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sido imposible. Por ello, nada más me gustaŕıa en este momento, que agradecerle
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los malos momentos. Porque siempre me ha apoyado en todas las decisiones, por
muy dif́ıciles que sean de entender. Porque sin ella no me habŕıa atrevido a dar
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Abstract

Neutrinos are described in the Standard Model (SM) by three left-handed fermion
fields, one for each fermion generation. In the SM, the masses of the fermions arises
as a Yukawa interaction between the right-handed and the left-handed fermion fields,
and the Higgs doublet. Because of the lack of a right-handed field for neutrinos,
these fermions are massless within the SM. Experiments measuring the flavor com-
position of neutrinos have stablished the oscillation of the flavor along its path. This
oscillation can be explained in the scenario of a mixing between neutrino flavor and
neutrino mass states. This thesis is devoted to the study of the neutrino flavor oscil-
lations within different mixing models. In particular, it is focused into the physics
reach by the new generation of neutrino telescopes, like IceCube and DeepCore.

The low energy part of the atmospheric neutrino flux measured by DeepCore
lead a sizable flavor oscillation in the muon disappearance channel (νµ → νµ). By
combining the latest experimental data collected by this detector (up to 2016) with
the results of other oscillation experiments, we have performed a global fits within
the three-neutrino mixing framework. In this work has been also discussed the
complementarity role played by atmospheric/accelerator and the reactor data on
the determination of the atmospheric mass parameter.

IceCube can be also considered as a tool to look for New Physics signals. The
minimal extension of the SM to explain the neutrino masses consist of a heavy
right-handed neutrino field. The mass of this new fermion is not predicted by any
model, it can take any value over a wide range of orders of magnitude. For masses
around GeV, we have studied in a different work the detection of the new fermion by
looking for “Double-Cascades” events topologies. We have considered two different
scenarios where the signal can be created by a heavy neutrino, the mixing of the
heavy state with a light neutrino through a NC, and the production of the heavy
state via a transition magnetic moment. The results indicate that IceCube improve
the current bounds in the scenarios considered for heavy states with masses around
1 GeV.

Another New Physics scenario considered is the so-called Quantum Decoherence,
which introduces a damping effect on the flavor oscillation. In a recent work, we
have developed a new formalism to study this effect through non-adiabatic matter.
By a fit of the atmospheric events measured by IceCube and DeepCore, it is shown
that these experiments improve over the current bound from other experiments.

The primary goal of IceCube is the detection of astrophysical neutrinos, what
happened in 2013. This energetic events opens the possibility to study New Physics
on them. In another, work we have considered the impact of Non-Standard Inter-
actions on the flavor of this events, finding large deviations from the three-neutrino
mixing prediction.

Neutrino physics is moving into the precission era, but still a lot of fundamental
and exciting problems remain without answer. This converts to this reach area in a
very promising field for the near future.
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Resumen

Los neutrinos están descritos en el Modelo Estandar (MS) por tres campos
fermiónicos zurdos, uno por cada generación de fermiones. En el MS, el término
de masa para cada fermión cargado viene dado por una interacción de Yukawa entre
los campos zurdos y diestros de dicho fermión, con el campo de Higgs. Debido a que
en el SM no hay campo diestro para los neutrinos, estas part́ıculas no poseen masa.
Los experimentos que han medido el sabor de los neutrinos han establecido que el
sabor de estas part́ıculas oscila a lo largo de su trayectoria. Esta oscilación puede
ser explicada por acoplo entre estados de sabor y estados de masa. Esta tesis se
centra en el estudio de las oscilaciones de neutrinos para diferentes modelos teóricos
que describen este acoplo. En particular, se ha enfocado al estudio de la f́ısica que
puede ser medida en la nueva generación de telescopios de neutrinos, como IceCube
y DeepCore.

La parte de baja enerǵıa del espectro de neutrinos atmospféricos medido por
DeepCore permite observar las oscilaciones de neutrinos en el canal (νµ → νµ). Com-
binando los últimos resultados experimentales recogidos por este experimento (hasta
2016), junto con los resultados del resto de experimentos de oscilaciones de neutri-
nos, hemos realizado un ajuste global de los parámetros de oscilación en el modelo
de mezcla de tres neutrinos. En este trabajo también ha sido discutida la comple-
mentariedad entre las medidas de experimentos atmosféricos/aceleradores con las
medidas en reactores en la determinación del parámetro de masas atmosférico.

IceCube también puede ser usado en la búsqueda de señales de nueva f́ısica. La
mı́nima extensión del MS necesaria para explicar la masa de los neutrinos consiste
en añadir campos diestros para los neutrinos. La masa de estos nuevos fermiones
no está fijada por ningún modelo. Hemos estudiado la detección de estos nuevos
fermiones con masas entorno al GeV buscando eventos con la topoloǵıa “Double-
Cascade”. Para ello, hemos considerado dos escenarios diferentes donde esta señal
puede ser creada por la nueva part́ıcula, un acoplo entre los campos diestros y los
neutrinos descritos en el MS, y un momento magnético de transición.

Otro escenario de nueva f́ısica considerado, en este caso en neutrinos atmosféricos,
es el denominado como Decoherencia Quántica, el cual introduce una amortiguación
en la oscilación de sabor. A través de un ajuste de los eventos atmosféricos medidos
por IceCube y DeepCore, se ha observado una mejora en la precisión con que los
efectos de este modelo de nueva f́ısica pueden ser medidos.

El objetivo principal de IceCube es la detección de neutrinos astrof́ısicos, que tuvo
lugar en 2013. La observación de estos eventos energéticos ha abierto la posibilidad
de buscar en ellos procesos de nueva f́ısica. Por ello, en otro trabajo hemos estudiado
el impacto que puede tener la existencia de nuevas interacciones en el sabor de estos
eventos. Los resultados muestran grandes desviaciones con respecto a lo predicho
por el modelo de tres neutrinos.

La f́ısica de neutrinos se está encaminando hacia una era de precisión, pero
todav́ıa existen problemas excitantes y fundamentales sin resolver. Esto convierte a
este área de investigación en un campo muy prometedor para el futuro.
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Chapter1

Introduction

1.1 Historical introduction

The first evidence of neutrino oscillation was observed in the Kamiokande ex-
periment, a detector that which built to discover the proton decay, predicted by
the Electroweak Theory. Kamiokande was a water Cherenkov detector located at
a depth of 1 km in Kamioka (Japan), which started to take data in 1983 [1]. The
charged particles created in the proton decay propagate at relativistic speeds on
water, and emit Cherenkov radiation that is detected by the photomultiplier sur-
rounding the water tank. The dominant background was the atmospheric neutrino
interactions that were produced by charged leptons.

The interaction of cosmic rays with the atmospheric nuclei produces π and K,
that decay mainly in µ and νµ. A second particle generation is created after µ
decay into νµ, e and νe. So, νµ and νe are mainly produced in the atmosphere in a
flavor ratio 2:1 (νµ : νe). In 1988, Kamiokande showed a deficit in the number of νµ
compared with the simulation results, that could not be explained by the systematics
detector effects or by the uncertainties in the atmospheric flux prediction [2]. Due
to the low precision in the flux calculation, the results were presented in terms of the
flavor ratio νµ over νe. This flavor ratio is theoretically predicted to be around 2, and
up-down symmetric for higher energies (multi-GeV). For lower energies (sub-GeV),
the magnetic field of the Earth modifies the cosmic ray flux. The results showed
the 59 ± 7% of the expected number for νµ [2]. The deficit was also confirmed by
another water Cherenkov experiment, IMB [3].

In 1996, a new detector was built with a fiducial volume twenty times larger than
Kamiokande volume, what made possible enlarge the statistics by the same factor.
The number of photomultipliers used in the new experiment was larger compared
with Kamiokande, what allowed the measurement of the neutrino interaction with
higher precision. The new experiment was called Super-Kamiokande. In 1998,
after two years of data taking, the experiment announced evidence for atmospheric
neutrino oscillations with a significance of 6σ [1, 4, 5], Fig 1.1. The results showed
a deficit in the up-going νµ flux that depended on the zenith angle. For the down-
going neutrinos, the prediction agrees with the data. For the νe events was observed
no deviation from the prediction. A combined analysis of the Kamiokande and
Super-Kamiokande measurement showed that neutrino oscillation could consistently
explain both results. The results were confirmed by MACRO [6] and Soundan-2 [7],
two experiments which also observed a zenith-angle dependence deficit in νµ.
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1.2 Neutrinos in the SM

1.2 Neutrinos in the SM

The Standard Model (SM) describe the interactions between three generations
of fermions, versus gauge bosons and one scalar, the Higgs boson, according to the
gauge group

SU(3)C × SU(2)L × U(1)Y (1.1)

Each generation consists of five fermions (Table 1.1), with a different represen-
tation under the symmetry group each of them [8]. The fermions have the same
charges under the symmetry group in the three generations, but they present dif-
ferent masses. The SM gauge group together with the fermion content present an
accidental global symmetry

U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ (1.2)

that preserve the baryon number (B) and the three lepton numbers (Le, Lµ, Lτ ),
and as a result, the total lepton number L = Le + Lµ + Lτ . That global symmetry
is a consequence of the SM gauge symmetry and the representation of the physical
states.

The subgroup SU(2) × U(1), called electroweak symmetry group, unifies the
electromagnetism and the weak theory and is the only group that acts non-trivially
over the neutrino field. These fermions are not affected by strong or electromagnetic
interactions, so they are singlets of SU(3)c×U(1)Q. The group SU(2), called isospin,
acts over the left-handed chiral component of the fermions field, whereas the right-
handed components are singlets. It has three generators Ia(a = 1, 2, 3) that verifies
the commutation relations [Ia, Ib] = ıεabcIc. In a two dimensional representation,

Figure 1.1: Zenith angle distribution events presented by Super-Kamiokande collab-
oration at the Neutrino ’98 [1, 4, 5]
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1.2 Neutrinos in the SM

LL(1, 2,−1/2) QL(3, 2, 1/6) ER(1, 1,−1) UR(3, 1, 2/3) DR(3, 1,−1/3)( νe
e

)
L

( u
d

)
L

eR uR dR
( νµ

µ

)
L

( c
s

)
L

µR cR sR
( ντ

τ

)
L

( t
b

)
L

τR tR bR

Table 1.1: The fermion content in SM. The numbers in brackets are the charges
under (SU(3), SU(2), U(1)) [8].

the generators coincide with the Pauli matrices (I1 = σ1/2, . . .). The group U(1)Y ,
called hypercharge, consist of one generator Y . Together with the generator I3 of
SU(2) group, the hypercharge verifies the Gell-Mann-Nishijima relation

Q = I3 +
Y

2
(1.3)

this equation relates weak interactions driven by the operator of the groups SU(2)×
U(1) with the electric charge Q.

1.2.1 Electroweak interaction

The electroweak SM lagrangian for leptons is given by

L =ı
∑

α=e,µ,τ

(
LαL��DLαL + EαR��DEαR

)
− 1

4
WµνW

µν − 1

4
BµνB

µν (1.4)

+ (DµΦ)†(DµΦ)† − µ2Φ†Φ− λ(Φ†Φ)2 −
∑

αβ

(
YαβLαLΦEβR + Y ∗αβEβRΦ†LαL

)

in order to ensure the local gauge invariance, the covariant derivatives are defined
as

Dµ = ∂µ + ıgI ·Wµ + ıg′BµY (1.5)

where Wµ and Bµ are the gauge fields associated to SU(2) and U(1) symmetries.
The strength of the electroweak interaction is determined by the gauge couplings
constants, g and g′, associated to the isospin and the hypercharge group, respec-
tively. In the lagrangian, the first row describes the electroweak interactions between
the fermions and the gauge bosons, what is obtained by developing the covariant
derivative in the lagrangian, and the gauge bosons themselves, which is described by
last two terms. Expanding the covariant derivates in the weak isospin representation
and keeping just the interaction terms

LI = −
∑

α=e,µ,τ

1

2
LαL

(
gσ ·��W − g′��B

)
LL + g′ER��BER (1.6)

where we have used that the hypercharge of the left-handed component of the lep-
tons, Y LL = −1/2LL. We can rewrite the interaction terms by introducing new
gauge fields (W µ,+,W µ,−, Aµ, Zµ), defined as a linear combination of W µ

i and Bµ:

W µ,+ = W µ
1 − ıW µ

2 W µ,− = W µ
1 + ıW µ

2 (1.7)
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1.2 Neutrinos in the SM

Figure 1.2: Neutrino interaction vertex through CC (left) and NC (right)

(
Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

W µ
3

)
(1.8)

where θw is the weak mixing angle. The new gauge bosons carry the weak interac-
tions (W µ,+,W µ,−, Zµ) and the electromagnetic interaction (Aµ). In terms of the
new gauge bosons, the interaction lagrangian can be written as

LI =− 1

2

{
νLγµ (Aµ(gsθw − g′cθw) + Zµ(gcθw + g′sθw)) νL + gνL��W

+LL + gLL��W
−νL

+LLγµ (Aµ(gsθw + g′cθw) + Zµ(gcθw − g′sθw))LL + 2LRγµ (cθwA
µ − sθwZµ)LR

}

(1.9)

where cθw = cos θw and sθw = sin θw. Neutrinos are neutral particles, and therefore
they are not affected by the electromagnetic interaction, so neutrinos and photons
must be decoupled. This condition can be used to fix the weak mixing angle in
terms of the coupling constants tan θw = g′/g. The interaction lagrangian becomes

LI =− 1

2

{
g

cθw
νL��ZνL + gνL��W

+LL + gLL��W
−νL

+LL

(
2gsθw��A+

g cos 2θw
cθw

��Z

)
LL − 2LR

gsθw
cθw

(cθw��A− sθw��Z)LR

}
(1.10)

From the interaction lagrangian, neutrinos can interact with a charged lepton
through a coupling with a W± boson, what is called Charge Current interaction
(CC), or with another neutrino through the coupling to a Z boson, Neutral Current
interactions (NC), as shown in Fig 1.2. In addition to the interactions mediated
by W and Z boson, the charged leptons can also have interaction mediated by
a photon, as shown in the second line of Eq (1.10). The measurement of the Z
invisible width determines the number of neutrinos in the SM, Nν . The results from
LEP experiment is Nν = 2.984± 0.008 [9, 10].

1.2.2 Higgs mechanism

In the SM, the masses of the fermions, the gauge bosons and the scalar are
generated through the Higgs mechanism. The Higgs field Φ ≡ (φ+, φ0)T is a scalar
doublet, that consist of two scalar field, one of them charged (φ+) and the other one
neutral (φ0). The charges of the Higgs field under SM symmetry group are given
in the Table 1.2. The second line of Eq (1.4) contains a potential for the Higgs
field V (Φ) = µ2Φ†Φ − λ(Φ†Φ)2. In quantum field theory, the value of the field at
the minimum of the potential correspond to the vacuum state, and the quantum
excitations of the lowest state correspond to particle states. In order to preserve
the invariance of the vacuum under spatial rotations, the vacuum state of fermions
and vector boson, which carry a nonzero spin, must be zero. The same happens for
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1.2 Neutrinos in the SM

Figure 1.3: Higgs potential. φ1 and φ2 correspond to the real and the imaginary
part of φ0

SU(3) SU(2) U(1)

Φ =
( φ+

φ0

)
1 2 1/2

νs 1 1 0

Table 1.2: Charges under the SM symmetry group of the Higgs field (Φ) and sterile
neutrinos (νs)

charged scalar fields since the vacuum must be electrically neutral. However, for
neutral scalar fields, the vacuum expectation value (vev) can be different from zero.
So, the Higgs is the only SM field that can have a vev different from zero.

Considering the Higgs potential, if µ2 > 0, the minimum is located at zero
(〈Φ〉 = 0), and the vacuum state is invariant under a gauge transformation. In
that case, the vev for the Higgs is zero. For µ2 < 0, the minimum is fixed to
| 〈Φ〉 |2 = v2/2, where v =

√
−µ2/λ is the value of the vev. The Higgs is a complex

field, so it has two degrees of freedom φ0 = (φ1 + ıφ2)/
√

2. That can be translated
into a degenerate minimum for the potential, there are an infinite number of choices
for φ1 and φ2 at the vev, Fig 1.3. Once is selected one of the possible directions, the
Higgs field get the vev

〈Φ〉 =
1√
2

(
0
v

)
(1.11)

and a mass term for the vector bosons and the Higgs field appear in the lagrangian.
That mass terms are obtained by developing the covariant derivative over Φ in the
unitary gauge. The election of one vacuum break the Electroweak symmetry into
the Quantum Electrodynamics group SU(2)L × U(1)Y → U(1)QED.

The masses of the fermions arises as a Yukawa interaction between the right-
handed and the left-handed fermion fields, and the Higgs doublet (YαβL̄αLΦEβR),
this is called a Dirac mass term. Due to the lack of a right-handed field for neutrinos
in the SM, these fermions are massless. The only possible mass term (an interaction
between a left-handed and a right-handed field) for neutrinos, that can be formed
using the fermion content in the SM, is given by the product of the left-handed

doublet and its charge conjugated L̄LL
c
L, where LCL = CLL

T
is obtained after a

charge-conjugation operation, and it is called Majorana mass term. That term
violates the lepton number by two units and, since the SM symmetry group preserve
the total lepton number, it cannot be generated by loop corrections. What means
that neutrino is massless in the SM even in the presence of perturbative corrections.
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1.2 Neutrinos in the SM

1.3 Neutrino masses

A renormalizable mass term for neutrinos cannot be constructed with the fermion
content of the SM and its symmetry group, Eq (1.1). There are only two possible
ways to create a neutrino mass term, by introducing new fermions or by breaking
the SM symmetries. As seen in the section before, all the fermions mass terms are
formed by the Yukawa interaction between the left-handed and the right-handed
component of a fermion field and the Higgs boson, Eq (1.4). The minimal extension
of SM needed to create a neutrino Dirac mass term is an arbitrary number of right-
handed neutrinos (νs). These new fermions are defined as having no SM gauge
interactions, they are singlets of Eq (1.1) as it is shown in Table 1.2. These new
fermions are called sterile. The number of these new fermions that can be used
to extend the SM is not constrained by theory, so the minimal extension of right-
handed field is one. In the remaining section, we are going to assume an m number
of sterile neutrinos. The neutrino Dirac mass term that can be constructed is given
by

−LD = νsiMDijLLj + h.c. = Y ν
ijνsiΦ̃LLj + h.c. (1.12)

where Φ̃ = ıσ2Φ∗ and MD is a complex (3 × m) matrix. After the spontaneous
symmetry breaking by the Higgs field selecting a vacuum, the neutrino get the mass
MDij = Y ν

ijv/
√

2. That mass preserves the total lepton number.

Breaking gauge invariance, two Majorana mass terms can be constructed, one
for the active neutrinos and one for the sterile

−LM =
1

2
νLMLν

c
L +

1

2
νsMsνs + h.c. (1.13)

where ML and Ms are 3×3 and m×m symmetric matrices. Defining the left-handed
state ν = (νL νcs)

T , the three mass terms can be combined into a single term

−LMν =
1

2
νMνν

c =
1

2

(
νL νcs

)( ML MT
D

MD Ms

)(
νcL
νs

)
+ h.c. (1.14)

In the case of ML = 0, gauge invariance is recovered because the Majorana term
for sterile neutrinos is allowed by the SM symmetries. Mν is a (3 + m) × (3 + m)
complex symmetric matrix, so it can be diagonalized using a unitary matrix Vν

V †ν

(
ML MT

D

MD Ms

)
V ∗ν = diag{m1,m2, . . . ,m3+m} (1.15)

The mass eigenstates are obtained multiplying Vν by the state ν and νc, ν̃ =
V †ν (νL νcs)

T and ν̃c = V T
ν (νcL νs)

T , where we have taken into account that the right-
hand field transforms under the unitary matrix as ν̃c = (V †ν ν)c. The left-handed and
the right-handed component of the neutrino field in the mass basis can be added to
a single state

ν̃M = ν̃ + ν̃c (1.16)

which satisfies the Majorana condition, ν̃cM = ν̃M . Majorana states are formed by
just one field, which means that they can be described by a two-component spinor.
For Dirac state it is needed a four-component spinor. In the mass basis, Eq (1.14)
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1.3. NEUTRINO MASSES

can be rewriten as

−LMν =
1

2

3+m∑

k=1

mkν̃M,kν̃M,k =
1

2

3+m∑

k=1

mk(ν̃kν̃
c
k + ν̃

c

kν̃k) (1.17)

where we have used ν̃cν̃c = −ν̃ν̃. So, the most general mass term that can be
constructed for neutrinos can be written as a Majorana mass term. Unless V =
I(3+m)×(3+m), which is equivalent to a diagonal mass matrix in the interaction basis,
the flavor states, identified by the fields in the interaction lagrangian, and the mass
states are not identical. That mismatch implies a flavor lepton mixing.

1.3.1 The see-saw mechanism

The scale of MD should be of the order of the electroweak symmetry breaking
(MD ∼ 174 GeV). Since ML break gauge invariance in the neutrino mass matrix,
we consider it zero (ML = 0). For the third mass matrix, we can expect Ms >> MD

since it is generated by physics beyond the SM. Considering the strong hierarchy
between the scales of the mass matrices, Mν can be diagonalized by blocks up to
corrections of the order of o(MD/Ms)

V †νMνVν =

(
Mlight 0

0 Mheavy

)
(1.18)

where
Mlight ' −MT

DM
−1
s MD Mheavy 'Ms (1.19)

and

Vν '
(

1− 1
2
M †

D(M∗
s )−1M−1

s MD M †
D(M∗

s )−1

−(Ms)
−1MD 1− 1

2
(Ms)

−1MDM
†
D(M∗

s )−1

)
(1.20)

The eigenvalues are in two different scales. The scale of heavier states is of the order
of Ms, whereas for the lightest states its mass is suppressed by MT

DM
−1
s . This is

called the see-saw mechanism, which can explain the small values of active neutrino
masses just in term of a very heavy sterile neutrino and avoiding very small Yukawa
couplings.

1.3.2 Leptonic Mixing

In general, the representation of a field in the interaction basis can be different
from the representation in the mass basis. In the SM, neutrinos are massless. Since
the flavor is defined in the interaction basis, and because the neutrino flavor coin-
cides with the charged lepton flavor, the interaction basis for neutrinos and charged
leptons coincides. Without loss of generality, we can choose the basis where mass
and the interaction states for the charged leptons coincide. If the SM is extended
by a neutrino mass term, the mass basis for neutrinos and charged leptons do not
have to coincide, and this mismatch can lead to a flavor lepton mixing. In order
to see clearly where the mixing is coming from, in the following we are going to
assume that the flavor and the mass basis for the charged leptons do not coincide.
Let consider the mass term for the charged leptons and the neutrinos written in the
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1.2 Neutrinos in the SM

interaction basis

−Llepton = LLMLER +
1

2
νMνν

c (1.21)

we can define two 3 × 3 unitary matrices VL and VR, which diagonalize the mass
matrix for the charged leptons V †LMLVR = diag(me,mµ,mτ ). Using Vν to diagonalize
Mν as in Eq (1.15), the mass terms for charged leptons and neutrinos can be written
in the mass basis as

−Llepton = L̃Ldiag(me,mµ,mτ )ẼR +
1

2
ν̃diag(m1, . . . ,m3+m)ν̃c (1.22)

where L̃L = V †LLL and ẼR = VRER. Using VL and Vν , the CC interaction Eq (1.10)
can be written in the mass basis

LCC = −g
2

∑

α

LαLγµναLW
µ,− + h.c. (1.23)

= −g
2

∑

α

∑

ij

L̃iLγµVαi,LV
′†
αj,ν ν̃jLW

µ,− + h.c.

where V ′†ν is a 3× (3 +m) complex matrix that relates the left-handed flavor states
(νeL, νµL, ντL) with the mass states (ν1, . . . , ν3+m), and verifies

V ′†ν V
′
ν = I3×3 V ′νV

′†
ν 6= I(3+m)×(3+m) (1.24)

U = VLV
′†
ν is the mixing matrix in the leptonic sector. The number of inde-

pendent parameters depends on the nature of neutrinos. For pure Majorana states,
U can be parametrize with 3(m + 1) angles and 3(m + 1) complex phases. For
Dirac neutrinos, U contains 3(m + 1) angles and (2m + 1) phases. There are two
particular cases where U is a unitary matrix, for 3 Majorana neutrinos without any
additional sterile neutrino, and for 3 Dirac neutrinos. For 3 Majorana neutrinos,
U is parametrized by 3 angles and 3 complex phases, U is conventionally written
as [10]

U =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−ıδcp

0 1 0
−s13e

−ıδcp 0 c13






c12 s12 0
−s12 c12 0

0 0 1






1 0 0

0 eıδ
M
1 0

0 0 eıδ
M
2




(1.25)
For 3 Dirac neutrinos, the phases δM1 and δM2 are absorbed in the neutrino states.

1.4 Neutrino flavor oscillations

Neutrino experiments have established the oscillation of the flavor on the neu-
trino path. The experiments have also measured the wavelength showing a de-
pendence on the distance traveled and the neutrino energy. Most of the signals
measured by experiments can be explained in the framework of the three neutrino
mixing. In this model, there are three massive neutrinos that can be expressed as
a quantum superposition of the flavor states in the SM (Table 1.1) weighted by the
lepton mixing matrix

να =
∑

i

Uαiνi (1.26)
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1.4. NEUTRINO FLAVOR OSCILLATIONS

where U is given by Eq (1.25). In the following, flavor states are identified by a
greek index (να) and mass states by latin index (νi). We have chosen the mass basis
for the charged lepton as the interaction basis (VL = I3×3). The Majorana phases
δM1 and δM2 are irrelevant for neutrino oscillation because they enter into the lepton
mixing through a diagonal matrix. So, the only parameters of the mixing matrix
that can be constrained in neutrino oscillation experiments are the three mixing
angles (θ12, θ13, θ23) and the complex phase (δCP ). In those experiments cannot be
differentiated between the Majorana or Dirac nature of this leptons.

