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The existence of stationary bound states for the hydrodynamic velocity field between two concentric 
cylinders is established. We argue that rotational motion, together with a trapping mechanism for the 
associated field, is sufficient to mitigate energy dissipation between the cylinders, thus allowing the 
existence of infinitely long lived modes, which we dub stationary clouds. We demonstrate the existence of 
such stationary clouds for sound and surface waves when the fluid is static and the internal cylinder 
rotates with constant angular velocity �. These setups provide a unique opportunity for the first 
experimental observation of synchronized stationary clouds. As in the case of bosonic fields around 
rotating black holes and black hole analogues, the existence of these clouds relies on a synchronization 
condition between � and the angular phase velocity of the cloud.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

With a few notable exceptions, like in superconductivity, dis-
sipation plays an important and decisive role in Physics. Due to 
dissipation, the oscillations of any perturbed system (for instance 
a ringing bell) will die away with the passing of time. In gen-
eral, waves propagating in realistic (hence dissipative) media will 
lose energy and hence decrease their amplitude in time. Black hole 
(BH) absorption in a scattering process and BH response to pertur-
bations (quasinormal modes), for example, can be interpreted as 
manifestations of dissipation: the event horizon acts as a one-way 
membrane which extracts energy from the BH exterior, dissipating 
any external perturbation [1–4].

Linear perturbations of a dissipative system will generically de-
cay in time according to exp(−iωt), where ω is a complex fre-
quency. Combined with rotational motion, however, dissipation can 
be mitigated and unexpected phenomena arise. One such exam-
ple is superradiance, a scattering process in which low-frequency 
modes are amplified by a rotating object [5–8]. This amplification 
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effect can be understood as the dissipation of negative energies 
(with respect to the rest frame of the rotating object), meaning 
that low-frequency waves can lower the energy of the rotating 
system. In other words, while in the laboratory frame the flux of 
dissipated energy is proportional to the oscillation frequency ω of 
the waves, in the rotating frame the energy flux is proportional 
to the effective frequency ω̃ = ω − m�, where m is the azimuthal 
number of the wave and � is the angular velocity of the scatterer. 
Therefore, sufficiently low-frequency waves satisfying ω̃ < 0 will 
reverse the energy flux direction, thus extracting energy from the 
rotating object.

If, besides rotational motion, an additional trapping mechanism 
is present in the system, a feedback process, in which successive 
superradiant amplifications occur, is triggered. As a result, the sys-
tem will exhibit superradiant instabilities which, at the linear level, 
grow exponentially in time. Such unstable modes have Im(ω) > 0. 
At the threshold between stable and unstable modes, stationary
bound states, characterized by Im(ω) = 0, exist. Such bound states, 
dubbed stationary clouds, are generic features of rotating, dissipa-
tive systems. Nevertheless, they have never been experimentally 
observed.

Stationary clouds have played a key role, for instance, in re-
cent developments in BHs physics. They appear when a scalar 
wave is synchronized with a rotating BH, meaning that the wave’s 
angular phase velocity, ω/m, matches the angular velocity � of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the BH horizon. These stationary bound states are infinitely long 
lived massive scalar field configurations which decay exponentially 
at asymptotic infinity, and that exist under a certain quantization 
condition. Such solutions were first identified by Hod [9], and fur-
ther investigated in, e.g., Refs. [10–25]. Going beyond the linear 
approximation, Herdeiro and Radu [26] (see also Refs. [27,28]) have 
shown that rotating BHs with scalar hair exist as fully non-linear 
solutions of the coupled Einstein–Klein–Gordon equations, being 
the non-linear realization of rotating BHs surrounded by (test field) 
stationary scalar clouds – see Ref. [19] for the analogous case of 
Kerr BHs with Proca hair, Refs. [29,30] for a discussion of their 
formation properties and Refs. [31,32] for a discussion of their 
stability. These BHs have provided an influential counter-example 
to the no-hair conjecture in General Relativity with matter that 
does not violate energy conditions – see Ref. [33] for a review. In 
this scenario, the trapping mechanism is provided by the field’s 
mass.

