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The structure of quantum group has appeared orig
inally in the studies of the properties of the Yang-
Baxter equation [1,2]. Subsequently, a mathemat
ical formulation of quantum groups was given in 
terms of Hopf algebras [3,4] and the q- deformation 
of enveloping algebras [5,6]. Deformation of the 
Heisenberg group of a simple harmonic oscillator 
yields a g-oscillator while for the case of the spin 
we have the SU(2)q group [7,8]. Deformation of 
superalgebras, as well as infinite demensional alge
bras, such as Virasoro algebra have also been stud
ied [9,10,11]. There is also an intimate connection 
between quantum groups as dynamical groups in 
lattice models [12], non commutative geometry [13] 
and conformai field theories [14] which will not be 
discussed in this review. Here we will give a short 
presentation of the basic notions and some applica
tions of the quantum groups in quantum optics [15], 
in the quantum conformai algebra with central ex
tension [16] and in the ^-deformed analogue of the 
KdV equation [17]. 

Let us consider the generators J 3 , J± of the 
SU(2)q algebra with commutation relations (CR): 
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index j we have a 2j + 1-dimensional matrix real
ly a.t.inn. 

and 

Obviously the limit ft -+ 0, q —• 1 restores the CR 
of the ordinary angular momentum algebra. This 
limit becomes more transparent writting [11] 

where 5 3 , S± are the usual 5(7(2) generators. This 
factorization of the deformation of the algebra ex-
ibits the nature of the deformation as a non uni
tary tranformation of the 5 3 , S± generators to the 
deformed ones J 3 , J±. Also, we notice that we de
formed the algebra asymmetically, namely S± -+ J± 
but 5 3 —> J 3 = 5 3 . From this point on a whole rep
resentation theory is been constructed for SU(2)q: 
tensor product, comultiplication, Clebsh-Gordon co
efficients etc. which we will not enter here [3,4]. The 
most natural way to define the g-oscillator and its 
deformed CR is by the method of group contrac
tion. Indeed as is the case for the non-deformed 
Heisenberg-Weyl algebra, which can be obtained 
from the contraction of the 5*17(2) algebra, similarly 
here contraction of the SU(2)q yields the quantum 
Heisenberg-Weyl algebra. We define the contration 
limit as, j - » 00 , (q > 1) and qJ - > 00 , while 
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In matrix form, 

where we have introduced the annihilation operator 

a(q) by 

Finally, the contraction of the commutator in eq. 
(6) gives, 

which is written as, 

00 

where N = £ n\n >q q < n\ is the contraction 
n=0 

limit of the /i 3 operator and it stands for the number 
operator of the ç-oscillator. The dynamics of such a 
ç-oscillator and its physical meaning is still an open 
problem [18]. The CRin eq. (11) can be written in 
a more familiar form: 

The deformed oscillators are now particularly 
useful in studing the deformation of several alge
bras of interest which posses bosonic (Schwinger-
like) realizations. With applications in the Confor
mai Field Theory in mind one can study deforma
tions of the Virasoro algebra generalizing its usual 
bosonic realization to one with deformed Bose op
erators [10,11]: 

with C.R. in the centreless case: 

with the definition [A, B](PtÇ) = pAB - qBA . Any 
central extension of the q-Virasoro algebra should 
satisfy the deformed Jacobi identity, which in its 
most general form is: 

where Çi,<?2><73 arbitrary numbers. 
At this stage, and in order to be able to evaluate 

the g-commutators in the Jacobi identity, we impose 
the invariance of the a(q), a(q)\ and Ln(q), N(q) 
on the substitution q—^q'1* Then we define a new 
set of generators Ln(q) — q~NLn with C.R.: 

for which follows that Ln(q
 1) = q2NLn(q), which 

turns the above commutator to a usual one: 

To gain full generality we treat the last commuta
tor between generators of the q-Virasoro algebra in 
the abstract level and we will define the "number 
operator" N by: 

