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Chameleon and symmetron theories serve as archetypal models for how light scalar fields can couple to
matter with gravitational strength or greater, yet evade the stringent constraints from classical tests of
gravity on Earth and in the Solar System. They do so by employing screening mechanisms that dynamically
alter the scalar’s properties based on the local environment. Nevertheless, these do not hide the scalar
completely, as screening leads to a distinct phenomenology that can be well constrained by looking for
specific signatures. In this work, we investigate how a precision measurement of the electron magnetic
moment places meaningful constraints on both chameleons and symmetrons. Two effects are identified:
First, virtual chameleons and symmetrons run in loops to generate quantum corrections to the intrinsic
value of the magnetic moment—a common process widely considered in the literature for many scenarios
beyond the Standard Model. A second effect, however, is unique to scalar fields that exhibit screening.
A scalar bubblelike profile forms inside the experimental vacuum chamber and exerts a fifth force on the
electron, leading to a systematic shift in the experimental measurement. In quantifying this latter effect, we
present a novel approach that combines analytic arguments and a small number of numerical simulations to
solve for the bubblelike profile quickly for a large range of model parameters. Taken together, both effects
yield interesting constraints in complementary regions of parameter space. While the constraints we obtain
for the chameleon are largely uncompetitive with those in the existing literature, this still represents the
tightest constraint achievable yet from an experiment not originally designed to search for fifth forces. We
break more ground with the symmetron, for which our results exclude a large and previously unexplored
region of parameter space. Central to this achievement are the quantum correction terms, which are able to
constrain symmetrons with masses in the range μ ∈ ½10−3.88; 108� eV, whereas other experiments have
hitherto only been sensitive to 1 or 2 orders of magnitude at a time.
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I. INTRODUCTION

Many laboratory experiments exist today to search for or
otherwise strongly constrain deviations from Newtonian
gravity on submillimeter scales [1–4]. These often give
tight bounds on the parameters of hypothetical Yukawa
fifth forces, although it has recently become interesting also
to consider their implications for nonlinear scalar fields. It
is now known that when a scalar field is allowed to have
both self-interactions and nonlinear couplings to the

Standard Model, its phenomenology becomes markedly
different.

A. Chameleonlike particles

Despite the enormous range of possibilities (see [5,6] for
reviews), a defining feature common to such scalar fields is
a nonperturbative effect known as screening. Screening
mechanisms drive the scalar to dynamically alter its
properties in response to its surroundings, thus suppressing
or enhancing the fifth force it mediates. Two models of
screening are particularly suited to being tested in the
laboratory and have justly been the focal point of experi-
ments in recent years. The first is the chameleon mecha-
nism [7,8], wherein the mass of the scalar varies
accordingly with the ambient density, thus resulting in a
Yukawa-like suppression of the range of its fifth force in
dense environments. The second, dubbed the symmetron
[9,10], utilizes a Higgs-like potential and the spontaneous
breaking of its Z2 symmetry to couple the scalar to matter
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when in high vacuum while decoupling it in dense media.
Both models belong to the same universality class of scalar-
tensor theories, and serve as archetypal examples of
how variations in density can elicit screening. In this paper,
we introduce the blanket term “chameleonlike particle”
(CLP) to make it easier to refer to this class of models
collectively.1

At the time of its introduction, this novel idea of
screening found tremendous success in enabling a CLP’s
evasion of the stringent fifth force constraints enforced by
tests of gravity on Earth and in the Solar System that were
already in place [2]. However, in some sense this success
has been its own demise; having spurred the onset of a
number of dedicated experiments searching specifically for
signatures of screening. Today, most of the parameter space
of the original chameleon model has been ruled out, leaving
only a sliver still out of reach of current experiments. (See
Ref. [4] for a review of current constraints on CLPs.) In
contrast, the space of symmetron models remains mostly
unexplored. This state of affairs is due primarily to a lack of
theoretical work in translating bounds from existing experi-
ments conducted for the chameleon, although some of the
blame is also borne by the symmetron’s distinct phenom-
enology. Many laboratory experiments conducted in vac-
uum chambers are only sensitive to a small range of the
symmetron mass (discussed further in Sec. V), meaning a
large number of complementary experiments are needed to
probe the parameter space fully. All in all, the question of
whether scalar fifth forces exist in our Universe still
remains open today. Our aim in this paper is to make
further progress in answering this question.
We do so by taking an approach complementary to

dedicated searches: A small number of high-precision
experiments conducted and refined over the years have
verified the accuracy of the Standard Model, and QED in
particular, to the level of about one part per trillion. As
CLPs are assumed to interact with all matter species, if
present, they can give rise to additional effects that might
tarnish this spectacular agreement between experiment and
theory. Theoretical work in reanalyzing precision QED
tests while incorporating the effects of such scalar fields is
therefore interesting, since models in conflict with known
physics can immediately be deemed unviable. Moreover,
such work is also useful in elucidating where in parameter
space future searches should direct their focus.

B. Anomalous magnetic moment

In this work, we investigate how the precision meas-
urement of the electron’s magnetic moment places bounds
on both chameleons and symmetrons. The magnetic
moment μ can be written as

μ ¼ −gμBS

in terms of the spin S and the Bohr magneton μB ¼ e=2me.
(We work in units with ℏ ¼ c ¼ 1 throughout.) In the
current state of the art, what is measured experimentally is
the dimensionless ratio g=2, which is exactly one for a
classical field governed by the Dirac equation. As is well
known, quantum fluctuations slightly increase this value,
making it a promising probe for the existence of new
physics. The difference between the true and tree-level
values is called the anomalous magnetic moment

a ¼ ðg − 2Þ=2:

To measure this, Hanneke et al. [11,12] confine a single
electron in a cylindrical Penning trap, within which an axial
magnetic field and quadratic electrostatic potential are
maintained. The value of a can then be inferred by
measuring the eigenfrequencies of the electron in this
vacuum cavity. Three measurements are needed: The
cyclotron frequency ω̄c, the anomaly frequency ω̄a, and
the axial frequency ω̄z, from which one deduces [12]

aexp ¼
ω̄a − ω̄2

z=ð2ω̄cÞ
ω̄c þ 3δrel=2þ ω̄2

z=ð2ω̄cÞ
þ Δgcav

2
: ð1:1Þ

In this paper, we denote experimentally measured frequen-
cies ω̄i with an overline to distinguish them from their
theoretical counterparts. These, along with other experi-
mental details relevant to this work, are discussed further in
Sec. III. Two other quantities are present in Eq. (1.1):
A small shift δrel is necessary to include the leading
relativistic correction, whereas Δgcav is put in by hand to
account for systematics arising from the interaction
between the electron and radiation modes in the cavity.
These considerations yield a measurement of g=2 precise to
0.28 parts per trillion [11,12]:

ðg=2Þexp ¼ 1.001 159 652 180 73ð28Þ:

Just as spectacular an achievement is its agreement with
the Standard Model, which predicts a theoretical value

aSM ¼
X∞
n¼1

Cnðα=πÞn þ aew þ ahad: ð1:2Þ

The first term is the asymptotic series arising from QED,
calculations for which have now been completed up to n ¼ 5
loops [13,14]. Also relevant at the experiment’s level of
precision are small contributions from the electroweak and
hadronic sectors, encapsulated in the remaining two terms.
(See Ref. [15] for a more in-depth discussion.) The series in
Eq. (1.2) takes as input a value for the fine-structure constant
thatmust be determined experimentally. For this purpose, the
most precise, independent determination of α comes from

1Our choice of nomenclature draws inspiration from and
highlights the contrast with axionlike particles (ALPs), which
are (pseudo)scalar fields that do not couple to matter.
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combining measurements of the Rydberg constant [16] and
the ratio h=mRb obtained from recoil experiments with
rubidium atoms [17–19]. These yield the value

α−1ðRbÞ ¼ 137.035 999 049 ð90Þ;

with the uncertainty dominated by the measurement of
h=mRb. Substituting this into Eq. (1.2), the end result is
an agreement between theory and experiment at 1.7 standard
deviations [14],

aSM − aexp ¼ ð1.30� 0.77Þ × 10−12: ð1:3Þ

The 1σ uncertainty above is dominated by the errors accrued
in measuring h=mRb.

C. Effects from a CLP

If a CLP exists in our Universe, three additional effects
come into play:
(1) Quantum corrections: Virtual chameleons and sym-

metrons run in loops, generating additional correc-
tions to the QED vertex function. These slightly
increase the intrinsic value of the electron’s magnetic
moment.

(2) Cavity shift: Nonlinear scalar fields invariably form a
bubblelike profile inside vacuum cavities, thus ex-
erting an additional fifth force on the electron. This
shifts its eigenfrequencies by a small amount
ωi → ωi þ δωi. Unlike the intrinsic change in (1),
this is a systematic effect coming from the exper-
imental setup, which must be corrected for to obtain
an accurate value of aexp.

(3) Charge rescaling: Scalars that couple to the photon
induce a field-dependent rescaling of the electron
charge, or equivalently, of the fine-structure constant
α → αðϕÞ [20–26]. If the local values of ϕ present in
the experiments used to determine αðRbÞ differ from
that in the Penning trap, then αðRbÞ must be
appropriately rescaled before being substituted into
Eq. (1.2).

All three effects add up to an overall deviation δa.
Compatibility with Eq. (1.3) requires that this must be
constrained, at the 2σ level, to lie within

jδaþ 1.30 × 10−12j < 1.54 × 10−12: ð1:4Þ

Contributions from both the quantum and cavity
effects can be estimated by considering the experiment
of Hanneke et al. in isolation, but including the variation of
the fine-structure constant requires, in addition, a good
understanding of how the scalar behaves in the exper-
imental setups leading to the value of αðRbÞ. This is a far
more involved task, which lies beyond the scope of this
paper. For simplicity, we shall assume in what follows
that the value of α is identical in all relevant experiments.

This assumption is not expected to have a negative impact
on our results. Considering only the first two effects is
sufficient to provide conservative bounds on the model
parameters, which can only be expected to improve once
charge rescaling is properly taken into account. In fact, only
the bound on the photon coupling has room for improve-
ment; our constraints for the matter coupling are robust
against charge rescaling since the relevant physics is
independent of α.

D. Outline of this paper

The remainder of this paper is organized as follows: The
details that go into quantifying the effect of quantum
corrections and the cavity shift are discussed in Secs. II
and III, respectively. Up to this point, the calculations are
kept as general as possible, and will apply to any nonlinear
scalar field with a canonical kinetic term, a self-interaction
potential, and couplings to the Standard Model. The reader
interested primarily in the punchline may prefer to jump
directly to Sec. IV. There, the calculations are completed by
specializing to the chameleon model, and the constraints
on parameter space are determined. The same process is
repeated for the symmetron in Sec. V. We summarize in
Sec. VI.

II. QUANTUM CORRECTIONS

The scalar fields we consider couple universally to matter
and mediate a fifth force. At the quantum level, virtual
exchange of these scalars leads to additional loop corrections
to the QED vertex function, in turn resulting in an increase in
the intrinsic value of the electron’s magnetic moment.