Instead of a mass term, another way to confine waves and al-
low for stationary bound states is to have a reflective boundary at 
a sufficient large distance from the BH – see, e.g., Refs. [13,14]. For 
astrophysical BHs it is hard to imagine a realistic way to accom-
plish this. Nonetheless, analogue BHs [34,35], being reproducible 
in the laboratory, can be encompassed by a reflective surface, as 
discussed in Ref. [13] (see also Ref. [36], which shows that non-
zero vorticity can act as an effective mass term, thus allowing 
quasibound states to appear in vortex flows). For superradiance, 
the presence of an event horizon is not mandatory [7,37–39]: it 
can be replaced by any dissipative material, as in the case of Zel’-
dovich’s cylinder that scatters electromagnetic waves [40] or in 
the case of a rotating cylinder that dissipates the energy of water 
waves [41]. Here, building on the ideas of Refs. [13,41] we ana-
lyze the possibility of using water waves to set up a laboratory 
experiment to observe, for the first time, synchronized stationary 
clouds.

2. Sound waves and surface waves between two concentric 
cylinders

The Analogue Gravity programme for fluids, initiated by the 
seminal work of Unruh [34], is based on the fact that sound waves 
in a background flow can mimic the propagation of scalar fields 
in General Relativity. It relies on the assumptions of barotropicity, 
inviscidity, and irrotationality to establish that velocity perturba-
tions of a fluid flow satisfy the Klein–Gordon equation for scalar 
fields in a curved spacetime. Important gravitational effects like 
Hawking radiation and superradiance can be experimentally tested 
within such analogies [42–45].

Here we are primarily interested in the setup proposed in [41]. 
It consists of a rotating cylinder, with angular speed � and radius 
R0, surrounded by an external static cylinder of radius R1 > R0. 
The cylinders are concentric and the space between them is filled 
with a static fluid. Both cylinders will generally dissipate the en-
ergy that they absorb from waves impinging on them. The details 
of such dissipation are encoded in the impedances Z in

ω and Z out
ω of 

the inner and outer cylinders, respectively.
Impedances are complex quantities [46,47] depending on var-

ious factors like wave frequency, geometry of the absorber and 
material properties, that determine the boundary conditions at 
the surface of the cylinders. According to Ref. [46], impedance is 
“a measure of the lumpiness of the surface”. Mathematically, it is 
defined as the ratio between the complex amplitude of pressure at 
the boundary and the complex amplitude of particle velocity into 
the boundary [47]. The real part of the impedance is called resis-
tance and relates to the non-conservative part of the energy flow. 
The imaginary part, called reactance, cyclically stores and releases 
energy without dissipation [46,48].

The role of acoustic impedance can be understood through 
an analogy with a mass-damper-spring system [47]: while the 
damping coefficient corresponds to Re(Zω), the mass and spring 
terms both contribute to Im(Zω). If the mass term dominates, 
we have Im(Zω) < 0, characterizing a stiffer surface (inertance 
regime). If, on the other hand, the spring term dominates, we 
have Im(Zω) > 0, characterizing a more compliant surface (com-
pliance regime). Passive surfaces, as opposed to active surfaces, do 
not produce energy and are characterized by Re(Zω) � 0. Below 
we will show that irrespectively of what the impedance of the 
inner cylinder is (i.e. active/passive and inert/compliant), by syn-
chronizing wave motion with the cylinder’s rotation we can halt 
the flux of energy through its surface. The impedance of the outer 
cylinder is, nevertheless, important. We shall be interested in the 
case of negligible energy dissipation at the external surface, cor-
responding effectively to Re(Zω) = 0. Then, the wave energy is 
completely reflected and Im(Zω) controls the phase difference be-
tween the ingoing and outcoming waves. For instance, in the case 
of “hard walls”, characterized by Re(Zω) → 0 and |Im(Zω)| → ∞, 
this phase difference will be of π , corresponding to a Neumann 
boundary condition for the wave field. “Soft walls”, on the other 
hand, characterized by |Zω| → 0, do not generate phase differ-
ences, corresponding to a Dirichlet boundary condition for the 
wave field.

