
CERN LIBRARIES, GENEVA 

P00030727 

SPACE-TIME ROTATIONS AND 
ISOBARIC SPIN 

C VAN WINTER 

Th
es
is
-1
95
7-
Va
n 
Wi
nt
er
 



CERN LIBRARIES, GENEVA 

CERN - B I B L I O T H È Q U E 

ORGANISATION EUROPÉENNE 

POUR LA 
RECHERCHE NUCLÉAIRE 

GENÈVE 

N° d'acquisition 

Cote 

5 3 9 . I 2 VAN 



SPACE-TIME ROTATIONS AND 
ISOBARIC SPIN 



RIJKSUNIVERSITEIT TE GRONINGEN 

SPACE-TIME ROTATIONS AND 
ISOBARIC SPIN 

PROEFSCHRIFT 
TER VERKRIJGING VAN DE GRAAD VAN 
DOCTOR IN DE WIS- EN NATUURKUNDE 
AAN DE RIJKSUNIVERSITEIT TE GRONINGEN, 
OP GEZAG VAN DE RECTOR MAGNIFICUS 
DR. J. ARIENS KAPPERS, HOOGLERAAR IN DE 
FACULTEIT DER GENEESKUNDE, TEGEN DE 
BEDENKINGEN VAN DE FACULTEIT DER 
WIS- EN NATUURKUNDE TE VERDEDIGEN 

O P D I N S D A G 26 F E B R U A R I 1957 
DES NAMIDDAGS OM 3 UUR PRECIES 

DOOR 

CLASINE VAN WINTER 

GEBOREN TE AMSTERDAM 

UITGEVERIJ EXCELSIOR - ORANJEPLEIN 96 - 'S-GRAVENHAGE 



Promotor: Prof. Dr. F. Zernike 



C O N T E N T S 

I. Introduction 7 
1.1. General outline 7 
1.2. Related investigations 10 

II. Rotations and generalized Eulerian angles 16 
2.1. Rotation operators 16 
2.2. Generalized Eulerian angles 19 
2.3. The rotation operators J 20 
2.4. The rotation operators J ' 22 
2.5. Commutation relations 24 

III. Rotations in three dimensions 26 
3.1. Introduction 26 
3.2. Eulerian angles 27 
3.3. Alternative introduction of Eulerian angles 28 
3.4. The rotation operators J and J ' 30 
3.5. Rotation eigenfunctions 33 
3.6. Miscellaneous remarks 38 

3.61. Surface harmonics 38 
3.62. Two-valuedness 39 
3.63. Supplementary conditions 39 
3.64. Connection with hypergeometric functions 40 

3.7. Addition of angular momenta 42 
3.8. The family-index m' 43 

IV. The Lorentz group 45 
4.1. Representations of the proper Lorentz group 45 
4.2. Eulerian angles 47 
4.3. The rotation operators J and J ' 49 
4.4. Rotation eigenfunctions 50 
4.5. Surface harmonics in Minkowski space 53 
4.6. The spatial reflection 55 
4.7. Spatial reflection and Eulerian angles 57 



6 

V. Wave functions for spinning particles 62 
5.1. General principles 62 
5.2. The family-indices s ' and m' 64 
5.3. Fields having spin 0 and s ' = 1 65 
5.4. Note on non-local fields 70 

VI. The isobaric spin 73 
6.1. Nucleons and π-mesons 73 
6.2. Speculation on S' 75 
6.3. Hyperons and heavy mesons 78 
6.4. Strangeness and isobaric spin 80 
6.5. Charge independence 83 
6.6. Concluding remarks 85 

Note added in proof 89 

Summary 90 

References 91 



I 
I N T R O D U C T I O N 

1.1. General outline 
According to the principle of special relativity any theory of 

particles or wave fields must be invariant under rotations in 
four-dimensional space-time. It is well known that this requirement 
can be met by the introduction of wave functions having a 
number of components which transform linearly among themselves 
under the rotations in question; the transformation properties of 
a wave function being intimately connected with the spin of the 
particles it describes. In the familiar formalism for spinning 
particles, discussing the rotational behaviour of wave functions 
is essentially a matter of group theory. Conversely, the formalism 
reveals only those properties of rotations that are covered by 
the theory of groups. Now it is our idea that rotations might 
conceivably have some aspects which are not recognized from the 
study of group theory only. Spinning particles being described 
with the help of rotation eigenvectors, it is tempting to suggest 
that new aspects of rotations, should they exist, might be associated 
with some new spin-type property of matter. 

In order to elaborate this idea, we must discuss the transformations 
of special relativity in terms of six variables. However, 
in order not to get confused in erratic calculations, it is 
convenient to start with a general introduction on rotations in 
n dimensions. This subject is treated in chapter II, where after 
a brief summary of some of the known properties of infinitesimal 
rotations it is discussed that for a close study of rotations 
in n dimensions one needs 1 

2 n ( n - 1 ) independent variables. These 
variables are conveniently taken to be generalizations of the 
three Eulerian angles known from classical mechanics. It is shown 
in chapter II how to represent angular-momentum operators by 
differential operators acting on the generalized Eulerian angles. 
It is the principal result of this chapter that in consequence 
of the introduction of Eulerian angles there appear 1 

2 n(n- l ) new 
angular-momentum opera tors in addi t ion to the 1 

2 n(n-1) fami l ia r 
ones. Each of the new operators commutes with each of the famil-
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iar ones. For the sake of distinctness we note that in the present 
investigation the Eulerian angles are intended as spin 
variables. Accordingly the operators under consideration refer to 
the spin, rather than to the orbital motion. 

Since mathematically it is advantageous to study three-dimensional 
rotations before proceeding to the Lorentz group, 
chapter III is devoted to explicit calculations on rotations 
in three dimensions. In this chapter we construct functions of 
three Eulerian angles, denoted by Y(ω), which are to replace the 
spinors of the usual three-dimensional theory. Contrary to what 
one might be led to expect, we do find appropriate functions both 
for integral and half-integral values of the spin. Some of the 
results of chapter III have already been obtained by previous 
authors (Reiche and Rademacher 1926, 1927, Kronig and Rabi 1927, 
Casimir 1931) in connection with the theory of rotations of a 
rigid body. As a matter of fact, the functions Υ(ω) are known 
as angular-momentum eigenfunctions of a rigid rotator. However, 
with a view to the applications which we have in mind chapter III 
has been cast in a form rather different from what may be found 
elsewhere. 

In the usual spinor formalism for three dimensions, any spin 
value j is associated with but one family of 2j+1 spinors which 
under rotations transform linearly among themselves. By contrast, 
in chapter III we find 2 j + l distinct families of functions for 
any j, each family consisting of 2j+1 functions of the Eulerian 
angles. Under the usual rotations these functions transform among 
members of their own families only, the families as such do not 
mix; each of the 2j+1 families of functions of a particular j 
transforms just as the corresponding family of spinors. Yet these 
2j+1 families are markedly different, and we can label them by 
a family-index. This family-index reveals, of course, the new 
property of rotations alluded to above. It is the eigenvalue of 
one of the new angular-momentum operators met in chapter II. 

Whereas the theory of spatial rotations has no direct bearing 
on relativistic wave functions, it does provide us with some 
mathematical tools indispensable for the study of rotations in 
Minkowski space. Owing to the particular structure of the Lorentz 
group, the results of chapter III may be readily adapted to 
the description of rotations in four dimensions. This point is 
discussed in chapter IV, where the concept of Eulerian angles is 
extended to the transformations of special relativity. In chapter 
IV we express rotations in Minkowski space in terms of six angles 
and we show how to incorporate the spatial reflection in that 
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scheme. By suitable choice of the generalized Eulerian angles, 
the function-analogues of relativistic spinors are nothing but 
sums of products of functions Υ(ω) already encountered in chapter 
III. Again, we find quite a number of families of functions, 
several families now showing the same behaviour under all transformations 
of the full Lorentz group. The number of families is 
even larger than in the three-dimensional case. It turns out, in 
fact, that two family-indices are required rather than one. 

The family-indices are shown to be the eigenvalues of a new 
three-dimensional angular-momentum operator, S', and of one component 
thereof, conveniently denoted by S'3. The angular momentum 
S' is again of the type met in chapter II. All three components 
of S' commute with all transformations of the full Lorentz group. 
As a matter of fact, it is shown in chapter V that they commute 
with all operators occurring in the theory of free particles. It 
thus seems natural to suggest that S' might represent a new spin. 
A typical eigenvalue of (S')2 being denoted by s'(s'+l). there 
might conceivably exist 2s'+1 different kinds of particles which 
all have the same mass, spin, parity, and s', but are distinguished 
from each other by some quantity closely related to S'3. It is 
an essential feature of our theory that s ' should be integral for 
bosons, half-integral for fermions. 

Concerning a new spin it is well known that the description 
of nuclear interactions and pion-nucleon processes is greatly 
simplified if in addition to the ordinary spin one formally attributes 
a so-called isobaric spin to nucleons and π-mesons; the 
charge independence of nuclear forces then amounts to the conservation 
of the isobaric spin. However, whereas empirically the 
isobaric spin is considered to be a meaningful concept, its very 
occurrence is far from understood at present. It is customary to 
speak of rotations in a three-dimensional isobaric-spin space, 
but it is now known whether or how such a space might be interpreted. 
It is now suggested in chapter VI that S' might represent 
the isobaric spin. According to this idea, the isobaric-spin 
space would be embedded in Minkowski space. Charge independence 
would correspond to the conservation of s ' , and S'3 would be 
closely related to the charge operator. On adopting this tentative 
interpretation of S' the current theory of pion-nucleon 
interactions is readily translated into a formalism in terms of 
Eulerian angles. 

Whereas it is now well established that the concept of 
isobaric spin plays a most useful part in the description of 
pion-nucleon phenomena, it is not known whether the isobaric-spin 
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formalism should be extended beyond the theory of nucleons and 
π-mesons. At the same time, i t has been suggested by Gell-Mann 
(1953) and by Nakano and Nishijima (1953) that among newly discovered 
mesons and heavy unstable particles there might be bosons 
of h a l f - i n t e g r a l i sobar ic spin as well as fermions of in t eg ra l 
i soba r i c sp in . The quant i ty s ' being i n t e g r a l for bosons and 
ha l f - in t eg ra l for fermions, the c l a s s i f i c a t i o n of Gell-Mann and 
Nakano and Nishijima, should i t be co r r ec t , would c l ea r ly ru le 
out the poss ib i l i t y of identifying S' with the isobaric spin. The 
underlying ideas of th i s c l a s s i f i ca t i on are therefore c r i t i c a l l y 
discussed in chapter VI, pa r t i cu l a r a t t en t i on being paid to the 
question of charge independence. I t i s our conclusion tha t the 
a v a i l a b l e experimental evidence i s not incompatible with the 
hypothesis tha t S ' might represent the i sobar ic spin. However, 
much experimental and t heo re t i c a l work wi l l be required before 
the possible in terpre ta t ion of S' can be established. 

1.2. Related i n v e s t i g a t i o n s 

Owing to the fact that with two spherical angles in three-dimensional 
space one cannot construct eigenfunctions appropriate 
to a ha l f - in t eg ra l angular momentum, i t i s usually believed that 
for discussing spin phenomena one must inevi tably introduce such 
abstract quant i t i es as spinors . On the other hand, Bopp and Haag 
(1950) and Rosen (1951) have already pointed out that in a three-dimensional 
theory a spinning particle may be visualized as a 
ro t a t i ng e n t i t y the o r i e n t a t i o n of which i s descr ibed through 
Eulerian angles . These authors have represented spin opera tors 
by d i f f e r e n t i a l operators ac t ing on three angles , and they have 
indicated the functions Υ(ω) mentioned in sec t ion 1.1. However, 
i t has not been suggested e i t h e r by Bopp and Haag or by Rosen 
that Eulerian angles might be connected with a new spin. Further, 
the i r considerations are not r e l a t i v i s t i c a l l y invariant . 

In a paper on the i n t e rna l s t r u c t u r e of spinning p a r t i c l e s , 
F inkels te in (1955) has inves t iga ted the symmetry p r o p e r t i e s of 
r i g i d s t r u c t u r e s t h a t r o t a t e in Minkowski space. In h i s work 
up to s ix degrees of freedom are taken in to account. However, 
Finkelstein's results are based on group-theoretical considerations, 
and he has not specified six variables explicitly. His 
paper does therefore not contain new spin opera tors , ne i ther the 
family-indices associated therewith. 

As the r e s u l t s of the present i nves t iga t ion are a t t a ined by 
using six variables in Minkowski space, i t i s in t e res t ing tha t as 
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early as 1896 Klein introduced so-cal led Cayley-Klein parameters 
appropriate to what are now known as r o t a t i o n s in Minkowski 
space. At tha t time these quant i t i es were presented as beautiful 
mathematical genera l i za t ions of the known parameters for three 
dimensions, with Klein 's added assurance that "the non-Euclidean 
geometry has no metaphysical significance here or in the subsequent 
discussion". Klein's parameters are closely related to 
the Eulerian angles used in chapter IV, about in the same way as 
the corresponding three-dimensional q u a n t i t i e s , which have been 
discussed by Whittaker (1944), secs . 10, 12. I t seems tha t the 
Cayley-Klein parameters for Minkowski space have never been used 
for p r a c t i c a l app l i ca t i ons . As far as we know angular-momentum 
eigenvectors of s ix degrees of freedom have not been given previously. 

Whereas in the following the spin i s described in terms of s ix 
Eulerian angles, Yukawa (1950a,b, 1953a,b) has proposed a theory 
of so -ca l l ed non-local f i e l d s which in t roduces spin phenomena 
through rectangular coordinates. Now four rectangular, i . e . three 
angular, variables in Minkowski space cannot describe half-integral 
spins, neither do they suggest a new spin. Yukawa's and our 
ideas are therefore not d i r e c t l y re la ted, but they might mutually 
supplement each other in future invest igat ions. We br ief ly return 
to t h i s point in section 5.4. 

Concerning the i soba r i c spin i t has been suggested by Pais 
(1953a,b, 1954a,b) tha t formally there might also be an i sobar ic 
o rb i t a l angular momentum. Further Pais (1954a,b) has considered 
the poss ib i l i t y of a four-dimensional isobaric space, ra ther than 
the usual three-dimensional one, with the r e s u l t a n t suggest ion 
that there might even be a third spin. In order to avoid confusion 
we note t ha t whereas a t f i r s t s i gh t the presen t i n v e s t i g a t i o n 
might somewhat resemble P a i s ' s work, i t i s not re la ted there to . 
In pa r t i cu la r , in P a i s ' s papers the isobaric space i s introduced 
ad hoc, not being re la ted to Minkowski space. 

Perhaps one would ask a t t h i s point why in a four-dimensional 
i sobar ic space Pais finds two isobar ic sp ins , whereas the usual 
descript ion of spinning p a r t i c l e s in four-dimensional space-time 
yields only one ordinary spin. The answer to t h i s i s quite simple. 
The six angular-momentum operators appropriate to a four-dimensional 
space, be it Euclidean or pseudo-Euclidean, can indeed be 
grouped so as to give two three-dimensional angular momenta. This 
fact is used in chapter IV. where the three-dimensional angular-momentum 
operators in question are denoted by P+ and P-. Now 
loosely speaking in P a i s ' s isobaric space the isobaric spins are 
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of types P+ and P - . However, if P+ and P- refer to operations in 
Minkowski space, neither of them commutes with the spatial reflection. 
In that case they can therefore not be used separately 
to characterize an elementary particle. In Minkowski space only 
the sum P + + P - commutes with the spatial reflection, and as a 
result there is but one ordinary spin. Since in Pais's theory the 
isobaric space is not related to ordinary space-time, a reflection 
need not be considered there. In order to fit an additional 
spin in Minkowski space one cannot proceed along a line similar 
to the one indicated by Pais. 

After completion of the present work it turned out that in an 
attempt at developing a relativistic field theory appropriate to 
an extended particle Nakano (1956) has remarked: "When one quantizes 
motion of a rigid sphere, one obtains an internal angular 
momentum which is invariant under Lorentz transformation of outer 
space and it might be identified with the isobaric spin operator." 
Nakano's angular momentum is closely related to our spin S ' . The 
truth of his idea is considerably obscured, however, by Nakano's 
deriving his results from a rather specialized Hamiltonian, in 
which the internal structure of the particle in question is represented 
by an angular momentum in five dimensions, μ. Through 
Nakano's equations (4.3) and (4.4) μ is related to an angular 
momentum τ, which likewise is of five dimensions. At the end of 
his section 6 it is suggested that τ might be related to the 
isobaric spin. At the same time it is remarked, however, that the 
equations (4.3) and (4.4) would then be incompatible with ideas 
on the isobaric spin presented by Gell-Mann (1953) and by Nakano 
himself together with Nishijima (1953). Perhaps this is the reason 
why the isobaric-spin idea is only casually mentioned. 

Since Nakano's paper aims at constructing a new sort of wave 
equation, its approach has no connection with the present one. 
As a matter of fact, one gets the impression that according to 
Nakano's ideas the occurrence of the angular momentum τ results 
from his introducing a new Hamiltonian. In the present investigation 
wave equations are not modified; a proton wave function 
satisfies Dirac's equation just as usual. It follows from general 
considerations on Lorentz transformations that the proton might 
have a sister-particle which is likewise described by Dirac's 
equation. 

It is a further difference between Nakano's and our work that 
τ is an angular momentum in five dimensions, having ten components, 
whereas S' is of three dimensions only. Now it is not out 
of the question that Nakano could also have developed a formalism 
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with a four-dimensional τ. However, there is no experimental 
evidence either for a five- or for a four-dimensional isobaric 
spin. It will be observed from our chapter IV that as regards 
"isobaric-spin" operators in Minkowski space we start from an 
angular momentum in four dimensions, J'. This quantity is subsequently 
reduced to a three-dimensional one, S', by the requirement 
of invariance under spatial reflection. At this point it 
should be remarked that in Nakano's paper the behaviour of τ 
under spatial reflection is not considered. As a matter of fact, 
we feel that his work does not contain the mathematical apparatus 
required to this end. Even if τ were four-dimensional one could 
therefore not establish a satisfactory correspondence between τ 
and the isobaric spin from Nakano's work as it stands. 

Recently it has been asserted by Rayski (1956) that the isobaric 
spin might be explicable within the framework of his bi-local 
field theory (Rayski 1955), which essentially is a version 
of Yukawa's (1950a, b, 1953a,b) theory of non-local fields. Writing 
x for the position operator divided by l, and d for the non-local 
anologue of l / x , l being some fundamental length, Rayski has 
proposed to consider the transformations x' = αx+β d . d ' = γx+δd 
satisfying the condition αδ - βγ = 1. These transformations are 
called canonical in Rayski's paper. According to Rayski the wave 
equations of his bilocal theory are invariant under unitary 
canonical transformations, and as a result the wave functions 
must have a number of components which transform linearly among 
themselves under such transformations. Now it is well known that 
group-theoretically there exists a correspondence between the 
unitary transformations of the type considered by Rayski and the 
rotations in three dimensions, cf. van der Waerden (1932), sec. 
16. It is therefore argued by Rayski that his canonical transformations 
might correspond to the rotations in isobaric-spin space. 
However, on checking Rayski's suggestion it turns out that his 
equations are only invariant under the canonical transformations 
having coefficients α, β, γ, and δ of the special form cosθ, sinθ, 
-sinθ, and cosθ, in that order. As the transformations satisfying 
this restriction correspond to the rotations in a fixed plane, 
rather than to all three-dimensional rotations, Rayski's idea is 
therefore not rich enough to account for the full group of 
rotations in isobaric-spin space. 

As another attempt at explaining the isobaric spin we have to 
discuss a paper by Schremp (1955) on wave functions for spin 1 

. 2 . 
In Schremp's paper a four-component Dirac wave function is split 
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into two two-component parts, and while the wave equation is left 
unchanged each of these parts is replaced by a quaternion. Once 
this transition has been carried out it is not difficult to introduce 
new spin-type operators which commute with the ordinary 
spin, and these are then interpreted as the operators representing 
the isobaric spin. Now it is clear that Schremp has indicated 
a possible notation for two commuting spins. However, such a notation 
has long been known, as may be seen from the conventional 
description of the isobaric spin. The crucial point is that in 
his summary Schremp asserts: "By a slight modification of the 
algebraic foundations of spin 1 

2 theory, isotopic spin is incorporated 
therein, in a natural and irreducible manner. The method 
of approach proceeds from a consideration of the geometry of the 
group-space of the proper Lorentz group." However, Schremp's 
paper covers one page only, and it does not motivate the crucial 
transition from spinors to quaternions. In his references we 
could not find an explanation of Schremp's ideas either, so that 
all things considered we do not see an intrinsic relation between 
two spins in his work. Schremp's paper is only concerned with 
Dirac particles, his new spin taking the value 1 

. 2 . 
Schremp's work is unusual in that it tries to incorporate the 

isobaric spin in the framework of special relativity. This is 
generally believed to be impossible, and it has been suggested 
that in order to find a fundamental theory with two spins one 
would have to revise the current description of space-time. In 
this connection we mention a series of papers by Goto (1954a,b,c), 
who in the hope of coming across the isobaric spin has considered 
the de Sitter group and the inhomogeneous Lorentz group. It is 
claimed by Goto (1954b) that invariance under de Sitter transformations 
implies that any wave function is characterized by two 
sorts of spin-like quantum numbers. However, it must be noted 
that following an idea due to Dirac (1935) Goto has used the four 
additional angular-momentum operators in de Sitter space as the 
de Sitter analogues of the linear momenta and the energy in Minkowski 
space. This in itself is a very interesting possibility, 
but serving in that way these de Sitter operators cannot represent 
a new spin in addition. 

Whereas in Goto's paper on the de Sitter group a particle of 
spin ½ is described by a four-component wave function, in his 
work on the inhomogeneous Lorentz group (Goto 1954c) an eight-component 
wave equation for spin ½ is proposed. Obviously this 
equation permits of eight independent solutions for any particu-
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lar momentum; it is not difficult to see that in the absence of 
interactions four of these correspond to energy E, say, and four 
to energy -E, as it should be. However, in an external electric 
field all eight energy values are shifted by the same amount, so 
that one cannot say that the theory pictures protons and neutrons 
as two different states of one eight-component particle. There 
seems to be no alternative method of introducing electromagnetic 
interactions in Goto's wave equation in a relativistically invariant 
way, so that apparently the extra degree of freedom has 
nothing to do with the isobaric spin. It is not quite clear from 
Goto's work exactly how his equation should be interpreted. At 
the same time, it is not impossible that his or similar investigations 

may reveal possible new properties of elementary particles, 
which may be related to new spins. However, such investigations 
are essentially different from the work presented here, 
as the following ideas are all developed within the frameworks of 
ordinary quantum mechanics and special relativity. 



II 

ROTATIONS AND GENERALIZED 
EULERIAN ANGLES 

2.1. Rotation operators 
In the present chapter we shall be concerned with a metric 

space of n dimensions, in which coordinates x a (a = 1, 2,...n) 
have been introduced. The metric tensor g will have covariant 
components 

gaa = ±1, gab = 0 (a ≠ b). (2.01) 
For the squared distance between the origin and the point having 
coordinates x we write 

gabxaxb, (2.02) 
summation being implied over indices occurring twice. As usual 
the contravariant components of g shall satisfy 

gabgbc = δac, (2.03) 
where δa

c i s the Kronecker symbol. From (2.03) i t follows t h a t 
g a b and g a b are numerically equal. With the help of the metric 
tensor we sha l l occasionally ra i se or lower indices according to 

xa = g a bxb , xa = g a b x b . · ( 2 . 0 4 ) 

We shal l be in teres ted in real l inear transformations 

x ' a = Λ a
b x b (2.05) 

sat isfying the condition 

gabxaxb = g c d x ' c x ' d . (2.06) 

From (2.05) and (2.06) i t i s readily seen that we must have 

xa = Λ b
a x ' b . (2.07) 

ΛcaΛcb = gb
a, ΛacΛbc = gb

a. (2.08) 

Taking determinants in (2.08) yields detΛ = ±1. The transforma-
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tions for which detΛ = 1 cons t i tu te the c lass of proper ro ta t ions , 
those having detΛ = -1 involve a ref lec t ion . 

Among the transformations (2.05) the inf in i tes imal ro t a t ions 
are most r ead i ly acces s ib l e to d e t a i l e d i n v e s t i g a t i o n s . These 
in f in i tes imal ro t a t i ons are described by coe f f i c i en t s Λ of the 
special form 

Λab = gab + (δω)ab, (2.09) 
where i t i s understood t h a t the δω's are i n f i n i t e s i m a l s such 
that products of two or more δω's are negl ig ib le . From (2.08) we 
obtain the condition 

(δω)ab = -(δω)ba, (2.10) 
which implies that any infinitesimal rotation can be expressed in 
terms of ½n(n-l) parameters δω. 

It is often convenient to use the symbolic notation 
x' = Λx, (2.11) 

which stands for 
x ' a = Λxa = Λb

axb. (2.12) 

Adopting that notation we shall represent infini tesimal ro ta t ions 
by 

Λ = 1 - ½i(δω)abΡab (P a b = - P b a ) , (2.13) 

where the quantities Ρ are operators, rather than numbers. On 
specializing to the particular choice for the δω's which gives Λ 
the form 1 - i(δω)Ρab it is readily seen with (2.09) and (2.13) 
that 

p a b x c = i g c a x b - i g c b x a . (2.14) 

It will become clear from our further work that the operators 
Ρ represent the components of an angular momentum. In order to 
avoid the imaginary unit i occurring in the preceding formulas, 
several authors prefer to discuss rotations in terms of operators 
iP, rather than operators P. However, since in the present investigation 
we are mainly interested in angular momenta, it is more 
convenient here to use the P's from the outset. Though the P's 
essentially represent an angular momentum, we shall occasionally 
call them rotation operators all the same. 