A. Lagrangian

We begin this section by briefly reviewing the ingre-
dients that constitute chameleon and symmetron models.
Both belong to the same family of scalar-field theories
governed by the Lagrangian2

L ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ þ LmðΨ;ϕÞ; ð2:1Þ

where the Standard Model fields (denoted collectively
by Ψ) and their couplings to ϕ are encapsulated in the
third term Lm. Massive fermions, such as the electron, obey
the modified Dirac equation [27]

Lm ⊃ ψ̄ ½iD −ΩðϕÞme�ψ ; ð2:2Þ

whereDμ ¼ ∂μ þ ieAμ is the usual gauge-covariant deriva-
tive, but the mass term has picked up a dependence on the

2For the purposes of laboratory experiments, it suffices to work
in flat space. See, e.g., the reviews in Refs. [5,6] for the covariant
form of this action. Our metric signature is ð−;þ;þ;þÞ.
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scalar via the conformal function3 ΩðϕÞ > 0. To satisfy the
weak equivalence principle, nonrelativistic fluids with a
conserved density distribution ρ couple to ϕ via a similar
interaction

Lm ⊃ −ΩðϕÞρ: ð2:3Þ
A coupling to the electromagnetic sector is also possible,
since one is not forbidden by symmetries [24,25]. Here one
has the freedom to specify a different coupling function
εðϕÞ > 0, which modifies the kinetic term of the photon to
read

Lm ⊃ −
1

4
εðϕÞFμνFμν: ð2:4Þ

As both ΩðϕÞ and εðϕÞ introduce nonrenormalizable
operators into the Lagrangian, these theories should be
viewed as low-energy effective field theories (EFTs) valid
only below some cutoff. Well within this regime, these
models typically satisfy ΩðϕÞ ≈ 1 and εðϕÞ ≈ 1. For this
reason, their phenomenology is more aptly framed in terms
of the dimensionless coupling strengths

βmðϕÞ ¼ MPl
d logΩ
dϕ

; βγðϕÞ ¼ MPl
d log ε
dϕ

; ð2:5Þ

where MPl ¼ ð8πGNÞ−1=2 is the reduced Planck mass.
These theories are most interesting when βm, βγ ≥ 1,
corresponding to interactions that are of gravitational
strength or greater.

B. Vertex corrections

To compute loop corrections, let us consider quantum
fluctuations χ ¼ ϕ − hϕi about the classical background
field profile hϕi in the cavity where g=2 is to be measured.
As the electron remains very close to the center of the
cavity (see Sec. III E), it suffices to take hϕi ≈ ϕ0 to be a
constant, where ϕ0 is the classical field value at the center.
We shall restrict ourselves to the one-loop level, which is

sufficient for determining the leading effect. At this order,
the only influence from VðϕÞ is a mass term for the χ field,
with mass m0 given by the second derivative

m2
0 ¼ Veff;ϕϕðϕ0Þ ð2:6Þ

evaluated at the center of the cavity.4 Linearizing Eqs. (2.2)
and (2.4), the interaction terms relevant at this order
are [24,28]

Lm ⊃ −
�
βmme

MPl

�
ψ̄ψχ −

1

4

�
βγ
MPl

�
χFμνFμν; ð2:7Þ

where we write βm ≡ βmðϕ0Þ and βγ ≡ βγðϕ0Þ for brevity.
Overall factors of Ωðϕ0Þ ≈ 1 and εðϕ0Þ ≈ 1 can be
absorbed into a renormalization of the electron mass me
and charge −e, respectively.
Three Feynman diagrams contribute to the value of g=2

at one-loop order, as shown in Fig. 1. As these diagrams
have been widely considered for many different scenarios
(see, e.g., Refs. [15,29–32]), we shall merely quote their
result here in the main text. For the benefit of the inquisitive
reader, a brief description of how these computations are
carried out is relegated to Appendix A.
The first diagram in Fig. 1(a) gives the finite contribution

δa ⊃ 2β2m

�
me

4πMPl

�
2

I1ðm0=meÞ; ð2:8Þ

whereas the remaining two diagrams are UV divergent.
After renormalization in the MS scheme, they yield

δa ⊃ 4βmβγ

�
me

4πMPl

�
2
�
log

�
μ

me

�
þ I2ðm0=meÞ

�
; ð2:9Þ

where μ is an arbitrary energy scale. These results are
expressed in terms of two integrals,

I1ðηÞ ¼
Z

1

0

dx
ð1 − xÞ2ð1þ xÞ
ð1 − xÞ2 þ xη2

; ð2:10aÞ

I2ðηÞ ¼
Z

1

0

dx
Z

1

0

dyðx − 1Þ log½x2 þ ð1 − xÞyη2�;

ð2:10bÞ

for which closed-form expressions can be found. For η ≥ 0,
we have

I1ðηÞ ¼
3

2
− η2 − η2ð3 − η2Þ log η

− ηðη2 − 4Þ1=2ðη2 − 1Þ log
�
η

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
η2

4
− 1

r �
;

ð2:11aÞ

FIG. 1. Scalar field (dashed line) contributions at one-loop
order to the magnetic moment of the electron.

3ΩðϕÞ is often also called AðϕÞ elsewhere in the literature. In
this paper, we reserve A for referring to the electromagnetic gauge
field.

4CLPs suffer from the usual hierarchy problem, since heavy
particles running in loops induce large corrections to the scalar’s
mass. Some fine tuning must be tolerated in these theories to keep
the classical predictions reliable.
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I2ðηÞ ¼
3

2
−
η2

6
þ η2

6
ðη2 − 6Þ log η

þ η

6
ðη2 − 4Þ3=2 log

�
η

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
η2

4
− 1

r �
; ð2:11bÞ

where the principal branch should be taken when η < 2.
Alternatively, a piecewise expression for I1 can also be
found in Ref. [31]. Most of the time, however, we shall find
ourselves working in the regime m0 ≪ me, such that it
suffices to set m0=me ¼ 0 in the integrals. Both then
evaluate to

I1ð0Þ ¼ I2ð0Þ ¼
3

2
:

C. Nonrenormalizability

It is worth discussing the result in Eq. (2.9) in more
detail. The scalar-photon coupling χFμνFμν is a dimension-
five operator, whose inclusion renders the theory non-
renormalizable. This plagues the evaluation of the diagrams
in Figs. 1(b) and 1(c), as their UV-divergent parts cannot be
renormalized into any of the existing parameters in the
Lagrangian we started with, such as the electron charge or
particle masses. This is not uncommon in a low-energy
EFT, and it must be understood that the scalar-photon
coupling cannot remain pointlike up to arbitrarily high
energies. This is dealt with in Ref. [32] by assuming a sharp
momentum cutoff. Here, we shall take an alternative route
compatible with dimensional regularization, although in
practice the end results are similar, since physics should not
depend on the choice of regulator.
The resolution is to recognize that under RG flow, the

heavy degrees of freedom that have integrated out to
generate the scalar-photon coupling must also generate a
bare term5

L ⊃ −a0μBψ̄SμνFμνψ ð2:12Þ

in the Lagrangian, where Sμν ¼ i
4
½γμ; γν�. The UV diver-

gences that arise at one loop can now be absorbed into
counterterms that renormalize a0. This naturally gives an
extra contribution δa ⊃ a0, which, in the absence of
knowledge of the UV completion, is a new parameter to
be constrained by experiment. For simplicity, we shall
assume the UV completion is such that a0 is much smaller
than the one-loop contributions in Eqs. (2.8) and (2.9) that
it can be safely neglected.

On the other hand, the arbitrary scale μ should in
principle be fixed by measuring g=2 at a given energy,
after which Eq. (2.9) dictates how this changes as we vary
the energy of the experiment. Unlike particle colliders,
however, there is an ambiguity in determining the scale μ of
low-energy experiments like the one considered in this
paper. Nevertheless, as μ appears only as the argument of a
logarithm, its exact value is not crucial, and in practice a
conservative estimate is to set

logðμ=meÞ ∼ 1:

III. CAVITY SHIFT

A defining feature of CLPs is their predisposition for
forming a bubblelike profile when trapped in a vacuum
cavity. This nontrivial profile will couple to the electron
confined to the center of the Penning trap, exerting a fifth
force which mildly shifts the energies of the electron’s
eigenstates. Unlike the intrinsic change described in Sec. II,
this is a systematic effect arising from considerations of
how the experiment is conducted, which can also be used to
place constraints. In this section, we describe how to
account for this cavity shift, and quantify its contribution
to the total deviation δa. Details of the experiment are
described along the way, when needed, but only at a
cursory level sufficient for our analysis. We refer the
interested reader to the original experimental papers
[11,12] or the associated review [33] for a more compre-
hensive account.

A. Vacuum cavity profile

The electron’s magnetic moment is measured using what
is called a one-electron quantum cyclotron. In this setup, a
single electron is trapped in a cylindrical vacuum cavity of
radius r0 and half-height z0. The values of all experimental
parameters, and the measured frequencies, are curated in
Table I. A uniform magnetic field

B ¼ B0ẑ ð3:1aÞ

is established within the cavity to split the energy levels
of the electron’s spin states. A quadratic electrostatic
potential6

V ¼ V0

2d2

�
r2

2
− z2

�
ð3:1bÞ

is also present to keep the electron close to the center,
where the constant

5We have written the coupling as a0μB to make manifest its
contribution to the magnetic moment. Of course, in an EFT
language, one should think of this as a0μB ∼ c5=M⋆, where c5 is a
dimensionless coupling and M⋆ is the appropriate cutoff scale.

6This expression differs by an overall sign from Ref. [33]
because we use the convention that the electron has charge −e. In
our case, both constants e and V0 are positive.
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d ¼ ðr20=4þ z20=2Þ1=2 ≈ 3.5 mm

can be thought of as a characteristic length scale of the trap.
The profile of the scalar inside the vacuum cavity is

determined by solving its field equation in the static limit,

∇2ϕ ¼ Veff;ϕ; ð3:2Þ

where the comma on the rhs denotes a derivative. It follows
from the Lagrangian in Sec. II A that the effective potential
differentiates to give

Veff;ϕ ¼ V;ϕ þ
βmðϕÞρ
MPl

þ βγðϕÞρem
MPl

: ð3:3Þ

The electromagnetic energy density ρem ¼ ðB2 −E2Þ=2
that enters on the rhs is given by Eq. (3.1) in the interior of
the cavity, while it can be assumed that it is unappreciable
in the exterior. The distribution ρ of matter is assumed to be
piecewise constant, such that

ρ ¼
�
ρcav inside the cavity ðr < r0; jzj < z0Þ;
ρwall in the surrounding walls:

While no direct measurement of the density of gas ρcav in
the cavity has been made, an estimate from a similar trap
design places an upper bound on the number density of
atoms at 100 cm−3 [12,34]. Assuming this remains true for
the current implementation, and taking the average mass of
a molecule to be that of nitrogen, we estimate

ρcav ≲ 5 × 10−18 kgm−3:

On the other hand, the trap electrodes and vacuum con-
tainer surrounding the cavity are composed primarily of
silver, quartz, titanium, and molybdenum [12], which have
typical densities

ρwall ≳ 3 × 103 kgm−3:

For the two-dimensional cylindrical geometry consid-
ered here, an analytic solution to Eq. (3.2) is not known. We
postpone a full numerical solution of this equation to
Secs. IV and V, where we specialize to chameleon and
symmetron models, respectively. Nevertheless, we can
continue to make analytic progress in this section because
the experiment is cooled to an extremely low temperature
T ∼ 100 mK, such that the electron remains very close to
the center of the cavity. (We shall be more quantitative
about this in Sec. III E.) Whatever the field profile is, it can
be Taylor expanded about the center, which we take to be
the origin, as

ϕ ≃ ϕ0 þ ϕrr
r2

2r20
þ ϕzz

z2

2z20
: ð3:4Þ

The central field value ϕ0 is a local maximum, hence we
must have ϕrr;ϕzz < 0. Reflection symmetry in all three
spatial directions ensures that the expansion contains only
even powers of r and z. Quartic and higher-order terms
have been neglected since they are suppressed by additional
powers of hr2=r20i ≪ 1 and hz2=z20i ≪ 1.

