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ABSTRACT

Dynamical algebra notion of quantum degrees of freedom provides a
useful and natural definition of quantum integrable and nonintegrable
systems. We have argued that a quantum dynamical system generates
generalized entanglement by internal dynamics if and only if it is
quantum non-integrable.

PACS: 03.65. Yz, 05.45.Mt

Our goal will be to study the importance of the definition of independent
degrees of freedom (IDF) for the relation between entanglement and quan-
tum integrability for a quantum dynamical system in general. We shall see
that in quantum mechanics the choice of degrees of freedom dictated by the
dynamical structure of the system that is by the dynamical algebra and its
particular subalgebras should represent also an appropriate choice of IDF
for an objective and generalized treatment of entanglement. Discussion
of the systems dynamical group will lead to a notion of degrees of free-
dom and the discussion of dynamical symmetry to the notion of quantum
non-integrability and entanglement generating systems.

In the next section we shall first recapitulate general definitions of indepen-
dent degrees of freedom, quantum integrability and the generalized entan-
glement. We then establish the relation between the quantum integrability
and generalized entanglement and discuss, in section 3, some examples. Dy-
namical algebraic definition of IDF and quantum integrability have been
introduced in references [1, 2, 3]. There is no generally accepted notion
of genuinely quantum integrability [4]. The definition of what is a quan-
tum chaotic system is even less unique [5]. The most common approach,
at least for lattice spin systems, is based on the generalization of the no-
tion of thermodynamical integrability of classical spin systems[6], and is
different from the one accepted here. According to the thermodynamic
integrability a quantum system is called integrable if it is exactly solvable
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by application of the generalized Bethe ansatz or by the quantum inverse
scattering method [4]. A quantum system is nonintegrable if it has not
been integrated by such methods. In what sense a quantum nonintegrable
system can be considered as quantum chaotic is a matter of a debate [7].
Some quantum systems of finite number of spins whose thermodynamical
limit is quantum nonintegrable, show the same spectral properties as the
systems obtained by quantization of classically chaotic systems, and, fur-
thermore, display the mixing properties that lead to expected equilibrium
and non-equilibrium thermodynamical behavior [7]. The dynamics of bi-
partite and multipartite entanglement in such quantum chaotic systems
has been studied and compared with the entanglement dynamics in quan-
tum integrable systems [8],[9],[11] The notion of quantum integrability and
nonintegrability understood in the thermodynamic sense is very different
from the notion of dynamical symmetry and quantum integrability as was
introduced in [1, 2, 3] and as it shall be used here.

The definition of generalized entanglement adopted here was presented in
[12, 13, 14], and related definitions appear for example in [15],[16]. Here
presented view of the general relation between quantum integrability, dy-
namics of classical approximations of quantum systems and dynamics of
the generalized entanglement has not been discussed before.

1. General definitions

1.1. Dynamical algebra framework

Any quantum system with an N-dimensional Hilbert space has N — 1 kine-
matical degrees of freedom. Its group of canonical transformations, i.e. the
kinematical group, is U(N) so that any Hamiltonian, i.e. Hermitian oper-
ator, can be diagonalized using some of the U(N) transformations, leading
to N — 1 formal integrals of motion and formal integrability. Evolution
of the quantum system is equivalent to a linear symplectic flow on a sym-
plectic manifold, which is completely integrable in the sense of classical
Hamiltonian systems (please see [17] and the references therein). All pure
states can be connected by some unitary transformation so that all pure
states are in fact U(N) generalized coherent states. The assumption that
any hermitian operator represents a measurable quantity, an observable,
is actually an assumption concerning physically possible interactions with
the environment, and is not justified in many cases such as: systems of
identical particles, presence of symmetries, relativistic locality etc....

Dynamical algebra of relevant observables

The kinematical notion of degrees of freedom is rather formal to be phys-
ically relevant. A particular physical system is specified, and thus distin-
guished from an abstract general framework, by describing what can be
measured on it, i.e. by specifying the set of observables, and by expressing
the interactions within the system in terms of the observables. In other
words, the class of physically relevant observables should be described and
the evolution should be expressed in terms of these observables. Structure
of the set of observables is fixed by their algebraic relations. In quantum
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mechanics operators representing the physical quantities pertinent to the
given system are required to realize the corresponding algebra. The alge-
braic relations between the observables also fix the relevant Hilbert space
of the system as the space of an irreducible representation. The algebra
defined in this way is called the systems dynamical algebra. Thus, a quan-
tum system has fixed dynamical algebra. Description of a quantum system
amounts to the specification of its dynamical algebra g, its state space and
the Hamiltonian which is an expression (possibly nonlinear) in terms of
operators belonging to g.

