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Abstract

Black holes are regions of space-time where gravity becomes so strong to confine everything.
Their classical general relativistic description however shows critical aspects when faced with the
established quantum nature of matter. Alternative approaches and descriptions, like the horizon
quantum mechanics and corpuscular models, have therefore been proposed in order to investigate
their quantum structure, and search for new phenomenological signatures.

1 Gravitational collapse of quantum matter

The classical, general relativistic description of the gravitational collapse of a compact, massive

object predicts the end-point of its evolution will be a space-time singularity, where the energy

density diverges (along with tidal forces), provided a trapping surface forms at some point during

the collapse and the weak energy condition is preserved all along 1). In other words, if a black hole

forms, general relativity predicts there is going to be a real singularity at its centre (see left panel

in Fig. 1). However, matter is quantum, and such a singularity simply clashes with the Heisenberg

uncertainty principle. One also gets a flavour of the sort of effects that the quantum nature of

matter implies, for example, from the famous Hawking’s discovery of black hole evaporation 2):

the space-time around the collapsing matter evolves in time and particles are produced in the

vacuum state of any quantum field on such a background (see right panel in Fig. 1).

The Hawking effect has raised a number of concerning paradoxes about the possibility of

building a consistent quantum description of gravity. Most notably, the prediction that information

stored in the initial state of the collapsing star will go lost after the complete evaporation of the

hole hinders the unitarity of the whole process. However, one should notice that the Hawing effect

is derived by quantising small perturbations around the classical model of the collapse, which
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Figure 1: Left panel: Classical Oppenheimer-Snyder model representing the collapse of a ball
of dust that ends into a central singularity (red arrow) hidden inside the Schwarzschild horizon
(dashed lines). Right panel: Hawking radiation as pair creation of virtual particles outside the
black hole horizon.

leaves us hope that a fully quantum treatment of the whole matter-gravity system will solve such

issues. Of course, the big missing piece is now “quantum gravity”.

2 Quantum gravity and black holes

It is common lore that quantum gravity should become relevant at the Planck length and mass 1,

`p =
√
~GN ' 10−35 m and mp =

√
~/GN ' 1019 GeV . (1)

This argument is not mere numerology, but follows from the classical key concept of the gravita-

tional radius of a static and spherically symmetric self-gravitating source, for which this quantity

determines the existence of horizons.

A static spherically symmetric metric can always be written as

ds2 = gij(r) dxi dxj + r2
(
dθ2 + sin2 θ dφ2

)
, (2)

where xi = (t, r) and the area of a sphere parameterised by θ and φ is A = 4π r2. The location

of a horizon is then determined by the vanishing of the null geodesic expansion,

gij ∇ir∇jr = grr = 0 . (3)

Moreover, Einstein equations yield grr = 1− rH(r)/r, where rH(r) = 2 `pm(r)/mp is the gravita-

tional radius determined by the Misner-Sharp mass function

m(r) = 4π

∫ r

0

ρ(r̄) r̄2 dr̄ , (4)

with ρ = ρ(r) the static matter density. A horizon then exists where the gravitational radius

satisfies rH(r) = r, for some r > 0. In the vacuum far outside the region where the source

is located, the Misner-Sharp mass approaches the Arnowitt-Deser-Misner (ADM) mass of the

source, m(r)→M , and the gravitational radius likewise becomes the Schwarzschild radius

RH = 2 `p
M

mp
. (5)

1I will use units with the speed of light c = 1.
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Figure 2: “Phase space” of gravity. Energy E grows on the vertical axis, length L increases on the
horizontal axis.

The Heisenberg principle of quantum mechanics introduces an uncertainty in the particle’s

spatial localisation of the order of the Compton-de Broglie length, λM ' `pmp/M . It follows that

one expects RH only makes sense if

RH & λM or M & mp , (6)

which immediately explains the key physical role played by the Planck scale and its relation with

the existence of black holes in the quantum theory.

Our present knowledge is summarised in Fig. 2, where the relevant parameter is the energy

density ρ in units of the Planck density ρp. We live in a region of extremely low ρ/ρp, in the bottom

right corner, where the quantum field theoretical Standard Model of particles and classical general

relativity describe very well our world. The region denoted by QG is where we meet both Planck

length and mass, for which we presumably need a full quantum theory of gravity. From this region

starts the line corresponding to black holes, moving up along which the energy density inside the

horizon decreases and a black holes with larger mass E appear more and more classical. The

yellow disk represents the starting point of, say, a collapsing star, which should produce a black

hole (the black dot) according to general relativity. There are clearly two possibilities: either the

star becomes a black hole by evolving through classical gravitational configurations (green line)

or going through the quantum gravity region (blue line). The important point is that, according

to classical general relativity, once the black hole forms, the matter in the star is forced to further

contract and enter the quantum gravity regime. The conclusion is therefore that black holes are

unavoidable and they make quantum gravity necessary as well.