B. Electromagnetic corrections

The coupling function εðϕÞ should be thought of as a
relative permittivity of the vacuum, since it appears in the
Maxwell equations as

∂νðεFμνÞ ¼ Jμ: ð3:5Þ

The presence of a nontrivial scalar profile ϕ polarizes the
vacuum, generating bound charges and currents that go on
to source corrections to the bare electromagnetic fields. In a
previous paper [35], two of us showed that, at least in the
case of the spectral lines of hydrogenlike atoms, this effect
is large enough that it must be included. Moreover, it led to
terms that allow a constraint on βγ independently of βm.
Given the large magnetic field in the cavity, it is worth
exploring if the same is true for this experiment.
Solving Maxwell’s equations perturbatively in the

Lorenz gauge, the first-order corrections are given by

∇2δAμ ¼
βγðϕÞ
MPl

Fð0Þ
μν ∂νϕ; ð3:6Þ

where Fð0Þ
μν describes the bare (zeroth-order) electric and

magnetic fields, as given in Eq. (3.1). Restricting ourselves
to the quadratic terms in Eq. (3.4), the correction to the
electrostatic potential is

δV ¼ V0

2d2
βγðϕ0Þ
MPl

�
ϕrr

r4

16r20
− ϕzz

z4

6z20

�
; ð3:7Þ

TABLE I. Values of the experimental parameters and frequen-
cies, reproduced from Refs. [11,12]. Up to small differences, the
theoretical frequencies fωþ;ω0;ωzg are approximately related to
their experimentally measured counterparts by ωþ ≈ ω0 ≈ ω̄c and
ωz ≈ ω̄z. (See text in Secs. III D and III F for details).

Magnetic field B0 5.36 T
Electrode potential difference V0 101.4 V
Cavity radius r0 4.5 mm
Cavity height 2z0 7.7 mm

Cyclotron frequency ω̄c=2π 150 GHz
Anomaly frequency ω̄a=2π 174 MHz
Axial frequency ω̄z=2π 200 MHz
Magnetron frequency ω−=2π 133 kHz
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whereas the magnetic field receives corrections of the form

δA ¼ B0ϕrr
βγðϕ0Þ
MPl

r2

8r20
ðyx̂ − xŷÞ; ð3:8aÞ

δB ¼ −B0ϕrr
βγðϕ0Þ
MPl

r2

2r20
ẑ: ð3:8bÞ

C. Hamiltonian

The electron at the center of the Penning trap is
adequately described by nonrelativistic quantum mechan-
ics. In this limit, the modified Dirac equation in Eq. (2.2)
reduces to the Schrödinger equation with Hamiltonian
[27,36]

H ¼ ðpþ eAÞ2
2me

− eV þ gμBB · Sþ ΩðϕÞme; ð3:9Þ

where subleading terms of the form ∼OðΩp2Þ have
been discarded. Ignoring the constant mass term, this
Hamiltonian can be split into two parts,

H ¼ H0 þ δH:

The unperturbed Hamiltonian, for which the eigenstates
can be determined exactly, is

H0 ¼
π2

2me
− eV þ gμBB · S; ð3:10Þ

where the mechanical momentum is defined as
π ¼ pþ eA. It should be understood that the electromag-
netic fields appearing here take their bare values, as in
Eq. (3.1). We work in the gauge A ¼ ðB × xÞ=2. The
remaining terms, which we shall treat with linear pertur-
bation theory, are

δH ¼ me

MPl
βmδϕ − eδV þ μBð2π · δAþ gδB · SÞ: ð3:11Þ

We write δϕ to mean the quadratic terms in Eq. (3.4), have
resumed writing βm ≡ βmðϕ0Þ and βγ ≡ βγðϕ0Þ for brevity,
and have once again absorbed factors of Ωðϕ0Þ into the
electron mass me (see Sec. II B).

D. Unperturbed eigenstates

The unperturbed Hamiltonian in Eq. (3.10) can be split
into three mutually-commuting parts,

H0 ¼ Hr þHz þHs:

The radial, axial, and spin interaction parts are,
respectively,

Hr ¼
1

2me
ðπ2x þ π2yÞ −

1

4
meω

2
zr2; ð3:12aÞ

Hz ¼
1

2me
π2z þ

1

2
meω

2
zz2; ð3:12bÞ

Hs ¼
g
2
ω0Sz: ð3:12cÞ

These expressions are written in terms of the (bare)
cyclotron frequency ω0 and the axial frequency ωz,
given by

ω0 ¼ eB0=me; ωz ¼ ðeV0=med2Þ1=2: ð3:13Þ

It should already be clear at this stage that the axial
motion, governed byHz, simply corresponds to a harmonic
oscillator with frequency ωz. Making the transformation

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meωz

p ðaz þ a†zÞ; πz ¼ −i
ffiffiffiffiffiffiffiffiffiffiffi
meωz

2

r
ðaz − a†zÞ

ð3:14Þ

allows us to write

Hz ¼ ωz

�
a†zaz þ

1

2

�
ð3:15Þ

in terms of creation and annihilation operators. It turns out
that the same is true for the radial motion, which can be
diagonalized to form two decoupled oscillators. To see this,
first define two more frequencies ω� via [33]

2ω� ¼ ω0 � ðω2
0 − 2ω2

zÞ1=2; ð3:16Þ

and denote their difference by Δω ¼ ωþ − ω−. Then, by
writing

x ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meΔω

p ðac − a†c þ am − a†mÞ;

y ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2meΔω
p ðac þ a†c − am − a†mÞ;

πx ¼
ffiffiffiffiffiffiffiffiffiffi
me

2Δω

r
½ωþðac þ a†cÞ − ω−ðam þ a†mÞ�;

πy ¼ i

ffiffiffiffiffiffiffiffiffiffi
me

2Δω

r
½ωþðac − a†cÞ þ ω−ðam − a†mÞ�; ð3:17Þ

we ultimately end up with

H0 ¼ ωþ

�
a†cac þ

1

2

�
þωz

�
a†zaz þ

1

2

�
−ω−

�
a†mam þ 1

2

�

þ g
2
ω0Sz: ð3:18Þ
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An eigenstate of this system jnc; nz; nm;msi is specified by
four quantum numbers: Three of these correspond to the
occupation numbers ni ¼ ha†i aii ¼ 0; 1; 2;… of the har-
monic oscillators, whereas the fourth is the spin state
ms ¼ �1=2.
Physically, the oscillators with frequencies fωþ;ωz;ω−g

correspond to cyclotron, axial, and magnetron motion,
respectively (see Sec. II of Ref. [33] for further details).
That ωþ is slightly larger than the bare cyclotron frequency
ω0 is due to the confining effect of the electrostatic
potential, and note the minus sign appearing in front of
ω− in Eq. (3.18) makes clear that magnetron motion is
unstable and unbounded from below. Based on the param-
eters of the experiment (see Table I), these frequencies
satisfy the hierarchy

ωþ ≫ ωz ≫ ω−: ð3:19Þ

E. Axial and magnetron motion

This large hierarchy ensures that both the axial and
magnetron motions are semiclassical. When measurements
of the anomalous and cyclotron frequencies are being made,
the axial motion is in thermal equilibrium with the detection
amplifier circuit at a temperature Tz ∼ 230 mK [12]. The
average axial quantum number is thus given by

nz ∼ kBTz=ωz ∼ 24:

Similarly, the magnetron motion thermalizes with a
temperature Tm ∼ −ðω−=ωzÞTz, assuming maximum axial
sideband cooling [12,33]. This relation sets the axial and
magnetron quantum numbers equal to each other,

nm ∼ nz ∼ 24:

The negative temperature here again represents the fact that
magnetron motion is unstable. Nevertheless, its decay time
is on the order of billions of years, such that the state is
metastable on the timescale of the experiment [12,33].
These estimates justify us truncating the scalar field

profile to quadratic order in Eq. (3.4). For nc ∼ 1, the
expectation values

�
r2

r20

	
¼ 2ðnc þ nm þ 1Þ

meΔωr20
∼ 10−10; ð3:20aÞ

�
z2

z20

	
¼ nz þ 1=2

meωzz20
∼ 10−7 ð3:20bÞ

demonstrate that the spread of the electron wavefunction
indeed remains very close to the center of the cavity.

F. Frequency shifts

Three frequencies must be measured experimentally to
determine the electron’s magnetic moment. These are
defined as follows:
(1) The measured cyclotron frequency ω̄c is obtained

by exciting the electron from the state ðnc;msÞ ¼
ð0; 1=2Þ → ð1; 1=2Þ at fixed nz and nm. Taking the
difference in the expectation values hHi for these
two states, we get

ω̄c ¼ ωþ −
3

2
δrel þ δωc: ð3:21aÞ

Note that the scalar-induced shift δωc refers to the
terms arising from computing hδHi at first order.
Explicit expressions for all δωi are given together
below in Eq. (3.22). In Eq. (3.21a), we have also
added in by hand the leading relativistic correction
δrel=ωþ ≈ 10−9 relevant at the experimental preci-
sion [12,33].

(2) The measured anomaly frequency ω̄a is similarly
obtained by the excitation ðnc;msÞ ¼ ð1;−1=2Þ →
ð0; 1=2Þ. This yields

ω̄a ¼
g
2
ω0 − ωþ þ δωa: ð3:21bÞ

(3) The measured axial frequency ω̄z corresponds to the
transition jΔnzj ¼ 1, with all other quantum num-
bers fixed. This yields

ω̄z ¼ ωz þ δωz: ð3:21cÞ
While the result does not change significantly, for
definiteness we define ω̄z as being the average
energy for the two transitions nz → nz � 1.

The three scalar-induced shifts are

δωc ¼
ϕrr

MPlr20

�
βm
Δω

−
βγω0

2meΔω

�
g
2
þ ð2nm þ 3Þ ωþ

Δω

�
þ ðnm þ 1Þ βγω

2
z

2meΔω2
− ð2nm þ 1Þ βγω0ω−

2meΔω2

�
; ð3:22aÞ

δωa ¼ −
ϕrr

MPlr20

�
βm
Δω

þ ð2nm þ 3Þ βγω0

2meΔω

�
g
2
−
ωþ
Δω

�
þ ðnm þ 1Þ βγω

2
z

2meΔω2
− ð2nm þ 1Þ βγω0ω−

2meΔω2

�
; ð3:22bÞ

δωz ¼
ϕzz

MPlz20

�
βm
2ωz

− ð2nz þ 1Þ βγ
8me

�
: ð3:22cÞ
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At the moment, Eqs. (3.21) and (3.22) form a set of three
simultaneous equations that relate g=2 to the measured
frequencies ω̄i ¼ ðω̄c; ω̄a; ω̄zÞ and the theoretical parame-
ters ωi ¼ ðω0;ωz;ωþ;ω−Þ. We infer the value of the
magnetic moment by eliminating all instances of ωi to
obtain an expression for g=2 that depends only on ω̄i. This
is necessary since ω̄i are the only quantities measured to a
high enough precision. To do so requires two more
independent equations. These are provided by the defini-
tions of ω� in Eq. (3.16), which can be rearranged to read

ω0 ¼ ωþ þ ω−; ω− ¼ ω2
z=ð2ω0Þ: ð3:23Þ

Note that these relations are exact for an ideal Penning trap,
but are also approximately true in the presence of small
imperfections of a real trap due to the hierarchy of
Eq. (3.19) and an invariance theorem [37].
This set of five simultaneous equations will yield an

approximate solution of the form

ðg=2Þexp ¼ 1þ aexp þ δacav;

where the zeroth-order term aexp is independent of the CLP,
while the scalar-induced effects are encapsulated in the
first-order correction δacav. Owing to the highly nonlinear
dependence of Eq. (3.22) on ωi, the desired result is most
easily obtained in two stages. First, we solve this set of
simultaneous equations at zeroth order by ignoring the
scalar-induced shifts δωi. This is easy enough and returns
ðg=2Þexp ¼ 1þ aexp, with aexp given unsurprisingly by
Eq. (1.1) as before.
We then reintroduce the frequency shifts δωi by per-

turbing aexp to first order to obtain the ‘cavity shift’7

δacav ¼ −
X
i

∂aexp
∂ω̄i

δωi: ð3:24Þ

The shifts δωi that appear on the rhs are functions of ωi and
g=2, but can now be recast in terms of ω̄i by using the
zeroth-order relations in Eqs. (1.1), (3.21), and (3.23) once
more. Throughout both stages, judicious use of the hier-
archy in Eq. (3.19) was made to keep only the terms
relevant at the level of the experimental precision. The end
result is

δacav ¼
βm

MPlω̄
2
c

�
ϕrr

r20
þ ϕzz

2z20

�

−
βγ

MPlω̄
2
c

�
ω̄a

2me

ϕrr

r20
þ 49ω̄z

8me

ϕzz

z20

�
: ð3:25Þ

Note that the coefficient of ϕzz in the second line
contains a factor of 2nz þ 1 ¼ 49. Notice also that the
second line, arising from the classical vacuum polarization
effect due to the photon coupling (Sec. III B), is strongly
suppressed by factors of

ω̄a=me ∼ ω̄z=me ∼ 10−12:

As a consequence, this effect is unable to place any
meaningful constraint on the photon coupling. While we
initially imagined that the large magnetic field in the cavity
would be helpful for such a purpose, on the contrary, it
turns out to offer little advantage because of the particular
combination of frequencies that have to be measured. The
correction δA couples to the orbital angular momentum
while δB couples to the spin in the Hamiltonian [see
Eq. (3.11)], and the two contributions approximately cancel
out when computing δacav. The leading effect that survives
is due to the correction δV to the electrostatic potential.
This is much smaller, since the ratio of the electric to
magnetic energy densities is

E2

B2
∼

V2
0

B2
0d

2
∼ 10−10: ð3:26Þ

Moving forward, we shall neglect any effect of the
photon coupling on the cavity shift. Fortuitously, the
combination of second derivatives in the first line of
Eq. (3.25) is exactly the Laplacian evaluated at the origin.
Use of Eq. (3.2) allows us to rewrite this in terms of Veff;ϕ,
such that

δacav ¼
βmðϕ0ÞVeff;ϕðϕ0Þ

2MPlω̄
2
c

: ð3:27Þ

This effect contributes to the total deviation as δa ⊃ −δacav,
where the minus sign can be traced back to the relative sign
between aSM and aexp in Eq. (1.3).