In what follows we shall consider a quantum system (H, g, H) with a Hilbert
space H which is an irrep space of the dynamical (Lie) algebra g and the
Hamiltonian H. The dynamical algebra g will always be a semi-simple Lie
algebra, with rank [ and dimension n.

1.2. Dynamical degrees of freedom

Dynamical degrees of freedom are fixed by the full description of the system,
and are defined using the dynamical algebra. The dynamical algebra g has
~ different chains of subalgebras: g D gil D gilil e D gi, l=1,2,...7.
Casimir operators of g and all the algebras in (any of) the subalgebra
chain form the relevant complete set of commuting operators (CSCO)
Qj,j = 1,2...d. There is d = | + (n — [)/2 of these, independently of
the subalgebra chain. Some of these Casimir operators are fully degenerate
in the sense that they are represented by scalar operators: Q;|¢ >= ¢;|¢) >
for every 1) >€ H. The number of non-fully degenerate operators in CSCO
is m < (n —1)/2 is chain independent but might depend on the particular
irrep i.e. on the system’s Hilbert space, and defines the number of IDF.
The non-fully degenerate Casimir operators in a particular chain are the
operators that define m IDF. The quantum system is fully specified only
when 1° its Hilbert space; 2° the set of m operators representing IDF and
3° the Hamiltonian, which is a possibly nonlinear expression in terms of
the dynamical algebra generators, are given.

If the dynamical algebra g of a quantum system C' can be represented
as a direct sum of dynamical algebras of two systems A and B, that is
g% = g @ ¢P, then the tensor product of irreps of G4 and GP is an irrep
space of GC, that is HC® = HA @ HB. If la,p and ny p are the ranks
and dimensions of g4 and ¢, then in general the number of IDF of C is
Mc = M + Mp. Thus, in the case ¢¢ = g @ ¢® the system C can be
represented as a union of two systems and the number of IDF is additive. If
the dynamical algebra g of the system is semisimple then it can be uniquely
expressed as a direct sum of mutually commutative and orthogonal simple
algebras: ¢ = @rgr and the Hilbert space which is an irrep space of g
factors as H = ®xH. Thus, in the case of semisimple dynamical algebra
the number of IDF is additive, but the number of IDF in all the factor
systems with ¢ dynamical algebras need not be unity for each gi. An
example of the system when this is the case is given by a system of qubits,
and shall be treated in some detail later.
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However, a dynamical algebra g need not be representable as a product
of dynamical Lie algebras with the number of IDF equal to one ( as for
example if g = su(3) or if A and B are independent fermions or bosons)
even if the number of IDF of g is larger then one.

1.3. Dynamical symmetry and quantum integrability

(H, g, H) has the corresponding Lie group G as the dynamical symmetry if
the Hamiltonian H can be expressed in terms of the CSCO of a particular
subgroup chain used to define the IDF. In this case the system has a sym-
metry of the subgroup chain. In particular H commutes with m non-fully
degenerate operators that define the IDF.

A system (H, g, H) is quantum integrable by definition if the Hamiltonian
‘H commutes with m operators that define the IDF.

Quantum integrability is defined in analogy with complete integrability in
the case of classical Hamiltonian systems. In classical Hamiltonian me-
chanics, an m degree of freedom system is completely integrable if there
is m, functionally independent integrals of motion (including the Hamilton
function) in involution. The requirement that the integrals are function-
ally independent is taken over into the quantum mechanical definition by
requiring that the Hamiltonian commutes with operators representing the
IDF. Quantum Hamiltonian systems which do not satisfy the definition
of quantum integrability are called quantum nonintegrable. It should be
stressed that the qualitative properties of the state dynamics with quantum
integrable and quantum non-integrable Hamiltonians are the same. From
the point of view of the Hamiltonian dynamical systems theory the state
orbits are in either case regular that is periodic or quasi-periodic. Quantum
non-integrable systems do not generate chaotic orbits in the system’s state
space (please see for example [17]). Nevertheless, dynamical properties of
orbits of the classical models (please see the next subsection) corresponding
to the quantum integrable or non-integrable systems are quite different, and
chaotic orbits do occur in the classical model of quantum non-integrable
systems with more than one IDF.

It should be noticed that quantum systems with one degree of freedom,
unlike the one freedom classical Hamiltonian systems, need not be quantum
integrable, for example if the Hamiltonian is a nonlinear expression of the
algebra generators.

