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Preface

The idea that the dimensionality of the spacetime describing the
Universe may be different from four is almost as old as the General
Theory of Relativity (GTR) itself, originating in the early twenti-
eth century, when Kaluza and Klein succeeded for the first time in
combining the theories of electromagnetism and gravity into a sin-
gle unified theory that would only make sense in a five dimensional
spacetime. It is currently known that the unification of fundamen-
tal forces in nature involves higher dimensional spacetimes. During
the decades that followed, quantum leaps in technology increased
mankind’s grasp on the forces of nature manifold. We now know that
there are four fundamental forces in nature, two of which were com-
pletely unknown during Einstein’s time, which must have been one of
the reasons why his attempts at complete unification were ultimately
unfruitful. Unfortunately, we are yet to succeed completely where he
failed, and a unified theory of forces, in a fully consistent and satis-
factory form, still isn’t available. The best candidates to date, in the
opinions of the majority, are the string theory and M-theory, both of
which make sense only in higher dimensional spacetimes. This is one
of the reasons why study of gravity in higher dimensions is of consid-
erable relevance. Another reason would be the expected creation of
higher dimensional mini black holes inside particle accelerators such
as the LHC when TeV scale energies are reached. Add to these the
fact that many equations governing the evolution of physical fields
contain dimension-dependent terms. Some of these terms identically
vanish in four dimensions. One would be interested to know about
the consequence of the presence of these terms on the physics in the
vicinity of black holes. In addition to all these practical considera-
tions, it is of immense intrinsic theoretical interest to study higher
dimensional gravity, the mathematical insights gained from which

xi



xii Preface

could prove useful in other areas.

The parallels between black hole physics and thermodynamics, con-
jectured first by Bekenstein and based on insight on processes like
the quantum radiation from event horizons, actually extends much
beyond a simple similarity between equations of black hole dynam-
ics and the laws of thermodynamics. Black hole event horizons are
treated on the same footing as thermodynamic systems in literature
and attributed with thermodynamic parameters like temperature, en-
tropy, specific heat, etc...Study of the thermodynamic properties of
black hole event horizons is expected to shed light on the microscopic
structure of spacetime. Transition between different stable phases of
black hole spacetimes is also an active area of research and is often
carried out by studying the specific heat of event horizons. Meth-
ods of differential geometry can also be used in conjunction with the
ordinary methods to study such phase transitions.

When we probe gravity in higher dimensions, however, limitations
of the General Theory of Relativity, which is the most satisfactory
theory in four dimensions, become apparent. Hence the need to find
more general theories of gravity. Of the various methods using which
GTR could be generalized, the most obvious one is to add terms to
the Lagrangian of the theory terms that are of higher-than-one or-
der in the curvature tensor and the corresponding curvature scalar.
Corresponding to Lagrangians that are quadratic, cubic etc. in the
curvature, we have second, third, etc. order theories of gravity. Of
such theories, the Lovelock model of gravity is considered to be the
natural generalization of GTR to higher dimensions, yields field equa-
tions that are of second order in the metric tensor and forms the basis
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of the works presented in this thesis. The thesis details studies on the
dynamics of fields in, and thermodynamics of, maximally symmetric
solutions to the Lovelock model having a unique cosmological con-
stant at all orders and dimensions. Dynamics of fields is studied in
terms of the quasinormal frequencies of perturbations to the back-
ground spacetimes and thermodynamics of the black hole spacetimes
is studied using two methods-the usual method of calculating the
specific heat of the black hole event horizon and using methods of
differential geometry. The latter serves as a tool for corroborating
the deductions from the former. We attempt to perform these stud-
ies taking the spacetime dimension d and the order of the theory k as
parameters.

The thesis consists of five chapters.

Chapter 1 touches upon the motivations behind conducting re-
search on black hole physics in higher dimensions. Different motivat-
ing factors, including the AdS-CFT correspondence between theories
of gravity and Quantum Field Theory, are discussed, emphasizing
on how studies performed in one area could help further our insight
in the other. It also contains a brief review on the research already
performed in the area and introduces concepts like the Quasinormal
modes of perturbations and their asymptotic forms, including their
practical utility in light of the AdS-CFT correspondence. A brief sec-
tion on the structure of the Lovelock model of gravity also forms part
of this chapter.

In Chapter 2, we study the dynamics of scalar fields in maxi-
mally symmetric, asymptotically AdS black hole spacetimes in Love-
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lock model. This is done by calculating the quasinormal frequencies
of the field equation using the Horowitz-Hubeny numerical method.
The calculation is done for different spacetime dimensions and for
different values of the order k of the model. We also calculate the
asymptotic form of these QNFs analytically and deduce the form of
the area spectrum of the event horizon from the asymptotic form.

Chapter 3 contains the details of the calculation of quasinormal
frequencies of scalar, vector and tensor perturbations in asymptoti-
cally flat, maximally symmetric black hole spacetimes in the Lovelock
model. The numerical calculation is performed using the sixth order
WKB method. The form of the quasinormal frequencies for very large
values of the mode number l is analytically found. The numerical re-
sults and the analytical expression are used in order to study how the
quasinormal frequency varies as the spacetime dimension d and the
order of the theory k vary.

We investigate the thermodynamics of charged black holes in asymp-
totically AdS spacetimes in Chapter 4. Thermodynamic parameters
of the black holes like the horizon temperature, entropy, etc... are cal-
culated in terms of the horizon radius, which is taken as the control
parameter. Phase transitions in the spacetime are investigated by
calculating the specific heat of the event horizon and finding out the
points of divergence. The methods of black hole geometrothermo-
dynamics are used to calculate the thermodynamic curvature of the
spacetime and find out the points of divergence, signifying such phase
transitions.



Chapter 5 summarizes the main conclusions drawn from the stud-
ies described in this thesis. It also mentions prospects of work that
could be done on the topics that are studied.

Part of this work have been published as papers in refereed jour-
nals. Details are given below:

Publications in refereed journals

1. C.B. Prasobh and V.C. Kuriakose, Scalar filed evolution and
area spectrum for Lovelock-AdS black holes, Gen. Relativ.
Gravit. (2013) 45:2441–2456

2. C.B. Prasobh and V.C. Kuriakose, Quasinormal modes of Love-
lock black holes, Eur. Phys. J. C (2014) 74:3136

3. C.B. Prasobh, Jishnu Suresh and V.C. Kuriakose, Thermody-
namics of charged AdS-Lovelock black holes, Eur. Phys. J. C
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1
Introduction

1.1 Relevance of Higher Dimensional Black
Hole Physics

The interest in pursuing theories of gravity in higher dimensional
spacetimes can be justified on multiple fronts - there is the obvious
and intrinsic theoretical curiosity about the structure of higher dimen-
sional spacetimes and properties of physical fields in such spacetimes.
This is adequately articulated by a pioneer in the field of higher di-
mensional gravity, F.R. Tangherlini, the one who generalized Einstein
- Hilbert gravity to an asymptotically flat n dimensional spacetime
and derived the metric representing the same [27]. To quote,

“...[The fact that mathematical expressions describing the laws of
nature exhibit a greater generality regarding the dimensionality of
spacetime than space itself exhibits on a macroscopic scale] is readily
seen upon examination of Newton’s laws of motion, the Lagrangian
and Hamiltonian formalisms, the two principles underlying special
relativity, the principle of equivalence, the principle of general co-
variance, the geodesic principle, and the principles of quantum me-
chanics. In none of the above - cited cases do either the statements
of the principles or the mathematical machinery restrict us to three
dimensions...”

1



2 Introduction

Black holes, as we know them today, are regions of spacetime where
the curvature of the spacetime is so large that every kind of signal
emitted from the region or entering the region would get infinitely
red shifted so as to make “observation” of the “interior” of the region
impossible. In simpler terms, not even light can escape the region,
as the well - known definition says. These black holes are always
accompanied, at least in four dimensions, by what is called an event
horizon, which is a subspace of the original spacetime, acting as the
de - facto boundary of the region.

According to a conjecture known as the no - hair theorem, black
holes in four dimensional spacetimes are characterized by three of pa-
rameters - mass, charge and angular momentum. They also obey a
number of laws such as ones similar to the laws of ordinary thermo-
dynamics. Also, there exists a number of constraints on how black
holes can exist, and the number of parameters that can specify the
end state of evolution of a black hole, etc. - Birkhoff’s theorem, Cos-
mic censorship conjecture etc. are a few among them. It would be
of interest to know if such laws can be extended to the case of black
holes in higher dimensions, or if they are unique to four dimensions.
Related to this are the questions regarding the stability - both the
stability against perturbations and thermodynamic stability - of black
holes. Do black holes that are stable against perturbations at four
dimensions become unstable at higher dimensions? Do the important
thermodynamic quantities related to black holes - such as the specific
heat of their event horizons - depend on the dimensionality of the
spacetime? Does the dimensionality of the spacetime play a role in
determining their thermodynamic stability?
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In addition to such intrinsic curiosity, there are other motivations
as well for studying black holes in higher dimensions. One of these
comes from attempts to unify the four fundamental forces of nature.
The most important candidates for the status of such “Theory of
Everything” are the string theory and M - theory, both of which can
be consistently defined only in higher dimensional spacetimes. It is
known that, at low energies, these theories reduce to supergravity
theories. What makes these interesting is the fact that solutions of
these theories that admit the existence of event horizons - called black
objects - help explain the quantum mechanical origins of black hole
entropy among other physical properties [67–69].

Yet another motivation for considering black hole physics in higher
dimensional theories comes from the so - called gauge - gravity corre-
spondence [3], which is the observation that there exists a dual rela-
tion between theories of gravity defined in an n dimensional, asymp-
totically AdS spacetime and a strongly coupled gauge theory in n− 1

dimensions. The gauge - gravity correspondence makes it possible to
compute physical parameters of a strongly coupled system by study-
ing the corresponding gravitational system in the next higher dimen-
sion. Hence the interest in gravity in higher dimensional, asymptoti-
cally AdS spacetimes.

Another feature of higher dimensional black hole physics that war-
rants attention is the existence of critical dimensions [83]. In many
higher dimensional black hole solutions of theories of gravity, there
exist multi - phase spacetimes. What it means is that the horizon
topology can change as a function of certain parameters related to
the spacetime. It is known that there exist changes between such



4 Introduction

phases of black objects. A famous example of such black hole phase
change, known as the Gregory - Laflamme (GL) instability [22], has
dependence on the spacetime dimensions.

Simply put, the GL instability involves the splitting up of a uniform
black string into a non - uniform black string, which could lead to the
formation of several black holes along the length of the string. The
transition takes place at what is called the Gregory - Laflamme point,
which is where the instability sets in. The interesting property, and
what makes the GL instability relevant within the context of higher
dimensional gravity, is the existence of a critical dimension at which
the transition between the black string and the black hole phases
changes from first order to second order.

The GL instability is not the only kind of instability that the black
hole solutions suffer from. It is known in the literature that dynamic
stability of black holes - that is, stability of the evolution of physical
fields in the spacetime - is also dependent on the dimension of the
spacetime. The stability of black hole spacetimes against perturba-
tions is decided by various factors including the asymptotic behavior
and dimensionality of the spacetime, the symmetries of the tangent
space, etc. The uniqueness theorem which applies to the final state of
the gravitational collapse of matter with static and spherically sym-
metric initial conditions, also known as Birkhoff’s theorem, breaks
down in higher dimensions [4]. Consequently, the boundary condi-
tions for perturbations also change. The uniqueness and the spherical
symmetry of the horizon geometry in four dimensions is mainly re-
sponsible for the stability exhibited by the solutions of General The-
ory of Relativity(GTR) against various perturbations. They do not
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hold in higher dimensions [4] with permissible solutions having S2×
S1 topology called Black Rings. However, in the static asymptoti-
cally flat case [27], such a violation has not been proved yet. Once
the condition of asymptotic flatness is dropped, this uniqueness fails
and there exist an infinite number of discrete solutions [5]. In n di-
mensions, these solutions are obtained by replacing the metric on the
spherical (n− 2) dimensional subspace with any other Einstein mani-
fold whose Ricci curvature has the same magnitude as that of a unit
round (n− 2) sphere. Bohm metrics [6] belong to this class and have
been proved [7] to represent spaces with lower volume compared to
Sn−2. The stability of perturbations in such spacetimes is related to
the spectrum of the Lichnerowicz operator on the tangent space [8]
which depends on the dimension of the spacetime.

Stability of generalized black hole solutions against tensor pertur-
bations in AdS spacetimes has been discussed by Hartnoll [9]. It has
been found that the lower bound of the spectrum of the Lichnerowicz
operator, and in turn the stability, depends on the size of the black
hole as well as the dimension in AdS spacetimes. In the case of very
large black holes, the analysis shows that there exists a suitable Bohm
metric with eigenvalues that are sufficiently negative so as to desta-
bilize the spacetime. Interestingly, these large black hole solutions
are locally thermodynamically stable. As the size of the black hole is
increased, the critical eigenvalue becomes increasingly negative. For
small black holes, it is found that the criterion for stability in the
asymptotically flat case is recovered.

The facts listed in the preceding paragraphs clearly explain the im-
portance of studying black hole physics in higher dimensional space-
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times. However, when we go to higher dimensions, we see that the
original theory of gravity, namely the General Theory of Relativity
(GTR), is no longer the most general theory of gravity. Hence the
need to consider more generalized models of gravity.

1.2 Higher Dimensional Models of Gravity
- The Lovelock Model

There are practical reasons for considering more generalized the-
ories in both four and higher dimensions. One such reason is the
failure of GTR to explain phenomena like the late - time accelerated
expansion of the universe [149]. GTR is also inadequate to explain the
origin and properties of dark matter and dark energy. Though vari-
ous attempts have been made to find an alternative theory to GTR
in order to explain such astronomical observations and to overcome
the conceptual difficulties encountered in GTR, we have yet to arrive
at a successful theory. Even though there are attempts at explaining
the expansion based on the cosmological constant, known in the liter-
ature as the ΛCDM model, it is not without its problems, such as the
coincidence problem, the discrepancy in the observed magnitude of
the cosmological constant, etc. Attempts at explaining the dark en-
ergy problem in terms of ad - hoc scalar fields, known as quintessence,
are also known. However, when we study gravity in higher spacetime
dimensions, we realize that it is not enough to focus our attention
on corrections to first order theories like GTR, since GTR is not the
most general theory of gravity in such spacetimes - we must also con-
sider the possibility of generalizing GTR without introducing such
fields. Such attempts could focus on modifying the action that GTR
is based on. GTR is derived, as is well known, from a Lagrangian
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which is linear in the Ricci curvature scalar. One way, therefore, of
generalizing it, would be to add terms to it that are of higher - than -
one degree in the curvature scalar. In this respect, a set of theories of
gravity, known as the f(R) model, are relevant. They are capable of
explaining observations like the expansion of the universe, the rota-
tion - curves of galaxies, etc. One issue that one encounters, however,
with the f(R) model, is that the action in that model produces field
equations that are of order four in the components of the metric ten-
sor. It is cumbersome to analyze the behavior of physical systems in
a background spacetime described by a fourth order equation.

We, therefore, seek a model of gravity that is derived from a La-
grangian that contains higher order curvature terms while, at the
same time, yields field equations that are of second order in the met-
ric tensor, just like the case of GTR. The Lanczos - Lovelock model
of gravity [40, 41, 145] is based on the most general Lagrangian based
on the same principle as that of GTR, namely general covariance, and
hence considered to be the natural generalization of GTR to higher
dimensions [50]. The studies that have been carried out in this thesis
are all based on solutions of this model. The following paragraphs ex-
plain the mathematical structure of the Lovelock Lagrangian and the
form of the static and spherically symmetric solutions that it admits.