IV. CHAMELEON CONSTRAINTS

We have seen so far that a CLP generates additional
quantum corrections and an experimental cavity shift that
together contribute to a total deviation δa. This must be
constrained according to Eq. (1.4) to respect the agreement
between the Standard Model prediction and the experi-
mental measurement of the electron’s magnetic moment.
Individual contributions to δa are given in Eqs. (2.8), (2.9),
and (3.27). In these equations, the calculations were carried
out in complete generality, and the results are expressed in
terms of the coupling strengths βmðϕ0Þ and βγðϕ0Þ, and the
first derivative of the effective potential Veff;ϕðϕ0Þ.
Crucially, all three quantities depend only on the choice
of model and the central field value ϕ0. To complete the
calculation and determine the constraints on parameter

7The minus sign is crucial, and reflects the fact that ωi are still
the parameters to be eliminated. It can most easily be traced back
to seeing that Eq. (3.21) can be rearranged such that their lhs’s
read ω̄i − δωi.
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space, we must simply specify the former and determine the
latter. We do so for the chameleon in this section, and for
the symmetron in the next.
The prototypical chameleon model assumes an inverse

power-law potential8 [7,39,40]

VðϕÞ ¼ Λ4þn

ϕn ðn > 0Þ ð4:1Þ

and coupling functions of the form

ΩðϕÞ ¼ exp
�

ϕ

Mc

�
; εðϕÞ ¼ exp

�
ϕ

Mγ

�
: ð4:2Þ

With these definitions, the dimensionless coupling
strengths

βm ¼ MPl

Mc
; βγ ¼

MPl

Mγ
ð4:3Þ

are independent of the value of the field. Putting these
together, the effective potential differentiates to

Veff;ϕ ¼ −
nΛ4þn

ϕnþ1
þ
�

ρ

Mc
þ ρem

Mγ

�
: ð4:4Þ

While, in principle, all of parameter space is open to
exploration, focus has primarily been devoted to models in
which Λ is chosen to be near the dark energy scale,
Λ ¼ 2.4 meV. This choice makes the chameleon cosmo-
logically relevant, if we view the potential in Eq. (4.1) as
just the leading ϕ-dependent term in an expansion

VðϕÞ ¼ Λ4fðΛn=ϕnÞ ≃ Λ4 þ Λ4þn

ϕn ; ð4:5Þ

assumed to arise from nonperturbative effects [41]. The
constant piece Λ4 has no effect on laboratory scales, but is
an alternative to ΛCDM for driving the accelerated expan-
sion of the Universe. (See Refs. [41,42] for more on the
cosmology of the chameleon.)

A. Analytic estimates

As stated in Sec. III A, it is difficult to solve Eq. (3.2)—
either exactly or approximately—for the chameleon profile
in the interior of the Penning trap. This is because the cavity
radius and height are of the same size, so the problem is
strictly two-dimensional. However, as we are interested
only in the central field value ϕ0, it turns out that analyzing
an analogous one-dimensional cavity suffices to capture the

most salient features of the solution. We discuss this one-
dimensional “toy model” first, before turning to a numeri-
cal solution of the cylindrical geometry proper in Sec. IV B.
The toy model in question is the following: Consider a

plane-parallel cavity in the region z ∈ ½−l; l� surrounded by
walls on either side extending to infinity. The density of
matter is assumed to be piecewise constant, such that

ρ ¼
�
ρcav z ∈ ½−l; l�;
ρwall otherwise:

We shall neglect the electric field in the cavity, as its energy
density is much smaller than that of the magnetic field; see
Eq. (3.26). In doing so, the electromagnetic energy density
is also piecewise constant,

ρem ≃
�
B2
0=2 z ∈ ½−l; l�;

0 otherwise:

In this setup, Eq. (3.2) then reduces to

d2ϕ
dz2

¼ Veff;ϕ: ð4:6Þ

An exact solution to this equation is known [43–45], but
only for n ∈ f1; 2g and when the interior of the cavity is
pure vacuum. This is not general enough for our purposes.
Instead, we use a standard technique to approximate the
solution by solving linearized versions of Eq. (4.6) inside
and outside the cavity, and imposing matching conditions at
the adjoining boundaries [8,10,46,47]. The linearized field
equations are

d2ϕ
dz2

≃
�
m2

0ðϕ − ϕ0Þ þ V 0
0 jzj ≤ l;

m2
∞ðϕ − ϕ∞Þ jzj > l:

ð4:7Þ

In the interior of the cavity, we have expanded about the as-
of-yet unknown central field valueϕ0. The effectivemassm0

was defined previously in Eq. (2.6) as the second derivative
m2

0 ¼ Veff;ϕϕðϕ0Þ evaluated at the center. The constant term
V 0
0 ≔ Veff;ϕðϕ0Þ. Deep inside the walls, the chameleon will

asymptote to the field value ϕ∞ which minimizes the local
effective potential, Veff;ϕðϕ∞; ρ ¼ ρwallÞ ¼ 0. Solving this
equation yields

ϕ∞ ¼
�
nΛ4þnMc

ρwall

�
1=ð1þnÞ

: ð4:8Þ

We have thus expanded the field equation in the walls about
this point, with a massm2

∞ ¼ Veff;ϕϕðϕ∞Þ similarly defined.
Solving these equations brings about four integration

constants, which are determined uniquely by the boundary
conditions. Two of them are

8Note that the chameleon mechanism can also be realized with
positive power-law potentials, VðϕÞ ∝ ϕ2s with integer values of
s ≥ 2 [38], although we shall not consider such models in this
work.
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dϕ
dz






z¼0

¼ 0; ϕðz → �∞Þ ¼ ϕ∞; ð4:9Þ

while the remaining two come from imposing continuity of
ϕðzÞ and its first derivative at jzj ¼ l. With these consid-
erations, the solution in the cavity (jzj ≤ l) is

ϕðzÞ ¼ ϕ0 −
V 0
0

m2
0

−
ðϕ0 − ϕ∞ − V 0

0=m
2
0Þ coshðm0zÞ

coshðm0lÞ þ ðm0=m∞Þ sinhðm0lÞ
;

ð4:10aÞ

whereas the solution in the walls (jzj > l) is

ϕðzÞ ¼ ϕ∞ þ ðϕ0 − ϕ∞ − V 0
0=m

2
0Þe−m∞ðjzj−lÞ

1þ ðm∞=m0Þ cothðm0lÞ
: ð4:10bÞ

An implicit equation for the central field value ϕ0 is
obtained by demanding the solution in Eq. (4.10a) satisfy
the self-consistency condition

ϕðz ¼ 0Þ ¼ ϕ0: ð4:11Þ

Two approximations can be made to simplify this result.
(Their implications and validity are discussed in the next
two subsections.) First, let us assume that once in the walls,
the chameleon quickly reaches its limiting value ϕ∞. By
inspecting Eq. (4.10b), this will be true if m∞ ≫ m0.
Second, let us also assume that the interior of the cavity
is pure vacuum, such that V 0

0 ≃ −nΛ4þn=ϕnþ1
0 . When both

these assumptions hold, Eq. (4.11) simplifies to

coshðm0lÞ ¼ nþ 2: ð4:12Þ

This result admits an intuitive physical interpretation: In
a vacuum cavity, the chameleon adjusts itself until its local
Compton wavelength m−1

0 is on the order of the size of the
cavity l [8]. This feature appears to be generic. A similar
calculation can be found in Ref. [48] for the case of an
infinitely-long cylindrical cavity. The same result was
obtained, except with the hyperbolic cosine replaced by
the modified Bessel function of the first kind.
We expect this result to extend to higher dimensions also,

although now the function appropriate to the geometry is
not known. To proceed, we first note that Eq. (4.12) can be
approximated by

m2
0l

2 ≃ 17.4
nþ 1.05
nþ 10.5

ð4:13Þ

for n of order unity, where the rhs is the [1=1]-order
Padé approximant of ½cosh−1ðnþ 2Þ�2 about n ¼ 1. For
arbitrary (convex) cavity shapes, we conjecture that this
generalizes to

m2
0l

2 ≃
nþ 1

nþ δ
; ð4:14Þ

where δ is a constant depending on the geometry and any
overall normalization of the rhs can been absorbed into the
constant l, which should now be thought of as a character-
istic length scale of the cavity. Rearranging this equation
and using the definition of m0, we predict that the central
field value has a dependence on Λ and n given by

ϕ0 ≃ ½nðnþ δÞΛ4þnl2�1=ð2þnÞ: ð4:15Þ

The two constants ðl; δÞ act as free parameters which
should be tuned to best fit the numerical results.

B. Numerical results

We determine the full, nonlinear chameleon profile in the
cylindrical Penning trap numerically by integrating
Eq. (3.2) through successive under-relaxation using the
Gauss-Seidel scheme [49] for 12 values of n ∈ ð0; 13Þ with
Λ ¼ 2.4 meV. Our code has been previously used to study
similar problems in Ref. [50], where more details on the
method can be found. The dependence of ϕ0 on n is shown
in Fig. 2, alongside the best-fitting analytic approximation,
given in Eq. (4.15). The values of the best-fitting param-
eters are9

l ¼ 1.40 mm; δ ¼ 2.78:

For illustrative purposes, we also present the full chame-
leon profile for n ¼ 1 in Fig. 3. The profiles for the
remaining values of n are qualitatively similar.

FIG. 2. Best-fitting analytic approximation (dashed line) to the
central field value ϕ0 of the chameleon in the cylindrical vacuum
cavity for different values of n with Λ ¼ 2.4 meV, compared
with the numerical results (black dots). The lower plot displays
the percentage difference between the numerical and analytic
results: All points agree to less than one percent.

9These values, and analogous ones in Sec. V, were determined
using the native NonlinearModelFit routine inMathematica.
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Our approach is tractable only under two simplifying
assumptions—the same as were made in the preceding
subsection. We now give them names and discuss their
implications:
(1) Zero-skin-depth approximation: We assume that the

chameleon approaches its limiting value ϕ∞ rapidly
once inside the walls, such that we can approximate
ϕ ≈ ϕ∞ ≈ 0 at the boundary of the cavity. This is
exactly true in the limit ρwall → ∞, but will hold in
practice provided

m2
0 ≪ m2

∞: ð4:16Þ
This approximation is essential, because in reality
the walls of the cavity do not extend to infinity. By
assuming that the chameleon quickly reaches ϕ∞,
we are assured that it has effectively decoupled itself
from everything else happening beyond the walls, so
that it is safe to neglect the complicated configura-
tion of apparatuses surrounding the cavity.

