbitrary. The arbitrari-
ness in δθkð0;pÞ can also be absorbed in a change of the
lower integration limit in (A2). As we will see, only setting
the time origin to η0 → −∞, which is equivalent to taking
η → ∞, corresponds to the exact static limit.
Full details about the solutions (A1) and (A2), and about

the orthonormalization condition, are given in [12].

APPENDIX B: EXPANSION IN pη
FOR STATIC SPACETIMES

The following expansions have been used for the
computation of the potential and the energy-momentum
tensor,
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P̂kðη;pÞ ¼
�
3 −

k2

ω2
k

�
ΨðpÞ þ

X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l 1

k2ω2
k

× ½ð2k4 þ ð3þ 2lÞk2m2ÞðΦðpÞ þΨðpÞÞ þ ð1þ 2lÞm4ΦðpÞ�: ðB1Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
Pkðη;pÞ ¼ i

X∞
l¼1

ð−1Þl
ð2l− 1Þ!ðpηÞ

2l

�
k
ωk

�
2l

×

�
1

ð2lþ 1Þk2ωkη
ðð2lþ 1Þm4ΦðpÞþ 3k4ðΦðpÞþΨðpÞÞþ k2m2ðð2lþ 3ÞΨðpÞþ 2ðlþ 2ÞΦðpÞÞÞ

−
ωk

ð2l− 1Þk2ηðm
2ΦðpÞþ k2ðΦðpÞþΨðpÞÞÞ

�
ðB2Þ

δθkðη;pÞ ¼
X∞
l¼0

ð−1Þlþ1

ðlþ 1Þ! η
lþ1

�
ik · p
ωk

�
l 1

ωk
½m2ΦðpÞ þ k2ðΦðpÞ þΨðpÞÞ� ðB3Þ

δθ̂kðη;pÞ ¼ − 2
X∞
l¼0

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l ωkη

2lþ 1

��
m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�

ðB4Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
δθkðη;pÞ ¼ 2

X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l
��

m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�
: ðB5Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
2

δθkðη;pÞ ¼ − 4
X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l l
ωkη

��
m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�
: ðB6Þ

Both P̂kðη;pÞ and
R
1
−1 dx̂ðikpx̂ω2

k
Þδθkðη;pÞ are the main terms

appearing in the computation, while the remaining ones can
be obtained from these expressions.

APPENDIX C: MULTIPOLE EXPANSION AND
FOURIER TRANSFORM

1. Fourier transform in three dimensions

In this discussion we follow [19]. The Fourier transform
of a function fðrÞ is defined as5

fðpÞ ¼
Z

d3rfðrÞe−ip·r ðC1Þ

Then, the inverse transform is given by

fðrÞ ¼
Z

d3p
ð2πÞ3 fðpÞe

ip·r ðC2Þ

We are interested in the following integrals,

IlmðpÞ ¼
Z

d3rfðrÞYlmðr̂Þe−ip·r ðC3Þ

IlmðrÞ ¼
Z

d3p
ð2πÞ3 fðpÞYlmðp̂Þeip·r; ðC4Þ

where Ylmðx̂Þ are the usual spherical harmonics. Using the
Rayleigh expansion,

eip·r ¼
X∞
l¼0

ð2lþ 1ÞiljlðprÞPlðp̂ · r̂Þ; ðC5Þ

where jlðxÞ are spherical Bessel functions and PlðxÞ are the
Legendre polynomials, the addition theorem for spherical
harmonics,

Plðp̂ · r̂Þ ¼ 4π

2lþ 1

Xl

m¼−l
Ylmðr̂ÞY�

lmðp̂Þ; ðC6Þ

and the orthonormalization of the spherical harmonics,Z
dΩpY�

lmðp̂ÞYl0m0 ðp̂Þ ¼ δll0δmm0 ; ðC7Þ

5With the usual abuse of notation for using the same label for
the function and for its Fourier transform. Note the nonunitary
convention (the factor 1=ð2πÞ3 is introduced when going from
Fourier space to real space).
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IlmðpÞ and IlmðrÞ can be written as