1.4. g-coherent states

Total level of quantum fluctuations in a pure state [¢) > is defined as
AW) =) <YL > = < ¢lLily >, (1)

where the sum is taken over an orthonormal bases of the dynamical algebra
g. It make sense to consider the quantity A(v)) as a measure of quantumness
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of the state ¢. Physical motivation for the definition of the generalized g-
coherent states is that they minimize A(%)). This is one of the important
properties of the Glauber coherent states of the harmonic oscillator i.e. of
the Heisenberg-Weil Hy algebra that is generalized by the g-coherent states
with arbitrary g. There are several generalizations of Glauber, i.e. Hy
coherent states. Perelomov [18] and Gilmore [19] independently introduced
two different generalizations based on the group-theoretical structure of the
H, coherent states. The essential ideas of both approaches are the same, the
differences being in the class of Lie groups, and the corresponding available
tools, and in the choice a reference state. In both approaches, the set of g-
coherent states depends, besides the algebra g, also on the particular Hilbert
space H® carrying the irrep A of ¢ and on the choice of an, in principal
(Perelomov), arbitrary referencee state, denoted |19 >. The subgroup Sy,
of G which leaves the ray corresponding to the state [y > invariant is
called the stability subgroup of |1)g >: hlig >= [1hg > exp ix(h),h € Sy,.
Then, for every g € G there is a unique decomposition into the product of
two elements, one from Sy, and one from the coset G/ Sy, so that glyy >=
Qg > exp ix(h). The states of the form |A,Q >= Q¢ > for all g € G
are the g coherent states. Thus, geometrically the set of g coherent states
form a manifold with well defined Riemannian and symplectic structure.

Classical model and semi-classical dynamics

Classical Hamiltonian dynamical system on the manifold G/S|y,~ given

by the Hamiltonian function H(a) =< a|H|a > is called the classical
model of the quantum dynamical system (H, g, H). Classical limit of the
quantum system is obtained from the classical model in the limit when
some relevant parameter approaches zero. If the Hamiltonian H is a linear
expression of the dynamical group generators then the quantum system, its
classical model and its classical limit have the same dynamics. The classical
model of a quantum nonintegrable system is chaotic in the sense of classical
Hamiltonian dynamical systems. Dynamics of classical models of quantum
nonintegrable systems have been studied for various examples in [1, 2, 3].
Relation between dynamics of entanglement and the dynamics of classical
models for quantum nonintegrable pair of qubits was studied in [20].

1.5. Generalized entanglement

Consider a system C such that its dynamical group G¢ can be factored
as a direct product G¢ = G4 ® GB, and its Hilbert space H® written
as the tensor product of the irreps HC = H4 ® HB. We have seen that
such a system C' can be viewed as a union of systems A and B. A pure
state 9o of C is entangled by the standard definition if the reduced states
pa.B =Trp allvc >< 1¢c|] are mixtures i.e. are not pure state projectors.
In this case the subsystems have no definite properties.

g-coherent states of the system C with G¢ = G4 @ GP are products of
g? and ¢P coherent states, by the construction of coherent states with
the referent state ¢§ = |¢' > ®[¢pf > and are of the form |a? >
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®|aP >= GA|¢()4 > @GP|YF >. Reduced states pap of the coherent
state [a? > ®|a® > are pure and are coherent states of A and of B re-

spectively. The coherent states of G¢ are disentangled, and the reduced
state of the coherent state are also coherent, and thus disentangled for the
component algebras. Thus, the set of states with zero entanglement and
the set of coherent states can be consistently identified. In this sense the
noncoherent states do posses some entanglement in the generalized sense.
If A and B are systems with only one IDF each, the previous definition
assumes that the noncoherent states of A and B are entangled in the gen-
eralized sense. These states [¢)4 >, [P > of systems A and B with number
of IDF equal to unity do have nonminimal quantumness A(1), and violate
Bell inequality for some set of observables [15].

In the considered case the quantumness A(y¢) is in general larger than
minimal, the minimum being achieved by states which are products of G4
and GB coherent states. The quantumness of the state [»C > is here
manifested in one of the two modes: a) by quantum correlations between
different IDF, which is traditionally identified with entanglement, or by b)
quantumness of states of systems with unit number of IDF. The defini-
tion of generalized entanglement assumes that nonminimal quantumness of
noncoherent states of systems with one IDF is equivalent to the generalized
entanglement. In either case a) or b) some Bell inequality for a convenient
choice of observables is violated by a superposition of g-coherent states,
that is by generalized entangled states.

