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Abstract

One of the fundamental problems of gravity to be an infinite range
interaction is whether it has a gauge group via the internal structure,
so that Einstein type theories couldn’t explain it yet. Gauge groups in
Yang - Mill type theories, i.e. weak [11] and strong [3, 8] interactions, are
generally non - Abelian Lie group via the Hermitian structure induced
by complex valued smooth vector fields. A group labeled by U(1)⊗Ũ(d)
obtained as the reduction of unitary Lie groups is presented as candidate
a gauge group for each behavior at large scale and at small scale of a
gauge field, in this context, integrated Einstein - Yang - Mills formalism
on a unique geometrical frame is given. Also as seen that the (anti-
) self dual gauge theory of the group G = U(1) ⊗ Ũ(4) is indeed a
G = U(1) theory in real 4 - dimension, i.e the Maxwell theory for the
electromagnetism to be an infinite range interaction.
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1 Introduction

According to Georgi and Glashow model, all fundamental (namely electromag-
netic, weak and strong) interactions are severally representations of a unique
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group of unified fields [4]. Except for electromagnetic interation others are
finite range interactions and all interactions in this context are a gauge the-
ory of the unitary Lie group via internal symmetries in the quantum regime.
However the theory of the gravity to be an infinite range interaction which
protecting the validity is currently Einstein’ s theory via the Lorentz group
SO(1, 3) of external symmetry on a spacetime manifold of real 4 - dimension
and the quantum behavior of this interaction is still suspense, because it has
not been seen a gauge theory via internal symmetry, i.e. unitary Lie groups.
In Einstein type theories, the gravity is viewed as coming from the Lorentz -
Poincarè - affine groups of external symmetries (more detail can be found in [6]
and [7]) as relating the orthogonal group. In this text one aims construction
of a gauge theory which gives the behavior a gauge field each at large scale
(asymptotical distance) and small scale (singularity).

Although the unitary Lie groups to be the gauge groups of non - Abelian
gauge filed are via the Hermitian structure, the existing of the internal symme-
try of the gravity is suspense at the present day. Considering some morphisms
of the Lie algebras of the real orthogonal groups to some unitary Lie groups,
for example so(3) ∼= su(2) and so(4) ∼= su(2) ⊕ su(2), one may be imagined
to create a gauge group which represent each behavior at large scale and at
small scale of a gauge field. Let G be a Lie group with Lie algebra g. If Θa are
the generators of this algebra and αa are some smooth scalars with complex
value, then a vector field on Lie algebra g is defined by Z = αaΘa, where
a = 1, · · · , dim[G]. As known that the Lie algebra u(d) of the group U(d) has
the morphism u(d) ∼= u(1) ⊕ su(d). Hence, any element of the U(d) can be
written as g = e% ⊗ eZ ∈ U(d), where e% ∈ U(1), eZ ∈ SU(d).

The number of the generators of the group SU(d) having non vanishing
diagonal elements are d−1, i.e Θ3 for the SU(2), Θ3,Θ8 for SU(3), Θ3,Θ8,Θ15

for SU(4), etc. Since hermitian matrices are traceless, Tr[Z] = 0, where Z is
a hermitian matrix, the parameters accompanying the generators having non
- vanishing diagonal elements can be set as zero. Then, under an exponential
mapping exp : g → G any element g ∈ G can be written in exponential
representation such that g = eZ ∈ G. Also, the number of the non - diagonal
elements of an unitary Lie group U(d) is d2−d

2
+ d2−d

2
= d2−d, where each d2−d

2

belongs to the hermitian conjugate. Then one can say that the set of all eZ

occur a group shown by Ũ(d) with d2−d
2

generators: eZ ∈ Ũ(d).

Starting point is the group SU(4) because of the so(4) ∼= su(2) ⊕ su(2) ⊂
su(4). The group SU(4) was presented by Wigner to study nuclear struc-
ture [2] [10]. The generators of SU(4) group in Wigner’ s sense serve four-
fold degeneracy of nuclear energy level and six labels requiring by reduction
SU(4) ⊃ SU(2) ⊗ SU(2) is served by Draayer using a another different way
[2]. Consider the morphism of the group U(4) such that U(4) ∼= U(1)⊗SU(4).
If exp(%) ∈ U(1), where % ∈ C∞(M → C), any element g(%, α) ∈ U(4) can be
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written such that exp(%) ⊗ exp(αaΘa) ∈ U(4), where αa ∈ C∞(M → C) and
Θa are the generators of the SU(4), on the other words Gell - Mann matrices
for the special unitary Lie groups. The Gell - Mann matrices Θa of the group
SU(4) are given in [5].