IlmðpÞ ¼ 4πð−iÞlYlmðp̂Þ
Z

∞

0

drr2fðrÞjlðprÞ ðC8Þ

IlmðrÞ ¼
il

2π2
Ylmðr̂Þ

Z
∞

0

dpp2fðpÞjlðprÞ: ðC9Þ

2. Multipole expansion in Fourier space

An arbitrary potential generated by a finite static matter
distribution ρðxÞ can be written as a multipole expansion
in spherical coordinates in the region outside the matter
distribution as

ΦðrÞ ¼ −
1

r

X∞
l¼0

Xl

m¼−l

Qlm

rl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðr̂Þ ðC10Þ

whereQlm are the spherical multipole moments of the mass
distribution given by

Qlm ¼
Z

ρðr0Þr0l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
lmðr̂0Þd3r0 ðC11Þ

The Fourier transform of the potential is

ΦðpÞ ¼ −
4π

p2

X∞
l¼0

ð−iÞl
ð2l − 1Þ!!

Xl

m¼−l
Qlmpl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðp̂Þ:

ðC12Þ

where we have used the following result,

lim
λ→0þ

Z
∞

0

drr2
e−λr

rðlþ1Þ jlðprÞ ¼
pl−2

ð2l − 1Þ!! ; ðC13Þ

where we have introduced a regularizing factor e−λr [which
in fact it is only necessary for l ¼ 0, the remaining cases
being convergent].
To get the results for potential and energy-momentum

tensor in real space we have to compute the following
integrals:

1

ð2πÞ3
Z

ΦðpÞ sinðpηÞ
ðpηÞ2kþ1

eip·rd3p

¼p0¼pη 1

η3
1

ð2πÞ3
Z

Φðp0=ηÞ sinðp0Þ
ðp0Þ2kþ1

eip
0·r=ηd3p0: ðC14Þ

Taking into account the multipole expansion of the
potential in Fourier space (C12), it can be shown for each
multipole that the integral will be proportional to

1

ηlþ1

Z
∞

0

dp0e−λpp02p0l−2 sinðp0Þ
ðp0Þ2kþ1

jlðp0r=ηÞ; ðC15Þ

where we have introduced a regularizing factor e−λp. Since
the spherical Bessel functions of the first kind are finite, in
particular at the origin, we get that in the static limit η → ∞,
the integral goes to zero. The same argument applies for the
integrals involving cosine functions.

APPENDIX D: NEXT-TO-LEADING TERMS IN
THE ULTRARELATAVISTIC LIMIT

Next to leading-order corrections can be obtained by
expanding the Bose-Einstein factor and performing the
integration term by term. For instance, the integrals we are
interested in are of the following form,

X4

Z
∞

1

fðũÞ
eXũ − 1

dũ; ðD1Þ

where ũ ¼ u=X and X ¼ mðϕ̂Þ=T. Using the Taylor
expansion of the Bose-Einstein factor,

1

eXũ − 1
¼

X∞
k¼0

Bk

k!
ũk

ũ
Xk−1; ðD2Þ

the next-to-leading corrections in X can be obtained as far
as the integrals are convergent. Bk are the Bernoulli
numbers. The function fðũÞ appearing in the calculations
behaves as ∼ 1

ũ3 in the limit ũ → ∞; therefore, the integrals
can be performed up to k ¼ 2.

APPENDIX E: EXPRESSION FOR Vi
eff

AND d
dT V

i
eff IN THE STATIC LIMIT

Let us define (following [16])

JνðxÞ ¼
Z

∞

x

2ðu2 − x2Þν=2
eu − 1

du ðE1Þ

FðνÞðXÞ ¼
Z

X

0

x2−νJνðxÞdx: ðE2Þ

Then, in the static limit we have

Vh
eff ¼

T4

4π2
Fð1Þ

�
mðϕ̂Þ
T

�
ðE3Þ

and

V i
eff ¼−

T4

4π2

�
2Fð1Þ

�
mðϕ̂Þ
T

�
þFð−1Þ

�
mðϕ̂Þ
T

��
ΦðpÞ; ðE4Þ

which can be read from Eq. (10). The derivative with
respect to the temperature of the homogeneous effective
potential is given by
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d
dT