(2) Perfect-vacuum approximation: We also assume that
the interior of the cavity is a perfect vacuum. This is
formally the limit ρcav, ρem → 0, but will hold in
practice provided

ρcav
Mc

þ ρem
Mγ

≪
nΛ4þn

ϕnþ1
0

: ð4:17Þ

This approximation is computationally convenient
because the chameleon field equation reduces to

∇2ϕ ¼ −
nΛ4þn

ϕnþ1
ð4:18Þ

in this limit. It is obvious that the central field valueϕ0

can then only depend on Λ and n. More importantly,
this equation admits the scaling symmetry

Λ → fΛ; ϕ → fð4þnÞ=ð2þnÞϕ; ð4:19Þ

hence it suffices to perform the numerical integration
for just one value of Λ; all other solutions are then
accessible by rescaling.

C. Constraints

The chameleon model contains four free parameters
ðn;Λ;Mc;MγÞ which we wish to constrain. In terms of
these parameters, the total deviation δa takes the form

δa ¼ 1

2Mcω̄
2
c

nΛ4þn

ϕnþ1
0

þ 3

�
me

4πMc

�
2

þ 10

McMγ

�
me

4π

�
2

;

ð4:20Þ

where the first term is due to the cavity shift, while the
remaining two arise from the quantum corrections.
The cavity shift term exhibits a strong dependence on the

central field value ϕ0, which we can predict reliably using
Eq. (4.15) only when both the zero-skin-depth (ZSD) and
perfect-vacuum (PV) approximations are valid. As the limit
ρ → 0 is equivalent to taking Mc, Mγ → ∞, these approx-
imations are easily satisfied in some regions of parameter
space, but break down in others. (The boundary at which
this happens is estimated in Appendix B.) For easy
reference, we shall refer to the region where both the
ZSD and PV approximations hold as the numerically
accessible region (NAR). Outside this NAR, we no longer
have a good sense for how ϕ0 behaves, and consequently
cannot determine constraints arising from the cavity shift.
In contrast, the quantum correction terms extend well
beyond the NAR, since this effect has virtually no depend-
ence on ϕ0 as long as m0 ≪ me. (The boundary at which
this approximation breaks down is also discussed in
Appendix B.) Regions of parameter space excluded at
the 95% confidence level by the cavity shift and quantum
corrections are shown, separately, in Fig. 4.
For n ¼ 1 and Λ ¼ 2.4 meV, the chameleon field profile

near the center is sufficiently flat that the cavity shift has no
impact within the NAR. The constraints in Fig. 4(a) are thus
set entirely by the quantum corrections. Note that the effect
of the photon coupling only becomes noticeable for
log10ðMγ=MPlÞ ≲ −16, although couplings in the region
≲ − 15.4 are already ruled out from considering collider
experiments [28]. We therefore find that the electron’s
magnetic moment places no meaningful constraint on the
photon coupling scale Mγ . This statement is true for all
values of Λ and n, since the quantum corrections are
independent of these parameters, at least at leading one-
loop order.

FIG. 3. Chameleon profile in the cylindrical vacuum cavity for
n ¼ 1 and Λ ¼ 2.4 meV. The field value along the innermost
contour is 90% of the value at the origin. Moving outwards,
successive contours are 80%, 70%, etc. of the central field value.
The field reaches 10% near the boundary of the cavity, before
quickly plummeting to ϕ ≈ 0 once inside the walls.
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Focusing on the matter coupling scale Mc now, the
quantum corrections provide a universal lower bound

log10ðMc=MPlÞ≳ −16.7

independent of Λ and n, as shown in Fig. 4(b). This
is a weak constraint, stemming from the small ratio
ðme=McÞ2 ≪ 1 that sets the scale of the quantum correc-
tions. Other experiments do much better. Most notably, a
different precision QED test—measurement of the 1S–2S
transition in hydrogen—gives a slightly better lower bound
log10ðMc=MPlÞ≳ −14 [35,36]. The best lower bound to

date, however, comes from atom interferometry [50–55].
Depending on the value of n, the lower bound is between
−4 to just under −2.5.
Moving away from the dark energy scale, increasing Λ

drives the chameleon to climb to a larger central field value.
When this happens, the cavity shift dominates until Λ
becomes too large, at which point we impinge on the
boundary of the NAR. The end result is a triangular-shaped
region excluded by this effect, as shown in Fig. 4(c). For
n ¼ 1, the lower bound on Mc extends all the way out to
log10ðMc=MPlÞ ¼ −10whenΛ ≈ 300 eV. The shape of the
excluded region is qualitatively similar for other values of
n, as shown in Fig. 5.

FIG. 4. Constraints on chameleon models due to the electron magnetic moment. The shaded regions are excluded at the
95% confidence level. The panels correspond to the following slices in parameter space: (a) n¼ 1, Λ¼ 2.4meV; (b) Λ¼ 2.4meV,
βγ ≔ MPl=Mγ ¼ 0; (c) n ¼ 1, βγ ¼ 0. Numerical limitations mean that the cavity shift can be computed reliably only when both the
zero-skin-depth and perfect-vacuum approximations are valid (see Sec. IV B for details). This corresponds to the region above the solid
line, and below or to the left of the dotted line. Inside this region, the constraints arising from the cavity shift are shaded in gray. Outside
this region, only the constraints from the quantum corrections (pink), which are still reliable, are shown.

FIG. 5. Constraints on the chameleon due to the electron
magnetic moment in the Mc–Λ plane. Parameters in the shaded
region are excluded for the n ¼ 1 chameleon at the 95% con-
fidence level. The regions to the left of the solid, dotted, and
dashed lines rule out parameters for other illustrative values of n.

FIG. 6. The constraining power of the electron magnetic
moment for the n ¼ 1 chameleon, compared with a selection
of other experiments [36,55–59]. See Ref. [4] for details on all
existing constraints.
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A comparison of our constraints with those from a
selection of other experiments is shown in Fig. 6 for the
n ¼ 1 chameleon. Although we do not cover any new
region of parameter space not already ruled out by other
experiments, it is worth remarking that our results represent
the tightest constraints yet achievable by an experiment not
originally designed to search for fifth forces.

V. SYMMETRON CONSTRAINTS

The symmetron model is characterized by a Higgs-like,
double-well potential

VðϕÞ ¼ −
1

2
μ2ϕ2 þ λ

4
ϕ4 ð5:1Þ

and coupling functions

ΩðϕÞ ¼ 1þ ϕ2

2M2
s
þO

�
ϕ4

M4
s

�
;

εðϕÞ ¼ 1þ ϕ2

2M2
γ
þO

�
ϕ4

M4
γ

�
ð5:2Þ

consistent with the field’s ϕ → −ϕ symmetry. Differen-
tiation gives the field-dependent dimensionless coupling
strengths

βmðϕÞ ¼ MPl
ϕ

M2
s
; βγðϕÞ ¼ MPl

ϕ

M2
γ

ð5:3Þ

to leading order. Taken altogether, these yield an effective
potential

VeffðϕÞ ¼
1

2
μ2
�

ρ

μ2M2
s
þ ρem
μ2M2

γ
− 1

�
ϕ2 þ λ

4
ϕ4: ð5:4Þ

A. Analytic estimates

As we did for the chameleon, it is helpful to first consider
an analogous plane-parallel cavity whose solution will
elucidate the relevant physics. Unlike the chameleon, this
simple toy model admits an exact solution even in the
presence of matter, provided only that it is distributed in a
piecewise-constant fashion. The only spatially-varying
source of matter is the energy density in the electric field,
which for all intents and purposes is small enough to be
neglected [recall Eq. (3.26)]. Doing so, the symmetron’s
field equation can be integrated up once to give

�
dϕ
dz

�
2

¼ μ2

2

�
ρ

μ2M2
s
þ ρem
μ2M2

γ
− 1

�
ϕ2 þ λ

4
ϕ4 þ const:;

ð5:5Þ

with the constant determined by boundary conditions.

Inside the cavity, let us define an effective mass scale

μ20 ¼ μ2
�
1 −

ρcav
μ2M2

s
−

ρem
μ2M2

γ

�
; ð5:6Þ

which must satisfy μ20 > 0 as a necessary condition if the
symmetron is to break its Z2 symmetry. When this is the
case, we expect the field to climb to an as-of-yet unknown
value ϕ0 in the center, assumed to be a local maximum
satisfying

dϕ
dz






z¼0

¼ 0: ð5:7Þ

Indeed, if the cavity were infinitely large, the field would
have sufficient room to minimize its effective potential,
such that ϕ0 → �μ0=

ffiffiffi
λ

p
. As this gives the largest possible

value for jϕ0j, it is convenient to define a dimensionless
scalar field

φ ¼ ϕ

μ0=
ffiffiffi
λ

p ð5:8Þ

with range φ ∈ ½−1; 1�. With this definition, the symmetron
field equation inside the cavity (jzj ≤ l) becomes

1

μ20

�
dφ
dz

�
2

¼ −ðφ2 − φ2
0Þ þ

1

2
ðφ4 − φ4

0Þ; ð5:9Þ

which crucially depends only on the parameter μ0. This
first-order differential equation can be integrated to
yield [60]

−μ0z
φ0ffiffiffiffiffiffiffi
2v2

p ¼ F

�
sin−1

�
φðzÞ
φ0

�
; v

�
− KðvÞ; ð5:10Þ

where we have chosen the positive branch φðzÞ > 0 with-
out loss of generality, and have defined v2 ¼ φ2

0=ð2 − φ2
0Þ.

This result is expressed in terms of the elliptic integrals of
the first kind

Fðu; vÞ ¼
Z

u

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 sin2 θ

p ; ð5:11Þ

and KðvÞ ¼ Fðπ=2; vÞ. From the definitions of the Jacobi
elliptic functions

snðu; vÞ ¼ sinF−1ðu; vÞ;
cnðu; vÞ ¼ cosF−1ðu; vÞ;
dnðu; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sn2ðu; vÞ

q
; ð5:12Þ

this can be inverted to give
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φðzÞ ¼ φ0sn

�
−μ0z

φ0ffiffiffiffiffiffiffi
2v2

p þ KðvÞ; v
�
: ð5:13Þ

As a final step, note that the elliptic functions satisfy the
identity

snðuþ KðvÞ; vÞ ¼ cnðu; vÞ
dnðu; vÞ ≕ cdðu; vÞ; ð5:14Þ

where the function cd is even in its first argument. Hence,
the exact solution for the symmetron field in the cavity is
(see also Ref. [61])

φðzÞ ¼ φ0cd

�
μ0z

φ0ffiffiffiffiffiffiffi
2v2

p ; v

�
: ð5:15Þ

Similarly, the solution in the walls (jzj ≥ l) is governed
by the equation

1

μ20

�
dφ
dz

�
2

¼
�
μ∞
μ0

�
2

φ2 þ 1

2
φ4; ð5:16Þ

made to satisfy the boundary condition φðjzj → ∞Þ ¼ 0.
The corresponding effective mass scale μ∞ is defined by

μ2∞ ¼ μ2
�
ρwall
μ2M2

s
− 1

�
; ð5:17Þ

which must be positive to restore the Z2 symmetry in this
region.
If we were so inclined, Eq. (5.16) can then be integrated

to give the exact solution in the walls, with the integration
constant determined by requiring continuity of φ at the
boundary jzj ¼ l. A self-consistency equation for φ0 is then
obtained by also demanding continuity of the first deriv-
atives. However, as we are here only interested in the
solution within the cavity, this process can be sidestepped
in favor of a shortcut. An equivalent self-consistency
condition can be obtained by substituting Eq. (5.15) into