Neutrinos (να) and antineutrinos (να) are created in CC interactions together
with charged antileptons (l+α ) and charged leptons (l−α ) respectively, Eq (1.10). Mak-
ing a Fourier expansion of the neutrino field in terms of creation and annihiliation
operators

νiL(x) =

∫
d3p

(2π)32E

∑

h=±1

[
a(h)
νk

(p)u(h)
νkL

(p)e−ıpx + b(h)†
νk

(p)v(h)
νkL

(p)eıpx
]

(1.27)

we find that the neutrino state is created by the charged current

jµW,L = 2
∑

α

∑

k

U †αiνiγµLαL (1.28)

and antineutrinos are created in the Hermitian conjugate charged current. From
Eq (1.27), we find that neutrino (antineutrino) flavor states |να〉 (|να〉) and neutrino
(antineutrino) mass states |νi〉 (|νi〉) are related by

|να〉 =
∑

i

U †αi |νi〉 |να〉 =
∑

i

Uαi |νi〉 (1.29)

1.4.1 Vacuum neutrino oscillations

The evolution of a flavor neutrino state (|να〉) in the vacuum is described by the
Schördinger equation

ı
d

dt
|να(t)〉 = Hvac |να(t)〉 (1.30)

where Hvac is the vacuum hamiltonian in the flavor basis. Since the mass and flavor
basis do not coincide, the evolution equation in the flavor basis corresponds to
coupled equations between all flavors. In order to solve them, we have to change to
the mass basis where the vacuum hamiltonian is diagonal (H̃vac = Diag(E1, E2, E3))

ı
d

dt
|νi(t)〉 = Ei |νi(t)〉 (1.31)

the resulting equation can be solved analytically by integrating along the neutrino
trajectory. Since the hamiltonian is constant, the integral is given by the product of
the energy and the time of neutrino travel. Assuming the origin at t = 0, |νi〉 after
a time t is

|νi(t)〉 = |νi(t = 0)〉 e−ıEit (1.32)

Coming back to the flavor basis, we can describe the time evolution of a flavor
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1.2 Neutrinos in the SM

state by the superposition of the time evolution of the mass states

|να(t)〉 =
∑

i

U †αi |νi(t)〉 =
∑

i

U †αi |νi(t = 0)〉 e−ıEit (1.33)

The amplitude of the flavor transition |να〉 → |νβ〉 after a time t, is given by

Aαβ(t) = 〈νβ|να(t)〉 =
∑

i

U †αiUβi exp (−ıEit) (1.34)

The flavor oscillation probability of a flavor |να〉 into a flavor |νβ〉 after a time t
is given by the square of the transition amplitude

Pαβ(t) = |Aαβ(t)|2 =
∑

ij

UβiU
†
βjU

†
αiUαi exp (−ı(Ei − Ej)t) (1.35)

For relativistic neutrinos, the energy of every mass state (Ei) can be approximated
by

Ei =
√
P 2
i +m2

i = |Pi|(1 +m2
i /2P

2
i + · · · ) ≈ E +m2

i /2E (1.36)

where we have approximated the momentum of the mass state (Pi) with the energy of
the flavor state (E). This is a good approximation since the masses of the neutrinos
states is very small (mi < 0.23 eV) [11]. Under this approximation, the flavor
oscillation probability can be written as

Pαβ(t) =
∑

ij

UβiU
†
βjU

†
αiUαi exp

(
−ı∆m

2
ijt

2E

)
(1.37)

In neutrino experiments, the time used by the neutrino to travel from the pro-
duction point to the detector usually is not measured. Instead of that, the distance
between the source and the detector (L) is known with high precision, and it is
called baseline. We can express the oscillation probability in terms of the baseline
using L ≡ t. Since the mixing matrix is unitary for 3 massives neutrinos, we can
use the unitary relations to separate the contributions to the probability into real
and complex part

Pαβ (L,E) = δαβ − 4
∑

i>j

Re[UαiU
†
αjU

†
βiUβj] sin2

(
∆m2

ijL

4E

)
(1.38)

+ 2
∑

i>j

Im[UαiU
†
αjU

†
βiUβj] sin

(
∆m2

ijL

2E

)

For the three neutrino mixing, there are three oscillations lengths given by Losc
kj =

4πE/∆m2
kj. The expression obtained verifies the probability conservation for initial

and final states ∑

α

Pαβ = 1
∑

β

Pαβ = 1 (1.39)

The kinematical properties of antineutrinos are identical to neutrinos. In order
to get the oscillation probability for antineutrinos we can follow the same steps as
in the neutrino case. The only difference is that the flavor states are related to the
mass states through the mixing matrix instead of the hermitian matrix, as shown in
Eq (1.29). So, the oscillation probability for antineutrinos has the same expression
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1.4. NEUTRINO FLAVOR OSCILLATIONS

as for neutrinos Eq (1.38) up to a minus sign in the imaginary terms.

When the distance between the source and the detector is much larger than the
oscillation length (L � Losc

kj ) the neutrinos arrive to the detector as an incoherent
superposition of mass states1. Because of the finite energy resolution of the detectors,
the oscillatory terms are averaged by the detector resolution if the baseline is much
larger than the oscillation length. The average of the sin function vanishes, whereas
the average of sin2 function is 1/2. From Eq (1.38), we obtain an expression for the
flavor transition in terms of the mixing angles and the complex phase

Pαβ =
∑

i

|Uαi|2|Uβi|2 (1.40)

The flavor transition measured for very long baselines is determined just by squares
of the mixing matrix elements.

1.4.2 CPT, CP and T transformations

SM is symmetric under the product of the transformations over the charge (C),
parity (P) and time (T), CPT. On the other hand, neutrinos and antineutrinos are

related under a CP transformation (να
CP−→ ν̄α). Under this transformation, the

oscillation probability for neutrinos become into the probability for antineutrinos

(Pνα→νβ
CP−→ Pν̄α→ν̄β). T revert the order of the flavor oscillation (Pνα→νβ

T−→ Pνβ→να).
Because of the symmetry of SM under the CPT transformation the oscillation prob-
ability must satisfied

Pνα→νβ = Pν̄β→ν̄α (1.41)

This property can also be observed by looking into the oscillation probability Eq (1.38).
From the oscillation probability for antineutrinos, exchanging the mass index (i↔ j)
a minus sign appears from the terms that go with a sin function and compensate the
sign due to the complex transformation of the mixing matrix, recovering the neu-
trino oscillation probability. When neutrinos propagate in matter, the oscillation
probability violates the CPT symmetry. The normal matter is composed by particles
and not antiparticles, which induce a CP violation on the oscillation probability.

The symmetry under a CPT transformation of Pαβ in vacuum implies that CP
and T can be violated separately. The complex phase in the mixing matrix encodes
the amount of CP violation. In order to measure that quantity, in neutrino oscillation
experiments we need to measure

∆PCP
αβ = P (να → νβ)− P (ν̄α → ν̄β) (1.42)

note that β 6= α since the difference in the probability for neutrinos and antineutrinos
comes from the imaginary part that is zero in the case of P (να → να).

1.4.3 2ν approximation

We can consider a simplified model formed just by two mass neutrinos (|ν1〉, |ν2〉)
and two flavor states (|να〉, |νβ〉). In this case, the mixing matrix is given by 2× 2

1That is the case of neutrinos produced at the Sun or in astrophysical sources
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1.2 Neutrinos in the SM

Figure 1.4: Neutrino mass ordering. The colors represent the contribution of every
flavor state

rotation matrix without a CP violation phase2

U(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(1.43)

To obtain the flavor oscillation probability, We can follow the same steps as for the
3ν case. In this simplified model it is given by

Pαβ = sin2 2θ sin2

(
∆m2L

4E

)2

Pαα = 1− sin2 2θ sin2

(
∆m2L

4E

)2

(1.44)

The amplitude depends on sin2 2θ, so it is maximal for θ = 45. The probability is
symmetric under the transformations θ → π/2− θ and ∆m2 → −∆m2. The octant
transformation changes the projection of every mass state in the flavor basis. The
change in the sign of the mass parameter corresponds with an interchange between
the mass states. After both transformations, the contribution of |ν1〉 and |ν2〉, over
|να〉 and |νβ〉 are the same. Eq (1.44) is not only symmetric under both transforma-
tions, but also under each transformation separately. Those transformations implie
that there are two different set of parameters, (∆m2, θ) and (∆m2, θ + π/2), with
different physical meaning which cannot be resolved by the flavor oscillation in the
vacuum. That degeneracy is solved when neutrinos propagate through matter.

1.4.4 Mass splitting dominance

The data collected by the experiments have shown that there two very well sep-
arates mass splittings ∆m2

21 ∼ 10−5eV2 and |∆m2
3l| ∼ 10−3eV2, which are called

the solar and the atmospheric mass parameters respectively. The sign of the at-
mospheric mass splitting determines the mass ordering, Fig 1.4. A positive sign
corresponds with a heavier neutrino state compared with the other two states. This
mass ordering is called normal hierarchy (NH). A negative sign corresponds with
two quasi-degenerate mass states and a light one. In this case, the mass ordering
is called inverted hierarchy (IH). For a neutrino experiment, the energy of the neu-
trino beam and the baseline determine the scale of the wavelength where a flavor
oscillation can be detected.

2The number of CP phases for Dirac neutrinos after rephasing the states is given by (n−1)(n−
2)/2, where n is the number of neutrino states. CP non-conservation is only possible for n ≥ 3.
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1.5. NEUTRINO OSCILLATION IN MATTER

Neutrino oscillation experiments usually are devoted to the measurement of some
specific neutrino flavors oscillation over a narrow L/E ratio. Therefore, they are
mainly sensitives to one the oscillation wavelengths. In the case of experiments which
are sensitives to the atmospheric mass parameter, the following approximation can
be used on the oscillation probability ∆m2

31 ≈ ∆m2
32 ≡ ∆m2 and ∆m2

21 ≈ 0. In that
regime, the contribution of the imaginary vanishes in Eq (1.38) and the oscillation
probability can be written as

Pαβ = δαβ − 4(δαβ|Uα3|2 − |Uα3|2|Uβ3|2) sin2

(
∆m2L

4E

)
(1.45)

= δαβ − sin2 2θeff
αβ sin2

(
∆m2L

4E

)
(1.46)

where

α 6= β sin2 2θeff
αβ = 4|Uα3|2|Uβ3|2

α = β sin2 2θeff
αα = 4|Uα3|2(1− |Uα3|2)

Those expressions can be used to describe the flavor oscillation in experiments with
atmospheric neutrinos, reactor and long-base lines experiments.

There are other experiments that are mainly sensitives to the solar mass splitting.
In that case, the approximation that the imaginary terms vanish cannot be used. In
order to obtain a simplified expression, we use the finite detector energy resolution,
which average the terms that depend on the atmospheric mass splitting. In this
case, for the disappearance channel, the initial and the final states are the same
(α = β), the probability can be written as

Pαα = 1− 4|Uα2|2|Uα1|2 sin2

(
∆m2

21L

4E

)
− 2

(
|Uα3|2|Uα1|2 + |Uα2|2|Uα2|2

)
(1.47)

This expression are relevant for reactor experiments like KamLAND, where the
neutrino energy is of the order of ∼ MeV and the baseline is L ∼ 100 km

1.5 Neutrino oscillation in matter

The matter that form most of the enviorments where neutrino propagation takes
place is made of electrons, protons, and neutrons, some examples are the Earth or
the Sun. That enviroments are neutral, what implies a coincidence in the number
density of protons and electrons. Neutrinos can interact with the quarks and leptons
present in the matter through CC and NC, as shown in Eq (1.10), and this can affect
neutrino properties. Depending on the energy mediator, the neutrino interactions
can be divided into coherent or incoherent. A coherent interaction takes place when
the energy mediator goes to zero, and the matter as well as the neutrino kinematical
properties are unchanged after the interaction. In an incoherent interaction, the
initial and final states are different.

As neutrino energy increases, the total inclusive cross section in a incoherent
interaction shows a linear dependence on energy, Fig 1.5 [10]. This is the expected
response for a Deep Inelastic Scattering (Eν > 10 GeV), where neutrinos can scatter
off an individual quark inside a nucleon. The total cross section can be approximated
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as

σ ∼ G2
F s

π
∼ 10−38cm2EνM

GeV2 (1.48)

where s is the square of the total energy in the center of mass frame. In the labora-
tory frame, where the target is at rest, the total square energy can be approximated
as s ∼ 2EνM , where M is the mass of the target particle and Eν is the neutrino
energy. At lower energies (Eν < 10 GeV), the cross section is dominated by Quasi-
elastic scattering and the resonance production, changing the energy dependence
(Fig 1.5). The mean free path (Lfree) in a medium with number density N is in-
versely proportional to the number of scatters

Lfree ∼
1

Nσ
(1.49)

For the Earth mantle, with an average density of the order of ρ ∼ 4g/cm3, and
for a nucleon target M ∼ 1 GeV, the mean free path in a DIS process is L⊕ ∼
1014/(E/GeV) cm. The diameter of the Earth is 2R⊕ ∼ 109 cm. So, the incoherent
interaction are the dominant process for atmospheric neutrinos with energies of the
order of 105 GeV, around four orders of magnitude higher than the maximum energy
at which neutrinos oscillate through the Earth. For the Sun, with an average density
of ρ ∼ 1.5g/cm3, and for a neutrino energy in the MeV range, the mean free path is
L� ∼ 1018/(E/MeV) cm, seven orders of magnitude higher than its diameter. So,
the incoherent interactions are not relevant in the energy regime where the flavor
oscillations take place.

1.5.1 Neutrino coherent interaction

In the limit of an interaction with zero momentum transfer, the momenta and
the helicity of the matter and the neutrino remains unchanged, and the neutrino
ensemble can coherently interfere in the forward direction. This interaction modifies
the flavor propagation of the neutrino ensemble, and can be described by an effective
potential which depends on the mediator. The only CC coherent forward scattering
in normal matter is due to an νe − e interaction. Because of the zero momentum of

Figure 1.5: Measurement of νµ and νµ CC inclusive cross section per nucleon as a
function of neutrino energy [10]. The cross section is divided by the neutrino energy.
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gfV gfA

e −1
2

+ 2 sin2 θw - 1
2

p 1
2
− 2 sin2 θw

1
2

n −1
2

- 1
2

Table 1.3: Vector (gfV ) and axial (gfA) couplings for electrons (e), protons (p) and
neutrons (n).

the mediator, the process is described by an effective hamiltonian given by

HCC
eff =

GF√
2
νeγ

µ(1− γ5)νeeγµ(1− γ5)e (1.50)

where we have used the Fierz transformation [12] to reorder the field operators.
Assuming the electron background is thermally distributed and unpolarized, we can
take the average of the hamiltonian over the electron states. The remaining effective
hamiltonian can be written as

HCC
eff =

√
2GFneνeLγ

0νeL (1.51)

where ne is the electron number density in the medium. This term can be interpreted
as a potential energy VCC =

√
2GFne for νeL due to the electrons in matter.

We can follow the same steps to derive an effective potential for the NC inter-
actions. Since NC are equal for the three neutrino flavors, the effective potential is
flavor independent, and it is composed of the contribution of the three interactions
να − (e, p, n). The effective hamiltonian is given by

HNC
eff =

GF√
2

∑

α

(ναγ
µ(1− γ5)να)

∑

f=e,p,n

fγµ(gfv − γ5g
f
A)f (1.52)

where gfv and gfA are the vector and axial coupling constant for the fermion f (Ta-
ble 1.3). After the average over the background states, the effective potential due to
NC interactions is V f

NC =
√

2GFnfg
f
V . In an electrically neutral enviroment (ne =

np) only neutrons contributes to the potential, VNC =
∑

f V
f
NC = −

√
2GFnn/2.

As a summary, neutrino evolution is modified by an effective potential once
they propagate through matter. In an electrically neutral environment, the effective
potential is given by

Vα =
√

2GF

(
neδα,e −

nn
2

)
(1.53)

For antineutrinos, the potential needs to be replaced by −Vα. Considering again
the Earth with a matter density of ρ ∼ 4g/cm3, the CC potential is of the order of
VCC ∼ 10−14 eV. We can compare that value with the kinetic energy term which the
responsible of the oscillation in vacuum. For a neutrino with energy Eν = 10GeV
and mass ∆m2

ν ∼ 10−3eV2, the kinetic term ∆m2/2Eν ∼ 10−14 eV, similar to the
matter potential.

25



1.2 Neutrinos in the SM

1.5.2 Flavor oscillation in constant matter

The evolution equation for relativistic neutrinos that propagates in matter is
modified by the matter potential term

ı
d

dt



|νe〉
|νµ〉
|ντ 〉


 =

1

2E


U




m2
1 0 0

0 m2
2 0

0 0 m2
3


U † +




A 0 0
0 0 0
0 0 0







|νe〉
|νµ〉
|ντ 〉


 (1.54)

where A = 2
√

2GFneE depends on the electron density and the neutrino energy.
For the matter potential, we have not included the contribution from NC because it
is a diagonal term, which affect in the same way to all flavors. Once the evolution
equation is solved, the NC potential contribute to the flavor evolution with a phase,
similar for all flavors, that desappear when the oscillation probability is obtained.
For the vacuum term, we have approximated the energy of every mass state with
the energy of the flavor states, Eq (1.36). We have also removed the contribution of
the neutrino energy, which is equal for all mass states. The unitary matrix which
multiplies the mass matrix is given by Eq (1.25).

As in vacuum, the mixing matrix in matter can be parameterized in terms of
three angles and a complex phase (θ̃12, θ̃13, θ̃23, δ̃). Without loss of generality, we can
rephase the states |ντ 〉 → |ντ 〉 eıδ and |ν3〉 → |ν3〉 eıδ what is equivalent to define
U = R(θ23, δCP )R(θ13)R(θ12)P , where P is a diagonal matrix that contains the
Majoranna phases

U =




1 0 0
0 c23 s23e

−ıδcp

0 −s23e
−ıδcp c23






c13 0 s13

0 1 0
−s13 0 c13






c12 s12 0
−s12 c12 0

0 0 1






1 0 0

0 eıδ
M
1 0

0 0 eıδ
M
2




(1.55)

The evolution can be solved in a intermediate basis related with the flavor basis
by |ν ′i〉 =

∑
α U

†
αi(23, δCP ) |να〉. Once the equation is solved, the flavor evolution is

recovered multiplying by U(23, δCP ). For this reason, θ23 and δCP are not modified
by matter evolution, and their value is the same as in vacuum.

To solve the neutrino evolution we have to specify the profile density where
neutrino propagates. For an arbitrary density profile, the only exact solution is
numerical, but there are some matter scenarios where an analytical solution can be
obtained, like the constant density matter. In this case, we can define the neutrino
hamiltonian (H) as

H = U




m2
1 0 0

0 m2
2 0

0 0 m2
3


U † +




A 0 0
0 0 0
0 0 0


 (1.56)

and Ũ as the mixing matrix that relates the flavor states with the hamiltonian
eigenstates

Ũ †HŨ =




λ1 0 0
0 λ2 0
0 0 λ3


 (1.57)
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Following the same steps as in section 1.4.1, we can obtain the oscillation probability

Pαβ (L,E) = δαβ − 4
∑

i>j

Re[ŨαiŨ
†
αjŨ

†
βiŨβj] sin2

(
(λi − λj)L

4E

)
(1.58)

+ 2
∑

i>j

Im[ŨαiŨ
†
αjŨ

†
βiŨβj] sin

(
(λi − λj)L

2E

)

The oscillation probability for a constant density profile coincides with the expression
in vacuum replacing U → Ũ and Ei → λi.

1.5.3 2ν approximation

In a simplify scenario which consist of two flavor states |να〉 and |νβ〉, the oscil-
lation is described by the mass difference between two massive states |ν1〉 and |ν2〉,
and the mixing matrix Um is given by the rotation matrix

Um =

(
cos θm sin θm
− sin θm cos θm

)
(1.59)

The evolution equation is given by

ı
d

dx

(
|να〉
|νβ〉

)
=

1

2E

[
U

(
m2

1 0
0 m2

2

)
U † +

(
Aα 0
0 Aβ

)](
|να〉
|νβ〉

)
(1.60)

where U is the 2 × 2 rotation matrix given by Eq (1.43), and Aα = 2EVα. The
matter potential for |νµ〉 and |ντ 〉 is due to the NC interactions for both states, so
in the evolution equation we can take its value as zero 3, and the evolution for those
states is described by the vacuum equation. For any two flavor states, we can use
Um to diagonalize the hamiltonian, the eigenvalues are

λ1(x) =
1

2

[
m2

1 +m2
2 + Aα + Aβ −

√
(∆m2 sin 2θ)2 + (∆m2 cos 2θ − (Aα − Aβ))2

]
(1.61)

λ2(x) =
1

2

[
m2

1 +m2
2 + Aα + Aβ +

√
(∆m2 sin 2θ)2 + (∆m2 cos 2θ − (Aα − Aβ))2

]
(1.62)

and the mixing angle in matter is given by

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ − 2E (Vα − Vβ)
(1.63)

θm depends on the potential, so the relation between the mass and the flavor states
change along the neutrino trajectory as the electron density change. If a mass
state in vacuum, let say |ν1〉, has a large projection over a flavor state, for example
|να〉, which means θ ' 0 or θ ' π/2, inside matter that verifies 2E(Vα − Vβ) �
∆m2 cos 2θ, the projection change and |να〉 is dominated by |ν2〉. For some values of
the matter potential and the neutrino energy, the denominator of tan 2θm vanishes

3The matter potential is non-zero for any of the three neutrinos defined in the SM because of
the electroweak interactions. For the states |νµ〉 and |ντ 〉 the potential comes from the NC, so it
has the same value for both states, and it does not play a role in the oscillation probability. If
we consider the mixing with sterile neutrinos, since this new fermions are singlets of SM, their
matter potential is zero, and we have to include the contribution of the NC to the potential of the
left-handed states.
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(2E(Vα−Vβ) = ∆m2 cos 2θ), and the mixing angle becomes θm = 45. At this point,
there is maximal mixing, and the contribution of every mass state to every flavor
states is the same. The enhancement of the flavor mixing in matter is called MSW
effect [13, 14]. The resonance happens for θ < π/4 if Aα−Aβ and ∆m2 has the same
sign or θ > π/4 in the other case. Therefore, for a given sign of ∆m2 and octant of
vacuum mixing angle, the resonance only happens for neutrinos or antineutrinos.

Neutrino wavelength also can change along its path. The energy difference (λ2−
λ1), which correspond to the oscillation wavelength in matter, depends on the matter
density and takes its smallest value (∆m2 sin 2θ) at the resonant point.

1.5.4 Adiabatic approximation

As in the 3ν mixing, solving the evolution for a constant matter potential and
computing the oscillation probability we recover similar expressions as Eq (1.44) by
changing θ → θm and ∆m2 → (λ2 − λ1). In matter, the symmetry over the mixing
angle octant in the 2ν approximation is broken, for a given sign of Aα − Aβ and
∆m2, θm is larger or smaller than in vacuum depending on the octant of θ. For a
non-constant profile density, the evolution equation can be written in the mass basis
as

ı
d

dx

(
|ν1〉
|ν2〉

)
=

[
1

2E

(
λ1(x) 0

0 λ2(x)

)
− ıU d

dx
U †
](
|ν1〉
|ν2〉

)
(1.64)

Developing the last term in the previous equation, we find that it correspond to
an antisymmetric matrix proportional to θ̇ ≡ dθ/dx. This term implies a mixing
between the mass states in the evolution. If θ̇/|λ2 − λ1| is very small, the evolution
of the mass states is independent of each other and is given by the exponential of
the integral of λi along the neutrino path. That is called adiabatic regime and take
place in slowly varying matter potential compared with the oscillation wavelenght,
like the Sun. Under that approximation, the oscillation probability becomes

Pαβ(L) =

∣∣∣∣∣
∑

i

Uβi(0)Uαi(L) exp

{
− ı

2E

∫ L

0

dxλi(x)

}∣∣∣∣∣

2

(1.65)

We can study the adiabatic neutrino evolution and the oscillation probability in
the particular example of neutrinos created in the inner part of the Sun, where the
matter potential can be expected to be much higher than its value at the resonace.

The two main mechanisms that create neutrinos in the Sun are the pp chain
and CNO cycle, where the overall result of both process is the conversion of 4
protons into a 4He nucleus, two positrons, two electron neutrinos and energy (4p→4

He + 2e+ + 2νe + γ). So, we can study the evolution of the system νe − νβ, where
νβ is a linear combination of νµ and ντ .

At the inner part of the Sun, if the matter potential verifies Ae � ∆m2 cos 2θ,
the mixing angle is θm ' π/2 and the system is mainly composed by |ν2〉. Since the
evolution is adiabatic, the system remains in the same mass state along the whole
path. As the neutrino moves to smaller density regions, θm become smaller and the
mixing increase, being the maximal mixing point at the resonance point θm = π/4.
As the neutrino arrive to the outer part of the Sun, the density decrease but now the
same happen to the mixing. When neutrino exit from the Sun, the |νβ〉 component
is fixed by the vacuum mixing angle, θ.

We can compute the disappearance probability (Pee) from Eq (1.65). Notice that
Uei(0) correspond to the mixing matrix at the production point and, Uei(L) outside
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the sun

Pee =
1

2

[
1 + cos 2θm cos 2θ + sin 2θm sin 2θ cos

(−ı
2E

∫ L

0

dx(λ2(x)− λ1(x))

)]

(1.66)
we have pulled out the phase associated to λ1. θm and θ are the mixing angles at
the production point and outside the Sun, respectively. Due to the large radius of
the Sun and the small energy of the neutrinos created, the oscillatory term is going
to be averaged. Using θm ' π/2 the probability becomes

Pee = sin2 θ (1.67)

After crossing the Sun, the probability to obtain a νe can be very small, and it is just
determined by the vacuum mixing angle. Since the final probability is independent
of the energy and the distance traveled, the νe disappearance can be explained by
flavor transition rather than a flavor oscillation.