According to the foregoing formulas, P a b x is proportional to 
the change effected in x by an infinitesimal rotation in the 
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coordinate plane containing the axes x a and x b . Likewise, if f ( x ) 
is any reasonable function, one writes 

δf(x) ≡ f([1 - ½ i ( δ ω ) a b P a b ] x ) - f ( x ) = -½i(δω)abΡabf(x), (2.15) 
products of δω's being neglected. To f i r s t order in the δω's we 
also have 

δf(x) = - ½ i ( δ ω ) a b [ f ( x ) / x c ] P a b x c , (2.16) 

from which it follows that 
P a bf(x) = [ f ( x ) / x c ] P a b x c . (2.17) 

If the operators Ρ act on functions f ( x ) according to (2.14) 
and (2.17). they must satisfy the commutation relations 

[ p a b , p c d ] = i g a c p b d - i g a d p b c - i g b c p a d + i g b d p a c . ( 2 . 1 8 ) 

According to (2.18) P a b and P c d commute in case they have either 
none or both indices in common. If a ≠ c we may write 

[ p a b , p b c ] = - i g b b p a c (a ≠ c). (2.19) 

In (2.14) and (2.17) P a b may be represented by a differential 
operator according to 

Pabf(x) = - i x a f ( x ) / x b + i x b f(x)/xa. (2.20) 
However, in many physical applications rotation operators are 
used which cannot be written in the form of differential operators. 
For instance, in the theory of spinning particles the rotation 
operators pertaining to the spin are usually represented by 
matrices satisfying the commutation relations (2.18) and (2.19). 
In the following such matrices will be denoted by Ρ as well. 

The operators Ρ transform as the components of an antisymmetric 
tensor. If it is understood that the P's commute with Λ, the 
operator P ' a b given by 

P ' a b = Λc
a Λ d

b P c d (2.21) 
satisfies 

p ' a b x ' c = igcax'b - i g c b x ' a . ( 2 . 2 2 ) 

[P'ab,P'bc] = - i g b b P ' a c (a ≠ c ) . (2.23) 

Since in the particular case of three dimensions an antisymmetric 
tensor transforms just as a (pseudo)vector, it is convenient 
to denote the three-dimensional operator Pkl by Ρj (j,k,l = 
1,2,3 cycl.). if gll = l, the operators Pl satisfy the familiar 
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commutation relations for an angular momentum in three dimensions, 
viz. 

[P j ,Pk] = iPl ( j , k , l = 1,2,3 c y c l . ) . (2.24) 

As previously noted, an infinitesimal rotation in the xa,xb-plane 
can be described by the operator 1 - i(δω)Ρab. Accordingly 
the operator exp(-iωP a b) represents a f i n i t e ro t a t ion . Repeated 
application of (2.14) shows, in fact, that 

e x p ( - i ω Ρ a b ) x a = x a cosω ± x b s i n ω , 
( g a a = g b b = ±1) . 

(2 .25) 
e x p ( - i ω P a b ) x b = x a s i n ω + xb cosω, 

( g a a = g b b = ±1) . 

(2 .25) 
e x p ( - i ω Ρ a b ) x a = x a coshω + xb s inhω, 

( g a a = l , gbb = - 1 ) . 

(2 .25) 

e x p ( - i ω P a b ) x b = x a s i n h ω + xb coshω, 
( g a a = l , gbb = - 1 ) . 

(2 .25) 

Rotation operators and the i r appl icat ion in quantum mechanics 
have been discussed by van der Waerden (1932), Corson (1953), and 
others. 

2 .2 . General ized Euler ian ang les 
We have seen in the preceding sec t ion that any inf in i tes imal 

rotat ion in n dimensions can be characterized by means of ½n(n- l ) 
parameters δω. I t i s not d i f f i c u l t to show tha t the most general 
f i n i t e r o t a t i o n in n-dimensional space can a l so be descr ibed 
by ½n(n-l) parameters. 

In order to i n v e s t i g a t e t h i s po in t somewhat p r e c i s e l y , we 
consider a right-handed system of rectangular coordinate axes x  
fixed in space, and, in addition, a right-handed system of rectangular 
axes x' which may be rotated about the common origin of x  
and x'. Every possible or ientat ion of the axes x' thus corresponds 
to a transformation x' = Λx having detΛ = 1. 

Our object i s now to show that the most general or ienta t ion of 
the axes x' can be expressed in terms of ½n(n- l ) angles. To make 
th is c lear we f i r s t character ize the or ien ta t ion of the x ' n - a x i s 
by means of n-1 angles . Next we in t roduce n-2 more angles in 
order to describe the or ien ta t ion of the x ' n - 1 - a x i s in the space 
perpendicular to the x ' n - a x i s . Proceeding in th i s way we must use 
one angle for the x'2 - a x i s , a f t e r which we are l e f t with a l i ne 
perpendicular to the axes x ' n , x ' n - 1 , . . . , x ' 2 . Since the direct ion 
of the x ' 1 - a x i s along t h i s l i ne i s determined by the condi t ion 
detΛ = 1, i . e . by the condition that we must have a proper ro ta -
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tion, it follows that the orientation of the axes x' can be described 
indeed with the help of ½n(n-l) angles. 

The ½ n ( n - l ) angles under consideration are generalizations of 
the three Eulerian angles known from classical mechanics. Irrespective 
of their precise definitions they will therefore be 
referred to as Eulerian angles. Introducing the symbol ωr (r = 
1,2,...,½n(n-l)) for these Eulerian angles, we shall henceforth 
consider Λ as a function of the ω's, Λ = Λ(ω). 

Let us now choose a particular point A' having coordinates 
x'(A'). For any given values of the Eulerian angles the coordinates 
x(A') of that point may be computed from 

x ' (A ' ) = Λ(ω)x(A') , x(A') = Λ-1(ω)x'(A'). (2.26) 
In other words, the coordinates x may be considered as functions 
of x' and ω, the latter quantities varying independently. Changing 
x' then implies a transition from the point A' to a point B' 
the coordinates x ' ( b ' ) of which are likewise independent of the 
Eulerian angles. Varying ω amounts to a rotation of the system 
of axes x ' as a whole with respect to the axes x , A' being kept 
fixed in the system x ' . 

2.3. The rotation operators J 
In the present section we shall consider rotations of the 

system x ' with respect to the system x. We shall particularly 
investigate rotations in the coordinate planes containing two 
axes x . It will be clear from the preceding paragraph that such 
rotations correspond to special transformations of the Eulerian 
angles. We shall now construct rotation operators which generate 
these transformations. In the following these operators will be 
denoted by J, J a b pertaining to the motion of a point A' fixed in 
x'-space under a rotation of the system x ' in the xa,xb-plane. 

Obviously J a b must transform x , i.e. the function Λ-1(ω)x', 
just like Pab. At the same time, there is a fundamental difference 
between J and P. For in deriving (2.23), for instance, it 
has been assumed that the operators Ρ commute with Λ. Accordingly 
a rotation generated by operators Ρ transforms x and x ' while it 
leaves Λ unchanged. As the Eulerian angles are invariant under 
such a rotation, the operators Ρ can also be used in a formalism 
in which moving axes x ' and Eulerian angles ω are not considered. 
The rotations generated by operators J , on the other hand, primarily 
affect Λ. If x is interpreted as a function of the independent 
variables x' and ω, they indirectly transform x also. 
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They do not change x' then, however. I t wi l l be c l e a r tha t the 
operators J occur only in a formalism with moving axes and Eulerian 
angles. 

Being rotat ion operators, the J ' s shal l sa t i s fy 

f([l - ½i(δω)abJ a b]ω) -f(ω) = -½i(δω)abJabf(ω) (2.27) 
to first order in the angles δω. Now just as (2.17) follows from 
(2.15), it follows from (2.27) that we must have 

J a bf(ω) = Σ [ f ( ω ) / ω r ] J a b ω r , J a bf(ω) = 
r 

[ f ( ω ) / ω r ] J a b ω r , (2.28) 

i.e. that the J's must be linear differential operators. Further, 
since J a b is to describe the change undergone by x(A') and x ' ( A ' ) 
if the system x ' performs a rotation in the xa,xb-plane, we must 
have 

J a b x c = i g c a x b - i g c a x a , 

Jabx'c = 0, (2,29) 
Jabx'c = o, 

where i t i s understood tha t x i s to be considered as a function 
of the independent variables x' and ω. I t will be shown presently 
that there ex i s t s one and only one se t of operators J sa t i s fy ing 
(2.28) and (2.29). 

Under the r e s t r i c t i o n s of the p resen t s ec t ion we obviously 
have x ' / ω = 0. In order to obtain e x p l i c i t expressions for the 
J ' s we now apply the operator / ω to x, where x = Λ - 1(ω)x' . With 
the help of (2.05) and (2.07) we f i r s t write 

- i x c / ω r = - ix'd Λ d c / ω r = - i x a Λ d a Λ d c / ω r . (2.30) 

Next we d i f fe ren t ia te the f i r s t equation (2.08) with respect to ω 
to find that 

Λ d a Λ d c / ω r + ΛdcΛda/ωr = 0. (2.31) 

On combining (2.30) and (2.31) a simple c a l c u l a t i o n now shows 
that 

- i x c / ω r = ½ ( Λ d a Λ b
d / ω r ) ( i g c a x b - i g c b x a ) , (2.32) 

which, by v i r tue of (2.29), may be simplified to 

- i x c / ω r = ½ ( Λ d a Λ b
d / ω r ) J a b x c . (2.33) 

In connection with (2.28) we have seen that the J ' s must be 
l i nea r d i f f e r e n t i a l ope ra to r s i f they e x i s t a t a l l . Hence if 
i t i s indeed poss ib le to introduce r o t a t i o n opera tors J , then 
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according to (2.33) the x ' s must sa t i s fy d i f f e r en t i a l equations 
of the form 

Σ Br ( ω ) x c / ω r = 0. 
r 

Br ( ω ) x c / ω r = 0. (2.34) 

Since (2.34) must be satisfied for any x', we must also have 
Σ Βr(ω)Λdc ( ω ) / ω r = 0 
r 

Βr(ω)Λdc ( ω ) / ω r = 0 (2.35) 
and, on multiplying by Λda, 

Σ Β r(ω)Λd
a / (ω)Λd c(ω)/ω r = 0. 

r 

Β r(ω)Λd
a / (ω)Λd c(ω)/ω r = 0. (2.36) 

Now it follows from (2.31) that in (2.36) the coefficient of Br 
is antisymmetric in a and c. Hence (2.36) can be considered as 
a system of ½n(n-l) equations for the ½n(n-l) unknowns Br. In 
practical cases the determinant of this system does not vanish 
identically, and the only solution of (2.36) is Br = 0. By (2.33) 
the operators J must therefore satisfy 

½(ΛdaΛbd/ωr)Jab = - i/ωr.(2.37) 
Conversely, if the J's satisfy (2.37) they also satisfy (2.28) 
and (2.29), so that it is indeed possible to introduce rotation 
operators J in a consistent way. In practical cases the system of 
linear equations (2.37) is readily solved for the J's to give 

J a b = - i Σ Ω r
a b ( ω ) / ω r . J a b = - i 

r 
Ω r

a b ( ω ) / ω r . (2.38) 

where the zeros of 
det[Λda(ω)Λd

b (ω)/ωr] (2.39) 
appear as simple poles of some functions Ω(ω). 

For future reference we note that according to (2.29) we have 
J a b Λ d c = i g c a Λ d b - i g c b Λ d a . ( 2 . 4 0 ) 

which means that J a b transforms Λdc just as P a b transforms xc. 

2.4. The rotation operators J ' 
As any set of rotation operators, the J's transform as the 

components of an antisymmetric tensor. If keeping both x and x ' 
fixed we temporarily introduce an auxiliary system according to 

a = Γb
axb = ΓbaΛcbx'c. (2.41) 
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Γ representing a ro ta t ion, the operator ab given by 
a b = Γc

a Γd
bJcd (2.42) 

i s the ro ta t ion operator appropriate to the motion of a point A' 
fixed in x ' -space under a ro ta t ion in the a , b ' -p lane. If x' and 
ω are taken as independent variables, ab s a t i s f i e s 

Γ c
d

a b x d = i g c a b - i g c b a . 
abx'c = 0. (2.43) 

a b x ' c = 0. 
If Γ does not depend on the Eulerian angles, the f i r s t equation 
(2.43) may also be writ ten in the form 

a b c = ig c a b - i g c b a . (2.44) 

On specializing to the particular case that the axes coincide 
with the axes x', we find 

J ' a b = Λ a
c Λ b

d J c d (2.45) 

for the component of J in the x'a,x'b-plane. It should be noted 
that for the operators J' the analogue of (2.44) is not valid. 
None the less J'ab may well be used to describe the change effected 
in x(A') if the x'-system performs a rotation in the 
x'a,x'b-plane. 

For future reference we note that with (2.08) it follows that 
JabJab = J'cdJ'cd. (2.46) 

From (2.37) i t i s readi ly deduced with (2.31) that J ' s a t i s f i e s 
- ½(ΛadΛb

d/ωr)J'ab = - i / ω r . (2.47) 

For the sake of d i s t i nc tness we r eca l l tha t thus far we have 
only considered the motion of a poin t A' fixed in x ' - space , x' 
and ω varying independently. For discussing the motion of a point 
A having fixed coordinates x we must take x and ω as independent 
variables. Now obviously there exists an intimate relation between 
the motions of points A' and A in, say, the x'a,x'b-plane. 
However, i t i s not c o r r e c t to i n t e r p r e t J ' a b as the r o t a t i o n 
operator appropriate to the motion of a point A. For denoting the 
operator which generates ro ta t ions of A in the x ' a , x ' b - p l a n e by 
K'ab . we must have analogously to (2.29) 

K'abx'c = igcax'b - igcbx'a. 

K'abxc = 0. (2.48) 
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where now x' must be considered as a function of the independent 
variables x and ω. A simple ca lcula t ion a f te r the pa t te rn of the 
preceding s ec t i on shows tha t the r e l a t i o n analogous to (2.37) 
reads 

½ ( Λ a d Λ b
d / ω r ) K ' a b = - i / ω r . (2.49) 

Hence it follows with (2.47) that 
K' a b = - J ' a b . (2.50) 

Accordingly we have 

J ' a b Λ d c = -igdaΛbc + igdbΛac, (2.51) 

which means t ha t J ' a b transforms Λdc j u s t as - P ' a b t ransforms 
x ' d . In order to avoid confusion we sha l l henceforth develop our 
theory in terms of operators J and J ' only. 

Let us i l l u s t r a t e the difference between J ' and K' by a simple 
example. With the two-dimensional ro ta t ion 

x'1 = x1cosω + x2sinω, 

x'2 = -x1sinω + x2cosω, (2.52) 

ω denotes the angle between the systems x and x ' measured from 
x1 towards x ' 1 . Accordingly we have J 1 2 = - i / ω and l ikewise 
J ' 1 2 = - i / ω . Now both J 1 2 and J ' 1 2 refer to the ro ta t ion of a 
point fixed in x '-space, i . e . to the ro ta t ion of the x'-system as 
a whole, from the x 1 -ax is to the x 2 - ax i s . Obviously ω increases 
under th i s ro ta t ion . By contras t , K'12 refers to the ro ta t ion of 
the x-system from the x'1-axis to the x'2-axis. The angle ω decreases 
under this transformation, and we have K'12 = i/ω. 

2 . 5 . Commutation r e l a t i o n s 
It is easily seen from the preceding sections that the operators 

J and K' satisfy the same commutation relations as the 
ro ta t ion operators Ρ introduced in sect ion 2 . 1 . Accordingly the 
commutation re la t ions for operators J' are s l i gh t ly di f ferent . To 
summarize, i f a ≠ c we have analogously to (2.19) 

[ J a b . J b c ] = - i g b b J a c , [ J ' a b , J , b c ] = i g b b J ' a c . (2.53) 

For our further work a crucial quantity will be the commutator 
between one J and one J ' . By v i r tue of (2.45) we may write 
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[ J ' a b , J e f ] = Λ a
c Λ b

d J c d J e f - J e f Λa
c Λb

d J c d . (2.54) 

Now since the J ' s are l inear d i f f e ren t i a l operators , they act on 
functions p and q according to 

J(pq) = pJq + qJp. (2.55) 

Using th i s r e l a t i o n in the right-hand member of (2 .54) , we find 
with (2.40) that 

[ J ' a b , J e f ] = Λ a
c Λ b

d [ J c d , J e f ] - iΛa fΛd
bJed + 

+ iΛaeΛb
d Jfd - iΛa

cΛb fJc e + iΛa
cΛbe J c f . (2.56) 

The f i r s t term in the right-hand member of (2.56) e s sen t i a l l y i s 
a sum over c and d in which c and d independently run through n  
values . The commutator in t h i s term vanishes , however, unless 
c = e, or c = f, or d = e, or d = f. The c o n t r i b u t i o n due to 
c = e amounts to 

- iΛaeΛb
dJ fd, (2.57) 

as follows from (2.53) . But th i s cont r ibu t ion cancels the th i rd 
term in the right-hand member of (2.56), and since the contributions 
due to c = f, d = f, and d = e cancel the remaining terms, 
we f inal ly obtain 

[ J ' a b , J e f ] = 0, (2.58) 

which means that any J commutes with any J'. 
In order to avoid confusion we note two essential differences 

between J ' and the operators P ' mentioned in section 2.1: first, 
the commutation relations (2.53) for J ' have a minus sign as 
compared with the commutator (2.23) between two operators P'; and 
secondly, J ' commutes with J , but P' does not commute with P. By 
virtue of (2.21) we may write 

[ p ' a b , P e f ] = Λ a
c Λ b

d [ P c d , P e f ] , (2.59) 

and apart from the substitution (2.18) this expression cannot be 
simplified any further. The difference between J ' and P ' arises 
from the fact that P ' commutes with the Eulerian angles while J ' 
does not. 



III 

R O T A T I O N S I N T H R E E D I M E N S I O N S 

3 . 1 . I n t roduc t ion 
In the Paul i theory of spinning p a r t i c l e s the behaviour of 

a p a r t i c l e of sp in j i s descr ibed by a wave funct ion of 2j+1 
components. 

Ψ j(X) = 
j Φm(Χ)Uj

m. Ψ j(X) = Σ Φm(Χ)Uj
m. Ψ j(X) = 

m = -j 
Φm(Χ)Uj

m. (3.01) 

X denoting the position coordinates of the particle in question. 
The quantities U are spinors, which under spatial rotations 
transform according to 

P3Ujm = mUj
m, (3.02) 

(P1 ± iP2)Uj
m = [(j m)(j ± m + l)]½Ujm±1. 

In (3.02) the P's are three-dimensional rotation operators of the 
type discussed in section 2.1. They are usually represented by 
square matrices satisfying the commutation relations (2.24). 
Accordingly the spinors U are written as one-column matrices. 

It is well known that it takes only the commutation relations 
for the operators Ρ to show that there exist rotation eigenvectors 
U of the behaviour (3.02). cf. Condon and Shortley (1953), 
secs. 23-33. Schiff (1949). sec. 24. Conversely, in the spinor 
analysis of rotations only the commutation relations for the 
operators and the transformation properties of the eigenvectors 
are considered. It is the purpose of the following pages to show 
that in a formalism with Eulerian angles the rotation eigenvectors 
have additional features which cannot be found in the spinor 
theory. 

Though in the present investigation we aim at a relativistic 
theory, there are good reasons for starting with a formalism in 
three dimensions. We shall therefore first replace the operators 
P j in (3.02) by the differential operators Jj = J k l ( j , k , l = 1 ,2 ,3 
cycl.), cf. section 2.3, where it is understood that the J's 
act on three Eulerian angles in spin space, not on the position 
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coordinates X. Upon going over to operators J. the spinors U must 
by replaced by certain functions Y(ω). Now in order that our 
formalism may be physically useful, the functions Y must be 
transformed by the J's just as the spinors U are transformed by 
the P ' s , i.e. according to (3.02). It is not difficult to see 
that this is guaranteed if and only if the functions Y are eigen-functions 
of (J)2 = JkJk and J3 with suitable eigenvalues j(j+l) 
and m, respectively. However, since we are working with three 
angles, the desired functions are not yet specified completely by 
two eigenvalues. Loosely speaking, we need a third characterization. 
At this point we observe from (2.46) that the operators J 
always go together with operators J ' . Since any J ' commutes with 
any J , according to (2.58), it is clear that there exist several 
independent functions Y for any particular combination j , m. As 
a matter of fact, the functions Y are conveniently taken to be 
simultaneous eigenfunctions of (J)2. J3, and J'3 with eigenvalues 
j(j+l). m, and m', say. Since, again, any J ' commutes with any 
J , the operations J transform functions of a particular m' into 
functions of the same m' only, the transformation coefficients 
being independent of m' . 

It may already be anticipated from this qualitative reasoning 
that the m' encountered here is the three-dimensional family-index 
mentioned in section 1.1. In the following pages this will 
be elaborated in some detail so as to provide a useful basis for 
the more complicated analysis in Minkowski space. From a different 
point of view some of the results of the present chapter have 
already been obtained by Reiche and Rademacher (1926, 1927), 
Kronig and Rabi (1927), and Casimir (1931). 

3.2. Eulerian angles 
In order to describe rotations in an Euclidean space of three 

dimensions, we introduce a right-handed system of rectangular 
coordinate axes x k (k = 1,2,3) fixed in space. We consider, in 
addition, a right-handed system of rectangular axes x ' which may 
be rotated about the common origin of x and x ' . Coinciding at 
first with the axes x , the system x ' is carried into its most 
general final orientation by three successive rotations: first, 
a rotation through ψ from the x1-axis to the x2-axis; secondly, a 
rotation through θ from the x3-axis to the x1-axis; and finally, 
a rotation through φ from the x1-axis to the x2-axis. The angles 
φ, θ, and ψ were introduced by Euler in 1748. 

It follows from the discussion of section 2.1 that the above 
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orientat ion of the axes x' can be described by the transformation 
x ' = exp(- iφΡ 3 ) exp(- i θ Ρ 2 ) exp(- iψ Ρ3)x ≡ Λx, (3.03) 

where it is understood that the operators Ρ act on x , not on the 
Eulerian angles. Repeated application of (2.25) shows, in fact, 
that (3.03) is equivalent to 

x ' k = Λlk xl, (3.04) 
the direct ion cosines Λl

k being given in table 3 .1 . 

Table 3.1 
The direction cosines Λl

k 

k l = 1 l =2 l=3 

1 cosφ cosθ cosΨ - s inφ sinψ sinφ cosθ cοsψ + cosφ sinΨ - s inθ cosΨ 
2 -cosφ cosθ sinΨ - sinφ cosΨ -s inφ cosθ sinψ + cosφ cosΨ sinθ sinΨ 
3 cosφ s inθ s inφ sinθ cosθ 

I t i s eas i ly seen from table 3.1 that the angles φ and θ can 
be considered as spherical angles of points fixed on the x ' 3 - a x i s , 
the point on the un i t sphere with x ' 1 = x ' 2 = 0, x ' 3 = 1 having 
coordinates x1 = cosφsinθ, x2 = s inφsinθ, x3 = cosθ. Since the 
combination φ, θ, ψ y i e l d s the same d i r e c t i o n cos ines as the 
combination φ + π + 2n 1π, -θ + 2n2π, ψ + π + 2n3π (n l , n2 , n3 = 
0 , ± 1 , ± 2 , . . . ) , any o r i en ta t ion of the axes x' can be a t t a ined by 
angles sa t is fying 

0 φ < 2π, 0 θ π, 0 ψ < 2π. (3.05) 

At the same time, it is sometimes convenient to consider Eulerian 
angles outside this domain of values. 

3.3. Alternative introduction of Eulerian angles 
Before proceeding to explicit calculations, it is advantageous 

to introduce Eulerian angles in an alternative way. Comparing the 
two modes of interpretation brings out several formulas that are 
very useful at various stages in our further work. 

A simple geometrical consideration shows that the orientation 
of axis x' given in (3.03) can be realized as well by performing. 
first, a rotation through φ from the x1-axis to the x2-axis; 
secondly, a rotation through θ from the x3-axis to the once ro-
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tated x ' 1 - a x i s , i . e . a ro ta t ion through θ about the once rotated 
x'2-axis, which is called the line of nodes; and finally, a rotation 
through ψ from the twice rotated x'1-axis to the line of 
nodes, i . e . a ro ta t ion through ψ about the final x ' 3 - a x i s . If we 
denote the l ine of nodes by z, and the operator Ρ which generates 
ro ta t ions about t h i s l ine by P z , we may therefore wr i t e , along 
with (3.03), 

x ' = exp (- i ψ Ρ ' 3 ) exp(- i θΡ z ) exp(- iφΡ 3 )x = Λx. (3.06) 

Now i t i s well known that ro ta t ion operators in three dimensions 
transform as pseudovectors . On combining ope ra to r s Ρ to form 
pseudovectors in the d i r e c t i o n s z and x ' 3 , r e s p e c t i v e l y , i t i s 
thus found that 

P z = - (sinφ)P1 + (cosφ)P2, (3.07) 

Ρ'3 = (cosφ sinθ)P1 + (sinφ sinθ)P2 + (cosθ)P3 . 