Eq. (5.16) evaluated at jzj ¼ l. This yields an implicit
equation for the central field value φ0.
Said again in different words, we can solve for φ0 by

searching for the root of the function

Bðφ0;μ0;μ∞;lÞ¼
�
μ∞
μ0

�
2

φ2þφ4

2
−
1

μ20

�
dφ
dz

�
2





z¼l

; ð5:18Þ

where φðzÞ on the rhs is given by Eq. (5.15). The function
Bðφ0Þ is drawn for two illustrative values of μ0 in Fig. 7(a).
Above a certain threshold value of μ0, the function begins
to admit multiple roots. Each root is a valid solution of the
field equation, with smaller values of φ0 corresponding to
field configurations with an increasing number of nodes, as
seen in Fig. 7(b). For an intuitive picture, we should view a
symmetron bubble as a solitonic object of a certain
minimum width specified by μ0. If the length scale set
by this mass matches the size of the cavity, μ0l ∼Oð1Þ,
then a single bubble can be contained within the walls. For
larger values of μ0, the characteristic size of each solitonic
packet decreases, and thus it becomes possible to fit
multiple nodes within the same available space. In fact,
when this is the case, we can relax the boundary condition
in Eq. (5.7) to also allow for odd solutions in the cavity.
Such solutions are discussed further in Ref. [61].
In an experimental setup, however, it is natural to expect

that the symmetron will occupy the state of lowest free
energy, corresponding to the solution with only one
antinode. This is given by the largest root φ0; which is
shown as a function of μ0 in Fig. 7(c). This curve is also
easy to understand intuitively: For very small values of μ0,
the symmetron has too large a Compton wavelength and is
unable to resolve the size of the cavity, thus remains in its
symmetry-unbroken phase, φ0 ¼ 0. At a threshold value
of μ0l ∼ 1.6, the field is finally able to support a bubble
that can fit within the cavity, and the curve starts to grow.
For larger values of μ0, the curve starts its plateau at
φ0 ≈ 1 when the Compton wavelength is sufficiently small
that the field almost immediately reaches the minimum of

FIG. 7. (a) The central field value φ0 of the symmetron in a plane-parallel cavity is determined by finding the root(s) of the function
Bðφ0Þ, shown for two illustrative values μ0 ¼ 0.1 meV (dashed line) and 0.45 meV (solid line). (b) Symmetron profiles corresponding
to the roots φ0 ≈ f0.26; 0.90; 1.00g for μ0 ¼ 0.45 meV are shown as dashed, dotted, and solid lines, respectively. (c) The largest root φ0

as a function of the mass scale μ0. In all three panels, illustrative values μ∞ ¼ 1 eV and l ¼ 3.5 mm are used.
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its effective potential once inside the cavity. This qualita-
tive picture holds also when we generalize to the two-
dimensional cylindrical case in the next subsection.

B. Numerical results

The same numerical scheme as discussed in Sec. IV B is
used to solve for the symmetron profile inside the cylin-
drical vacuum cavity. As we saw earlier, for this model the
presence of piecewise-constant distributions of matter can
be accounted for exactly by defining effective mass scales
μ0 and μ∞, hence only the zero-skin-depth (ZSD) approxi-
mation is needed. To recap, this assumes that the symme-
tron rapidly reaches its limiting value ϕ ¼ 0 once inside the
walls, such that the field is essentially decoupled from its
greater surroundings. Formally this is the limit ρwall or
μ∞ → ∞, but will hold in practice provided

μ20 ≪ μ2∞: ð5:19Þ

Wehave performed the numerical integration for 15values
of μ0 in the range log10ðμ0=eVÞ ∈ ð−4;−3Þ, with the results
of the dimensionless central field value φ0 shown in Fig. 8.
The curve has a similar shape to what we found in the one-
dimensional case, beginning its rise above zero at μ0 ∼
10−3.88 eV and reaching the plateau by μ0 ∼ 10−3.39 eV. For
illustrative purposes, the full symmetron profile for the
intermediate value μ0 ¼ 10−3.82 eV is shown in Fig. 9.
With some educated guessing, we have found that the

curve in Fig. 8 can be well described by an empirical
formula. Our starting point is the function Bðφ0Þ in
Eq. (5.18), the roots of which give the correct value of

φ0 in the one-dimensional case. Imposing the ZSD
approximation, the limit μ∞ → ∞ reduces this to the
problem of finding the root of

φðz ¼ lÞ ¼ φ0cd

�
μ0l

φ0ffiffiffiffiffiffiffi
2v2

p ; v

�
¼ 0: ð5:20Þ

Finally, we introduce an ad hoc parameter δ that deforms
the solution away from the plane-parallel geometry, such
that the new implicit equation for φ0 is

φ0cd
�
ðμ0lÞ1þδ φ0ffiffiffiffiffiffiffi

2v2
p ; v

�
¼ 0: ð5:21Þ

This is given in terms of two free parameters ðl; δÞ which
we should fit to the numerical data. Roughly speaking, the
role of the characteristic length scale l is to fix the point at
which the curve starts to rise above zero. The deformation
parameter δ then tells us how quickly the curve reaches its
plateau. The best-fitting parameters for the cylindrical
Penning trap considered here are

l ¼ 1.96 mm; δ ¼ 0.70:

C. Constraints

The symmetron model is specified by four parameters
ðμ; λ;Ms;MγÞ which we now constrain. In terms of these
parameters, the total deviation δa takes the form

δa ¼ μ40φ
2
0ð1 − φ2

0Þ
2ω̄2

cM2
sλ

þ
�
me

4π

�
2 2μ20φ

2
0

M4
sλ

I1ðm0=meÞ

þ
�
me

4π

�
2 4μ20φ

2
0

M2
sM2

γ λ
½1þ I2ðm0=meÞ�; ð5:22Þ

FIG. 8. Best-fitting analytic approximation (dashed line) to the
dimensionless central field value φ0 of the symmetron in the
cylindrical vacuum cavity for different values of μ0, compared
with the numerical results (black dots). The lower plot displays
the percentage difference between the numerical and analytic
results: All points agree to less than one percent, except the first
three near μ0 ¼ 10−3.9 eV where φ0 differs from zero only in the
eighth (or higher) decimal place. Any discrepancy here is of no
concern, since the numerical accuracy is unreliable for such small
values of the field.

FIG. 9. Symmetron profile in the cylindrical vacuum cavity for
μ0 ¼ 10−3.82 eV. The field value along the innermost contour is
90% of the value at the origin. Moving outwards, successive
contours are 80%, 70%, etc. of the central field value. The field
reaches ϕ ¼ 0 once at the walls.
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where the first term is due to the cavity shift, while the
remaining two arise from the quantum corrections. Unlike
the chameleon which always satisfies m0=me ≪ 1, the
effective symmetron mass in the cavity

m2
0 ¼ Veff;ϕϕðϕ0Þ ¼ μ20ð3φ2

0 − 1Þ ð5:23Þ

can be made arbitrarily large by increasing the value of μ.
For this reason, we have retained the integrals I1 and I2
in Eq. (5.22).

1. Matter coupling only

It is instructive to first neglect the photon coupling and
focus on the subspace ðμ; λ;MsÞ. Regions excluded at the
95% confidence level are shown in Fig. 10. Notice that the
cavity shift term in Eq. (5.22) is proportional to φ2

0ð1 − φ2
0Þ,

thus switches off when φ0 ¼ 0 or φ0 ¼ 1. In terms
of the symmetron mass, this means that the cavity shift
exerts an appreciable force only in the small range μ ∈
½10−3.88; 10−3.39� eV (see Fig. 8).10 In Fig. 10(a), constraints
are shown for the illustrative value μ ¼ 10−3.82 eV ¼
0.15 meV, which we have specifically chosen because it

maximizes the quantity φ2
0ð1 − φ2

0Þ, and thus (approxi-
mately) maximizes the size of the cavity shift.
This sensitive dependence on μ is the reason why other

laboratory experiments hitherto have left the symmetron
parameter space mostly unexplored. Atom interferometry
experiments [55,62], for instance, place meaningful bounds
only in the range μ ∈ ½10−5; 10−4� eV, whereas an analysis
of torsion pendula [60] has so far only considered the range
½10−4; 10−2� eV. This does not present an obstacle for the
electron magnetic moment experiment, however, because
in addition to the cavity shift, there exists also quantum
correction terms that survive up to much larger values of μ,
which are primarily responsible for the constraints in
Figs. 10(b) and 10(c).
Having said that, not all of parameter space is accessible

to this experiment. As always with the symmetron, the
parameter space is unconstrained when spontaneous sym-
metry breaking fails to occur inside the cavity. This is the
case for all values of ðλ;Ms;MγÞ when μ < 10−3.88 eV. For
larger masses, symmetry breaking occurs only above a
minimum value of Ms, which explains the sharp cutoff at
low Ms seen in Figs. 10(a) and 10(b). At the other end, the
ZSD approximation breaks down beyond a maximum value
of Ms—shown by the right vertical dashed line—at which
point the central field value φ0 can no longer be reliably
predicted from Eq. (5.21). Since every term in Eq. (5.22)
depends strongly on φ0, constraints cannot be reliably

FIG. 10. Constraints on symmetron models due to the electron magnetic moment in the limit of a negligible photon couplingMγ → ∞.
The shaded regions are excluded at the 95% confidence level. Constraints arising from the cavity shift (gray) and quantum corrections
(blue) are shown separately for the case μ ¼ 10−3.82 eV in (a). Numerical limitations mean that these constraints can be computed
reliably only when the zero-skin-depth (ZSD) approximation is valid, which explains the sharp cutoff for large Ms, as indicated by the
vertical dashed line. Furthermore, the quantum correction terms are valid only in the weak coupling regime, corresponding to the region
sandwiched between the dotted lines. Finally, no constraints are given for sufficiently small values of λ when the EFT itself becomes
unworkable, as shown by the solid line (see text in Sec. V C 1 for more details). The combined constraints from the cavity shift and
quantum corrections are shown together as one shaded region in (b) and (c) for different values of μ. The same limits from assuming the
ZSD approximation, weak coupling, and a valid EFT apply to each shaded region. For comparison, the region ruled out by torsion
balance experiments [60] for μ ¼ 10−3 eV is also shown in (b). In (c), observe that the parameter space is unconstrained for
μ < 10−3.88 eV, which is when the symmetron remains in its symmetry-unbroken phase inside the cavity. This same effect is responsible
for the sharp cutoff at low Ms in (a) and (b).

10In most of the parameter space probed by this experiment,
the mass scales μ and μ0 are essentially equivalent, and will be
used interchangeably.
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determined to the right of this boundary. (Appendix B
describes how this boundary is estimated.)
Further limitations must be taken into account when

determining the constraints arising from the quantum
corrections. First, our perturbative approach requires a
weak self-coupling11

λ≲ 1=6: ð5:24aÞ

For the same reason, the Yukawa-like, scalar-matter
coupling must also be weak [cf. Eq. (2.7)],

βmðϕ0Þme

MPl
¼ μ20φ0meffiffiffi

λ
p

M2
s

≲ 1: ð5:24bÞ

For sufficiently small values of λ, the EFT itself becomes
unworkable. For a rough estimate of when this happens, we
shall deem it a necessary condition that the functions ΩðϕÞ
and εðϕÞ do not deviate too far from unity. Inside the cavity,
the (classical) symmetron field reaches a maximum value
of at most ϕ0 ¼ μ=

ffiffiffi
λ

p
, so our condition is satisfied

provided

μ2

2λM2
s
≲ 1;

μ2

2λM2
γ
≲ 1: ð5:24cÞ

The boundary lines demarcating the regions in parameter
space that satisfy these conditions are shown in Fig. 10(a).

To prevent an overcrowded plot, they are not drawn again
in Figs. 10(b) and 10(c), nor in the remaining figures that
follow, although it should be understood that they continue
to be in effect.
One last subtlety must be brought to light. Our calcu-

lations for the quantum corrections also fail to hold when
the symmetron becomes tachyonic at the center (m2

0 < 0).
Rather than signaling any kind of severe pathology with the
theory, this merely indicates that we can no longer neglect
the spatial variation of hϕi when computing the quantum
corrections. As such a calculation is beyond the scope of
this paper, we have simply forgone placing constraints
when this occurs. Luckily this does not affect the end
results much, and explains why the shaded region due to
the quantum corrections in Fig. 10(a) does not extend as far
to the left as the cavity shift.