1.6 Atmospheric neutrinos

As it was mentioned at the begining, atmospheric neutrinos are created in the
collision of cosmic rays with the atmospheric nuclei. Coming from outside the solar
system, their energy range extends from 100 MeV, below which energy the flux of
extraterrestrial particles arriving to the Earth is dominated by the solar wind, up
to 1020 eV, above which the flux is suppressed because of the interaction with the
cosmic microwave background (cmb). The cosmic rays are mainly protons, electrons
and a small fraction of heavy nuclei [15]. After the interactaion with the atmosphere,
a second generation of particles is produced, and among the hadrons produced there
are many pions and kaons. The spectrum of this secondary flux peaks in the GeV
range, and can be approximated by a power-law to higher energies. At energies lower
than 100 GeV, the atmospheric neutrino flux is dominated by the π decay, Eq (1.68),
whose principal mode corresponds with the decay into a µ and a νµ with a branching
ratio (Br) of Br = 99.99% [10]. To higher energies, the K decay contribution
dominates. Apart from the K decay into µ and νµ Eq (1.68) that correspond to a
Br = 63.56% [10], there are additional contributions from other semileptonic decays
like K± → π0 + µ± + νµ(νµ) (K± → π0 + e± + νe(νe)) with a Br = 3.35%(5.07%).
There is a secondary neutrino flux generated by the µ decay Eq (1.68) that contribute
in the same amount to νµ and νe fluxes. So, the atmospheric neutrino flux is formed
by νµ and νe in a flavor ratio (νµ + νµ)/(νe + νe) ' 2. At high energies, this flux is
suppressed because µ hit the Earth before its decay.

π± → µ± + νµ(νµ) Br = 99, 99% (1.68)

K± → µ± + νµ(νµ) Br = 63.56%

µ± → e± + νe(νe) + νµ(νµ) Br = 100%

The first observation of atmospheric neutrinos was carried out in 1960’s by the
Kolar Gold Field experiment in India [16] and the underground experiments in South
Africa [17]. Both experiments measured the horizontal flux because they could not
distinguish between the up and down directions. In the following decades, new
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experiments were able to measure the atmospheric neutrino flux with high precision,
showing a dependence of the flux that arrives at the detector not only with the rate
at which they are produced but also with the distance traveled along the Earth.

1.6.1 Atmospheric neutrino flux calculations

A detailed knowledge of the neutrino flux is crucial to determine their oscillation
properties. The most recent calculations of the atmospheric neutrino flux are based
in 3D-MonteCarlo (MC) simulations, where the motion of all the cosmic rays that
penetrate the Earth magnetic field is followed, as well as the subsequent generations
of particles, created after their interaction. All the neutrinos generated during the
propagation, whose direction cross a specific location in the Earth, are registered.

The MC simulation makes a convolution between the primary cosmic ray spec-
trum (φp), the yield (Y ) of neutrinos per primary particle and the geomagnetic
cutoff (R) [15]

φνi = φp ⊗Rp ⊗ Yp→νi +
∑

A

φA ⊗RA ⊗ YA→νi (1.69)

where A corresponds to the heavy nuclei present in the arriving cosmic ray flux. φνi
shows an energy dependence that follows a power law φνi ∼ Eγ

ν (Fig 1.6), with an
spectral index close to γ ≈ −3 in the energy range 1 GeV to 1 TeV. For higher (lower)
energies the flux becomes steeper (less marked). About the zenith response, the
flux shape depends on the energy and the Earth location where it is computed [18]
(Fig 1.6). Those effects are due to:

- Geomagnetic effects over the cosmic ray fluxes. Earth magnetic field modifies
the trajectory of the charged cosmic rays once they arrive to the Earth. The
effect depends on the impact point over the Earth. Low rigidity particles can
only penetrate to the Earth in the parallel direction to the magnetic field. For
high rigidity, cosmic rays can enter to Earth from any direction.

- A zenith dependence of the yield. Inclined showers develops in air longer
distances before hitting the ground, and therefore they have more time to
decay. The atmosphere density increase as the altitude decrease. For the
inclined shower, a longer part of the track is developed in high altitudes, which
increase the probability that the particles of the showers end in a decay. Those
effects are more relevant for high energy neutrinos. For low energies, neutrinos
are produced in the decays of low energy mesons and muons, for those who
there is no enhancement in the horizontal directions. As a results, the ratio
between the flux from horizontal to vertical directions increase with neutrino
energy.

- Enhancement of the flux at horizontal directions due to the spherical geometry
of the atmosphere. For low energy neutrinos, there is no correlation between
neutrino direction and its parent particle, the neutrino emission is isotropic.
For an observer which is not at the center of the emission sphere, the center
of the Earth, there is an enhancement in the horizontal direction. The effect
is stronger as the observer moves away from the center. For high energies, the
isotropy emission disappear and the neutrino direction can be approximated
by its parent direction, and the enhancement disappears.
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Figure 1.6: Atmospheric muon neutrino flux (φνµ) as a function of zenit angle (left)
and neutrino energy (right). The dash line in the left pannel has been increase by 3
orders of magnitude. The flux has been obtain from the tables published in [19]

All those effects are presented in the left panel of Fig 1.6, that shows the muon
atmospheric neutrino flux for two different energies Eν = 0.3 GeV (continuous line)
and Eν = 10 GeV (dashed line) as a function of the zenith angle. Due to the
stronger energy dependence od the flux, the dash line has been increased by 3
orders of magnitude. For the continuous line, the flux is higher for the horizontal
direction because of the atmospheric geometry, and it has different values for the up
and down directions due to the geomagnetic effects. For the dashed line, the flux
is perfectly symmetric around an axis pointing in the horizontal direction, and the
flux is higher for cos θz = 0 because of the zenith dependence of the yield. The flux
has been obtained from the tables published in [19]

1.6.2 Flavor oscillation in the Earth

The most accurate description of the Earth density profile is given by Preliminary
Reference Earth Model [20] (PREM), Fig 1.7. Based in seismological studies, PREM
divides the Earth into eleven concentric spherical layers. In each of them, the density
is given in terms of the distance to the center of the Earth by a polynomial function.
In that model, the neutron/electron ratio is also fixed to Yn = 1.012 in the mantle
and Yn = 1.137 in the Core. Because the Earth matter is electrically neutral, using
the density ρ and Yn can be obtained the electron density Ne = ρ/(1 + Yn). Apart
from the density, PREM also provides values for elastic properties, attenuation and
pressure.

Neutrino propagation through the Earth can only be described in the non-
adiabatic regime. The Earth profile density present two very well separate den-
sity regions, the mantle (|x| > 0.54) and the core (|x| < 0.54), where the density
abruptly change by a factor of two, breaking any possible adiabatic description for
the trajectories that cross the core, Fig 1.7. x is the ratio between the distance
of the layer to the center of the Earth (R) and the Earth radius R⊕ = 6371 km.
Although there are analytic approximations that provide an accurate description of
the flavor oscillation in non-adiabatic evolutions [21], we are going to proceed by a
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numerical integration in order to describe the flavor evolution.
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Figure 1.7: Earth density given by PREM [20] as a function of the fractional distance
to the Earth center x = R/R⊕, where R is the distance of the layer to the center of
the Earth and R⊕ = 6371 km.

In order to have an overall view of the matter resonances when neutrinos travel
through the Earth, we are going to study the electron disappearance channel, (1−
Pee = Pµe + Pτe), Fig 1.8. Notice that the Earth profile density is symmetric about
the midpoint in the neutrino path, so the oscillation probability is invariant under
the time ordering operation Pαβ = Pβα. The flavor oscillation along the Earth
depends on neutrino energy (Eν) and the direction of the neutrino trajectory, that
is given by the cosine of the zenith angle (cos θz), defined as cos θz = −1 for up-going
neutrinos, and cos θz = 1 for down going neutrinos. To present the probability we
are going to use the oscillogram, a two dimensional contour plot where every color
line corresponds with a value for 1 − Pee. In this figure, the best fit values of
the global fit [22] were used as input for the oscillation parameters. Since we are
interested only in the evolution through the Earth, the zenith angle is in the interval
cos θz ∈ [−1, 0], for positives values the neutrino only crosses the atmosphere. For
simplicity, we have assumed that neutrinos are produced at an altitude of 15 km4.
For the energy, we have considered the range Eν ∈ [0.05, 100] GeV. At the top of
the energy range, the flavor oscillation is limited by the atmospheric mass splitting
(∼ 10−3eV2), which produce the first oscillation maximum at Eν ≈ 20 GeV. At the
bottom of the energy range, neutrinos never stop oscillating. We can consider as a
minimum value, the energy at which the solar mass splitting (∼ 10−5eV2) produce
a complete oscillation for horizontal neutrinos (cos θz = 0) inside the atmosphere is
Eν ≈ 0.05 GeV.

4Most of the neutrinos are produced at an altitude of 20-10 km [15]. In order to properly treat
with the neutrino production at different altitudes, we have to average the oscillation probability
along the atmosphere weighted by an altitude distribution function normalized to one. Due to the
small size of the atmosphere compared with the Earth, we have fixed its size to an intermediate
value of 15 km.
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Figure 1.8: 1−Pee for atmospheric neutrinos (left) and antineutrinos (right) crossing
the Earth.

The neutrino evolution inside the Earth is obtained by solving Eq (1.54) for
PREM, Fig 1.7. 1− Pee shows two separate regions that correspond to trajectories
that cross the Earth core (cosθz < −0.83), or trajectories developed just in the man-
tle. In a 3ν mixing, there are two oscillations wavelengths that compete at different
energy scales. For the 1-3 mixing, the MSW resonance is driven by the atmospheric
mass parameter (∆m2

31 = 2.494×10−3eV2 NH or ∆m2
32 = −2.465×10−3eV2 IH) [22].

A constant density approximation can be used to describe the evolution of trajec-
tories that only cross the mantle [23, 24]. In this case, the resonance condition can
be written as

2VCCE
R
ν = |∆m2

3l| cos 2θ13 (1.70)

where VCC is the averaged CC potential along the neutrino path. This expression
determines the values of the energy where oscillation amplitude is maximal as a
function of the trajectory ER

ν (θz). In addition, to get a maximum in the oscilla-
tion probability (1 − Pee ' 1), it is needed that the oscillation phase should be
proportional to π/2. From Eq (1.58) we get

(λ3 − λ1)L

4E
= (2k + 1)

π

2
k ∈ N (1.71)

For an average density of the mantle about ρ ∼ (4− 5)g/cm3, both conditions meet
at ER

ν ∼ 6 GeV and cos θz ∼ −0.8. There is only one point where both conditions
meet because of the oscillation length at the resonance, given by

LOSC
R =

LOSC

sin 2θ13

(1.72)

where LOSC is the oscillation vacuum length, which is of the order of the Earth
radius. Due to the small value of θ13 ∼ 8.5 [22], LOSC

R is much longer than Earth
size.

For the 1-2 mixing, the resonant amplitude depends on the solar mass param-
eter, ∆m2

21 = 7.4 × 10−5eV2 [22]. Using the approximation of constant density
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matter for the mantle, the resonant energy is about ER
ν ∼ 0.1 GeV. Around that

value, there are three directions where there is a total flavor conversion, cos θz =
{−0.75,−0.49,−0.15}. For the solar mass parameter, the vacuum oscillation length
is about half of the Earth radius, so at the resonance LOSC

R ∼ R⊕/4. The neu-
trino baseline through the Earth can be approximated as L ' 2R⊕| cos θz|. We
can compute the phase (φ = ∆m2

21 sin 2θ21L/4E) for the three directions where the
maximum transition is obtained, finding

φ(cos θz = −0.75) ≈ 5π/2

φ(cos θz = −0.49) ≈ 3π/2

φ(cos θz = −0.15) ≈ π/2

The three directions corresponding to the first three odd multiples of π/2. There
is another maximum transition point around cos θz ' −0.92 and Eν ' 0.2 GeV.
That direction crosses the Earth core, so the evolution cannot be described by the
constant matter approximation. In spite of that, the resonant energy for the core
should be smaller than in mantle since the matter potential is higher in the core.
For that reason, a maximum transition point at the core with Eν > 0.1 GeV cannot
be explained as coincident between the resonant amplitude and phase conditions.
Instead, this total flavor conversion can be explained by a parametric enhancement
of the oscillations [24].

In Fig 1.8 we have used a normal mass ordering, since the best fit points towards
that mass distribution, although with small preference over invert hierarchy [22].
Since the mass splittings and the matter potential for antineutrinos have opposite
signs, it is not possible to get a resonant amplitude for them. We can repeat the
simulation for IH, and we will get the opposite situation, the maximum flavor con-
version will take place for antineutrinos. For IH, we can repeat the same discussion
as before, but in this case for antineutrinos.

1.6.3 IceCube DeepCore experiment

IceCube is neutrino cherenkov telescope located at the South Pole, whose primary
scientific objective is the discovery of astrophysical neutrinos, which was realized in
2013 [25]. The astrophysical flux measured is in the energy range of ∼ 30 TeV
to PeV, Fig. 1.9. For lower energies, the neutrino flux arriving at the detector is
dominated by atmospheric neutrinos. At sufficient low energies, the atmospheric
flux can be measured for an L/E ratio relevant for the flavor oscillations, opening
the possibility to study this phenomenon for high energy atmospheric neutrinos.
Before this experiment, SK was the only statistically significant detector able to
measure oscillations through the Earth.

The small neutrino cross section and the expected low flux for astrophysical
neutrinos require a detector with a large target mass. IceCube consists of 5160
photomultipliers, called DOMs (Digital Optical Module) distributed over a volume
of almost a cubic kilometer below the Antartica surface, which is equivalent to a mass
of∼ 1000 MTon. The DOMs are arranged in 86 strings distributed along a hexagonal
pattern [27]. Each string contains 60 DOMs and, 78 of them are instrumented from
a depth of ∼ 1450 km to ∼ 2450 km, with a vertical spacing of 17 m between DOM,
and a horizontal distance of 125 m to the nearest string. The remaining eight strings
are also formed by 60 photomultipliers with 35% higher efficiency. Six of the last
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Figure 1.9: Muon event distribution as a function of neutrino energy deposit inside
the detector [26]. The neutrino energy is infered by performing of the best-fit of
its spectrum. The blue (red) bands correspond to the atmospheric (astrophysical)
constribution.

eight strings form a hexagonal distribution surrounding the central IceCube string,
with an average horizontal distance of 70 m between them. The remaining two
strings are located inside the inner hexagon, with an average horizontal distance
of 42 m between them and to the nearest neighbor. The vertical distance between
DOMs for this 8 strings is 7 m for the deepest 50 DOMs. Then, there is a gap of
350 m due to a dust layer in the ice, and the remaining 10 DOMs are separated
10 m. To the denser array of DOMs formed by the eight strings with a small DOMs
separation, the six that surround them and the central one, is called DeepCore. At
the Antartica surface, there is an array of ice filled tanks (IceTop), each of them
with two DOMs, that detect cosmic rays by observing the air showers created in its
collision with the atmosphere. The layout of IceCube is in Fig 1.10.

The optical properties of the ice affect the trajectories of the photons emitted in
the cherenkov radiation (o(105) per GeV). By interacting with the ice, the photons
can be absorbed or its trajectory can be deviated. In the clearest ice, the trans-
parency of the Antartica ice cap allows an attenuation length larger than the DOMs
separation [28]. The refreezed water, that filled the hole containing the DOMs, has
optical properties rather different from those of the bulk ice. The new ice induces
an additional scattering over the photon propagation due to the high concentration
of air bubbles [29].

How does the detector work?

IceCube is an ice cherenkov detector. The charged particles, that move faster
than the speed of light in the ice, emits photons with a wavelength in the optical
range, [300 - 500]nm (cherenkov radiation). The detector performance is based in
the detection of such radiation, together with its arrival time and its location. In
order to reduce the noise, once a DOM detect the radiation, it communicates with
its nearest and next-to-nearest DOMs to determine if the signal has been also seen
by the others, in a time window of 1µs. If two or more DOMs fulfill the criteria, the
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event is called Hard Local Coincidence (HLC).

The fundamental trigger used by IceCube is based on the number of DOMs
satisfying HLC condition. For IceCube is required at least 8 DOMs within a 5µs
time window, that is called SMT8. For DeepCore are needed at least 3 DOMs in
a 2.5µs window (SMT3) [28]. Additional triggers with lower multiplicity can be
defined for subsets of DOMs in order to identify specific signals. After the trigger
condition is fulfilled the information in the whole detector is saved, and in order to
reduce the background are applied different filters.

ν oscillation in IceCube DeepCore

The IceCube geometry determines the energy range at which the atmospheric
neutrino flux can be measured, and the event topology used to distinguish between
different neutrino flavors. The events at IceCube comes from the neutrino interaction
with the nucleons in the ice, and the signals left at the detector depends on the
interaction final state. The two main event topologies that can be detected in
IceCube are, “tracks” and “cascades”. The tracks are produced by the cherenkov
radiation in the muon propagation. The cascades, which shows a spherical light
pattern inside the detector, are created by the hadronic showers of CC and NC,
by the electrons that lose their energy quickly into electromagnetic showers, and
by tau decaying into electrons and hadrons. This topology is also called “bang”.
The only interaction that can be identified in IceCube for low energy atmospheric
neutrinos is the νµ CC, which leaves a signal in the detector consisting of a track
and a cascade [29]. For νe CC, due to the quick loss of energy by the electron, the
detector cannot to distinguish between the two cascades at the final state. The same

Figure 1.10: IceCube layout [27]. IceCube consist of 5160 DOMs distributed in 86
strings that form a hexagonal pattern. The DOMs are deployed from a depth of
1450 m to 2450 m. At the inner part of the detector, there is a denser array of
photomultipliers called DeepCore. Over the Antartica surface, there is an array of
ice filled tanks, each of them contains two DOMs.
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Figure 1.11: Pµµ for atmospheric neutrinos (left) and antineutrinos (right) crossing
the Earth. The value used for the oscillation parameter has been taken from the
best-fit point of the global fit [22]

happens for ντ CC at low energies due to the small lifetime of the tau lepton. As
the energy of ντ increase, the tau is boosted and the two cascades can be separated.
As an example, for Eντ ∼ PeV the distance between the showers is ∼ 100 m. The
NC interaction is independent of the initial flavor, and the signal is only a cascade.

For atmospheric muon neutrinos that cross the whole Earth (cos θz = −1), the
maximum energy at which the total flavor conversion happen (Pµµ = 0) is Eνµ ∼
23 GeV, Fig 1.11. Muons with energies lower than 100 GeV lose their energy by
ionization [10], and for energies lower than its critical energy (Eµc ∼ 600 GeV),
the distance traveled before its decay can be approximated as Rµ(E) ≈ E/(ρa)
where a ≈ 2MeV cm2/g is the electronic stopping power and ρ ≈ 1g/cm3 is the ice
density. The distance traveled by the muons before its decay can be approximated
by 5m/GeV. The DOM separation and the trigger conditions make DeepCore the
only place in IceCube where the flavor oscillation can be measured.

DeepCore is able to measure muon neutrinos and antineutrinos with energies
above 5 GeV [30]. Above that energy, the flavor oscillation is driven by the atmo-
spheric mass parameter (∆m2

3l). From 3 GeV to 12 GeV, the matter effects modify
the flavor oscillation probability with respect to the vacuum case for neutrinos (an-
tineutrinos) and normal (inverted) mass hierarchy, Fig 1.11. The main background
to this signal comes from atmospheric muons that reach to the detector from above.
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Chapter2

Fit to three neutrino mixing

Beside a few examples where the events measured can only be explained by a
mass parameter much larger than the atmospheric mass splitting [31], the results
of the neutrino oscillation experiments can be explained within a 3 neutrino mixing
flavor [32]. In this model, the flavor oscillation depends on two mass splittings,
the solar (∆m2

SOL ∼ 10−5eV2) and the atmospheric mass (|∆m2
ATM | ∼ 10−3eV2),

three angles (θ12, θ13, θ23), and a complex phase (δCP ). After several years of data
taking, the least known among those parameters are the sign of ∆m2

ATM , which
determine the neutrino mass ordering (Fig 1.4), the octant of θ23 and the complex
phase δCP . About the mass ordering, the change of sign induces a detectable effect
for matter experiments by comparing the oscillation probability for neutrinos and
antineutrinos in the appearance channel, where the actual sensitivity comes from.
There is a statistical preference is for NO with a significance of 2σ [22] over IH.
θ23 can be maximal (θ23 = 45), or can be in the first octant (θ23 < 45) or in the
second octant (θ23 > 45). The muon disappearance channel (Pµµ) can disentangle
between maximal or not maximal mixing. To resolve between the octants, only
matter experiments measuring in the apperance channel can do it. The recent
results indicate a preference for values in the second octant, the best fit is close to
45 [22]. For δCP , the sensitivity comes from the comparison between the neutrino
and antineutrino oscillations probabilities in the appearance channel. The current
results exclude an interval of 60◦ around δCP ' 90 to more than 3σ [22], for both
mass ordering.

The sensitivity of the present data to the six parameters that describe the model
can only be obtained by a global fit, where all the experiment are included. Neu-
trino flavor oscillations have been observed in a wide variety of experiments which
include different energy neutrino beams, different initial and final flavors, and differ-
ent baselines. Those characteristics determine the contribution of every experiment
into the global fit (Tab 2.1).

Experiment Dominant Important
Solar Experiments θ12 ∆m2

21 and θ13

Reactor LBL (KamLAND) ∆m2
21 θ12 and θ13

Reactor MBL (Daya-Bay, Reno, Double-Chooz) θ13 |∆m2
3l|

Atmospheric Experiments θ23 |∆m2
3l|, θ13 and δCP

Accelerator LBL νµ Disapp (Minos, NOνA,T2K) |∆m2
3l| and θ23

Accelerator LBL νe App (Minos, NOνA,T2K) δCP θ23 θ13, sign(∆m2
3l)

Table 2.1: Experiment contribution to the oscillation parameter determination
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1 Introduction

Experiments measuring the flavor composition of solar neutrinos, atmospheric neutrinos,

neutrinos produced in nuclear reactors and in accelerators have established that lepton fla-

vor is not conserved in neutrino propagation, but it oscillates with a wavelength depending

on distance and energy, because neutrinos are massive and the mass states are admixtures

of the flavor states [1, 2], see ref. [3] for an overview.

With the exception of a set of unconfirmed “hints” of possible eV scale mass states

(see ref. [4] for a recent review), all the oscillation signatures can be explained with the

three flavor neutrinos (νe, νµ, ντ ), which can be expressed as quantum superpositions of

three massive states νi (i = 1, 2, 3) with masses mi. This implies the presence of a leptonic

mixing matrix in the weak charged current interactions [5, 6] which can be parametrized as:

U =

1 0 0

0 c23 s23

0 −s23 c23

 ·
 c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13

 ·
 c12 s12 0

−s12 c12 0

0 0 1

 · P (1.1)

where cij ≡ cos θij and sij ≡ sin θij . The angles θij can be taken without loss of generality

to lie in the first quadrant, θij ∈ [0, π/2], and the phase δCP ∈ [0, 2π]. Here P is a diagonal
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matrix which is the identity if neutrinos are Dirac fermions and it contains two additional

phases if they are Majorana fermions, and plays no role in neutrino oscillations [7, 8]. In

this convention there are two non-equivalent orderings for the neutrino masses which can be

chosen to be: normal ordering (NO) with m1 < m2 < m3, and inverted ordering (IO) with

m3 < m1 < m2. Furthermore the data shows a relatively large hierarchy between the mass

splittings, ∆m2
21 � |∆m2

31| ' |∆m2
32| with ∆m2

ij ≡ m2
i −m2

j . In this work we follow the

convention introduced in ref. [9] and present our results in terms of the variable ∆m2
3`, with

` = 1 for NO and ` = 2 for IO. Hence, ∆m2
3` = ∆m2

31 > 0 for NO and ∆m2
3` = ∆m2

32 < 0

for IO, i.e., it corresponds to the mass splitting with the largest absolute value.

In this article, we present an up-to-date (as of fall 2016) global analysis of neutrino

data in the framework of three-neutrino oscillations. Alternative recent global fits have

been presented in refs. [10, 11]. With current data from the accelerator long-baseline

experiments MINOS, T2K, NOνA and modern reactor experiments like Daya-Bay, RENO,

and Double-Chooz, their complementarity anticipated more than a decade ago [12–14] has

become a reality, and the combined analysis starts to show some sensitivity to subtle effects

like the θ23 octant or the δCP phase (though still at low statistical significance).

The outline of the paper is as follows: in section 2.1 we describe the data samples

included in our analysis (see also appendix A for a schematic list). The presently allowed

ranges of the six oscillation parameters are given in section 2.2 assuming that ∆χ2 follows

a χ2-distribution, while section 2.3 contains the corresponding measures of CP violation in

terms of the leptonic Jarlskog invariant and the leptonic unitarity triangle. Deviations from

the Gaussian approximation of the confidence intervals for θ23 and δCP and the confidence

level for the mass ordering determination are quantified in section 4. Several issues ap-

pearing in the present analysis are discussed in section 3, in particular about the consistent

combination of results from long baseline accelerator experiments with reactors results,

now that both provide comparable precision in the determination of the relevant mass-

squared difference. We also give the updated status on the ongoing tension in the ∆m2
21

determination from solar experiments versus KamLAND, and comment on the stand-by in

the analysis of the Super-Kamiokande atmospheric data. Section 5 contains the summary

of our results.