The Lovelock Lagrangian contains dimensionally extended Euler
characteristic densities [14] which contain higher powers of the Rie-
mann curvature tensor than one. The most general symmetric, di-
vergence free and ghost free (ie. with no negative norm eigenstate
in the corresponding quantized theory) rank (1,1) tensor, which can
be constructed out of the metric and its first and second derivatives,
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analogous to the Einstein tensor in GTR, is constructed out of this
Lagrangian. The Lovelock Lagrangian in a D dimensional spacetime
is written in the form

L =

k∑
m=0

cmLm , (1.1)

where k ≡
[
D−1
2

]
which is the integer part of D−1

2 . Lm, defined as

Lm ≡ 1

2m
δλ1σ1···λmσm
ρ1κ1···ρmκm

Rρ1κ1

λ1σ1
· · ·Rρmκm

λmσm
, (1.2)

is the mth order dimensionally extended Lovelock term. Rρκ
λσ is

the Riemann tensor in D - dimensions and δλ1σ1···λmσm
ρ1κ1···ρmκm

is the gener-
alized Kronecker delta. The Lovelock term with 2m = D becomes
a total divergence and those with 2m > D vanish [145]. Therefore
the maximum order of terms in L is determined by the dimension
of the spacetime. cm are constants. We set c0 = −2Λ, c1 = 1 and
cm = am/m (m ≥ 2). The field equations in Lovelock model, derived
by varying the action w.r.t. the metric are given by,

0 = Gν
µ = Λδνµ −

k∑
m=1

1

2(m+1)

am
m
δνλ1σ1···λmσm
µρ1κ1···ρmκm

Rρ1κ1

λ1σ1
· · ·Rρmκm

λmσm
, (1.3)

where Gν
µ, called the Lovelock tensor [56] is the generalization of

the Einstein tensor to higher orders. We write the static and spheri-
cally symmetric solutions to the Lovelock equations as,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2γijdx

idxj , (1.4)

where γij is the metric on the (n ≡ D − 2) dimensional constant
curvature tangent space with a curvature κ=1. Specifically we take
the form of γij as [14],
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γij = δij +
xixj
1− x2

. (1.5)

Using this metric ansatz, we compute the components of the Rie-
mann curvature tensor as,

Rtr
tr = −f

′′

2
, Rtj

ti = − f
′

2r
δji = Rrj

ri , R
kl
ij =

(
κ− f

r2

)(
δki δ

l
j − δliδ

k
j

)
. (1.6)

We define a new variable ψ(r) by,

f(r) = κ− r2ψ(r) , (1.7)

and indicate the angle variables by indices like i, j, k, l etc. We
substitute (1.4), (1.5) and (1.6) into (1.3) with µ = ν to get

0 = Λ−
k∑

m=1

1

2m+1

am
m

[(
2m−1

)
2mδri1···i2m−1

rj1···j2m−1
Rrj
ri (R

pq
kl )

m−1+(2m) δi1···i2mj1···j2m(R
pq
kl )

m

]
,

= Λ−
k∑

m=1

am
m

[(
1

4

)
2mδi1···i2m−1

j1···j2m−1

(
− f ′

2r

)
δj1i1ψ

m−1δj2i2 · · · δ
j2m−2

i2m−2

+

(
1

2

)
δi1···i2mj1···j2mψ

mδj1i1 · · · δ
j2m
i2m

]
. (1.8)

(We have δµλ1σ1···λmσm
µρ1κ1···ρmκm = δλ1σ1···λmσm

ρ1κ1···ρmκm
since δνµ = 0 when µ ̸= ν. We

split the general term of order m in (1.3) in to two - those with m

factors of the form Rkl
ij and those with one factor of the form Rtj

ti

or Rrj
ri and (m − 1) factors like Rkl

ij . There are m terms each of the
latter type and each factor like Rkl

ij has to be multiplied by 2. Also,
Rtj
ti = Rrj

ri . Observing these facts, we substitute the forms of Rtj
ti , R

rj
ri

and Rkl
ij into (1.3) in order to get the expression given above.)
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We exploit the property of the generalized Kronecker delta, namely

δj1···jmi1···im δ
i1
j1
= {n− (m− 1)}δj2···jmi2···im ,

in order to write (1.8) in the form

0 = Λ− n

2

k∑
m=1

am
m

{
2m−2∏
p=1

(n− p)

}[
m
(r2ψ)′

r
ψm−1 + (n− 2m+ 1)ψm

]
,

= Λ− n

2

k∑
m=1

am
m

{
2m−2∏
p=1

(n− p)

}[
m
(
r2ψ
)m−1 (

r2ψ
)′

r2m−1

+
(n− 2m+ 1)rn−2m

(
r2ψ
)m

rn

]
,

i.e. 0 = 2Λrn − n

k∑
m=1

am
m

{
2m−2∏
p=1

(n− p)

}[
rn+1ψm

]′
. (1.9)

Integrating (1.9) first with respect to r and then over the spher-
ically symmetric tangent space of dimension n, we get a polynomial
expression that must be satisfied by the spherically symmetric solu-
tions to the Lovelock model, namely

W [ψ] ≡
k∑

m=2

[
am
m

{
2m−2∏
p=1

(n− p)

}
ψm

]
+ ψ − 2Λ

n(n+ 1)
=

µ

rn+1
, (1.10)

where µ is a constant of integration related to the black hole mass
M as,

M =
µπn/2

Γ
(
n+1
2

) . (1.11)
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1.3 Quasinormal Modes of Black Holes and
their Asymptotic Forms

We develop our knowledge of black hole physics by analyzing the
dynamics of physical fields in the vicinity of the event horizons of black
holes. Presence of physical fields near the horizon would present itself
as a perturbation to the background spacetime metric. It is known
[32, 33, 150] that such perturbations - whether tensor, vector or scalar
in type - evolve in time in different stages, known as initial outburst,
quasinormal ringing and power law decay. Of these three, the second
phase is the one during which the emission of gravitational waves is
supposed to be at a maximum. This phase is supposed to be observ-
able using Gravitational Wave (GW) antennas and dominated by the
so - called Quasinormal modes (QNMs), which are modes of the field
of perturbation having complex frequency of oscillations. In other
words, QNMs represent damped oscillations of the metric perturba-
tions. The corresponding frequencies are called QN frequencies and
are important parameters determining the dynamics of the fields.

Mathematically, QNMs, discovered by Vishveshwara [82], are solu-
tions of field field equations that govern the evolution of physical fields
in spacetimes that contain black holes. As mentioned in the preced-
ing paragraph, the evolution mainly contains three stages - an initial
outburst, an oscillatory stage and a late - time decay stage. QNMs
characterize the second stage, called the quasinormal ringing phase.
the physical field in the vicinity of the black hole can be considered
as a perturbation to the background spacetime. Such perturbations
can be of various types - gravitational, scalar, vector, spinor, dirac,
etc. The frequency of oscillations in the second stage is called the
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quasinormal frequency (QNF). The word “quasi” signifies the fact
that these frequencies are complex in nature, thus describing damped
oscillations. The real part of the QNF would then represent the ac-
tual frequency of oscillations and the imaginary part would represent
the damping time of the oscillations.

QNMs of perturbations are obtained as solutions of the respec-
tive field equations, when solved with respect to the metric that de-
scribes the particular black hole spacetime of interest. Such field
equations, in the case of static, spherically symmetric spacetimes,
take a Schrödinger - like form with an effective potential that depends
both on the nature of the perturbing field and on the parameters of
the black hole. In the case of asymptotically flat spacetimes, the ef-
fective potential that is perceived by the field in the spacetime often
resembles a finite potential barrier such that the potential vanishes
at infinity. This leads to the possibility of obtaining solutions that
are purely ingoing at the event horizon of the black hole and purely
outgoing at infinity, both resembling plane waves when expressed in
terms of a scaled co - ordinate called the tortoise co - ordinate. The
well - known WKB approximation is applicable in such situations and
it provides a particularly convenient way of computing the QNFs in
these spacetimes [71]. In the case of asymptotically AdS spacetimes,
however, the potential grows indefinitely at infinity, due to the pres-
ence of the Λ term in the metric. Such a potential, which diverges at
spatial infinity, effectively confines the field and provides a situation
similar to the “particle - in - a - box” problem in elementary quantum
mechanics. Motivated by the method of solution of such problems,
we change the boundary conditions that the solutions are supposed
to satisfy. Whereas the solutions in the asymptotically flat case are
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supposed to be wave - like at the horizon as well as at spatial infinity,
in the AdS case, one usually looks for solutions that vanish at infin-
ity, the boundary condition at the event horizon being left unchanged
[37].

The significance of QNMs in black hole physics stems from the fact
that the QNFs are characteristic of the black hole itself, and not de-
pendent on the nature of the perturbations. What it means is that
the values of the QNFs would depend only on the parameters that
characterize the black hole: its mass, charge and the angular momen-
tum. This is reminiscent of an ordinary oscillator, whose frequency of
oscillations would reveal important data regarding the force constant
of the system, the coefficient of viscosity of the system (in the case
of damped oscillations),etc. QNMs are significant astronomically as
well, since they are expected to be detectable in various gravitational
wave detectors being set up in different regions of the world. The re-
cent observation of a transient gravitational wave signal by the LIGO
group [132] is worth special mention here. The observed wave form
reportedly matched extremely well with the predictions of GTR, but
detectors to be set up in the future, having better accuracy, may re-
veal the presence of some discrepancy between GTR and observation,
which can be resolved by more general modes of gravity.

In astronomy as well as astrophysics, the most important space-
times are the asymptotically flat ones, the metrics describing which
reduce to the Minkowski form in regions of spacetime free of the en-
ergy - momentum tensor. This is because we assume the large - scale
structure of the spacetime of the universe to be largely flat, owing
to the vast emptiness of the space between clumps of matter in the
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observable universe. If the universe is indeed flat, then the QNMs of
perturbations in asymptotically flat spacetimes could provide useful
data regarding the structure of the spacetime.

In the case of asymptotically flat spacetimes themselves, the QNMs
having very large imaginary parts (the highly damped ones) enjoy a
special status, and are called asymptotic QNMs. They correspond
to very large values of the mode number n and, in the case of four
dimensional, asymptotically flat space times, take a form in which the
real part of the QNF approaches a constant (equal to 0.0437123) and
the imaginary part increases linearly with the mode number. These
modes are important because of a possible connection between their
constant real part and the quantized area of black hole event horizons.

According to Bekenstein [38], one of the pioneers of the field of
black hole thermodynamics, the black hole horizon area An takes the
form An = nγℓ2P , ℓP being the Planck length, n is a natural number
and the constant γ determines the size of he area quantum. In lit-
erature related to Loop Quantum Gravity, γ is called the Barbero
- Immirzi parameter [134]. The value of γ is an important param-
eter that fixes the form of such theories and could provide crucial
insight regarding quantized gravity. Using statistical arguments, the
value of γ can be shown to take the form γ = 4 ln k, where k is an
undetermined integer. The connection between the horizon area and
asymptotic QNFs comes from the ad - hoc proposal of Hod [39] to
map the above - mentioned number, namely 0.0437123, to ln 3 and
thereby fix the value of k to 3. Hod’s proposal is based on an appeal
to a version of Bohr’s correspondence principle, in which one argues
that corresponding to a fundamental frequency in a classical system,
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there exists an adiabatic invariant in the quantum mechanical sys-
tem, having a quantized spectrum. In the case of black holes, the
adiabatic invariant is usually taken to be the horizon area. Although
such a connection between a numerically observed general form of
asymptotic QNFs and a fundamental black hole parameter such as
its area quantum may sound far - fetched,it has certainly attracted
a lot of curiosity in the community and numerous works have been
carried out, both to verify the original results of Hod and to extend
the results to other dimensions as well [62].

It would certainly be interesting to see whether such a connection
also exists in the case of generalized theories of gravity such as the
Lovelock theory, and to see what form the expression for the quantized
area spectrum would take in such theories. One would like to know
how the area quantum depends on parameters like the dimension of
the spacetime, the order of the theory, etc.

The above - mentioned facts signify the importance of QNMs in
asymptotically flat black hole spacetimes. At the same time, there
exists ample motivation for studying the QNMs of perturbations in
other spacetimes as well. The other two types of solutions - the
asymptotically de - Sitter (dS) and anti de - Sitter (AdS) - have also
been studied extensively in recent times. dS and AdS spacetimes
are solutions of Einstein’s field equations that contain a non - zero
cosmological constant Λ. Positive values of Λ correspond to dS and
negative values to AdS spacetimes. As per some models such as the
ΛCDM model, a non-zero Λ could prove useful in explaining the ex-
panding Universe and hence could be relevant while discussing the
long-term fate of the universe. If the matter density of the universe
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is sufficiently large, then the universe will eventually collapse in on
itself, and on the other hand, if the matter density is low, then there
will be nothing to prevent an indefinite expansion of the universe.

1.4 AdS - CFT Correspondence and QNMs

The motivation for studying the QNMs in the asymptotically AdS
case mainly stems from the gauge - gravity conjecture proposed by
Maldacena [3] and Witten [89]. According to this conjecture, theories
of gravity defined in an asymptotically AdS black hole spacetime of
dimension n is dual to a strongly coupled field theory at finite tem-
perature, defined in an (n − 1) dimensional subspace; whereas pure
AdS spacetime in n dimensions is dual to the field theory at absolute
zero.What this means, roughly, is that there exists a one - to - one cor-
respondence between parameters related to the black hole spacetime
and parameters related to the field theory. Considering the (n − 1)

dimensional subspace as a “boundary” of the n dimensional “bulk”
spacetime, we can observe that the dual relation between gravitation
and CFT is very much similar to the way in which an interference
pattern stored on the surface of a hologram sores information regard-
ing the three dimensional structure of an object. For this reason, the
gauge - gravity duality is also called “holographic correspondence”.
It is also called the AdS - CFT correspondence, CFT standing for
“Conformal Field Theory”.

According to the AdS - CFT correspondence, as mentioned above,
a strongly coupled CFT at absolute zero is dual to a theory of grav-
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itation defined in pure AdS spacetime of the next higher dimension,
whereas a strongly coupled CFT at a finite temperature is dual to a
theory of gravitation defined in an AdS spacetime containing a black
hole. As mentioned before, such a duality means a one - to - one
mapping between quantities related to the CFT and those related to
gravitation. This enables us to calculate parameters related to the
strongly coupled CFT by computing the corresponding parameter in
the theory of gravitation. Because of the strong coupling, pertur-
bative approaches fail in the case of the CFT, so that it is difficult
to perform the computation of such parameters. On the other hand
gravity is much weaker in comparison and the computation of the
dual parameters is often a much simpler task.

One of such dualities between gauge theories and gravity is be-
tween a perturbation to an asymptotically AdS black hole spacetime
and perturbations to a thermal state in the dual gauge theory. As an
example of such a strongly coupled system, we can consider a quark
- gluon plasma. According to the duality, such a system of quarks
and gluons is dual to a black hole spacetime in the next higher di-
mension. Disturbing the black hole spacetime would then be dual
to disturbing the plasma state. All such disturbances result in an
oscillatory response, both in the case of the CFT and in the case of
the black hole spacetime. In real - world situations, both of these
oscillations are damped, characterized by complex frequencies of os-
cillations. In the case of a quark - gluon plasma system, the damped
nature of the oscillations would be characterized by what is called a
relaxation time, in which the oscillations would almost settle down
to equilibrium. Such relaxation times are known to be related to the
coefficient of damping, such as viscosity of the plasma. Viscosity is



18 Introduction

an example of what are known as transport coefficients. Calculation
of such transport coefficients, a difficult task to accomplish directly
using QCD (which is the actual theory describing such plasma states)
can be replaced by the much simpler task of finding the QNFs of the
corresponding black hole perturbations, according to the AdS - CFT
correspondence. The above - mentioned relaxation times are dual
to the low - order QNFs. Such convenience has resulted in a lot of
recent research activity on the behavior of physical fields in asymptot-
ically AdS black hole spacetimes. It would be certainly of interest to
know more about how the order of the gravitational theory affects the
QNMs and thereby the relaxation times in the corresponding CFTs.

The horizon area spectrum of asymptotically AdS solutions also
derive their physical significance from the gauge - gravity duality.
Recent studies ([44–48] and references therein) suggest that the grav-
itational dual of the holographic entanglement entropy in quantum
field theories is the area of minimal - area surfaces in AdS spaces.
The entropy can be used to study phase transitions between various
states of the field. An area - entanglement entropy relation of the
form SA =

Area(γA)

4G
(d−2)
N

has been proposed [44, 49] which is very similar to
the familiar area - entropy relation in the General Theory of Relativ-
ity. Here, γA is the d - dimensional minimal area surface in AdSd+2

and G
(d−2)
N is the (d + 2) - dimensional gravitational constant of the

AdS gravity. Although the above relation was originally proposed for
AdS spaces, it is equally applicable to any asymptotically AdS space,
including one containing a black hole. In that case, the minimal sur-
face tends to wrap the horizon and thus we can use the area of the
event horizon in order to compute the entanglement entropy in the
conformal field theory.
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1.5 QNMs, Asymptotic QNMs and Gravi-
tational Radiation in Higher Dimensions

An exhaustive survey of the vast literature on the evolution of various
types of perturbations in different kinds of spacetimes would be too
cumbersome to be carried out here, but the works mentioned in the
following paragraphs provide a bird’s - eye - view on the subject, in
addition to providing an invaluable list of review materials on the
same.