2. Photon coupling

We now discuss the constraints on the symmetron when
the photon coupling Mγ is included. For an illustrative
value of μ ¼ 10−3 eV, the region in the ðλ;Ms;MγÞ sub-
space that is excluded is shown in Fig. 11. As before,
the bottom edges of each shaded region in Figs. 11(a)
and 11(b) correspond to the boundary beneath which the
weak coupling limit and, further down, the EFT itself stop
being valid. These conditions correspond to Eqs. (5.24b)
and (5.24c), respectively, and are universal to all experi-
ments.12 For this reason, the most essential information to
be gained from this experiment is encapsulated in the top

FIG. 11. Constraints on the μ ¼ 10−3 eV symmetron due to the electron magnetic moment. The regions of parameter space excluded
at the 95% confidence level are shown as two-dimensional slices for different values of (a) Mγ , (b) Ms, and (c) λ. We show constraints
only for weak couplings λ≲ 1=6 which are amenable to our perturbative approach. Other approximations are also responsible for
moulding the final shape of the shaded regions shown here. These are discussed towards the end of Sec. V C 1, and are primarily
responsible for the awkward shapes of the bottom edges.

11Recall that λ appears in the potential as VðϕÞ ⊃ λϕ4=4.
However, when computing Feynman diagrams, the combinatorial
factors are simplest if we organize the perturbative expansion in
powers of λ0, where λ0=4! ¼ λ=4. Imposing the condition λ0 ≲ 1
explains the factor of 1=6 in Eq. (5.24a).

12More precisely, Eq. (5.24b) applies only to experiments
probing the quantum nature of the symmetron for which a
perturbative calculation is unavoidable, whereas Eq. (5.24c)
applies in all cases.
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edges of the shaded regions, which give the lower bound on
λ that remains viable. Evidently, this lower bound on λ
increases for fixed ðμ;MsÞ as we decrease Mγ . This
information is most efficiently conveyed in a “top view”
plot as shown in Fig. 11(c).
To observe the dependence on the symmetron mass, top-

view plots for different values of μ are shown in Fig. 12. For
μ≲ 10−3 eV, the photon coupling has no noticeable effect,
whereas the shapes of the shaded regions are qualitatively
similar for all μ > 10−3 eV. As we increase μ, the left and
bottom edges of each slice in the Ms–Mγ plane move
further left and bottom, owing to the fact that spontaneous
symmetry breaking in the cavity can occur for smaller
values of Ms and Mγ . This continues on until about
μ ∼ 10 eV, when the opposite begins to occur and the
edges retreat towards the top-right corner of the plot. This
happens simply because Eqs. (5.24b) and (5.24c) break
down in larger and larger regions of parameter space as μ
increases. When we reach μ ∼ 108 eV, the theory becomes
completely unworkable in the range of Ms and Mγ

accessible to this experiment, such that no constraint can
be placed.
Viewed from this perspective, the shaded regions in the

Ms–Mγ plane for a given value of λ strongly resemble the
chameleon constraints in the Mc–Mγ plane of Fig. 4(a).
The effect of the photon coupling only becomes noticeable
below a certain value of Mγ, and the lower bound depends
on the specific value ofMs. This behavior can of course be
traced back to the quantum correction terms, where the
photon coupling always appears in tandem with the matter
coupling when restricted to leading one-loop order. Recall
in the case of the chameleon that we spent no effort
illustrating the weak constraints on the photon coupling any
further, since they were found to be uncompetitive with
those already placed by collider experiments [28]. The
same might be true for the symmetron, although no work
has yet been done to translate the bounds and demonstrate
this definitively. Indeed, to our knowledge, this paper
represents the first attempt at constraining the symmetron’s
coupling to photons.

FIG. 12. Constraints on the symmetron due to the electron magnetic moment for different values of μ. Shaded regions denote the
values of the parameters in theMs–Mγ plane that are excluded at the 95% confidence level for each value of λ. We show constraints only
for weak couplings λ≲ 1=6 which are amenable to our perturbative approach. In the μ ¼ 10−3.82 eV panel, the slice for the largest value
of λ does not extend as far to the left and bottom as the others. This is because the quantum correction terms responsible for this slice
suffer from a tachyonic instability near the edges, when φ0 < 1=

ffiffiffi
3

p
(see the last paragraph of Sec. V C 1 for details).
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VI. CONCLUSION

Decades of exceptional work by theorists and exper-
imentalists alike have now verified the accuracy of the
Standard Model, and QED in particular, to about one part
per trillion. Beyond achieving their original objective, we
have shown that precision tests of QED can also be used to
place meaningful constraints on the existence of chame-
leonlike particles (CLPs) that mediate screened fifth
forces. In this work, we considered the implications of
the precision measurement of the electron’s magnetic
moment, focusing on two main scalar-induced effects that
could arise.
First, the virtual exchange of CLPs generates additional

loop corrections to the QED vertex function, since the
scalars are assumed to couple to electrons and photons
with gravitational strength or greater (see Sec. II). This
leads to an increase in the intrinsic value of the magnetic
moment, which must be constrained to be less than ∼10−12
lest it ruin the remarkable agreement between experiment
and the Standard Model prediction. Second, nonlinear self-
interactions drive the scalar to form a bubblelike profile
within the cylindrical vacuum cavity of the experiment.
This scalar profile exerts an additional fifth force on the
electron confined to the Penning trap, thus perturbing its
energy eigenvalues. A systematic shift of this form can also
be used to place constraints, since the magnetic moment is
determined experimentally by measuring the transition
frequencies between energy levels (see Sec. III).
Accurate estimates of these effects require knowledge

of the value of the scalar field at the center of the cavity,
which can only be determined by fully solving the non-
linear field equation. The absence of any known closed-
form solution—either approximate or exact—for the case
of the cylindrical geometry considered here has led to a
somewhat novel, semiempirical approach. It has already
been shown that a chameleon in a vacuum cavity satisfies a
resonance condition such that its local Compton wave-
length is dynamically adjusted to match the size of the
cavity [48]. In this paper, we have shown this explicitly for
the case of a plane-parallel cavity by obtaining an approxi-
mate, one-dimensional solution. Through well-motivated
arguments, the solution to this toy model was then
deformed to describe more arbitrary convex cavity shapes.
The resulting empirical formula for the central field value is
a function of only two free parameters, which are tuned to
best fit the full numerical solutions carried out for a small
number of points in parameter space (see Sec. IV).
We found that the quantum corrections were able to

place a universal bound of log10ðMc=MPlÞ ≳ −16.7 for the
chameleon model, independent of the values of ðΛ; nÞ.
However, for values near Λ ≈ 300 eV, the cavity shift
dominates to give a much better lower bound of
log10ðMc=MPlÞ≳ −10. While this part of parameter space
is already constrained by other laboratory experiments, the
bound determined here represents the tightest constraint yet

achieved by an experiment not originally intended to search
for fifth forces.
Our results are able to break even more ground for the

symmetron (see Sec. V). Again, a deformation of the one-
dimensional solution to a plane-parallel cavity results in an
empirical formula with only two free parameters that can be
tuned to fit the numerical results with a high degree of
accuracy. With this in hand, we saw that the cavity shift
places constraints only for a small range of the symmetron
mass, μ ∈ ½10−3.88; 10−3.39� eV. This limitation is unsur-
prising, and is generic to any laboratory experiment that
probes the effect of the symmetron’s fifth force. When μ is
too small, the associated Compton wavelength is too large
such that the symmetron is unable to resolve the size of the
vacuum cavity, and thus remains in the symmetry-unbroken
phase. On the other end of the spectrum, the fifth force is
strongly Yukawa-suppressed when μ is too large, resulting
in a field profile that is essentially flat in the cavity except
near the walls.
Nonetheless, the electron magnetic moment has an

added advantage over other experiments that have hitherto
provided constraints on the symmetron. The quantum
corrections are able to yield constraints regardless of the
value of μ, provided only that the mass is large enough to
enable spontaneous symmetry breaking, and small enough
that the effective field theory remains valid. As a result, this
experiment has probed, and decisively ruled out, a large and
previously unexplored region of parameter space in the
range μ ∈ ½10−3.88; 108� eV for couplings (Ms, Mγ) around
the GeV scale.
To conclude, this work provides a clearer picture of the

space of CLP models that remain viable in this Universe,
now more than ever. Our results also suggest a new
direction for future work: While dedicated fifth-force
experiments such as atom interferometry and torsion
balances may well provide the best sensitivities in a given
mass range near the meV scale, it will be interesting to
explore other experiments that exploit the quantum nature
of the symmetron in the hopes of covering large regions of
parameter space more efficiently.
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APPENDIX A: ONE-LOOP FEYNMAN
DIAGRAMS

In this Appendix, we briefly outline the calculations that
lead to the results in Eqs. (2.8) and (2.9). The steps taken
here are all standard techniques; easily found in any
introductory Quantum Field Theory textbook. Our con-
ventions follow those of Ref. [63], except that we take the
electron to have charge −e, meaning our constant e > 0.
The electron magnetic moment is determined by com-

puting the renormalized QED vertex function Γμðp; p0Þ,
where we take p to be the momentum of the incoming
fermion, p0 to be that of the outgoing fermion, and let q ¼
p0 − p be the momentum of the ingoing photon. We have
normalized by a factor of −ie, such that the tree-level
contribution is

Γμ
tree−level ¼ γμ:

Our theory respects Lorentz invariance, Uð1Þ gauge invari-
ance, and CP-symmetry, hence the most general form of
this vertex is

Γμ ¼ F1ðq2Þγμ þ F2ðq2Þ
�
−iSμνqν

me

�
ðA1Þ

when the external fermions are on-shell. In Sec. II, recall
we defined Sμν ¼ i

4
½γμ; γν�, with the gamma matrices

satisfying fγμ; γνg ¼ −2ημν. The functionsF1;2 are typically
called the electric and magnetic form factors. The constant
electric partF1ð0Þ is a renormalization of the electron charge,
which can be set to F1ð0Þ ¼ 1 exactly in an on-shell
renormalization scheme. The constant magnetic part is
exactly the anomalous magnetic moment, F2ð0Þ ¼ a.
A scalar field, like the chameleon or symmetron,

contributes via three Feynman diagrams to this vertex at
the one-loop level, shown in Fig. 1. The first of these, in
Fig. 1(a), involves only the Yukawa-like matter coupling,
and we shall refer to this as the Yukawa-type diagram. The
remaining diagrams involve the photon coupling, and are
sometimes called Barr-Zee-type diagrams [32,64].
For brevity, we shall soon write integrals over

d-dimensional loop momenta and over Feynman parame-
ters, respectively, as

Z
l
¼

Z
ddl
ð2πÞd ;Z

½n�
¼ ðn − 1Þ!