2 Global analysis: determination of oscillation parameters

2.1 Data samples analyzed

In the analysis of solar neutrino data we consider the total rates from the radiochemical

experiments Chlorine [15], Gallex/GNO [16] and SAGE [17], the results for the four phases

of Super-Kamiokande [18–22], the data of the three phases of SNO included in the form

of the parametrization presented in [23], and the results of both Phase-I and Phase-II of

Borexino [24–26].

Results from long baseline (LBL) accelerator experiments include the final energy

distribution of events from MINOS [27, 28] in νµ and ν̄µ disappearance and νe and ν̄e
appearance channels, as well as the latest energy spectrum for T2K in the same four chan-

nels [29, 30] and for NOνA on the νµ disappearance and νe appearance neutrino modes [31].
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Data samples on ν̄e disappearance from reactor include the full results of the long

baseline reactor data in KamLAND [32], as well as the results from medium baseline reactor

experiments from CHOOZ [33] and Palo Verde [34]. Concerning running experiments we

include the latest spectral data from Double-Chooz [35] and Daya-Bay [36], while for RENO

we use the total rates obtained with their largest data sample corresponding to 800 days

of data-taking [37].

In the analysis of the reactor data, the unoscillated reactor flux is determined as de-

scribed in [38] by including in the fit the results from short baseline reactor data (RSBL)

from ILL [39], Gösgen [40], Krasnoyarsk [41, 42], ROVNO88 [43], ROVNO4 [44], Bugey3 [45],

Bugey4 [46], and SRP [47].

For the analysis of atmospheric neutrinos we include the results from IceCube/DeepCore

3-year data [48].

The above data sets constitute the samples included in our NuFIT 3.0 analysis. For

Super-Kamiokande atmospheric neutrino data from phases SK1–4 we will comment on our

strategy in section 3.3. A full list of experiments including the counting of data points in

each sample can be found in appendix A.

2.2 Results: oscillation parameters

The results of our standard analysis are presented in figures 1 and 2 where we show projec-

tions of the allowed six-dimensional parameter space.1 In all cases when including reactor

experiments we leave the normalization of reactor fluxes free and include data from short-

baseline (less than 100 m) reactor experiments. In our previous analysis [9, 50] we studied

the impact of this choice versus that of fixing the reactor fluxes to the prediction of the

latest calculations [51–53]. As expected, the overall description is better when the flux

normalization fflux is fitted against the data. We find χ2(fflux fix)−χ2(fflux fit) ' 6 which

is just another way to quantify the well-known short baseline reactor anomaly to be ∼ 2.5σ.

However, the difference in the resulting parameter determination (in particular for θ13) be-

tween these two reactor flux normalization choices has become marginal, since data from

the reactor experiments with near detectors such as Daya-Bay, RENO and Double-Chooz

(for which the near-far comparison allows for flux-normalization independent analysis) is

now dominant. Consequently, in what follows we show only the ∆χ2 projections for our

standard choice with fitted reactor flux normalization.

The best fit values and the derived ranges for the six parameters at the 1σ (3σ) level

are given in table 1. For each parameter x the ranges are obtained after marginalizing with

respect to the other parameters2 and under the assumption that ∆χ2
marg(x) follows a χ2

distribution. Hence the 1σ (3σ) ranges are given by the condition ∆χ2
marg(x) = 1 (9). It

is known that because of its periodic nature and the presence of parameter degeneracies

the statistical distribution of the marginalized ∆χ2 for δCP and θ23 (and consequently the

1∆χ2 tables from the global analysis corresponding to all 1-dimensional and 2-dimensional projections

are available for download at the NuFIT website [49].
2In this paper we use the term “marginalization” over a given parameter as synonym for minimizing the

χ2 function with respect to that parameter.
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Figure 1. Global 3ν oscillation analysis. Each panel shows the two-dimensional projection of the

allowed six-dimensional region after marginalization with respect to the undisplayed parameters.

The different contours correspond to 1σ, 90%, 2σ, 99%, 3σ CL (2 dof). The normalization of reactor

fluxes is left free and data from short-baseline reactor experiments are included as explained in the

text. Note that as atmospheric mass-squared splitting we use ∆m2
31 for NO and ∆m2

32 for IO.

The regions in the four lower panels are obtained from ∆χ2 minimized with respect to the mass

ordering.
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Figure 2. Global 3ν oscillation analysis. The red (blue) curves correspond to Normal (Inverted)

Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor

experiments are included. Note that as atmospheric mass-squared splitting we use ∆m2
31 for NO

and ∆m2
32 for IO.

– 5 –



J
H
E
P
0
1
(
2
0
1
7
)
0
8
7

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 0.83) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.306+0.012
−0.012 0.271→ 0.345 0.306+0.012

−0.012 0.271→ 0.345 0.271→ 0.345

θ12/
◦ 33.56+0.77

−0.75 31.38→ 35.99 33.56+0.77
−0.75 31.38→ 35.99 31.38→ 35.99

sin2 θ23 0.441+0.027
−0.021 0.385→ 0.635 0.587+0.020

−0.024 0.393→ 0.640 0.385→ 0.638

θ23/
◦ 41.6+1.5

−1.2 38.4→ 52.8 50.0+1.1
−1.4 38.8→ 53.1 38.4→ 53.0

sin2 θ13 0.02166+0.00075
−0.00075 0.01934→ 0.02392 0.02179+0.00076

−0.00076 0.01953→ 0.02408 0.01934→ 0.02397

θ13/
◦ 8.46+0.15

−0.15 7.99→ 8.90 8.49+0.15
−0.15 8.03→ 8.93 7.99→ 8.91

δCP/
◦ 261+51

−59 0→ 360 277+40
−46 145→ 391 0→ 360

∆m2
21

10−5 eV2 7.50+0.19
−0.17 7.03→ 8.09 7.50+0.19

−0.17 7.03→ 8.09 7.03→ 8.09

∆m2
3`

10−3 eV2 +2.524+0.039
−0.040 +2.407→ +2.643 −2.514+0.038

−0.041 −2.635→ −2.399

[
+2.407→ +2.643

−2.629→ −2.405

]

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2016 and

ICHEP-2016 conference. The numbers in the 1st (2nd) column are obtained assuming NO (IO),

i.e., relative to the respective local minimum, whereas in the 3rd column we minimize also with

respect to the ordering. Note that ∆m2
3` ≡ ∆m2

31 > 0 for NO and ∆m2
3` ≡ ∆m2

32 < 0 for IO.

corresponding CL intervals) may be modified [54, 55]. In section 4 we will discuss and

quantify these effects.

In table 1 we list the results for three scenarios. In the first and second columns

we assume that the ordering of the neutrino mass states is known a priori to be Normal

or Inverted, respectively, so the ranges of all parameters are defined with respect to the

minimum in the given scenario. In the third column we make no assumptions on the

ordering, so in this case the ranges of the parameters are defined with respect to the global

minimum (which corresponds to Normal Ordering) and are obtained marginalizing also

over the ordering. For this third case we only give the 3σ ranges. In this case the range

of ∆m2
3` is composed of two disconnected intervals, one containing the absolute minimum

(NO) and the other the secondary local minimum (IO).

Defining the 3σ relative precision of a parameter by 2(xup − xlow)/(xup + xlow), where

xup (xlow) is the upper (lower) bound on a parameter x at the 3σ level, we read 3σ relative

precision of 14% (θ12), 32% (θ23), 11% (θ13), 14% (∆m2
21) and 9% (|∆m2

3`|) for the various

oscillation parameters.

2.3 Results: leptonic mixing matrix and CP violation

From the global χ2 analysis described in the previous section and following the procedure

outlined in ref. [56] one can derive the 3σ ranges on the magnitude of the elements of the
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Figure 3. Dependence of the global ∆χ2 function on the Jarlskog invariant. The red (blue) curves

are for NO (IO).

leptonic mixing matrix:

|U | =

0.800→ 0.844 0.515→ 0.581 0.139→ 0.155

0.229→ 0.516 0.438→ 0.699 0.614→ 0.790

0.249→ 0.528 0.462→ 0.715 0.595→ 0.776

 . (2.1)

Note that there are strong correlations between the elements due to the unitary constraint.

The present status of the determination of leptonic CP violation is illustrated in fig-

ure 3. In the left panel we show the dependence of ∆χ2 of the global analysis on the Jarlskog

invariant which gives a convention-independent measure of CP violation [57], defined as

usual by:

Im
[
UαiU

∗
αjU

∗
βiUβj

]
≡ Jmax

CP sin δ = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 sin δ (2.2)

where we have used the parametrization in eq. (1.1). Thus the determination of the mixing

angles yields at present a maximum allowed CP violation

Jmax
CP = 0.0329± 0.0007 (+0.0021

−0.0024) (2.3)

at 1σ (3σ) for both orderings. The preference of the present data for non-zero δCP implies

a best fit value Jbest
CP = −0.033, which is favored over CP conservation with ∆χ2 = 1.7.

These numbers can be compared with the size of the Jarlskog invariant in the quark sector,

which is determined to be Jquarks
CP = (3.04+0.21

−0.20)× 10−5 [58].

In figure 4 we recast the allowed regions for the leptonic mixing matrix in terms of

one leptonic unitarity triangle. Since in the analysis U is unitary by construction, any

given pair of rows or columns can be used to define a triangle in the complex plane.

In the figure we show the triangle corresponding to the unitarity conditions on the first

and third columns which is the equivalent to the one usually shown for the quark sector.
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Figure 4. Leptonic unitarity triangle for the first and third columns of the mixing matrix. After

scaling and rotating the triangle so that two of its vertices always coincide with (0, 0) and (1, 0)

we plot the 1σ, 90%, 2σ, 99%, 3σ CL (2 dof) allowed regions of the third vertex. Note that in the

construction of the triangle the unitarity of the U matrix is always explicitly imposed. The regions

for both orderings are defined with respect to the common global minimum which is in NO.

In this figure the absence of CP violation implies a flat triangle, i.e., Im(z) = 0. As

can be seen, for NO the horizontal axis crosses the 1σ allowed region, which for 2 dof

corresponds to ∆χ2 ≤ 2.3. This is consistent with the present preference for CP violation,

χ2(JCP = 0) − χ2(JCP free) = 1.7 mentioned above. We will comment on the statistical

interpretation of this number in section 4.

3 Issues in present analysis

The 3ν fit results in the previous section provide a statistically satisfactory description

of all the neutrino oscillation data considered. There are however some issues in the

determination of some of the parameters which, although not of statistical significance at

present, deserve some attention.

3.1 Status of ∆m2
21 in solar experiments versus KamLAND

The analyses of the solar experiments and of KamLAND give the dominant contribution

to the determination of ∆m2
21 and θ12. It has been a result of global analyses for several

years already, that the value of ∆m2
21 preferred by KamLAND is somewhat higher than

the one from solar experiments. This tension arises from a combination of two effects

which have not changed significantly over the last lustrum: a) the well-known fact that

none of the 8B measurements performed by SNO, SK and Borexino shows any evidence

of the low energy spectrum turn-up expected in the standard LMA-MSW [59, 60] solution

for the value of ∆m2
21 favored by KamLAND; b) the observation of a non-vanishing day-

night asymmetry in SK, whose size is larger than the one predicted for the ∆m2
21 value

indicated of KamLAND (for which Earth matter effects are very small). In ref. [9] we

discussed the differences in the physics entering in the analyses of solar and KamLAND

data which are relevant to this tension, and to which we refer the reader for details. Here
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Figure 5. Left: allowed parameter regions (at 1σ, 90%, 2σ, 99% and 3σ CL for 2 dof) from the

combined analysis of solar data for GS98 model (full regions with best fit marked by black star) and

AGSS09 model (dashed void contours with best fit marked by a white dot), and for the analysis of

KamLAND data (solid green contours with best fit marked by a green star) for fixed θ13 = 8.5◦.

Right: ∆χ2 dependence on ∆m2
21 for the same three analyses after marginalizing over θ12.

for sake of completeness we show in figure 5 the quantification of this tension in our present

global analysis. As seen in the figure, the best fit value of ∆m2
21 of KamLAND lays at the

boundary of the 2σ allowed range of the solar neutrino analysis.

Also for illustration of the independence of these results with respect to the solar

modeling, the solar neutrino regions are shown for two latest versions of the Standard

Solar Model, namely the GS98 and the AGSS09 models [61] obtained with two different

determinations of the solar abundances [62].

3.2 ∆m2
3` determination in LBL accelerator experiments versus reactors

Figure 6 illustrates the contribution to the present determination of ∆m2
3` from the different

data sets. In the left panels we focus on the determination from long baseline experiments,

which is mainly from νµ disappearance data. We plot the 1σ and 2σ allowed regions (2 dof)

in the dominant parameters ∆m2
3` and θ23. As seen in the figure, although the agreement

between the different experiments is reasonable, some “tension” starts to appear in the

determination of both parameters among the LBL accelerator experiments. In particular

we see that the recent results from NOνA, unlike those from T2K, favor a non-maximal

value of θ23. It is important to notice that in the context of 3ν mixing the relevant oscillation

probabilities for the LBL accelerator experiments also depend on θ13 (and on the θ12 and

∆m2
21 parameters which are independently well constrained by solar and KamLAND data).

To construct the regions plotted in the left panels of figure 6, we adopt the procedure
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Figure 6. Determination of ∆m2
3` at 1σ and 2σ (2 dof), where ` = 1 for NO (upper panels) and

` = 2 for IO (lower panels). The left panels show regions in the (θ23,∆m
2
3`) plane using both

appearance and disappearance data from MINOS (green line), T2K (red lines), NOνA (light blue

lines), as well as IceCube/DeepCore (orange lines) and the combination of them (colored regions).

In these panels the constraint on θ13 from the global fit (which is dominated by the reactor data)

is imposed as a Gaussian bias. The right panels show regions in the (θ13,∆m
2
3`) plane using only

Daya-Bay (black lines), reactor data without Daya-Bay (violet lines), and their combination (colored

regions). In all panels solar and KamLAND data are included to constrain ∆m2
21 and θ12. Contours

are defined with respect to the global minimum of the two orderings.

currently followed by the LBL accelerator experiments: we marginalize with respect to θ13,

taking into account the information from reactor data by adding a Gaussian penalty term

to the corresponding χ2
LBL. This is not the same as making a combined analysis of LBL

and reactor data as we will quantify in section 3.2.1.

Concerning νe disappearance data, the total rates observed in reactor experiments at

different baselines can provide an independent determination of ∆m2
3` [50, 63]. On top of

this, the observation of the energy-dependent oscillation effect due to θ13 now allows to

further strengthen such measurement. In the right panels of figure 6 we show therefore the

allowed regions in the (θ13,∆m
2
3`) plane based on global data on νe disappearance. The

violet contours are obtained from all the medium-baselines reactor experiments with the

exception of Daya-Bay; these regions emerge from the baseline effect mentioned above plus
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spectral information from Double-Chooz.3 The black contours are based on the energy

spectrum in Daya-Bay, whereas the colored regions show the combination.

By comparing the left and right panels of figure 6 we observe that the combined νµ and

νe disappearance experiments provide a consistent determination of |∆m2
3`| with similar

precision. However when comparing the region for each LBL experiment with that of the

reactor experiments we find some dispersion in the best fit values and allowed ranges. This

is more clearly illustrated in the upper panels of figure 7, where we plot the one dimensional

projection of the regions in figure 6 as a function of ∆m2
3` after marginalization over θ23 for

each of the LBL experiments and for their combination, together with that from reactor

data after marginalization over θ13. The projections are shown for NO(right) and IO(left).

Let us stress that the curves corresponding to LBL experiments in the upper panels of

figure 7 (as well as those in the upper panels of figures 8 and 9) have been obtained by a

partial combination of the information on the shown parameter (∆m2
3` or θ23 or δCP) from

LBL with that of θ13 from reactors, because in these plots only the θ13 constraint from

reactors is imposed while the dependence on ∆m2
3` is neglected. This corresponds to the

1-dim projections of the function:

∆χ2
LBL+θREA

13
(θ23, δCP,∆m

2
3`)

= min
θ13

[
χ2

LBL(θ13, θ23, δCP,∆m
2
3`) + min

∆m2
3`

χ2
REA(θ13,∆m

2
3`)
]
− χ2

min . (3.1)

However, since reactor data also depends on ∆m2
3` the full combination of reactor and

LBL results implies that one must add consistently the χ2 functions of the LBL experiment

with that of reactors evaluated the same value of ∆m2
3`, this is

∆χ2
LBL+REA(θ23, δCP,∆m

2
3`)

= min
θ13

[
χ2

LBL(θ13, θ23, δCP,∆m
2
3`) + χ2

REA(θ13,∆m
2
3`)
]
− χ2

min . (3.2)

We discuss next the effect of combining consistently the information from LBL and reactor

experiments in the present determination of θ23, δCP and the ordering.

3.2.1 Impact on the determination of θ23, mass ordering, and δCP

We plot in the lower panels of figures 7–9 the one dimensional projections of ∆χ2
LBL+REA for

each of the parameters θ23, δCP, ∆m2
3` (marginalized with respect to the two undisplayed

parameters) for the consistent LBL+REA combinations with both the information on θ13

and ∆m2
3` from reactors included, eq. (3.2). As mentioned before, the curves in the upper

panels for these figures show the corresponding 1-dimensional projections for the partial

combination, in which only the θ13 constraint from reactors is used, eq. (3.1). For each

experiment the curves in these figures are defined with respect to the global minimum of

the two orderings, so the relative height of the minimum in one ordering vs the other gives

a measure of the ordering favored by each of the experiments.

3Recently, RENO has presented a spectral analysis based on an exposure of 500 days [64]. Here we prefer

to include from RENO only the total rate measurement, based on the larger exposure of 800 days [37].
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Figure 7. ∆m2
3` determination from LBL accelerator experiments, reactor experiments and their

combination. Left (right) panels are for IO (NO). The upper panels show the 1-dim ∆χ2 from LBL

accelerator experiments after constraining only θ13 from reactor experiments (this is, marginalizing

eq. (3.1) with respect to θ23 and δCP). For each experiment ∆χ2 is defined with respect to the global

minimum of the two orderings. The lower panels show the corresponding determination when the

full information of LBL and reactor experiments is used in the combination (this is, marginalizing

eq. (3.2) with respect to θ23 and δCP).

Comparing the upper and lower panels in figures 7, 8 and 9 one sees how the contri-

bution to the determination of the mass ordering, the octant and non-maximality of θ23,

and the presence of leptonic CP violation of each LBL experiment in the full LBL+REA

combination (eq. (3.2)) can differ from those derived from the LBL results imposing only

the θ13 constraint from reactors (eq. (3.1)). This is due to the additional information on

∆m2
3` from reactors, which is missing in this last case. In particular:

• When only combining the results of the accelerator LBL experiments with the reactor

bound of θ13, both NOνA and T2K favor NO by χ2
LBL+θREA

13
(IO)−χ2

LBL+θREA
13

(NO) '
0.4 (1.7) for LBL = NOνA (T2K). This is in agreement with the analyses shown by

the collaborations for example in refs. [29, 31]. However, when consistently combining
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Figure 8. θ23 determination from LBL, reactor and their combination. Left (right) panels are

for IO (NO). The upper panels show the 1-dim ∆χ2 from LBL experiments after constraining only

θ13 from reactor experiments (this is, marginalizing eq. (3.1) with respect to ∆m2
3` and δCP). For

each experiment ∆χ2 is defined with respect to the global minimum of the two orderings. The

lower panels show the corresponding determination when the full information of LBL accelerator

and reactor experiments is used in the combination (this is, marginalizing eq. (3.2) with respect to

∆m2
3` and δCP).

with the reactor data, we find that the preference for NO by T2K+REA is reduced,

and NOνA+REA actually favors IO. This is due to the slightly lower value of |∆m2
3`|

favored by the reactor data, in particular in comparison with NOνA for both order-

ings, and also with T2K for NO. Altogether we find that for the full combination of

LBL accelerator experiments with reactors the “hint” towards NO is below 1σ.

• Figure 8 illustrates how both NOνA and MINOS favor non-maximal θ23. From this

figure we see that while the significance of non-maximality in NOνA seems more

evident than in MINOS when only the information of θ13 is included (upper panels),

the opposite holds for the full combination with the reactor data (lower panels). In
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Figure 9. δCP determination from LBL, reactor and their combination. Left (right) panels are

for IO (NO). The upper panels show the 1-dim ∆χ2 from LBL experiments after constraining only

θ13 from reactor experiments (this is, marginalizing eq. (3.1) with respect to ∆m2
3` and θ23). For

each experiment ∆χ2 is defined with respect to the global minimum of the two orderings. The

lower panels show the corresponding determination when the full information of LBL accelerator

and reactor experiments is used in the combination (this is, marginalizing eq. (3.2) with respect to

∆m2
3` and θ23).

particular,

χ2
LBL+θREA

13
(θ23 = 45◦,NO)−min

θ23
χ2

LBL+θREA
13

(θ23,NO) = 5.5 (2.0) ,

χ2
LBL+θREA

13
(θ23 = 45◦, IO)−min

θ23
χ2

LBL+θREA
13

(θ23, IO) = 6.5 (1.9) ,

χ2
LBL+REA(θ23 = 45◦,NO)−min

θ23
χ2

LBL+REA(θ23,NO) = 2.8 (3.7) ,

χ2
LBL+REA(θ23 = 45◦, IO)−min

θ23
χ2

LBL+REA(θ23, IO) = 4.6 (5.2) ,

(3.3)

for LBL = NOνA (MINOS). On the other hand T2K results are compatible with

θ23 = 45◦ for any ordering. Altogether we find that for NO the full combination of

LBL accelerator experiments and reactors disfavor maximal θ23 mixing by ∆χ2 = 3.2.
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• Regarding the octant of θ23, for IO all LBL accelerator experiments are better de-

scribed with θ23 > 45◦, adding up to a ∼ 1.8σ preference for that octant. Conversely,

for NO θ23 < 45◦ is favored at ∼ 1σ.

• From figure 9 we see that the “hint” for a CP phase around 270◦ is mostly driven

by T2K data, with some extra contribution from NOνA in the case of IO. Within

the present precision the favored ranges of δCP in each ordering by the combination

of LBL accelerator experiments are pretty independent on the inclusion of the ∆m2
3`

information from reactors.

3.3 Analysis of Super-Kamiokande atmospheric data

In all the results discussed so far we have not included information from Super-Kamiokande

atmospheric data. The reason is that our oscillation analysis cannot reproduce that of the

collaboration presented in their talks in the last two years (see for example ref. [66] for

their latest unpublished results).

Already since SK2 the Super-Kamiokande collaboration has been presenting its ex-

perimental results in terms of a growing number of data samples. The rates for some of

those samples cannot be predicted (and therefore included in a statistical analysis) with-

out a detailed simulation of the detector, which can only be made by the experimental

collaboration itself. Our analysis of Super-Kamiokande data has been always based on the

“classical” set of samples for which our simulations were reliable enough: sub-GeV and

multi-GeV e-like and µ-like fully contained events, as well as partially contained, stopping

and through-going muon data, each divided into 10 angular bins for a total of 70 energy and

zenith angle bins (details on our simulation of the data samples and the statistical analysis

are given in the appendix of ref. [3]). Despite the limitations, until recently our results

represented the most up-to-date analysis of the atmospheric neutrino data which could

be performed outside the collaboration, and we were able to reproduce with reasonable

precision the oscillation results of the full analysis presented by SK – both for what con-

cerns the determination of the dominant parameters ∆m2
3` and θ23, as well as their rather

marginal sensitivity to the subdominant νe appearance effects driven by θ13 (and conse-

quently to δCP and the ordering). Thus we confidently included our own implementation

of the Super-Kamiokande χ2 in our global fit.

However, in the last two years Super-Kamiokande has developed a new analysis method

in which a set of neural network based selections are introduced, some of them with the aim

of constructing νe+ν̄e enriched samples which are then further classified into νe-like and ν̄e-

like subsamples, thus increasing the sensitivity to subleading parameters such as the mass

ordering and δCP [65, 67]. The selection criteria are constructed to exploit the expected

differences in the number of charged pions and transverse momentum in the interaction

of νe versus ν̄e. With this new analysis method Super-Kamiokande has been reporting in

talks an increasing sensitivity to the ordering and to δCP: for example, the preliminary

results of the analysis of SK1–4 (including 2520 days of SK4) [66] in combination with the

reactor constraint of θ13 show a preference for NO with a ∆χ2(IO) = 4.3 and variation of

χ2(δCP) with the CP phase at the level of ∼ 1.7σ.

– 15 –



J
H
E
P
0
1
(
2
0
1
7
)
0
8
7

0.3 0.4 0.5 0.6 0.7

sin
2

θ
23

0

5

10

15

∆
χ

2

0 90 180 270 360

δ
CP

NO, IO (no SK)

NO, IO (SK)

NuFIT 3.0 (2016)

Figure 10. Impact of our re-analysis of SK atmospheric neutrino data [65] (70 bins in energy and

zenith angle) on the determination of sin2 θ23, δCP, and the mass ordering. The impact on all other

parameters is negligible.

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 0.56) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ23 0.440+0.024
−0.019 0.388→ 0.630 0.584+0.019

−0.022 0.398→ 0.634 0.388→ 0.632

θ23/
◦ 41.5+1.4

−1.1 38.6→ 52.5 49.9+1.1
−1.3 39.1→ 52.8 38.6→ 52.7

δCP/
◦ 289+38

−51 0→ 360 269+40
−45 146→ 377 0→ 360

Table 2. Three-flavor oscillation parameters from our fit to global data, including also our re-

analysis of SK1–4 (4581 days) atmospheric data. The numbers in the 1st (2nd) column are obtained

assuming NO (IO), i.e., relative to the respective local minimum, whereas in the 3rd column we

minimize also with respect to the ordering. The omitted parameters are identical to table 1.