Velocity perturbations δv of the background static flow v = 0
can be described in terms of a scalar field ψ by the relation 
δv = ∇ψ . From the hydrodynamical equations, one can show that 
wave motion is determined by the Klein–Gordon equation

∇μ∇μδψ = − 1√−g

∂

∂xμ

(
gμν√−g

∂δψ

∂xν

)
= 0, (1)

where xμ = (t, r, θ, z) is the cylindrical coordinate system in the 
laboratory frame, gμν = η · diag

(−c2,1, r2,1
)

is the analogue met-
ric, and g = det(gμν). Here, c denotes the sound velocity (in the 
case of sound waves) or the gravity wave speed (in the case of 
shallow water surface waves). For sound waves, the constant η is 
given by ρ/c, where ρ is the fluid density; for surface waves, η
equals h/c, where h is the depth of the fluid.

Due to the cylindrical symmetry of the setup, the wave equa-
tion can be reduced to an ordinary differential equation for the 
radial coordinate r. Indeed, with the ansatz

ψ(t, r, θ, z) = ϕ(r)√
r

e−iωt+imθ , (2)

the Klein–Gordon equation reduces to

∂2
r ϕ +

[
ω2

c2
− 1

r2

(
m2 − 1

4

)]
ϕ = 0, (3)

where ω is the frequency of the wave and m ∈ Z is the azimuthal 
wave number. Its most general solution is given in terms of Bessel 
functions, namely

ϕ(r) = D1
√

r Jm

(ωr

c

)
+ D2

√
rYm

(ωr

c

)
, (4)

where D1 and D2 are constants.

3. Boundary conditions for stationary clouds

Waves described by Eq. (4) propagate in the region R0 < r < R1

between the cylinders. At the surface of the external cylinder, for 
both sound and surface waves, the boundary condition is given in 
terms of the impedance by [41,46]:
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(
∂rψ

ψ

)∣∣∣∣
r=R1

= iρω

Z out
ω

. (5)

The boundary condition above, after replacing R1 by R0 and Z out
ω

by Z in
ω , also holds (with a sign change) for the inner cylinder, but 

only in its rest frame. Since the inner cylinder rotates uniformly 
with angular velocity �, it is necessary to transform the angular 
coordinate θ to a new angular coordinate θ̃ = θ +�t before apply-
ing the boundary condition. This is equivalent to replacing ω with 
ω̃ = ω − m� in (5), so that(

∂rψ

ψ

)∣∣∣∣
r=R0

= − iρω̃

Z in
ω̃

(6)

in the laboratory frame.
Energy dissipation implies that waves propagating between the 

cylinders will, in general, decay in time with the characteristic 
timescale τ ∼ 1/|Im(ω)|. Due to superradiance, however, some 
modes (satisfying 0 < Re(ω) < m�) will instead grow in time at 
least until non-linearities become important. Both cases were an-
alyzed in Ref. [41]. Here, instead, we focus on the possibility of 
canceling the dissipation effects at the inner cylinder.

To accomplish this we consider waves that are synchronized
with the rotating cylinder, so that ω/m = � holds. Consequently, 
the term proportional to ω̃ in the boundary condition (6) van-
ishes, making the impedance of the inner cylinder irrelevant 
for the problem and establishing that any dissipative effect will 
be completely suppressed. In contrast, the authors of Ref. [41]
were interested in superradiance and superradiant instabilities, 
hence it was crucial for them that the inner cylinder was a pas-
sive surface. Regarding the external static cylinder, we assume 
that the energy flow through it is negligible, so that, effec-
tively, Re

(
Z out
ω

) = 0. We investigate the formation of stationary 
clouds for several pure imaginary values of impedance ranging 
from the hard wall limit, |Im(Zω)| → ∞, to the soft wall limit, 
|Im(Zω)| → 0.