Assuming the eq. (18) as valid in the abstract level 
as well, we now consider the central extension of the 
g-deformed Virasoro algebra as follows: 
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A straight forward calculation shows that the usual, 
as well as the ç-Jacobi identity, is satisfied if the 
central term obeys the equations [16]: 

and 

Equation (22) in the non-deformed limit q -> 1 re
duces to the usual constraint imposed on the central 
term for the usual Virasoro, however its solution (A 
arbitrary), 

does not. This is due to the fact that in the r.h.s. 
of eq.(19) the existence of the operator N forbids 
the removal of terms such as c ( l , l ) in the central 
extension as is happend in the non-deformed prob
lem. Thus, the algebra in eq.(19) with N defined 
as in eq.(20) and with the central term given by 
(24) appears to be the only admissible ç-deformed 
Virasoro algebra with the central extension if one 
requires the fulfilmnet of the general Jacobi iden
tity. In case one removes the requirement of gen
eral Jacobi identity but instead of it introduces a 
cubic equality containing only q-commutators, one 
obtains the central term in the form [19,20] 

with two arbitrary parameters c\ and C2, which in 
the q —> 1 limit recovers the usual non-deformed 
central term. 

We now turn to an application of the ^-oscillators 
which allow us to probe the changes on the dynam
ics of the deformation [15]. We consider a funda
mental quantum optical system, the Jaynes-Cum-
mings Model (JCM), which describes the coupling 
of a single bosonic mode (laser field) with a two-level 
atom during the passing of a beam of such atoms 
through a cavity. For the coherent excitation of 
the atoms we consider the JCM Hamiltonian with 
intensity-dependent coupling, which physically sig
nifies the fact that the strength of the laser-atom 

interaction is analogous to the number of photons 
in the cavity: 

where N is the bosonic number operator ([/?,/?'] = 
1) and a± are the Pauli matrices. Here we have 
also assume valid the Rotating Wave Approxima
tion (RWA). Utilizing the Holstein-Primakoff (HP) 
realization of the su( l , l ) algebra we can write the 
Hamiltonian as: 

where 
5w ( l , l ) generator. The deformation of this model 
formally is consisted in replacing the usual bosons, 

by deformed bosons a, a*, (see eq.(ll)). To see 
what physically such replacement means we write 
the deformed interaction Hamiltonian: 

which using the ^-analogue of HP realization for the 
su(lA)a algebra: 

The last form of the Hamiltonian shows that the 
deformation of bosons introduces a g-dependence in 
the coupling constant in addition to its dependence 
from the field intensity. Also it is clear that the 
dynamical algebra of the model from su(l) 1)03^(2) 
becomes after the deformation the quantum algebra 
su(l,l)q®su(2). 

The unitary evolution is given by exponentia
tion of the Hamiltonian U(t) = exp (-itHJ^j.) which 
gives 

(31) 
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we obtain by discretization the nonlinear difference-
differential equations: 

2wnt • sine = t i £ + 1 - wnwn.t + 2c w n + 1 - 2cw n_ 1 , 

(33) 

where the g-analogue of the exponential appears 
and [n]\ = [1][2] • • • [n]. The deformed quantities in 
the sum forbid the exact summation and a numer
ical calculation shows that periodicity for q = 1 is 
progressively destroyed for q > 1 values. For details 
see [15]. 

As a final application, we discuss briefly the de
formed Korteweg-de Vries equation. A realization 
in terms of currents of the ç-deformed Virasoro al
gebra (eq.(22)) with central extension (eq.(25)) is 
achieved by defining [17], 

and choosing q = e~ i e, where e is an arbitrary real 
number. The C.R. (22) induces the following com
mutator between the currents: 

This equation simplifies by making the transforma
tion to a new current, u(x) = q2Nw(x) for which 

(38) 

where wn±i = w(x ± 2e, t). This systen is easily 

seen to reduce to the usual KdV equation in the 

non-deformed e -> 0 limit. 
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Q. A. LeClair (Cornell Univ.): Does the quantum 
Virasoro algebra have a closed SU(l,l) g sub-algebra? 

A. M. Chaichian: No. Contrary to the usual case 
of Virasoro algebra in which SU(1,1) C Virasoro, 
in the q case the SU(l,l) g is not the subalgebra of 
q- Virasoro. 
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