Unfortunately, with publicly available information this analysis is not reproducible out-

side the collaboration. Conversely our “traditional” analysis based on their reproducible

data samples continues to show only marginal dependence on these effects. This is illus-

trated in figure 10 and table 2 where we show the impact of inclusion of our last re-analysis

of SK atmospheric data using the above mentioned 70 bins in energy and zenith angle.4

We only show the impact on the determination of sin2 θ23, δCP, and the mass ordering as

the effect on all other parameters is negligible. We observe that ∆χ2 for maximal mixing

and the second θ23 octant receive an additional contribution of about 1 unit in the case of

NO, whereas the θ23 result for IO is practically unchanged. Values of δCP ' 90◦ are slightly

more disfavoured, whereas there is basically no effect on the mass ordering discrimination.

4We use the same data and statistical treatment as in our previous global fit NuFIT 2.0 [9] as well as in

versions 2.1 and 2.2 [49] which is based on 4581 days of data from SK1–4 [65] (corresponding to 1775 days

of SK4).
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In summary, with the information at hand we are not able to reproduce the elements

driving the main dependence on the subdominant effects of the official (though preliminary

and unpublished) Super-Kamiokande results, while the dominant parameters are currently

well determined by LBL experiments. For these reasons we have decided not to include our

re-analysis of Super-Kamiokande data in our preferred global fit presented in the previous

section. Needless to say that when enough quantitative information becomes available to

allow a reliable simulation of the subdominant νe-driven effects, we will proceed to include

it in our global analysis.

4 Monte Carlo evaluation of confidence levels for θ23, δCP and ordering

At present the three least known neutrino oscillation parameters are the Dirac CP violating

phase δCP, the octant of θ23 and the mass ordering (which in what follows we will denote

by “O”). In order to study the information from data on these parameters one can use two

∆χ2 test statistics [55, 68]:

∆χ2 (δCP,O) = min
x1

χ2 (δCP,O, x1)− χ2
min , (4.1)

∆χ2 (θ23,O) = min
x2

χ2 (θ23,O, x2)− χ2
min , (4.2)

where the minimization in the first equation is performed with respect to all oscillation

parameters except δCP and the ordering (x1 = {θ12, θ13, θ23,∆m
2
21, |∆m2

3`|}), while in the

second equation the minimization is over all oscillation parameters except θ23 and the

ordering (x2 = {θ12, θ13, δCP,∆m
2
21, |∆m2

3`|}). Here χ2
min indicates the χ2 minimum with

respect to all oscillation parameters including the mass ordering.

We have plotted the values of these test statistics in the lower right and central left

panels in figure 2. We can use them not only for the determination of δCP and θ23,

respectively, but also of the mass ordering. For instance, using eq. (4.1) we can determine

a confidence interval for δCP at a given CL for both orderings. However, below a certain

CL no interval will appear for the less favored ordering. In this sense we can exclude that

ordering at the CL at which the corresponding interval for δCP disappears. Note that a

similar prescription to test the mass ordering can be built for any other parameter as well,

e.g., for θ23 using eq. (4.2).5

In section 2 we have presented confidence intervals assuming that the test statistics

follow a χ2-distribution with 1 dof, relying on Wilks theorem to hold [70] (this is what we

call the Gaussian limit). However, the test statistics in eqs. (4.1) and (4.2) are expected

not to follow Wilks’ theorem because of several reasons [68]:

• Sensitivity of current data to δCP is still limited, as can be seen in figure 2: all values

of δCP have ∆χ2 < 14, and for NO not even ∆χ2 = 6 is attained.

• Regarding θ23, its precision is dominated by νµ disappearance experiments. Since

the relevant survival probability depends dominantly on sin2 2θ23, there is both a

5Let us mention that this method to determine the mass ordering is different from the one based on the

test statistics T discussed in ref. [69].
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Figure 11. Allowed regions from the global data at 1σ, 90%, 2σ, 99% and 3σ CL (2 dof). We

show projections onto different planes with δCP on the vertical axis after minimizing with respect

to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions

are derived with respect to the global minimum which occurs for NO and is indicated by a star.

The local minimum for IO is shown by a black dot.

physical boundary of their parameter space at θ23 = 45◦ (because sin 2θ23 < 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on δCP is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between δCP, θ23, and the mass ordering (see

figure 11 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ∆χ2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of

the T2K, NOνA, MINOS and Daya-Bay experiments, which are most relevant for the

parameters we are interested in this section. For a given point of assumed true values for
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the parameters we generate a large number (104) of pseudo-data samples for each of the

experiments. For each pseudo-data sample we compute the two statistics given in eqs. (4.1)

and (4.2) to determine their distributions numerically. In ref. [68] it has been shown that

the distribution of test statistics for 2-dimensional parameter region (such as for instance

the middle panels of figure 11) are more close to Gaussianity than 1-dimensional ones such

as eqs. (4.1) and (4.2). Therefore we focus here on the 1-dimensional cases.

First, let us note that in order to keep calculation time manageable one can fix all

parameters which are known to be uncorrelated with the three we are interested in (i.e., θ23,

δCP, O). This is certainly the case for ∆m2
21 and θ12 which are determined independently by

solar and KamLAND data. As for θ13, presently the most precise information arises from

reactor data whose results are insensitive to δCP and θ23. Consequently, marginalizing over

θ13 within reactor uncertainties or fixing it to the best fit value gives a negligible difference

in the simulations. Concerning |∆m2
3`| we observe that there are no strong correlations

or degeneracies with δCP (see figure 11), and we assume that the distributions of the test

statistics do not significantly depend on the assumed true value. Therefore we consider

only the global best fit values for each ordering as true values for |∆m2
3`| to generate

pseudo-data. However, since the relevant observables do depend non-trivially on its value,

it is important to keep |∆m2
3`| as a free parameter in the fit and to minimize the χ2 for

each pseudo-data sample with respect to it. Hence, we approximate the test statistics in

eqs. (4.1) and (4.2) by using

χ2 (δCP,O, x1) ≡ min
θ23,|∆m2

3`|
χ2
(
θ23, δCP,O, |∆m2

3`|
)
, (4.3)

χ2 (θ23,O, x2) ≡ min
δCP,|∆m2

3`|
χ2
(
θ23, δCP,O, |∆m2

3`|
)
, (4.4)

with the other oscillation parameters kept fixed at their best fit points: ∆m2
21 = 7.5 ×

10−5 eV2, sin2 θ12 = 0.31, and sin2 θ13 = 0.022.

4.1 δCP and the mass ordering

The value of the test statistics (4.1) is shown in figure 12 for the combination of T2K, NOνA,

MINOS and Daya-Bay as a function of δCP for both mass orderings. In the generation of

the pseudo-data we have assumed three representative values of θ23,true as shown in the

plots. The broken curves show, for each set of true values, the values of ∆χ2(δCP,O) which

are larger than 68%, 95%, and 99% of all generated data samples.

From the figure we read that if the ∆χ2 from real data (solid curve, identical in the

three panels) for a given ordering is above the x% CL lines for that ordering for a given

value of δCP, that value of δCP and the mass ordering can be rejected with x% confidence.

So if the minimum of the ∆χ2 curve for one of the orderings (in this case IO is the one

with non-zero minimum) is above the x% CL line one infers that that ordering is rejected

at that CL.

For the sake of comparison we also show in figure 12 the corresponding 68%, 95% and

99% Gaussian confidence levels as horizontal lines. There are some qualitative deviations

from Gaussianity that have already been reported [68]:
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Figure 12. 68%, 95% and 99% confidence levels (broken curves) for the test statistics (4.1) along

with its value (solid curves) for the combination of T2K, NOνA, MINOS and reactor data. The value

of sin2 θ23 given in each panel corresponds to the assumed true value chosen to generate the pseudo-

experiments and for all panels we take ∆m2
3`,true = −2.53× 10−3 eV2 for IO and +2.54× 10−3 eV2

for NO. The solid horizontal lines represent the 68%, 95% and 99% CL predictions from Wilks’

theorem.

• For θ23 < 45◦, δCP = 90◦, and IO as well as for θ23 > 45◦, δCP = 270◦ and NO,

the confidence levels decrease. This effect arises because at those points in parameter

space the νµ → νe oscillation probability has a minimum or a maximum, respectively.

Therefore, statistical fluctuations leading to less (or more) events than predicted

cannot be accommodated by adjusting the parameters. ∆χ2 is small more often

and the confidence levels decrease. This is an effect always present at boundaries in

parameter space, usually referred to as an effective decrease in the number of degrees

of freedom in the model.

• Conversely for δCP ∼ 90◦ for θ23 > 45◦, and δCP ∼ 270◦ for θ23 < 45◦, the confidence

levels increase. This is associated with the prominent presence of the octant degen-

eracy. Degeneracies imply that statistical fluctuations can drive you away from the

true value, ∆χ2 increases, and the confidence levels increase. This is usually referred

to as an effective increase in the number of degrees of freedom in the model due to

degeneracies.

• Overall we find that with present data confidence levels are clearly closer to Gaus-

sianity than found in refs. [9, 68], where similar simulations have been performed

with less data available. For those data sets confidence levels were consistently below

their Gaussian limit. This was mainly a consequence of the limited statistics and the

cyclic nature of δCP which lead to an effective decrease in the number of degrees of
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sin2 θ23,true Ordering CP cons. 90% CL range 95% CL range

0.44 NO 70% [0◦, 14◦] ∪ [151◦, 360◦] [0◦, 37◦] ∪ [133◦, 360◦]

IO 98% [200◦, 341◦] [190◦, 350◦]

0.53 NO 70% [150◦, 342◦] [0◦, 28◦] ∪ [133◦, 360◦]

IO 98% [203◦, 342◦] [193◦, 350◦]

0.60 NO 70% [148◦, 336◦] [0◦, 28◦] ∪ [130◦, 360◦]

IO 97% [205◦, 345◦] [191◦, 350◦]

Gaussian NO 80% [158◦, 346◦] [0◦, 26◦] ∪ [139◦, 360◦]

IO 97% [208◦, 332◦] [193◦, 350◦]

Table 3. Confidence level with which CP conservation (δCP = 0, 180◦) is rejected (third column)

and 90% and 95% confidence intervals for δCP (fourth and fifth column) for different sets of true

values of the parameters and in the Gaussian approximation. Confidence intervals for δCP as well

as the CL for CP conservation are defined for both orderings with respect to the global minimum

(which happens for NO).

freedom. We now find that when the full combination of data currently available is

included this effect is reduced, as expected if experiments become more sensitive.

• For all true values considered, IO is not rejected even at 1σ. In particular we find IO

disfavored at 30%− 40% for sin2 θ23 = 0.44− 0.60.

Quantitatively we show in table 3 the CL at which CP conservation (δCP = 0, 180◦) is

disfavored as well as the 90% and 95% confidence intervals for δCP. We find that the CL of

rejection of CP conservation as well as the allowed ranges do not depend very significantly

on θ23,true. This can be understood from figure 12: the dependence on θ23,true occur mostly

for δCP ∼ 90◦ and IO, a region discarded with a large CL, and for δCP ∼ 270◦ and NO, a

region around the best fit.

Note that in the table the intervals for δCP are defined for both orderings with respect

to the global minimum (which happens for NO). Hence the intervals for IO include the

effect that IO is slightly disfavored with respect to NO. They cannot be directly compared

to the intervals given in table 1, where we defined intervals relative to the local best fit

point for each ordering.

A similar comment applies also to the CL quoted in the table to reject CP conservation.

For IO this is defined relative to the best fit point in NO. We find that for NO, CP

conservation is allowed at 70% CL, i.e., slightly above 1σ (with some deviations from the

Gaussian result of 80% CL), while for IO the CL for CP conservation is above 2σ. Note that

values of δCP ' 90◦ are disfavored at around 99% CL for NO, while for IO the rejection is

at even higher CL: the ∆χ2 with respect to the global minimum is around 14, which would

correspond to 3.7σ in the Gaussian limit. Our Monte Carlo sample of 104 pseudo-data sets

is not large enough to confirm such a high confidence level.
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Figure 13. 68%, 95% and 99% confidence levels (broken curves) for the test statistics (4.2) along

with its value (solid curves) for the combination of T2K, NOνA, MINOS and reactor data. The

value of δCP above each plot corresponds to the assumed true value chosen to generate the pseudo-

experiments and for all panels we take ∆m2
3`,true = −2.53× 10−3 eV2 for IO and +2.54× 10−3 eV2

for NO. The solid horizontal lines represent the 68%, 95% and 99% CL predictions from Wilks’

theorem.

4.2 θ23 and the mass ordering

Moving now to the discussion of θ23, we show the value of the test statistics (4.2) in figure 13

for the combination of T2K, NOνA, MINOS and Daya-Bay experiments as a function of

θ23, for both mass orderings. For the generation of the pseudo-data we have assumed three

example values δCP,true = 0, 180◦, 270◦. We do not show results for δCP,true = 90◦, since this

value is already quite disfavored by data, especially for IO.6 The broken curves show for

each set of true values, the values of ∆χ2(θ23,O) which are larger than 68%, 95%, and 99%

of all generated data samples. From the figure we see that the deviations from Gaussianity

are not very prominent and can be understood as follows:

• The confidence levels decrease around maximal mixing because of the boundary on

the parameter space present at maximal mixing for disappearance data.

• There is some increase and decrease in the confidence levels for δCP = 270◦, in the

same parameter region as the corresponding ones in figure 12.

In table 4 we show the CL at which the combination of LBL and reactor experiments

can disfavor maximal θ23 mixing (θ23 = 45◦) as well as the 90% and 95% confidence intervals

6We are aware of the fact that this choice is somewhat arbitrary and implicitly resembles Bayesian

reasoning. In the strict frequentist sense we cannot a priori exclude any true value of the parameters.
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δCP,true Ordering θ23 = 45◦ 90% CL range 95% CL range

0◦ NO 92% [0.40, 0.49] ∪ [0.55, 0.61] [0.39, 0.62]

IO 98% [0.55, 0.62] [0.42, 0.46] ∪ [0.54, 0.63]

180◦ NO 91% [0.40, 0.50] ∪ [0.54, 0.61] [0.40, 0.62]

IO 98% [0.43, 0.44] ∪ [0.55, 0.62] [0.41, 0.46] ∪ [0.54, 0.63]

270◦ NO 92% [0.40, 0.49] ∪ [0.55, 0.61] [0.39, 0.62]

IO 97% [0.42, 0.45] ∪ [0.55, 0.62] [0.41, 0.48] ∪ [0.53, 0.63]

Gaussian NO 92% [0.41, 0.49] ∪ [0.55, 0.61] [0.40, 0.62]

IO 98% [0.56, 0.62] [0.43, 0.45] ∪ [0.54, 0.63]

Table 4. CL for the rejection of maximal θ23 mixing (third column), and 90% and 95% CL intervals

for sin2 θ23 for different sets of true parameter values and in the Gaussian approximation (last row).

δCP,true NO/2nd Oct. IO/1st Oct. IO/2nd Oct.

0◦ 62% 91% 28%

180◦ 56% 89% 32%

270◦ 70% 83% 27%

Gaussian 72% 94% 46%

Table 5. CL for the rejection of various combinations of mass ordering and θ23 octant with respect

to the global best fit (which happens for NO and 1st octant). We quote the CL of the local minima

for each ordering/octant combination, assuming three example values for the true value of δCP as

well as for the Gaussian approximation (last row).

for sin2 θ23 for both orderings with respect to the global best fit. We observe from the table

that the Gaussian approximation is quite good for both, the CL of maximal mixing as well

as for the confidence intervals. We conclude that present data excludes maximal mixing at

slightly more than 90% CL. Again we note that the intervals for sin2 θ23 for IO cannot be

directly compared with the ones from table 1, where they are defined with respect to the

local minimum in each ordering.

In table 5 we show the CL at which a certain combination of mass ordering and θ23

octant can be excluded with respect to the global minimum in the NO and 1st θ23 octant.

We observe that the CL of the second octant for NO shows relatively large deviations from

Gaussianity and dependence on the true value of δCP. In any case, the sensitivity is very

low and the 2nd octant can be reject at most at 70% CL (1σ) for all values of δCP. The

first octant for IO can be excluded at between 83% and 91% CL, depending on δCP. As

discussed above, the exclusion of the IO/2nd octant case corresponds also to the exclusion

of the IO, since at that point the confidence interval in IO would vanish. Also in this

case we observe deviations from the Gaussian approximation and the CL of at best 32%

is clearly less than 1σ (consistent with the results discussed in the previous subsection),

showing that the considered data set has essentially no sensitivity to the mass ordering.
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5 Conclusions

We have presented the results of the updated (as of fall 2016) analysis of relevant neutrino

data in the framework of mixing among three massive neutrinos. Quantitatively the present

determination of the two mass differences, three mixing angles and the relevant CP violating

phase obtained under the assumption that their log-likelihood follows a χ2 distribution is

listed in table 1, and the corresponding leptonic mixing matrix is given in eq. (2.1). We

have found that the maximum allowed CP violation in the leptonic sector parametrized by

the Jarlskog determinant is Jmax
CP = 0.0329± 0.0007 (+0.0021

−0.0024)) at 1σ (3σ).

We have studied in detail how the sensitivity to the least-determined parameters θ23,

δCP and the mass ordering depends on the proper combination of the different data samples

(section 3.2). Furthermore we have quantified deviations from the Gaussian approximation

in the evaluation of the confidence intervals for θ23 and δCP by performing a Monte Carlo

study of the long baseline accelerator and reactor results (section 4). We can summarize

the main conclusions in these sections as follows:

• At present the precision on the determination of |∆m2
3`| from νµ disappearance in

LBL accelerator experiments NOνA, T2K and MINOS is comparable to that from

νe disappearance in reactor experiments, in particular with the spectral information

from Daya-Bay. When comparing the region for each LBL experiment with that of

the reactor experiments we find some dispersion in the best fit values and allowed

ranges.

• The interpretation of the data from accelerator LBL experiments in the framework

of 3ν mixing requires using information from the reactor experiments, in particu-

lar about the mixing angle θ13. But since, as mentioned above, reactor data also

constrain |∆m2
3`|, the resulting CL of presently low confidence effects (in particular

the non-maximality of θ23 and the mass ordering) is affected by the inclusion of this

information in the combination.

• We find that the mass ordering favored by NOνA changes from NO to IO when the

information on ∆m2
3` from reactor experiments is correctly included in the LBL+REA

combination, and the ∆χ2 of NO in T2K is reduced from around 2 to 0.5 (see figure 7).

Our MC study of the combination of LBL and reactor data shows that for all cases

generated, NO is favored but with a CL of less than 1σ.

• About the non-maximality of θ23, we find that when the information on ∆m2
3` from

reactor experiments is correctly included in the LBL+REA combination, it is not

NOνA but actually MINOS which contributes most to the preference for non-maximal

θ23 (see figure 8). Quantitatively our MC study of the combination of LBL and reactor

data shows that for all the cases generated the CL for rejection of maximal θ23 is

about 92% for NO. As seen in figure 13 and table 4, the CL of maximal mixing as well

as confidence intervals for sin2 θ23 derived with MC simulations are not very different

from the corresponding Gaussian approximation.
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• The same study shows that for NO (IO) the favored octant is θ23 < 45◦ (θ23 > 45◦).

The CL for rejection of the disfavored octant depends on the true value of δCP

assumed in the MC study and it is generically lower than the one obtained in the

Gaussian limit (see table 5). For example, for NO the second octant is disfavored at a

confidence level between 0.9σ and 1.3σ depending on the assumed true value of δCP.

• The present sensitivity to δCP is driven by T2K with a minor contribution from NOνA

for IO (see figure 9). The dependence of the combined CL of the “hint” towards

leptonic CP violation and in particular for δCP ' 270◦ on the true value of θ23 is

shown in figure 12, from which we read that for all cases generated CP conservation

is disfavored only at 70% (1.05σ) for NO. Values of δCP ' 90◦ are disfavored at

around 99% CL for NO, while for IO the rejection is at higher CL (∆χ2 ' 14 with

respect to the global minimum).

Finally we comment that the increased statistics in SK4 and Borexino has had no major

impact in the long-standing tension between the best fit values of ∆m2
21 as determined

from the analysis of KamLAND and solar data, which remains an unresolved ∼ 2σ effect.

Future updates of this analysis will be provided at the NuFIT website quoted in

ref. [49].
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A List of data used in the analysis

Solar experiments.

• Chlorine total rate [15], 1 data point.

• Gallex & GNO total rates [16], 2 data points.

• SAGE total rate [17], 1 data point.

• SK1 full energy and zenith spectrum [18], 44 data points.

• SK2 full energy and day/night spectrum [19], 33 data points.

• SK3 full energy and day/night spectrum [20], 42 data points.

• SK4 2055-day day-night asymmetry [21] and 2365-day energy spectrum [22], 24 data

points.

• SNO combined analysis [23], 7 data points.
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• Borexino Phase-I 740.7-day low-energy data [24], 33 data points.

• Borexino Phase-I 246-day high-energy data [25], 6 data points.

• Borexino Phase-II 408-day low-energy data [26], 42 data points.

Atmospheric experiments.

• IceCube/DeepCore 3-year data [48, 71], 64 data points.

Reactor experiments.

• KamLAND combined DS1 & DS2 spectrum [32], 17 data points.

• CHOOZ energy spectrum [33], 14 data points.

• Palo-Verde total rate [34], 1 data point.

• Double-Chooz FD-I (461 days) and FD-II (212 days) spectra [35], 54 data points.

• Daya-Bay 1230-day spectrum [36], 34 data points.

• Reno 800-day near & far total rates [37], 2 data points (with free normalization).

• SBL reactor data (including Daya-Bay total flux at near detector), 77 data

points [38, 72].

Accelerator experiments.

• MINOS 10.71× 1020 pot νµ-disappearance data [27], 39 data points.

• MINOS 3.36× 1020 pot ν̄µ-disappearance data [27], 14 data points.

• MINOS 10.6× 1020 pot νe-appearance data [28], 5 data points.

• MINOS 3.3× 1020 pot ν̄e-appearance data [28], 5 data points.

• T2K 7.48× 1020 pot νµ-disappearance data [29, 30], 28 data points.

• T2K 7.48× 1020 pot νe-appearance data [29, 30], 5 data points.

• T2K 7.47× 1020 pot ν̄µ-disappearance data [29, 30], 63 data points.

• T2K 7.47× 1020 pot ν̄e-appearance data [29, 30], 1 data point.

• NOνA 6.05× 1020 pot νµ-disappearance data [31], 18 data points.

• NOνA 6.05× 1020 pot νe-appearance data [31], 10 data points.
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Chapter3

Double-Cascades Events from New
Physics in IceCube

SM can be considered as low energy effective model, so it can be extended by
introducing higher-dimension operators in terms of the SM fields

Leff = LSM +
Ld=5

Λ
+

Ld=6

Λ2
+ · · · (3.1)

where Λ is the cutoff scale of the effective field theory. The lowest dimensional
operator that generates Majorana neutrino masses after the Higgs mechanism is the
dimensional five operator, called Weinberg operator. Which is the only possible
d = 5 operator [33]

Ld=5

Λ
=

1

2
cd=5
αβ

(
LcLαΦ̃∗

)(
Φ̃†LLβ

)
(3.2)

where LL is the lepton doublet (Table 1.1), Φ̃ = ıσ2Φ∗, σ2 is the Pauli matrix and
Φ = (φ+, φ0)T is the standard Higgs doublet. cd=5

αβ ∼ 1/Λ is a model independent
coefficient of inverse mass dimension, which is suppressed by the scale Λ. After
the electroweak symmetry breaking, the neutrino gets a mass of the order mν ∼
〈Φ〉2 /Λ. For o(1) couplings, the scale is of the order of the Grand Unified Theory
Λ ≥ 1013 GeV.

There are only three ways to generate the Weinberg operator at tree level, they
are called the see-saw models [34, 35], (Sec. 1.3.1). In the Type-I see-saw, the
mediator is a singlet fermion. In the Type-II see-saw, a triplet scalar is added into
the SM. In the Type-III see-saw, a triplet fermion works as a mediator. For each
of the three see-saw models, we can obtain a d = 5 operator by integrating out the
heavy degrees of freedom.

In the next work, we have considered the Type-I see-saw with a mediator at
the scale of 1 GeV. In order to generate neutrino masses (< eV) [16] it is needed
an additional suppression mechanism for the neutrino masses. The most studied
are [34]:

- The generation of the neutrino mass by loop corrections [36].

- The additional suppression of the neutrino mass due to a small lepton number
violation [37, 38].