A detailed study on the asymptotic QNMs of Schwarzschild black
holes in four and higher dimensions for gravitational, scalar and elec-
tromagnetic perturbations was carried out by Cardoso et al. [84].
The authors attempt to generalize the form of the asymptotic QNMs
obtained earlier in the literature using numerical methods and to
generalize the asymptotic form in the case of higher dimensions as
well. The numerical results obtained by the authors for the case of
electromagnetic perturbations are the first ones to be reported. The
asymptotic limit of scalar and gravitational perturbations in five di-
mensions is seen to be of the form ω

Th
= ln 3 + i(2n + 1)π, ω and Th

being the QNF and the horizon temperature respectively and n is
the mode number. It is also found that the corrections to the QNMs
in the first order vary as 1

n(d−3)/(d−2)
, d being the dimension of the

spacetime.

Gravitational QNMs of higher dimensional Schwarzschild, Reissner
- Nordstrom (RN), SdS and SAdS black holes in higher dimensional
spacetimes were calculated by Konoplya [85] using the sixth order
WKB method and the Horowitz - Hubeny method [37]. In the case
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of asymptotically flat spacetimes, the QNMs were found to be in-
versely related to the horizon radius. For SdS black holes, the real
and imaginary parts of the QNMs decrease with increasing values
of the cosmological constant Λ, indicating a decreasing oscillational
frequency and an increasing damping time. For SAdS black holes,
however, a different sort of behavior is observed - the QNFs for SAdS
black holes depend on the size of the black hole, being proportional
to it in the case of large and intermediate - sized black holes. For very
small black holes, it is found that the values of the QNFs reduce to
those in pure AdS spacetimes. The behavior of these perturbations
in higher dimensions was found to mimic that in the four dimensional
case. Another notable feature observed this study is that the three
kinds of perturbations - scalar, electromagnetic and gravitational -
are not isospectral in higher dimensions, unlike the case in four di-
mensions. It would be interesting to investigate these behaviors in the
case of higher dimensional, higher order theories such as the Lovelock
model.

Zhang [87] has attempted to fix the Barbero - Immirzi parameter
from the asymptotic form of QNFs for higher dimensional Schwarzschild
- type black holes. The value of γ in the case of four dimensional
Schwarzschild black holes was found to be γ =

ln 3

2π
√
3
. In the case of

higher dimensions, it was found that the parameter varies with the
dimension d of the spacetime as γ ∝ 1√

d
. Whether the value of γ in

higher order theories would depend on the order of the theory would
be worthwhile investigating.

The decay of charged scalar fields in RN and RN - AdS spacetimes
was analyzed by Konoplya [86]. It was found that the real and imag-
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inary parts of the QNFs increase with increase in the value of the
charge of the field. Another interesting feature of the QNFs of these
black holes is that, in the case of extremal and nearly extremal black
holes, the values of the QNFs for neutral and charged scalar fields
coincide.

1.6 Black Hole Thermodynamics and Black
Hole Geometrothermodynamics

Black holes and thermodynamic systems behave similarly in many
respects. To note just one example, we note that black holes in four
dimensional spacetimes obey what is known as the Birkhoff’s theorem,
which roughly states that any black hole that is initially different
from a spherically symmetric one will eventually settle down to a
spherically symmetric configuration, characterized by just a handful
of parameters. We can immediately see a similarity between this and
the behavior of thermodynamic systems consisting of a large number
of atoms. One does not need to specify the values of the position
and momentum of each atom to know the thermodynamic states -
the thermodynamic equilibrium states are characterized by just a few
variables - temperature, pressure, etc.

Further justification for considering black hole spacetimes as ther-
modynamic systems is a similarity between the equations of gravity
in black hole spacetimes and those of thermodynamics. This associ-
ation between the two theories began with Bekenstein [38] who was
the first one to observe that the area of the black hole horizon is a
quantity that always increases for every kind of physical process that
takes place in the vicinity of the black hole. This observation consti-
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tutes one of the “laws of black hole thermodynamics”, which are four
in number. These are summarized below:

1. Zeroth Law: Surface gravity of a stationary black hole is a con-
stant. This is analogous to the Zeroth Law of thermodynamics,
which states that the temperature is constant for system in equi-
librium with the surroundings.

2. First Law: dM =
κ

8πG
dA, M being the black hole mass, κ the

surface gravity, G the Newton’s gravitational constant. This
is analogous to the first law of thermodynamics, namely dE =

TdS, E, T and S being the energy of the system, its temperature
and the entropy, respectively. In the case of a charged, rotating
black hole, the corresponding expression becomes: dE = TdS +

ΦdQ + ΩdJ , Q, J, Φ and Ω being the charge of the black hole,
the horizon angular momentum, horizon electrostatic potential
and the horizon angular velocity, respectively.

3. Second Law: dA ≥ 0, which is analogous to dS ≥ 0 in ordinary
thermodynamics.

4. Third Law: The Third Law of Thermodynamics states that it
is impossible by any process, no matter how idealized, to reduce
the entropy of a system to its absolute-zero value in a finite
number of operations. In the context of black hole systems,
this would mean that the surface gravity of a black hole can
never attain zero value through any physical process involving
the horizon.

The laws stated above contain the most important associations
between thermodynamic variables and black hole parameters.
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A closer inspection of the laws, however, reveal some pitfalls that
one may encounter by taking these laws and the associated links be-
tween thermodynamic and black hole parameters too literally with-
out taking into account the coordinate - frame - dependent - nature
of many black hole parameters. One such point that warrants cau-
tion is the zeroth law itself, which links the dynamic variable called
specific gravity of the black hole surface (called surface gravity) and
the thermodynamic variable called temperature. The problem arises
from the fact that the surface gravity, which is the force (per unit
mass), as measured by an asymptotic observer, necessary to hold a
particle at the horizon, is frame - dependent. This is in the sense
that, while the surface gravity may be finite as per the asymptotic
observer, an infalling, accelerating observer can not escape from the
horizon. Therefore, as per his/her measurement, the necessary force
will appear to diverge, along with the temperature.

Along with this discrepancy is the fact that the traditional picture
of a black hole as a body from the gravitational influence of which
nothing can escape is directly at odds with the zeroth law, which as-
sociates a temperature with it, making it “the ideal black body at a
finite temperature”, and requiring it to possess a thermal radiation,
which is nowadays called Hawking radiation [74]. Yet another point
of potential conflict between the ordinary and black hole laws of ther-
modynamics, that tell us that they indeed describe different types of
physical systems, comes from inspecting the second law. Although
positively correlated as per the second law, the horizon area and the
entropy vary dimensionally, unless modified with suitable prefactors
as per the first law. The thermodynamic entropy is dimensionless by
definition, while the area is not. The presently accepted, dimension-
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less form of the area law in 4D spacetime is given by,

S =
kBc

3

4GℏA =
kB
4

A
ℓ2P
,

ℓP representing the Planck length, a length constructed out of G, ℏ
and c, the assumed scale of length at which the effects of quantum
gravity become apparent. As noted earlier, it is interesting to note
that the dimensionless entropy is proportional to the area of the black
hole, rather than its volume, like in ordinary statistical mechanics. In
fact, it may have been one of the early indications of the duality be-
tween lower dimensional field theories and higher dimensional gravity.

In addition to the study of such analogies is another important
question - that of the thermodynamic stability of a black hole. The
thermodynamic stability of a black hole is a concept that is similar to
that of some phase of matter - as long as the phase does not change
with change in some thermodynamic parameter like the tempera-
ture of the system, the phase is said to be thermodynamically stable.
Mathematically, such stable phases are associated with a positive
value of the specific heat (at constant pressure) Cp. When, however,
the value of Cp is negative, it signals an unstable phase. Thermo-
dynamic transitions between macroscopically distinguishable stable
phases are accompanied by discontinuities in Cp when expressed as
functions of the temperature T of the system. During a phase transi-
tion, some thermodynamic potential function such as the free energy
F of the system becomes non - analytic. In general, during what
is known as an nth order phase transition, the nth derivative of the
thermodynamic potential will be non analytic. Thus, for a first order
phase transition, the free energy itself may remain analytic with the
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first derivative being non analytic at the critical value of the con-
trol parameter such as T ; for a second order phase transition, F and
its first derivative may remain analytic with non - analyticity in the
second derivatives, etc.

When one deals with black hole thermodynamics, the usual recipe
for assessing the thermodynamic stability is as follows: one starts with
a static, spherically symmetric black hole spacetime whose metric
takes a form similar to ds2 = −f(r)dt2 + 1

f(r)
dr2 + ... in which the

lapse function f(r) may depend on the black hole parameters such as
the mass M , charge Q and the angular momentum J . Next, M, Q, J

and thermodynamic parameters such as T are expressed in terms of
the black hole event horizon rh using the identity

T (r+) =
1

4πκB

df

dr

∣∣∣∣
r=r+

In order to assess the thermodynamic stability, we have to com-
pute the specific heat Cp for the spacetime.

The specific heat Cp of the black hole may be calculated by using
the relation

Cp(T ) =
∂M

∂T

In many spacetimes that are usually encountered, the tempera-
ture, entropy, etc. are found to be monotonic functions of the hori-
zon radius rh. In such cases, it may be more convenient to find Cp

as a function of rh directly instead of T . If that is the case, one can
make use of the relation Cp(rh) =

∂M

∂T
=
∂rhM

∂rhT
. One can then test for

non - analytic behavior of Cp either analytically or using graphical
methods. The graphical methods come especially handy in situations
where the actual expression for Cp in terms of T or rh turns out to
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be too complicated to handle manually. Whatever the method, the
presence of such non analytic points in the domain of Cp will signal
the presence of second order phase transitions in the corresponding
black hole spacetime. The question as to what exactly undergoes the
transition, however, will only be clear once complete quantization of
gravity becomes a reality.

While discussing the similarity between black holes and thermo-
dynamic systems, it is worthwhile to note that the analogy also hints
at a connection between gauge theories and gravity, explained in the
previous sections under AdS - CFT correspondence. We know that
the entropy of the event horizon, at least in four dimensions, is pro-
portional to its area. For a thermodynamic system, however, the sta-
tistical entropy is proportional to the volume of the system instead
of the area. Thus, a four dimensional black hole can not correspond
to a four dimensional thermodynamic system. However, we also note
that “area” in a five dimensional spacetime is equivalent to “volume”
in a four dimensional spacetime. Thus, if a four dimensional thermo-
dynamic system has any correspondence with a gravitational system
at all, then the gravitational system must exist in a spacetime of five
dimensions - the same deduction as that obtained from the AdS -
CFT correspondence.

1.7 Black Hole Thermodynamic Geometry

Thermodynamic geometry is essentially the utilization of the methods
of differential geometry in order to study the thermodynamic behav-
ior of systems. The core concept behind thermodynamic geometry is
identifying the thermodynamic phase space of a system with a Rie-
mannian manifold. An equilibrium state of such a thermodynamic
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system would be characterized by a state equation, which would then
define a surface in the manifold. The critical points corresponding
to phase transitions are identified with extremal points on the sur-
face. Since different points on the surface represent different states at
which the system can be in equilibrium, curves on the surface would
naturally represent transitions between states. The methods of ana-
lytical and differential geometry could then be employed in order to
analyze such transitions.

In thermodynamic geometry, such a Riemannian manifold is en-
dowed with a metric called the thermodynamic metric. The compo-
nents of the metric tensor are given by the partial derivatives of some
thermodynamic potential Φ such as the free energy F of the black
hole system with respect to some control parameter, such as the hori-
zon temperature T , the horizon radius rh, etc. (A thermodynamic
potential is a function obtained by Legendre transformation of the
fundamental relation of the thermodynamic system. For example,
F = E − TS, where E, T and S are the energy of the system, the
temperature and the entropy, respectively.) Different choices of the
thermodynamic potential are known as different representations in
the vocabulary of thermodynamic geometry. For example, the choice
of E gives the energy representation, the choice of S is called en-
tropy representation, etc. We can obtain a thermodynamic curvature
that is independent of the choice of the potential by defining what
is known as a Legendre invariant thermodynamic metric and using
it to calculate the curvature. In general, such an invariant metric g
defined in terms of a thermodynamic potential Φ with a set of control
parameters Ec has components of the form
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gad =

(
Ec ∂Φ

∂Ec

)(
ηabδ

bc ∂2Φ

∂Ec∂Ed

)
(1.12)

,

where η and δ represent the Minkowski metric and the Kronecker
delta respectively. In the case of black hole spacetimes, the black
hole mass M plays the role of the energy of the system. Also, the
horizon radius rh is also taken as the control parameter and all other
quantities such as Φ are expressed in terms of rh.

The use of Riemannian geometry in the study of statistical me-
chanics and thermodynamics, in terms of a metric in local coordi-
nates, assigned to the manifold, date back to Rao[111]. The metric
would allow us to compute the curvature scalar for the manifold,
which would then be identified with thermodynamic interaction be-
tween states. What this means is that zero curvature of the manifold
would represent a system at equilibrium, having absolutely zero in-
teraction with the surroundings. On the other hand, parts of the
manifold with non zero curvature would represent states that would
essentially be thermodynamically unstable, representing potential in-
teractions including phase transitions. In particular, second order
phase transitions would be signaled by divergences in the curvature.

Although the essential idea behind the methods of thermodynamic
geometry has not undergone considerable change since its inception,
so can not be said about that actual metric that is to be associated
with the phase space. The components of the metric are usually
defined as partial derivatives of thermodynamic potential functions
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with respect to control parameters such as the temperature, hori-
zon radius, etc.The control parameters are collectively represented as
Na. Usual choices for the thermodynamic potentials are the mass
M , internal energy U , entropy S, etc. of the black hole spacetime.
Depending on the choice of the metric, different versions of the ge-
ometric approach exist. The use of thermodynamic geometry in the
space of equilibrium states was first performed by Weinhold[117] and
Ruppeiner [118]. Weinhold proposed a metric structure in the energy
representation as gWij = ∂i∂j M(U,Na), while Ruppeiner defined the
metric structure as gRij = −∂i∂j S(U,Na). Components of these met-
rics are those of the Hessian matrix of the internal energy M and the
entropy S respectively, with respect to the extensive thermodynamic
variables Na. Weinhold’s metric was found to be conformally con-
nected to Ruppeiner’s through the relation ds2R =

ds2W
T

[123], T being
the horizon temperature. Ruppeiner’s metric has extensively been
used in the geometric analysis of various black hole spacetimes[124].
Recently, Quevedo et al.[120] presented a new formalism called ge-
ometrothermodynamics, which allows us to derive Legendre invariant
metrics for the phase space. Geometrothermodynamics presents a
unified geometry where the metric structure describes various types
of black hole thermodynamics [119–122, 125–130].

1.8 Structure of the Thesis

Motivated by the arguments put forward in the preceding para-
graphs, this thesis summarizes some basic theoretical investigations
into the dynamics of fields in, and thermodynamic behavior of, black
hole spacetimes in the Lanczos - Lovelock model of gravity. The dy-
namics of fields is studied by analyzing their quasinormal frequencies.
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We find out how the quasinormal frequencies change when we treat
the dimension d and order k as variable parameters. The thermody-
namics is studied by calculating the specific heat of the spacetime and
looking for divergences in order to find out potential transition points.
A calculation of the thermodynamic curvature also corroborates the
occurrence of such phase transitions. The thesis is organized into five
chapters:

Chapter 1: In this chapter, we emphasize the importance of study-
ing black hole physics in higher dimensions. We briefly discuss
the peculiarities of black holes existing in higher dimensional
spacetimes, and the effects of higher dimensions on the horizon
structure, stability and dynamics of black holes, etc. We also go
through higher order models of gravity, along with existing ideas
about their advantages and disadvantages. We finally come to a
discussion of the Lanczos - Lovelock (LL) model of gravity, ex-
plaining the structure of the LL Lagrangian, the form of the field
equation and the form of the static, spherically symmetric so-
lutions of the theory. We also briefly discuss fundamental ideas
of black hole thermodynamics and thermodynamic geometry.