Z
1

0

dx1…
Z

1

0

dxnδ

�X
i

xi − 1

�
:

1. Yukawa-type diagram

Standard Feynman rules dictate that the contribution of
Fig. 1(a) to the vertex function is

iΓμ
ðaÞ ¼

β2mm2
e

M2
Pl

Z
l

ð−l−p 0 þmeÞγμð−l−pþmeÞ
½ðlþp0Þ2 þm2

e�½ðlþpÞ2 þm2
e�½l2 þm2

0�
:

Using Feynman parametrization and defining a new inte-
gration variable k ¼ lþ x1pþ x2p0, this becomes

iΓμ
ðaÞ ¼

β2mm2
e

M2
Pl

Z
½3�

Z
k

Nμ
ðaÞ

ðk2 þDðaÞÞ3
; ðA2Þ

where the numerator and denominator are

Nμ
ðaÞ ¼ ð−l − p 0 þmeÞγμð−l − pþmeÞjl¼k−x1p−x2p0 ;

DðaÞ ¼ x1ð1 − x1Þp2 þ x2ð1 − x2Þp02 − 2x1x2p · p0

þ ðx1 þ x2Þm2
e þ x3m2

0: ðA3Þ

As Nμ
ðaÞ sits under an integral over all k, terms linear in k

vanish upon integration. For this same reason, terms
quadratic in k will simplify to

Nμ
ðaÞ ⊃ kγμk ¼ d − 2

2
k2γμ; ðA4Þ

where the equality holds only under the integral. The
integrand is now a function only of k2, and the loop integral
can be performed using the standard formula

Z
k

ðk2Þa
ðk2 þDÞb ¼ i

Γðb − a − d=2ÞΓðaþ d=2Þ
ð4πÞd=2ΓðbÞΓðd=2Þ D−ðb−a−d=2Þ:

ðA5Þ

The factor of i on the rhs appears from Wick rotation. The
terms in the numerator quadratic in k integrate to give a
log-divergent piece proportional to γμ. This is a contribu-
tion only to F1, and is merely a renormalization of the
electron charge. For our purposes, the terms of interest sit in
the k-independent part of Nμ

ðaÞ. Let us refer to this as

Nμ
ðaÞ ⊃ ð=Q1 þmeÞγμð=Q2 þmeÞ≕ nμðaÞ; ðA6Þ

where Q1 ¼ x1p − ð1 − x2Þp0 and Q2 ¼ x2p0 − ð1 − x1Þp.
We can simplify this further, since we only care about

Γμ on-shell. This is when it sits in an S-matrix element of
the form ūðp0ÞΓμuðpÞAμðqÞ. The external photon Aμ is
classical and off-shell, corresponding to the large magnetic
field in the cavity. Writing u≡ uðpÞ and ū0 ≡ ūðp0Þ, the
momentum eigenstates of the fermion satisfy

pu ¼ −meu; ū0p 0 ¼ −meū0: ðA7Þ
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The spin indices on u; ū0 have been suppressed as they are
not essential here.
The name of the game now is to reorder the terms in nμðaÞ

by using the anticommutation relations such that use can be
made of Eq. (A7). The end result is

nμðaÞ ¼ ½4m2
e − ð1 − x3Þ2m2

e − x1x2q2�γμ

−með1 − x3Þð1þ x3Þðp0 þ pÞμ
þme½ð2x1 − x21Þ − ð2x2 − x22Þ�ðp0 − pÞμ: ðA8Þ

The final line changes sign under the exchange x1 ↔ x2,
whereas the remainder of the integrand is unchanged.
Hence, this term vanishes upon integration over the
Feynman parameters. We then use the Gordon identity

ū0ðp0 þ pÞμu ¼ ū0ð2meγ
μ þ 2iSμνqνÞu ðA9Þ

to recast the second line into a form comparable to
Eq. (A1). As before, terms proportional to γμ contribute
only to F1, and are not interesting to us. After integration
over k with d ¼ 4, the contribution to F2 is

F2;ðaÞðq2Þ ¼ β2m

�
me

4πMPl

�
2
Z
½3�

ð1 − x3Þð1þ x3Þ
DðaÞðq2Þ=m2

e
: ðA10Þ

Setting p2 ¼ p02 ¼ −m2
e and q2 ¼ 0, the denominator DðaÞ

when on-shell takes the form

DðaÞð0Þ ¼ ð1 − x3Þ2m2
e þ x3m2

0:

Integrating over x1 and x2, and renaming x3 as just x returns
the desired result in Eq. (2.8).

2. Barr-Zee-type diagrams

We can now repeat the same steps for the remaining
diagrams. The contribution from Fig. 1(b) is

iΓμ
ðbÞ ¼

βmβγme

M2
Pl

Z
l

ðlþmeÞγν½ðlþpÞμqν − q · ðlþpÞημν�
½l2 þm2

e�½ðlþp0Þ2 þm2
0�ðlþpÞ2 :

Defining k exactly as before, this can be rewritten as

iΓμ
ðbÞ ¼

βmβγme

M2
Pl

Z
½3�

Z
k

Nμ
ðbÞ

ðk2 þDðbÞÞ3
: ðA11Þ

In terms of a constant matrix Δμν
αβ ¼ δμαδνβ − ηαβη

μν, the
numerator and denominator are

Nμ
ðbÞ ¼ ðlþmeÞγνðlþ pÞαqβΔμν

αβjl¼k−x1p−x2p0 ;

DðbÞ ¼ x1ð1 − x1Þp2 þ x2ð1 − x2Þp02 − 2x1x2p · p0

þ x2m2
0 þ x3m2

e: ðA12Þ

The terms in Nμ
ðbÞ linear in k vanish upon integration, so

we need again only pay attention to the terms quadratic in
and independent of k. The former simplifies to

Nμ
ðbÞ ⊃ kγνkαqβΔ

μν
αβ ¼ −i

4k2

d
Sμνqν: ðA13Þ

Again, we note that the second equality holds only under
the integral. This contributes a log-divergent piece to F2,
which we regulate by performing the integral in d ¼ 4 − ϵ
dimensions. In the MS scheme, we keep the coupling
strengths βi dimensionless by pulling out an explicit mass
dependence,

βi → βiμ̃
ϵ=2;

where the arbitrary mass scale μ is defined via μ2 ¼
4πe−γE μ̃2 in terms of the Euler-Mascheroni constant γE.
Performing the momentum integral, we get

F2;ðbÞðq2Þ ⊃ βmβγ

�
me

4πMPl

�
2
Z
½3�

�
2

ϵ
þ log

�
μ2

DðbÞ

��
:

ðA14Þ

The Oð1=ϵÞ term is removed by an appropriate counterterm
(discussed inSec. II C).Workingon-shell, the denominator is

DðbÞð0Þ ¼ x23m
2
e þ x2m2

0:

We integrate over x1, rename x3 ¼ x, andmake the change of
variables x2 ¼ ð1 − xÞy to bring this into the form

F2;ðbÞð0Þ ⊃ 2βmβγ

�
me

4πMPl

�
2
�
log

�
μ

me

�
þ I2

�
m0

me

��
;

ðA15Þ

where the integral I2 is given inEq. (2.10b). This is half of the
desired result in Eq. (2.9). Unsurprisingly, the other half
comes from evaluating Fig. 1(c), which turns out to give
exactly the same contribution as Fig. 1(b) when on-shell.
Given we have already obtained the desired outcome, we

are left to show that the terms independent of k in Nμ
ðbÞ and

Nμ
ðcÞ do not contribute to F2ð0Þ. As the manipulations are

near identical, we shall describe the general procedure only
for Nμ

ðbÞ. Its k-independent terms are
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Nμ
ðbÞ ⊃ ðlþmeÞγνðlþpÞαqβΔμν

αβjl¼−x1p−x2p0 ≕nμðbÞ: ðA16Þ

Once again, we begin by employing the anticommuta-
tion relations to reorder terms until Eq. (A7) can be
judiciously applied. We find

nμðbÞ ¼
�
2x2 −

x23
2

�
q2meγ

μ þ 2x1x2q2iSμνqν; ðA17Þ

having also used the Gordon identity in Eq. (A9). Its
contributions to both F1 and F2 are proportional to q2, so
do not affect either the electric charge or the anomalous
magnetic moment.

APPENDIX B: NUMERICALLY
ACCESSIBLE REGION

Several approximations had to be made in this paper in
order that the numerical work remain tractable. These
approximations are valid only in certain regions of param-
eter space, outside of which our calculations are not
trustworthy. In this Appendix, we briefly discuss how
we estimate the boundaries of this so-called numerically
accessible region (NAR).

1. Chameleon

For the chameleon model, we assumed the zero-skin-
depth (ZSD) and perfect-vacuum (PV) approximations,
which correspond to Eqs. (4.16) and (4.17), respectively.
Here, we make these statements more precise.
The ZSD approximation is implemented numerically by

fixing the field at the value that minimizes its local effective
potential once it reaches the walls. In reality, the field
cannot achieve this instantaneously, but rather decays to the
minimum within a distance set by its Compton wavelength
m−1

∞ . This fact is compatible with the ZSD approximation
provided m−1

∞ cannot be resolved by our numerical code.
Following Ref. [50], we therefore require that the Compton
wavelength be at least an order of magnitude smaller than
the numerical grid spacing for this approximation to be
valid,

m−1
∞ <

lgrid
10

: ðB1Þ

We used a grid spacing lgrid ¼ 0.1 mm in all three spatial
directions for the chameleon. Naturally, the Compton
wavelength in the vacuum chamber m−1

0 is much larger
than lgrid; hence, satisfying Eq. (B1) is sufficient to
guarantee we also satisfy Eq. (4.16).
A different tactic is required to determine when the PV

approximation breaks down. To do so, we recast Eq. (4.17)
as an inequality

ρcav
Mc

þ ρem
Mγ

< ϵPV
nΛ4þn

ϕnþ1
0

; ðB2Þ

and shall utilize the approximate one-dimensional solutions
obtained in Sec. IVA to determine an appropriate value for
ϵPV. This is done as follows: Unlike in Sec. IVA, we now
solve Eq. (4.11) for ϕ0 without making the PV approxi-
mation. This is only possible numerically. We substitute in

V 0
0 ¼ −

nΛ4þn

ϕnþ1
0

ð1 − ϵPVÞ

into the equation and vary the value ϵPV, observing how the
solution ϕ0 changes. For the chameleon, we are typically
interested in constraining the order of magnitude of the
coupling scales Mi ∈ fMc;Mγg for given values of ðΛ; nÞ.
Thus, our criterion is to tolerate a value for ϵPV that leads to
a change of at most �0.1 in the value of the constraint on
log10ðMi=MPlÞ. We find that choosing

ϵPV ≃ 0.34

ensures we satisfy this criterion. As Eq. (B2) makes no
specific reference to the geometry of the problem, and as
the value for ϵPV is small, we expect this result to be a good
estimate also for the two-dimensional cylindrical case.
The boundaries defined by Eqs. (B1) and (B2) demarcate

the region of parameter space outside of which calculations
for the cavity shift can no longer be trusted. However, the
quantum corrections calculated in Sec. II depend much
more weakly on ϕ0. As can be seen in Eqs. (2.8) and (2.9),
ϕ0 enters only through the ratio m0=me, which remains
small long after both the ZSD and PVapproximations break
down. Consequently, the constraints from the quantum
corrections hold well beyond the NAR. We can determine
when the approximationm0=me ¼ 0 finally breaks down in
a similar fashion. Again tolerating a change of at most�0.1
in log10ðMi=MPlÞ, we require that the integrals I1;2ðηÞ,
given in Eq. (2.11), decrease by at most 40%. For small
η ¼ m0=me, it suffices to impose this just on I1ðηÞ. This
translates to the condition

m0

me
< 0.31: ðB3Þ

Of course, we do not have a good way to determine the
value of m0 now that we are outside the NAR. A
conservative estimate is to replace m0 above with its
maximum possible value, which is when ϕ0 minimizes
the effective potential in the cavity. For n ¼ 1 and
Λ ¼ 2.4 meV, this puts the boundary at

log10ðMc=MPlÞ≳ −31.4; log10ðMγ=MPlÞ ≳ −24.0:

Increasing either Λ or n pushes the boundary even further
out. Couplings much larger than this boundary are already
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in tension with classical fifth force tests and constraints
from particle colliders [3,4], hence we can be assured that
the constraints from quantum corrections hold throughout
the region plotted in Fig. 4.

2. Symmetron

Only the ZSD approximation is needed for the symme-
tron. The condition, originally given in Eq. (5.19), can be
replaced by the inequality

μ−1∞ <
lgrid
10

: ðB4Þ

Like the chameleon, we again require that the Compton
wavelength of the symmetron be smaller than the numerical
grid spacing. Unlike the chameleon, however, a finer grid
with lgrid ¼ 0.05 mm in all three spatial directions was
required to ensure convergence, especially for solutions
with values of φ0 close to zero.
Note that Eq. (B4) need only be imposed for symmetron

masses in the range μ ¼ ½10−3.88; 10−3.39� eV. For smaller
values, the symmetron remains in the symmetry-unbroken
phase where no constraint can be placed. For larger values
of μ, the symmetron quickly reaches the local maximum
φ0 ¼ 1 inside the cavity irrespective of what is happening
in and beyond the walls.
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