- The generation of the neutrino masses by higher dimensional operators [39],
where the d = 5 operators is suppressed.
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A variety of new physics models allows for neutrinos to up-scatter into heavier states. If the incident
neutrino is energetic enough, the heavy neutrino may travel some distance before decaying. In this work,
we consider the atmospheric neutrino flux as a source of such events. At IceCube, this would lead to a
“double-bang” (DB) event topology, similar to what is predicted to occur for tau neutrinos at ultrahigh
energies. The DB event topology has an extremely low background rate from coincident atmospheric
cascades, making this a distinctive signature of new physics. Our results indicate that IceCube should already
be able to derive new competitive constraints onmodels with GeV-scale sterile neutrinos using existing data.
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Introduction.—Although neutrino physics has rapidly
moved into the precision era, a number of fundamental
questions remain unanswered. Perhaps the most important
among these is the mechanism responsible for neutrino
masses. In the most naïve extension of the standard model
(SM), neutrino masses and mixing can be successfully
generated by adding at least two right-handed neutrinos
(NR), with small Yukawa couplings Yν to the left-handed
lepton doublets LL and the Higgs boson ϕ. In this
framework, Dirac neutrino masses are generated after
electroweak (EW) symmetry breaking, as for the rest of
the SM fermions. As singlets of the SM the right-handed
neutrinos may also have a Majorana mass term, since it is
allowed by gauge symmetry. In this case, the neutrino mass
Lagrangian reads

Lν
mass ⊃ YνL̄Lϕ̃NR þ 1

2
MRNc

RNR þ H:c:;

where ϕ̃≡ iσ2ϕ�,Nc
R ≡ CN̄T

R is the charge conjugate ofNR
and we have omitted flavor and mass indices. This is the
well-known type I seesaw Lagrangian [1–3]. Traditionally,
the type I seesaw assumed a very high Majorana mass scale
MR. ForMR ≫ v the light neutrino masses are proportional
to mν ∝ Y†

νM−1
R Yνv2, where v is the Higgs vacuum expect-

ation value, while the right-handed neutrino masses would
be approximately mN ≃MR þOðmνÞ. In this framework
the SM neutrino masses are naturally suppressed by the
new physics scale and can be much smaller than the
charged fermion masses without the need for tiny
Yukawa couplings. However, such heavy neutrinos are
too heavy to be produced in colliders, and the inclusion of
very massive Majorana neutrinos would considerably
worsen the hierarchy problem for the Higgs mass [4].
Models with lower values of mN can lead to a

more interesting phenomenology, testable at low-energy

experiments, and possibly even solve some of the other
problems of the SM. For example, keV neutrinos offer a
very good dark matter candidate [5], while Majorana
neutrinos with masses mN ∼Oð1–100Þ GeV can success-
fully generate the matter-antimatter asymmetry of the
Universe [6–9]. While right-handed neutrinos with masses
above the EW scale are subject to very tight bounds from
EWobservables and charged lepton flavor violating experi-
ments [10,11], these constraints fade away for lower
masses. Indeed, for right-handed neutrinos in the (keV–
GeV) range, the strongest constraints come from precision
measurements of meson decays [12,13], muon decays, and
other EW transitions; see, e.g., Ref. [14] for a review.
In this Letter we point out that IceCube and DeepCore

can be used to test models with GeV neutrinos directly. To
this end, we consider events with a “double-bang” (DB)
topology. A schematic illustration of the event topology can
be seen in Fig. 1. In the first interaction, an atmospheric
neutrino would up-scatter off a nucleus into a heavier state.
This generally leaves a visible shower (or cascade) in the

FIG. 1. Schematic illustration of a DB event in IceCube. An
incoming active neutrino ν up-scatters into a heavy neutrino N,
which then propagates and decays into SM particles. The small
circles represent the DOMs while the large circles indicate the
positions where energy was deposited.
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detector coming from the hadronic part of the vertex. After
traveling a macroscopic distance inside the instrumented
ice, the heavy neutrino would decay back to SM particles.
The decay will produce a second cascade if the final state
involves charged particles or photons which can be
detected by IceCube’s digital optical modules (DOMs).
Thus, the final DB topology would be two cascades (or
“bangs”) visibly separated, but with no visible track
connecting them. A similar topology is predicted to occur
in the SM from the production of a τ lepton in ντ charged-
current (CC) scattering at PeV energies [15], and has
already been searched for by the collaboration [16]. In
our case, however, the heavy neutrinos will be produced
from the atmospheric neutrino flux and thus produce much
lower energy DBs.
To illustrate some of the new physics scenarios giving

rise to low-energy DB events we consider two basic
scenarios depending on the main production or decay
mode of the heavy state: (i) through mixing with the light
neutrinos, and (ii) through a transition magnetic moment
involving the light neutrinos.
Heavy neutrino production via mixing.—The measure-

ment of the invisible decay width of the Z implies that, if
additional neutrinos below the EW scale are present, they
cannot couple directly to the Z (i.e., they should be
“sterile”). For simplicity, let us focus on a scenario where
there is sizable mixing with only one heavy neutrino while
the others are effectively decoupled. We may write the
flavor states να as a superposition of the mass eigenstates as

ναL ¼
X3
i¼1

UαiνiL þ Uα4Nc
4R; ð1Þ

where U is the 4 × 4 unitary mixing matrix that changes
between the mass and the flavor bases. For a sterile neutrino
with a mass mN ∼Oð0.1–10Þ GeV, its mixing with νe;μ is
severely constrained as jUα4j2 ≲ 10−5–10−8 (α ¼ e, μ)
[14]. Conversely, the mixing with ντ is much more difficult
to probe, given the technical challenges of producing and
detecting tau neutrinos. For mN ∼Oð0.1 − 10Þ GeV the
most stringent bounds are derived from the DELPHI [17]
and CHARM [18] experiments. However, a mixing as large
as jUτ4j2 ∼ 10−2 is still allowed for masses around mN ∼
Oð400Þ MeV [14].
At IceCube, the atmospheric neutrino flux can be used to

constrain the values of Uα4 directly. Atmospheric neutrinos
are produced as a result of the cosmic rays impacting the
atmosphere. At the production point, this flux is primarily
composed of νμ and νe. However, for neutrinos crossing
Earth a large fraction of the initial νμ flux will have
oscillated into ντ by the time the neutrinos reach the
detector. Therefore, here we focus on probing the mixing
with ντ since this one is much harder to constrain by
other means.

To this end, we propose to conduct a search for low-
energy DB events. In each event the first cascade is
produced from a neutral-current (NC) interaction with a
nucleon n, as νn → Nn. This process is mediated by a Z
boson and takes place via mixing between the light and
heavy states. Neglecting corrections due to the mass of
the heavy neutrino, the up-scattering cross section goes as
σντN ≃ σNCν × jUτ4j2, where σNCν is the NC neutrino-
nucleon cross section in the SM. Unless the process is
quasielastic, it will generally lead to a hadronic shower in
the detector. Here we compute the neutrino-nucleon deep-
inelastic scattering (DIS) cross section using the parton
model, imposing a lower cut on the hadronic shower of
5 GeV so it is observable [19]. In fact, throughout our
whole analysis we will assume perfect detection efficien-
cies above threshold. Although this may be simplistic, we
find it adequate to demonstrate the potential of IceCube to
search for new physics with low energy DB events. Once
the heavy state has been produced, its decay is controlled
by kinematics and the SM interactions inherited from the
mixing with the active neutrinos. The partial decay widths
of a heavy neutrino can be found in Refs. [14,20] and were
recomputed here. The decay channels include two-body
decays into a charged lepton (active neutrino) and a charged
(neutral) meson, and three body decays into charged
leptons and light neutrinos. The deposited energy in the
second shower is also required to be above 5 GeV. It should
be noted that if the N decays into three light neutrinos
the second shower will be invisible: those events do not
contribute to our signal. As an example, for mN ¼ 1 GeV
and jUτ4j2 ¼ 10−3, the boosted decay length (for an energy
of 10 GeV) is Llab ∼ 20 m.
The number of DB events from ντ mixing with a heavy

neutrino, for two cascades taking place within a distance L,
is proportional to

Z
dEνdcθB

dϕνμ

dEνdcθ
Pμτðcθ;EνÞ

dσντN
dEν

PdðLÞVðL;cθÞ; ð2Þ

where Eν is the incident neutrino energy and cθ ≡ cos θ is
the cosine of its zenith angle. The atmospheric νμ flux [21]
is given by ϕνμ while Pμτ is the oscillation probability in
the νμ → ντ channel, which depends on the length of the
baseline traveled (inferred from the zenith angle) and the
energy. Here, PdðLÞ ¼ e−L=Llab=Llab is the probability for
the heavy state to decay after traveling a distance L, while B
is its branching ratio into visible final states (i.e., excluding
the decay into three light neutrinos). Antineutrino events
will give a similar contribution to the total number of
events, replacing ϕνμ , σντN , and Pμτ in Eq. (2) by their
analogous expressions for antineutrinos.
In Eq. (2) we have omitted a normalization constant

which depends on the number of target nuclei and the data
taking period, but we explicitly include an effective volume
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VðL; cθÞ. In this work, this was computed using
Monte Carlo integration. First, for triggering purposes
we require that at least three (four) DOMs detect the first
shower simultaneously, if it takes place inside (outside)
DeepCore [22]. Once the trigger goes off, all the informa-
tion in the detector is recorded, and we thus assume that the
second shower is always observed as long as it is close
enough to a DOM. Eventually, the energy of a cascade
determines the distance from which it can be detected by a
DOM: the longer the distance, the more energetic the
cascade should be so the light can reach the DOM without
being absorbed by the ice first. Here we assume that a
cascade is seen by a DOM if it takes place within a distance
of 36 m, since this is roughly the maximum distance
between an event and a DOM inside DeepCore [22]. This is
conservative, since showers with energies much above
5 GeV will typically reach a DOM from longer distances.
Finally, a minimum separation is required between the two
showers so they can be resolved. This ultimately depends
on the time resolution of the DOMs. Following Ref. [16],
IceCube can distinguish pulses separated by T ∼ 66 ns.
Thus, we require a minimum distance between the two
showers of T=c ¼ 20 m.
The dominant source of background for DB events is

given by two coincident cascades taking place within the
same time window Δt. The rate can be estimated as [23]
Nbkg ≃ C2

DBðΔt=TÞ2, where C2
DB ¼ NcascðNcasc − 1Þ=2

comes from the number of possible combination of pairs,
and Ncasc is the number of cascade events within a time
period T. The number of cascades in the DeepCore volume,
with a deposited energy between 5.6 and 100 GeV, is
Ncasc ≃ 2 × 104 yr−1 [24]. These include CC events with
electrons, taus, or low-energy muons in the final state
(which do not leave long identificable tracks), as well as
NC events. A particle traveling at the speed of light
traverses 1 km in ∼10−5 s. Thus, for a conservative time
interval Δt ¼ 10−3 s, we get Nbkg < 10−11 yr−1.
In view of the negligible background rate, we proceed to

determine the region in parameter space where at least one
signal event would be expected in six years of data taking
at IceCube. This is shown in Fig. 2 as a function of the
mass and mixing of the heavy neutrino. The solid line
shows the results using the full IceCube volume, while for
the dashed line only DeepCore was considered. Our results
indicate that IceCube could improve over present bounds
between 1 and 2 orders of magnitude, and probe values of
the mixing as small as jUτ4j2 ∼ 5 × 10−5. According to
these results, IceCube could test the proposed solution
to the flavor anomalies in the B sector proposed in
Ref. [25].
Heavy neutrino production via a transition magnetic

moment.—Alternatively, the light neutrinos may interact
with the heavy state N through a higher-dimensional
operator. As an example, we consider a neutrino transition
magnetic moment (NTMM) μtr:

Lν ⊃ −μtrν̄αLσρσN4RFρσ; ð3Þ

where Fρσ is the electromagnetic field strength tensor and
σρσ ¼ ði=2Þ½γρ; γσ�. For simplicity, in this scenario we
assume negligible mixing with the light neutrinos, so both
the production and decay of the heavy neutrino are con-
trolled by the magnetic moment operator. In the rest frame
of N, its decay width reads ΓðN → νγÞ ¼ μ2trM3=ð16πÞ.
For mN ¼ 100 MeV, μtr ¼ 10−8μB (where μB is the Bohr
magneton), and a typical energy of 10 GeV this gives a
decay length in the lab frame Llab ∼ 14 m.
Neutrinos with a NTMM could scatter off both electrons

and nuclei in the IceCube detector. However, for the range
of energies and masses considered in this work, the largest
effect comes from scattering on nuclei. In the DIS regime,
the cross section for the scattering νn → Nn via the
operator in Eq. (3) reads [26]

d2σνn→Nn

dxdy
≃ 16παμ2tr

�
1 − y
y

�X
i

e2i fiðxÞ; ð4Þ

where α is the fine structure constant, fiðxÞ is the parton
distribution function for the parton i, x is the parton
momentum fraction, and e2i is its electric charge. Here,
y≡ 1 − EN=Eν ¼ Er=Eν, where EN is the energy of the
outgoing heavy neutrino and Er is the deposited energy. In
Eq. (4) we have ignored the impact of the heavy neutrino
mass in the cross section, which will be negligible in the
region of interest. However, energy and momentum con-
servation requires

FIG. 2. Expected potential of IceCube to constrain the mixing
between ντ and a heavy neutrino. In the region enclosed by the
solid green contour, more than one DB event is expected during
six years of data taking at IceCube. The dashed contour shows the
most conservative result, where only the DeepCore volume is
considered. The shaded regions are disfavored by CHARM [18]
and DELPHI [17] at 90% and 95% C.L., respectively; see
Ref. [14].
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E2
r −W2 − ½m2

N −W2 − 2xEνmn

− x2m2
n þ 2Erðxmn þ EνÞ�2=4E2

ν > 0; ð5Þ

where W2 is the invariant mass squared of the outgoing
hadronic system andmn is the nucleon mass. Using Eqs. (4)
and (5) we can estimate the number of DB events in
IceCube using a similar expression to Eq. (2). A 5 GeV
lower cut is also imposed on the deposited energy for each
shower. Assuming that the decay only takes place via
NTMM, the branching ratio to visible final states in this
scenario is B ¼ 1.
Before presenting our results, let us discuss first the

current constraints on NTMM. Previous measurements of
the neutrino-electron elastic scattering cross section can be
translated into a bound on NTMM. The corresponding
cross section reads

dσνe→Ne

dEr
¼ μ2trα

�
1

Er
−

m2
N

2EνErme

�
1 −

Er

2Eν
þ me

2Eν

�

−
1

Eν
þm4

NðEr −meÞ
8E2

νE2
rm2

e

�
; ð6Þ

where me is the electron mass. Moreover, for given Eν and
Er, the maximum mN allowed by kinematics is

m2
N;max ¼ 2½Eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ErðEr þ 2meÞ

p
− ErðEν þmeÞ�: ð7Þ

Several experiments can be used to derive constraints from
their measurement of neutrino-electron scattering. DONUT
derived a constraint on the ντ magnetic moment, μτ <
3.9 × 10−7μB at 90% C.L. [27]. For NOMAD [28],
Primakoff conversion νμ þ X → νs þ XðþγÞ (where X is
a nucleus) constrains NTMM [29]. Recently, the Borexino
collaboration reported the limit μν < 2.8 × 10−11μB at
90% C.L. [30], valid for all neutrino flavors. For
CHARM-II we have derived an approximate limit on the
magnetic moment of νμ requiring the NTMM cross section
in Eq. (6) to be below the reported precision on the

measurement of the neutrino-electron cross section
(Bounds on NTMM from neutrino-nucleus scattering are
less competitive. For example, using NuTeV data [31] we
find an approximate bound μtr ≲ 10−4μB.), assuming
hEνi ∼ 24 and hEri ∼ 5 GeV.
The ALEPH constraint on the branching ratio

BRðZ → νN → ννγÞ < 2.7 × 10−5 [32] translates into the
bound jUα4j2ðμtr=μBÞ2 < 1.9 × 10−16 [33], α≡ e, μ, τ.
Saturating the bound from direct searches on the mixing
jUτ4j2 gives the strongest possible constraint from
ALEPH data, which is competitive in the mass region
mN ≳ 5–10 GeV.
Additional bounds on μtr can also be derived from

cosmology. In the SM, neutrino decoupling takes places
at temperatures T ∼ 2 MeV. However, the additional inter-
action between photons and neutrinos induced by a
magnetic moment may lead to a delayed neutrino decou-
pling. This imposes an upper bound on μtr (see, e.g.,
Ref. [34] for analogous active limits).
Our results for the NTMM scenario are shown in Fig. 3.

The shaded regions are disfavored by past experiments as
outlined above. These, however, fade away for heavy
neutrino masses above the maximum value allowed by
kinematics in each case, given by Eq. (5). [To derivemN;max

for Borexino, DONUT, and CHARM-II, we have used the
following typical values of ðhEνi; hEriÞ: (420, 230 keV),
(100, 20 GeV), and (24, 5 GeV), respectively.] The solid
contours, on the other hand, indicate the regions where
more than one DB event would be expected at IceCube, for
six years of data taking. The left panel shows the results for
a NTMM between N and ντ. Our results indicate that
IceCube has the potential to improve more than 2 orders of
magnitude over current constraints for NTMM, for
mN ∼ 1 MeV–1 GeV. The right panel, on the other hand,
shows the results for a NTMM between N and νμ. In this
case, the computation of the number of events is identical as
for ντ − N transitions, replacing the oscillation probability

FIG. 3. Expected potential to constrain magnetic moments leading to the transitions ντ − N (left panel) and νμ − N (right panel) at
IceCube. In the region enclosed by the solid contours, at least one DB event would be expected at IceCube, for a data taking period of six
years. The shaded regions are disfavored by previous experiments; see text for details.
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Pμτ by Pμμ in Eq. (2). Even though current constraints are
stronger for νμ, we also find that IceCube could signifi-
cantly improve over present bounds.
Conclusions.—In this Letter, we have studied the poten-

tial of the IceCube detector to look for new physics using
low-energy DB events. The collaboration has already
performed searches for events with this topology at ultra-
high energies, which are expected in the SM from the CC
interactions of PeV tau neutrinos. In this work we have
shown how very simple new physics scenarios with GeV-
scale right-handed neutrinos would lead to a similar top-
ology, with two low-energy cascades that could be spatially
resolved in the detector. We find that IceCube may be able
to improve by orders of magnitude the current constraints
on the two scenarios considered here. A DB search may
also be sensitive to nonminimal dark matter models, such as
the one proposed in Ref. [35].
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Chapter4

Non-standard neutrino interactions in the
Earth and the flavor of astrophysical

neutrinos

In the expansion of the SM lagrangian with higher dimensional operators (eq (3.1)),
the operators with d = 5 correspond to a neutrino mass term, called Weinberg op-
erator. For d = 6, there are some operators that lead the so-called Non-Standard
Interactions (NSI) in the neutrino sector [40]

(ναγ
ρPLνβ)

(
fγρPf

)
(4.1)

(ναγ
ρPLlβ)

(
f ′γρPf

)
(4.2)

where f and f ′ correspond to charged fermion fields. PL = (1 − γ5)/2 is the left-
handed projector, while P can be either PL or PR (right-handed projector). These
operators introduce a modification of the neutrino interaction with the charged
fermions, which affect to the neutrino production and detection by a new charged-
current interaction Eq (4.2), and a new neutral-current interaction Eq (4.1). At zero
momentum transfer, the NSI-NC can modify the matter potential that describes
the neutrino evolution through the matter, and their effect can be enhanced when
neutrinos travel long distances through the matter. This is the case of atmospheric
neutrinos experiments. As we are going to see in the following work, the new matter
potential can also have an observable effect on the flavor of astrophysical neutrinos.

The operators Eqs (4.2) (4.1) are not singlets of the SM symmetry group Eq (1.1).
In order to promote them to a gauge invariant operator, for instance, we can replace
the fermion fields by the SU(2) doublets. In this case, the operators Eqs (4.2) (4.1)
could be obtained from

(LαLγ
ρLβL)(LγLγ

ρLδL) (4.3)

(LαLγ
ρLβL)(QγLγ

ρQδL) (4.4)

In addition to the new interaction for neutrinos, the gauge invariant operators bring
new interactions between the charged fermions like µ → 3e that are tight con-
strained [41, 10]. In the order to avoid these constraints it is needed cancellations
among the different higher-dimensional operators [42, 43].
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a b s t r a c t 

We study the modification of the detected flavor content of ultra high-energy astrophysical neutrinos in 

the presence of non-standard interactions of neutrinos with the Earth matter. Unlike the case of new 

physics affecting the propagation from the source to the Earth, non-standard Earth matter effects induce 

a dependence of the flavor content on the arrival direction of the neutrino. We find that, within the 

current limits on non-standard neutrino interaction parameters, large deviations from the standard 3 ν
oscillation predictions can be expected, in particular for fluxes dominated by one flavor at the source. 

Conversely they do not give sizable corrections to the expectation of equalized flavors in the Earth for 

sources dominated by production via pion-muon decay-chain. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The detection of ultra-high energy neutrinos of astrophysical 

origin in IceCube [1–4] marks the begin of high energy neutrino 

astronomy. From the point of view of astronomy, the main open 

question resides in finding the sources of such neutrinos, an issue 

to which many suggestions have been contributed (for a recent re- 

view see Ref. [5] ). More on the astrophysical front, one also ques- 

tions what type of mechanisms are at work in those sources to 

produce such high energy neutrino flux. To address this question 

the measurement of the flavor composition of the observed neu- 

trinos acquires a special relevance. For example, for the pion-muon 

decay chain, which is the most frequently considered, one expects 

φs 
μ = 2 φs 

e while φs 
τ = 0 [6] (denoting by φs 

α the neutrino flux of 

flavor να at source). Alternatively, if some of the muons lose en- 

ergy very rapidly one would predict a single μ-flavor flux while 

φs 
e = φs 

τ = 0 [7–11] . If neutrino production is dominated by neu- 

tron decay one expects also a single flavor flux but of electron neu- 

trinos [8] so in this case φs 
μ = φs 

τ = 0 . Decay of charm mesons con- 

tribute a flux with equal amounts of electron and muon neutrinos, 

φs 
e = φs 

μ and φs 
τ = 0 . If several of the above processes in the source 

∗ Corresponding author. 

E-mail addresses: maria.gonzalez-garcia@stonybrook.edu (M.C. Gonzalez- 

Garcia), michele.maltoni@csic.es (M. Maltoni), ivanj.m@csic.es (I. Martinez-Soler), 

ningqiang.song@stonybrook.edu (N. Song). 

compete, arbitrary flavor compositions of φs 
e and φs 

μ are possible 

but still with φτ = 0 [10] . If, in addition, ντ are also produced in 

the source [12–14] , then generically φs 
α � = 0 for α = e, μ, τ . 

Neutrino oscillations modify the flavor composition of the neu- 

trino flux by the time they reach the Earth. In the context of the 

well established framework of 3 ν oscillations these modifications 

are well understood and quantifiable given the present determina- 

tion of the neutrino oscillation parameters. Because of this several 

studies to quantify the flavor composition of the IceCube events, 

even with the limited statistics data available, have been presented 

[15–23] but the results are still inconclusive. 

It is well-known that new physics (NP) effects beyond 3 ν os- 

cillations in the neutrino propagation can alter the predicted fla- 

vor composition of the flux reaching the Earth, thus making the 

task of elucidating the production mechanism even more challeng- 

ing. Examples of NP considered in the literature include Lorentz or 

CPT violation [24] , neutrino decay [25,26] , quantum decoherence 

[27,28] pseudo-Dirac neutrinos [29,30] , sterile neutrinos [31] , non- 

standard neutrino interactions with dark matter [32] , or generic 

forms of NP in the propagation from the source to the Earth 

parametrized by effective operators [33] . Besides modifications of 

the flavor ratios many of these NP effects also induce a modifica- 

tion of the energy spectrum of the arriving neutrinos. 

In this paper we consider an alternative form of NP, namely the 

possibility of non-standard interactions (NSI) of the neutrinos in 

the Earth matter. Unlike the kind of NP listed above, this implies 

http://dx.doi.org/10.1016/j.astropartphys.2016.07.001 

0927-6505/© 2016 Elsevier B.V. All rights reserved. 
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that neutrinos reach the Earth surface in the expected flavor com- 

binations provided by the “standard” 3 ν vacuum oscillation mech- 

anism: in other words, NSI in the Earth affect only the flavor evo- 

lution of the neutrino ensemble from the entry point in the Earth 

matter to the detector. The goal of this paper is to quantify the 

modification of the neutrino flavor composition at the detector be- 

cause of this effect within the presently allowed values of the NSI 

parameters. To this aim we briefly review in Section 2 the formal- 

ism employed and derive the relevant flavor transition probabili- 

ties from the source to the detector including the effect of NSI in 

the Earth. We show that the resulting probabilities are energy in- 

dependent while they depend on the zenith angle arrival direction 

of the neutrinos, in contrast with NP affecting propagation from 

the source to the Earth. Our quantitative results are presented in 

Section 3 , where in particular we highlight for which source flavor 

composition the Earth-matter NSI can be most relevant. Finally in 

Section 4 we draw our conclusions. 

2. Formalism 

Our starting point is the initial neutrino (antineutrino) fluxes at 

the production point in the source which we denote as φs 
α ( ̄φs 

α) for 

α = e, ν, τ . The corresponding fluxes of a given flavor at the Earth’s 

surface are denoted as φ�
α ( ̄φ�

α ) while the fluxes arriving at the 

detector after traversing the Earth are φd 
α ( ̄φd 

α). They are generically 

given by 

φ�

β
(E) = 

∑ 

α

∫ 
dE ′ P 

s → �

αβ
(E , E ′ ) φs 

α(E ′ ) , 

φd 
β (E) = 

∑ 

α

∫ 
dE ′ P 

s → d 
αβ (E , E ′ ) φs 

α(E ′ ) (1) 

and correspondingly for antineutrinos. P is the flavor transition 

probability including both coherent and incoherent effects in the 

neutrino propagation. 

2.1. Coherent effects 

Let us start by considering first only the coherent evolution of 

the neutrino ensemble. In this case, the flavor transition probabil- 

ities from the source ( s ) to the Earth entry point ( �) and to the 

detector ( d ) can be written as 

P 

s → �

αβ
(E , E ′ ) = P s → �

αβ
(E) δ(E − E ′ ) , with P s → �

αβ
(E) = 

∣∣∣A 

s → �

αβ
(E) 

∣∣∣2 

(2) 

P 

s → d 
αβ (E , E ′ ) = P s → d 

αβ (E) δ(E − E ′ ) , with 

P s → d 
αβ (E) = 

∣∣A 

s → d 
αβ (E) 

∣∣2 = 

∣∣∣∣∣∑ 

γ

A 

s → �
αγ A 

�→ d 
γβ

∣∣∣∣∣
2 

, (3) 

where we have introduced the flavor transition amplitude from the 

source to the Earth surface A 

s → � and from the Earth surface to 

the detector A 

� → d . 