Chapter 2 : Chapter 2 deals with the modes of evolution of mass-
less scalar fields in the asymptotically AdS spacetime surround-
ing maximally symmetric black holes of large and intermediate
size in the Lovelock model. The QNMs are calculated using
the Horowitz - Hubeny numerical method. It is observed that
the modes are purely damped at higher orders. Also, the rate of
damping is seen to be independent of order at higher dimensions.
The asymptotic form of these frequencies for the case of large
black holes is found analytically. Finally, the area spectrum
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for such black holes is deduced from these asymptotic modes,
invoking the Ehrenfest Principle for the black hole spacetime.

Chapter 3 : Chapter 3 is devoted to the computation of the quasi-
normal modes of metric perturbations in asymptotically flat
black hole spacetimes in the Lovelock model for different space-
time dimensions and higher orders of curvature. It is analyti-
cally established that in the asymptotic limit l → ∞, the imag-
inary parts of the quasi normal frequencies become constant
for tensor, scalar as well as vector perturbations. Numerical
calculation using the WKB method shows that this indeed is
the case. Also, the real and imaginary parts of the quasinormal
modes are seen to increase as the order of the theory k increases.
The real part of the modes decreases as the spacetime dimension
d increases, indicating the presence of lower frequency modes in
higher dimensions. Also, it is seen that the modes are roughly
isospectral at very high values of the spacetime dimension d.

Chapter 4 : In Chapter 4, we investigate the thermodynamic be-
havior of maximally symmetric charged, asymptotically AdS
black hole solutions of Lovelock gravity. We explore the ther-
modynamic stability of such solutions by the ordinary method
of calculating the specific heat of the black holes and investi-
gating its divergences which signal second order phase transi-
tions between black hole states. We then utilize the methods of
thermodynamic geometry of black hole spacetimes in order to
explain the origin of these points of divergence. We calculate
the curvature scalar corresponding to a Legendre - invariant
thermodynamic metric of these spacetimes and find that the
divergences in the black hole specific heat correspond to sin-
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gularities in the thermodynamic phase space. We also calculate
the area spectrum for large black holes in the model by applying
the Bohr - Sommerfeld quantization to the adiabatic invariant
calculated for the spacetime.

Chapter 5 : Chapter 5 includes the summary of the findings from
the studies that this thesis is a record of.



2
Scalar Field Evolution and

Area Spectrum for
Lovelock-AdS Black Holes

2.1 Introduction

Gauge-gravity dualities like the AdS/CFT correspondence [3] make
it possible to study the properties of conformal fields in a particu-
lar dimension d by studying the evolution of fields in a black hole
spacetime that is asymptotically AdS in (d + 1) dimensions and this
has led to considerable interest in the study of asymptotically AdS
black hole spacetimes. The main difficulty in studying field evolu-
tion in such spacetimes is that the stability of the spacetime against
perturbations is not always guaranteed, unlike in the case of asymp-
totically flat spacetimes in first order theories in four dimensions. The
instability of linear perturbations in higher-order and higher dimen-
sional theories has already been investigated [22, 28, 29]. The insta-
bility also extends to the thermodynamics of the black hole when we
consider AdS spacetimes, with the well-known Hawking-Page phase
transitions [30] signaling a transition between the black hole space-
time and thermal AdS spacetime. Recent studies [10, 13, 19] on the
Lovelock model have confirmed the existence of dynamic instability
against metric perturbations in asymptotically flat black hole space-

33
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times. Dynamic instability means that the solutions to the equation
for the metric perturbation become unstable outside the event hori-
zon for large values of their eigenvalue. This instability exists for
all types of metric perturbations-tensor, vector and scalar. These in-
stabilities occur when the mass of the black hole falls below a lower
critical bound that depends on the coupling constants, the dimension
of the spacetime and the order of the theory [19].

Quasi normal modes are damped oscillations (having complex fre-
quencies), known to dominate the intermediate stage of the evolu-
tion of small perturbations of a black hole spacetime and have been
studied extensively. Detailed reviews and methods of calculation of
quasi normal modes are found in numerous papers that include [31–
36]. Quasi normal modes are known to depend only on the parame-
ters of the black hole, such as mass, charge and angular momentum,
and be completely independent of the type of the agent that caused
it. These modes are obtained as the solution of the respective field
equation, when solved with respect to the metric that describes the
particular black hole spacetime of interest. In the case of asymptot-
ically flat spacetimes, the effective potential that is perceived by the
field in the spacetime often resembles a finite potential barrier such
that the potential vanishes at infinity. This leads to the possibility
of obtaining solutions that are purely ingoing at the event horizon
of the black hole and purely outgoing at infinity, both resembling
plane waves when expressed in terms of a scaled co-ordinate called
the tortoise co-ordinate. These modes may be observed in the future
with the aid of gravitational detectors. In the case of asymptotically
AdS spacetimes, however, the potential grows indefinitely at infin-
ity. Therefore, one usually looks for solutions that vanish at infinity,
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while the boundary conditions at the event horizon remain unchanged
[37]. This is motivated by the case of pure AdS spacetime, where the
potential effectively confines the field as if “in a box” and solutions
exist only with a discrete spectrum of real frequencies. Even though
black holes in asymptotically AdS spacetimes are not believed to exist
in nature, interest in studying their quasi normal modes stems from
the above-mentioned AdS/CFT correspondence [3]. According to the
AdS/CFT correspondence, these perturbations correspond to pertur-
bations of the thermal state of the strongly coupled conformal field
at the boundary of the spacetime and the quasi normal modes corre-
spond to the return to thermal equilibrium, so that the quasi normal
frequencies give a measure of the time scale for the relaxation, which
is difficult to compute directly. This provides the motivation to study
the quasi normal modes of various fields in asymptotically AdS space-
times. Earlier works on the quasi normal modes of Schwarzschild-AdS
black holes [37] have proved that the modes scale with the tempera-
ture of the event horizon.

Complete quantization of gravity is one of the major goals of
physics. Despite decades of research by physicists all over the world,
it is yet to be achieved with complete success. One often takes clues
from the classical theory of a system when attempting its quantiza-
tion and gravity needs to be no different. Quantization of the black
hole horizon area is expected to be a major feature of any success-
ful quantum theory of gravity. The original “classical” theory of
gravity, namely the General Theory of Relativity (GTR) does pro-
vide us with the tools necessary to estimate the value of the area
quantum. It is known from field theory that the presence of a peri-
odicity in the classical theory of a system points to the existence of
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an adiabatic invariant with a discrete spectrum in the corresponding
quantum theory. Interestingly, it has been observed in GTR that
the numerical value of these frequencies, in the limit of “large” fre-
quencies, follow a distinct pattern, with the real part approaching a
fixed value. These are termed asymptotic frequencies. Suggestions
have been made that the fixed value of the real part can be viewed as
a physically relevant periodicity in the (classical) black hole system
which would then lead to the existence of certain adiabatic invariant
quantity, which in turn would possess equally spaced spectrum ac-
cording to Bohr-Sommerfeld quantization. Once we read it together
with Bekenstein’s original proposal [38] that the black hole entropy is
an adiabatic invariant with a discrete, equally spaced spectrum, we
come to the conclusion that the entropy spectrum (and, by extension,
the area spectrum) can be deduced from the asymptotic value of the
quasi normal frequencies. The connection between the fixed asymp-
totic frequencies and the quantized area spectrum was made by Hod
[39]. Dreyer [42] recovered Hod’s result in the Loop Quantum Grav-
ity. A new interpretation for the quasi normal modes ω = ωR + iωI of
perturbed black holes as equivalent to that of a collection of damped
harmonic oscillators with real frequency ω0 =

√
ω2
R + ω2

I was intro-
duced by Maggiore [43] and used in conjunction with Hod’s method
in order to compute the area spectrum of Schwarzschild black holes.

As with the case of quasi normal modes, it is the AdS/CFT cor-
respondence that provides the motivation for studying the area spec-
trum of black holes in asymptotically AdS spacetimes. Recent studies
([44–48] and references therein) suggest that the gravitational dual of
the holographic entanglement entropy in quantum field theories is
the area of minimal-area surfaces in AdS spaces. The entropy can be
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used to study phase transitions between various states of the field. An
area-entanglement entropy relation of the form SA =

Area(γA)

4G
(d−2)
N

has been
proposed [44, 49] which is very similar to the familiar area-entropy re-
lation in General Theory of Relativity. Here, γA is the d-dimensional
minimal area surface in AdSd+2 and G

(d−2)
N is the (d+ 2)-dimensional

gravitational constant of the AdS gravity. Although the above rela-
tion was originally proposed for AdS spaces, it is equally applicable
to any asymptotically AdS space, including one containing a black
hole. In that case, the minimal surface tends to wrap the horizon and
thus we can use the area of the event horizon in order to compute the
entanglement entropy in the conformal field theory.

In this chapter, we numerically compute the quasi normal fre-
quencies for massless scalar field perturbations in asymptotically AdS,
spherically symmetric spacetimes in Lovelock model using the metric
derived in [50]. We analytically find out the asymptotic form of the
frequencies following [51] and use it to deduce the area spectrum of
large black holes in the model. A brief outline of the chapter is as
follows: in Sect. 2.2, we explain the maximally symmetric Lovelock
model and the resulting metric for the spacetime as given in [50].
Details of the Horowitz-Hubeny numerical method of computing the
quasi normal frequencies in AdS black hole spacetimes to the case
of massless scalar fields in the vicinity of such a black hole in the
Lovelock-AdS model are also given in the same section. The results
of the numerical procedure are presented and analyzed in Sect. 2.3.
In Sect. 2.4, we analytically determine the asymptotic quasi normal
frequencies of the field for the case of large back holes following [51].
The results of that analysis are used in order to find the area spec-
trum of the black hole using the Kunstatter’s method [52] in Sect.
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2.4.1. The results are summarized in Sect. 3.4.

2.2 The Metric and the Numerical Compu-
tation of Quasinormal Frequencies

The Lovelock model [145] is considered to be the most natural gen-
eralization of GTR. The Lovelock Lagrangian is a polynomial which
consists of dimensionally continued higher order curvature terms. The
most striking property of this Lagrangian is that it yields field equa-
tions that are in second order in the metric although the Lagrangian
itself may contain higher order terms. Also, the theory is known to
give solutions that are free of ghosts. The maximum order of terms
in the action, k, is fixed by the number of dimensions of the space-
time d in Lovelock model according to the relation k = [d−1

2 ] where
[x] denotes the integer part of x. The action IG is written as,

IG = κ

∫ k∑
p=0

αpL
(p), (2.1)

where αp are arbitrary (positive) coupling constants, and L(p), given
by

L(p) = ϵa1···adR
a1a2 ···Ra2p−1a2pea2p+1 ···ead , (2.2)

is the pth order dimensionally continued term in the Lagrangian,
Rab represents the Riemann curvature and ea represents the vielbein.
ϵa1···ad is the Levi-Civita symbol in d dimensions. κ is a parame-
ter related to the kth gravitational constant Gk by the expression
κ = 1

2(d−2)!Ωd−2Gk
, Ωd−2 being the volume of the (d − 2) dimensional

spherically symmetric tangent space with unit curvature.



The Metric and the Numerical Computation of Quasinormal
Frequencies 39

The difficulty with the Lagrangian given above, with arbitrary val-
ues for αp, is that it becomes very difficult (if not impossible) to study
the evolution of fields, since it is not at all clear whether the operator
representing the evolution is Hermitian or not. As mentioned in the
previous section, this problem, for the case of metric perturbations,
has been analyzed in [19]. Although a general instability depending
on the black hole mass has been established in that work, the numer-
ical value for the critical mass has not been calculated. Also, it is
very difficult to predict whether the presence of a cosmological con-
stant raises or lowers the critical mass, as long as we consider a model
with arbitrary αp. Moreover, for the same case, the the existence of
negative energy solutions with horizons and positive energy solutions
with naked singularities for (2.1) has been pointed out earlier [53, 54].
These difficulties bring out the necessity of selecting suitable values
for the coupling coefficients in order to have models that support
maximally symmetric solutions and external perturbations. Maxi-
mally symmetric solutions to Lovelock model have long been known
[50], which are derived by requiring that the theories must possess a
unique cosmological constant (and consequently a unique AdS radius
R) for all orders. The resulting set of coupling constants are seen to
be labeled by the order k and the gravitational constant Gk. The
metric describing the spherically symmetric black hole spacetime is
derived from the action given in (2.1) with the choice

αp =


R2(p−k)

(d−2p)

(
k

p

)
, p ≤ k

0 , p > k

(2.3)

where 1 ≤ k ≤ [d−1
2 ]. The resulting field equations are of the form
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ϵba1···ad−1
R̄a1a2 ···R̄a2k−1a2kea2k+1 ···ead−1 = 0 (2.4)

ϵaba3···ad
R̄a3a4 ···R̄a2k−1a2kT a2k+1ea2k+2 ···ead−1 = 0 (2.5)

Here, R̄ab := Rab + 1
R2 eaeb. Such theories are labeled by k and

have two fundamental constants, κ and R, related to the gravitational
constant Gk and the cosmological constant Λ respectively through the
relations

κ =
1

2(d− 2)!Ωd−2Gk
, (2.6)

Λ = −(d− 1)(d− 2)

2R2
, (2.7)

Ωd−2 being the volume of the (d− 2) dimensional spherically sym-
metric tangent space. The static and spherically symmetric solutions
to (2.4), written in Schwarzschild-like coordinates, take the form

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2, (2.8)

where f(r) is given by

f(r) = 1 +
r2

R2
− σ

(
C1

rd−2k−1

)1/k

. (2.9)

We take σ = 1. The integration constant C1 is written as

C1 = 2Gk(M + C0), (2.10)

where M stands for the mass of the black hole. The constant C0

is chosen so that the horizon shrinks to a point for M → 0, as

C0 =
1

2Gk
δd−2k,1. (2.11)
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It is interesting that the exponent of
(
1
r

)
in (4.2) is proportional

to (d−2k−1). Since k = [d−1
2 ], (d−2k−1) = 0 in odd dimensions and

(d− 2k− 1) = 1 in even dimensions. Thus the solution in even dimen-
sions resemble the Schwarzschild-AdS solution. The (d − 2k − 1) = 0

cases correspond to Chern-Simmons theories which have a vacuum
that is different from AdS [50]. Their quasi normal modes, mass and
area spectra have already been computed [55]. What makes it inter-
esting is the fact that recent studies [19] on the stability of metric
perturbations in Lovelock model also point out that it is possible to
predict the (in)stability of the perturbations only in even dimensions.
The present work is limited to the cases where d− 2k − 1 ̸= 0. Then
we have C0 = 0 and C1 = 2GkM . Consider the scalar field Φ(r, t, xi)

that obeys the Klein-Gordon equation given by

1
√
g
∂A

√
ggAB∂BΦ = 0, (2.12)

xi being the co-ordinates in the spherically symmetric tangent
space and gAB being components of the metric tensor. We impose
the boundary conditions of ingoing plane wave solution at the event
horizon and vanishing field at the boundary. The boundary condition
at the horizon suggests the ansatz Φ = e−iω(t+r∗) where r∗ is the
tortoise coordinate defined by

dr∗ =
dr

f(r)
. (2.13)

In the (v = t+ r∗, r) system, the metric reads

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
d−2, (2.14)

and we take the ansatz
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Φ(v, r, xi) = r
2−d
2 ψ(r)Y (xi)e

−iωv, (2.15)

so that (2.12) becomes

f(r)
d2

dr2
ψ(r) + [f ′(r)− 2iω]

d

dr
ψ(r)− V (r)ψ(r) = 0, (2.16)

with the effective potential

V (r) =
(d− 2)(d− 4)

4r2
f(r) +

d− 2

2r
f ′(r) +

l(l + d− 3)

r2
. (2.17)

Here, l represents the eigenvalue of the operator on the LHS of
(2.12) acting on the functions Y (xi) in the spherically symmetric tan-
gent space. In order to numerically calculate the quasi normal fre-
quencies for (2.16), we expand the field Φ as a power series about
the horizon and impose the vanishing boundary condition at infinity.
We change the variable from r to x = 1

r in order to map the range
r+ < r <∞ to a finite range. In terms of x, (2.16) becomes

s(x)
d2

dx2
ψ(x) +

t(x)

x− x+

d

dx
ψ(x) +

u(x)

(x− x+)2
ψ(x) = 0, (2.18)

where

s(x) = −x4f(x), t(x) = −x4f ′(x)− 2x3f(x)− 2iωx2,

u(x) = (x− x+)V (x), (2.19)

and

V (x) =
(d− 2)(d− 4)x2f(x)

4
− (d− 2)x3f ′(x)

2
+l(l + d− 3)x2. (2.20)
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In the numerical procedure, we find out the coefficients of the
expansion of the functions s(x), t(x) and u(x) as power series in (x−
x+) using a computer with si, ti and ui denoting the coefficient for
the ith term in the expansion of the respective functions. Then an
expansion for ψ(x) of the form

ψ(x) =

∞∑
n=0

an(x− x+)
n, (2.21)

is substituted into (2.18) which yields

an = − 1

Pn

n−1∑
k=0

[k(k − 1)sn−k + ktn−k + un−k]ak, (2.22)

where

Pn = n(n− 1)s0 + nt0. (2.23)

We fix a0 and numerically calculate the coefficients in (2.19) and
(2.22) to different orders and compute the value of the field ψ(x) as
given in (2.21). ω will appear as a parameter in the expression for
ψ(x). Since we wish to impose the boundary condition of vanishing
field at infinity, we solve the equation ψ(0) = 0 for ω. It is observed, by
comparison with the values in [37], that the quasi normal frequencies
are one of the solutions of the equation ψ(0) = 0, solved for ω, after
ψ has been computed using (2.21) for some reasonably high value of
n, which should be fixed by trial and error. We assume the same to
be true in higher orders as well and look for the value of the quasi
normal modes among the set of discrete values of ω that are obtained.
For each value of ω obtained, we evaluate the absolute value of the
LHS of (2.18) at a point close to the event horizon, since we have
assumed plane wave solutions there. We choose that value of ω as the
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quasi normal frequency for which the absolute value comes closest to
zero (the assumption here is that (2.21) is satisfied exactly only for
the quasi normal frequency, which we seek, and not by other roots
of ψ = 0.). We increase the number of terms to which ψ(x) and the
coefficients are calculated until the required precision is attained.

