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Abstract. The form of the off-axis Gaussian beam is constructed by solving the paraxial
wave equation for a parabolic index medium. This construction is accomplished by reducing
the problem to the solution of an Ermakov equation. It is shown that the dynamics of the
system is comprised in, both, the beam width and the position of the center of the wavepacket,
that are defined by the focusing properties of the material. The cases of on-axis behavior and
propagation in a homogeneous medium are obtained as special cases.

1. Introduction

The description of propagation processes of paraxial beams has been a problem of main
interest since old times. For instance, it is well known that Hermite-Gaussian and Laguerre-
Gaussian modes are complete sets of solutions to the paraxial wave equation that have a
number of applications in the description of laser resonators and waveguides modes [1] and
in many other areas of physics [2]. These modes are characterized to be shape-invariant under
propagation along the optical axis having transversal optical intensity distributions consistent of
rectangular or axial-symmetric patterns with Gaussian envelops. In this context, the description
of propagation of Gaussian beams in homogeneous, as well as in graded index media becomes
relevant for all applications involving these kind of modes. The Gaussian-type solution of the
paraxial wave equation in generic inhomogeneous media has been considered from different
approaches [3, 4]. The particular case of a transverse quadratic refractive index is interesting
because of its focusing, re-directing and collimation properties [3–6]. In the present work, we
deal with the construction of off-axis Gaussian wavepacket-type solutions to the paraxial wave
equation for a parabolic medium. It is shown that the problem is reduced to the solution of an
Ermakov equation for the beam width together with a classical dynamical law of motion for the
center of the wavepacket. Some examples are presented in order to illustrate our results.

2. Gaussian beams in quadratic-index media

Consider an inhomogeneous medium whose refractive index profile is given by

n(r) = n0

(

1− Ω2

2
r2
)

, (1)
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where r is the transversal radial coordinate. In the weakly-guiding regime we have Ω2r2 � 1 and
the paraxial approximation is valid. Here n0 is the refractive index along the optical axis, which
in this case is chosen as the z−axis, and Ω ∈ R is a constant parameter defining the focusing
properties of the medium. In the paraxial regime the electric field amplitude of a monochromatic,
TE wave has the form E(r, z) = U(r, z)eik0n0z, where r = (x, y) is the transversal position vector,
k0 is the wave number in free space and the function U(r) is such that its second derivative with
respect to the longitudinal coordinate can be neglected. Under this conditions U satisfies the
paraxial wave equation

i

k0

∂U

∂z
=

{

− 1

2k20n0

(

∂2

∂x2
+

∂2

∂y2

)

+
n0

2
Ω2r2

}

U. (2)

We are interested in finding Gaussian wavepacket-type solutions to the equation (2) which
represent physical beams carrying finite transverse optical power as they propagate along the
optical axis. In the off-axis general case

U(r, z) = N(z) exp
{

i
[

S(z)(r− r0(z))
2 + k0p0(z) · r+ g(z)

]}

, (3)

with r0(z) = (x0(z), y0(z)) the (variable) position of the center of the wavepacket. The
normalization factor N(z) and the coefficient S(z) are, in general, assumed to be complex-valued
functions of z, while the functions p0(z) and g(z) are, without loss of generality, supposed to be
real-valued. Substituting (3) into (2) we find that S(z) and N(z) satisfy the set of equations

d

dz

(

2S

k0n0

)

+

(

2S

k0n0

)2

+Ω2 = 0, (4)

d

dz
lnN(z) = − 2

k0n0
S(z). (5)

It also follows from (2) that p0 = n0ṙ0, meaning that the center of the wavepacket obeys the
dynamical law of a symmetric two-dimensional classical harmonic oscillator of frequency Ω

r̈0 +Ω2r0 = 0, (6)

and g(z) = k0n0
2 (r0 · ṙ0) (here the dot stands for derivation with respect to z).

Note that equation (4) is a complex Riccati equation. Observe also that the imaginary part
of S is related to the width w(z) of the wavepacket. Hence, it is convenient to write S in the
form [7,8]

2

k0n0
S(z) =

1

R(z)
+

2i

k0n0w2(z)
. (7)

Actually, the function R(z) turn out to be the radius of curvature of the wavefront [1,9]. As this
expression is introduced in (4), the imaginary part of this equation leads us to 1

R(z) =
d
dz lnw(z),

while the real part is transformed into the Ermakov equation

d2w

dz2
+Ω2w =

4

k20n
2
0w

3
. (8)

On the other hand, the expression (7) also provide the form of the normalization factor N(z)
through (5). Indeed

N(z) =
N0

w(z)
e−iχ(z), χ̇(z) =

2

k0n0w2(z)
, (9)
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where N0 is a constant to be fixed and the function χ, known as the Guoy phase, is a cumulative
on-axis phase shift experienced by the wavefront in passing through a focal plane [1] which
is determinant in a number of optical phenomena [10] and can be interpreted as a geometric
phase [11, 12].