ðVh
effðϕ̂0ÞÞ

¼ T3

4π2

�
4Fð1Þ

�
mðϕ̂Þ
T

�
−
�
mðϕ̂Þ
T

�2

Jð1Þ
�
mðϕ̂Þ
T

��
: ðE5Þ

The second term in the right-hand side of the last equation
can be written as

�
mðϕ̂Þ
T

�2

Jð1Þ
�
mðϕ̂Þ
T

�
¼

Z
mðϕ̂Þ=T

0

d
dx

ðx2Jð1ÞðxÞÞdx

¼ 2Fð1Þ
�
mðϕ̂Þ
T

�
− Fð−1Þ

�
mðϕ̂Þ
T

�
;

ðE6Þ

where we have used the following property of JðvÞðxÞ

∂JðνÞðxÞ
∂x ¼ −νxJðν−2ÞðxÞ: ðE7Þ

Therefore, Eqs. (E5) and (E6) give us

V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ
¼ −TΦðpÞ: ðE8Þ
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Conclusions

The variation of fundamental constants of Nature has become a wide area of research during the last
two decades. From the observational side, high precision constraints are being set in a continuous
way thanks to the observational efforts that are currently in progress. These constraints involve
quite different physics and a huge range of scales. From atomic clocks, laboratory spectroscopy and
meteorite dating; passing through stellar physics, high resolution quasar spectra, the 21 cm hydrogen
line and, in general, observations of astrophysical sources in the full electromagnetic spectrum; to
CMB map and Big Bang nucleosynthesis. A necessarily incomplete enumeration that may give the
reader a picture of the diverse physical scenarios that are being considered in this search.

From the theoretical side, most of the extensions of our current theoretical models, including
modified gravity theories and string theory, can accommodate a variation of fundamental constants
due to the presence of extra fields or dimensions. Furthermore, an experimental confirmation will
entangle the violation of the Equivalence Principle, an historical piece of Physics in which General
Relativity is rooted.

In this thesis, we intended to provide a contribution on both sides, observations and theory.
Concerning observations, we have set a constraint for the variation of the fine-structure constant
of ∆α/α = (0.9 ± 1.8) × 10−5 at redshift z < 1 from a sample of quasar spectra observed by the
SDSS-III/BOSS and SDSS-II surveys. This bound represents the most accurate result obtained with
[O iii] emission lines. Our sample is built by applyingwell defined selected criteria to 45 802 objects
at z < 1 classified as quasars and collected from the SDSS-III/BOSS DR12 quasar catalogue. After
that, we get a sample of 10 363 quasars which where combined with 2 853 previously studied SDSS-
II/DR7 quasars, to finally obtain a final sample of 13 175 quasars after eliminating 41 re-observed
objects.

We also performed a very detailed study of the impact produced by several parameters of the
analysis and the developed code, and also by properties of quasars and the [O iii] doublet. For
instance, redshift and location on the sky of the quasars; width, amplitude, S/N and R2 coefficient
derived from the fitting profiles of the [O iii] lines; polynomial order for the continuum subtraction
and the method to determine the line position (e.g. Gaussian/Voigt profiles). The results were
shown to be quite robust, and they are consistent with no variation of the fine-structure constant.
The precision of the emission-linemethod in our study is dominated by the sky subtraction algorithm
employed on the SDSS spectra. This is supported by the correlation between the standard deviation
of the results as a function of redshift and the sky emission lines.

In order to improve the precisionwith emission lines, high-resolution spectroscopy ismandatory.
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However, the analysis of galaxy spectra taken from the DEEP2 survey carried out in our article
showed that on-going large galaxy surveys like DESI could also provide quite stringent constraint
for ∆α/α at low redshift. This is due to the presence of narrower emission lines in galaxies than in
quasars.

On the theoretical side, we explored the large-scale effects of spacetime over quantum corrections
to scalar fields. These quantum corrections can be expressed in terms of expectation values over
quantum states. The DeWitt-Schwinger approximation can be used to compute these expectations
values in general spacetimes as a local expansion in curvature. However, this approximation is
not able to reproduce the nonlocal effect due to the large scale properties of the spacetime. In
order to overcome this drawback, we computed the complete corrections using brute force methods.
This means that: a) a complete orthonormal set of modes of the Klein-Gordon equation in a
perturbed FRW background was obtained at the leading adiabatic order; b) the expectation values
was computed as a mode summation; c) dimensional regularization techniques were employed to
obtain the finite one-loop corrections to the effective potential and energy-momentum tensor of the
scalar field.