If we look at black holes as bound states of gravity, we can draw an analogy with the (better

understood) non-linear QCD theory:

1. like QCD confines quarks and gluons below the scale ΛQCD ' 220 MeV, Einstein gravity

confines everything within a horizon RH. Both effects occur in the non-perturbative regime
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of the respective theories and there is no reason to believe that understanding black hole

formation is going to be any easier than the (still open) problem of solving QCD;

2. like QCD becomes asymptotically free at energies much above ΛQCD, black holes should

become asymptotically classical for M � mp.

A perhaps overlooked difference is that we have plenty of experimental data supporting the pre-

vious two points in QCD, whereas we have practically no data from the strong regime of gravity

(beside the recently detected gravitational waves), which makes the above considerations about

black holes purely theoretical expectations. Nonetheless, like one can consider effective descrip-

tions of QCD around the scale of confinement, we could also envisage attempting at a quantum

description of specific quantities of physical relevance for black holes, rather than insisting in de-

riving their properties from a candidate general theory of quantum gravity. In the following we

shall describe one of such attempts.

3 Horizon Quantum Mechanics

As matter sources are described by quantum physics, the quantities that define the ADM mass M

should also be considered as quantum variables, and the Horizon Quantum Mechanics (HQM) was

precisely proposed in order to describe the Schwarzschild radius (5) quantum mechanically 3). It

is important to emphasise that the HQM differs from most previous attempts in which the gravita-

tional degrees of freedom of the horizon, or of the black hole metric, are quantised independently

of the state of the source. In the HQM, the gravitational radius is instead quantised together

with the matter source, which is more akin to the non-linear general relativistic description of the

gravitational interaction in the strong regime, and to DeWitt’s mini-superspace approach 4).

We restrict our analysis to spherically symmetric sources which are both localised in space

and at rest in the chosen reference frame. Let α denote the set of quantum numbers parametrising

the spectral decomposition of the source, and write a matter state as

| ψS 〉 =
∑

α

CS(Eα) | Eα 〉 , (7)

where the sum is over the eigenstates of a given Hamiltonian H,

Ĥ =
∑

α

Eα| Eα 〉〈Eα | . (8)

We can then replace the ADM mass with the expectation value of this Hamiltonian,

M → 〈ψS |Ĥ| ψS 〉 = 〈ψS |
∑

α

Eα| Eα 〉〈Eα | ψS 〉 =
∑

α

|CS(Eα)|2Eα . (9)

We also introduce the gravitational radius eigenstates

R̂H | RHβ 〉 = RHβ | RHβ 〉 , (10)

so that a physical state for our system can be described by linear combinations

| Ψ 〉 =
∑

α,β

C(Eα, RHβ) | Eα 〉| RHβ 〉 (11)

which satisfy the algebraic (Hamiltonian) constraint (5), that is

0 =

(
Ĥ − mp

2 `p
R̂H

)
| Ψ 〉 =

∑

α,β

(
Eα −

mp

2 `p
RHβ

)
C(Eα, RHβ) | Eα 〉| RHβ 〉 . (12)
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The solution is clearly given by

C(Eα, RHβ) = C(Eα, 2 `pEα/mp) δαβ , (13)

where δαβ is the identity in the space of our quantum numbers.

By tracing out the gravitational radius, we must recover the matter state (7), which implies

C (Eα, 2 `pEα/mp) = CS(Eα) . (14)

Likewise, by integrating out the matter states, we obtain the horizon wave-function

| ψH 〉 =
∑

α

CS(mpRHα/2 `p) | RHα 〉 , (15)

where mpRHα/2 `p = E(RHα). In the continuum, the normalised wave-function

ψH(RH) = 〈RH | ψH 〉 = NH CS(mpRH/2 `p) (16)

yields the probability to detect a gravitational radius of size RH associated with the particle in the

quantum state | ψS 〉. We can further define the conditional probability density that the particle

lies inside its own gravitational radius as

P<(RH) = PS(RH)PH(RH) , (17)

where

PS(RH) = 4π

∫ RH

0

|ψS(r)|2 r2 dr (18)

is the usual probability that the particle is found inside a sphere of radius r = RH, and

PH(RH) = 4π R2
H |ψH(RH)|2 (19)

is the probability density that the value of the gravitational radius is RH. One can view P<(RH)

as the probability density that the sphere r = RH is a trapping surface, and the probability that

the particle is a black hole (regardless of the horizon size) will be obtained by integrating (17),

PBH =

∫ ∞

0

P<(RH) dRH , (20)

which will depend on the observables and parameters of the specific matter state | ψS 〉.