2.3 Discussion on Results of the Numerical
Calculation

We implement the procedure outlined above after fixing the value
of the constants a0 and R to 1. We investigate the quasi normal
frequencies of large (rh ≫ R) and intermediate (r+ ∼ R) black holes
and set ω = ωR− iωI as done in [37] since we are interested in damped
modes. As mentioned before, the analysis is limited to the cases where
d−2k−1 ̸= 0. The results for the lowest (l = 0) modes of the massless
scalar field for first order theories have been summarized in TABLE
2.1. TABLE 2.2 contains the same for higher orders. Figures 2.1
to 2.6 show the results in detail. As evident from Figure 2.1 and
Figure 2.2, both ωR and ωI show linear dependence on r+ for the
case of large black holes in first order theories. The linearity seems
to be broken when we move to the intermediate-sized black holes,
the results for which have been plotted in Figure 2.3 and Figure 2.4.
Although the plots for intermediate-sized black holes look linear, the
ωR − r+ dependence for their case rather resembles an (x, y = x + 1

x)

relation. The temperature of the event horizon for the metric (4.1),
given by

T =
1

4πκBk

(
(d− 1)

r+
R2

+
d− 2k − 1

r+

)
, (2.24)

where κB denotes the Boltzmann’s constant, also depends on r+
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Table 2.1: Variation of the frequency of the lowest (l = 0) massless (m = 0)
mode for first order theories.

d = 4, k = 1 d = 5, k = 1 d = 6, k = 1

r+ ωR ωI ωR ωI ωR ωI

100 184.958 -266.392 311.785 -274.542 412.327 -272.185
50 92.496 -133.196 155.919 -137.268 206.194 -136.088
10 18.608 -26.642 31.351 -27.432 41.434 -27.187
5 9.471 -13.326 15.935 -13.683 21.146 -13.386
3 5.916 -8.001 9.921 -8.161 13.015 -8.044
2 4.235 -5.340 7.062 -5.376 9.164 -5.223

in the same manner. Since (x, y = x+ 1
x) ∼ x for large x, we conclude

that both ωR and ωI scale with the temperature for large as well as
intermediate-sized black holes for first order theories, in agreement
with earlier works [37]. Another observation is that ωI seems to be
independent of dimension d in first order theories. When we consider
higher order theories, the numerical results for which have been plot-
ted in Figure 2.5 and Figure 2.6, we observe that all modes are purely
damped ones. We have only plotted ωI vs r+ in the case of higher
order theories for this reason. There, we observe that, both for large
and intermediate-sized black holes, ωI is independent of the order of
the theory when the dimension d stays the same.
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Table 2.2: Variation of the frequency of the lowest (l = 0) massless (m = 0)
mode in higher orders.

d = 6, k = 2 d = 7, k = 2 d = 8, k = 2 d = 8, k = 3

r+ ωR ωI ωR ωI ωR ωI ωR ωI

100 0 -595.081 0 -1013.063 0 -1593.741 0 -1593.762
50 0 -357.045 0 -506.450 0 -796.796 0 -796.839
10 0 26.642 0 -101.185 0 -159.019 0 -159.205
5 0 -29.776 0 -50.523 0 -79.193 0 -79.467
3 0 -17.938 0 -30.354 0 -47.368 0 -47.623
2 0 -12.105 0 -20.475 0 -31.807 0 -31.831

2.4 Asymptotic Quasinormal Modes and Area
Spectrum of Large Black Holes

We analytically find the asymptotic form of the quasi normal frequen-
cies in the large black hole limit following the method of perturbative
expansion of the wave equation in the dimensionless parameter ω/TH
that has earlier been employed in the case of d-dimensional SAdS
black holes [51]. Here, TH is the Hawking temperature of the hori-
zon and ω is the frequency of the mode. We take the metric to be
of the form given in (4.1). For large black holes, the metric gets
approximated as,

ds2 = f̂(r)dt2 +
dr2

f̂(r)
+ r2ds2(Ed−2), (2.25)

with
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Figure 2.1: ωR vs r+ plot for large black holes in first order theories

f̂(r) =
r2

R2
−
(

2GkM

rd−2k−1

)
. (2.26)

It is easily seen that the event horizon is given by

rh = R

[
2GkM

Rd−2k−1

] 1
d−1

. (2.27)

In terms of the new metric (2.25), the Klein-Gordon field equation
(2.12) for m = 0 becomes

1

rd−2
∂r(r

dA(r)∂rΦ)−
R4

r2A(r)
∂2tΦ− R2

r2
∇2Φ = 0, (2.28)

where
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Figure 2.2: ωI vs r+ plot for large black holes in first order theories

A(r) = 1−
(rh
r

) d−1
k

. (2.29)

We write the field Φ as

Φ(t, r, xi) = ei(ωt−p⃗·x⃗)Ψ(r), (2.30)

and change the variable from r to

y =

(
r

rh

) d−1
2k

, (2.31)

so that (2.28) becomes
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Figure 2.3: ωR vs r+ plot for intermediate black holes in first order theories

yQ(y2 − 1)
(
y2k−1(y2 − 1)Ψ′)′

+

[
ω̂2

A2
y2 − p̂2

A2
(y2 − 1)

]
Ψ = 0, (2.32)

where the parameters ω̂ and p̂ are defined as

ω̂ =
ωR2

rh
, p̂ =

|p⃗|R
rh

, (2.33)

and

Q =
6k − (2k − 1)d− 1

d− 1
, A =

d− 1

2k
. (2.34)
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Figure 2.4: ωI vs r+ plot for intermediate black holes in first order theories

We investigate the behavior of (2.32) near the boundaries y → 1

and y → ∞ and the point y → −1 in order to develop an ansatz for
Ψ(y). The following solutions are obtained:

Ψ ∼


y−2k , y → ∞
(y − 1)±iω̂/2A , y → 1

(y + 1)±ω̂/2A , y → −1

(2.35)

Since we demand ingoing plane wave like solutions at the horizon,
we take the form Ψ ∼ (y − 1)−iω̂/2A near the horizon (y = 1). We
isolate the solutions near y = ±1 and write

Ψ(y) = (y − 1)−iω̂/2A(y + 1)±ω̂/2AN(y). (2.36)
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Figure 2.5: ωI vs r+ plot for large black holes in higher order theories

Substituting (2.36) in (2.32), we deduce the equation satisfied by
N(y) as

y(y2 − 1)N ′′ − ω̂2y2

A2(y2 − 1)
N +

+

{
ω̂

A

(
∓ iω̂

2A
± k − ik

)
y − (i± 1)(2k − 1)

ω̂

2A

}
N{(

2k + 1− i∓ 1

A
ω̂

)
y2 − i± 1

A
ω̂y − (2k − 1)

}
N ′

+
1

yQ+2k−2

(
ω̂2y2

A2(y2 − 1)
− p̂2

A2

)
N = 0. (2.37)

We consider (2.37) in the range of large ω̂ and large y, so that
y2 ≈ y2−1 and the terms proportional to 1/(yQ+2k−2) may be dropped
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Figure 2.6: ωI vs r+ plot for intermediate black holes in first order theories

along with the constant terms. Then (2.37) reduces to

(y2 − 1)N ′′ +
ω̂

A

(
∓ iω̂

2A
± k − ik

)
N

+

{(
(2k + 1)− i∓ 1

A
ω̂

)
y − i± 1

A
ω̂

}
N ′ = 0, (2.38)

which is the Hypergeometric equation with the solution

N(y) = 2F1(a, b; c; (y + 1)/2), (2.39)

where

a = k − i∓ 1

2A
ω̂ + k, b = −i∓ 1

2A
ω̂, c =

2k + 1

2
± ω̂

A
. (2.40)
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In order to match the behavior of the solution (2.36) at infinity
with that demanded by (2.35), we demand that N(y) be a polynomial
as y → ∞. That condition is satisfied when

a = −n, n = 1, 2, ... (2.41)

If a = −n, then, according to the property of the hypergeometric
equation, N(y) ∼ yn = y−a, so that, according to (2.36),

Ψ ∼ (y − 1)−iω̂/2A(y + 1)±ω̂/2Ay−a

≈ y−iω̂/2Ay±ω̂/2Ay−a = y−2k, (2.42)

as required. We deduce the expression for the asymptotic form of
quasi normal frequencies from (2.41) as follows:

a = −n⇒ 2k − i∓ 1

2A
ω̂ = −n

⇒ ω̂asy = A(n+ 2k)(±1− i), (2.43)

so that (2.33) implies

ωasy = A
( rh
R2

)
(n+ 2k)(±1− i), (2.44)

which gives the asymptotic form of the quasi normal frequencies
for large maximally symmetric AdS black holes in the Lovelock model.
We observe that the high-overtone quasi normal frequencies are equi-
spaced, which is in agreement with earlier observations [31, 34, 37].

2.4.1 Area Spectrum

We calculate the area spectrum of the large AdS black holes in Love-
lock model using the new physical interpretation of the quasi normal
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modes proposed by Maggiore [43] and following Kunstatter’s method
[52]. According to the first law of black hole thermodynamics, for a
black hole system with energy E (or M) with Hawking temperature
TH and horizon area A, the following relation holds:

dM =
1

4
THdA. (2.45)

According to Kunstatter, if the frequency of oscillation of the sys-
tem is ω(E), then the quantity

I =

∫
dE

ω(E)
, (2.46)

is to be taken as the corresponding adiabatic invariant. Accord-
ing to Maggiore [43], the black hole system has to be modeled by a
collection of damped harmonic oscillators. If the system has a quasi
normal frequency ω = ωR + iωI , then the corresponding vibrational
frequency according to the model is to be taken as

ω0 =

√
ω2
R + ω2

I . (2.47)

In the highly damped and highly excited cases, ω0 can be ap-
proximated by ωI and ωR respectively. Here, we see that for higher
values of the number n, the both ωR and ωI increase. Therefore we
consider transitions between two adjacent energy levels of the system
and take the physical frequency as equal to the difference in ω0 for
the two systems; that is, we take

ω(E) = ∆ω = (ω0)n − (ω0)n−1. (2.48)

We deduce the area spectrum from (2.46) using the relations (2.27)
and (2.44). The expression for the adiabatic invariant now reads
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I =

∫
dE

ω(E)
=

∫
dM

∆ω
=

∫ (
dM

drh

)(
1

∆ω

)
drh. (2.49)

Using (2.27), (2.44), (2.47) and (2.48) in (2.49), it is easy to see
that the Bohr-Sommerfeld quantization condition, namely I = nℏ
now reads (

d− 1

d− 2

)(
1

2
√
2AGkR2k−2

)
rd−2
h = nℏ, (2.50)

which, in terms of the area A of the horizon, can be written in the
form

A = γnℏ, (2.51)

where

γ =

[
Γ

(
d− 1

2

)(
d− 1

d− 2

)(
1

4
√
2π(d−1)/2AGkR2k−2

)]−1

. (2.52)

Thus the area spectrum, and consequently the entropy spectrum,
of large black holes in asymptotically AdS Lovelock spacetimes is seen
to depend on the parameters Gk and the AdS radius R of the theory.
The dependence of A on R is observed only when higher orders are
considered. A is also dependent on the dimension d of the spacetime,
and consequently on the order of the theory.

2.5 Conclusion

We have analyzed the evolution of massless Klein-Gordon field in the
maximally symmetric asymptotically AdS spacetime surrounding a
black hole in the Lovelock model. We have used the form of the metric
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that has been derived in [50] in order to compute the quasi normal
frequencies using the Horowitz-Hubeny method. The results of the
numerical computation show that the modes in the case of higher
order theories are purely damped. For the case of large as well as
intermediate black holes, the frequencies are observed to scale linearly
with the temperature of the event horizon. When we consider higher
order theories, the imaginary part of the quasi normal frequencies
is observed to be independent of the order of the theory in higher
dimensions. They appear to be dependent on the dimension only.

The asymptotic form of the quasi normal frequencies for the case
of very large black holes has been analytically determined using the
method of perturbative expansion of the wave equation in terms of
ω/TH , as developed in [51]. We find that the asymptotic modes are
equispaced, in agreement with previous results. We have also calcu-
lated the area spectrum spacing and found it to be dependent on the
value of R, d and k. This is also in contrast to the case of first or-
der theories where we always obtain area spectra that are equidistant
even when the parameters of the black hole spacetime change.



3
Quasinormal Modes of

Lovelock Black Holes

3.1 Introduction

In the previous chapter, we studied the Quasinormal modes (QNMs)
of Lovelock black holes in asymptotically AdS spacetimes. In this
chapter, we focus our attention on asymptotically flat black hole so-
lutions.As mentioned in Chapter 1, the long-lived modes in asymptot-
ically flat spacetimes surrounding black holes are expected to be ob-
served in the future by gravitational wave detectors. Different models
of gravity predict different “quasinormal signatures” of their respec-
tive spacetimes and the experimental observation of these modes may
well put to rest the problem of selecting the most suitable model for
gravity from existing (numerous) ones.

The research on QNMs is decades old with an extensive literature
(for example, [31–36, 57–61] and references therein). The quasinormal
behavior in first order theories of gravity such as the General Theory
of Relativity (GTR) is particularly well studied with its asymptotic
behavior firmly established both numerically and analytically [62].
The asymptotic quasinormal modes of perturbations in GTR have
their real parts approach a constant value, while the imaginary parts

57
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increase indefinitely. These modes are significant from the stand-
point of quantum theories of gravity since they help us to compute
the area spectrum and subsequently the entropy of the black hole
event horizons, which, in GTR, are known to be equally spaced. The
asymptotic behavior of the modes, observed numerically, can help
one analytically determine the precise form of these modes in terms
of the parameters of the theory later. This has been demonstrated in
[62], where the decision to compute the monodromy along the Stokes
line was made because of the asymptotic behavior mentioned above.
Thus it would be highly interesting to see how the quasinormal modes
behave asymptotically in any model of gravity that one considers.

The connection between geodesic stability and quasinormal modes
in black hole spacetimes has been known for a long time ([32, 33, 63,
64, 66]). These studies reveal the connection between quasinormal
modes of black hole spacetimes and the dynamics of null particles
in an unstable circular orbit around the black hole, with its energy
slowly leaking out. The relation is most clearly established in [63] for
any static, spherically symmetric and asymptotically flat spacetime,
according to which the quasinormal frequencies ωasy in the limit (l →
∞) is given by

ωasy = Ωcl − i(n+
1

2
)|λ|, (3.1)

where Ωc and λ are the angular velocity at the unstable null
geodesic and the principal Lyapunov exponent which is related to
the time scale of energy decay in the orbit.