It is well known that the solution of the Ermakov equation ẅ = M(z)w + α/w3, with α a
constant, can be explicitly constructed provided a solution of the corresponding linear equation
ẅ = M(z)w is known [13,14]. Thus, in this case, after some algebra we get [8]

w(z) = w0

[

cos2 (Ωz) +
1

(ΩzR)
2 sin

2 (Ωz)

]1/2

, zR =
k0n0w

2
0

2
, (10)

where w0 = w(0) is the initial width and zR, known as the Rayleigh range or collimation distance,
is a parameter characterizing the divergent nature of the optical beam. On the other hand, from
(6), the trajectory of the center of the wave-packet is given by

r0(z) = a cos(Ωz) + b sin(Ωz)/Ω, (11)

where a = (ax, ay) and b = (bx, by) are, respectively, its initial position and velocity. In this
way, the functions w(z) and r0(z) encode all the information about the propagation processes
of the light beam.

The expression for the Gaussian mode is then (compare to [7])

U(r) =
N0

w(z)
e−i(χ(z)+g(z))e

ik0n0(r−r0(z))
2

2R(z) e
−

(r−r0(z))
2

w2(z) eik0n0ṙ0(z)·r, (12)

with

R(z) =
tan(Ωz)

ΩzR
(

1− Ω2z2R
)

[

1 +

(

ΩzR
tan(Ωz)

)2
]

, χ(z) =
2

k0n0

∫ z dt

w2(t)
. (13)

Observe the oscillating behavior of these functions inherited from the harmonic nature of w and
r0. This fact is due to the focalization properties of the medium: the beam experiences, at the
same time, the spreading effects of wave propagation and the medium confinement, resulting in
a periodically self-focusing wave-packet with period π/Ω whose center follows the trajectory of
a two-dimensional harmonic oscillator of frequency Ω in the transversal plane. If the center of
the wavepacket is fixed on the optical axis, then r0 = 0 and we get the on-axis Gaussian mode

U(r) =
N0

w(z)
e−iχ(z)e

ik0n0r
2

2R(z) e
−

r2

w2(z) . (14)

In the case that Ω = 0 we recover the well known width, radius of curvature and Guoy phase
shift for a Gaussian beam in a homogeneous medium [1,9]

w(z) = w0

√

1 +

(

z

zR

)2

, R(z) = z

[

1 +
(zR

z

)2
]

, (15)

and χ(z) = arctan (z/zR). Notice that in this particular case w0 is the minimum width and so
it is called the waist radius. This means that the transversal plane z = 0 is actually the focal
plane of the system. The beam doubles its cross section at a distance z = zR from the focus
(w(zR) =

√
2w0). Within this distance the width remains nearly constant but out of this region

it increases as a linear function of z with a total divergence angle given by 2θ0 = 2w0/zR [1].
On the other hand, in the case that Ω = 1/zR, the divergent nature of the beam is perfectly
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(a) ax = 1, Ω = 0.5
zR

(b) ax = 2, Ω = 1
zR

(c) ax = 0.5, Ω = 1
zR

(d) ax = by = 0, Ω = 0.7
zR

(e) ax = 0.5, by = 0.5
Ω , Ω = 1

zR
(f) ax = 1, by = 0, Ω = 1

zR

Figure 1. Upper row: Optical intensity distributions |U(r, z)|2 of the Gaussian modes as functions of x and z in
the longitudinal plane y = 0 for the parameters indicated in each case. In (a) it can be observed the combination
of the off-axis and re-focusing dynamics. Lower row: Optical intensity distributions as functions of all coordinates.
In (d) it is shown the on-axis behavior for the case of Ω = 0.7/zR. In (e) and (f) the maximum of the beam evolves
along rotating and oscillating trajectories respectively, according to the values of ax and by. The transverse and
longitudinal coordinates are expressed, respectively, in units of w0 and zR.

balanced with the focalization properties of the medium and the beam propagates with constant
width w(z) = w0.

In Figure 1 we present the optical intensity distribution |U(r, z)|2 of the Gaussian beam for
different values of the parameters. In all cases we have chosen ay = bx = 0 in order to present
clear plots. This is the case in which the center of the beam departs from a point on the x-axis
with a velocity oriented in the y-direction. In the upper row (Figures 1 (a),(b),(c)) it is shown
the longitudinal plane y = 0 of the distribution for by = 0 and different values of ax and Ω.
Notice, in (a), that the period of the trajectory of the maximum of intensity is twice the period at
which the beam recovers its initial width. In (b) and (c), the parameter Ω was chosen to match
1/zR, and so, the beam propagates with a constant width, following the oscillating dynamics of
its maximum. In Figure 1(d) we have set ax = by = 0 in order to show the on-axis self-focusing
behavior of the optical intensity as a function of coordinates. In (e) and (f), as Ω = 1/zR, the
beam propagates with constant width while it is redirected following, respectively, helical and
sinusoidal (plane) trajectories according to the values of ax and by.

3. Summary

The construction of the general off-axis Gaussian mode, in the paraxial regime, was presented
for the case of a medium with a quadratic refractive index profile. This construction was
accomplished by reducing the problem to the solution of an Ermakov-type equation for the
width of the Gaussian beam. It was shown that the field amplitude is completely defined by
the width and the trajectory of the center of the wavepacket, meaning that these two functions
are determinant in the description of the propagation processes of the light beam. As special
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cases, the on-axis Gaussian beam in a quadratic index profile, as well as the parameters for the
propagation in a homogeneous medium were obtained for r0 = 0 and Ω→ 0 respectively. Some
examples were presented in order to illustrate our results.
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