Subst i tu t ing (3.07) into (3.06), equating the expressions for Λ 
(3.03) and (3.06), and putt ing ψ = 0 now yields 

exp(- i φ Ρ 3 ) exp(- i θΡ 2 ) = 

= exp(- iθ [- (sinφ)P1 + (cosφ)P2]) exp(- i φ Ρ 3 ) , (3.08) 

which is equivalent to 

exp(- iφΡ 3 )Ρ 2 e x p ( i φ Ρ 3 ) = - (sinφ)P1 + (cosφ)P2. (3.09) 

By a rather lengthy, if e s sen t i a l ly straightforward, computation 
equation (3.09) may be v e r i f i e d d i r e c t l y from the commutation 
re la t ions (2.24) for the operators P. 

In order to genera l ize (3.09) we now consider an a u x i l i a r y 
coordinate system ' which derives from x ' according to 

' = exp(- i ω P ' k ) x ' = exp(- i ω Ρ ' k ) Λ x . (3.10) 

Analogously to (3.03) we may also write 

' = Λ exp(- iωP k )x , (3.11) 

from which it follows that 
ΛΡkΛ-1 = P ' k . (3.12) 

The operator P ' in (3.12) should be visualized as a certain 
linear combination of operators P. Rotation operators Pk transforming 
as pseudovectors, we have, in fact, 
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P'k = Λ k
l Ρ l . (3.1.3) 

I t i s e s s e n t i a l in both (3.09) and (3.12) tha t Ρ commutes with 
the angles φ, θ, tha t appear as parameters in the exponential 
operators in Λ. 

From (3.03) we obtain for the inverse rota t ion 

x = e x p ( i ψ Ρ 3 ) exp ( iθP 2 ) e x p ( i φ Ρ 3 ) x ' = Λ - 1 x ' . (3.14) 

However, s ince Px' i s a ra ther complicated expression, t h i s 
equation is not very su i t ab l e for p r a c t i c a l c a l cu l a t i ons . With 
(3.12) we therefore transform (3.14) into 

x = e x p ( i ψ Ρ ' 3 ) e x p ( i θ P ' 2 ) e x p ( i φ Ρ ' 3 ) x ' = Λ - 1x' . (3.15) 

According to (2.22) the quantity P ' x ' is very simple indeed. 
As noted previously, (3.09) essentially follows from the 

commutation relations for the operators P. The same applies to 
(3.12). Operators P ' satisfying the same commutation relations as 
operators P, we thus have, along with (3.09), 

exp(- iφΡ'3)Ρ'2 exp(iφP'3) = - ( s i n φ ) P ' 1 + (cosφ)P'2. (3.16) 
Using the expression for Λ which i s impl i c i t in (3 .15) , we may 
also write , as a special analogue of (3.12), 

ΛP ' 3 Λ - 1 = (cosφ s inθ)P ' 1 + (sinφ sinθ)P'2 + ( c o s θ ) P ' 3 . (3.17) 

3.4. The r o t a t i o n o p e r a t o r s J and J ' 
Since the angles φ, θ, ψ refer to ro t a t ions of the system x ' 

about the axes x3, z, and x ' 3 , respectively, we must have 

- i/φ = J 3 , - i/θ = J z , - i/Ψ = J ' 3 . (3.18) 

where J and J ' stand for the d i f f e r e n t i a l opera tors defined in 
the preceding chapter . Using r e l a t i o n s analogous to (3.07) we 
may write (3.18) in the form 

- i/φ = J 3 , 

- i/θ = - (sinφ)J1 + (cosφ)J2, (3.19) 

- i/ψ = (cosφ sinθ)J1 + (sinφ s inθ)J 2 + (cosθ)J3 . 
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The three equations (3.19) form a system of the type (2.37) which 
i s eas i ly solved for the opera tors J. Resolving J 3 and J z in to 
components along the axes x', we l ikewise obta in three l i n e a r 
equations for the operators J ' . 

This simple geometrical cons t ruc t ion of the opera tors J and 
J ' has been e s sen t i a l l y given by Casimir (1931), pp. 54-57. 
(Casimir 's choice of Eulerian angles i s s l i g h t l y d i f fe ren t from 
the one adopted here.) Treating rotation operators as pseudovectors, 
however, the above method is obviously restricted to three 
dimensions. In n-dimensional space expressions for J and J ' can 
be derived by straightforward computation according to (2.37) and 
(2.47) . However, t h i s being a r a the r lengthy way in p r a c t i c a l 
cases, we shal l give another method, which - i f ra ther formal a t 
f i r s t sight - will prove very useful when applied to ro ta t ions in 
Minkowski space. 

Let us then consider the motion of a po in t A' f ixed in the 
system x'. In the language of chapter II, we must take the coordinates 
x' and the Eulerian angles ω as independent variables 
when describing the motion of a point A' . The coordinates x  
depend on x ' and ω according to (3.15). Now if x ' does not depend 
on ω, (P ' )q x ' (q in tegral ) does not depend on ω e i ther , by v i r tue 
of (2.22). Hence (3.15) may be easi ly d i f ferent ia ted with respect 
to the Eulerian angles to give 

- ix/φ = Λ - l P ' 3 x ' , 

- ix/θ = e x p ( i ψ Ρ ' 3 ) e x p ( i θ Ρ ' 2 ) Ρ ' 2 e x p ( i φ Ρ ' 3 ) x ' , (3.20) 

- ix/ψ = P ' 3 Λ - 1 x ' . 

On subs t i tu t ing (3.16) and (3.17), (3.20) reduces to 

- ix/θ = Λ - 1 [ - (sinφ)P'1 + (cosφ)P ' 2 ]x ' , e tc . (3.21) 

Remembering that x = Λ - 1 x ' stands for xk = Λ-1 x ' k , we now write 
with (2.22) and (2.29) 

J j k x l = i g l j xk - i g l k x j = 

=Λ-1(igljx'k - iglkx'j) = Λ-1P'jkx'l, (3.22) 

Jkx = Λ-lP'kx'. 

Combined with (3.21) this expression yields 

- ix/θ = [- (sinφ)J1 + (cosφ)J2]x, e t c . · ( 3 . 2 3 ) 
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According to (3.23) the operators J must satisfy the system of 
equations (3.19) if they act on x. Now the relation (3.23) is 
exactly of the form (2.33), and (3.19) is of the form (2.37). 
Further, the determinant of (3.19) does not vanish identically. 
Since we have seen that (2.37) follows from (2.33) provided the 
determinant of (2.37) does not vanish identically, we may therefore 
conclude from (3.23) that the operators J are the linear 
differential operators that satisfy the desired system of equations 
(3.19). 

If in (3.03) x is taken as independent variable, similar 
equations may be derived for the operators which describe the 
motion of a point A fixed in x-space as viewed from the system 
x ' . In section 2.4 these operators have been denoted by K'. Now 
the above derivation of J essentially rests on the commutation 
relations for the operators that appear in the exponents in Λ. 
Further, the operators P ' in (3.15) satisfy the same commutation 
relations as the operators Ρ in (3.03). And finally, (3.03) derives 
from (3.15) by interchanging primed and unprimed quantities 
and substituting -ψ, -θ, -φ for φ, θ, Ψ. Combining these facts, 
and denoting the present J and k' by J ( φ , θ,Ψ) and k' (φ, θ, Ψ), 
respectively, we thus arrive at 

K'k(φ.θ,ψ) = Jk(-ψ,-θ,-φ). (3.24) 

By virtue of (2.50) it now follows that 

J'k(φ.θ.ψ) = - Jk(-ψ,-θ,-φ). (3.25) 

As a final result, the operators J and J ' take the form 

J1 = - i (- sinφ - cosφ cotθ + 
cosφ  

), J1 = - i (- sinφ 
θ 

- cosφ cotθ 
φ 

+ 
sinθ Ψ ), 

J2 = - i ( c o s φ - sinφ cotθ + sinφ  ), (3 .26) J2 = - i ( c o s φ 
θ 

- sinφ cotθ 
φ 

+ 
sinθ Ψ 

), (3 .26) 

J 3 = - i J 3 = - i 
φ 

J'1 = - i (sinΨ + cosΨ cotθ -
cosΨ ), J'1 = - i (sinΨ 

θ 
+ cosΨ cotθ 

Ψ 
-

sinθ  φ 
), 

J ' 2 = - i (cosΨ - sinΨ cotθ + sinΨ ), J ' 2 = - i (cosΨ θ 
- sinΨ cotθ 

Ψ 
+ 

sinθ φ 
), (3.27) 

J'3 = -i J'3 = -i 
Ψ 
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3.5. Rotation eigenfunctions 
We now proceed to construct functions of three Eulerian angles 

which, loosely speaking, correspond to the spinors U mentioned in 
section 3.1. In view of the fact that the spinors U are eigenvectors 
of (P)2 = PkPk and P3, we shall primarily consider eigen-functions 
of (J)2 and J3. Since both (J)2 and J3 commute with any 
operator J ' , it is most convenient to investigate simultaneous 
eigenfunctions of (J)2, J3, and J'3. The eigenvalues concerned 
being denoted by j(j+1), m, and m', respectively, it follows from 
(3.26) and (3.27) that the desired functions must have the form 

Yjm,m'(φ,θ,ψ) = (1/2π)jm,m' (θ)exp(imφ + im'Ψ). (3.28) 
The allowed values of j , m, and m' will be delimited later. 

It has been discussed by Condon and Shortley (1953), secs. 23-33, 
by Schiff (1949), sec. 24, and others that if Uj

m is an eigen-vector 
of (P)2 and P3 with eigenvalues j(j+1) and m, respectively, 
it follows from the commutation relations for the operators 
Ρ that 

(P1 ± iP2)Ujm = λm±1,mUj
m±1. (3.29) 

Now since the opera tors Ρ stand for rea l observables , v iz . for 
the components of spin angular momentum, they must be represented 
by Hermitian matrices, i . e . 

λm±1,m = λm,m±1
*. (3.30) 

It is well known that the commutation relations for the P's combined 
with the condition (3.30) lead to 

|λm±1,m|2 = (j m)(j m + 1 ) · ( 3 · 3 1 ) 
If i t i s understood that j and j+l are taken to be non-negative, 
the parameters j and m in (3.31) are r e s t r i c t e d to the values 

j = 0, ½, 1, 3/2,... m = -j, - j + 1 , . . . j . (3.32) 

Since the operators J satisfy the same commutation relations 
as the operators P, and since they commute with J'3, we must 
likewise have 

(J1 ± ij2)Yj
m,m' = λm±1,mYjm±1,m'. (3.33) 

In order to obtain functions which correspond to the spinors U, 
we now impose the condition (3.30) on the coefficients λ in 
(3.33). Just as in the preceding paragraph, (3.30) then leads to 
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(3.31), J and m being restricted to the values given in (3.32). 
Thus, on suitable choice of the relative phases of the functions 
Y we shall have 

( J 1 + iJ2)Y J
m , m ' = [(j m) (j + m + l)]½ ym±1,m', (3.34) 

which means that the operators J will transform the functions Y 
just as the operators Ρ transform the spinors U. The index m' 
does not interfere with the above reasoning due to the fact that 
J'3 commutes with every J . Whereas in deriving (3.34) it has been 
taken as a starting-point that the functions Y are eigenfunctions 
of (J)2 and J3, it will be clear, conversely, that any 2 j + l 
eigenfunctions of J3 which are related to one another according 
to (3.34) are eigenfunctions of (J)2. 

To show that in (3.28), (3.33), and (3.34) j and m may take on 
all values indicated in (3.32), and to find the allowed values of 
m', we now construct explicit expressions for the functions Θ. 
The method developed for that purpose is an extension of the 
method for determining the Legendre functions given by Condon and 
Shortley (1953), sec. 43. On introducing the operator 

J { m ' ; m , ± } = ± 
d - mcotθ + m' , J { m ' ; m , ± } = ± dθ - mcotθ + 

s i n θ , (3. 35) 

a simple calculation with (3.26) and (3.28) shows that for (3.34) 
to be valid the functions must be connected by the recurrence 
formula 

J { m ' : m , ± } j
m , m ' = [(j m)(j ± m + l)]½j

m±1,m'. (3.36) 
If θ now s a t i s f i e s 0 < θ < π , the operator J{m';m,±} may be written 
in the form 

J{m';m,±} = ±(sin 1 θ ) ± m m ' + 1 ( c o s 1 θ ) ± m ± m ' + 1 × J{m';m,±} = ±(sin 2 
θ ) ± m m ' + 1 ( c o s 

2 
θ ) ± m ± m ' + 1 × 

× 
d (sin 1 θ)m±m' (cos 1 θ)mm'. × 

dsin2½θ 
(sin 2 θ)m±m' (cos 2 

θ)mm'. (3.37) 

Hence since J { m ' ; ± j,±} is to give zero when applied to j
±j,m',  

it follows that we must have 
j
±j,m'(θ) = αj±j,m'(sin½θ)jm' (cos½θ)j±m', (3.38) 

where the α's are ce r ta in normalization coef f ic ien ts which will 
be chosen l a t e r . On applying the operator 

[ (j+m)! ]½ J { m ' ; m + l , - } . . . J { m ' ; j - l , - } J { m ' ; j , - } (3.39) 
[ 

(2j)! (j-m)! 
]½ J { m ' ; m + l , - } . . . J { m ' ; j - l , - } J { m ' ; j , - } (3.39) 
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to the function j
j , m' as given by (3.38), it is now found that 

j
m,m'(θ) = α j

m , m '{+}(sin 1 
θ)-m + m'(cos 1 θ)-m-m' × j

m,m'(θ) = α j
m , m '{+}(sin 2 θ)-m + m'(cos 2 θ)-m-m' × 

×dj-m 
(sin 1 θ ) 2 j - 2 m ' ( c o s 1 θ ) 2 j + 2 m ' , 

d(sin2½θ)j-m (sin 2 θ ) 2 j - 2 m ' ( c o s 2 
θ ) 2 j + 2 m ' , 

αj
m,m'{+} = ( - 1 ) j - m 

[ 
(j+m)! ]½αj

j,m'. αj
m,m'{+} = ( - 1 ) j - m 

[ 

(2j)!( j-m)! ]½αj
j,m'. 

(3.40) 

At the same time, the operator 

[ (j-m)! ]½J{m';m-1. + } . . . J{m' ; - j + 1.+}J{m';-j,+} (3.41) 
[ 

(2j)! (j+m)! 
]½J{m';m-1. + } . . . J{m' ; - j + 1.+}J{m';-j,+} (3.41) 

applied to j
-j,m y ie lds 

j
m,(θ) = α j

m ,m '{-}(sin 1 θ)m-m' (cos 1 θ)m+m' × j
m,(θ) = α j

m ,m '{-}(sin 2 θ)m-m' (cos 2 θ)m+m' × 

× 
dj+m 

(sin 1 θ) 2 j + 2 m ' (cos 1 θ)2j-2m', 
× d(sin2½θ)j+m (sin 2 θ) 2 j + 2 m ' (cos 2 

θ)2j-2m', 

α j
m,m'{-} = [ (j-m)! ]½ αj

-j,m'. α j
m,m'{-} = [ 

(2j)!(j+m)! 
]½ αj

-j,m'. (3.42) 

Explicit expressions for α{±} will be given in (3.54). 
The relation (3.40) contains, among others, an expression for 

j
-j,m'. However, this function has already been given in (3.38). 
In order that (3.40) be compatible with (3.38), it is necessary 
that 

d2j[tj-m'(1-t)j+m']/dt2j (3.43) 
i s a constant . Since t h i s condit ion is f u l f i l l e d i f and only i f 
both j+m' and j - m ' are non-negative in tegers , i t follows that m' 
i s r e s t r i c t ed to the values 

m' = - j , - j + l , . . . j . (3.44) 

If m' satisfies the condition (3.44), the two expressions for , 
(3.40) and (3.42), are consistent provided 

αj-j,m' = (-l)j-m'αjj,m'. (3.45) 
I t i s not d i f f i c u l t to see from the foregoing formulas tha t the 
parameters j,m, and m' may take on a l l values compatible with 
(3.32) and (3.44). 

Since m and m' run through the same values, the function j
m',m 

has a meaning together with j
m,m'. As a mat ter of fac t , it i s 
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eas i ly ve r i f i ed from (3.40) tha t both functions may d i f fe r by a 
normal iza t ion f ac to r a t most. Without l o s s of g e n e r a l i t y the 
constants αj

j,m' can be chosen so that 

j
m',m = j

m,m'. (3.46) 

By vi r tue of (3.36) t h i s choice implies that 

J{m;m',±}j
m,m' = [(j m ' ) ( j ± m' + 1)]½

j
m,m'±1, (3.47) 

which, by (3.27), (3.28), and (3.35), leads to 

(J'1 ± iJ'2)Yj
m,m' = - [(j ± m')( j m' + l ) ] ½ Y j

m , m ' 1 . (3.48) 

Since J3 commutes with every J ' , it already follows from the 
commutation relations for the operators J ' that 

(J'1 ± iJ'2)Yjm,m' = μm'1,Yjm,mm'1 (3.49) 
- not y j

m , m ' ± 1 in view of the "wrong" sign of the commutation 
re la t ions for operators J ' . Now one might be led to expect that 
a second condition of the type (3.30) would be required to obtain 
a r e l a t i o n for μ such as (3.31) . We see here, however, tha t on 
s u i t a b l e choice of the normal iza t ion c o e f f i c i e n t s α the so l e 
condition (3.30) suffices to give two recurrence formulas, (3.34) 
and (3.48), and to delimit the values of j, m, and m'. 
On applying the operator 

[ (j+m')! ]½ J{j;m'+1,-}...J{j;j-1,-}J{j;j,-} (3.50) [ (j+m')! ]½ J{j;m'+1,-}...J{j;j-1,-}J{j;j,-} (3.50) [ 
(2j)! ( j -m')! 

]½ J{j;m'+1,-}...J{j;j-1,-}J{j;j,-} (3.50) 

to the funct ion j,j as given by ( 3 . 3 8 ) , we find, by (3 .47 ) , 
j
j,m' in the form (3.38), and i t follows that we must have 

αj
j,m' = [ 

(2j) ! ]½αj
j,j. αj

j,m' = [ 
(2j) ! ]½αj

j,j. αj
j,m' = [ (j+m')!(j-m')! 

]½αj
j,j. (3.51) 

Collecting r e s u l t s we see tha t the normalization fac tors α must 
be related according to (3.40), (3.42), (3.45), and (3.51) i f the 
recurrence formulas (3.34) and (3.48) are to hold true. In order 
to fix the α's we now choose αj

j,j to be 

αj
j,j = (j + 

1 )½exp(jπi) , αj
j,j = (j + 2 

)½exp(jπi) , (3.52) 

which implies tha t 

∫ 
π 

j
j , j (θ ) | 2 s inθdθ = 1. ∫ j
j , j (θ ) | 2 s inθdθ = 1. 

0 
j
j , j (θ ) | 2 s inθdθ = 1. (3.53) 

On this choice for αj
j,j the coefficients α{±} take the form 
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α {+} = (2>+ l ) ( j+« ) ! exp(mut). α {+} = 
2(j -m)\ ( ) + « ' ) ! ( j - n ' ) ! 

exp(mut). 

(3.54) 
α j

m ,m '{-} = [ (2j + 1) (j-m)! ]½exp(m'πi). α j
m ,m '{-} = [ 

2(j + m)!(j + m ' ) ! ( j -m ' ) ! 
]½exp(m'πi). 

Since both j+m' and j-m' are integers, we may write without 
ambiguity concerning phases 

( s i n 1 θ ) 2 j ± 2 m ' = ( s i n 2 1 θ ) j ± m ' . ( s i n 2 θ ) 2 j ± 2 m ' = ( s i n 2 
2 θ ) j ± m ' . (3.55) 

With the help of relations of the form (3.55) the differentiations 
in (3.40) and (3.42) are readily carried out with Leibniz's 
rule to give 

Θ"·"' (θ) = Σ [ ( 2 ; + l ) 0 + m ) ! ( ; ' - m ) ! 0 + m , ) ! Q - m ' ) ! ] % 
X Θ"·"' (θ) = Σ 

g! (j-m-q)\ ( j-m'-g)! (m+m'+q)! / 2 
X Θ"·"' (θ) = 

9 g! (j-m-q)\ ( j-m'-g)! (m+m'+q)! / 2 
X 

× ( s i n 1 θ)2j-m-m'-2q(cos 1 θ ) m + m ' + 2 q e x p [ ( j - q ) π i ] × ( s i n 2 θ)2j-m-m'-2q(cos 2 θ ) m + m ' + 2 q e x p [ ( j - q ) π i ] (3.56) 

where the summation is to be extended over all integers q consistent 
with the factorial notation, the factorial of a negative 
number being meaningless. 

In the foregoing paragraphs, expressions for have been derived 
under the assumption that 0 < θ < π. Now the right-hand 
member of (3.56) i s an in tegra l function of θ. It will therefore 
be c lea r that the r e s t r i c t i o n on θ may be dropped, and tha t the 
functions given by (3.56) s a t i s f y the recurrence formula (3.36) 
for any f i n i t e θ. Apart from c e r t a i n normalization fac tors they 
are the only s e t of so lu t ions of (3 .36) . Further , s ince (3.55) 
holds true for any f i n i t e θ, i t will give no confusion if we also 
use (3.40) and (3.42) for any f i n i t e θ. 

On mult iplying the two expressions for , (3.40) and (3.42) , 
and in tegra t ing by par t s , i t i s not d i f f i c u l t to show tha t 

|∫ π 
j
m,m'(θ)i

m,m'(θ)sinθdθ| = δji. |∫ jm,m'(θ)i
m,m'(θ)sinθdθ| = δji. 

0 
j
m,m'(θ)i

m,m'(θ)sinθdθ| = δji. (3.57) 

Let us now define the scalar product of any two quadratically 
integrable functions f(φ,θ,ψ) and g (φ ,θ ,Ψ) by 

(f,g) = 1 ∫ 
4π 

dψ ∫ 
2π 

dψ ∫ 
π 

f* (φ ,θ ,Ψ)g(φ ,θ ,Ψ)s inθdθ . (f,g) = 1 ∫ 
4π 

dψ ∫ 
2π 

dψ ∫ 
π 

f* (φ ,θ ,Ψ)g(φ ,θ ,Ψ)s inθdθ . (f,g) = 2 ∫ 
4π 

dψ ∫ 
2π 

dψ ∫ 
π 

f* (φ ,θ ,Ψ)g(φ ,θ ,Ψ)s inθdθ . (f,g) = 2 0 

4π 
dψ 

0 

2π 
dψ 

0 

π 
f* (φ ,θ ,Ψ)g(φ ,θ ,Ψ)s inθdθ . (3.58) 

It then follows from (3.28) and (3.57) that 
(yj

m,m',Yi
n,n') = δjiδmnδm'n'. (3.59) 
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In (3.58) the in tegra t ion with respect to ψ is ca r r i ed out over 
an interval 4π to ensure that Yj and Yi shal l be orthogonal if j 
i s ha l f - in tegra l while i i s in tegra l , or vice versa. One might as 
well interchange the roles of φ and ψ in (3.58). 

I t i s not d i f f i c u l t to see with (3 .34) and (3.48) t h a t on 
adopting the d e f i n i t i o n (3.58) for the s c a l a r product we have 

(f,jkg) = ( J k f , g ) , 
(k = 1,2,3) (3.60) 

(f,J'kg) = (J'kf,g), 
for any two functions f and g which may be expanded into a s e r i e s 
of functions Y. In other words, the operators J and J' are Hermitian 
with respect to such functions, which is, of course, 
essent ia l for a physical in t e rp re ta t ion of these operators to be 
possible. I t i s not surpris ing that the operators J are Hermitian 
with respect to the functions Y. One should ra ther say that t h i s 
i s a na tu ra l r e s u l t of the condi t ion (3.30) together with the 
d e f i n i t i o n (3.58) for the s c a l a r product . The i n t e r e s t i n g 
point i s that J ' i s Hermitian without any second condition being 
imposed. 

3.6. Miscellaneous remarks 
3.61. Surface harmonics 

If we compare (3.40) or (3.42) with Rodrigues 's formula, we 
see tha t Θj

m,0 i s proportional to the associated Legendre function 
Pj

m. Our normalization factor has been chosen so as to agree with 
the convention adopted by Condon and shor t ley (1953), eq. 4315. 
As noted already in section 3.2, the angles φ and θ may be considered 
as spherical angles. Accordingly the functions Yj

m,0 are 
surface harmonics. 

I t i s well known that the surface harmonics may be wri t ten as 
polynomials in cosφsinθ, s inφsinθ. and cosθ. In the notat ion of 
section 3.2 t h i s amounts to polynomials in Λ3k. Now by (2.14) and 
(2.40) , J transforms Λ3k j u s t as Ρ transforms x k . Likewise, J ' 
transforms Λ3k j u s t as - P ' transforms x ' 3 , according to (2.22) 
and (2 .51 ) , so tha t J ' 3 Λ 3 k = 0. From t h i s i t follows tha t J ' 3 

yields zero when applied to any polynomial in Λ 3 k . in accordance 
with the fact that surface harmonics have zero m'. 

Since m' is restricted to the values -j, -j+l, ....j, it cannot 
be zero unless j is an integer. This agrees with the known 
fact t ha t surface harmonics e x i s t only for i n t e g r a l j . By contrast, the functions Y derived in the preceding sec t ion have a 



39 I I I , 3.63 

meaning for in tegra l as well as for h a l f - i n t e g r a l j provided m 
and m' sat isfy the conditions (3.32) and (3.44). 