The actual number of spacetime dimensions is predicted to be
higher than four by string theory and it has led to attempts at de-
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veloping models of gravity in higher dimensions. In these higher di-
mensional spacetimes, GTR no longer is the most general model of
gravity. Generalizations of GTR are naturally attempted by adding
higher order curvature correction terms to the Einstein-Hilbert action.
Among such generalizations to GTR, the Lovelock model [14, 145],
considered as a natural generalization of the GTR to higher dimen-
sions and orders of curvature, is particularly interesting since it yields
field equations of second order that are free of ghosts. The Lovelock
Lagrangian consists of dimensionally continued curvature terms of
orders one and above. The resulting theories are labeled by the order
of the maximum-ordered term, k, which in turn is determined by the
dimension of the spacetime d, by k = [d−1

2 ] where [x] denotes the in-
teger part of x. Black hole solutions to the theory in general contain
many branches that depend on the values of the higher order cou-
pling constants [16]. It is known [19] that the metric perturbations to
the most general, asymptotically flat Lovelock spacetime are unstable
in the ultraviolet region. Therefore it is necessary to impose further
constraints to select a suitable set of Lovelock theories which would
permit stable perturbations. Such maximally symmetric, asymptoti-
cally flat as well as AdS spacetimes have been known for a long time
[50].

In this chapter, we compute the quasinormal modes of metric per-
turbations to the metric of such maximally symmetric spacetimes
using the sixth order WKB method [71]. We analytically determine
the asymptotic form of these modes using the above-mentioned null
geodesic method. The chapter is organized as follows: in Sect. 3.2, we
describe the essential details of the null geodesic method used to com-
pute the asymptotic form of the modes. In Sect. 3.2.1, we describe
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the class of Lovelock theories for which the modes are computed and
the WKB expression of numerical computation. The relation between
the asymptotic quasinormal modes and the null geodesic parameters
is expressed in Sect. 3.2.2. The results of the calculation are discussed
in Sect. 3.3. We summarize the main results in Sect. 3.4.

3.2 Geodesic Stability

Consider the general stationary and spherically symmetric metric

ds2 = f(r)dt2 − 1

g(r)
dr2 − r2dΩ2

d−2, (3.2)

where f(r) and g(r) are solutions of the Lovelock field equations
[16]. dΩ2

d−2 represents the metric of the spherically symmetric back-
ground. For this metric, we have the Lagrangian in the form,[70]

2L = f(r) ṫ2 − 1

g(r)
ṙ2 − r2φ̇2, (3.3)

where a dot represents derivative with respect to proper time and
φ is an angular coordinate. For this system, the coordinate angular
velocity Ωc and the principal Lyapunov exponent λ for circular null
geodesics take the form, [63]

Ωc =
φ̇

ṫ
=

(
f ′c
2rc

)1/2

, (3.4)

λ =
1√
2

√
−r

2
c

fc

(
d2

dr2∗

f

r2

)
r=rc

, (3.5)

where the subscript c means that the evaluation is done at the
critical radius, r = rc, which satisfies the relation 2f − rf ′ = 0. rc can
be viewed as the innermost circular timelike geodesic, since circular
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timelike geodesics satisfy 2f − rf ′ > 0. r∗ is the tortoise coordinate
which satisfies the relation dr∗ =

dr√
g(r)f(r)

.

3.2.1 The Equations of Perturbation and the WKB
Method

The action IG for the class of Lovelock theories, a subset of which are
studied in this work, is written as [14, 50, 53],

IG = κ

∫ k∑
p=0

αpL
(p), (3.6)

where αp are positive coupling constants and L(p), given by

L(p) = ϵa1···adR
a1a2 ···Ra2p−1a2pea2p+1 ···ead , (3.7)

are the pth order dimensionally continued terms in the Lagrangian,
ϵa1···ad being the Levi-Civita symbol. κ is a parameter related to the
gravitational constant Gk by κ = 1

2(d−2)!Ωd−2Gk
, Ωd−2 being the volume

of the (d − 2) dimensional spherically symmetric tangent space with
unit curvature. Rab represents the Riemann curvature and ea repre-
sents the vielbein.

The resulting field equations are of the form

ϵba1···ad−1
R̄a1a2 ···R̄a2k−1a2kea2k+1 ···ead−1 = 0 (3.8)

ϵaba3···ad
R̄a3a4 ···R̄a2k−1a2kT a2k+1ea2k+2 ···ead−1 = 0 (3.9)

Here, R̄ab := Rab + 1
R2 eaeb.
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It is known [19] that the theories in which all the higher order
coupling constants αp are positive permit asymptotically flat space-
time solutions that suffer from dynamical instability against metric
perturbations. In the present chapter, we consider a special case. We
consider the class of theories with αp given by

αp =
1

d− 2k
δkp . (3.10)

The static and spherically symmetric black hole solutions of the
theory, written in Schwarzschild-like coordinates, take the form

ds2 = f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2, (3.11)

where f(r) is given by

f(r) = 1−
(

2GkM

rd−2k−1

)1/k

, (3.12)

M being the mass of the black hole. It is to be noted that only the
cases in which d− 2k− 1 ̸= 0 yield black hole solutions [50] with their
event horizons rh located at (2GkM)

1
d−2k−1 . It is noted that for the case

of d = 4 and k = 1, we get the Schwarzschild geometry of GTR. We
can therefore consider these spacetimes as natural generalizations of
the former to the case of higher order theories in higher dimensions.
The master equations obeyed by the metric perturbations for the
general Lovelock theory were derived in [16].

The master equation satisfied by the tensor metric perturbation
δgij = r2ϕ(t, r)hij(x

i), after separating the variables ϕ(r, t) = χ(r)e−iωt,
takes the form [16],

−f2χ
′′
−
(
f2
T

′′

T
′ +

2f2

r
+ ff

′
)
χ

′
+

(2κ+ γt)f

(n− 2)r

T
′′

T
′ χ = ω2χ , (3.13)
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where the function T (r), for the most general class of Lovelock
theories given by (3.6) with all the constants αp being positive, is
given by the expression

T (r) = rn−1

(
1 +

k∑
m=2

[
am

{
2m−2∏
p=1

(n− p)

}
ψm−1

])
, (3.14)

where ψ(r) is defined by the relation f(r) = 1 − r2ψ(r). We write
Ψ(r) = χ(r)r

√
T

′
(r) and define the tortoise coordinate r∗ by dr∗ =

dr/f(r) to transform (3.13) to the form

d2Ψ

dr∗2
+ (Ω2 − V (r))Ψ = 0, (3.15)

Here, V (r) = Vt(r), the effective potential for tensor perturbations.
The tortoise coordinate r∗ is defined by dr∗ = dr/f(r). Similar ex-
pressions for the vector and scalar type perturbations can be derived
easily. The effective potentials V (r) for tensor (Vt(r)), vector (Vv(r))
and scalar (Vs(r)) perturbations are given below:

V (r) =



Vt(r) =
(2κ+γt)f
(n−2)r

d lnT
′

dr + 1

r
√
T ′ f

d
dr

(
f d
drr

√
T

′
)

Vv(r) = r
√
T

′
f∂r

(
f∂r

1

r
√
T ′

)
+ f

r

(
γv
n−1 − κ

)
T

′

T

Vs(r) = 2γsf
(rNT )

′

nr2NT − f
(
1
N ∂r(f∂rN) + 1

T ∂r(f∂rT )
)

+2f2
(
N

′2

N2 + T
′2

T 2 + N
′
T

′

NT

)
(3.16)

Here, γt = l(l+d−3)−2, γv = l(l+d−3)−1 and γs = l(l+d−3) are the
eigenvalues for the tensor, vector and scalar harmonics respectively.
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The functions T (r) and N(r), for the class of theories given by (3.10),
are given by

T (r) =

(
2k−2∏
p=1

(d− p− 2)

)(
2GkM

rd−1

)1− 1
k

,

N(r) =
2γs − 2(d− 2)f + (d− 2)rf ′

r
√
T ′

. (3.17)
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Figure 3.1: Effective potential V (r) vs r for different k, from k = 2 (top)
to k = 5 (bottom), with d = 17 and l = 7.

Fig. 3.1 represents the typical variation of the effective potential
V (r) outside the event horizon for all types of perturbations. The
different plots are drawn for different values of k which is the tunable
parameter for the set of theories studied in this work. It is noted
that the potential is barrier-like for all values of k. The height of the
barrier is seen to be a decreasing function of the order parameter k.
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We now apply the WKB method in order to compute the QNMs
of the metric perturbations that obey (3.15). The third order WKB
formula for QNMs was derived by Iyer and Will [60] and was extended
to the sixth order by Konoplya [71]. We use the sixth order formula
derived in [71] since it gives better accuracy for lower modes.

The sixth order formula for computing the QNM Ω for perturba-
tions obeying (3.15) is given by

Q0√
2Q

′′

0

− Λ2 − Λ3 − Λ4 − Λ5 − Λ6 = i

(
n+

1

2

)
, (3.18)

where n is the overtone number and we have used the notation
Q(x) = Ω2 − V (x). Q0 = Q(x0), where x0 is the tortoise coordinate at
which the potential attains its peak. Also, prime (′) represents differ-
entiation with respect to the tortoise coordinate x. The expressions
for the correction terms Λ2,Λ3,Λ4,Λ5 and Λ6 are given in [71] and
[72].

3.2.2 Asymptotic Quasinormal Modes in terms of
Null Geodesic Parameters

In order to find an approximate analytic expression for the quasinor-
mal modes in the asymptotic limit l → ∞, we drop the higher order
terms in (3.18) and write

Q0√
2Q

′′

0

= i

(
n+

1

2

)
. (3.19)

It can be seen that in the limit l → ∞, the effective potentials
V (r) for all three types of perturbations, given by (3.16), reduce to
much simpler forms so that simple expressions are obtained for the
corresponding functions Q0 as follows:
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Q0 ≃ Ω2 − Cl2
f

r2
, (3.20)

where the values of the parameter C for tensor (Ct), vector (Cv)
and scalar (Cs) perturbations in d dimensions for the Lovelock theory
of order k take the form:

C =



Ct =
1

d−4

[
(d− 4)− (k − 1)

(
d−1
k

)]

Cv = 1
d−3

[
(d− 3)− (k − 1)

(
d−1
k

)]

Cs =
1

d−2

[
(d− 2)− (k − 1)

(
d−1
k

)]
(3.21)

Substituting (3.21) and (3.20) into (3.19), we get the following
expression for the quasinormal modes in the limit l → ∞:

Ωasy = l
√
C

√
fc
r2c

− i

(
n+ 1

2

)
√
2

√
−r

2
c

fc

[
d2

dr2∗

(
f

r2

)]
r=rc

, (3.22)

with C taking appropriate values depending on the type of per-
turbation under consideration. The connection between Ωasy and the
null geodesic parameters is clear from (3.4), (3.5) and (3.22). Clearly,
the real parts of the modes vary linearly with l while the imaginary
parts are independent of l. Thus, for the same value of n, the imag-
inary parts of the modes should approach a constant. Also, given
sufficiently high value of the parameter d, we have Ct ≃ Cv ≃ Cs,
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which means that the metric perturbations of the spacetime given by
(3.11) should be isospectral if one considers Lovelock theories given
by (3.6) in very high dimensions.

3.3 Results and Discussion

We use (3.18) to compute the QNMs Ω for various combinations of
spacetime dimension d and the order parameter k. The calculation is
done for different values of the mode number n. We have tabulated
the low-lying modes for l = 2 in Tables 3.1, 3.2 and 3.3. The param-
eter l is given values from 6 to 80 and selected values of the QNMs
are tabulated in tables 3.4, 3.5 and 3.6. In Table 3.7, we compare the
values of QNMs obtained using the eikonal approximation and the
sixth order WKB method, for tensor and vector perturbations. The
corresponding comparison for scalar perturbations is summarized in
Table 3.8. Tables 3.9, 3.10 and 3.11 show the QNMs for various val-
ues of the order k. In all tables and figures in this work, ω stands for
ΩGkM , where Ω is the QNM calculated using (3.18).

As far as figures are concerned, we have chosen to include the
relevant figures obtained from the numerical data only for the case
of tensor perturbations. The justification for doing so is twofold -
it saves space and, more importantly, it helps us avoid redundancy,
since the behavior of the QNFs depicted in those figures is mimicked
in the corresponding figures for the other two types of perturbations
- vector and scalar.

Fig. 3.2 is the log− log plot of the real and imaginary parts of the
QNFs for tensor modes, which show their behavior as the parameter
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l varies from relatively low values to high values. From the plot, we
observe a behavior that is consistent with that suggested by the null
geodesic method. We see that the the imaginary parts of the modes
tend to become a constant at high values of l, as seen in (3.22). The
behavior of the imaginary parts for lower values of l is similar to that
in an earlier work [73] which also shows a convergent pattern for Im ω

as l increases.

−8.5 −8 −7.5 −7 −6.5 −6 −5.5
−8

−7.9
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ln | Re ω |

ln
 |
 I

m
 ω

 |

Figure 3.2: Tensor modes for k = 2 and d = 8, for n = 5 (top) and n = 3
(bottom). The plotted points within each curve are for l = 10 (left) to
l = 80 (right).

Fig. 3.3 shows the variation of the logarithm of the the absolute
values of the real parts of the tensor QNFs with spacetime dimension
d. As observed from the plot, the real parts decrease as d increases,
indicating modes with lower frequency in higher dimensions. For any
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value of d, the real parts increase with increasing values of l.
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d

ln
 |
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e
 ω

 |

Figure 3.3: Variation of ln |Re(ω)| vs d for k = 2 for Tensor modes . Here,
n = 5. The curves are for l = 10 (bottom) to l = 50 (top).

Figs. 3.4 and 3.5 show the variation of the logarithm of the the
absolute values of the real and imaginary parts of the tensor QNFs
with the order parameter k. As observed from the plots, the real
parts as well as the imaginary parts increase as k increases.
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Figure 3.4: Variation of ln |Re(ω)| vs k for d = 17 and l = 7 for Tensor
modes . The curves are for n = 0 (top) to n = 2 (bottom).
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Figure 3.5: Variation of ln |Im(ω)| vs k for d = 17 and l = 7 for Tensor
modes . The curves are for n = 0 (bottom) to n = 2 (top).
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3.4 Conclusion

We have studied the quasinormal modes of metric perturbations of
tensor, vector and scalar type for asymptotically flat black hole space-
times for a particular class of theories in the Lovelock model. These
theories are specified by the action given by (3.6) with the higher
order coupling constants given by (3.10). We used the sixth order
WKB formula for the quasinormal modes [71] in order to compute
the QNMs for various values of d and k. We also used the connection
between null geodesic parameters and the asymptotic quasinormal
modes of static and spherically symmetric spacetimes, established in
[63], to deduce an analytic form for the asymptotic modes in the limit
l → ∞. Numerical analysis indicates that the asymptotic behavior
of the QNMs in higher ordered theories is indeed consistent with the
theory, as can be seen easily from Tables 3.7 and 3.8. We observe that
the imaginary parts of the modes attain a constant value for very high
values of the parameter l, as suggested by the null geodesic method.
We calculated the quasinormal modes of perturbations for different
orders of the Lovelock theory and found that the real as well as imag-
inary parts of the modes increase with increasing values of k. We
also found that the real parts of the modes decrease with increase in
the spacetime dimension d. The theory also suggests that the modes
should be approximately isospectral at high values of d. This is seen
to hold roughly at d ≥ 10, especially in the case of imaginary parts.
The quasinormal behavior revealed in this chapter should help us un-
derstand better the dynamics of fields in the vicinity of black holes
in higher ordered theories of gravity.



4
Thermodynamics of Charged

Lovelock - AdS Black Holes

4.1 Introduction

The subject of black hole thermodynamics had its origin in the obser-
vation [74–80] of a mathematical connection between various quan-
tities that are relevant to black hole dynamics - horizon-area, mass,
surface gravity etc. and thermodynamic variables - entropy, tem-
perature etc. that describe the thermodynamic behavior of systems.
Consequences of this mathematical connection drive the current in-
tense activity in this field, more than four decades after its initial
discovery. We now suspect that this connection actually goes much
deeper than a simple one-to-one correspondence between various pa-
rameters. It is known that many aspects of quantum field theories of
various systems have their dual in gravitational systems. This connec-
tion enables us to analyze the behavior of such systems by studying
their dual gravitational theories, which is often a much easier task.
Recently discovered gauge-gravity dualities like the AdS/CFT corre-
spondence [3], according to which asymptotically AdS gravitational
theories in d dimensions are dual to quantum field theories in a (d−1)

dimensional sub-manifold, have fueled intense interest in asymptoti-
cally AdS spacetimes.