Previous discussion in the case when the dynamical group satisfies G =
G ® GP is generalized by definition to the general case of the systems
with dynamical groups G such that the decomposition G = G4 x GP does
not exist. Although the system with such dynamical algebra might have
more than one IDF it can not be considered as a union of systems with
smaller number of IDF. Nevertheless, the g-coherent states are defined and
constructed as in the general case. The quantumness A(v) is minimal
for such coherent states and larger than minimal otherwise. States which
are not g-coherent have the quantumness larger than minimal and are by
definition generalized entangled or g-entangled states. Quantumness of the
state |1 >: A(%), normalized so that it is zero for the g-coherent states
can be used as a measure of g-entanglement. It was shown in [14] that it is
related to the Mayer-Wallach Q-measure of multi-partite entanglement in
the standard case.

Identification of g-coherent states with g-disentangled states in the case
when the dynamical group does not satisfy G = G4 ® GP should not be
questionable. Whether a state should be considered as g-entangled when-
ever it is not g-coherent is a deep question with no general agrement as
to the answer [15]. Following [12, 13, 14] we adopt the identification of g-
entanglement with g-noncoherence. This reduces to the standard definition
in the case when A and B have no entangled states and G = G4 @ GP.

If this definition of g-entanglement is adopted than quantum integrability
and g-entanglement are clearly related as is explained in the next subsec-
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tion.

1.6. Entanglement generator and integrability

If a quantum system (g, H,H) is integrable then the dynamics commutes
with IDF. The set of coherent states is then dynamically invariant, and
consequently the system does not evolve an initially g-nonentangled into
an g-entangled state. On the other hand if (g, H,H) is nonintegrable the
set of g-coherent e.i. g-nonentangled states is not dynamically invariant
and thus (g, H,’H) generates entanglement. This properties provide an
understanding of the relation between dynamical integrability and gener-
alized entanglement in quantum mechanics and is the main conclusion of
our discussion.

A quantum engineer who wants to generate entangled states cheaply , i.e
by the system’s natural dynamics, should use a nonintegrable system for
this purpose.

2. Examples
2.1. von-Neumann case: u(/N) dynamical algebra

The quantum system is described by N dimensional Hilbert space HY and
the dynamical algebra u(N), which means that every hermitian operator
on HY has physical interpretation as a measurable quantity. Due to the
normalization and global phase invariance the state space of the system is
CPN=1! which is topologically like S?¥=1/S' and represents a 2(N — 1)
dimensional manifold with Riemannian and symplectic structure. Geomet-
rically, it should be natural to associate N — 1 IDF with this system. The
same number of IDF follows from u(/N) dynamical algebra. The Hilbert
space is the fully symmetric irrep space of u(N) with the highest weight:
A = (1,0,...0). The basis can be labeled by the following chain of subal-
gebras: u(N) D u(N —1)--- D u(1l) with the corresponding Casimir opera-

tors C;L(k), i=1,2...k, k=1,2... N determine the irrep A = (1,0,...0).

The N — 1 non-fully degenerate operators are Cu(k), 1= 1,2...k k =
2...N—1 and label the basis |i >= 0,0, . 0>, 1—0,1,2,. .N-—1.

Explicitly:C;;(k)]i >=0(k—(N—1))|i >, and @( ) is the Heaviside function
oni=1,2...N — 1. Thus there is N — 1 IDF, the same as the number of
kinematical DF.

Any Hamiltonian can be diagonalized by an U(N) transformation and ex-
pressed as a combination of the Casimir operators. Thus any system with
u(N) dynamical algebra is quantum integrable. The classical model for any
quantum system with «(/N) dynamical algebra is also completely integrable
when considered as a classical Hamiltonian system.

Elementary excitation operators are given by: Ejltg >= |i >, =1,
N — 1 where [1pg > is the lowest weight vector of the A = (1, .0)
sentation, and U(NN) coherent states are obtained as |a >= exp( o
h.c)|0 >. ‘Coherent states are parameterized by the coset space U(N) /

2,.
repre—
it

(N
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1) ® U(1) which is isomorphic to CPN~!. We see that all states are U (V)
coherent states. Thus, all states are equally and minimally quantum. The
N — 1 degrees of freedom are disentangled in any state.

It should be noticed that since any state is u(N) coherent state the dy-
namics of the quantum system on CPN~! and its classical model with the
Hamiltonian function < H > on the phase space U(N)/U(N — 1) @ U(1)

are identical (and integrable) for any Hamiltonian (please see for example
[17]).