Combining Eq. (4) with the synchronization condition ω = m�, 
it is straightforward to show that the boundary conditions (5) and 
(6) will be satisfied only when

J ′
m

Y ′
m

= i Ĵm − Z out Ĵ ′
m

iŶm − Z outŶ ′
m

, (7)

where Z out = Z out
m�/(ρc), J i = J i(mα), Yi = Yi(mα), Ĵ i =

J i(mαR1/R0), Ŷ i = Yi(mαR1/R0), and α = �R0/c. The deriva-
tives, denoted by ′ , are taken with respect to the whole argument 
of the Bessel functions. Note that the equation above depends 
only on four parameters: α, m, R1/R0, and Z out. For given val-
ues of m, R1/R0, and Z out, we solve Eq. (7) using a root-finding 
method to determine the possible values of α associated with sta-
tionary clouds. Only a discrete set of solutions, indexed by the 
non-negative integer n that corresponds to the number of nodes 
in the cloud, exists.

We remark that the stationary configurations obtained by the 
aforementioned procedure lie at the threshold of superradiant in-
stabilities and, as such, are expected to be marginally stable.

4. Results

The first case we consider is that of a perfect reflector |Z out| →
∞ (the hard wall limit). This corresponds to a Neumann bound-
ary condition for ψ at r = R1, cf. Eq. (5). We show in Fig. 1 (top 
panel) the associated clouds lying along one dimensional existence 
lines in the two dimensional phase space formed by α and R1/R0. 
As a first trend, we observe (in the top panel) that clouds with a 
Fig. 1. Existence lines for stationary clouds considering the outer cylinder to be a 
hard wall. The top plot shows the first possible clouds (indexed by the node num-
ber n) for a fixed m = 1 azimuthal number. The bottom plot exhibits the clouds 
with n = 0 and n = 1, for m varying from 1 to 4.

larger node number, n, for fixed R1/R0, require a larger α. That 
is, the more excited states require a larger angular velocity of the 
cylinder. We also observe that as R1/R0 → ∞, α → 0. This also 
seems natural, as we do not expect clouds to exist when the inter-
nal cylinder is static: the existence lines do not cross the abscissa 
axis. In the bottom panel of Fig. 1 we see that as we increase m, 
for fixed α and n, the corresponding cloud occurs for smaller val-
ues of R1/R0. This is due to an equilibrium between the angular 
momentum of the cloud and of the internal cylinder, given by the 
condition ω/m = �.

The same detailed analysis presented above was also performed 
for other values of impedance. A qualitatively novel, unexpected, 
feature was observed for impedances dominated by compliance 
rather than inertance. Using Z out = i as an example, we see in 
Fig. 2 that the existence line for n = 0 presents a maximum value 
of α at some value R1/R0 > 1 (top panel). In particular, for a 
fixed α below this maximum, fundamental (n = 0) clouds are al-
lowed at two different ratios R1/R0, while above it fundamental 
clouds are not allowed. Excited modes, on the other hand, did not 
exhibit a similar maximum in our analysis. For the fundamental 
mode, the bottom panel of Fig. 2 shows that, as we increase m, the 
maximum value of α increases and the value of R1/R0 at which 
the maximum occurs decreases. This maximum occurs when the 
two cylinders are positioned close to each other. Some insight on 
why the phase difference between incoming and outgoing waves 
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Fig. 2. Existence lines for stationary clouds when the outer cylinder is a compliance-
dominated wall with Z out = i. The top panel shows the m = 1 cloud for n =
0, 1, 2, 3. The bottom panel exhibits the peculiar behavior of the n = 0 cloud for 
m = 1, 2, 3, 4.

gives rise to this maximum for a compliant, but not for an inert, 
impedance would be desirable. It is perhaps related to the fact that 
waves scattered by the wall can be confined to a thin layer near 
the wall and behave like a surface wave [46].