85
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The occurrence of phase transitions between various black hole
states is a very important aspect of thermodynamic studies of grav-
itational systems, since it would enable us to study the behavior of
their dual systems near their critical points. These phase transitions
can be studied in various ways - studying the heat capacity of black
hole spacetimes is one approach [81, 88], in which the positivity of
the specific heat would point to a stable phase of the black hole while
a negative value signals an unstable phase. Transitions between ther-
mal AdS space and black hole configurations, discovered by Hawking
[30], is considered as the pioneering study on the subject. According
to it, pure thermal radiation in AdS space becomes unstable above
a certain temperature and collapses to form black holes. This is the
well-known Hawking-Page phase transition which describes the phase
transition between the Schwarzschild AdS black hole and the thermal
AdS space. This is dual [89] to the confinement/deconfinement phase
transition of gauge fields according to the AdS/CFT correspondence
[3]. Since then, phase transitions of black holes have been investi-
gated from different perspectives. Some recent works may be found
in [90–110].

Another approach to analyze black hole thermodynamic stability
is to apply the methods of differential geometry by considering the
thermodynamic phase space of a black hole system as a Riemannian
manifold and studying its curvature, which would then represent ther-
modynamic interaction [111–122]. This curvature is determined by
assigning a metric to the thermodynamic phase space. The com-
ponents of the metric are defined in terms of second derivatives of
suitable thermodynamic potentials with respect to a set of extensive
variables Na of the thermodynamic system. Usual choices for the
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thermodynamic potentials are the mass M , internal energy U , en-
tropy S, etc. of the black hole spacetime. Depending on the choice
of the metric, different versions of the geometric approach exist. The
thermodynamic geometry method was first introduced by Weinhold
[117] and Ruppeiner [118]. Weinhold proposed a metric structure in
the energy representation as gWij = ∂i∂j M(U,Na), while Ruppeiner
defined the metric structure as gRij = −∂i∂j S(U,Na). Components of
these metrics are those of the Hessian matrix of the internal energy M
and the entropy S respectively, with respect to the extensive thermo-
dynamic variables Na. Weinhold’s metric was found to be conformally
connected to Ruppeiner’s through the relation ds2R =

ds2W
T

[123], T be-
ing the horizon temperature. Ruppeiner’s metric has extensively been
used in the geometric analysis of various black hole spacetimes [124].
Recently, Quevedo et al. [120] presented a new formalism called ge-
ometrothermodynamics, which allows us to derive Legendre invariant
metrics for the phase space. Geometrothermodynamics presents a
unified geometry where the metric structure describes various types
of black hole thermodynamics [119–122, 125–130].

Theoretical interest in the black hole horizon area stems from ar-
guments [67, 131] that the origin of horizon entropy is related to
the quantum structure of spacetime. Statistical mechanics tells us
that entropy is a measure of the number of occupied microstates of
a system that have equal probability of being occupied. The direct
counting of these microstates in the case of black hole spacetimes is
still an unresolved problem. On one hand, entropy must obey the
second law of thermodynamics, according to which it can do nothing
but increase. On the other hand, we also know from the no - hair
theorem that the state of the black hole systems must be specified
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by a mere handful of parameters, namely the mass M , the charge Q
and the angular momentum J of the black hole. In other words, a
large portion of information regarding the fields that collapse to form
black holes get lost to the observable universe, so that the nature of
the microstates becomes obscure. This leads to a violation of uni-
tarity since, according to quantum mechanics, pure states can only
evolve into pure states, whereas the state inside the black hole be-
comes mixed after its formation. There have been suggestions [133]
that gravitational collapse could lead to the formation of topologically
disconnected regions where the information could be stored. Thus,
black hole horizon area is considered to be intimately related to the
very process of black hole formation and could offer vital glimpses
into the quantum nature of spacetime itself, and thus be of incredible
help in the formulation of a quantum theory of gravity. Following the
initial proposal of Bekenstein [38, 135, 136] of the discrete nature of
the black hole spectrum, various approaches have been developed for
the computation of the same [42, 43, 52, 137–144].

In the present chapter, we test the thermodynamic stability of black
holes in charged, asymptotically AdS, spherically symmetric space-
times in Lovelock model. Ordinary thermodynamic analysis reveals
the existence of two points in charged spacetimes, where the specific
heat as a function of the horizon radius diverges, compared to just
one in the uncharged case. Then we compute the scalar curvature of
the thermodynamic phase space for the spacetime using a Legendre-
invariant metric proposed by Quevedo [119] and find that there exist
divergences in the scalar curvature near the points of divergence of the
specific heat, thus explaining the thermodynamic phase transitions.
We then calculate the area spectrum of black hole horizons in the
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model by directly calculating the adiabatic invariant for the space-
time and applying the Bohr-Sommerfeld quantization condition to it.
A brief outline of the paper is as follows: in Sect. 4.2, we explain the
maximally symmetric Lovelock model and the resulting metric for the
charged AdS black hole spacetime [50]. We also calculate the relevant
thermodynamic quantities like the horizon temperature, entropy and
the specific heat in the same section. Details of the geometrothermo-
dynamic method of analyzing the phase transitions are given in Sect.
4.3. Calculation of the adiabatic invariant for the spacetime and the
deduction of the area spectrum of large black hole are performed in
Sect. 4.4. The results are summarized in Sect. 4.5.

4.2 Thermodynamic Stability of Charged AdS
Black Holes in Lovelock Model

The Lovelock model of gravity [14, 145] is developed based on a La-
grangian in the form of a polynomial in the Riemann curvature. The
degree of the polynomial determines the order of the resulting the-
ory. It is known [10, 13, 19] that the stability of the solutions to these
theories against metric perturbations is not always guaranteed. The
black hole spacetimes, whose thermodynamic stability is studied in
the present work, are solutions to a subset of the general Lovelock
theories, restricted by the additional constraint that all the solutions
must possess a unique AdS vacuum state with a fixed cosmological
constant [50]. In such theories, the order k of the corresponding La-
grangian labels the different theories and it is seen that the type of
the theory depends on the values of k and dimension d of the space-
time. For d > 3, the metric representing the spherically symmetric,
charged, asymptotically AdS solutions to such theories, is given by
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[50],

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2 , (4.1)

where f(r) is given by

f(r) = 1 +
r2

R2
− g(r), where (4.2)

g(r) =

[
2GkM

rd−2k−1
−
(
ϵGk

d− 3

)
Q2

r2(d−k−2)

]1
k
.

Here, r is a Schwarzschild - like coordinate and R is the unique
AdS radius, related to the cosmological constant Λ by the relation Λ =

−(d− 1)(d− 2)

2R2
. The constant ϵ is proportional to the permeability

of the vacuum. The value of R is taken to be equal to 1 for all the
numerical calculations in this paper. Gk refers to the gravitational
constant for the theory of order k. The constants M and Q refer to
the mass and the electric charge of the black hole respectively. It is
also known [50] that there exists a lower limit for the mass of the
black hole M and the size re of the charged object, as long as we wish
to avoid time - like singularities.

The event horizon r+ of the black hole is taken as the largest posi-
tive root of the equation f(r) = 0. For arbitrary values of the param-
eters d and k, it is obviously not possible to express r+ as a function
of the parameters M, Q, R, etc. However, it is possible to express
the mass M of the black hole as a function of r+, which is plotted in
Fig. 4.1. The function M is expressed in terms of r+ as,
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M(r+) =
rd−2k−1
+

2Gk

[(
1 +

r2+
R2

)k

+

(
ϵGk

d− 3

)
Q2

r
2(d−k−2)
+

]
. (4.3)

Figure 4.1: Mass of the charged black hole as a function of r+. The curves
are drawn for d = 10 and Q = 0.235, with k = 2 (solid), k = 3 (dashed)
and k = 4 (dotted).

The horizon temperature T is obtained by requiring the Euclidean

time to be periodic with period τ = 4π

(
df

dr

∣∣∣∣
r=r+

)−1

and equating it

to 1

κBT
, κB being the Boltzmann constant. We can easily see that,

for the charged black holes, the horizon temperature is given by

T (r+) =
1

4πκB

df

dr

∣∣∣∣
r=r+

=
2r+
R2

− 1

k

[
g(r+)

]1
k
−1

× g′(r+). (4.4)

Eq.(4.4) represents a non-monotonic function having a couple of
turning points when expressed as a function of r+. Once again, it
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Figure 4.2: Temperature of the charged black hole as a function of r+, for
d = 7, k = 2. The curves are drawn for Q = 0.2 (solid), Q = 0.3 (dashed)
and Q = 0.4 (dotted).

is not possible to obtain closed-form expressions for these points in
terms of the black hole parameters, as long as the dimension d and
order k are not fixed. However, one can analyze the behavior of
T (r+) as a function of r+ graphically. Fig. 4.2 represents a plot
between T (r+) and r+. From the plot, it is obvious that one of the
turning points represents a maximum while the other is a minimum.
The existence of a minimum of T (r+) is known already in the case
of uncharged black holes [50], while the existence of the maximum
appears to be unique to the charged case.

The function S(r+), representing the entropy of the black hole event
horizon as a function of the horizon radius r+ is obtained in the
general case of a Lovelock theory of order k at spacetime dimension
d by evaluating the Euclidean action for the back hole spacetime and
equating it to β times the free energy of the system, where β is defined
by the expression df

dr

∣∣∣∣
r+

= 4πβ−1. After some calculation, it is seen
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that the entropy S(r+) is given by,

S(r+) =
rd−2k
+

d− 2k
2F1

(
1

2
(d− 2k), 1− k;

1

2
(d− 2k + 2);−

r2+
R2

)
, (4.5)

Figure 4.3: Entropy of the charged black hole as a function of r+. The
curves are drawn for d = 10 and Q = 0.235, with k = 2 (solid), k = 3
(dashed) and k = 4 (dotted).

where 2F1 represents the hypergeometric function. Graphically, it
is seen from Fig. 4.3 that S(r+) is a monotonically increasing function
of r+. For k = 1, it can readily be seen that S(r+) ∝ rd−2

+ , which is
nothing but the usual area law, namely S ∝ A, A being the horizon-
area. Also, S(r+) becomes proportional to the area for k ≠ 1 theories
when r+ ≫ R, i.e. for very large black holes.

In order to investigate the thermodynamic stability of the black
hole spacetime, we compute the specific heat Cp for the spacetime,
defined as Cp =

∂M

∂T
. Since both M and T can conveniently be ex-

pressed as functions of r+, we compute Cp also as a function of r+
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using the expression Cp(r+) =
∂r+M

∂r+T
. The explicit form of the func-

tion turns out to be too long to include here, so that we resort to
graphical analysis.

In all dimensions d and for all orders k, we find that there exists a
range of values for the parameter Q, for which the function T (r+) has a
couple of turning points. Since Cp(r+) =

∂r+M

∂r+T
, we expect to find two

points of divergence when we plot Cp against r+, indicating points at
which Cp changes sign discontinuously, signaling transitions between
stable (+ve value for Cp) and unstable (-ve values for Cp) phases. This
indeed turns out to be the case. We name the two turning points of
T (r+) as rc1 (the maximum) and rc2 (the minimum). Samples of the
typical variation of Cp with r+ in the vicinity of rc1 and rc2, for one
particular set of values for the parameters d and Q with different
values for k, are plotted in Figs. 4.4 and 4.5 respectively. From the
analysis of the plots of Cp against r+ for various combinations of d,
k and Q, we observe that, when r+ decreases, the transition at rc2 is
always from a stable phase to an unstable phase, whereas the nature
of the transition at rc1 changes from case to case, depending on the
values of d, k and Q. For example, it is clear from Fig. 4.4 that
the second order theory (solid curve) in a ten dimensional spacetime
predicts a stable-to-unstable transition, while the third order theory
(dashed curve) predicts a unstable-to-stable transition at rc1 when r+

decreases. In those cases where the transition at rc1 is from a stable
phase to an unstable phase, such as the one depicted by the solid
curve in Fig. 4.4, there obviously occurs a continuous sign-change in
Cp(r+), as clearly seen in the figure.
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Figure 4.4: Cp − r+ variation in the vicinity of rc1. The curves are drawn
with d = 10, k = 2 (solid) and d = 10, k = 3 (dashed). In both cases,
Q = 0.235

Figure 4.5: Cp − r+ variation in the vicinity of rc2. The curves are drawn
with d = 10, k = 2 (solid) and d = 10, k = 3 (dashed). In both cases,
Q = 0.235

We now take another case and analyze the thermodynamic behavior
in some more detail. We select a black hole spacetime with d = 7, k =
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2 and Q = 0.235. Plots of Cp against r+ in the neighborhood of rc1
and rc2 are given in Fig. 4.6 and 4.7. From the figures, it is obvious
that, for this particular case, as r+ decreases, the transition at rc2 is
from a stable phase to an unstable phase, whereas the transition at
rc1 is from an unstable phase to a stable one.

Let us try to analyze the thermodynamic stability of the spacetime
using Figs. 4.6-4.8. We will see that the thermodynamic stability
depends on both the size of the black hole and the temperature of
the background AdS spacetime. The thermodynamic behavior of the
black holes depends crucially on whether the temperature (T0) of the
background spacetime (also called thermal bath) is (i) larger than the
local maximum value (Tmax) of T (r+), (ii) between Tmax and the local
minimum value (Tmin) of T (r+), or (iii) lower than Tmin. Another
important factor that determines the thermodynamic behavior in all
these three cases is the size r+ of the black hole itself - whether it is
greater than rc2, in between rc2 and rc1 or less than rc1. We analyze
some of the possible scenarios here:

Case (i) - T0 > Tmax:

In this case, we see that, similar to the case of Schwarzschild-AdS
black holes, very large black holes in the model can always attain
equilibrium with an external thermal bath at a finite temperature,
since the specific heat is positive in this region. There is one differ-
ence though - when r+ is large and the temperature T0 of the bath
is higher than the maximum value of T (r+), a straight line paral-
lel to the horizontal axis meets the T (r+) − r+ curve at only one
point, which means that there exists only one final, stable, equilibrium
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configuration for such a black hole at that background temperature,
with a horizon radius which is larger than rc2. This is not the case
for uncharged black holes - the uncharged spacetime always has two
equilibrium configurations - one being unstable and the other being
stable - as long as the temperature of the bath is higher than the
minimum of T (r+) [50]. Thus, for the charged case, a black hole with
r+ > rc2 will get drawn towards the equilibrium state at temperature
T0, since the specific heat is positive for r+ > rc2.

Case (ii) - T0 < Tmin:

Charged AdS Lovelock black holes can attain equilibrium with a
thermal bath of any positive temperature, whereas the uncharged
ones are known [50] to be unable to attain equilibrium with a bath
of temperature lower than the minimum of T (r+). Case (ii) is an
example of such a scenario. Here again, there exists only one ther-
modynamically stable equilibrium configuration that the small black
holes can get drawn towards, since the straight line parallel to the
horizontal axis still cuts the T (r+) − r+ curve at only one point. In
this case, the horizon radius for the equilibrium state will be smaller
than rc1. The specific heat is positive in the region r+ < rc1, so that
a black hole with r+ < rc1 tends to make a transition towards this
equilibrium state rather than away from it.

Case (iii) - Tmin < T0 < Tmax:

It is clear from Fig. 4.8 that, in this range, each value of T0 corre-
sponds to three equilibrium states of different radii - say, rs1 ( less than rc1,
corresponding to a locally stable state), ru( in between rc1 and rc2,
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corresponding to an unstable state) and rs2 ( larger than rc2, corre-
sponding to a locally stable state). The points rs1 and rs2 exist in
regions with positive specific heat, as clearly seen from Figs. 4.6 and
4.7 so that initial black hole states with r+ < rc1 and r+ > rc2 are
drawn towards these equilibrium points respectively. On the other
hand, the point ru exists in a region with negative specific heat, so
that initial black hole states with rc1 < r+ < rc2 are drawn away from
this equilibrium point. Thus, if the temperature of the thermal bath
falls in the range Tmin < T0 < Tmax, the resultant thermodynamic
behavior of the black hole will depend on its initial size. Essentially,
initial black hole states with r+ > ru will evolve towards an equilib-
rium configuration with r+ = rs2 and those with r+ < ru will tend to
evolve towards a configuration with r+ = rs1. This is in contrast with
the uncharged case, where a black hole with an initial size r+ < ru

can never reach equilibrium [50].