A special case of the systems with su(/N) dynamical group is a qubit with
su(2) dynamical algebra and the Hilbert space with two complex dimen-
sions. The number of degrees of freedom of the qubit is one, and all states,
like in the general u(N) case, are coherent and equally and minimally quan-
tum.

Systems with su(2) dynamical algebra but with the Hilbert space with
dim > 2 are treated next.

2.2. Entanglement and quantum nonintegrability in a system
with one IDF: su(2) dynamical algebra with dimH = 2j+1 > 2

The two Casimir operators in the subalgebra chain: su(2) D u(1) are J?
and Jy. The system has only one IDF, given by the only one non-fully
degenerate operator Jy. Hamiltonian which is a linear expression of the
SU(2) generators is quantum integrable according to the definition (with
the proper choice of the quantization axes). A system with a Hamiltonian
that is a nonlinear expression of the generators is quantum nonintegrable,
and as we shall see generates g-entanglement.

The SU(2) coherent states are: | >= exp((aJy — h.c)|0 > where |0 >
is the unique lowest weight vector in the representation H**! and .J, is
the corresponding raising operator. States which are not coherent are more
quantum in the sense that they have larger A than the coherent states.
According to the accepted definition such states are g-entangled.

Consider the Hamiltonian (2) modelling the dynamics of two-mode Bose-
Hubbard model with fixed number of particles N = 2j. The Hamiltonian
is expressed in terms of the su(2) generators and is integrable when u =0
and nonintegrable when p # 0.

H=w.J, — 2wy Jy + pJ?, (2)

If the Hamiltonian is a linear expression in terms of the su(2) generators, i.e.
an element of the su(2) algebra, then the set of coherent states is dynami-
cally invariant. The linear combination of generators can be considered as
the single Casimir operator of u(1) that defines the single IDF. The linear
system is then quantum integrable. On the other hand, when the Hamil-
tonian is a nonlinear expression of the su(2) generators the states with
different levels of quantumness are not dynamically isolated. The system
is quantum nonintegrable and numerical tests show that the nonintegrable
Hamiltonian generates g-entanglement in the systems with one IDF.
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2.3. Coupled qubits: su'(2) ® su?(2) dynamical algebra

Consider a pair of spins with the Hilbert space H = H? ® H? and the
Hamiltonian

H=1—=p)(J}+J2)+mJyJ2 + pd) JZ, (3)

where p # 1.

The dynamical group of the system is SU!(2)®SU?(2). The subgroup chain
a: SUY2)® SU?(2) D SO'(2) ® SO?(2) gives two IDF and the Casimir

operators of the subgroups J! and J? are the observables corresponding to
the two IDF.

When 1 = 0 the system is quantum integrable with respect to the consid-
ered IDF. The Hamiltonian commutes with J} and J2. If u; # 0 and p # 1
the system is quantum nonintegrable. As was already pointed out, the or-
bits in the Hilbert space of the quantum integrable and nonintegrable cases
belong in the same class from the point of view of the qualitative theory of
dynamical systems, i.e. they are regular orbits.

Because of the definition of the dynamical group as SU(2) ® SU?(2) the
system is considered as composed of two spins. Coherent states are prod-
ucts of the coherent states of each of the spins and are thus disentangled. If
p1 = 0 the system is quantum integrable with respect to a subgroup chain
and the SU'(2) ® SU?(2) coherent i.e. disentangled states are dynamically
invariant. Such Hamiltonian does not generate entanglement despite the
interaction p.J!J? between the two qubits. If  # 0 the system is not quan-
tum integrable and the sets of coherent i.e g disentangled and noncoherent
i.e. g-entangled states are not dynamically invariant. The system generates
entanglement between the SO!(2) ® SO?(2) dynamical degrees of freedom.

3. Summary

We have used the dynamical algebra definition of independent degrees of
freedom in order to establish a general relation between quantum integra-
bility or nonintegrability and the dynamics of the generalized entanglement
(g-entanglement). Quantum system is integrable by definition if the oper-
ators corresponding to IDF commute with the Hamiltonian. Minimal level
of total quantum fluctuations is a property characteristic of the dynami-
cal algebra generalized coherent states. States with non-minimal quantum
fluctuations are here identified (following [12, 13, 14]) with the g-entangled
states. With this identification, both sets of g-disentangled and g-entangled
states are dynamically invariant for the quantum integrable systems. On
the other hand, an orbit of the quantum nonintegrable system goes through
states with zero and nonzero g-entanglement. Quantum nonintegrable sys-
tems generate g- entanglement by the internal dynamics, while quantum
integrable systems can be in a g-entangled state only due to interactions
with external systems.
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