Consider the group Ũ(4). If Θa are the generators of this algebra belonging
to this group and αa ∈ C∞(M → C), then a vector field on Lie algebra g of the

group Ũ(4) is defined by Z = αaΘa, where a = 1, · · · , dim[Ũ(4)]. Then, any

element g ∈ Ũ(4) can be written in exponential representation exp : g→ Ũ(4)

such that g = eZ ∈ Ũ(4). Thus, one gets

Z =


Z00 α1 − iα2 α4 − α5 α9 − iα10

α1 + iα2 Z11 α6 − iα7 α11 − iα12

α4 + α5 α6 + iα7 Z22 α13 − iα14

α9 + iα10 α11 + iα12 α13 + iα14 Z33

 , (1)

where diagonal elements are labelled as

Z00 = α3 + α8
√

3
+ α15
√

6
, Z11 = −α3 +

α8

√
3

+
α15

√
6
,

Z22 = −2α8
√

3
+ α15
√

6
, Z33 = −3α15

√
6
. (2)

Since this matrix is Hermitian, in order to (α4 − α5) = α4 + α5 the term α5

must be complex valued. Also, other terms may be real or complex. However,
it must be selected some special values for αa. Thus, for α4 and α5 it may be
set α4 = 0, α5 = iα̃5. Let’s consider that all term αa are real valued complex
smooth functions, that is with zero imaginary part: α1 = α6 = α9 = α11 =
α13 = 0. Because unitary matrices are traceless, Tr[Z] =

∑
i Zii = 0, (i =

0, · · · , 3), the parameters in diagonal elements can be chosen as α3 = α8 =
α15 = 0. Hence the Z are obtained such that

Z = Y0


0 Y2 Y5 Y10

Y 2 0 Y7 Y12

Y 5 Y 7 0 Y14

Y 10 Y 12 Y 14 0

 , (3)

where Y0 = e%, Y5 = −iα̃5 and Ya = −iαa for the indices a = 2, 7, 10, 12, 14
from the generators of the SU(4). The generators of the Ũ(4) become Θ2, Θ5,
Θ7, Θ10, Θ12 and Θ14, that of the group SU(4). If this generator is rearranged

in new indices for the group Ũ(4), then the indices (2,5,7,10,12,14) belonging

to the group SU(4) are set for Ũ(4) such that 2 → 1, 5 → 2, 7 → 3, 10 → 4,
12 → 3, 10 → 4, 12 → 5, 14 → 6. Also, the parameters Yi replace some
complex valued smooth functions, so that Y0 = e% and Yi = φi ∈ C∞(M → C),
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where i = 1, · · · , 6. Then, the group Ũ becomes with six parameters, that is
with 6 dimensions. Hence, the generators of the group Ũ(4) are

θ1 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , θ2 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , θ3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 ,

θ4 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , θ5 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , θ6 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 .(4)

The non vanishing structure constant are also obtained from that of the SU(4)
given in [5] such that f 1

2,3 = f 1
4,5 = f 2

4,6 = f 3
5,6 = 1/2.

1.1 Some Notations

Let M be a smooth manifold of real n dimension with Riemannian metric
and boundary, also oriented. Let TM : {∂µ} and T ∗M : {dxµ} be tangent
and cotangent bundles on this manifold with coordinates basis, where xµ ∼=
Rn are local coordinates and ∂µ = ∂

∂xµ
. The exterior derivative operator is

d : Λr(M) → Λr+1(M) = ∂µ(•) · dxµ, where Λr(M) are the bundle of the
exterior r - forms on this manifold: Λr(M) = C∞(

∧r T ∗M). Also, if K is any
geometrical object, i.e. adjoint bundle, vector and Lie algebra, the bundle of
K valued exterior r - forms is observed by Λr(M,K) = C∞(K ⊗

∧r T ∗M).
The Hodge duality operator is ∗ : Λr(M)→ Λn−r(M).

Let G be a Lie group and V a vector space associated to a principal G -
bundle [π : P → M,G] on a smooth manifold M . The the associated vector
bundle is written as F = P ×Π V where Π : G→ End(V ). Hence, the bundle
of the F exterior forms is Λr(M,F) = C∞(F⊗

∧r T ∗M). Let ∇ : Λ0(M,F)→
Λ1(M,F) ne a connection on this bundle with A ∈ Λ1(M,F) is connection 1 -
form. Then its covariant exterior derivatives d∇ : Λr(M,F)→ Λr+1(M,F) is

d∇ = d +
1

2
[A, •]∧. (5)

The curvature R : Λ0(M,F)→ Λ2(M,F) of the connection ∇ is then

R = d∇A (6)

together with Bianchi identity

d∇R = 0. (7)
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2 Behavior At Asymptotical Distance And Sin-

gularity

Let M be a smooth manifold and P be a principal G - bundle on this manifold.
Consider a connection 1 - form on this manifold generated by the gauge group
G = U(1)⊗ Ũ(d) and together with its curvature 2 - form