The occurrence of a phase transition in this sample case is also
indicated by a plot between the Gibbs free energy F (r+) = M(r+) −
T (r+)S(r+) and the horizon temperature T , given in Fig. 4.9. The
presence of a cusp in the plot indicates that there occurs a second
order phase transition in the black hole spacetime.
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Figure 4.9: Free energy of the charged black hole as a function of r+ for
d = 7, k = 2 and Q = 0.235

4.3 Geometrothermodynamic (GTD) Anal-
ysis

We employ the Legendre invariant method of Quevedo [119–122, 146,
147] in order to study the phase transition in the geometric formal-
ism. We choose the entropy representation, in which the Ricci scalar
RR that represents the thermodynamic interaction of the system is
derived from a thermodynamic metric which is defined in terms of
the second derivatives of the entropy S of the system, considered as
a function of the relevant extensive parameters. For our spacetime
representing the charged, AdS Lovelock black holes, we take M and
Q as the extensive parameters. Since M can conveniently be ex-
pressed as a function of the horizon radius r+, we take M = M(r+),
Q = Q(r+), S = S(r+) and compute the Ricci scalar RR as a function
of r+. Identifying M,Q as the set of extensive thermodynamic vari-
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ables and S(M,Q) as the thermodynamic potential Φ of the system,
the Legendre invariant thermodynamic metric gQ is computed using
the relation,

gQ =

(
g11 0

0 g22

)
, (4.6)

where g11 and g22 are given by,

g11 = −
(
M

∂rS

∂rM
+Q

∂rS

∂rQ

)(
∂rM ∂rrS − ∂rS ∂rrM

(∂rM)3

)
, and,(4.7)

g22 =

(
M

∂rS

∂rM
+Q

∂rS

∂rQ

)(
∂rQ ∂rrS − ∂rS ∂rrQ

(∂rQ)3

)
. (4.8)

Note that the symbol r replaces r+ in (4.7) and (4.8). Although
the analytic calculation is straightforward, the resultant expressions
for the metric-components and that of the Ricci scalar RR are too
long to be explicitly included here. Therefore, we resort to numerical
analysis and study the behavior of RR graphically as a function of r+.
In Figs. 4.10-4.13, we plot RR(M,Q) against r+ for specific values
of the black hole parameters and compare it with the corresponding
plots of the heat capacity Cp, also plotted against r+ in exactly the
same range. From the plots, it is clear that the divergences in RR

occur at points which are very near to those at which the heat ca-
pacity diverges. Hence, we conclude that the usual thermodynamic
approach and the GTD method are in agreement in predicting the
thermodynamic behavior of the black hole spacetime.
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4.4 Area Spectrum of Large Charged AdS
Black Holes in Lovelock Model

In this section, we compute the horizon area spectrum of large (r+ ≫
R) charged, AdS black holes in Lovelock model. The fact that hori-
zon area of black holes is quantized was proposed for the first time
by Bekenstein [38, 135, 136]. He found that the horizon area of a
non-extremal black hole is a classical adiabatic invariant. It is known
from field theory (Ehrenfest Principle) that the presence of a peri-
odicity in the classical theory of a system points to the existence of
an adiabatic invariant with a discrete spectrum in the corresponding
quantum theory. We follow the recent proposal by Majhi and Vagenas
[148] that the quantity I =

∑∫
pidqi can be taken as the classical

adiabatic quantity in the case of black hole spacetimes, where qi and
pi are conjugate variables describing the dynamics of the system.

For a spacetime whose metric is given by

ds2 = f(r)dτ2 +
1

f(r)
dr2 + r2dΩ2

d−2 , (4.9)

where τ = it is the Euclidean time coordinate, we take q0 = τ and
q1 = rh as the dynamical variables of the system and consider the
Hamiltonian H as a function of qi and pi. Then, taking into account
one of the Hamiltonian equations of motion of the system, namely,
pi =

∂H

∂q̇i
, it is possible to show that the adiabatic invariant I for the

spacetime takes the form,

I = −2i

∫ ∫ H

0

dH ′

f(r)
dr. (4.10)
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Near the horizon rh, we can approximate f(r) ≈ κ(r − rh), where
κ =

df

dr

∣∣∣∣
r=rh

. Also, the temperature T of the horizon is given by

T =
1

4π
κ. Substituting all these into (4.10), we get,

I =
1

2

∫ H

0

dH ′

T
. (4.11)

Considering the black hole spacetime as a thermodynamic system
with extensive variables S and Q, we equate the Hamiltonian H ′ to
the mass M of the black hole, so that the first law of thermodynamics
reads

dH ′ = dM = TdS + ΦdQ, (4.12)

Φ =
∂M

∂Q
being the electric potential. Thus, (4.11) gives

I =
1

2
(S +

∫ Q

0

Φ

T
dQ′). (4.13)

The temperature T of the horizon is given by T =
1

4π

df

dr

∣∣∣∣
r=rh

, and

Φ =
∂M

∂Q′ , where M(Q′) by replacing Q with Q′ in (4.3). We get

Φ =
ϵr3−d

h

d− 3
Q′. (4.14)

We compute the second term on the RHS of (4.13) after substi-
tuting the values of Φ and T . Its value turns out to be,∫ Q

0

Φ

T
dQ′ =

a

2c
ln(b− c Q2), where (4.15)

a =
ϵr3−d

h

d− 3
,
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b =
1

4π

[
2rh
R2

+
2GkM(d− 2k − 1)

krd−2k
h

(
1 +

r2h
R2

)1−k
]

, and

c =
1

4π

[
2ϵGk(d− k − 2)

k(d− 3)r
2(d−k)−3
h

(
1 +

r2h
R2

)1−k
]
.

Thus, (4.13) gives,

S = 2I − a

2c
ln(b− c Q2)

According to Bohr-Sommerfeld quantization condition, I = nℏ, so
that we can write

S = 2nℏ− a

2c
ln(b− c Q2). (4.16)

Now, it is to be noted that the usual area law, namely S ∝ A,
is unique to first order theories of gravity like the General Theory
of Relativity, for which the order parameter k = 1. In general, the
area law is not followed by black hole spacetimes in theories where
k ̸= 1. However, the area law can approximately be recovered in
these theories if we restrict our attention to very large black holes,
i.e. those with r+ ≫ R. For such black holes, the general expression
for the entropy for S(r+), given by (4.5), reduces to

S(r+) ≈ k

(
2πκB

(d− 2)GkR2(k−1)

)
rd−2
+ , (4.17)

which can be written in terms of the area A of the event horizon
as

S(r+) ≈ k

(
2πκB

(d− 2)GkR2(k−1)

) (
A

Ωd−2

)
. (4.18)
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Using (4.18) in (4.16), we can write an expression for the quantized
area of large, charged black holes in the asymptotically AdS Lovelock
model as,

A = γ
(
nℏ− a

4c
ln (b− c Q2)

)
, (4.19)

where the constant γ is given by,

γ =
(d− 2)Ωd−2GkR

2(k−1)

πκB
.

Thus the horizon-area of large, charged, black holes in the model
turns out to be quantized, with a logarithmic correction term added
to it. The dependence of the area-quantum on the order of the theory
k and the AdS radius R is evident from the expression for γ. It is
to be noted that the dependence on R becomes evident only when
one considers theories with k ̸= 1. It is interesting to note that the
logarithmic correction term itself does not turn out to be quantized.

4.5 Conclusions

In this chapter, we considered the thermodynamic behavior of charged,
asymptotically AdS and spherically symmetric black hole solutions of
the Lovelock model of gravity, where the higher-order coupling con-
stants are chosen so as to make the AdS radius R equal for all orders.
The main objective has been to investigate the thermodynamic sta-
bility of such black holes and to look for possible phase transitions
between various black hole states. Two approaches were adopted to-
ward that end - (1): the usual thermodynamic approach in which one
computes the specific heat of the spacetime and looks for divergences
which signal the occurrence of second order phase transitions between
various states, and (2): the method of geometrothermodynamics, in
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which one studies the thermodynamic interaction of the black hole
by applying methods of differential geometry to the thermodynamic
phase space of the system.

Using the usual methods of black hole thermodynamics, we calcu-
lated different thermodynamic parameters of the system such as the
horizon temperature, entropy and the specific heat. We found that
the horizon temperature T , when written as a function of the horizon
radius r+, has a couple of turning points, compared to just one in the
uncharged case. Entropy S happens to be a monotonic function of
r+, while the specific heat Cp exhibits divergence at two points cor-
responding to the turning points of T (r+). From the plots of T (r+)
and Cp(r+) against r+, we were able to deduce the thermodynamic
behavior of the black holes.

We found that large black holes are always able to attain thermody-
namic equilibrium with the background AdS spacetime (the thermal
bath) as long as the bath has a temperature greater than the local
maximum value of T (r+). In this case, there exists only one stable
equilibrium configuration for a black hole at any bath temperature
T0. A similar conclusion can be arrived at in the case of small black
holes placed inside a bath at a temperature T0 that is less than the
local minimum value of T (r+). There exists a stable equilibrium con-
figuration in this case as well, in contrast with the case of uncharged
black holes. In this case, as in the previous case, initial black hole
states get drawn towards the respective equilibrium configurations,
since the specific heat is positive in both cases. When the tempera-
ture of the bath is in between the local maximum and local minimum
values of T (r+), each bath temperature T0 corresponds to three equi-
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librium black hole configurations - two stable states and one unstable
state. In such a case, we concluded that initial black hole configura-
tions would be drawn towards one of the stable points, depending on
their initial size.

In order to perform the geometric analysis of the thermodynamic
evolution, we followed the method of geometrothermodynamics of
Quevedo [119, 120]. We chose what is known as the entropy repre-
sentation of the thermodynamic phase space and computed the scalar
curvature RR derived from a Legendre invariant thermodynamic met-
ric, the components of which are calculated using the second deriva-
tives of the entropy of the system. We chose the mass and the charge
of the black hole as the extensive parameters. Since the expressions
for the metric components and the scalar curvature were too long
to treat analytically, we resorted to the graphical method, plotting
the scalar curvature as a function of the horizon radius r+. From
the plot, we found that the scalar curvature diverges at points that
are very close to the points of divergence of the specific heat of the
black hole, indicating that the thermodynamic phase transitions of
the black hole correspond to the singularities in the corresponding
thermodynamic phase space. Thus, the results of geometrothermo-
dynamics were found to be in agreement with those of ordinary black
hole thermodynamics.

Next, we computed the horizon area spectrum of large, charged
AdS black holes in the model, motivated mainly by the AdS/CFT
correspondence. We computed the adiabatic invariant

∑∫
pidqi

for the black hole spacetime taking the Euclidean time τ = it and the
horizon radius rh as the dynamical variables. The first law of thermo-
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dynamics was made use of during the computation. We applied the
Bohr-Sommerfeld quantization rule to the invariant and found that
the entropy is a quantized entity with a logarithmic correction term
added to it. In the limit of large black holes, the entropy becomes
proportional to the horizon area for higher order Lovelock theories
and we were able to show that the area of such black holes also can
be written as a quantized number with a logarithmic correction term
added to it. The spacing γ between the various quanta was found
to be dependent on the order k of the theory (and by extension the
dimension d of the spacetime) and the value of the AdS radius R,
although this dependence become evident only in higher dimensions
and higher order theories.



5
Summary

The idea that we may be living in a higher - than - four dimen-
sional universe is something that could very well be justified based
on a purely intellectual, egalitarian point of view - one could argue
that the number 4 must not be given any special status as the default
choice for the number of spacetime dimensions and that the final word
on the dimensionality of the spacetime of our universe must be based
on agreement between theory and experiment. There are, however,
practical reasons as well for taking higher dimensional gravity seri-
ously, the benefits obtained from gauge - gravity duality being only
one of them. The pursuit for a fully consistent, quantized theory of
gravity is still an ongoing one and the most promising choices can
only be consistent in higher dimensional spacetime. Add to this the
prediction of the creation of micro black holes in high energy particle
colliders like the LHC, and we have more than enough motivation to
study physics in the background of higher dimensional black holes. Of
course, when we consider gravity in higher dimensions, the General
Theory of Relativity stops being the most general theory and one has
to look for more general models. The most obvious choice would be
to consider theories obtained from Lagrangians of higher - than - one
order, among which the Lovelock model deserves special attention for
reasons mentioned elsewhere in the thesis.
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This thesis is a record of numerical as well as analytical investi-
gations into the dynamics of physical fields in the vicinity of higher
dimensional black holes and their thermodynamic behavior. The dy-
namic behavior is studied by computing the quasinormal frequen-
cies of perturbations and the thermodynamic properties is studied
by studying the stability of the event horizons against phase transi-
tions. Methods of differential geometry were also utilized in order to
verify the conclusions deduced from methods of ordinary black hole
thermodynamics.

The main conclusions, in the order that they appear in the thesis,
are briefly summarized below. Detailed discussions can be found in
the concluding sections of the corresponding chapters.

In Chapter 2, we studied the modes of evolution of massless scalar
fields in the asymptotically AdS spacetime surrounding maximally
symmetric black holes of large and intermediate size in the Lovelock
model. It was observed that all modes are purely damped at higher
orders. Also, the rate of damping was seen to be independent of order
at higher dimensions. The asymptotic form of these frequencies for
the case of large black holes was found analytically. Finally, the area
spectrum for such black holes was deduced from these asymptotic
modes and it was found that the area quantum is actually dependent
on not only the dimension d of the spacetime, but also on the order
k of the theory, a feature observed only in higher order theories.

In Chapter 3, the quasinormal modes of metric perturbations in
asymptotically flat black hole spacetimes in the Lovelock model were
calculated for different spacetime dimensions and higher orders of
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curvature. It was analytically established that in the asymptotic limit
l → ∞, the imaginary parts of the quasi normal frequencies become
constant for tensor, scalar as well as vector perturbations. Numerical
calculation showed that this indeed is the case. Also, the real and
imaginary parts of the quasinormal modes were seen to increase as
the order of the theory k increases. The real parts of the modes were
seen to decrease as the spacetime dimension d increases, indicating
the presence of lower frequency modes in higher dimensions. Also, it
was seen that the modes are roughly isospectral at very high values
of the spacetime dimension d.

In Chapter 4, we investigated the thermodynamic behavior of max-
imally symmetric charged, asymptotically AdS black hole solutions of
Lovelock gravity. We explored the thermodynamic stability of such
solutions by the ordinary method of calculating the specific heat of
the black holes and investigating its divergences which signal second
order phase transitions between black hole states. We then utilized
the methods of thermodynamic geometry of black hole spacetimes in
order to explain the origin of these points of divergence. We calcu-
lated the curvature scalar corresponding to a Legendre - invariant
thermodynamic metric of these spacetimes and found that the diver-
gences in the black hole specific heat correspond to singularities in the
thermodynamic phase space. We also calculated the area spectrum
for large black holes in the model by applying the Bohr - Sommerfeld
quantization to the adiabatic invariant calculated for the spacetime.
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5.1 Prospects of Future Work

In this thesis, we have investigated the dynamics of physical fields
in the vicinity of black holes in higher dimensional spacetimes and the
thermodynamic behavior of the black hole event horizons in higher
dimensions. The background spacetimes in all these studies have
been static, maximally symmetric solutions of the Lovelock model of
gravity. In other words, we have only considered non - rotating black
holes in this thesis. Therefore, one obvious method of extending the
works in other directions would be to consider stationary solutions
- rotating black holes and to study the effects of the rotation of the
black hole on the physics of fields in their vicinity as well as on their
horizon thermodynamics.

The AdS/CFT correspondence also provides an avenue for extend-
ing the works. According to the correspondence, there exist par-
allels between gravitational systems and condensed matter physics
[65], which could be exploited in order to gain insight into phenom-
ena like high - temperature superconductivity. Investigating the be-
havior of holographic superconductors in the background spacetimes
considered in this thesis would certainly be worthwhile because of the
insight it would provide into how dimension of the spacetime affects
relevant parameters like the critical temperature.

The study of gravitational waves in the Lovelock models studied in
this thesis is yet another direction in which the works could be ex-
tended. One would certainly like to know if the gravitational waves
emitted by phenomena like black hole merger carry any “signature”
regarding the spacetime dimension. The spacetimes considered in this
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thesis could act as candidate models for higher dimensional space-
times in such studies.
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