3.62. Two-valuedness 
We have seen in sec t ion 3.2 t h a t the angles φ + π + 2n1π, 

-θ + 2n2π, ψ + π + 2n3π refer to the same or ienta t ion of the axes 
x' as the angles φ, θ, ψ. However, i t follows from (3.40) tha t 

Θj
m,m'(θ) = (-1)m-m' Θj

m,m'(-θ) = (-1)2jΘ j
m,m'(θ+2π). (3.61) 

Combined with (3.28) this yields 
Y(φ,θ,ψ) = Y(φ+π,-θ,ψ-π) = (-1)2jY(φ+2π,θ,ψ) 

= (-1)2jY(φ,θ+2π,ψ) = (-1)2jY(φ,θ,ψ+2π), (3.62) 
which means that the functions Y of half-integral j change sign 
under a rotation through 2π about the x3-axis, the line of nodes, 
or the x'3-axis, respectively. 

Let us now consider, along with x 3 , an auxiliary axis 3 

likewise fixed in x-space. Let us also introduce the operator J3 
which generates rotations about the axis 3. Obviously J3 commutes 
with both (J)2 and J'3. Hence for any allowed combination 
j, m' it has eigenfunctions j

,m' Since these may be written as 
linear combinations of the functions Yjm,m' having the j and m ' in 
question, it follows from (3.62) that is multiplied by (-1)2j 
when a rotation through 2π is carried out about the x3-axis. 
Conversely, Y is multiplied by (-1)2j under a rotation through 2π 
about the 3-axis, or, generally, under a rotation through 2π 
about any axis fixed in x-space. An analogous reasoning applies 
to rotations about axes fixed in x'-space. A similar two-valuedness 
exists in the spinor formalism, where we have 

exp(2πiΡk)Ujm = ( - l ) 2 j U j
m . (3.63) 

3.63. Supplementary condi t ions 
The functions Y of integral j are well known as the angular-momentum 

eigenfunctlons of a rigid rotator (Reiche and Rademacher 
1926, 1927, Kronig and Rabi 1927, Casimir 1931). They have previously 
been found by solving the second-order differential 
equation (J kJ k - η)Y = 0 subject to the requirements that Y shall 
be a one-valued function of pos i t ion , and tha t i t sha l l be 
bounded a t the s ingu la r po in ts with s inθ = 0. Whereas we 
have s t a r t e d from the recurrence formula (3.33) subject to the 
condition (3.30). our functions of integral j are ident ica l with 
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those s a t i s fy ing the usual s ingu la r -po in t boundary condi t ions . 
Once the differential equation for Y has been solved for one-valued 

functions, it is not difficult to see that it admits of 
reasonable two-valued functions a lso . At the same time, the 
singular-point boundary conditions are not quite unambiguous once 
the r e s t r i c t i o n of one-valuedness has been dropped. They do not 
settle clearly, for instance, whether a function with a branchpoint 
such as (sinθ)½exp(±½iφ), which satisfies the second-order 
d i f fe rent ia l equation for Y½

±½,0, i s admissible. This function is 
certainly ruled out by our supplementary condition. 

Whereas the usual s i n g u l a r - p o i n t boundary condi t ions might 
thus give r i s e to d i f f i c u l t i e s , we have s t i l l another reason to 
prefer the method of section 3.5: The s ingular case θ = 0 refers 
to the s i t u a t i o n tha t the axes x3 and x ' 3 coincide. Natural ly , 
i t would be ra ther d i s turb ing to meet with a branch-point or a 
divergence the re which does not occur, for i n s t ance , when x2 

coincides with x ' 2 , i . e . when φ = ψ = 0. At the same time, i t i s 
our in tent ion to i n t e rp re t the Eulerian angles as angles in spin 
space, ra ther than in ordinary space; and one might argue tha t 
a s ingular behaviour of functions in spin space need not have 
physical implications. We are in teres ted , f i r s t of a l l , in functions 
which transform as spinors, rather than in functions without 
awkward branch-points, say. Now the method of section 3.5 has 
been adopted to ensure t ha t we find a l l functions t ha t sa t i s fy 
the sp inor- l ike transformation formula (3.34). Our method will be 
p a r t i c u l a r l y useful for the ana lys i s of r o t a t i ons in Minkowski 
space. 

3.64. Connection with hypergeometric funct ions 
Expressions for Θ have previously been obtained by solving the 

second-order d i f fe rent ia l equation concerned in terms of a ser ies 
in t and 1-t, where t s tands for s in 2 ½θ (Reiche and Rademacher 
1926, 1927, Kronig and Rabi 1927). The functions Θ then appeared 
as hypergeometric functions times some simple fac to r s . For the 
sake of d i s t i n c t n e s s we br ief ly indica te the connection between 
that notation and the one established in section 3.5. 

Let us first introduce the auxiliary parameters 

d = |m-m'|, s = |m+m'|, p = j - 1 d - 1 s. d = |m-m'|, s = |m+m'|, p = j - 2 d - 2 s. (3.64) 

Since Θjm,m' = Θjm,m', (3.40) and (3.42) essentially give four 
expressions for Θ. If we go over from j , m, m' to d, s, p in each 
of these expressions, one of the new equations will certainly 
read 
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Θj
m,m' (θ) = β j

m , m ' ( s i n 1 θ)-d(cos 1 θ)-s × Θj
m,m' (θ) = β j

m , m ' ( s i n 2 θ)-d(cos 2 θ)-s × 

× dP 
( s i n 1 θ ) 2 d + 2 p ( c o s 1 θ ) 2 s + 2 P , × 

d(s in 2 ½θ)P 
( s i n 2 

θ ) 2 d + 2 p ( c o s 
2 θ ) 2 s + 2 P , 

(3.65) 
βj

m,m' = 

[ 
(2 j+1)(d+s+p)! ]½exp[(max m , m ' ) π i ] . βj

m,m' = 

[ 2 p ! ( d + p ) ! ( s + p ) ! 
]½exp[(max m , m ' ) π i ] . 

Introducing the abbreviation 
t = s i n 2 1 θ t = s i n 2 

2 
θ (3.66) 

we therefore consider 

d P [ t d + P ( 1 - t ) s + P ] / d t P . (3.67) 

By the s e r i e s expansion of the hypergeometric function, we have 

( 1 - t ) s + P = F( - s -p ,c ;c ; t ) . (3.68) 

d [ t c - 1 F ( a , b ; c ; t ) ] / d t = (c-1) t c - 2 F ( a , b ; c - 1 ; t ) . (3.69) 

If put t ing b = c = d+p+1 and α = -s-p we now apply (3.69) p times 
in succession, i t i s found that 

d P [ t d + P ( 1 - t ) s + P ] / d t P = [(d+p)!/d!] tdF(-s-p,d+p+l;d+1;t) . (3.70) 

Hence since 

F ( a , b ; c ; t ) = (1- t ) c - a - b F ( c - a , c - b ; c ; t). (3.71) 

i t follows that 

Θ j
m ,m '(θ) = Y j

m , m ' ( s i n 1 θ ) d ( c o s 1 θ)s × Θ j
m ,m '(θ) = Y j

m , m ' ( s i n 2 θ ) d ( c o s 2 θ)s × 

× F( -p ,d+s+p+1; d+l; s i n 2 1 θ ) . × F( -p ,d+s+p+1; d+l; s i n 2 
2 θ ) . 

(3.72) 

Yj
m,m' = [ 

(2 j+1)(d+s+p)! (d+p)! ]½ 
1 exp[(max m,m' )π i ] , 

Yj
m,m' = [ 2p ! ( s+p ) ! 

]½ 

d! 
exp[(max m,m' )π i ] , 

which i s the des i r ed expression in terms of a hypergeometric 
series. The hypergeometric series in (3.72) is a Jacobi polynomial 
of degree p. The Jacobi polynomials have been extensively 
discussed by Szegö (1939), chap. IV. 

If we d i r e c t l y s u b s t i t u t e (3.70) in to (3.65) without using 
(3.71), we find the expression for Θ which i s obtained from the 
right-hand member of the f i r s t equation (3.72) by replacing 
|m + m'| by -|m + m' | , keeping both |m - m'| and j and the phase 
fac tor f ixed. However, s ince |m - m'| i s i n t e g r a l , and s ince 
F ( a , b ; c ; t ) has no meaning in case c i s a nega t ive i n t ege r or 
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zero, (3.72) has no analogue in which -|m - m'| i s subs t i t u t ed 
for |m - m ' | . This i s the reason why the abso lu te q u a n t i t i e s 
d, s, and p must be used in a notation in terms of hypergeometric 
functions. 

3.7. Addition of angular momenta 
For our analysis of rotat ions in Minkowski space we shal l have 

to know how in a formalism with Eulerian angles we may add two 
commuting three-dimensional angular momenta. Let us therefore 
consider, along with the se t of operators J ac t ing on angles ω, 
an analogous se t of operators I act ing on angles υ. Jus t as the 
operators J are assoc ia ted with opera tors J ' , the opera tors I 
will be associated with operators I'. In an obvious notation the 
relevant eigenfunctions will be denoted by Yj

m,m' (ω) and Υi
n,n' (υ), 

respectively. 
We can now construct simultaneous eigenfunctions of the operators 

(J + I)2, (J)2, (I)2, J3+I3, J'3, and I'3 characterized by 
the eigenvalues k(k+l), j(j+l), i(i+1), l, m', and n', respectively. 
As a matter of fact, since any primed operator commutes with 
any unprimed one, J and I may be added j u s t as i f no opera tors 
J ' and I ' were present. I t i s therefore readily shown by standard 
methods that the desired new functions must have the form 

Σ (j i m n | j i k l)Υj
m,m' (ω)Yi

n,n' (υ). (3.73) 
m,n 

(j i m n | j i k l)Υj
m,m' (ω)Yi

n,n' (υ). (3.73) 

where the coe f f i c i en t s are Clebsch-Gordan c o e f f i c i e n t s in the 
notation adopted by Condon and Shortley (1953), sec. 143. 

We now proceed to combine functions (3.73) with various eigenvalues 
m' and n' so as to obtain eigenfunctions of (J' +I')2 and 
J ' 3 + I ' 3 with eigenvalues k ' ( k ' + l) and l', r e spec t ive ly . I t i s 
pa r t i cu la r ly easy to add - J ' and - I ' by v i r t ue of the fact tha t 
these operators sat isfy the commutation re la t ions for an ordinary 
angular momentum, according to (2 .53) . Moreover, - ( J ' 1 ± i J ' 2 ) 
and - ( I ' 1 ± iI '2) have pos i t i ve matrix elements with respect to 
the functions Y, as shown by (3 .48) . I t therefore follows from 
the well-known formulas for the addition of two ordinary angular 
momenta that the functions 

Σ (j i -m' -n' | j i k ' - l ' ) ( j i m n | j i k l) Yj
m,m' (ω)Yi

n,n' (υ) (3.74) 
m', n', m, n 

(j i -m' -n' | j i k ' - l ' ) ( j i m n | j i k l) Yj
m,m' (ω)Yi

n,n' (υ) (3.74) 

are eigenfunctions of ( J + I ) 2 , ( J ' + I')2, ( J ) 2 , ( I ) 2 , J 3 + I3, and 
J'3 + I ' 3 with eigenvalues k(k + l ) , k ' ( k ' + l), j(j + 1), i ( i + 1 ) , l, 
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and l', respectively. It will be observed from (3.74) that primed 
and unprimed operators may be added quite independently. 

In (3.74) both k and k ' may take on the values j + i , j + i - 1 , . . . 
| j - i | . Whereas ( J ) 2 = ( J ' ) 2 and ( I ) 2 = (I')2, we need not have 
( J + I ) 2 = ( J ' + I ' ) 2 , hence k and k ' need not be equal. This is 
essentially due to the fact that considered as pseudovectors J'k 
and I'k are rotated with respect to one another under variations 
of the Eulerian angles. Whereas J k and I k are strictly parallel, 
pointing in the direction of the xk-axis fixed in space, the 
orientations of J'k and I ' k are described by the angles ω and v, 
respectively, which vary independently. As a result it is not 
possible to interpret J'k + I'k as the component of J + I along 
some moving axis x ' k , and there is no reason why (J'+ I ' ) 2 should 
be equal to (J + I ) 2 . 

3.8. The family-index m' 
Collecting some of the results of section 3.5, we see that 

the functions Yjm,m' with fixed j and m', m taking on the values 
- j , - j + 1 , . . . , j, constitute a family which under the rotations J 
transforms just as the family of spinors Uj

m transforms under 
the rotations P . Any integral or half-integral j leads to 2j + 1 
distinct families, which are labelled by the index m', m' = 
-j, -j+1,...,j. 

Since i t i s a known fact that an orb i ta l angular momentum can 
be described in terms of surface harmonics, it follows from section 
3.61 that we have to restrict ourselves to families of zero 
m', and hence in t eg ra l j , when considering o r b i t a l motions. By 
con t r a s t , the s i t u a t i o n becomes much more complicated once we 
i n t e r p r e t φ, θ, and ψ as angles in spin space, and accordingly 
represent the spin by the d i f ferent ia l operators J . 

In the l a t t e r case, the family of spinors Uj
m (m = - j , - j + 1, 

. . . , j) with a p a r t i c u l a r j can be replaced by any of the 2j+1 
families of functions Yj

m,m' with that same j . We have no physical 
c r i t e r ion now which further del imits m'. The case m' = 0 i s certainly 
not preferred, since it is not even allowed for half-integral 
spins. 

Expressing q u a n t i t i e s in spin space in terms of Eulerian 
angles, we can thus wri te down 2j + l d i s t i n c t wave functions 
analogous to (3.01), viz. the functions 

Ψj
m'(Χ,ω) = 

j 
Φm(Χ)Υj

m,m' (ω). Ψj
m'(Χ,ω) = Σ Φm(Χ)Υj

m,m' (ω). Ψj
m'(Χ,ω) = 

m=-j 
Φm(Χ)Υj

m,m' (ω). (3.75) 
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Since in a three-dimensional theory each of these functions can 
be used for the desc r ip t ion of a p a r t i c l e of spin j , we would 
suggest for the p resen t tha t there might e x i s t 2j+1 d i f f e r e n t 
kinds of p a r t i c l e s of spin j which are d is t inguished from each 
other by the family-index m'. According to this idea, the ordinary 
spin, represented by J, would always go together with an 
additional spin, represented by J ' . I t will be shown in the 
following chapters how t h i s can be brought in to l ine with the 
requirement of Lorentz invariance. 

At t h i s s tage the new spin, J ' , i s r e l a t e d to the ordinary 
spin, J, by the equation ( J ' ) 2 = ( J ) 2 . Now one might say from 
the preceding sect ion tha t t h i s r e s t r i c t i o n could be relaxed by 
combining severa l "elementary" p a r t i c l e s to form a "compound" 
one. Accordingly our formalism with Eulerian angles would suggest 
an i n t e r e s t i n g di f ference between "elementary" and "compound" 
p a r t i c l e s . However, t h i s apparent d i f ference i s not phys ica l ly 
s ign i f ican t since in a r e l a t i v i s t i c theory the ordinary spin and 
the new one need not be equal anyway. 



IV 

THE LORENTZ GROUP 

4 . 1 . Represen ta t ions of the proper Lorentz group 
According to the theory of specia l r e l a t i v i t y , any physical 

equation must be i n v a r i a n t under s p a t i a l r o t a t i o n s as well as 
under the transformations 

j = xj, 

k = xk, 
(j,k,l = 1,2,3 c y c l . ) . (4.01) 

l = (xl - βc t ) (1 - β2)-½, 

c = (-βxl + ct) (1 - β 2 ) - ½ , 

which must be used for descr ibing uniform t r a n s l a t i o n a l motions 
of velocity βc. The spa t i a l ro ta t ions and the transformations of 
the form (4.01) together form a group, which i s cal led the proper 
Lorentz group. Putting 

β(1 - β2)-½ = sinhv, (1 - β2) -½ = coshv, (4.02) 

we shal l find i t convenient to wri te the th i rd and fourth l i ne s 
of (4.01) in the form 

l = xlcoshv - ctsinhv. 
(4.03) 

c = -x l s inhv + ctcoshv. 

After Minkowski we now consider xk and x0 = c t as coordinates 
in a pseudo-Euclidean space of four dimensions. For the covariant 
components of the metric tensor associated with x we shall use 
the notation guv ( u , v = 1,2,3,0), where 

gkk = 1, g00 = -1, guv = 0 (u ≠ v). (4·04) 
Clearly the quadra t ic form g u v x u x v i s now i n v a r i a n t under the 
transformations of the proper Lorentz group. Further , denoting 
r o t a t i o n ope ra to r s by P, we see from (2.25) t ha t the Lorentz 
transformation (4.03) may be i n t e r p r e t e d as the space-time 
ro ta t ion in Minkowski space which i s described by the operator 
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exp(ivΡk0). Accordingly the proper Lorentz group is identical 
with the group of rotations in Minkowski space. 

For the construction of relativistic wave equations one will 
certainly need families of quantities which transform linearly 
among themselves under rotations in Minkowski space. In the 
framework of the spinor theory such quantities have already been 
discussed by van der Waerden (1932), sec. 20, and we briefly 
review his results here. 

On introducing the operators P+ and P- defined by 

Pj
+ = 

1 ( p k l + iPj0), 
Pj

+ = 2 
( p k l + iPj0), 

Pj
- = 1 (Pkl - iP j 0 ) , Pj
- = 2 (Pkl - iP j 0 ) , 

(j,k,l = 1,2,3 cycl.), (4.05) 

we see from the commutation relations (2.18) that Ρ+ and Ρ- 
satisfy the equations 

[Pj
+,Pk

+] = iPl
+, 

( j , k , l = 1,2,3 cycl.). (4.06) 
[Pj

-,Pk
-] = iPl

-, 
It follows at the same time that any P+ commutes with any P-. 
Since according to (4.06) both P+ and P- satisfy the commutation 
relations for an angular momentum in three dimensions, and since 
P+ commutes with P-, there exist simultaneous eigenvectors of 
(P+)2, P3+, (P-)2, and P3- with eigenvalues j+(j+ + l), m+, j-(j- + l), 
and m-, respectively, in such a way that 

j+ = 0, 1 , 1, 3 
,... j+ = 0, 2 , 1, 2 ,... m+ = -j+, -j++1,..., j+, (4.07) 

j- = 0, 1 , 1, 3 ,..., j- = 0, 2 , 1, 2 ,..., m- = -j-, -j- + l,...,j-. 

By suitable normalization these eigenvectors, say Uj+j-
m+m-, can be 

made to transform according to 
PUj+j-

m+m- = Σ <n+n-|P|m+m->Uj+j-
n+n-, PUj+j-

m+m- = 
n+,n-

<n+n-|P|m+m->Uj+j-
n+n-, (4.08) 

where the non-vanishing coeff icients have the form 

<m+m-|P3
+|m+m-> = m+, 

<m+±l m-|P1
+±iP2

+|m+m-> = [ ( j + m + ) (j+±m++1)]½, 
(4.09) 

<m+m- |P3-|m+m-> = m-, 
<m+ m-±1|P1-±iP2-|m+m-> = [(j-m-) (j-±m-+l)]½. 
The representation of the P's which is implicit in (4.09) is 
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usually referred to as D ( j + , j - ) . I t i s not d i f f i c u l t to see that 
x1 + ix2; -x 3 + x0; - x 3 - x0; -x 1 + ix2 transform as the spinors 
U½

m+
½

m- having m+,m- = ½,½; ½,-½; -½,½; -½,-½. 
In a matrix representat ion according to (4.09), the operators 

P+ and P- are Hermitian, which implies tha t the operators P k 0 are 
represented by ant i -Hermit ian matr ices . At the same time, the 
matrices in question have a f i n i t e number, viz. (2 j + + 1) ( 2 j - + l ) , 
of rows and columns. I t follows from a comparison with the theory 
of rotat ions in three dimensions that the representat ions D ( j + , j - ) 
are the only ones which picture P+ and P- as Hermitian operators. 
Further, i t i s not d i f f i c u l t to prove tha t a l l r epresen ta t ions 
of the proper Lorentz group other than D(j+,j-) are infinite-dimensional. 
The reader is referred to Corson (1953), sec. 17(b), 
for a discussion of this point. Since all wave equations established 
thus far, particularly the equations for spins 0, ½, and 
1, derive from representations D(j+,j-), we shall restrict ourselves 
to such ones. 

4 .2 . Eu le r ian angles 
In the s p i r i t of section 2.2 we now introduce two systems of 

rec tangular coordinate axes in Minkowski space, x and x', the 
mutual o r i e n t a t i o n of which i s described through s ix Eulerian 
angles. I t wil l be p a r t i c u l a r l y workable to choose the Eulerian 
angles in such a way that the coordinates x and x' are re la ted to 
one another according to 

x' = exp(-i φ 2 Ρ 0 3 )exp( - iφ 1 P 1 2 )exp(- i θ 2 Ρ 0 2 ) × 

× exp(-i θ1 Ρ 3 1 )exp(- iψ 2 Ρ 0 3 )exp(- iψ 1 Ρ1 2)x ≡ Λx. (4.10) 

It is readily seen from (2.25) that (4.10) is equivalent to 
x'u = Λv

u. (4.11) 
where the coefficients Λu

v have the form given in table 4 . 1 . 

The sixteen transformation coefficients Λu
v will be real 

provided 
φ

1, φ
2 + p1

πi, θ1, θ2 + Ρ 2
π i , ψ1, ψ2 + p3πi 

(p 1 , p 2 , p 3 = 0 ,±1 ,±2 , . . . ) (4.12) 

are all real. Further, the combination 
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Table 4. 1 
The coefficients Λv

u 

u ν = 1 

1 cos φ1 cosθ1 cosΨ1 - s i n φ 1 coshθ 2 s i n Ψ 1 

2 - cos φ1 cosθ1 s i n Ψ 1 - s i n φ 1 coshθ2 cosΨ1 

3 cosφ1 s i n θ 1 coshΨ2 - sinφ1 s i n h θ 2 sinhΨ2 

0 - cosφ1 s i n θ 1 sinhΨ2 + s i n φ 1 s i n h θ 2 coshΨ2 

u v = 2 

1 sinφ1 cosθ 1 cosΨ1 + cosφ 1 coshθ 2 s i n Ψ 1 

2 - s i n φ 1 cosθ 1 s i n Ψ 1 + cos φ1 coshθ 2 cosΨ1 

3 s i n φ 1 s i n θ 1 coshΨ2 + cosφ 1 s i n h θ 2 sinhΨ2 

0 - s i n φ 1 s i n θ 1 s i n h Ψ 2 - cosφ 1 s i n h θ 2 coshΨ2 

u υ = 3 

1 - coshφ2 s i n θ 1 cosΨ1 + s inhφ 2 s i n h θ 2 s i n Ψ 1 

2 coshφ 2 s i n θ 1 s i n Ψ 1 + s i n h φ 2 s i n h θ 2 cosΨ1 

3 coshφ 2 cosθ1 coshΨ2 + s i n h φ 2 coshθ 2 sinhΨ2 

0 - coshφ2 cosθ 1 s i n h Ψ 2 - s i n h φ 2 coshθ 2 coshΨ2 

u v = 0 

1 s i n h φ 2 s i n θ 1 cosΨ1 - coshφ2 s i n h θ 2 s i n Ψ 1 

2 - s i n h φ 2 s i n θ 1 s i n Ψ 1 - coshφ2 s i n h θ 2 cosΨ1 

3 - s i nhφ 2 cosθ1 coshΨ2 - coshφ2 coshθ2 sinhΨ2 

0 s i n h φ 2 cosθ1 s inhΨ 2 + coshφ 2 coshθ 2 coshΨ2 

φ1, φ2, θ1, θ2, ψ1, ψ2 (4 .13) 

yields the same scheme of coefficients as any of the combinations 

φ1 + 2qlπ, φ2 + 2q2πi, θ1 + 2q3π, θ2 + 2q4πi, Ψ1 + 2q5π, Ψ2 + 2q6πi 

(q r = 0 , ± 1 , ± 2 , . . . ) ; 

φ1 + π, φ 2 + πi, θ 1 , · θ 2 , ψ1 + π, ψ2 + π i ; (4 .14) 

φ1 + π, φ 2 + π i , θ1 + π, θ 2 + π i , ψ1, Ψ2; 

φ1 + π, φ 2 , - θ 1 , - θ 2 , ψ1 + π, ψ2· 
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Any real orientation of the moving axes x' can therefore be expressed 
in terms of six angles that satisfy the relations 

0 φ1 < 2π, 0 θ1 π, 0 ψ1 < 2π, 
(4.15) 

-∞ < φ 2 < ∞, -∞ < R 1 θ 2 < ∞, Ι m θ 2 = 0 , π , -∞ < ψ 2 < ∞. 

I t wi l l be observed from tab le 4. 1 tha t i f the Eulerian angles 
satisfy (4.15). the coefficient Λ0

0 is positive or negative according 
as Ιmθ2 = 0 or Ιmθ2 = π. 