We showed that for vacuum states the homogeneous contribution agrees with the Minkowski
case as expected, and that there are no additional contributions appearing either in the regularized
effective potential or in the energy-momentum tensor. Therefore, the theory can be renormalized
just absorbing the divergences in the tree-level parameters (at the leading adiabatic order) using
dimensional regularization. In particular, this result applies to the Higgs field when considering
only its self-interactions.

Furthermore, we also computed the expectations values over thermal quantum states in an
inhomogeneous static space-time, i.e. a Minkowski background with scalar metric perturbations.
In the static limit, our results agree with previous calculations that were obtained by means of the
DeWitt-Schwinger expansion. The energy density and pressure in the static limit are consistent
with a local thermal distributions at the Tolman temperature. Besides, we also obtained the full
dependence of the expectation value on the initial conditions for the mode solutions.

An important effect in thermal states is that a space-dependent shift in the classical value of
the field is induced by the metric perturbations. In the non relativistic limit, i.e. low temperature
compared to the mass of the scalar field, the shift is Boltzmann suppressed. However, in the
ultra-relativistic case and depending on the particular shape of the potential, the shift could be
non-negligible.

As a final conclusion on this part of the thesis, we proved that mode summation is a useful
technique to obtain explicit expressions for expectation values over vacuum and thermal states at
the leading adiabatic order. Unlike the more standard DeWitt-Schwinger expansion, this method
allows to calculate not only the local contributions, but also the finite non-local ones. Additional
contributions from themetric perturbations at the next-to-leading adiabatic orders are also expected.
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El estudio de la variación de las constantes fundamentales de la Naturaleza ha adquirido gran
relevancia durante las últimas dos décadas. Desde el punto de vista experimental, se establecen
restricciones muy precisas continuamente gracias a los esfuerzos observacionales actualmente en
curso. Diversas ramas de la física y un amplio rango de escalas están involucradas en la obtención
de estas restricciones. Desde relojes atómicos, espectroscopía en el laboratorio y datación de
meteoritos; pasando por la física estelar, espectros de cuásares de alta resolución, la línea de
21 cm del hidrógeno y, en general, observaciones de fuentes astrofísicas en todo el espectro
electromagnético; hasta el mapa del CMB y la nucleosíntesis del Big Bang. Esta enumeración da
una idea de los diferentes sistemas físicos que se están estudiando en esta investigación.

En el aspecto teórico, lamayoría de las extensiones de losmodelos actuales, incluyendo teorías de
gravedad modificada y la teoría de cuerdas, predicen una variación de las constantes fundamentales
producida por la presencia de campos adicionales o de dimensiones extra. Por otro lado, una
confirmación experimental implicaría la violación del Principio de Equivalencia, una parte clave
de la física que forma la base de Relatividad General.

En esta tesis, hemos intentado hacer una contribución en ambas partes, observación y teoría. Con
respecto a las observaciones, hemos establecido una restricción para la variación de la constante
de estructura fina de ∆α/α = (0.9 ± 1.8) × 10−5 hasta desplazamientos al rojo de z < 1. Esta
medida se obtuvo a partir de una muestra de espectros de cuásares tomados por los cartografiados
SDSS-III/BOSS y SDSS-II. Es el resultado más preciso obtenido hasta el momento a partir de las
líneas de emisión del doblete de [O iii]. La muestra se construyó aplicando criterios bien definidos
a 45 802 objetos a z < 1 clasificados como cuásares y recopilados en el catálogo de cuásares del
SDSS-III/BOSS DR12. De esta forma, obtuvimos una muestra de 10 363 objetos que, combinados
con otros 2 853 cuásares previamente observados por el SDSS-II/DR7, dieron lugar a la muestra
final que contiene 13 175 cuásares después de eliminar 41 objetos repetidos.