The effect of a varying impedance Z out on the existence lines of 
the clouds is highlighted in Fig. 3 for n = 0 and m = 1. We see that, 
for Im(Z out) < 0 and fixed R1/R0, as we increase |Z out|, clouds 
occur for smaller values of α. By contrast, for Im(Z out) > 0 and 
fixed R1/R0, clouds occur for larger values of α as |Z out| increases. 
Note, in particular, that for Im(Z out) > 0, as we increase |Z out|
the maximum of the existence line approaches R1/R0 = 1. When 
Im(Z out) → ±∞, the existence lines for both inertia-dominated 
and compliance-dominated impedances converge to one another, 
and to those exhibited in Fig. 1. This expected convergence is in 
agreement with the observed proximity between the Z out = ±100i
existence lines in Fig. 3.

In Fig. 4 we exhibit the real part of the wave field ψ at t = 0
assuming, for the outer cylinder, either the hard wall limit (upper 
plots) or the soft-compliant wall limit (lower plots). We have fixed 
m = 1, R1/R0 = 15 and, for simplicity D2 = 1 in Eq. (4). In partic-
ular, we observe how different values of α correspond to different 
node numbers n, for fixed ratios R1/R0, cf. Fig. 1. The Neumann 
(Dirichlet) boundary condition associated with the hard (soft) wall 
means that ∂ψ/∂r (ψ ) vanishes at the external cylinder, as can be 
seen in the top (bottom) plots of Fig. 4.
Fig. 3. Existence lines for different impedances of the outer cylinder, contrasting 
the cases of a hard wall, a soft-compliant wall, and a soft-inert wall. The cloud 
parameters are fixed as m = 1 and n = 0.

Fig. 4. Spatial distribution of the clouds with m = 1 and R1/R0 = 15 in the x, y
plane. The upper plots were obtained considering the outer cylinder to be a hard 
wall, while the lower plots were obtained considering the outer cylinder to be a 
soft compliance-dominated wall.

5. Final remarks

The setup presented here can, in principle, be implemented in 
a laboratory aiming to detect such clouds experimentally. For in-
stance, if shallow water surface waves are used, and α and R1/R0
are carefully chosen, we expect the surface of the water to settle 
to the configuration of a stationary cloud, as illustrated in Fig. 4. 
One may worry, however, that a frequency fine tuning is needed 
to accomplish this and avoid superradiant instabilities. Fortunately, 
the time scale associated with these instabilities depends on the 
impedance of the inner cylinder. We have verified, by following 
the steps in [41], that the harder the inner cylinder is, the slower 
the superradiant instabilities grow. If the inner cylinder is a hard 
wall, the instability time scale is arbitrarily large and a wave packet 
peaked around the synchronization frequency suffices to excite the 
desired cloud.

As an example, assume a fluid laboratory setup with R0 =
0.05 m, R1 = 0.75 m, and h = 0.025 m (so that c ∼ 0.5 m s−1), 
which is consistent with the estimates in Ref. [41]. Taking the 
outer cylinder to be a hard wall, we determine that the range 
of rotation speeds needed to observe all seven clouds shown in 
Fig. 1 (top panel) is � ∼ 1–15 s−1. Viscosity effects on wave prop-
agation can be neglected unless the frequencies involved are ex-
tremely high, of order 106 s−1 [41], which is not the case here. 
Diffusion of angular momentum from the rotating cylinder into 
the fluid can also be neglected as long as the boundary layer of 
rotating fluid that forms around the cylinder is sufficiently small 
compared to the wavelength of the clouds [41]. Long wavelengths 
are also required by the shallow water wave limit that enforces 
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the validity of Eq. (3). This is certainly the case for the parameters 
above, at least for the fundamental clouds. By tuning the rotation 
speed of the cylinder, different m modes of the fundamental cloud 
would be seen. The observation of such configurations would be 
the first experimental detection of these bound states (i.e. synchro-
nized stationary clouds) which are ubiquitous to rotating systems 
with dissipation.

Let us close by remarking that, as emphasized above, the sta-
tionary fluid configurations discussed herein rely on a synchro-
nization condition between the frequency of the oscillating cloud, 
which is generically non-vanishing, and the rotation angular veloc-
ity of the inner cylinder. Static, rather than stationary, equilibrium 
configurations in a fluid are also possible, with zero frequency, as 
discussed in [49,50].
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