I t wi l l be convenient for our fur ther work to introduce the 
six a l te rna t ive angles 

φ± = φ ι ± iφ2, θ± = θ1 ± iθ2 , ψ± = ψ1 ± iψ2. (4.16) 

I t i s r e a d i l y seen from (4.05) toge ther with the commutation 
r e l a t i ons for the operators Ρ that in terms of these new angles 
the re la t ion (4.10) may be wri t ten in the form 

x' = e x p ( - i φ - P3
-)exp(-iθ- Ρ2

-)exp(-iψ - P3
-) × 

× exp(- iφ+P 3
+)exp(- iθ+ P2

+)exp(-iΨ+P3
+)x = Λ-Λ+x, (4.17) 

the operators Λ+ and Λ- being given by 

Λ± = exp(- iφ ± Ρ 3
± )exp(- iθ ± Ρ 2

± )exp(- iψ ± Ρ 3
± ) . (4.18) 

4.3. The rotation operators J and J ' 
We now proceed to construct the six differential operators J u v 

which generate rotations of the x'-system in the xu,xv-planes. 
Stated more precisely, we shall derive expressions for the operators 

Jj
+ = 1 (Jk l + i J j 0 ) , Jj
+ = 2 (Jk l + i J j 0 ) , 

Jj
-

1 (Jk l - i J j 0 ) . Jj
- 2 (Jk l - i J j 0 ) . 

( j , k , l = 1,2,3 cycl.). (4.19) 

We shall also encounter operators J'uv, or, equivalently, operators 
defined by 

J'j+ = 1 ( J ' k l + i J ' j 0 ) , J'j+ = 2 ( J ' k l + i J ' j 0 ) , 

J'
j
- = 1 ( j ' k l - iJ'j0), J'

j
- = 2 

( j ' k l - iJ'j0), 
( j , k , l = 1,2,3 cycl.). (4.20) 

The general properties of the operators J and J' have been extensively 
discussed in chapter II. According to the results of 
section 2.5. any primed operator commutes with any unprimed one. 
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Further, both J+ and J- sa t i s fy the commutation re la t ions for an 
angular momentum in three dimensions, j u s t as P+ and P - . By the 
same token, J ' + and J'- formally behave as the three-dimensional 
operators J ' . The operators J+ commute with the operators J - , and 
the operators J'+ commute with the operators J ' - . 

Let us now compare the t ransformat ion formula (4.17) with 
(3 .03) , and l e t us r e t r a c e the procedure by which express ions 
for the three-dimensional operators Jk and J ' k have been derived. 
We may summarize the argument of sec t ions 3.3 and 3.4 by saying 
that the formulas (3.26) and (3.27) for J k and J ' k , respectively, 
e s s e n t i a l l y follow from (3.03) by d i f f e r e n t i a t i o n and proper 
appl ica t ion of the commutation r e l a t i o n s for the opera tors P k . 
Now both P+

k and P-
k behave j u s t as the three-dimensional operator 

P k . Hence in (4.17) both Λ+ and Λ- may be formally compared with 
the operator Λ in (3 .03) . Further , as any operator P+ commutes 
with any operator Ρ-, Λ- will in no way interfere with the construction 
of operators J+ and J'+. By the same token, Λ+ will 
not i n t e r f e r e with J- and J ' - . We need therefore only copy the 
reasoning of sections 3.3 and 3.4 to see that J+

k, J-
k and J'k+, J ' k

- 

may be derived from Jk and J ' k , respectively, by merely supplying 
the Eulerian angles with indices + or - , as the case may be. In 
the nota t ion of sec t ion 3.4 t h i s r e s u l t may be w r i t t e n in the 
form 

Jk
+ = Jk(φ+,·θ+,ψ+), J ' k

+ = J ' k (φ + , θ + ,Ψ + ) . 
(4.21) 

J-
k = J k (φ - , θ - ,ψ - ) , J'k- = J ' k ( φ - , θ - , ψ - ) . 

As we have noted in (2.46), Jand J ' are related to one another 
according to 

J u v J u v = J ' v w J ' v w . (4.22) 

It follows from (4.21) that we also have 
(J+)2 = (J'+)2, (J-)2 = (J'-)2. (4.23) 

4.4. Rota t ion e igenfunct ions 
By v i r tue of the formal correspondence between operators with 

ind ices + and - and three-dimensional angular momenta, i t i s 
quite easy to obtain functions of the Eulerian angles which 
under the ro ta t ions J transform according to the representa t ion 
D ( j + , j - ) . If we pa r t i cu l a r ly choose such functions to be eigen-
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functions of J'3+ and J'3-, then it follows from what was said in 
section 3.5 that they must be proportional to 

Yj+
m+,m'+ (φ+,θ+,ψ+)Yj-m-,m'- (φ-,θ-.ψ-). (4.24) 

where j+, m+, j - , m- satisfy (4.07) while m ' + and m'- may take on 
the values 

m'+ = - j + , - j + + 1 , . . . , j + , 
(4.25) 

m'- = - j - , - j - + 1 , . . . , j - . 

The functions (4.24), Y(+)Y(-) in an abbreviated notation, are 
simultaneous eigenfunctions of (J +) 2, J3+, J'3+, ( J - ) 2 . J3

- , and J'3-
with eigenvalues j+ (j+ +l). m+, m'+, j-(j-+ l), m-, and m'-, respectively. 
They may be compared with the spinors discussed in 
section 4.1 in that the functions with fixed j+, m'+, j - , and m'-
constitute a family which transforms just as the family of spinors 
with fixed j + and j - . 

If j+ + j- is half-integral, the functions Y(+)Y(-) are two-valued 
in the sense that they change sign when one of the angles 
φ1, θ1, Ψ1 is increased by 2π, or one of the angles φ2, θ2, ψ2 by  
2πi. It is not difficult to see from (3.62) and (4.16) that they 
also change sign when the angles φ1, φ2, θl,θ2, ψ1, ψ2 are replaced 
by a combination such as φ1 + π, φ2, -θ1, -θ2, ψ1 + π, ψ2. 
The orientation of the moving axes x' is invariant under any of 
these substitutions. 

It will be observed from section 3.5 and the subsequent discussion 
on supplementary conditions given in section 3.63, that 
the functions Y(+)Y(-) are uniquely determined by the requirement 
that they shall transform as the spinors U discussed in section 
4.1. Now Y(+)Y(-) contains, among others, a factor exp(m--m+)φ2. 
Since m+ and m- take on the values (4.07), this factor is not 
bounded when φ 2 tends to infinity. Yet we must certainly take 
m- - m+ to be real and, in general, different from zero to find 
functions which transform according to D ( j + , j - ) . It follows from 
section 3.5 that for our functions to transform as spinors m'+ 

and m'- must also be real, which means, then, that the factor 
exp(m'- -m'+)ψ2 is not bounded when ψ2 tends to infinity. It will 
be inferred from (3.72) that if the second-order differential 
equation for Θ is expressed in terms of t = sin2½θ, it is a 
hypergeometric equation with singularities at t = 0, at t = 1, 
and at the point at infinity. Clearly this equation does not 
permit of solutions which are bounded everywhere. It is again our 
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supplementary condition - transformation according to D ( j + , j - ) 
which implicitly determines that the desired functions shall not 
be bounded when θ2 tends to infinity. In case φ2, θ2, or ψ2 tend 
to infinity the system x ' performs a uniform motion with respect 
to the system x, the velocity of which tends to the velocity of 
light. 

In order that our formalism may be physically useful, we must 
give a prescription for constructing scalar products of functions 
Y(+)Y(-). Now we are used to computing scalar products of functions 
in ordinary space by integration, and it is well known 
that in the spinor theory we have 

(Uj+j-m+m-, Ui+i-
n+n-) = δj+i+ δm+n+ δj-i- δm-n- (4.26) 

However, the Eulerian angles will be interpreted as spin variables, 
and we have no physical principle as yet which tells how 
to obtain scalar products of functions in spin space. It might 
seem attractive to consider integrations in spin space too, but 
since the functions Y(+)Y( - ) are not quadratically integrable 
over the whole domain of values of Eulerian angles that correspond 
to real Lorentz transformations, this is not a very workable 
idea. At present the best thing to do is to choose the most 
reasonable analogue of (4.26) in the hope that this may lead to a 
useful formalism. Accordingly we propose the definition 

(vYj+m+,m'+ (+)Yj-m-,m'- (-),vYi+n+,n'+ (+)Y i -
n ' , n ' - (-)) = 

=δj+i+δm+n+δm'+n'+δj-i-δm-n-δm'-n'-, (4.27) 

where v is a normalization constant which will drop out, however, 
in the applications to be discussed in chapter V. It will be 
shown in section 5.1 that if we adopt the definition (4.27), all 
results on expectation values derived from the spinor theory 
can be taken over into a formalism with Eulerian angles. In the 
present state of our experimental and theoretical knowledge we 
see therefore no objection against our using spin functions which 
are not quadratically integrable. It should be emphasized that 
if instead of the functions Y(+)Y(-) we had chosen some other set 
of functions of the Eulerian angles, the latter functions would 
not transform according to representations D ( j + , j - ) . They could 
therefore not be used to describe spinning particles in a satisfactory 
way. 

As stated previously, the functions Y(+)Y(-) are eigenfunctions 
of the operators J'3+ and J'3- with eigenvalues m'+ and m'-, 
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respectively. We may also combine functions Y(+)Y(-) with various 
m'+ and m'- to form eigenfunctions of ( J ' + + J ' - ) 2 and J'3+ + J'3-. 
Although J ' +

j + J ' j
- i s nothing but J ' k l ( j , k , l = 1,2,3 c y c l . ) , we 

shall henceforth denote th i s operator by S'j for convenience, 

S'j = J' j+ + J'j- = J ' k l ( j , k , l = 1,2,3 cyc l . ) . (4.28) 

It is readily shown by the reasoning of section 3.7 that the 
functions 
Zj+j-,s'

m+m-,m'(+,-) = 

= Σ v(j+j--m'+-m'- | j+j-s'-m')Yj+
m+,m'+(+)Yj-

m-,m'-(-) 
m ' + , m ' -

v(j+j--m'+-m'- | j+j-s'-m')Yj+
m+,m'+(+)Yj-

m-,m'-(-) 

( s ' = j + + j - , j + + j - - 1 , . . . , | j + - j - | ) ( 4 . 2 9 ) 

are eigenfunctions of ( J + ) 2 . J3
+, ( J - ) 2 , J3

-, ( S ' ) 2 , and S'3 with 
eigenvalues j+ (j+ + l), m+,j-(j- + l), m-, s'(s' + l), and m', respectively. 
It follows from the properties of the Clebsch-Gordan 
coeff ic ients that the functions Z(+,-) are orthonormal once for 
the sca lar product of the functions Y(+)Y(-) the def in i t ion 
(4.27) has been adopted. For future reference we note that 

(S'1 ± iS'2)Zj+j-,s'
m+m-,m'(+,-) = 

= - [ ( s ' ± m ' ) ( s ' m' + 1)]½Ζj+j-,s'
m+m-,m'1 (+ , - ) . (4.30) 

Equation (4.30) may be eas i ly verif ied from (3.48) combined with 
the recurrence formula for the Clebsch-Gordan coeff ic ients given 
by Condon and Shortley (1953), eq. 1433. 

4.5. Surface harmonics in Minkowski space 
We have seen in chapter III that any one- or two-valued representation 

of the group of rotations in three dimensions is 
associated with families of functions Y depending on three Eulerian 
angles. Surface harmonics on the other hand, which may be 
writ ten as functions of x k / ( x l x l ) ½ , a l l transform according to 
one-valued representations. In Minkowski space a similar distinction 
exists between functions of Eulerian angles and functions 
of xu . We shal l br ief ly discuss th i s in the following, functions 
of x u / ( | x v x v | ) ½ which transform according to r e p r e s e n t a t i o n s 
D ( j + , j - ) being r e fe r r ed to as surface harmonics in Minkowski 
space. 
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Since for the present we are not working with Eulerian angles, 
we shall denote rotation operators by P , rather than by J . Further 
we shall imagine Puv to be represented by a differential operator 
according to (2.20). From (2.20) it follows that 

(p23p10 + p31p20 + p12p30)f(x) = 0.(4.31) 
Now the operator in the left-hand member of (4.31) is proportional 
to (P+)2 - (P-)2. Hence if f(x) is an eigenfunction of (P+)2 

and (P -) 2 with eigenvalues j + ( j + + l ) and j - ( j - + 1 ) , respectively, 
(j+,j- 0), it must have j+ = j - . Surface harmonics in Minkowski 
space therefore all transform according to representations 
D ( j , j ) . 

Conversely, for any representation D ( j , j ) there exists a 
family of surface harmonics. To show this it is convenient to use 
the auxiliary variables 
y++ = ( x 1 + i x 2 ) / r , y+- = (-x3 + x0)/r, 

(r = |xuxu|½ ≠ 0). (4.32) 

y-+ = (-x3 - x0), y-- = (-x1 + ix2)/r, 
Since the quantities y++; y + - ; y - + ; y-- transform as the spinors 
U½

m+
½

m- having m+,m- = ½, ½; ½,-½; -½,½; -½,-½. it is readily seen 
that the function -αj·(y++)2j. (2j = 0,1,2,...), is an eigenfunction 
of (P+)2, P3+, (P-)2, and P3- with eigenvalues j (j + l), j, 
j ( j + l ) , and j , respectively, it being understood that αj is a 
normalization constant. If we now denote the surface harmonic 
which transforms as the spinor Uj+m+j-m- by Uj+m+j-m-(y), it follows from 
section 4.1 that the operator 

[ (j+m+)! ]½ (P1
+ - iP2

+) j -m+ [ 
( 2 j ) ! ( j - m + ) ! 

]½ (P1
+ - iP2

+) j -m+ (4.33) 

carries U j j
j j .(y) into U j

m +
j
j(y), so that 

Uj
m+

j
j(y) = αj[ ( 2 j ) ! ]½(y++)j+m-(y-+)j-m+. Uj

m+
j
j(y) = αj[ 

(j+m+)!(j-m+)! 
]½(y++)j+m-(y-+)j-m+. (4.34) 

On applying the operator 
[ ( j+m - ) ! ]½(P1

- - iP2
-) j -m-[ 

(2j)! ( j-m -)! 
]½(P1

- - iP2
-) j -m- (4.35) 

to Uj
m+

j
j(y) we find that 

Uj
m+

j
m- (y) = αj Σ [ [(j+m+)! (j-m+)! (j+m-)! (j-m-)!]½ 

× Uj
m+

j
m- (y) = αj Σ [ 

q ! ( j - m + - q ) ! ( j - m - - q ) ! ( m + + m - + q ) ! 
× Uj

m+
j
m- (y) = αj 

q 

[ 
q ! ( j - m + - q ) ! ( j - m - - q ) ! ( m + + m - + q ) ! 

× 

× (y + +) m + + m - + q(y + -) j - m - - q(y - +) j - m + - q(y - -) q]. (4.36) 
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where the summation is to be extended over all integers q consistent 
with the factorial notation. 

From the fact that surface harmonics in Minkowski space must 
all have j+ = j- we may conclude that the representations D ( j , j ) 
are the only ones that admit of eigenvectors expressible in terms 
of three spherical angles. A representation such as D(j+,0) is 
also associated with functions of three angles, but apparently 
these cannot be interpreted as spherical angles in Minkowski 
space. 

In a formalism with Eulerian angles the operators J transform 
the coefficients Λuv just as the operators Ρ transform xv, according 
to (2.14) and (2.40). Hence if in (4.32) we substitute 
Λuv for xv, the corresponding expression (4.36) yields polynomials 
in Λuv (v = 1,2,3,0) which transform as surface harmonics. 
Since the operators J ' transform Λuv just as - P ' transforms x ' u , 
by (2.22) and (2.51), the polynomials in question are annihilated 
by any operator J ' t having t ≠ u and w ≠ u. If we particularly 
choose six Eulerian angles in such a way that for a certain u the 
four quantities Λuv (v = 1,2,3,0) depend on three angles only, 
then these angles may be interpreted as spherical angles of a 
point on the x'u-axis, and the polynomials considered above are 
the surface harmonics appropriate to the rotational motion of 
such a point. A similar situation is realized in chapter III, 
where the direction cosines Λ3k (k = 1,2,3) depend on two spherical 
angles, the corresponding surface harmonics being annihilated 
by the operator J'3 = J'12. However, we have not been able to 
find a set of six angles in Minkowski space which makes four 
coefficients Λ u ν depend on three angles and, at the same time, 
yields a workable expression for the operator J v w J v w . As a matter 
of fact, for several seemingly simple systems of Eulerian angles 
this operator cannot be separated in the six variables. 

4.6. The spatial reflection 
We now proceed to discuss the spatial reflection, which is 

represented by a unitary operator, say Q, satisfying 
Qxk = -xk, Qx0 = x 0 , 

(4.37) 
Qf(x) = f(Qx), 

Qp k l Q - 1 = p k l , Qpk0Q-1 = - p k 0 . (4.38) 

The spa t i a l r e f l ec t ion and the ro ta t ions in Minkowski space to-
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gether form a group, which i s ca l led the full Lorentz group. I t 
i s assumed tha t physical equations must be invar iant under every 
transformation of this group. 
Equation (4.38) implies that 

QPk
+Q-1 = Pk

-. 
(4.39) 

QPk
-Q-1 = pk

+. 
from which i t i s readily seen that spinors must cer ta in ly sa t i s fy 

QUj+
m+

j-
m- = <m-m+|Q|m+m-> Uj-

m-
j+

m+. (4.40) 

In order to del imit the coef f ic ien ts in (4.40) we now apply the 
operators Q(P1

+ ± iP2
+) and (P1

- ± iP2
-)Q to Uj+

m+
j-

m-. Equating coefficients 
we find that 

<m- m+±l|Q|m+±l m-> = <m-m+|Q|m+m->. (4.41) 

I t may be likewise shown that 

<m-±l m+|Q|m+ m-±l> = <m-m+ |Q|m+m->. (4.42) 

I t follows from (4.41) and (4.42) tha t in any representa t ion of 
the ful l Lorentz group the s p a t i a l r e f l e c t i on couples r o t a t i on 
eigenvectors according to 

QUj+
m+

j-
m- = αUj-

m-
j+

m+, QUj-
m-

j+
m+ = bUj+

m+
j-

m-(j+ ≠ j-). 
(4.43) 

QUj
m+

j
m- = cUj

m-
j
m+, 

where the parameters a, b, and c are independent of m+ and m-. 
Since Q i s to be unitary, we must have a*a = b*b = 1 and 

c*c = 1. Further , i f we want the s p a t i a l r e f l e c t i on to be one-valued 
in the sense that QQ = 1, a and b must be related according 
to ab = 1, whereas c is restricted to the values 1 and -1. 
In case j+ + j- is half-integral one also allows two-valued representations 
of the spatial reflection, which are characterized 
by ab = - 1 . 
It will be clear from the foregoing discussion that the spinors 

Uj+
m+

j-
m- and Uj-

m-
j+

m+ must appear together in a basis for the full 
Lorentz group. Hence i f j+ ≠ j - , an i rreducible representation of 
the full group is of 2(2j++1)(2j -+1) dimensions. With respect to 
proper rotat ions i t reduces to the di rect sum D ( j + , j - ) D ( j - , j + ) . 
Since the sp inors with j+ = j- = j a re c a r r i e d over i n to one 
another under r o t a t i o n s as well as under s p a t i a l r e f l e c t i o n , 



57 IV, 4.7 

we can also construct representa t ions of the ful l Lorentz group 
which simply derive from D ( j , j ) . The l a t t e r representa t ions are 
of (2j+1)2 dimensions. In the following we sha l l loosely denote 
representat ions of the ful l Lorentz group by D ( j + , j - ) D ( j - , j + ) 
or D ( j , j ) , as the case may be. 

4 . 7 . Spa t i a l r e f l e c t i o n and Euler ian angles 
Since moving axes x ' and Eulerian angles in Minkowski space 

have not been used previous ly , we do not know as yet how they 
will behave under spatial reflection. Hence in order to incorporate 
the spatial reflection in our formalism, we shall have to 
extend our notion of the opera tor Q so t ha t i t may be appl ied 
to q u a n t i t i e s depending on the angles, and to functions of x ' . 
As in the previous sec t ions , our c r i t e r i o n wil l be that the new 
formalism sha l l be as closely analogous to the spinor theory as 
possible. 

To s t a r t with, we note tha t the r e f l ec t ion invariance of the 
spinor theory is due, among others, to the fact that wave functions 
are composed of spinors which transform among themselves 
under s p a t i a l r e f l e c t i o n . Hence i f a formalism with Euler ian 
angles makes sense indeed, and i f such a formalism can be made 
ref lect ion invar iant in the same simple way as the spinor theory, 
then the spatial reflection must turn a function which corresponds 
to a spinor into a similar function of certain reflected 
Eulerian angles which again corresponds to a sp inor . In o the r 
words, in order to find a useful re f lec t ion- invar ian t theory with 
Eulerian angles we shal l have to assume that ref lected quan t i t i e s 
Qx' and Qω may be introduced in such a way that for any reasonable 
function f(ω) we have 

Qf(ω) = f(Qω), (4.44) 

where the Qω's are Eulerian angles which describe the or ienta t ion 
of the axes Qx' with respect to the axes Qx, 

Qx'u = Λu
v(Qω)Qxv. (4.45) 

I t i s understood here that x s a t i s f i e s (4.37) both as an independent 
variable and as a function of x' and ω. 
Let us now write 

J(ω)f(ω) = g (ω), (4.46) 

where J(ω) i s a ro ta t ion operator as constructed in section 4 .3 , 
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while f(ω) is any di f ferent iable function of the Eulerian angles. 
According to (4.44) we then have 

QJ(ω)Q-1f(Qω) = QJ(ω)f(ω) = g(Qω), (4.47) 

and so the operators J and Q satisfy 
QJ(ω)Q-1 = J(Qω). (4.48) 

It may be likewise shown that we also have 
Q J ' ( ω ) Q - 1 = J'(Qω). (4.49) 

According to the foregoing formulas, the quantities Qx, Q x ' , 
Qω, and J (Qω) are related to one another in exactly the same way 
as the quantities x, x', ω, and J(ω); the operators J(Qω) are 
linear combinations of the operators / Q ω . It will be assumed in 
the following that from ω we may compute Q ω , and vice versa, in 
such a way that the operators J (ω) may also be written as linear 
combinations of operators /Qω. 

In order to get an idea as to a proper choice for the angles 
Qω, we observe from (2.29) that if x is considered as a function 
of x ' and ω - satisfying (4.37) - we have 

QJklQ-1Qxv = Jk lQxv , QJk0Q-1Qxv = -Jk0Qxv 

(k,l = 1,2,3; ν = 1,2,3,0). (4.50) 
If we now express the ope ra to r s Q J Q - 1 and J in terms of the 
angles Qω, and i f we consider Qx as a function of Qx' and Qω, 
then (4.50) i s a system of l inear d i f f e r en t i a l equations for the 
functions Λu

v (Qω)Qx'u (v = 1 ,2 ,3 ,0) . Since t h i s system must be 
sa t i s f i ed for any Qx' , i t may be shown by the methods developed 
in s e c t i o n 2 . 3 , equat ions ( 2 . 3 3 ) - ( 2 . 3 7 ) , t ha t the ope ra to r Q 
transforms J according to 

QJ k l Q - 1 = J k l , QJ k 0 Q - 1 = - J k 0 . (4.51) 

In view of (4.38) th i s i s a very sa t i s fac tory resu l t . 
The most obvious choice for Qω c o n s i s t e n t with (4.48) and 

(4.51) i s 

Qφ+ = φ- + 2n1π, Qθ+ = θ- + 2n2π. Q)ψ+ = ψ- + 2n3π, 

Qφ- = φ+ + 2n4π, Qθ- = θ+ + 2n5π, Q ψ- = ψ+ + 2n6π, 

(nr = 0 , ± 1 , ± 2 , . . . ) , (4.52) 

which en t a i l s , by (3.26), (3.27), and (4.21), that 



59 IV, 4.7 

QJ+
kQ - 1 = Jk

-, QJ'k+Q-1 = J'k-, 
(4.53) 

QJk
-Q-1 = Jk

+, QJ'k-Q-1 = J'k+, 
(4.53) 

in accordance with (4 .51) . I t i s r ead i ly seen from tab le 4 . 1 , 
with (4.16), that (4.52) leads to 

QΛkl = εΛkl, QΛk0 = - ε Λ k 0 , 
(ε = exp(πi Σ n r ) ) , (4.54) 

QΛ0l = -εΛ0l, QΛ00 = εΛ 0 0 . 
(ε = exp(πi 

r 
n r ) ) , (4.54) 

which implies that 

Qx'k = - ε x ' k , Qx'0 = ε x ' 0 . (4.55) 

It is to be noted that the angles Qω are not uniquely determined 
by the requirement (4.51). As a matter of fact, if we 
multiply Q, (4.52), by the rotation φ+, θ+, ψ+, φ-, θ-, ψ-→  
φ+ + π, -θ+, ψ+ + π, φ- + π, -θ-, ψ- + π, then we get an alternative 
transformation which not only satisfies (4.51), but even 
(4.53). However, since this transformation does not lead to any 
new result as compared with (4.52), we shall not discuss it 
separately. 

Since J commutes with any J', J is invariant under a rotation 
through α in a plane fixed in the x'-system, where it is understood 
that α does not depend on the Eulerian angles. As a result 
the product of Q times such a rotation satisfies (4.51). However, 
such a product is either not essentially different from Q, or it 
transforms the coefficients Λuv so intricately that it does not 
seem to be a proper choice for the spatial reflection. 