3.1 Single particle and GUP

Let us consider a massive particle at rest in the origin of the reference frame described by the

spherically symmetric Gaussian wave-function

ψS(r) =
e−

r2

2 `2

`3/2 π3/4
, (21)

with ` ' λm ' `pmp/m. The corresponding momentum space wave-function

ψS(p) =
e−

p2

2 ∆2

∆3/2 π3/4
, (22)
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Figure 3: Left panel: probability a Gaussian state is a black hole for increasing mass m. Right
panel: generalised uncertainty relation (26) for γ = 1.

has a width ∆ = mp `p/` ' m. We can also assume the relativistic mass-shell relation in flat

space, E2 = p2 +m2, which yields the normalized horizon wave-function

ψH(RH) =
`3/2 e

−m2
p R2

H

8 m2 `2p

23/2 π3/4 `3p
. (23)

From the plot of the corresponding PBH in the left panel of Fig. 3, it appears pretty obvious that

the particle is most likely a black hole if m & mp, in agreement with the qualitative result (6).

For the state (21), the uncertainty in radial size is given by

∆r2 ' `2 ' `2p
m2

p

∆p2
. (24)

Analogously, the uncertainty in the horizon radius will be given by

∆R2
H '

`4p
`2
' `2p

∆p2

m2
p

, (25)

which, combined linearly with Eq. (24), yields the generalised uncertainty relation

∆r = ∆r + γ∆RH ' `p
mp

∆p
+ γ `p

∆p

mp
. (26)

From the plot in the right panel of Fig. 3 (for γ = 1), one can see there is a minimum measurable

length ∆r & 1.3
√
γ `p obtained for ∆p ' mp.

A crucial observation is that ∆RH ∼ m ∼ RH, which seems to imply that the horizon of very

massive sources fluctuate wildly, contrary to the expectation that astrophysical black holes should

be classical objects. This leads us to consider alternative models of black holes, whose source is

not localised within a very narrow wave-function (limiting to a point-like singularity).

3.2 BEC black holes

In the corpuscular model introduced by Dvali and Gomez 5), black holes are bound states of

gravitons of spatial size RH, effectively forming a Bose-Einstein condensate (BEC) at a critical

point. This picture emerges by considering the Newtonian potential generated by a star of mass

M as made of N (virtual) gravitons of effective mass m ' mp `p/λm,

VN(r) ' −GNM

r
= −`pN m

rmp
. (27)
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After the star collapses to form a black hole 6), these gravitons are contained within a ball of

radius r ' RH ' λm and must be (at least) “marginally bound”, that is 5)

EK + Um ' 0 . (28)

where EK ' m and the average potential energy per graviton is

Um ' mVN(λm) := −N αm , (29)

with the effective gravitational coupling α = `2p/λ
2
m = m2/m2

p. When the condition (28) is reached,

the gravitons are “maximally packed”, and their number satisfies N α ' 1. The effective graviton

mass correspondingly scales as m ' mp/
√
N , while the total mass of the black hole scales like

M = N m '
√
N mp . (30)

Moreover, the horizon area is spontaneously quantised as expected 7), that is

4π R2
H ' λ2m ' `2pN . (31)

This BEC black hole will emit gravitational Hawking radiation, since reciprocal 2 → 2

graviton scatterings inside the condensate give rise to a depletion rate

Ṅ ∼ − 1

N2
N2 1√

N `p
, (32)

where the factor N−2 comes from α2, the N2 factor is combinatoric, and the last factor comes is

the characteristic energy of the process ∆E ∼ m. This rate reproduces the standard decay law

Ṁ ' mp
Ṅ√
N
∼ − mp

N `p
∼ − m3

p

`pM2
, (33)

and allows one to read off the “effective” Hawking temperature

TH '
m2

p

8πM
∼ m ∼ mp√

N
. (34)

A more refined model was analysed in Refs. 8), in which we introduced candidate quantum

states for both the BEC black hole and the emitted Hawking quanta. Such states were analysed

using the HQM and their horizon uncertainty decreases for larger N ,

∆RH

RH
' 1

N
, (35)

which shows that such extended models of black holes correctly reproduce the expected behaviour

in the macroscopic limit N 'M/mp � 1.

4 Summary and outlook

Given the difficulty in conceiving a full quantum theory of gravity, one can focus on a quantum

description of particularly relevant quantities for specific problems. The HQM is precisely such an

attempt for the gravitational radius of a matter source, which Einstein theory teaches us is a crucial

quantity in black hole formation. This approach was applied to many different situations 3, 8, 9)

and will be further investigated and extended in the future.
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