Generically these amplitudes are obtained by solving the neu- 

trino and antineutrino evolution equations for the flavor wave 

function 

�
 ν(x ) = { νe (x ) , νμ(x ) , ντ (x ) } T 

i 
d � ν(x ) 

dx 
= H 

s → �
ν �

 ν(x ) , i 
d � ν̄(x ) 

dx 
= H 

s → �

ν̄
�
 ν̄(x ) (4) 

for evolution between the source and the Earth surface and 

i 
d � ν(x ) 

dx 
= H 

�→ d 
ν �

 ν(x ) , i 
d � ν̄(x ) 

dx 
= H 

�→ d 
ν̄

�
 ν̄(x ) , (5) 

for evolution in the Earth matter. 

In this work we are interested in standard vacuum oscillation 

dominating the propagation from the source to the detector but 

allowing for new physics in the interactions of the neutrinos in the 

Earth matter. In this case 

H 

s → �
ν = (H 

s → �

ν̄ ) ∗ = H osc = U D vac U 

† with 

D vac = 

1 

2 E 
diag (0 , 	m 

2 
21 , 	m 

2 
31 ) (6) 

and U is the leptonic mixing matrix [34,35] . While 

H 

�→ d 
ν � H mat , H 

�→ d 
ν̄ � −H 

∗
mat (7) 

where the � corresponds to neglecting vacuum oscillations inside 

the Earth which is a very good approximation for the relevant neu- 

trino energies ( � 1 TeV). 

The standard theoretical framework for the NP considered here 

is provided by non-standard interactions affecting neutrino inter- 

actions in matter [36] . They can be described by effective four- 

fermion operators of the form 

L NSI = −2 

√ 

2 G F ε 
f P 

αβ
( ̄ναγ μνβ )( ̄f γμP f ) , (8) 

where f is a charged fermion, P = (L, R ) and ε f P 

αβ
are dimensionless 

parameters encoding the deviation from standard interactions. NSI 

enter in neutrino propagation only through the vector couplings, 

so in the most general case the non-standard matter Hamiltonian 

can be parametrized as [37] 

H mat = 

√ 

2 G F N e (r) 

( 

1 0 0 

0 0 0 

0 0 0 

) 

+ 

√ 

2 G F 

∑ 

f= e,u,d 

N f (r) 

⎛ 

⎜ ⎝ 

ε f ee ε f eμ ε f eτ

ε f∗eμ ε f μμ ε f μτ

ε f∗eτ ε f∗μτ ε f ττ

⎞ 

⎟ ⎠ 

. (9) 

The standard model interactions are encoded in the non-vanishing 

ee entry in the first term of Eq. (9) , while the non-standard inter- 

actions with fermion f are accounted by the ε f 
αβ

coefficients with 

ε f 
αβ

= ε f L 

αβ
+ ε f R 

αβ
. Here N f ( r ) is the number density of fermions f 

in the Earth matter. In practice, the PREM model [38] fixes the 

neutron/electron ratio to Y n = 1 . 012 in the Mantle and Y n = 1 . 137 

in the Core, with an average Y n = 1 . 051 all over the Earth. Thus 

we get an average up-quark/electron ratio Y u = 3 . 051 and down- 

quark/electron ratio Y d = 3 . 102 . We can therefore define: 

ε αβ ≡
∑ 

f= e,u,d 

〈
Y f 

Y e 

〉
ε f 
αβ

= ε e αβ + Y u ε 
u 
αβ + Y d ε 

d 
αβ (10) 

so that the matter part of the Hamiltonian can be written as: 

H mat = 

√ 

2 G F N e (r) 

( 

1 + ε ee ε eμ ε eτ
ε ∗eμ ε μμ ε μτ

ε ∗eτ ε ∗μτ ε ττ

) 

≡ W D mat W 

† (11) 

where 

D mat = 

√ 

2 G F N e (r) diag (ε 1 , ε 2 , ε 3 ) . (12) 

where W is a 3 × 3 unitary matrix containing six physical parame- 

ters, three real angles and three complex phases. So without loss of 

generality the matter potential contains eight parameters, five real 

and three phases (as only difference of ε i enter the flavor transi- 

tion probabilities, only differences in the ε αα are physically rele- 

vant for neutrino oscillation data). 

Altogether the flavor transition probabilities from a source at 

distance L are 
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Fig. 1. The normalized density integral d e along the neutrino path as a function of 

the neutrino arrival zenith angle. 

P s → d 
αβ (E) = 

∑ 

γ ηkl 

W βk W 

∗
β l W γ l W 

∗
ηk exp (−id e 	ε kl ) 

×
∑ 

i j 

U ηi U 

∗
γ j U α j U 

∗
αi exp 

(
−i 

	m 

2 
i j 

2 E 
L 

)
, (13) 

P s → �

αβ
(E) = 

∑ 

i j 

U βi U 

∗
β j U α j U 

∗
αi exp 

(
−i 

	m 

2 
i j 

2 E 
L 

)
(14) 

where 	ε kl = ε k − ε l . Since for astrophysical neutrinos the propa- 

gation distance L is much longer than the oscillation wavelength, 

we can average out the vacuum oscillation terms: 

P s → d 
αβ (E) = 

∑ 

i 

| U αi | 2 | U βi | 2 − 2 

∑ 

γ ηkli 

Re 
(
W βk W 

∗
β l W γ l W 

∗
ηk U ηi U 

∗
γ i | U αi | 2 

)

× sin 

2 

(
d e 

	ε kl 

2 

)
(15) 

+ 

∑ 

γ ηkli 

Im 

(
W βk W 

∗
β l W γ l W 

∗
ηk U ηi U 

∗
γ i | U αi | 2 

)
sin (d e 	ε kl ) , 

P s → �

αβ
(E) = 

∑ 

i 

| U αi | 2 | U βi | 2 . (16) 

In these expressions we have introduced the dimensionless nor- 

malization for the matter potential integral along the neutrino tra- 

jectory in the Earth 

d e (�z ) ≡
∫ 2 R cos (π−�z ) 

0 

√ 

2 G F N e (r) dx, with 

r = 

√ 

R 

2 
�

+ x 2 + 2 R �x cos �z , (17) 

which we plot in Fig. 1 . The integral includes both the effect of 

the increase length of the path in the Earth and the increase aver- 

age density which is particular relevant for trajectories crossing the 

core and leads to the higher slope of the curve for cos �z � −0 . 84 . 

We notice that the total coherent flavor transition probability 

remains energy independent even in the presence of NSI. Also the 

last term in Eq. (15) does not change sign for antineutrinos since 

both the imaginary part of the combination of mixing matrices and 

the phase of the oscillating sin change sign for antineutrinos. 1 In 

other words, there is no CP violation even if all the phases in U 

and W are kept different from zero. These two facts render the 

flavor composition of the fluxes at the detector independent of the 

energy spectrum and the neutrino/antineutrino ratio at the source, 

1 Indeed this term preserves CP but violates time reversal, as it is well known 

that Earth matter effects violate CPT. 

as long as the flavor composition at the source is the same for both 

neutrinos and antineutrinos. This is just as the case for standard 3 ν
oscillations in the absence of NP. 2 

In brief, the effect of NSI in the Earth is to modify the flavor 

composition at the detector as compared to the standard case, in 

a way which depends on the zenith angle of the arrival direction 

of the neutrinos. Also, as expected, the effect only appears in pres- 

ence of additional flavor mixing during propagation in the Earth, 

i.e. , for W αi � = C δαi , which occurs only if some off-diagonal ε αβ

(with α � = β) is different from zero. 

2.2. Incoherent effects 

In addition to the coherent effects discussed so far, high-energy 

neutrinos propagating through the Earth can also interact inelasti- 

cally with the Earth matter either by charged current or by neu- 

tral current interactions. As a consequence of these inelastic pro- 

cesses the neutrino flux is attenuated, its energy is degraded, and 

secondary fluxes are generated from the decay of the charged lep- 

tons (in particular τ±) produced in charged current interactions. In 

some new physics scenario attenuation and other decoherence ef- 

fects can also occur in the travel from the source to the Earth, but 

they are not relevant for this work. 

For simplicity, let us first neglect NSI and focus only on the 

usual 3 ν oscillation framework. In the standard scenario, attenu- 

ation and regeneration effects can be consistently described by a 

set of coupled partial integro-differential cascade equations (see 

for example [41] and references therein). In this case the fluxes 

at the arrival point in the Earth are given by Eqs. (1) and (2) while 

for the fluxes at the detector we have: 

SM: P 

s → d 
αβ (E , E ′ ) = 

∑ 

γ

P s → �
αγ (E ) F �→ d 

γβ
(E , E ′ ) , (18) 

where F �→ d 
γ β

(E , E ′ ) is the function accounting for attenuation and 

regeneration effects, which depends on the trajectory of the neu- 

trino in the Earth matter ( i.e. , it depends on �z ). Attenuation is the 

dominant effect and for most energies is only mildly flavor depen- 

dent. So the dominant incoherent effects verify 

SM: F �→ d 
γ β

(E , E ′ ) � δγβF �→ d 
att (E) δ(E − E ′ ) . (19) 

When considering NSI in the Earth the simple factorization of 

coherent and incoherent effects introduced in Eq. (18) does not 

hold, since NSI-induced oscillations, attenuation, and regeneration 

occur simultaneously while the neutrino beam is traveling across 

the Earth’s matter. In order to properly account for all these effects 

we need to replace the evolution equation in the Earth (5) with 

a more general expression including also the incoherent compo- 

nents. This can be done by means of the density matrix formalism, 

as illustrated in Ref. [42] (see also Ref. [43] ). However, if one ne- 

glects the subleading flavor dependence of these effects and focus 

only on the dominant attenuation term, as we did in Eq. (19) for 

the standard case, it becomes possible to write even in the pres- 

ence of NSI-oscillations: 

NSI: P 

s → d 
αβ (E , E ′ ) � P s → d 

αβ (E ) F �→ d 
att (E ) δ(E − E ′ ) (20) 

with P s → d 
αβ

(E) given in Eq. (15) . In other words, although the pres- 

ence of NSI affects the flavor composition at the detector through a 

modification of the coherent part of the evolution in the Earth, the 

incoherent part is practically the same in both the standard and 

the non-standard case and does not introduce relevant flavor dis- 

tortions. 

2 Relaxing the assumption of equal flavor composition for neutrinos and antineu- 

trinos at the source can lead to additional interesting effects even in the case of 

standard oscillations as discussed in Ref. [39,40] . 
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In the next section we quantify our results taking into ac- 

count the existing bounds on NSI. For simplicity we will consider 

only NSI with quarks and we further assume that the NSI Hamil- 

tonian is real. At present the strongest model-independent con- 

straints on NSI with quarks relevant to neutrino propagation arise 

from the global analysis of oscillation data [37,44] (see also [45] ) 

in combination with some constraints from scattering experiments 

[46,47] such as CHARM [4 8,4 9] , CDHSW [50] and NuTeV [51] . As 

shown in Ref. [37] neutrino oscillations provide the stronger con- 

straints on NSI, with the exception of some large ε ee − ε μμ terms 

which are still allowed in association with a flip of the octant of 

θ12 , the so-called “dark-side” solution (or LMA-D) found in Ref. 

[45] . However, these large NSI’s are disfavored by scattering data 

[45] . A fully consistent analysis of both oscillation and scattering 

data covering the LMA-D region is still missing, so here we con- 

servatively consider only NSI’s which are consistent with oscilla- 

tions within the LMA regions. The corresponding allowed ranges 

read (we quote the most constraining of both u and d NSI’s): 

90% CL 3 σ CL 

ε q ee − ε q μμ [+0 . 02 , +0 . 51] [ −0 . 09 , +0 . 71] 

ε q ττ − ε q μμ [ −0 . 01 , +0 . 03] [ −0 . 03 , +0 . 19] 

ε q eμ [ −0 . 09 , +0 . 04] [ −0 . 16 , +0 . 11] 

ε q eτ [ −0 . 13 , +0 . 14] [ −0 . 38 , +0 . 29] 

ε q μτ [ −0 . 01 , +0 . 01] [ −0 . 03 , +0 . 03] 

(21) 

where for each NSI coupling the ranges are shown after marginal- 

ization over all the oscillations parameters and the other NSI cou- 

plings. 

3. Results 

Flavor composition of the astrophysical neutrinos are usually 

parametrized in terms of the flavor ratios at the source and at the 

Earth surface, defined as: 

ξ s 
α ≡ φs 

α(E) ∑ 

γ φs 
γ (E) 

, ξ�

β
≡

φ�

β
(E) ∑ 

γ φ�
γ (E) 

= 

∑ 

α

P s → �

αβ
(E) ξ s 

α (22) 

and it has become customary to plot them in ternary plots. Exper- 

imentally ξ�

β
are reconstructed from the measured neutrino fluxes 

in the detector φd 
α by deconvoluting the incoherent effects due to 

SM interactions in the Earth matter: 

ξ�, rec 
β

≡
φ�, rec 

β
(E) ∑ 

γ φ�, rec 
γ (E) 

with 

φ�, rec 
β

(E) ≡
∑ 

γ

∫ 
dE ′ G 

�← d 
γ β

(E , E ′ ) φd 
γ (E ′ ) (23) 

where the function G 

�← d 
αβ

(E , E ′ ) is the inverse of the Earth 

attenuation + degradation + regeneration function F �→ d 
αβ

(E , E ′ ) in- 

troduced in the previous section: ∑ 

γ

∫ 
dE ′′ F �→ d 

γ β
(E , E ′′ ) G 

�← d 
αγ (E ′′ , E ′ ) = δαβ δ(E − E ′ ) (24) 

Under the approximation described in Eq. (19) G 

�← d 
αβ

(E , E ′ ) reduces 

to: 

G 

�← d 
αβ

(E , E ′ ) � δαβ
1 

F �→ d 
att (E) 

δ(E − E ′ ) (25) 

so that 

ξ�, rec 
β

� 

φd 
β
(E) 

/
F �→ d 

att (E) ∑ 

γ φd 
γ (E) 

/
F �→ d 

att (E) 
= 

φd 
β
(E) ∑ 

γ φd 
γ (E) 

≡ ξ d 
β (26) 

where we have introduced the flavor ratios at the detector ξ d 
β

. Thus 

we have shown that the reconstructed flavor ratios at the surface 

of the Earth ( ξ�, rec 
β

) are well approximated by the measured flavor 

ratios at the detector ( ξ d 
β

). This conclusion depends only on the 

validity of the approximation (19) , and therefore applies both for 

standard oscillations and in the presence of new physics such as 

Earth NSI. It should be noted, however, that in the standard case 

ξ�, rec 
β

really coincides with the actual flavor ratios ξ�

β
defined in 

Eq. (22) , whereas in the presence of NSI this is no longer the case. 

In what follows we will present our results in terms of flavor 

ratios at the detector ξ d 
β
, since, as we have just seen, they are good 

estimators of the reconstructed quantities ξ�, rec 
β

usually shown by 

the experimental collaborations. It is easy to show that: 

ξ d 
β = 

∑ 

α

P s → d 
αβ (E) ξ s 

α (27) 

where P s → d 
αβ

(E) is obtained from Eq. (15) . In principle, one may ex- 

pect that the flavor ratios ξ d 
β

would depend on the neutrino en- 

ergy, either through the oscillation probability P s → d 
αβ

(E) or though 

the intrinsic energy dependence of the flavor ratios at the source 

ξ s 
α . However, as we have seen in the previous section the expres- 

sion in Eq. (15) is independent of E , and moreover we will assume 

(as it is customary to do) that the ratios ξ s 
α do not depend on the 

neutrino energy even though the fluxes φs 
α(E) do. Hence, the flavor 

ratios ξ d 
β

are independent of energy and they can be conveniently 

plotted in a ternary plot. 

Let us now discuss the results of our fit, starting with the sim- 

pler case of standard oscillations. In the absence of new physics ef- 

fects the present determination of the leptonic mixing matrix from 

the measurements of neutrino oscillation experiments allows us to 

determine the astrophysical neutrino flavor content at detection 

given an assumption of the neutrino production mechanism. For 

completeness and reference we show in Fig. 2 the allowed regions 

of the flavor ratios at the Earth as obtained from the projection of 

the six oscillation parameter χ2 function of the global NuFIT anal- 

ysis of oscillation data [52,53] in the relevant mixing combinations 

(see also [16,33,40] ). We stress that in our plots the correlations 

among the allowed ranges of the oscillation parameters in the full 

six-parameter space are properly taken into account. The results 

are shown after marginalization over the neutrino mass ordering 

and for different assumptions of the flavor content at the source as 

labeled in the figure. Fig. 2 illustrates the well-known fact [6] that 

during propagation from the source neutrino oscillations lead to 

flavor content at the Earth close to (ξ�
e : ξ�

μ : ξ�
τ ) = ( 1 3 : 1 

3 : 1 
3 ) , 

with largest deviations for the case when the flavor content at the 

source is (1: 0: 0) [54] and (0: 1: 0). 

As discussed in the previous section NSI in the Earth mod- 

ify these predictions and, unlike for NP effects in the propaga- 

tion from the source, such Earth-induced modifications are a func- 

tion of the arrival zenith angle of the neutrino. As illustration we 

show in Fig. 3 the variation of the flavor ratios at the detector 

as a function of the zenith angle of the neutrino for some val- 

ues of the ε αβ well within the presently allowed 90% CL ranges. 

In our convention cos �z = −1 corresponds to vertically upcom- 

ing neutrinos (which have crossed the whole Earth before reaching 

the detector) while cos �z = 0 corresponds to horizontally arriv- 

ing neutrinos (for which effectively no Earth matter is crossed so 

that ξ d 
β
( cos �z = 0) = ξ�

β
). From Fig. 3 we can observe the main 

characteristics of the effect of NSI in the Earth matter. Deviations 

are sizable for flavor α as long as ε β � = α is non-zero and ξ s 
α or ξ s 

β

are non-zero. Larger effects are expected for source flavor compo- 

sitions for which vacuum oscillations from the source to the Earth 

lead to “less equal” ratios at the Earth surface: (1: 0: 0) and (0: 

1: 0). Finally the increase in frequency for almost vertical neutrino 

direction is a consequence of the increase of the integral density 

d e for core crossing trajectories (see Fig. 1 ). 
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Fig. 2. Two-dimensional projections of the allowed regions from the global analysis of oscillation data from Ref. [52] in the relevant combinations giving the flavor content 

at the Earth. The allowed regions are shown at 90%, 95% and 3 σ CL. In the upper panels we show the regions for four initial flavor compositions (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = ( 1 
3 

: 2 
3 

: 0) , 

(1: 0: 0), (0: 1: 0), and ( 1 
2 

: 1 
2 

: 0) . In the lower panel the regions are shown for the more general scenarios, (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = (x : 1 − x : 0) for 0 ≤ x ≤ 1, and (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = 

(x : y : 1 − x − y ) for 0 ≤ x , y ≤ 1. 

ξ ed
/ξ
e⊕

ξ μd /
ξ μ⊕

ξ τd /
ξ τ⊕

cosΘz cosΘz cosΘz

Fig. 3. Flavor ratios at the detector as a function of the zenith angle of the neu- 

trino normalized to the expectation in the absence of NSI and for oscillation pa- 

rameters at the best fit of the global analysis ( sin 
2 θ12 = 0 . 305 , sin 

2 θ13 = 0 . 0219 , 

sin 
2 θ23 = 0 . 579 , and δCP = 254 ◦). For the left (central) [right] panels the only non- 

vanishing NSI parameters are ε eμ = 0 . 04 ( ε eτ = −0 . 05 ) [ ε eμ = ε eτ = −0 . 04 ]. The dif- 

ferent curves correspond to different flavor composition at the source: (ξ s 
e : ξ

s 
μ : 

ξ s 
τ ) = (1 : 0 : 0) (full black), (0: 1: 0) (dashed red), ( 1 

2 
: 1 

2 
: 0) (dotted purple), and 

( 1 
3 

: 2 
3 

: 0) (dash-dotted blue). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Next we show how the allowed regions in the ternary plots 

shown in Fig. 2 are modified when including the effect of the NSI 

presently allowed at given CL. In order to do so we project the χ2 

of the global analysis of oscillation data in the presence of arbi- 

trary NSI on the relevant combinations entering in the flavor ra- 

tios within a given CL. The results are shown in Figs. 4 , 5 and 6 

for the flavor compositions at source (ξ s 
e : ξ s 

μ : ξ s 
τ ) = (1 : 0 : 0) , (0: 

1: 0) and ( 1 3 : 2 
3 : 0) , respectively. The results are shown averaged 

over four zenith angular directions. 

Comparing the allowed regions in Figs. 4 and 5 with the cor- 

responding ones for (1: 0: 0) and (0: 1: 0) compositions in the 

case of standard 3 ν oscillations given in Fig. 2 we see that the fla- 

vor ratios can take now much wider range of values in any of the 

zenith angle ranges considered. Moreover, although sizable devia- 

tions from (ξ d 
e : ξ d 

μ : ξ d 
τ ) = ( 1 3 : 1 

3 : 1 
3 ) are possible, the allowed re- 

gions now extend to include ( 1 3 : 1 
3 : 1 

3 ) at CL of 3 σ or lower. We 

also see that the larger CL region becomes smaller for most verti- 

cal arrival directions (see the relative size of the light blue regions 

in the two lower triangles on these figures). This is so because at 

those CL for the larger values of ε allowed the NSI-induced oscil- 

lations are fast enough to be averaged out 〈 sin 

2 (	ε i j 
d e 
2 ) 〉 ∼ 1 

2 for 

those trajectories while the value in the second most vertical an- 

gular bin can be in average larger than 1/2. For contrast, as illus- 

trated in Fig. 6 , for the case of flavor composition at the source 

(ξ s 
e : ξ s 

μ : ξ s 
τ ) = ( 1 3 : 2 

3 : 0) NSI in the Earth never induce sizable 

modifications of the expectation (ξ d 
e : ξ d 

μ : ξ d 
τ ) = ( 1 3 : 1 

3 : 1 
3 ) . 

4. Conclusions 

The measurement of the flavor composition of the detected 

ultra-high energy neutrinos can be a powerful tool to learn about 

the mechanisms at work in their sources. Such inference, however, 
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Fig. 4. Allowed regions for the flavor ratios in the presence of NSI in the Earth at 90, 95% and 3 σ CL for an initial flavor (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = (1 : 0 : 0) . The four triangles 

correspond to averaging over neutrinos arriving with directions given in the range 0 ≥ cos �z > −0 . 25 (upper left), −0 . 25 ≥ cos �z > −0 . 5 (upper right) −0 . 5 ≥ cos �z > 

−0 . 75 (lower left), and −0 . 75 ≥ cos �z ≥ −1 (lower right). 

Fig. 5. Same as Fig. 4 for (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = (0 : 1 : 0) . 

relies on the understanding of the particle physics processes rele- 

vant to the neutrino propagation from the source to the detector. 

The presence of NP effects beyond those of the well established 

mass-induced 3 ν oscillations alter the flavor composition at the 

detector and can therefore affect the conclusions on the dominant 

production mechanism. 

In this work we have focused on NP effects associated with NSI 

of the neutrinos in the Earth matter. The relevant flavor transition 

probabilities accounting from oscillations from the source to the 

Earth plus NSI in the Earth are energy independent but depend on 

the zenith angle of the arrival direction of the neutrinos, which is 

a characteristic feature of this form of NP. Quantitatively, we have 
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Fig. 6. Same as Fig. 4 for (ξ s 
e : ξ

s 
μ : ξ s 

τ ) = ( 1 
3 

: 2 
3 

: 0) . 

shown that within the presently allowed range of NSI large devia- 

tions from the standard 3 ν oscillation predictions for the detected 

flavor composition can be expected, in particular for fluxes dom- 

inated by one flavor at the source. On the contrary we find that 

the expectation of equalized flavors in the Earth for sources dom- 

inated by production via pion-muon decay-chain is robust even in 

the presence of this form of NP. 
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Chapter5

Decoherence in neutrino propagation
through matter, and bounds from

IceCube/DeepCore

The description of the neutrino evolution done in the Introduction section, is
based in the assumption that neutrinos are plane waves, the neutrino field cover
all the space in a periodic way. Under this approximation cannot be described
localized events, like the neutrino production and the detection, which take place in
a finite space-time region, called coherence region. By the uncertainty principle, the
uncertainty in the space (σx) is related to an uncertainty in the neutrino momentum
(σp) by σpσx ∼ 1/2. In quantum mechanics, the real localized particles are described
by wave packets, which are a superposition of plane waves.

The neutrino flavor state |να(t, ~x)〉 distributed according to the wave packet
ψ(t, ~x) is given, in terms of the massive states, by Eq (1.29)

|να(t, ~x)〉 =
∑

j

U †αjψj(t, ~x) |νj〉 (5.1)

A convenient way to study the neutrino flavor evolution is to use the density matrix
formalism. The 1-particle density operator is defined as

ρ̂α(t, ~x) = |να(t, ~x)〉 〈να(t, ~x)| =
∑

jk

U †αjUαkψj(t, ~x)ψ∗k(t, ~x) (5.2)

The evolution equation in the density formalism is given by

dρ̂α

dt
= −[H, ρ̂α] (5.3)

where H is the standard hamiltonian. In the following, we are going to study the
evolution in vacuum (H = Hvac). In matter, we have to include the matter density
potential as we did in section 1.5.