También realizamos un análisis muy detallado del impacto producido por varios parámetros del
análisis y del código utilizado así como debido a las características del los cuásares y del doblete del
[O iii]. Estudiamos, por ejemplo, el desplazamiento al rojo y la ubicación en la esfera celeste de los
cuásares; el ancho, la amplitud, la S/N y el coeficiente R2 derivado de los ajustes de las líneas del
[O iii]; el grado del polinomio usado para la sustracción del contínuo y el método para determinar
la posición de las líneas (por ejemplo, adoptando perfiles gaussianos o de Voigt). Se concluyó que
los resultados son bastante robustos y que son consistentes con una variación nula de la constante
de estructura fina. La precisión del método que utilizamos en nuestro estudio, basado en líneas
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de emisión, está limitada por el algoritmo de sustracción del cielo empleado en los espectros del
SDSS. Esta afirmación se fundamenta en la correlación existente entre la desviación estándar de las
medidas como función del desplazamiento al rojo y las líneas de emisión del cielo.

Para mejorar la precisión alcanzada con líneas de emisión es necesario utilizar espectroscopía
de mayor resolución espectral. Sin embargo, el análisis de los espectros de galaxias tomados
por DEEP2 mostró que los cartografiados de galaxias actualmente en curso como DESI podrían
proporcionar restricciónes bastante precisas para ∆α/α a bajos desplazamientos al rojo. Esto se
debe a que las líneas de emisión son más estrechas en los espectros de galaxias que en cuásares.

Desde el punto de vista teórico, hemos explorado efectos del espacio-tiempo que se manifiestan
en correcciones cuánticas a campos escalares. Estas correcciones pueden expresarse en términos de
valores esperados sobre estados cuánticos. La aproximación de DeWitt-Schwinger permite calcular
estos valores esperados en espacio-tiempos generales como una expansión local en la curvatura. Sin
embargo, no puede reproducir efectos no locales debido a la estructura a gran escala del espacio-
tiempo. Por lo tanto, hemos empleado métodos de fuerza bruta para calcular las correcciones
completas, incluidas las contribuciones no locales. Para ello: a) obtuvimos un conjunto completo
de modos ortonormales de la ecuación de Klein-Gordon hasta el primer orden adiabático en un
espacio-tiempo FRW con perturbaciones escalares; b) calculamos los valores esperados como una
suma de modos; c) empleamos técnicas de regularización dimensional para obtener las correcciones
finitas a un loop al potencial efectivo y al tensor de energía-momento del campo escalar.

Para los estados de vacío, la contribución homogénea coincide con el resultado de Minkowski
como era de esperar. Además, no hay contribuciones adicionales, ya sea en el potencial efectivo
regularizado o en el tensor de energía-momento. Por lo tanto, la teoría se puede renormalizar
simplemente absorbiendo las divergencias en los parámetros a nivel árbol (en el orden adiabático
dominante) utilizando regularización dimensional. En particular, este resultado es aplicable al
campo de Higgs cuando sólo se consideran sus auto-interacciones.

Por otro parte, también calculamos los valores esperados en estados cuánticos térmicos en un
espacio-tiempo estático no homogéneo. En el límite estático, nuestros resultados concuerdan con
cálculos anteriores obtenidos mediante la expansión de DeWitt-Schwinger. La densidad de energía
y la presión en el límite estático son consistentes con distribuciones térmicas locales caracterizadas
por la temperatura de Tolman. Además, también obtuvimos la dependencia del valor esperado con
las condiciones iniciales de los modos.

Un efecto importante en los estados térmicos es que las perturbaciones métricas inducen una
variación espacial en el valor del campo clásico. En el límite no relativista, es decir, a baja
temperatura en comparación con la masa del campo escalar, este efecto está suprimido por el factor
de Boltzmann. Sin embargo, en el caso ultra-relativista y dependiendo de la forma particular del
potencial, el efecto podría no ser despreciable.

Como conclusión final de esta parte de la tesis, hemos visto que la suma de modos es una técnica
útil para obtener expresiones explícitas para valores esperados en el vacío y en estados térmicos. A
diferencia de la expansión de DeWitt-Schwinger, el método utilizado en esta tesis permite calcular
las contribuciones finitas no locales. Es de esperar que se encuentren contribuciones debidas a las
perturbaciones métricas en los siguientes órdenes adiabáticos.
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