A = g−1dg + β, R = dA+
1

2
[A,A]∧, (8)

where β = βiθi ∈ Λ1(M, g) be an auxiliary non - Abelian 1 - form, β ∧ β 6= 0.
Let ϕ ∈ C∞(M) is any smooth scalar and β = dϕ ∈ Λ1(M). Then [β, β]∧ = 0
and dβ ≡ ddϕ = 0, that is curvature 2 - form vanishes: R = 0. Indeed this
situation comes from the U(1) part of the G = U(1)⊗ Ũ(d). Since e% ∈ U(1)
and the % ∈ C∞(M → C) in is a smooth complex scalar, dϕ isn’t Lie algebra
valued and it becomes then equivalent by β = dϕ ∼= d%. Hence, the connection
1 - form potential of an infinite range interaction at asymptotical distances
becomes like a scalar, so that its gradient of vanishes at |x| → ∞, and so one
can say that the connection 1 - form is flat:

lim
|x|→∞

β → 0 (or β → dϕ), and A ∼ g−1dg, and R = 0. (9)

As seen that the group U(1) doesn’t any contribution to the curvature 2 - form,

then the auxiliary 1 - form β can be written as depending only the part Ũ(d),

so that β ∈ Λ1(M, ũ), where ũ labels the Lie algebra of the groupŨ(d). Thus
the behavior at small scale of the infinite range interactions with a gauge group
G = U(1)⊗ Ũ(d) is controlled by auxiliary 1 - form β ∈ Λ1(M, ũ), on the other
hand, at asymptotical distance one by the Abelian part the β = dϕ ∼= d%.
Then, at asymptotical singularity

lim
|x|→0

β ∈ Λ1(M, g), and A = g−1dg + β (or A = β), and R 6= 0. (10)

Let’s suppose

β =
η

|x|
+ dϕ, (11)

where ϕ ∈ C∞(M) and η ∈ Λ1(M, g), so that

η = ηiµθidx
µ, lim

|x|→0 and ∞
ηiµ → 0, (12)

where θi are the generators of the g. Then, from the L’ Hospital rule one writes

lim
|x|→0

ηiµ
|x|
→

d(ηiµ)/dx

1
≡ dη = ∂νη

i
µdx

ν , (13)
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and so at asymptotical singularity a gauge field stress is naturally induced.
Hence if

A = g−1dg +
η

|x|
+ dϕ, (14)

then the curvature 2 - form at the singularity and asymptotical distance, re-
spectively, are

R→ dη for lim
|x|→0

A, and R = 0 for lim
|x|→∞

A. (15)

Indeed this approach gives an integrated model of the infinite range inter-
actions of the behaviors at small and large scales. Thus, as seen that the
connection 1 - form is Newtonian / Coulombian style (dβ = 0) at large scale.
Otherwise, if dβ 6= 0, then it is a non - Abelian character, and so it has the
curvature 2 - form such that

R = dβ +
1

2
[β, β]∧. (16)

The theories of the gravity from Newton to metric - affine contain Newton’
s constant as coupling constant, so that it is within in Einstein - Hilbert action,
but pure Yang - Mills type gauge approaches for the gravity over a manifold
of real 4 dimension it doesn’t contain any coupling constant of interaction and
the Yang - Mills invariance vanishes on real 4 dimension and it doesn’t any
contribution to field equations [9]. Despite this, a formalism including the
Yang - Mills invariance on real 4 - dimension can be investigated.

Let M be a smooth manifold of real n = 2r dimension and Λr(M) be the
bundle of exterior r - form. If Hodge duality operator ∗ : Λr(M ∼= Rn=2r) →
Λr(M ∼= Rn=2r) acts on any exterior r - forms such that ∗2 = (−1) r, then the
exterior r - forms serve conformally invariance if the manifold M is endowed
by conformal metric [1]. If the metric of the manifold M is g, the conformal
structure may be written as g̃ = λ2g, where λ is the conformal (smooth)
parameter. Then, the Hodge duality operator ∗ acts on an exterior form
B ∈ Λr(M ∼= Rn=2r) such that ∗B = λ−2rB [1]. For r = 2, the dimension of
the manifold is real 4 and the Hodge duality on he curvature 2 - form has a
conformal invariance:

∗R = λ−4R. (17)

The importance of this case can appear indeed under the the group G =
U(1) ⊗ Ũ(d), so that the group U(1) behaves like a conformal action to the