Conversely, according to (4.37) and (4.45) x ' u x ' u is invariant 
under spatial reflection. Hence if denotes a typical choice for 
the spatial-reflection operator, then the transformation x ' →x' 
can be expressed in terms of rotations and reflections. Furthermore, 
the transformation in question involves an odd number of 
reflections, for otherwise x could be transformed into x by the 
chain of rotations x → x ' →x' →x. From this it follows that 

x ' can be written as ΓQx ' , where Q x ' is given by (4.55). while Γ 
represents a rotation which transforms the four variables Q x ' u 

among themselves. In case Γ is a rotation through an integer 
times 2π, or a rotation which transforms Q x ' into - Q x ' , is not 
essentially different from Q. Further, if Γ is another type of 
rotation, it is either a rotation in the plane through the Qx'0-axis 
and the axis having direction cosines 1/√3, 1/√3, 1/√3, 0 
with respect to the Qx '-system, or it is not symmetrical in the 
three space-like coordinates Q x ' k . In the former case it makes 
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x'k depend on x'0, and in the latter case it yields an expression 
for x' which is not symmetrical in the three space-like 
coordinates . In ne i ther case seems to be a proper choice for 
the spatial-reflection operator. As regards the spatial reflection 
we shall therefore restrict ourselves to the operator Q 
introduced above. 

The operator Q transforms functions Y(+)Y(-) according to 

QY j+
m+,m '+(+)Y j -

m- ,m ' - (-) = εj+j- Yj+m+,m'+ (-)Yj-m-,m'- (+), 
(4.56) 

εj+j- = exp(2πi[j+ (n1+n2+n3)+j-(n4+n5+n6)]). 

Loosely speaking we may say that Q turns j + , m+, m'+, j - , m-, m'-
into j - , m - , m ' - , j + , m+, m ' + , in that order. 

Since Q commutes with the operators S' introduced in (4.28), 
it turns an eigenfunction of (S')2 and S ' 3 with eigenvalues 
s'(s'+l) and m' into an eigenfunction with the same s ' and m ' . 
As a matter of fact, we may write 
QZj+j-,s'

m+m-,m' (+,-) = 

= εj+j- Σ v(j+ j - - m ' + -m'- |j+ j - s ' - m ' ) Y j +
m + , m ' + (-)Y j -

m-, m'- ( + ) = εj+j-
m'+,m'-

v(j+ j - - m ' + -m'- |j+ j - s ' - m ' ) Y j +
m + , m ' + (-)Y j -

m-, m'- ( + ) 

(4.57) 
which by the re la t ion 

(j+j--m'+-m'-| j+ j -s ' -m') = 
= ( - 1 ) j + j - s ' ( j - J + - m ' - - m ' + | j- j + s ' - m ' ) (4.58) 

can be simplified to 

QZj+j-,s'
m+m-,m' (+,-) = ( - l ) j + + j - - s ' ε j + j - Z j - j + , s '

m - m + , m ' (+, - ) . (4.59) 

The r e l a t i o n (4.58) i s readi ly v e r i f i e d by consider ing Condon 
and Shor t ley 's (1953) equation 1435 for the Clebsch-Gordan coefficients, 
and substituting x = j + m - x' therein. The transformation 
(4.59) is quite analogous to the spatial reflection in the 
spinor theory. I t i s two-valued i f Σrnr i s odd while j + + j- i s 
ha l f - in tegra l , one-valued otherwise. 

I t was discussed in the preceding sec t ion tha t the (2j+1)2 

spinors U having fixed j+ = j- = j are c a r r i e d over in to one 
another under rota t ions as well as under spa t i a l re f lec t ion . The 
same holds t rue now for the (2j+1) 2 functions Z(+ , - ) of fixed 
s ' , m'; fixed j + = j- = j ; m+, m- = - j , -j+1,. . . , j . By contrast , 
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since Q does not turn m ' + , m ' - into i t se l f , i t does not apply to 
the functions Y(+)Y(-) having fixed m'+, m' -; fixed j+ = j- = j : 
m+, m- = - j , - j + 1 , . . . , j . Whereas Y(+)Y(-) and Z(+,- ) show the 
same behaviour under the rotat ions generated by operators J, only 
the functions Z(+,-) allow a description of the spatial reflection 
analogous to the spinor representation. When expressing wave 
functions in terms of Euler ian angles in spin space we s h a l l 
therefore replace spinors by functions Z ( + , - ) , r a the r than by 
functions Y(+)Y(-). As a r e s u l t we s h a l l have to consider the 
family-indices s ' and m' associa ted with the three-dimensional 
angular momentum S'. This poin t wi l l be discussed in the next 
chapter. 

I t has been mentioned above that for ha l f - in tegra l j + + j- the 
s p a t i a l r e f l e c t i o n in one- or two-valued according as Σrnr i s 
even or odd. Let us now denote the s p a t i a l - r e f l e c t i o n operators 
concerned by Qe and Q0, respectively. Omitting irrelevant subscripts, 
we then have 

(QeQ0 - Q0Qe)Zj+j- ≠ 0 (2j++2j- = 1 , 3 , 5 . . . ) . (4.60) 

All possible operators Qe commute among themselves, and likewise 
a l l possible operators Q0. 

In connection with (4.60) we recall that along with the spatial 
reflection the time-reflection also satisfies the relations 
(4.38) and (4 .39) . Hence for h a l f - i n t e g r a l j + + j - , i . e . for 
half-integral spin, we can see that the space- and the time-reflection 
do not commute by representing one transformation by 
Qe, and the o ther by Qo. If i t would be d e s i r a b l e to have two 
non-commuting operators which are both one-valued, or both two-valued, 
then we might use Qe, iQo, or iQe, Qo, respectively. As 
a matter of fact, i t i s well known tha t in the theory for Dirac 
p a r t i c l e s - derived from D(½,0) D(0,½) - the space- and the 
t ime-reflection must not commute, cf. Umezawa (1956), chap. I I I , 
sec. 2. Under Racah's (1937) choice both operators are two-valued, 
being represented by the Dirac matrices γ0 and γ1γ2γ3, respectively. 
Now it is well known that in Dirac's theory rotations in 
the x u ,x v -plane are generated by the operator - i ( γ u γ v - γ v γ u ) / 4 , 
cf. Umezawa, loc. c i t . In th i s connection i t i s worth noting that 
for spin ½ the operators Juv, iQe, and Qo may be readily translated 
into -i(γuγv - γvγu)/4, γ0, and γ1γ2γ3, or -i(γuγv - γvγu)/4, 
γ1γ2γ3 , and γ0 for that matter. 



ν 

WAVE FUNCTIONS FOR S P I N N I N G P A R T I C L E S 

5 . 1 . General p r i n c i p l e s 
In a r e l a t i v i s t i c a l l y invar iant theory a spinning p a r t i c l e i s 

usually described by a wave function of the form 

ψ(X) = Σ P(X)UP. ψ(X) = 
Ρ 

P(X)UP. (5.01) 

where X stands for the pos i t ion coordinates of the p a r t i c l e in 
question, while the q u a n t i t i e s UP are sp inors which transform 
among themselves according to one of the finite-dimensional 
i r reducib le representa t ions of the ful l Lorentz group. The UP ' s 
are nothing but the spinors Uj+j-

m+m- discussed in chapter IV, but 
for the sake of s impl ic i ty we shal l use abridged indices in the 
following. I t may be inferred from sect ion 4.6 tha t the running 
index p in (5.01) takes on 2 ( 2 j + + 1) (2j- + 1) or (2j + 1)2 values 
according as j + ≠ j- or j+ = j- = j . 

The wave equation for Ψ i s a system of simultaneous l i n e a r 
d i f f e r e n t i a l equations to be s a t i s f i e d by the functions Φ. For 
d e t a i l s concerning r e l a t i v i s t i c wave equat ions the reader may 
consult Corson (1953). 

In a theory with wave functions of the form (5.01) the spinors 
U may be acted upon by matrix operators γ according to 

γUP = Σ <q|γ|p>Uq , γUP = 
q 

<q|γ|p>Uq , (5.02) 

where any Uq i s in the same family with UP, i . e . where UP and the 
Uq's transform irreducibly among themselves under Lorentz transformations. 
It is essential that both the rotation operators Ρ 
and the spa t i a l - r e f l ec t ion operator Q are of type γ. 

The spinors U are orthonormal. Accordingly the expecta t ion 
value of the operator which car r ies Ψ into 

Σ γP(X)UP 

Ρ 
γP(X)UP (5.03) 

equals Σ ∫ Ρ*(X)γP(Χ)dν, 
P 

∫ Ρ*(X)γP(Χ)dν, (5.04) 

where dV s tands for dX1dX2dX3. 



63 V, 5.1 

In the usual spinor theory the transformation properties of 
the U ' s are so essential that if we try to replace (5.01) and 
(5.02) by something else, we cannot hope to attain any result 
unless we introduce a family of new quantities which behave the 
same as the U's under rotations as well as under spatial reflection. 
If we particularly want to develop a theory in which the 
spin is expressed in terms of Eulerian angles, we shall therefore 
have to replace the family of spinors UP by a family of functions 
Zp,m's'(ω) having fixed s ' and m'. Conversely, if the functions Φ 
are such that (5.01) describes a free particle of specified mass 
and spin, then any of the functions 

Ψs'
m'(Χ,ω) = Σ ΦΡ(Χ)ΖΡ,m'

s' (ω) (5.05) Ψs'
m'(Χ,ω) = 

Ρ 
ΦΡ(Χ)ΖΡ,m'

s' (ω) (5.05) 

can be used for such a particle as well. For if we assume the Z's 
to be orthonormal just like the U ' s , and if we replace (5.02) by 

γΖΡ,m'
s ' (ω) = Σ <q|γ|p>Ζq,m'

s ' (ω), (5.06) γΖΡ,m'
s ' (ω) = 

q 
<q|γ|p>Ζq,m'

s ' (ω), (5.06) 

then (5.05) yields the same expectation values for operators γ as 
(5.01). The same applies to operators such as / X and, in fact, 
to any operator C which can be expressed entirely in terms of 
operators γ, /X, and X, and therefore does not affect s ' and m' . 
As in a theory for free particles we only have operators of type 
C, it follows that in the absence of interactions (5.05) yields 
the same results as (5.01), irrespective of the particular values 
of s ' and m'. This is not undesirable, as the established theory 
for free particles is quite satisfactory. By virtue of its 
analogy with the spinor theory, the free-particle formalism with 
Eulerian angles may be readily quantized by known field-theoretical 
methods. 

Whereas for free particles the new formalism is straightforward, 
the situation becomes much more complicated once interactions 
are present. For if the family-indices s' and m' have 
any physical significance, they must obviously play a part in 
at least some interaction schemes. In other words, we cannot 
construct a sound interaction theory unless the interpretations 
of s ' and m' are known. In the present investigation we shall 
therefore not try to extend our formalism so as to include interactions. 
At the same time, it is hoped that the introduction 
of Eulerian angles may eventually contribute to overcoming the 
serious difficulties still encountered in present-day interaction 
theory. 

According to section 4.4, s ' and m ' are the eigenvalues of the 
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three-dimensional angular momentum S ' defined in (4.28), and of 
the component S'3 thereof. Now since the operator γ in (5.06) 
couples only functions Ζ having the same s ' and m', and since it 
does not depend on either s ' or m ' , S ' commutes with γ. As a 
matter of fact, it is not difficult to see that it commutes with 
any operator of type C. We note here that if in (5.02) γ represents 
the rotation operator Puv, then in (5.06) it stands for 
J u v ( ω ) . If in (5.02) it represents the spatial reflection, then 
the same holds true in (5.06). 

5.2. The family-indices s ' and m' 
Due to the occurrence of family-indices s' and m', our formalism 

with Eulerian angles suggests that for any particular values 
of mass and spin there may exist several kinds of particles. 
Distinguished from each other by s' and m ' , these particles may 
be expected to show the same behaviour as long as no interactions 
are present, according to the preceding section. 

Now if (5.05) is a normalized wave function for a free particle 
of specified mass and spin, then the operator 

- [ ( s ' ± m')(s' m' + l ) ] - ½ (S ' 1 i S ' 2 ) (5.07) 
carries (5.05) into a similar normalized wave function for a free 
particle of the same mass, spin, and s ' . The new particle has 
upper index m ' 1 instead of m ' , however, as may be seen from 
(4.30). The new upper index is m' 1 indeed, rather than m' ± 1, 
owing to the fact that the commutation relations for primed 
operators have a minus sign as compared with the usual commutators 
for angular momenta, cf. (2.53). Since S' commutes with the 
spatial-reflection operator, according to section 4.7, the new 
particle has the same parity as the original one. Summarizing we 
so arrive at the conclusion that there might exist a group of 
particles which all have the same mass, spin, parity, and s', are 
transformed into one another under operations of the form (5.07), 
and can be distinguished by the quantum number m ' , i.e. by some 
physical quantity closely related to S'3. This group might contain 
2s' + 1 particles at most. 

When the functions Ζ in (5.05) transform according to the 
representation D ( j + , j - ) D ( j - , j + ) (j+ ≠ j - ) , the wave function 
Ψ has 2(2j++1)(2j-+1) components Φ; when the Z's transform according 
to D(j,j), the wave function Ψ has (2j+1)2 components Φ. 
If it is now understood that in the latter case j+ = j- = j , then 
in either case Ψ in principle refers to an assembly of particles 
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having sp ins j + + j - , J + + J - - 1 , . . . , | j + - j - | . If Ψ i s to descr ibe 
only particles of a definite spin s, one has to make certain supplementary 
conditions so as to reduce the number of independent 
components Φ. However, we need not bother about the d e t a i l s of 
that procedure; at present the point i s tha t Ψ refers to in tegral 
or h a l f - i n t e g r a l spins according as 2 j + + 2j- i s even or odd. 
Since we know from (4.29) tha t s ' may take on the values j + + j - , 
j++j--l,..., |j+-j-|, that suffices to see that s' must be integral 
for bosons, and half-integral for fermions. It should be 
emphasized that s' need not be equal to the spin. This is a considerable 
generalization as compared with the three-dimensional 
theory of chapter I I I , where we had ( J ) 2 = ( J ' ) 2 . 

The represen ta t ion D(0,0) obviously r e f e r s to zero spin and 
zero s ' . D i r a c ' s equation de r ive s from D(½,0) D(0,½). As a 
r e s u l t i t descr ibes p a r t i c l e s of spin ½, and according to the 
ideas presented here i t r e f e r s to s ' = ½. The fami l ia r vector 
field of spin 1 transforms according to D(½,½). Its four components 
are subject to one supplementary condition to ensure that 
the spin shal l be 1 ra ther than 0. For a vector f ie ld s' may be 
e i ther 0 or 1. 

As for p a r t i c l e s of low spin and low s ' , we thus far lack 
a theory for spin 0 and s ' = 1. I t w i l l be shown in the next 
section that a formalism for th i s case can be constructed without 
much d i f f icul ty . 

5 .3 . F i e ld s having sp in 0 and s ' = 1 
In the present section we shal l develop a quantum f ie ld theory 

for spin 0 and s ' = 1. S t a r t i n g from an appropr ia te Lagrangian 
function, we s h a l l f i r s t cons t ruc t a c l a s s i c a l f i e l d theory, 
or, equ iva len t ly , a quantum-mechanical formalism for a s i ng l e 
p a r t i c l e . After tha t we sha l l br ief ly indica te how to carry out 
the usual process of quantization so as to admit of the creat ion 
and annih i la t ion of p a r t i c l e s . Whereas for reasons of p r i n c i p l e 
the present formalism cannot be iden t ica l with the famil iar 
theory for spin 0, i t leads to the very same r e s u l t s as regards 
the expectation values of observables not depending on s ' and m'. 
For a review of the f i e l d - t h e o r e t i c a l methods employed in the 
present section the reader i s referred to Wentzel (1949), chap. I. 

The s imples t poss ib le r ep re sen ta t i on for s ' = 1 i s D(½,½). 
I t r equ i res a wave function of four components Φ. By s u i t a b l e 
l inear combination the 's can be chosen so that under ro ta t ions 
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they transform as the components of a four-vector. They will be 
denoted by Φu accordingly. 

In the following we shall use the abbreviations 
u = / X u , Φu,v =  u ( X ) / X v . (5.08) 

Further we shall use the auxil iary parameter μ = mc/ħ, m denoting 
the mass of the pa r t i c les under consideration. I t will be assumed 
that m ≠ 0. 

In the absence of further r e s t r i c t i o n s , the four functions Φ" 
describe p a r t i c l e s of spins 0 and 1. I t i s an e s sen t i a l feature 
of the fami l ia r theory for spin 1 tha t there Φ0 i s redundant. 
That guarantees that the theory describes only p a r t i c l e s of spin 
1, the admixture of sp in 0 being e l imina ted . For our p re sen t 
purpose we sha l l now see that the functions Φk are redundant. To 
th is end we shal l choose our Lagrangian to be independent of Φk , 0 

(k = 1 ,2 ,3) . so t ha t the momenta conjugate to the  k ' s vanish 
ident ica l ly . After some manipulations the  k ' s can be eliminated 
then in favour of the momentum conjugate to Φ0, denoted by Π, so 
as to give a formalism ent i re ly in terms of Φ0 and Π. 

To make i t comprehensible now that the f ie ld Φu can have the 
proper t ies of an es tab l i shed f i e ld of spin 0, say φ, we r e c a l l 
tha t under r o t a t i o n s the momentum conjugate to φ transforms as 
x 0 . At the same time, the Hamiltonian equat ions of motion are 
invar i an t under interchange of coordina tes and momenta. I t i s 
therefore natural to ant ic ipate that the familiar theory for spin 
0 can be equivalently formulated in terms of a " rec iproca l" wave 
function φ0 and i t s conjugate π. I t wil l present ly be shown 
tha t t h i s i s the case indeed, φ0 and π being nothing but the 
quant i t ies Φ0 and Π alluded to above. 

Whereas our argument concerning the canonical equations of 
motion seems obvious, it must be noted that the reciprocal Hamiltonian 
density contains Π'k. As a result it cannot be directly 
obtained from a Lagrangian function. I t therefore seems not 
superfluous to show tha t s t a r t i n g from the Lagrangian function 

L = μ2Φu*Φu + Φv*,v w
,w (5.09) 

we nevertheless arrive at the reciprocal formalism for free 
charged particles of spin 0. The simplification to neutral particles 
will be obvious. 

The choice (5.09) being taken for L, the familiar variational 
problem 

δ∫LdVdX0 = 0 (5.10) 
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leads to the wave equations 

μ2Φu - w ,uw = 0. (5.11) 

Differentiating (5.11) with respect to Xv and remembering that 
vw = wv, we obtain the supplementary conditions 

Φu,v = Φv,u. (5.12) 
On combining (5.11) and (5.12) it is now found that 

μ2u - u,vv = ο, (5.13) 
i .e . that Φu must sa t is fy the Klein-Gordon equation as usual. 

On account of (5.09) the canonical energy-momentum tensor 
takes the form 

Tuv = - w*,w u,v - u*,v w
,w + Lguv. (5.14) 

By v i r t u e of (5.12) Tuv i s symmetric with respec t to u and v, 
which permits us to a n t i c i p a t e that p a r t i c l e s described by the 
functions Φu will indeed have spin 0. 

According to (5.14) the energy density i s given by 

Η = Τ00 = - Φw*
,w Φ0,0 - Φ0*,0 Φw

,w - μ2Φw*Φw - Φu*
,u Φv

,v. (5.15) 

However, s ince we are pr imar i ly in t e re s t ed in the t o t a l energy 
Η = ∫HdV, r a the r than in H, i t i s convenient to go over to the 
function which derives from H according to 

= H + k (Φu*,u Φk) + k (Φ k *Φ u
, u ) . (5.16) 

In terms of the to ta l energy takes the form 

H ≡ ∫HdV = ∫dV, (5.17) 

where only a surface integral at infinity has been discarded. By 
virtue of (5.11) we have 

= Η + Φu*,u Φk
,k + Φ k *

, k Φu
,u + 2μ2Φk *Φk ' (5 .18) 

which means that 

= μ2Φk*Φk·+ μ2Φ0*Φ0 + Φu*
,u Φν

,v. (5.19) 

In the present formalism the momenta conjugate to the Φ's take 
the form 

Hu ≡ ( 1 / c ) L / Φ u
, 0 = (1/c)gu

0Φv *
, v . (5.20) 
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According to (5.20) a l l three momenta πk vanish i den t i ca l l y . I t 
is therefore convenient to use the abbreviations 

Φ - Φ0, = 0 . (5.21) 

On account of the wave equat ions (5.11) the s p a c e - l i k e f i e l d 
components k may now be eliminated by using the re la t ions 

μ2Φk = c π * , k . (5.22) 

Accordingly may be writ ten in the form 

= μ2ΦΦ* + (c2 /μ2)Π,kΠ* , k + c2ΠΠ*. (5.23) 

In terms of Φ and Π the canonical momentum densi ty G and the 
charge-current density s take the form 

Gk ≡ (1/c)T 0 k = -ΠΦ , k - Φ*,kΠ*, 
(5.24) 

sk = ( i e c 2 / ħ μ 2 ) ( π k π * - Π * , k π) , 

s0 = ( iec/ħ)( *π * - ΦΠ), 

where e is the elementary charge. Besides G we shall also consider 
the quantity given by 

k = π,k + Φ*π* , k . (5.25) 

As regards the t o t a l momentum G and the to t a l angular momentum M 
we have 

Gk ≡ ∫GkdV = ∫kdV, 
(5.26) 

Mkl ≡ ∫(XkGl - XlGk)dV = ∫(Xkl - XlGk)dV, 

surface in tegra ls a t i n f in i ty being discarded. 
Let us now compare the foregoing expressions with the familiar 

formulas for a f i e ld of spin 0. Denoting the f i e ld va r iab les of 
the l a t t e r f i e l d by lower-case symbols, we have, according to 
Wentzel (1949), chap. I I , 

Η = π*π + c2φ*,k φ,k + μ2c2φ*φ, 

Gk = - πφ,k - φ * , k π * , 
(5.27) 

sk = (iec2/ħ) (φ*,kφ - φ,kφ*), 
s0 = - (iec/ħ) (πφ - π*φ*). 

If we now make the change of variables 
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Φ → ±π* /μ, Π → μφ*, (5.28) 

then the express ions for , , and s given in (5.23) - ( 5 . 2 5 ) 
exact ly go over i n t o the express ions (5 .27) . From t h i s we may 
conclude that except for the family-indices s' and m' our formalism 
in terms of Φ and Π yields the same physical results as the 
famil iar theory for spin 0. The functions Φu are appropria te to 
what i s considered as a sca la r or a pseudoscalar f ie ld according 
as under s p a t i a l r e f l e c t i on they behave as the components of a 
vector or a pseudovector. 

The foregoing remarks apply to a c l a s s i c a l f i e ld theory or, 
equ iva len t ly , to a quantum-mechanical formalism for a s i n g l e 
p a r t i c l e of spin 0. The f i e ld Φ may be readi ly quantized by 
postulating that Φ and Π shall be operators satisfying the commutation 
relations 

[Π(Xk,Χ0),Φ(Χk,Χ0)] = - iħδ(X1-X1)δ(X2 - X2)δ(X3 - X 3 ) . (5.29) 

The quantized theory is completely determined by the properties 
of the classical theory together with the commutation relations 
imposed on Φ and Π. Since under the substitution (5.28) the relations 
(5.29) exactly go over into the commutation relations for 
the (pseudo)scalar field, it follows that the analogy between Φ 
and the familiar fields of spin 0 will be completely preserved 
after the quantization procedure has been carried out. 

In order to describe the interaction with an electromagnetic 
field A one may start from the Lagrangian function 
L = μ2Φu*Φu + [(v + ie Αv)Φv*][w - ie 

Aw)w] + L f r e e , (5.30) L = μ2Φu*Φu + [(v + 
ħc 

Αv)Φv*][w -
ħc Aw)w] + L f r e e , (5.30) 

where L f r e e stands for the Lagrangian of the free electromagnetic 
field. It may be seen by straightforwardly generalizing our foregoing 
considerations that the Lagrangian (5.30) again leads to 
a formalism in entire agreement with the established theory. 
Likewise interactions usually associated with the interaction 
Lagrangian 

Lint = -φ*B Β*φ - φ*,uΓu - Γu*φ,u (5·31) 
may be equivalently discussed in terms of Φ by starting from 
Lint = ±(1/μc)Φu*,u Β± (1/μc)Β*Φu,u + (1/μ2c2)Β*Β 
± (μ/c)Φu*Γu ± (μ/c)Γu*Φu + (1/c2)Γu*Γu. (5.32) 
Here Β and Γ depend on the variables of fields other than Φ. The 
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symbol ± refers to the two possible substitutions indicated in 
(5.28). It is of course understood that (5.30) and (5.32) should 
be modified if the interactions concerned would depend on s ' and 
m ' . 

The r e s u l t s of the present sec t ion may be summarized by the 
statement that a field said to be (pseudo)scalar can be successfully 
described in terms of a (pseudo)vector. Whereas a scalar 
can only have s ' = 0, the s ' of a four-vector may be e i ther 0 or 
1. According to the ideas presented here the s ' of a f ield having 
spin 0 may therefore cer ta inly take the values 0 and 1. 

5.4. Note on non-local f i e l d s 
In most f ie ld theor ies the f ie lds are described by point 

functions Φ(X), and the Lagrangian density depends on the f i e ld 
variables a t a s ingle space-time point only, as in the preceding 
section. Such theories are called local. They picture bare particles 
as mathematical points. Now all relativistic theories with 
local i n t e r a c t i o n give r i s e to c e r t a i n d ivergences , i n f i n i t e 
se l f -energ ies among o thers . Since an i n f i n i t e se l f -energy a l so 
occurs in the c l a s s i c a l theory of a point e lec t ron , i t has been 
suggested that at least some divergences could be removed if particles 
were attributed finite extensions in space-time. Various 
attempts have therefore been made to introduce a f i n i t e p a r t i c l e 
radius in a r e l a t i v i s t i c a l l y invariant way. A general discussion 
of t h i s point may be found in the textbooks by Schweber, Bethe, 
and de Hoffmann (1955), I, secs. l1c, 20b, and Umezawa (1956), 
chap. I, sec. 5. 