Ũ(d). Hence, given a principal G = U(1)⊗ Ũ(4) - bundle [π : P 1 →M,G] on
a smooth manifold M of real 4 - dimension with conformal metric, g̃ = e2%g,
where λ = e% ∈ U(1) is the conformal parameter, a tangent space TpM at any

point p ∈M presents an endomorphism End(TpM) ∈ Ũ(4). Hereafter we will
show by V the tangent space TpM . Then one has a vector bundle associated
to the principal bundle P 1: F1 = P 1 × V/G.
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Let ∇ ∈ Λ1(M,F1) be torsion free connection on the bundle F1, so that if ε
is a dual base 1 - form then d∇ε = 0. Hence the Einstein - Hilbert Lagrangian
is

LEH(ε, A,R) = g1Tr[R ∧ ∗(ε ∧ ε)]. (18)

The Hodge duality of the curvature R ∈ Λ2(M,F1) in real 4 - dimension is
∗R ∈ Λ2(M,F1). Then,considering the eq. (17),

∗R = e−4%R (19)

and Yang - Mills Lagrangian is written as

LYM(A,R) = g2Tr[R ∧ ∗R] = g2e
−4%Tr[R ∧R], (20)

g1, g2 are some constants. Also let LMat(ε, A) be a matter Lagrangian. Ne-
glecting surface terms, the variation with respect to the ε and A of the action

S[ε, A] =

∫
M

LEH(ε, A,R) + LYM(A,R) + LMat(ε, A) (21)

reads then Yang - Mills with matter and Einstein equations, respectively, are
written as

g2d∇(e−4%R) +
1

2
S = 0, (22)

g1R ∧ ∗(ε ∧ ε ∧ ε) + T = 0. (23)

where S = δLMat

δA
and T = δLMat

δε
are the current forms belonging the matter

field.
The connection and its curvature transform under the conformal group

e% ∈ U(1) such that A′ = A+ e−%d(e%) ≡ A+ d% and R′ = R. Considering the
gauge potential given in eq. (15) and the 1 - form β in (11), this conformal
transformation be important. Therefore, without the conformal action U(1),
that is % → 0,it becomes ∗R = ±R and d∇(∗R) = d∇R = 0. Then one can
mention from (anti-) self dual gauge theory.

3 (Anti-) Self Duality In Real 4 - Dimension

Consider a principal G - bundle [π : P 0 →M,G = U(1)⊗ Ũ(4)]. Also given a
vector bundle associated to the P 0: F0 = P 0 × V/G. A connection on the F0

is ∇ : Λ0(M,F0)→ Λ1(M,F0) together with the covariant exterior derivative

d∇ = d +
1

2
[A, •]∧, (24)
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where A ∈ Λ1(M,F0) is connection 1 - form. Then the curvature of the
connection ∇ is R = d∇A with the Bianchi identity d∇R = 0. Here, non -
existing the conformal action, that is without U(1), the Hodge duality of the
curvature 2 - form given in eq. (17) becomes ∗R = ±R in real 4 dimension, on
the other word the curvature has (anti-) self dual gauge field. And so the Yang
- Mills equation of the (anti-) self dual gauge field (at the same time it may
be corresponded by without matter) and the Einstein equation are written as

d∇(∗R) = d∇R = 0, (25)

g1R ∧ ∗(ε ∧ ε ∧ ε) + T = 0. (26)

Here eq. (25) is also known as instanton or Yang - Mills equation at vacuum.
However, eq.(26) is the Einstein equation with matter. More explicitly, the
Yang - Mills equation is written as

d(∗R) +
1

2
[A, ∗R] = 0. (27)

The exterior differentiation of this expression, due to d2(∗R) = 0, gives

d([A, ∗R]) = 0. (28)

Then, locally [A, ∗R] is a closed or exact 3 - form:

1

2
[A, ∗R] = j + dα, j ∈ Λ3(M), α ∈ Λ2(M), dj = 0. (29)

Hence, from the eq. (27) one gets

j + d(∗R + α) = 0. (30)

However the manifold M has a boundary, ∂M = 0, the Stoke’s theorem gives∫
∂M

j + d(∗R + α) =

∫
M

dj = 0. (31)

so the curvature and its Hodge dual become an exact 2 - form: R = dA ∈
Λ2(M). As seen clearly that A ∧ A = 0, and so structure group G is reduced

to the U(1). Then the (anti-) self dual theory of the group G = U(1) ⊗ Ũ(4)
is indeed a G = U(1) theory in real 4 - dimension, i.e the Maxwell theory for
the electromagnetism to be an infinite range interaction.

4 Conclusion

In result, we can say that a gauge theory of the group G = U(1) ⊗ Ũ(4) for
the infinite range interactions in real 4 - dimension gives each Yang - Mills
equation of the non - Abelian case induced by the Ũ(4), and Einstein field

equation by the U(1)⊗ Ũ(4). However the (anti-) self dual theory of the group

G = U(1)⊗ Ũ(4) is indeed a G = U(1) theory in real 4 - dimension.
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