I t i s a common feature of a l l extended-part ic le theories tha t 
the coupling between two f ie lds i s no longer local ized a t a 
s ingle point ; i t i s spread over a f i n i t e region in space-t ime. 
For ins tance , the i n t e r a c t i o n term φ* (X)B(X) in (5.31) may be 
replaced by 

∫ φ * ( ) B ( ) F ( X , , ) d d 0 d d 0 , (5.33) 

where F is a form factor related to the structure of the particles 
under consideration. 

In (5.33) and, in f ac t , in near ly a l l s o - c a l l e d non- loca l 
t heo r i e s , the f i e l d va r i ab l e s themselves are s t i l l completely 
l o c a l i z e d . Yukawa (1950a,b, 1953a,b), on the o ther hand, has 
proposed a theory in which the f ie ld var iables are non-local too 
in that they depend on two sets of rectangular coordinates, X and 
r in Yukawa's notation. The X's represent the usual pos i t ion co-
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ordinates, and i t has been shown by Fierz (1950a,b) that the r ' s 
are spin v a r i a b l e s . In other words, Yukawa's X and r have been 
denoted by X and x in the present i nves t iga t ion . His non-local 
f i e ld s p i c t u r e p a r t i c l e s as extended sp inn ing e n t i t i e s whose 
l inear dimensions and i n t r i n s i c rotat ion are described through x. 
Yukawa's theory has been inves t iga ted by several authors , many 
references being given by Yukawa (1953a) himself. 

I t has been pointed out by Fierz (1950a,b) that in the absence 
of in teract ions a non-local field i s equivalent to an assembly of 
ordinary local fields of various spins. Now obviously the simplest 
type of non-local field is described by a scalar function 
Φ(Χ,x). The spin p r o p e r t i e s of such a f i e l d must be expressed 
en t i r e ly in terms of the in te rna l var iables x, i . e . in terms of 
rectangular coordinates. From section 4.5 it may therefore be inferred 
that a scalar non-local field describes only particles the 
wave functions of which transform according to r ep resen ta t ions 
D(j,j). This i s , in fact , exactly what has been asserted by Fierz. 

Scalar non-local f i e l d s pe r t a in ing to i n t e g r a l spins only, 
Yukawa has t r i e d to extend h is theory by considering spinor 
f ields 

Ψ(X,x) = Σ Ρ(Χ,x)UΡ , (5 .34) Ψ(X,x) = 
P 

Ρ(Χ,x)UΡ , (5 .34) 

the spins of which are connected with x as well as with the 
spinors U. At present i t i s s t i l l too early to say whether t h i s 
idea will eventually lead to a s a t i s f ac to ry theory. At the same 
time, a more unified approach to the descr ipt ion of a l l kinds of 
particles seems possible if instead of (5.34) we use wave functions 
Ψ(Χ,x',ω). According to the preceding sections, the latter 
functions can descr ibe i n t eg ra l as well as h a l f - i n t e g r a l spins 
provided a s u f f i c i e n t number of Eulerian angles i s introduced. 
Whereas spins 0 and 1 may be discussed in terms of rec tangula r 
or spherical coordinates, as in Yukawa's theory, a wave function 
Ψ(Χ,x',ω) must essentially depend on six angles if it is to describe 
Dirac particles. For the rotation eigenvectors pertaining 
to D(½,0) depend on the three angles ω+, D(0,½) demands th ree 
angles ω - , so tha t for D(½,0) D(0,½) s ix angles are required 
indeed. The in t roduct ion of Eulerian angles obviously leads to 
the occurrence of the fami ly- indices s ' and m', which are not 
found in Yukawa's work. 

I t has been shown by Yukawa (1953a) that in a non-local f ie ld 
theory one may possibly eliminate i n f i n i t e s e l f - ene rg ie s . I t i s 
another interesting feature that in the wave equation for a nonlocal 
field the usual mass parameter may be replaced by an opera-
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tor acting on x . Actual masses can be interpreted then as the 
solutions of an eigenvalue problem, particles corresponding to 
eigenstates of internal motion. This point has been examined by 
Yukawa (1950a,b, 1953a,b) as well as by Hara, Marumori, Ohnuki, 
and Shimodaira (1954). It is hoped that through this device of 
mass quantization one may eventually discover some method in the 
confusing array of elementary particles, but is not known as yet 
how to construct a mass operator appropriate to what is realized 
in nature. We note here that throughout the years many alternative 
attempts have been made at constructing a mass spectrum 
for elementary particles. References pertaining to this problem 
have been given by Hara et al., and in addition we mention papers 
by Enatsu (1954a,b, 1956) as well as Finkelstein's (1955) and 
Pais's (1953a,b) work cited in section 1.2. 

For lack of firm guiding principles the theory of non-local 
fields is still in an early state of development. At the same 
time, it shows some promising aspects, and it seems reasonable 
to hope that these may be retained if instead of Yukawa's type 
of field we consider a non-local field Ψ(X,x',ω). As compared 
with other field functions, Ψ(Χ, x',ω) shows the novel feature of 
depending on relativistically invariant coordinates x ' , which 
presumably might be quite an asset when it comes to specifying 
particle extensions in a relativistically invariant way. To summarize, 
non-local functions Ψ(X,x',ω) seem quite well suited to 
the study of various problems concerning the possible internal 
structure of elementary particles. 



VI 

THE I S O B A R I C S P I N 

6 . 1 . Nucleons and π-mesons 
As early as 1932, short ly a f te r the discovery of the neutron, 

i t was suggested by Heisenberg tha t proton and neutron should be 
regarded as two s t a t e s of one fundamental p a r t i c l e , the nucleon. 
In Heisenberg's formalism the charge state of a nucleon is represented 
by an operator T3 having eigenvalues ½ and -½. In analogy 
to P a u l i ' s theory for the sp in , T3 i s formally taken to be a 
component of an angular momentum in th ree dimensions, T. the 
components of which are denoted by T1, T2, and T3. The quant i ty 
represented by Τ has l a t e r been ca l led the i soba r i c - or , l e s s 
c o r r e c t l y , the i s o t o p i c - sp in . The nucleon i s a t t r i b u t e d an 
isobaric spin ½, and the notation i s now chosen such that proton 
and neutron are e i g e n s t a t e s of T3 with e igenvalues ½ and -½, 
r e s p e c t i v e l y . Accordingly the ope ra to r T1 + iT2 t ransforms a 
neutron wave function into a proton wave function, and T1 - iT2 
accomplishes the inverse transformation. I t wi l l be convenient 
in the following to denote typical eigenvalues of (T)2 and T3 by 
t(t+l) and t3 , respectively. 

When in 1936 the first evidence was found that at low energies 
the proton-proton and the neutron-neutron nuclear forces are 
the same as the proton-neutron force, provided s t a t e s with the 
same angular momentum and par i ty are compared, i t was pointed out 
by Cassen and Condon tha t in the language of i soba r i c spin t h i s 
charge independence of nuclear forces could be given an extremely 
simple expression. As a matter of fact, i f the Pauli p r inc ip le i s 
generalized to the statement tha t a more-nucleon wave function 
sha l l be antisymmetric in the space, sp in , and i s o b a r i c - s p i n 
coordinates of any two nucleons, the hypothesis of charge independence 
is equivalent to the hypothesis that in any particular 
s t a t e of angular momentum and p a r i t y the nuc lear i n t e r a c t i o n 
does not depend on the charges of the nucleons under consideration, 
i.e., not on the resultant t3. Under this assumption the 
Hamiltonian descr ibing nuclear i n t e r ac t i ons must be a sca la r in 
isobar ic-spin space, and the t o t a l i sobar ic spin i s a good quan-
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turn number in a nuclear system in which Coulomb effects may be 
neglected. Obviously the resultant t3 is also a good quantum 
number, denoting the total charge. In the course of years strong 
evidence has been found for the validity of charge independence 
in nuclear systems at low energies. For a detailed account of 
this matter the reader is referred to a recent review article by 
Burcham (1955). 

The hypothesis of charge independence should not be confused 
with the assumption of charge symmetry, which says only that the 
nuclear forces between two protons are the same as those between 
two neutrons. Obviously charge independence implies charge symmetry, 
but the latter principle is less far-reaching in that it 
makes no statement concerning proton-neutron interactions. Charge 
symmetry has also been discussed in Burcham's paper cited above. 

As nuclear forces are now considered to be a consequence of 
the virtual exchange of mesons, especially π-mesons, between 
nucleons, it is essential that the π-meson can be incorporated 
in the isobaric-spin formalism in a charge-independent way. As a 
matter of fact, the now familiar charge-independent Hamiltonian 
for the interaction between nucleons and π-mesons was already 
proposed by Kemmer (1938) nearly ten years before the actual 
discovery of the π-meson. After Kemmer the π-meson is attributed 
isobaric spin 1, its charge states π+, π0, and π- being eigen-states 
of T3 with eigenvalues 1, 0, and -1, respectively. 

It is well known that a direct test of charge independence 
in pion-nucleon phenomena is provided by a comparison of the 
reactions 

p + p → d + π+, 
(6.01) 

n + p → d + π0, 

where p, n, and d stand for proton, neutron, and deuteron, respectively. 
Since for the deuteron t = 0, the final states in 
(6.01) both have t = 1. Now obviously a two-proton system also 
has t = 1. However, the proton-neutron system under consideration 
is an equal mixture of states with t = 0 and states with t = 1. 
Hence if in the processes (6.01) the isobaric spin is conserved, 
the differential cross-sections should be in the ratio of 2 to 1 
at all angles. This has been checked experimentally at nucleon 
energies of about 400 MeV, and strong evidence for charge independence 
has thus been found, cf. Hildebrand (1953) and Schluter 
(1954). For a further discussion of the role of the isobaric spin 
in pion-nucleon processes the reader is referred to Bethe and 
de Hoffmann (1955), . 
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6.2. Speculation on S ' 

In spite of the fact that the isobaric-spin formalism appropriate 
to nucleons and π-mesons has been known for nearly twenty 
years, the very occurrence of an isobaric spin is still a rather 
puzzling feature. Introduced ad hoc for the description of nuclear 
forces and pion-nucleon interactions, the isobaric spin is 
far from understood at present. It is not clear, for instance, 
whether an isobaric spin should be attributed to electrons, 
neutrinos, or μ-mesons. Neither is there any indication as to 
whether the so-called rotations in isobaric-spin space are in any 
way related to ordinary rotations, translations, or other established 
transformations. In this situation it seems natural to 
suggest that the operator S' discussed in the preceding chapter 
might represent the isobaric spin. More particularly, since the 
commutation relations for the components of S ' have a minus sign 
as compared with the commutators for an ordinary angular momentum 
in three dimensions, we shall consider the possibility of interpreting 
-S'k as the operator Tk (k = 1,2,3). Some implications of 
this tentative idea will be discussed in the following pages. 

Inasmuch as nucleons and π-mesons have spins ½ and 0, and 
isobaric spins ½ and 1, respectively, the operator S' may be 
easily incorporated in the current theory of pion-nucleon interactions 
provided for the π-meson we use the formalism developed 
in section 5.3. According to section 5.3, a particle of spin 0 
and s ' = 1 must be described by a vector wave function having 
four components u(X). Since for s ' = 1 the index m' may take the 
values 1, 0, and -1, the most general wave function for spin 0 
and s ' = 1 has twelve components in all. In an obvious notation 
it may be written in the form 

Σ guvum'(X)Zv,m'
1 (ω), (6.02) 

m' 
guvum'(X)Zv,m'

1 (ω), (6.02) 

summation being implied over the tensor indices u and v. Since we 
may combine functions Zv,m'1 with the same v but different superscripts 
m' to form functions Zv,k1 which under rotations generated 
by operators S'l transform as the components of a vector in three 
dimensions, the wave function (6.02) may also be expanded according 
to 

guvuk(X)Ζv,k1(ω), (6·03) 
where it is understood that the summation convention applies to 
the tensor index k. It follows, by the way, from what was said in 
connection with (2.40) and (2.51) that Zv,k1 is proportional to 
the coefficient Λkv given in table 4.1. 
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Let us now choose the functions Φu
k. to be real, let us introduce 

a constant μ such that the mass of the π-meson is equal to 
μh/c, and l e t us wri te π0

k for the momentum conjugate to Φ0
k. 

With the help of s ec t i on 5.3 we may then t r a n s l a t e the usual 
theory of the π-meson into a formalism with Eulerian angles provided 
we replace the usual wave function φk(X) by Π0

k(X)/μ, 
cf. (5.28). The usual eight-component nucleon wave function ψ(Χ) 
may be simply replaced by a function of the form 

Ψ(X,u) = Σ γΡm'(Χ)Ζ½
Ρ,m' ( u ) , ( 6 . 0 4 ) Ψ(X,u) = 

p, m' 
γΡm'(Χ)Ζ½

Ρ,m' ( u ) , ( 6 . 0 4 ) 

where -m' equals ½ for a proton s t a t e and -½ for a neutron s t a t e . 
The index p runs through four va lues . Obviously the Euler ian 
angles v in (6.04) must be independent of the ω's in (6.02) and 
(6.03). 

I t follows from section 5.3 that if - S ' k i s in terpreted as the 
i s o b a r i c - s p i n opera tor Tk' the cur ren t theory of pion-nucleon 
in terac t ions , which derives from the in teract ion Hamiltonian 

H i n t = f(X)γ5TkΨ(X)φk(X) ( = Ψ*γ0), (6.05) 

can be expressed in terms of the wave functions (6.03) and (6.04) 
by going over to 

int = (f/μ)(ψ(X,v),-γ0γ5S'k(v)ψ(X,v))vΠ0k(X). (6.06) 
In (6.06) the operators γ are the operators of type (5.06) that 
correspond to the usual Dirac matrices γ0 and γ5. The symbol 
(...,...)v signifies that the scalar product with respect to v 
must be taken, not, however, the scalar product with respect to X. 
The symbol refers to the two possible substitutions indicated 
in (5.28). 

Whereas it is of course very satisfactory that the operator S' 
may be naturally fitted into the current description of pions 
and nucleons, it will be observed that this description is insensitive 
to the nature of the isobaric spin; going over from 
(6.05) to (6.06) does not alter our quantitative predictions on 
pions and nucleons to any extent. Yet our speculation on S' might 
provide a useful starting-point for future investigations. In 
particular, as introducing Eulerian angles seems to open up new 
ways for studying the internal structure of elementary particles, 
it is hoped that it may contribute to overcoming the divergence 
difficulties encountered in the current theory of pions and 
nucleons. 

If S' is interpreted as the isobaric spin, charge independence 
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corresponds to the conserva t ion of the quantum number s ' . In 
p a r t i c u l a r , s ' wi l l be conserved under pion-nucleon r eac t ions 
cons i s t en t with (6 .06) . This does not imply, however, t ha t s ' 
should be conserved under any react ion. As a matter of fact , in 
the previous chapters we have demanded that any physical equation 
shall be invariant under the ordinary transformations of the full 
Lorentz group; as regards a formalism with Eulerian angles, t h i s 
requirement by i t s e l f necess i ta ted the introduct ion of famil ies 
of functions Z. The functions Ζ have not been constructed on the 
ground tha t there must be invariance under r o t a t i o n s generated 
by opera tors S ' . Now s ince any opera tor S'k commutes with any 
operator for an ordinary Lorentz transformation, invariance with 
respect to S' i s qu i te independent of invar iance under Lorentz 
transformations. I t i s therefore well possible that some equations 
are i n v a r i a n t under r o t a t i o n s generated by opera tors S ' while 
others are not. This is very s a t i s f a c t o r y s ince , for ins tance , 
electromagnetic i n t e r a c t i o n s obviously are not charge independent. 

If our formalism with Eulerian angles corresponds to physical 
r e a l i t y , a l l p a r t i c l e s should be incorporated there in ; i t does 
not seem very reasonable to assume tha t for some p a r t i c l e s the 
spin S' would be meaningful while for o the r s i t would not . If 
S ' would indeed represent the i sobar ic spin, the i s o b a r i c - s p i n 
formalism should therefore be extended to include a l l p a r t i c l e s . 
However, for lack of experimental c r i t e r i a we s h a l l not t ry to 
ass ign i s o b a r i c spins to e l e c t r o n s , n e u t r i n o s , and μ-mesons. 
Neither shal l we discuss the photon in t h i s connection. 

As we have shown in section 5.2, the quantum number s ' must be 
in tegra l for bosons and h a l f - i n t e g r a l for fermions. At the same 
time, i t has been suggested by Gell-Mann (1953) and independently 
by Nakano and Nishijima (1953) that among newly discovered particles 
there might be bosons of half-integral isobaric spin as 
well as fermions of integral isobaric spin. Since for the present 
i nves t iga t ion t h i s poin t i s very c r u c i a l indeed, we s h a l l now 
summarize some relevant proper t ies of the p a r t i c l e s in question, 
and we shall examine the underlying assumptions of the classification 
proposed by Gell-Mann and others. Anticipating the argument 
of the following sections, we note that while t h i s c l a s s i f i ca t ion 
has been tentatively adopted by many workers, no conclusive evidence 
has yet been found either for or against it. 
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6.3. Hyperons and heavy mesons 
In recent years several types of particles have been discovered 

whose behaviour is far from understood at present. Accordingly 
the p a r t i c l e s in question are now being referred to as curious 
pa r t i c l e s . They are called heavy mesons or hyperons according as 
they are intermediate in mass between the π-meson and the proton, 
or between the neutron and the deuteron. For a qualitative discussion 
of curious particles the reader is referred to Bethe and 
de Hoffmann (1955), I I , sec. 51. Numerical data and references to 
o r ig ina l papers have been summarized by A.M.Shapiro (1956) and 
M.M.Shapiro (1956). Additional information may be found in the 
proceedings of the s ix th Rochester conference (Rochester 1956). 

Among the hyperons the p a r t i c l e s denoted by Λ0, Σ+, Σ - , and E- 

are now well e s t a b l i s h e d . They are fermions having l i f e t i m e s 
of the order of 1 0 - l 0 sec. The Λ0, for ins tance , decays in to a 
proton and a π--meson according to 

Λ0 → p + π- + Q (Q = 37 MeV), (6.07) 

from which it follows that the mass of the Λ 0 is approximately 
2181 times the electron mass me. The main data on hyperons are 
summarized in table 6.1. 

Table 6.1 
Particle Decay Q (MeV) Mass (me) 

Λ0 p + π- 37 2181 

Σ+ p + π0 116 2327 Σ+ 
n + π+ 110 2327 

Σ- n + π- 118 2342 
- Λ° + π- 67 2586 

As regards the heavy mesons - alternatively called K-particles - at 
least six different modes of decay have been reported. 
It is one of the most puzzling features of "elementary" particles 
that all heavy mesons observed thus far have nearly equal masses, 
about 965 times the electron mass. Their lifetimes are of the 
order of 10-8 sec. There is no conclusive evidence against some K-particles 
being fermions, but the best-established ones, decaying 
into three and two π-mesons, definitely are bosons. In theoretical 
discussions only the bosons are being considered. At present it 
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i s hoped tha t several types of heavy-meson events correspond to 
a l t e r n a t i v e decay modes of one bas ic p a r t i c l e , but a t the same 
time some considerable evidence has been found to the effect that 
the K-par t ic le which decays in to three π-mesons cannot have the 
same spin and p a r i t y as the one t ha t decays i n to two π-mesons 
(Dal i tz 1955a, 1956, Orear, Har r i s , and Taylor 1956). Various 
speculat ions concerning t h i s point have been put forward a t the 
sixth Rochester conference. 

If protons are bombarded with high-energy π --mesons, several 
per cen t of the c o l l i s i o n s lead to the product ion of cur ious 
pa r t i c l e s . From th i s i t follows that curious p a r t i c l e s are ra ther 
s t rongly coupled to nuclear mat ter . If Λ 0 - p a r t i c l e s were now 
produced copiously by the reac t ion π- + p → Λ0 + π0, one would 
expect that the Λ0 should decay extremely rapidly , for instance 
by the chain of v i r t u a l processes Λ0 → π0 + p + π- →·p + π - . 
Discussing t h i s po in t q u a n t i t a t i v e l y , Pa is (1952) showed tha t 
from production data one would estimate l i fe t imes of about 1 0 - 2 1 

sec for a l l known cur ious p a r t i c l e s . The e s t a b l i s h e d cur ious 
particles have lifetimes of the order of 10-10 to 10-8 sec, however, 
so that apparently the interaction operating in production 
i s much stronger than the one responsible for decay. 

The most reasonable way out of t h i s d i f f i c u l t y was shown by 
Pais (1952), who suggested t ha t curious p a r t i c l e s could not be 
readily produced singly. In recent years t h i s has been s t r ik ing ly 
confirmed by experiments, and i t now appears well e s t a b l i s h e d 
that Λ- and Σ-par t ic les are produced according to 

π + Ν → Λ + K+, π + Ν → Σ + Κ+, 
(6 .08) 

π + Ν → Λ + Κ0, π + Ν → Σ + Κ0, 
(6 .08) 

where Ν stands for the nucleon. There i s some evidence for the 
production scheme 

π- + n → - + K0 + Κ0 (6.09) 

(Sorrels, Leighton, and Anderson 1955). Further it has been experimentally 
found that negative K-particles can be captured by 
nucleons according to 

Κ- + Ν → Λ + π, K- + Ν → Σ + π. (6.10) 

The so-called associated-production reactions (6.08)-(6.10) are 
much faster than the decays given in table 6.1. It is noteworthy 
that reactions such as n + n → Λ0 + Λ0 have not been observed. 
Comparison of the reaction schemes (6.08) and (6.10) suggests 
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that the mesons K+ and K- are mutual a n t i p a r t i c l e s in the same 
sense as the mesons π+ and π - . I t has f i r s t been pointed out by 
Gell-Mann and Pais (1954) t h a t from the fact t h a t the process 
n + n → Λ0 + Λ0 does not occur with appreciable p robab i l i t y i t 
follows that a neutral meson K0 must likewise have an antiparticle, 
0, distinct from itself. (The better-known neutral bosons, 
viz. the π0-meson and the photon, are identical with their antiparticles.) 
Interesting ideas concerning Κ0 and 0 have been 
presented by Gell-Mann and Pais (1955), Pais and Piccioni (1955), 
and others. 

6.4. S t rangeness and i s o b a r i c sp in 
Ever since it became clear that curious particles are not produced 

singly, attempts have been made to express their behaviour 
in terms of su i tab le conservation laws. I t has pa r t i cu l a r l y been 
suggested to invoke the i soba r i c spin in t h i s connection, but 
before proceeding to that point i t will be convenient to discuss 
the concept of strangeness. 

In some way or other, many theoretical papers on curious particles 
(Gell-Mann 1953, Nakano and Nishijima 1953, Gell-Mann and 
Pais 1954, Nishijima 1954, 1955, d'Espagnat and Pren tk i 1955, 
1956, Sachs 1955, Goldhaber 1956, Cerulus 1956) contain a quantity 
known as strangeness, which is often denoted by the symbol 
S. Pions, heavy mesons, nucleons, and hyperons are a t t r i b u t e d 
strangeness quantum numbers according to table 6.2. 

Table 6.2 

Particle π-,π0,π+ K 0 , K+ K- n, p Λ0 Σ - , Σ + 
-

Strangeness 0 1 - 1 0 - 1 - 1 -2 

If a p a r t i c l e i s assigned strangeness S, then i t s a n t i p a r t i c l e i s 
assigned -S . The s t rangeness of a combination of p a r t i c l e s i s 
defined to be the sum of the s t r angenesses of the ind iv idua l 
pa r t i c l e s . 

If the above def in i t ion of strangeness i s adopted, S i s conserved 
under pion-nucleon reactions as well as under the associated-production 
processes (6.08)-(6.10). The hyperon decays 
summarized in table 6.1 sa t i s fy ∆S = 1. I t i s now assumed tha t a 
reaction can only be fast provided i t has ∆S = 0. Reactions with 
∆S = ±1 are assumed to be slow, and ∆S = ±2 i s c l a s s i f i e d as 



81 VI , 6.4 

forbidden. The l a t t e r s e l ec t i on ru le accounts for the observed 
fact tha t - i s produced in assoc ia t ion with two heavy mesons. 
I t forbids processes as n + n → Λ0 + Λ0, as well as the decay 
- → n + π - . Electrons, neutr inos, and μ-mesons are usually not 
incorporated in the s t rangeness scheme, but r ecen t ly Cerulus 
(1956) has attempted to extend the concept of strangeness in such 
a way that i t applies to these pa r t i c l e s too. 

Whereas the strangeness concept i s very useful in c lass i fy ing 
cu r ious -pa r t i c l e i n t e rac t ions , i t does not account for the fact 
that there e x i s t several groups of curious p a r t i c l e s of nearly 
equal masses but d i f f e r e n t charges. In order to descr ibe t h i s 
feature the curious p a r t i c l e s have been t e n t a t i v e l y a t t r i b u t e d 
isobaric spins (Gell-Mann 1953, Nakano and Nishijima 1953, Gell-Mann 
and Pais 1954, Nishijima 1954, 1955, d'Espagnat and Prentki 
1955, 1956, Sachs 1955, Goldhaber 1956). After Gell-Mann (1953) 
and Nakano and Nishijima (1953) the current i sobar ic -sp in model 
has been constructed in such a way that the strangeness select ion 
ru l e s correspond to s i m i l a r s e l e c t i o n r u l e s for the i s o b a r i c 
spin. I t i s assumed that the quantum number t3 i s conserved under 
any f a s t r eac t ion , and i t i s s t rongly suggested tha t a l l f as t 
react ions are charge independent, conserving the t o t a l i sobar ic 
spin t too. 

Now i f Λ0 e s s e n t i a l l y has no charged counte rpar t of nearly 
equal mass, the reaction in which Λ0 i s produced cannot be charge 
independent unless Λ0 has t = 0. Since no Λ+ or Λ- seems to exis t , 
Λ0 i s therefore a t t r i b u t e d i sobar ic spin 0. I t i s known that Λ0 

has ha l f - in tegra l spin, so that at th is point the novel s i tua t ion 
i s raised of a fermion of in tegral isobaric spin. 

I t i s not d i f f i c u l t to see t h a t if i t i s assumed t h a t f a s t 
reac t ions are charge independent, t ha t Λ0 has t = 0, and t h a t 
no doubly-charged cur ious p a r t i c l e s e x i s t , the only pos s ib l e 
isobaric-spin c lass i f i ca t ion i s the one given in table 6.3. 

According to the ideas summarized in table 6 .3 , the K-mesons 
are bosons of ha l f - i n t eg ra l i sobar ic spin, the hyperons Λ and Σ 
are fermions of integral isobaric spin, while has ha l f - in tegra l 
spin and hal f - in tegra l isobaric spin. 

Under the assumptions leading to t ab l e 6 .3 , K- must have a 
neutral counterpart , 0, which has t3 = ½. The p a r t i c l e s K0 and 
0 are not i d e n t i c a l , for they do not have the same t 3 . I t i s 
assumed that 0 and K- are the antiparticles of K0 and K+, respectively, 
cf. the end of the preceding section. If the heavy 
mesons do not a l l have the same spin and par i ty , cf. sect ion 6.3 , 
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Table 6.3 
The isobaric spin according to Gell-Mann (1953) 

and Nakano and Nishijima (1953) 

Par t i c l e K0 K+ K- ( 0 ) Λ0 Σ- (Σ0) Σ+ Ξ- ((Ξ0)) 

t ½ ½ 0 1 ½ 

t3 -½ ½ -½ ½ 0 -1 0 1 -½ ½ 

Symbols in single brackets refer to particles the existence of which is not fully established. Symbols in double brackets refer to particles which have not been observed. 

then there should be at least two doublets of type K0, K+, and 
for the antiparticles as many doublets of type Κ-, 0. 

For charge independence in the sense of table 6.3 to be valid 
for the fast reactions (6.08)-(6.10), Σ± and - must also have 
neutral counterparts. Concerning a Σ 0 it appears quite probable 
that several events of the type 

π- + p → Σ0 + K0 (6.11) 
have been observed, where the Σ 0 decays very fast into a Λ0 plus 
a photon (A.M.Shapiro 1956 and references given there, Budde et 
al. 1956). Evidence for a E0 has not been reported, but in the 
present experimental situation this cannot yet be taken as an indication 
against the ideas of Gell-Mann and Nakano and Nishijima. 

In a model according to table 6.3, only reactions with Δt3 = 0 
are allowed to be fast, reactions having Δt3 = ±½ are required to 
be slow, and Δt3 = ±1 is forbidden. It is not difficult to see 
that these selection rules correspond to the strangeness selection 
rules discussed above. For if for nucleons, π-mesons, and 
curious particles the charge divided by |e| is denoted by q, then 
by tables 6.2 and 6.3 the strangeness and the third component of 
isobaric spin are related according to 

q = t3 + ½S + ½ε, (6.12) 
where ε equals 0 for bosons, 1 for nucleons and hyperons, and -1 
for antinucleons and antihyperons. In (6.12) it is understood 
that for a particle and its antiparticle q, t3, S, and ε take 
opposite values. For a combination of particles the resultant ε 
signifies the number of heavy particles, i.e. the number of nucleons 
and hyperons minus the number of antinucleons and anti-
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hyperons. If i t i s now assumed tha t the t o t a l charge q and the 
heavy-particle number ε are conserved in any reaction, i t follows 
that the above select ion rules for t 3 and S are fully equivalent. 

6 .5 . Charge independence 

It will be observed from the preceding section that much experimental 
evidence on curious-particle production and decay 
can be success fu l ly expressed in terms of a quan t i ty known as 
strangeness. I t seems reasonable to an t ic ipa te that the so-cal led 
strangeness s e l ec t i on ru le s , i . e. the ru les on f a s t , slow, and 
forbidden reac t ions , wi l l play a fundamental ro le in any future 
theory of elementary particles. By contrast, the current isobaric-spin 
classification of curious particles is far from established. 
Since, for i n s t ance , the assignment t = 0 for Λ0 i s d i r e c t l y 
coupled to the hypothes is t h a t Λ0 e s s e n t i a l l y has no charged 
coun te rpa r t , and t h a t i t i s produced in a charge- independent 
react ion, i t i s our impression tha t as regards the i sobar ic-spin 
model indicated in table 6.3 the question of charge independence 
i s extremely c ruc i a l . In the l i g h t of our present inves t iga t ion 
i t seems appropriate to discuss t h i s point in some de ta i l . 

The hypothesis of charge independence in the Gell-Mann and 
Nakano and Nishijima sense could be tested most directly by comparing 
the reactions 

K- + d → Σ- + p, 
(6.13) 

Κ- + d → Σ0 + n. 

It may be seen from a reasoning analogous to the one indicated 
for the reactions (6.01) that if table 6.3 is valid and if charge 
independence applies to all fast reactions, the processes indicated 
in (6.13) must occur in the ratio of 2 to 1. The test 
(6.13) and similar more complicated tests have been proposed by 
Lee (1955), Case, Karplus, and Yang (1956), and Feldman (1956). 
To our knowledge it has not yet been possible, however, to check 
any of the predicted relationships between curious-particle processes. 

It has been discussed by Dalitz (1955b) that the study of 
binding energies in hyperfragments, i.e. nuclei containing a bound 
hyperon, generally a Λ0-particle, may provide a test of the proposed 
t = 0 assignment for Λ0. However, as far as we know the 
available evidence on hyperfragments does not yet permit a conclusion 
pertaining to this point either. 
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Since through the associated-production interactions curious 
particles are rather strongly coupled to nuclear matter, a possible 
charge dependence of any of these interactions would somewhat 
destroy the presumed charge independence of pion-nucleon 
forces. Hence accurate measurements of pion-nucleon phenomena 
will in principle give information on the behaviour of curious 
particles as regards charge independence. Now it was pointed out 
in section 6.1 that the charge independence of pion-nucleon 
interactions at low energies has been established beyond reasonable 
doubt. This does not permit one, however, to conclude that 
all fast reactions are charge independent. Concerning the role 
of curious particles in low-energy phenomena, it has been remarked 
by Bethe and de Hoffmann (1955), II, sec. 51h, that even at an 
energy of about 1000 MeV in the center-of-mass system the cross-section 
for production of curious particles in pion-nucleon 
collisions is only a few per cent of that for pion production. 
Hence although virtual processes such as 

p → Λ0 + K+, 
(6·14) 

n → Λ0 + K0 
are e s s e n t i a l l y l i ke ly by the s t rangeness s e l e c t i o n ru le s , the 
coupling constant for (6.14) might be considerably smaller than 
the coupling constant for the pion-nucleon interact ion. 

Even i f the i n t e r a c t i o n (6.14) i s s t ronger than an t i c ipa t ed 
by Bethe and de Hoffmann, the v i r tua l production of curious particles 
according to (6.14) can only cause a short-range interaction, 
the range being of order ħ/mkc or less. In this connection 
i t i s remarked by Bethe and de Hoffmann tha t on account of the 
in te rac t ion with pions the forces between nucleons a t d is tances 
smaller than 0.4ħ/mπc appear to be s trongly repuls ive . As a 
r e s u l t low-energy nuclear phenomena w i l l not be s u b s t a n t i a l l y 
influenced by the v i r tua l production of curious p a r t i c l e s . 

Concerning pion-nucleon s c a t t e r i n g i t i s po in ted out t ha t 
in the S-state of total isobaric spin 3/2 there is a strong repulsion 
between π-mesons and nucleons, the range of which is about 
2ħ/mNc. For P-wave sca t te r ing the in teract ion i s a t t r a c t i v e i t i s 
t rue, giving a resonance near 200 MeV ascribed to the P 3 / 2 - s t a t e 
of t = 3/2, but as regards P - s t a t e s i t i s argued by Bethe and 
de Hoffmann that the main in te rac t ion comes from the production 
of an addit ional v i r tua l π-meson, which requires much less energy 
than that of a v i r tua l heavy meson. 

Perhaps the l a t t e r reasoning i s not fully convincing, par t icu-



85 VI, 6.6 

larly as regards the s-wave interaction of t = ½, which seems to 
be attractive at low energy, cf. Bethe and de Hoffmann (1955), 
II, sec. -33i, but notwithstanding this it is generally felt that 
from low-energy data one cannot draw any conclusion concerning 
the charge-independence character of curious-particle phenomena. 
As a matter of fact, it was just this consideration that made the 
above-mentioned authors (Lee 1955, Case, Karplus, and Yang 1956, 
Feldman 1956) propose alternative tests. Obviously it should 
be possible to obtain information on charge independence from 
experiments in the high-energy region, but here the measurements 
are still very inaccurate. 

6.6. Concluding remarks 
If all fast reactions should be shown to be charge independent 

in the Gell-Mann and Nakano and Nishijima sense, the isobaric-spin 
model given in table 6.3 would provide an appropriate starting-point 
for future investigations. Since it implies that there 
are fermions of integral isobaric spin as well as bosons of half-integral 
isobaric spin, one could not reasonably maintain then 
that S ' would represent the isobaric spin. The operator S ' might 
have quite another interpretation, but at present we have no 
particular suggestion as to that point. 

If, by contrast, charge independence in the sense of table 6.3, 
and likewise charge symmetry, should fail as a guiding principle, 
it would not be easy to determine the role of the isobaric spin. 
There would be no compelling reason, for instance, to attribute 
t = 0 to Λ0. As a matter of fact, the concept of isobaric spin 
might be altogether irrelevant to curious particles. If it were 
assumed that it might be meaningful to incorporate such particles 
in an isobaric-spin scheme, it should be borne in mind that it is 
not known whether all members of the same isobaric multiplet must 
have the same strangeness. 

Considering that for the present some speculation seems inevitable 
anyway, we would suggest that it be investigated whether 
under the assumption that S' were the isobaric spin one could 
develop a reasonable theory of elementary particles. As a first 
step at describing curious particles in such a theory one might 
examine the isobaric-spin classification proposed in table 6.4. 

If this scheme should be correct, the strangeness and the 
third component of isobaric spin would be related according to 

q = t3 + S + 1 
ε. 

q = t3 + S + 2 ε. 
(6.15) 
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Table 6.4 
Tentative isobaric-spin classification 

Particle K0 K+ ((K++)) ((K--)) Κ- ( 0) 
t 1 1 
t3 -1 0 1 -1 0 1 

Particle ((Λ-)) Λ0 ((Σ--)) Σ- (Σ0) Σ + ((Ξ--)) Ξ-

t ½ 3/2 ½ 

t3 -½ ½ -3/2 -½ ½ 3/2 -½ ½ 

Symbols in single brackets refer to pa r t i c l e s the 
existence of which is not fully established. 
Symbols in double brackets refer to pa r t i c l e s 
which have not been observed. 

Hence as regards the strangeness select ion rules , table 6.4 would 
be equally useful as the model due to Gell-Mann and Nakano and 
Nishijima provided the usual c r i t e r i o n Δt3 = 0,±½, or ±1 for 
fast , slow, or forbidden reac t ions were simply replaced by 
Δt3 = 0, ±1, ±2. Table 6.4 e s s e n t i a l l y d i f f e r s from the l a t t e r 
model, however, in that i t has room for hypothet ica l p a r t i c l e s 
K++, K--, Λ-, Σ--, and Ξ--, none of which has thus far been observed. 
If table 6.4 were tentatively adopted as a starting-point 
for fur ther work, one should account for the non-appearance of 
these particles. Naturally one would try to invoke electromagnetic 
self-energy effects in this connection. As a matter of fact, 
table 6.4 has been constructed in such a way that within each multiplet 
the unobserved particle is more highly charged than the 
observed ones. Table 6.4 also d i f fe rs from the model proposed by 
Gell-Mann and others in tha t i t does not require the existence of 
a Ξ0. 

As regards the s t rong associated-production coupling between 
curious particles and nuclear matter, we would suggest to consider 
a charge-independent interaction involving all particles 
entered in table 6.4, and, superimposed thereupon, an electromagnetic 
interaction which accounts for the non-appearance of the 
highly-charged p a r t i c l e s . Obviously the to t a l i n t e rac t ion would 
thus not be charge independent. Yet our scheme has the a t t r ac t i on 
of retaining the charge independence of the specific associated-production 
coupling, which as an ordering principle commends 
i t s e l f through i t s s implici ty. I t will be observed, however, tha t 
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quant i ta t ive ly charge independence according to table 6.4 is not 
ident ica l with charge independence in the Gell-Mann and Nakano 
and Nishijima sense. 

From a computational point of view the present suggestion i s 
rather complicated, i t i s t rue. However, if the coupling between 
curious p a r t i c l e s and nucleons should indeed be only a few per 
cent of that between nucleons and π-mesons (Bethe and de Hoffmann 
1955, I I , sec. 51h), then neglecting electromagnetic in terac t ions 
- which are weaker than the pion-nucleon in te rac t ion by a factor 
of the order of 1/137 - as compared with the c u r i o u s - p a r t i c l e 
interaction would not be reliable anyway. Unfortunately, if electromagnetic 
effects should considerably distort the associated 
production, it would be very difficult to check the basic hypothesis 
of charge independence. 

If the Σ-par t i c les should have s ' = 3/2, they could not be 
described in terms of the r ep re sen t a t i on D(½,0) D(0,½); one 
should use a more complicated wave function than the Dirac one. 
Now i t i s not known a t present whether the ∑'s s a t i s fy Di rac ' s 
equation. As a matter of fact , observat ions reported by Fowler 
et a l . (1955) and by Walker and Shephard (1956) suggest that the 
spins both of Λ0 and of the ∑'s are a t l eas t 3/2. This has not been 
confirmed, however, by the experiments of Budde e t a l . (1956). 
If the Σ -par t i c les should be of high spin, using a many-component 
wave function which transforms according to a complicated representation 
of the Lorentz group would be inevitable anyway. The 
c l a s s i f i c a t i o n s ' = 3/2 could be eas i ly taken in to account then. 
If, on the o ther hand, the ∑'s should be elementary p a r t i c l e s 
of spin ½, one should cons t ruc t a wave equation for spin ½ and 
s ' = 3/2 s t a r t i n g , for i n s t ance , from a r e p r e s e n t a t i o n such as 
D(1,½) D(½,1). At present i t cannot be said whether the desired 
equation should be equivalent to the Dirac one. 

In connection with the c lass i f i ca t ion s ' = 3/2 i t should also be 
examined whether the ∑'s ac tua l ly are elementary p a r t i c l e s . If 
table 6.4 should be val id and if a Σ -pa r t i c l e should be regarded 
as a compound of a nucleon and a K -- or a 0-meson (Goldhaber 
1956), or of a Λ-part icle and a π-meson, which i s possible by the 
strangeness select ion ru les , the c l a s s i f i ca t ion s ' = 3/2 would give 
no formal complications. The angular momenta S' of the constituent 
particles could be coupled then to a resultant having s' = 3/2 
i r r e s p e c t i v e as to whether the ∑'s are of high sp in . In t h i s 
respect a compound p a r t i c l e of spin ½ can be discussed more 
easily than an elementary one owing to the fact tha t whereas for 
elementary p a r t i c l e s we have ( J + ) 2 = ( J ' + ) 2 and ( J - ) 2 = ( J ' - ) 2 , 
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cf. (4 .23) . for compounds primed and unprimed operators are not 
so intimately related. As J+ and J- formally behave as angular-momentum 
operators in three dimensions, this may be seen directly 
from section 3.7. 

I t should be emphasized that i f a l l fas t reac t ions should be 
shown to be charge independent in the Gell-Mann and Nakano and 
Nishijima sense, table 6.4 would not be tenable. In the opposite 
case, however, the present state of our experimental and theoretical 
knowledge would not suffice to decide for any particular 
i soba r i c - sp in c l a s s i f i c a t i o n . We feel t h a t i t would be almost 
impossible in the l a t t e r s i t u a t i o n to extend the theory of the 
isobaric spin, and, in fact, the theory of "elementary" pa r t i c l e s , 
beyond i t s present empirical s t a t e unless a formalism were found 
which intrinsically fits a new spin into the description of nature. 
Since such a formalism has been developed in the foregoing 
pages, i t i s hoped that the present inves t igat ion may contr ibute 
to a be t te r understanding of "elementary" p a r t i c l e s . 



N O T E A D D E D IN P R O O F 

After the present paper had been s e t up, s t rong evidence (Wu 
e t a l . 1957, Garwin et a l . 1957) has been reported to the effect 
that p a r i t y i s not conserved in decay i n t e r a c t i o n s . I t i s now 
assumed tha t only s t rong and electromagnet ic i n t e r a c t i o n s are 
invariant under spa t ia l ref lec t ion, ra ther than a l l in te rac t ions 
as has been suggested a t the beginning of section 4.6. At present 
i t appears qui te poss ib le that there are but four K-pa r t i c l e s , 
K0, K+, K-, 0 in the no ta t ion of s ec t ion 6 . 3 . which a t times 
d i s in teg ra te as i f they had even pa r i ty , then again as if t h e i r 
parity were odd. This does not imply, however, that for K-particles 
parity is not a meaningful concept. According to the ideas 
presented by Lee and Yang (1956), who proposed the experiments 
t ha t have led to the new view on p a r i t y , the p a r i t y of the Λ0  

r e l a t i v e to the nucleon i s a matter of d e f i n i t i o n . Once i t i s 
defined, the parities of other curious particles can be determined 
from data on strong interactions. If this idea is correct, all 
pa r t i c l e s which take par t in strong in te rac t ions , i . e . nucleons, 
π-mesons, and cur ious p a r t i c l e s , should s t i l l be described by 
wave functions the components of which transform among themselves 
under s p a t i a l r e f l e c t i o n . Hence as regards such p a r t i c l e s i t 
s t i l l follows from section 4.7 that in a formalism with Eulerian 
angles they can only be described in a sa t i s f ac to ry way provided 
wave functions are chosen the components of which are all attributed 
the same s' and m'. In other words, in a formalism with 
Eulerian angles nucleons, π-mesons, and curious p a r t i c l e s should 
s t i l l be characterized by an additional spin S ' . If, on the other 
hand, among the l i g h t fermions the re should be p a r t i c l e s the 
par i ty of which cannot be determined, then perhaps the s p a t i a l 
reflect ion would not turn such pa r t i c l e s into themselves. To give 
a simple example, one could en t e r t a in the idea of a Dirac wave 
function the D(½,0)-components of which have s ' = ½, m' = ½, 
while the D(0,½)-components have s ' = ½, m' = -½. After spa t i a l 
reflection the D(½,0)-components of that wave function would have 
m' = -½, the D(0,½)-components would have m' = ½. There would 
thus be a formal distinction between the reflected and the unreflected 
wave function, which might have something to do with 
the observed asymmetry of weak in t e r ac t ions . Obviously the wave 
function under considerat ion could not be a t t r i b u t e d an overal l 
spin S ' . Perhaps t h i s i s not undesirable , as the l i g h t fermions 
thus far seem to evade an isobaric-spin c l a s s i f i ca t ion . 



S U M M A R Y 

After some preparatory work on rotations and generalized 
Eulerian angles, the transformations of special relativity are 
discussed in terms of six Eulerian angles in Minkowski space. 
Families of functions Ζ are constructed which transform linearly 
among themselves under rotations in space-time as well as under 
spatial reflection. It is found that for any finite-dimensional 
representation of the full Lorentz group there exist several 
families of functions Z, which are distinguished from each other 
by two family-indices. The family-indices are shown to be the 
eigenvalues of a new three-dimensional angular-momentum operator, 
S ', and of one component thereof. Any component of S' commutes 
with any operator which generates an ordinary Lorentz transformation. 
It is essential that the eigenvalues of S' are integral for 
one-valued, half-integral for two-valued representations of the 
Lorentz group. 

If the six Eulerian angles are interpreted as spin variables, 
spinors can be replaced by functions Z. In a formalism in which 
wave functions for spinning particles are expressed in terms of 
functions Z, the eigenvalues of S' should be integral for bosons, 
half-integral for fermions. In such a formalism the angular momentum 
S' commutes with any operator which occurs in the theory 
of free particles. It is now suggested that S ' might represent a 
new spin. More particularly, S' is tentatively interpreted as the 
isobaric spin. In view of the connection between S ' and the spin, 
this interpretation is incompatible with the isobaric-spin classification 
of heavy unstable particles which has been proposed by 
Gell-Mann (1953) and by Nakano and Nishijima (1953). However, it 
is pointed out that the present state of our experimental knowledge 
does not yet permit a decision in favour of any particular 
isobaric-spin classification. Much experimental and theoretical 
work will be required before the possible interpretation of S ' 
can be established. 
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STELLINGEN 

I 
Wordt de in paragraaf 2.3 van d i t p roe f sch r i f t genoemde determinant 

d e t [ Λ d a ( ω ) Λ b
d ( ω ) / ω r ] 

aangeduid met Δ, dan kan de grootheid 

dτ= Δ d ω 1 d ω 2 . . . d ω n ( n - 1 ) / 2 

worden beschouwd als het bij de kromlijnige coordinaten ω behorende  
„volume-element". De in paragraaf 2.3 ingevoerde operatoren 
J a b voldoen aan de betrekking 

JabJab = -
1 Σ g a c g b d 

Δ Ωq
ab Ωr

cd 
. JabJab = - Δ 

Σ g a c g b d ωq 
Δ Ωq

ab Ωr
cd 

ωr 
. JabJab = - Δ q , r g a c g b d ωq 

Δ Ωq
ab Ωr

cd 

ωr 
. 

I I 
Is a een eindig pos i t i e f getal, dan bes taa t bi j elke wil lekeurig 
kleine posi t ieve ε en elke even functie F ( t ) , die gedefinieerd en 
continu i s in het in te rva l -a t a, een functie f(x) zodanig 
dat in het genoemde interval uniform in t geldt 

|F( t ) - 1 f (x)J 0 ( tx)xdx | < ε. |F( t ) - ∫ f (x)J 0 ( tx)xdx | < ε. |F( t ) -
0 

f (x)J 0 ( tx)xdx | < ε. 

III 
Staafjes met lengte a, die elkaar niet kunnen overdekken, worden 
volgens het toeval verdeeld over een oneindig lange rechte lijn. 
Is de gemiddelde tussenruimte tussen de uiteinden van twee opeen-volgende 
staafjes gelijk aan λ, dan is de verwachtingswaarde van 
de afstand van een willekeurig gekozen oorsprong Ο tot het nde 
staafjesmidden rechts van Ο gelijk aan 

n(a+λ) - a( 1 a+λ)/(a+λ). n(a+λ) - a( 2 a+λ)/(a+λ). 

IV 
De argumenten, waarmee Lepore duidelijk tracht te maken dat het 
aanbeveling verdient om aan de derde component van de isobarische 
spin van proton en antiproton dezelfde waarde toe te kennen, zijn 
niet steekhoudend. Lepore's vergelijkingen (5') en (5") voor het 
antinucleon, die ook zijn onderzocht door Györgyi, kunnen op een-voudige 
wijze zo worden veranderd dat de door Györgyi gesigna-



leerde discrepantie tussen de eendeeltjesbeschrijving en de 
gequantiseerde veldentheorie van het nucleon wordt opgeheven. 

Lepore, J.V. (1956), Phys. Rev. 101, 1206. 
Györgyi, G. (1956/57), Nuclear Physics 2, 267. 

V 
De opmerking van Umezawa dat zogenaamde contravariante en complex 
geconjugeerde spinoren bij tijdomkeer niet onder elkaar transformeren 
is onjuist. 

umezawa, H. (1956), Quantum field theory, North-Holland 
Publishing Company, Amsterdam, p. 53. 

VI 
De beschouwingen van Wentzel naar aanleiding van het impulsmoment 
van een vectorveld geven geen juist inzicht in het begrip spin. 

Wentzel, G. (1949), Quantum theory of fields. Inter-science 
Publishers, Inc., New York, p. 87. 

VII 
In tegenstelling tot hetgeen is gesuggereerd door Lee en Yang 
volgt uit de omstandigheid dat de pariteit niet behouden blijft 
bij vervalsprocessen geenszins het bestaan van „rechtse" en 
„linkse" protonen. 

Lee, T.D., en Yang, C.N. (1956), Phys. Rev. 104, 254. 

VIII 
Het zou in een behoefte voorzien, wanneer de commissie voor symbolen, 
eenheden en nomenclatuur van de,,International Union for 
pure and applied Physics" zich duidelijk zou uitspreken over de 
vraag of zij de operatie „differentiëren naar x" aangegeven zou 
willen zien met d /dx dan wel met d/dx. 

Document U.I.P. 6 (1955), Ned. T. Natk. 21, 369. 
Doc. S.U.N. 56-7 (1956). Ned. T. Natk. 22, 368. 

C. van Winter, 26 februari 1957 