We need to make an assumption about the wave packet function ψ(t, ~x) to solve
the evolution equation. One of the most studied wave packet distributions, and the
one that we are going to assume in the following, is the Gaussian wave-packet in the
momentum space [44, 45]

ψk(~p) =
1

(2πσp)3/4
exp

{
−(~p− ~pk)2

4σ2
p

}
(5.4)
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where pk is the average momentum and σp is the uncertainty associated to the
momentum. The plane wave limit is recovered for σp → 0, where the wave packet
becomes a delta function ψk(p) ≈ δ3(~p − ~pk). In the coordinate space, the wave
packet is obtained by making the Fourier transform

ψk(t, ~x) =

∫
d3p

(2π)3/2
ψ(~p) exp {ı(~p~x− Ek(p)t)} (5.5)

Making a Taylor expansion of the energy of the neutrino state |νk〉 over the momen-
tum pk, at first order in approximation we obtain Ek(p) =

√
p2 +m2

k ≈ Ek +pk/Ek,

where Ek =
√
p2
k +m2

k, and the wave packet in the coordinate space become

ψk(t, ~x) =
1

2πσ2
x

exp

{
ı(~pk~x− Ekt)−

(~x− vkt)2

4σ2
x

}
(5.6)

where we have used σx = 1/2σp, which is the size of the wave packet, and vk = pk/Ek
is the group velocity of the kth state.

The density matrix is averaged over the local volume where the propagation
take place. The size of the volume is small compared with scale at which the system
significantly change, but is very large compared with the size of the neutrino wave
packet [45]. Making an integration of ρ̂α over an infinity volume, we obtain

ρ̂α(t) =

∫
d3xρ̂α(t, ~x) (5.7)

∑

jk

U∗αjUαk exp

{
−ı

∆m2
jkt

2E
− (~vj − ~vk)2t2

8σ2
x

}

where we have used the ultra-relativistic limit (E ' Ej ' Ek, and ∆E−(∂E/∂p)∆~p =
∆m2/2E). We have removed terms that goes like (~pj−~pk)2/σ2

p, since we can expect
them to be very small in the ultra-relativistic limit. On the other hand, we keep the
term (~vj − ~vk)2t2 since it going to be important as the evolution happen. We can
compute now Pαβ by taking the trace with the density operator ρ̂β. Defining the
coherence length as

Lcoh =
2
√

2σx
~vj − ~vk

(5.8)

The oscillation probability can be writen as

Pαβ =
∑

jk

U∗αjUαkU
∗
βkUβk exp

{
−ı

∆m2
jkt

2E
− t2

L2
coh

}
(5.9)

The expression obtained is very similar to Eq (1.37) with an extra term, which in-
troduces a damping factor for the non-diagonal elements. The last term is just a
consequence en the different velocities of the wave packets, and it introduces a de-
coherence in the neutrino propagation. When neutrinos travel for a long time, the
damping factor suppresses the oscillations, and the oscillation probability only de-
pends on the mixing matrix. In the next work, we are going to study the decoherence
introduced by New Physics when neutrinos propagate through matter.
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Abstract: We revisit neutrino oscillations in matter considering the open quantum

system framework which allows to introduce possible decoherence effects generated

by New Physics in a phenomenological manner. We assume that the decoherence

parameters γij may depend on the neutrino energy, as γij = γ0
ij(E/GeV)n (n =

0,±1,±2). The case of non-uniform matter is studied in detail, both within the

adiabatic approximation and in the more general non-adiabatic case. In particular,

we develop a consistent formalism to study the non-adiabatic case dividing the matter

profile into an arbitrary number of layers of constant densities. This formalism is then

applied to explore the sensitivity of IceCube and DeepCore to this type of effects.

Our study is the first atmospheric neutrino analysis where a consistent treatment of

the matter effects in the three-neutrino case is performed in presence of decoherence.

We show that matter effects are indeed extremely relevant in this context. We find

that IceCube is able to considerably improve over current bounds in the solar sector

(γ21) and in the atmospheric sector (γ31 and γ32) for n = 0, 1, 2 and, in particular,

by several orders of magnitude (between 3 and 9) for the n = 1, 2 cases. For n = 0

we find γ32, γ31 < 4.0 · 10−24(1.3 · 10−24) GeV and γ21 < 1.3 · 10−24(4.1 · 10−24) GeV,

for normal (inverted) mass ordering.
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1 Introduction

The accurate measurement of the mixing angle θ13 by reactor neutrino experiments [1],

with a small uncertainty comparable to that for θ12, has initiated a precision era for

neutrino physics. In the standard three-family framework, the main remaining issues

are the possible observation of leptonic CP violation, the determination of the order-

ing of neutrino masses and probing the Dirac or Majorana nature of neutrinos. Some

hints currently exist in the latest data collected by NOvA and T2K which seem to

point to maximal CP violation in the neutrino sector, but the statistical significance

is still low [2, 3]. Likewise, a global fit to neutrino oscillation data seems to show a

mild preference for a normal mass ordering (see for instance [4, 5]), which needs to

be confirmed as more data become available.

At the same time, and in view of the precision of present and near future neutrino

facilities, it is of key importance to verify if neutrinos have unexpected properties

caused by New Physics (NP) beyond the standard three-family framework. In this

work we study one of the possible windows to NP, the so-called quantum decoherence
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in neutrino oscillations, and update the existing bounds by analyzing IceCube and

DeepCore data on atmospheric neutrinos. In particular, we are interested in a kind of

decoherence effects in neutrino oscillations studied, for example, in [6–13] and, more

recently, in [14–19]. These decoherence effects differ from the standard decoherence

caused by the separation of wave packets (see e.g. [20]) and might arise, instead, from

quantum gravity effects [21–23]. Throughout this work, for brevity, we will refer to

such non-standard decoherence simply as decoherence.

The authors of Ref. [7] derived some of the strongest available constraints on

neutrino decoherence in neutrino oscillations up to date, using atmospheric neu-

trino data from the Super-Kamiokande (SK) experiment [24–27]. Moreover, they

considered the general case in which the decoherence parameters could depend on

the neutrino energy via a power law, γ = γ0(E/GeV)n, where n = 0,−1, 2. Nev-

ertheless, these limits were obtained within a simplified two-family framework and

without taking into account the matter effects in the neutrino propagation. More-

over, only a reduced subset of SK data (taken, in fact, almost 20 years ago now) was

analyzed [24–27].

In this work, we show that performing a three-flavour analysis which includes

the matter effects is essential in order to correctly interpret such constraints. In

particular, it is not obvious to which γij parameter the SK bounds derived in two

families [7] would actually apply. We will show that it strongly depends on the

neutrino mass ordering and on whether the sensitivity is dominated by the neutrino

or antineutrino channels: for neutrinos the decoherence effects at high energies are

mainly driven by γ21 (γ31) for normal (inverted) ordering, while in the antineutrino

channel they are essentially controlled by γ32 (γ21) for normal (inverted) ordering.

Concerning the solar sector, the authors of Ref. [15] obtained strong constraints on

γ21 from an analysis of KamLAND data, for n = 0,±1.1 Finally, the authors of

Ref. [29] derived several bounds on the atmospheric decoherence parameters γ32 and

γ31 from an analysis of MINOS data.

Non-standard decoherence has been invoked several times in the literature in

order to decrease the tension in the parameter space among different sets of neutrino

oscillation data. For example, in Refs. [13, 14] a solution to the LSND anomaly

based on quantum decoherence, compatible with global neutrino oscillation data,

was proposed. More recently, in [17] it was shown that the ∼ 2σ tension between

T2K and NOvA on the measurement of the atmospheric mixing angle θ23 could be

alleviated through the inclusion of decoherence effects in the atmospheric neutrino

sector, namely, γ23 = (2.3 ± 1.1) · 10−23 GeV. Such value of γ23 would be close

to the SK bound from Ref. [7], γ < 3.5 · 10−23 GeV (90% CL), but still allowed.

1It should be mentioned that, in [12], very strong bounds on dissipative effects were derived from

solar neutrino data, for n = 0,±1,±2 and in a two-family approximation. However, such limits

do not apply to the case in which only decoherence effects are included, as pointed out in [15, 28].

This will be further clarified in section 2.2.
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This topic has recently brought the attention of a part of the community. In fact,

several analyses of decoherence effects on present and future long-baseline neutrino

oscillation experiments have been recently performed (albeit at the probability level

only), see e.g. Refs. [16, 18, 19]. We note however that, according to the latest

results reported by NOvA, the significance of the tension has been reduced to less

than 1σ [3]. In this work we will show that the reference value for γ23 considered

in [17] is indeed already excluded by IceCube data. Moreover, we find that IceCube

and DeepCore data are able to improve significantly over most of the constraints

in past literature, both for solar and atmospheric decoherence parameters, in some

cases by several orders of magnitude.

The paper is structured as follows. In section 2 we present the formalism and

discuss the effects of decoherence on the oscillation probabilities. We first review the

case of constant matter density profile, and then proceed to discuss the case of non-

uniform matter. In particular we show that, within the adiabatic approximation,

no significant bounds on the decoherence parameters can be extracted from solar

neutrino data. We then proceed to develop a formalism which permits a consistent

treatment of the decoherence effects on neutrino propagation in non-uniform matter

when the adiabaticity condition is not fulfilled, as is the case of atmospheric neutrino

experiments. In Section 3 we apply this formalism to the computation of the relevant

oscillation probabilities in the atmospheric neutrino case, discussing the main features

arising in presence of decoherence. Section 4 summarizes the main features of the

IceCube and DeepCore experiments, the data sets considered in our analysis, and the

details of our numerical simulations. Our results are then presented and discussed in

section 5. Finally, we summarize and draw our conclusions in section 6. Appendices A

and B discuss technical details regarding some of the approximations used in our

numerical calculations.

2 Quantum decoherence: Density matrix formalism

The evolution of the density matrix ρ in the neutrino system can be described as

dρ

dt
= −i [H, ρ]−D [ρ] , (2.1)

where H is the Hamiltonian of the neutrino system and the second term D [ρ] param-

eterizes the decoherence effects. In vacuum, the diagonal elements of the Hamiltonian

are given by hi = m2
i /(2E), where mi (i = 1, 2, 3) are the masses of the three neu-

trinos and E is the neutrino energy. Here ρ is defined in the flavour basis, with

matrix elements ραβ. Throughout this work, we will use Greek indices for flavor

(α, β = e, µ, τ), and Latin indices for mass eigenstates (i, j = 1, 2, 3).

A notable simplification of eq. (2.1) can be achieved via the following set of

assumptions. First, assuming complete positivity, the decoherence term D [ρ] can be
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written in the so-called Lindblad form [30, 31]

D [ρ] =
∑

m

[{
ρ,DmD

†
m

}
− 2DmρD

†
m

]
, (2.2)

where Dm is a general complex matrix. Second, avoiding unitarity violation, which

is equivalent to imposing the condition dTr[ρ]/dt = 0, requires Dm to be Hermitian.

Moreover, Dm = D†m implies that the entropy S = Tr[ρ ln ρ] increases with time.

Finally, a key assumption is the average energy conservation of the neutrino system,

which is satisfied when [H,Dm] = 0. In presence of matter effects, the Hamiltonian is

diagonalized by the unitary mixing matrix Ũ . Therefore, after imposing the condition

[H,Dm] = 0, we get

H = Ũ diag
{
h̃1, h̃2, h̃3

}
Ũ † ≡ ŨHdŨ

†,

Dm = Ũ diag
{
d1
m, d

2
m, d

3
m

}
Ũ † ≡ ŨDd

mŨ
†. (2.3)

This condition implies that the averaged energy is conserved along the whole neutrino

propagation. Note that we consider the standard definition for the relation between

the mass and flavour eigenstates used in neutrino oscillations2. Moreover, throughout

this paper, in our notation the presence of a tilde denotes that a quantity is affected

by matter effects.

From a model-independent point of view, the djm are free parameters that could a

priori depend on the matter effects. The most common assumption in the literature

is to assume that the djm are independent of the matter density even in presence of

matter effects. In order to be consistent with most previous studies and to com-

pare the bounds obtained in our analysis with the constraints derived in previous

publications, we will also assume that this is the case. Notice that this assumption

does not imply that the matter effects are not relevant when neutrino propagation

is affected by decoherence: it just implies that the djm are assumed to be constant

during neutrino propagation in the Earth.

2.1 Neutrino propagation in uniform matter

Performing the following change of basis

ρ̃ = Ũ †ρŨ , (2.4)

eq. (2.1) can be rewritten as

dρ̃

dt
= −i [Hd, ρ̃]−

∑

m

[{
ρ̃, (Dd

m)2
}
− 2Dd

m ρ̃ D
d
m

]
− Ũ †dŨ

dt
ρ̃− ρ̃dŨ

†

dt
Ũ . (2.5)

2For field operators, να =
∑
i Uαiνi. For one-particle states, |να〉 =

∑
i U

∗
αi|νi〉.
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If the matter profile is constant along the neutrino path, the system of equations

becomes diagonal in ρ̃ij
dρ̃ij
dt

= −
[
γij − i∆h̃ij

]
ρ̃ij, (2.6)

where we have defined

γij ≡
∑

m

(
dim − djm

)2
= γji > 0 ; ∆h̃ij = h̃i − h̃j. (2.7)

Therefore, the solution of eq. (2.1) for constant matter is simply given by

ραβ(t) =
[
Ũ ρ̃(t)Ũ †

]
αβ
, (2.8)

with

ρ̃ij(t) = ρ̃ij(0) e−[γij−i∆h̃ij]t, (2.9)

where ρ̃ij(0) is determined by the initial conditions of the system. For instance, if the

neutrino source flux is made only of the flavor να (α = e, µ, τ) the initial conditions

are given by

ρ̃ij(0) = Ũ∗αiŨαj . (2.10)

As a result, the oscillation probabilities in presence of decoherence (for a constant

matter profile) read

Pαβ ≡ P (να → νβ) = Tr
[
ρ̂(α)(t)ρ̂(β)(0)

]
= Tr

[
ρ̂(α)(t)|νβ〉〈νβ|

]
= 〈νβ|ρ̂(α)(t)|νβ〉 =

=
∑

i,j

ŨβiŨ
∗
βj ρ̃ij(t)

=
∑

i,j

Ũ∗αiŨβiŨαjŨ
∗
βje
−[γij−i∆h̃ij]t . (2.11)

Finally, after some manipulation the above equation can be rewritten in the more

familiar form

Pαβ = δαβ − 2
∑

i<j

Re
[
Ũ∗αiŨβiŨαjŨ

∗
βj

] (
1− e−γijL cos ∆̃ij

)

− 2
∑

i<j

Im
[
Ũ∗αiŨβiŨαjŨ

∗
βj

]
e−γijL sin ∆̃ij, (2.12)

where

∆̃ij ≡
∆m̃2

ijL

2E
, γij = γji ≡ γ0

ij

(
E

GeV

)n
, (2.13)

where ∆m̃2
ij ≡ m̃2

i − m̃2
j are the effective mass squared differences of neutrinos in

matter and we have used the approximation L ≈ t, L being the distance traveled by

the neutrino as it propagates. Note that the power law dependence on the neutrino

energy given by eq. (2.13) breaks Lorentz invariance except for the case with n = −1
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which gives similar effects to the neutrino decay (see e.g. [32]). However, the effect

encoded in γij only suppresses the oscillatory terms in the oscillation probability

while a neutrino decay would also affect the non oscillatory terms. Therefore, in the

framework considered in this work the total sum of the probabilities adds up to 1,

while this is not the case for neutrino decay.

From eqs. (2.12) and (2.13), one would expect to have a sizable effect in neutrino

oscillations for γijL ∼ 1. This condition gives an estimate of the values of γij for

which an effect may be experimentally observable:

γ0
ij ∼ 1.7 · 10−19

(
L

km

)−1(
E

GeV

)−n
GeV. (2.14)

Nevertheless, we would like to remark that fulfilling this condition is not enough to

have sensitivity to decoherence effects, as we will discuss in the next subsection.

Even though in our simulations we will numerically compute the exact oscillation

probabilities, in order to understand qualitatively the impact of decoherence on the

oscillation pattern it is useful to derive approximate analytical expressions. In this

work, we will be focusing on the study of atmospheric neutrino oscillations, for which

the oscillation channel Pµµ is most relevant. Recently, in [33, 34] approximated

but very accurate analytical expressions for the standard oscillation probabilities in

presence of constant matter density were derived. For the νµ → νµ oscillation channel

including decoherence effects, using the same parametrization as in Ref. [34], we find:

Pµµ = 1− A21

[
1− e−γ21L cos ∆̃21

]
− A32

[
1− e−γ32L cos ∆̃32

]
(2.15)

− A31

[
1− e−γ31L cos ∆̃31

]
,

where

Aij ≡ Aij(θ23, θ̃12, θ̃13, δ) = 2|Uµi(θ23, θ̃12, θ̃13, δ)|2|Uµj(θ23, θ̃12, θ̃13, δ)|2, (2.16)

and the effective mass splittings and mixing angles in matter can be expressed as [34]:

cos 2θ̃13 =
cos 2θ13 − a/∆m2

ee√
(cos 2θ13 − a/∆m2

ee)
2 + sin2 2θ13

,

cos 2θ̃12 =
cos 2θ12 − a′/∆m2

21√
(cos 2θ12 − a′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13)
,

∆m̃2
21 = ∆m2

21

√
(cos 2θ12 − a′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13),

∆m̃2
31 = ∆m2

31 + (a− 3

2
a′) +

1

2
(∆m̃2

21 −∆m2
21),

∆m̃2
32 = ∆m̃2

31 −∆m̃2
21. (2.17)

Here, a ≡ 2
√

2GFneE, where GF is the Fermi constant and ne is the electron density

along the neutrino path, ∆m2
ee ≡ cos2 θ12∆m2

31 + sin2 θ12∆m2
32, and a′ = a cos2 θ̃13 +
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∆m2
ee sin2(θ̃13 − θ13). The corresponding probability for antineutrinos is obtained

simply replacing a→ −a and δ → −δ, where δ denotes the Dirac CP phase.

2.2 Neutrino propagation in non-uniform matter: adiabatic regime

Eq. (2.12) applies for constant density profiles (which is a very good approximation

in the case of long-baseline neutrino oscillation experiments such as T2K or NOvA),

but if the matter density is not constant the analysis becomes more complicated.

Nevertheless, when the adiabaticity condition dŨ/dt � 1 is fulfilled, as in the solar

neutrino case, the solution of the evolution equations given by eqs. (2.8) and (2.9) is

still a good approximation. In such a case, the oscillation probability is given by

Pαβ = 〈νβ|ρ̂(α)(t)|νβ〉 =
∑

i,j

ρ̃
(α)
ij (0)e−[γij−i∆h̃ij]t〈νβ|ν̃effi 〉〈ν̃effj |νβ〉, (2.18)

where νeffi denotes the effective mass eigenstates at time t. In the case of solar

neutrinos, the initial flux of νe is produced in the solar core and the initial conditions

are given by:

ρ̃
(e)
ij (0) = Ũ0∗

ei Ũ
0
ej, (2.19)

where Ũ0 denotes the effective mixing matrix at the production point. On the other

hand, since the evolution is adiabatic, when the neutrinos come out from the Sun we

have |ν̃effi 〉 = |νi〉 and thus

Peβ ≈
∑

i,j

Ũ0∗
ei UβiŨ

0
ejU

∗
βje
−[γij−i∆h̃ij]t

=
∑

i

|Ũ0
ei|2|Uβi|2 (2.20)

+ 2
∑

i<j

Re
[
Ũ0∗
ei UβiŨ

0
ejU

∗
βj

]
e−γijt cos ∆̃ij − 2

∑

i<j

Im
[
Ũ0∗
ei UβiŨ

0
ejU

∗
βj

]
e−γijt sin ∆̃ij.

Finally, for solar neutrinos observed at the Earth we obtain, after averaging over the

oscillating phase:

Peβ ≈
∑

i

|Ũ0
ei|2|Uβi|2, (2.21)

which coincides with the standard three neutrino result. In other words, the de-

coherence effects encoded in γij can not be bounded by solar neutrino oscillation

experiments. This is due to the standard loss of coherence in the propagation from

the Sun to the Earth, which strongly suppresses the oscillating terms. Notice that

high energy astrophysical neutrinos at IceCube are not sensitive either to decoher-

ence due to the averaged oscillations of neutrinos which are produced in distant

astrophysical sources.
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2.3 Neutrino propagation in non-uniform matter: layers of constant den-

sity

In the atmospheric neutrino case, the matter profile can not be considered constant

since the neutrinos propagate through the Earth crust, mantle and core, which have

different densities. The adiabaticity condition is not fulfilled either. In this case,

eq. (2.5) should be solved including the non-adiabatic terms, which give non-diagonal

contributions. Even though this can be done numerically, we will show that dividing

the matter profile into layers of constant density considerably simplifies the analysis

and reduces the computational complexity of the problem. In particular, this is cru-

cial in the case of atmospheric neutrino oscillation experiments, for which numerical

studies are already computationally demanding even in the standard three-family

scenario. Dividing the matter profile into layers of different constant densities has

proved to be a very good approximation in the standard three-family scenario and,

therefore, we expect the same level of accuracy in presence of decoherence. Since the

matter is constant in each layer, the evolution equations can be solved for each layer

M as in section 2.1:

ρMαβ(tM) =
[
ŨM ρ̃M(tM)(ŨM)†

]
αβ
,

ρ̃Mij (tM) = ρ̃Mij (tM,0) e−[γij−i∆h̃Mij ]∆tM , (2.22)

where ∆tM ≡ tM − tM,0, and tM,0 and tM denote the initial and final time for

the propagation along layer M , respectively. Now the problem of computing the

probability is just reduced to performing properly the matching among the evolution

on the different layers. Let us first consider the simplest case of two layers A and B.

The oscillation probability when the neutrino exits the second layer (at time tB) is

given by

Pαβ = 〈νβ|ρ̂(α)(tB)|νβ〉 =
∑

i,j

ŨB
βi Ũ

B∗
βj ρ̃

B
ij(tB,0) e−[γij−i∆h̃Bij]∆tB . (2.23)

The key point here is that the matching should be done between the solutions of

eq. (2.1) at the frontier between the two layers and in the flavor basis, as

ρAαβ(tA) = ρBαβ(tB,0). (2.24)

After imposing the matching condition, the elements of the density matrix in the

second layer at tB,0 can be written in the matter basis as:

ρ̃Bij(tB,0) =
[
(ŨB)†ŨAρ̃A(tA)(ŨA)†ŨB

]
ij

= ŨB∗
δi Ũ

A
δl ρ̃

A
ln(tA,0)e−[γln−i∆h̃Aln]∆tAŨA∗

γn Ũ
B
γj

= ŨB∗
δi Ũ

A
δl Ũ

A∗
αl Ũ

A
αne
−[γln−i∆h̃Aln]∆tAŨA∗

γn Ũ
B
γj, (2.25)
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where we have considered that the initial flux is made of να as initial condition for

the first layer, and tA,0 = 0. After substituting this result into eq. (2.23) we finally

obtain

Pαβ =
∑

δ,γ,i,j,l,n

ŨB
βiŨ

B∗
δi Ũ

B
γjŨ

B∗
βj e

−[γij−i∆h̃Bij]∆tB

× ŨA
δl Ũ

A∗
αl Ũ

A
αnŨ

A∗
γn e

−[γln−i∆h̃Aln]∆tA . (2.26)

It can be easily checked that, in the limit γij → 0, the standard oscillation probability

is recovered. In the three-layer case, following the same procedure we find

Pαβ =
∑

δ,γ,θ,φ,i,j,l,n,m,k

ŨC
βiŨ

C∗
δi Ũ

C
γjŨ

C∗
βj e

−[γij−i∆h̃Cij]∆tC

× ŨB
δl Ũ

B∗
θl Ũ

B
φnŨ

B∗
γn e

−[γln−i∆h̃Bln]∆tB

× ŨA
θmŨ

A∗
αmŨ

A
αkŨ

A∗
φk e

−[γmk−i∆h̃Amk]∆tA . (2.27)

The procedure can be easily generalized to an arbitrary number of layers. Indeed,

under the approximation L ≈ t, and defining

ÃMαβγδ ≡
∑

i,j

ŨM
αi Ũ

M∗
βi Ũ

M
γj Ũ

M∗
δj e−[γij−i∆m̃M2

ij /2E]∆LM , (2.28)

the probabilities can be written in a more compact way as

Pαβ =
∑

δ,γ ÃBβδγβÃAδααγ for two layers,

Pαβ =
∑

δ,γ,θ,φ ÃCβδγβÃBδθφγÃAθααφ for three layers, and

Pαβ =
∑

δ,γ,θ,φ,...,ξ,ω,ϕ,ρ ÃNβδγβÃN−1
δθφγ ... ÃBξϕρωÃAϕααρ for N layers.

3 Atmospheric oscillation probabilities with decoherence

Atmospheric neutrino oscillations take place in a regime where matter effects are

significant and can even dominate the oscillations. The relevance of matter effect

increases with neutrino energy and is very different for neutrinos and antineutrinos,

as the sign of the matter potential changes between the two cases. Matter effects also

depend strongly on the neutrino mass ordering. In order to understand better the

numerical results shown in this paper, it is useful to derive approximate expressions

for the oscillations in the νµ → νµ and ν̄µ → ν̄µ channels in the presence of strong

matter effects.

From the results obtained in Refs. [33, 34], for neutrino energies E >∼ 15 GeV

matter effects drive the effective mixing angles in matter θ̃12 and θ̃13 to either 0 or

π/2, depending on the channel (neutrino/antineutrino) and the mass ordering. It is
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easy to show that, in this regime, the oscillation probabilities in eq. (2.15) can be

approximated as:

PNO
µµ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ21L cos ∆̃21

)
for neutrinos, (3.1)

PNO
µ̄µ̄ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ32L cos ∆̃32

)
for antineutrinos, (3.2)

assuming a normal ordering (NO). For inverted ordering (IO) we get instead

P IO
µµ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ31L cos ∆̃31

)
for neutrinos, (3.3)

P IO
µ̄µ̄ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ21L cos ∆̃21

)
for antineutrinos. (3.4)

From eqs. (3.1)-(3.4) it is easy to see that the approximated oscillation probabilities

for an inverted mass ordering can be obtained from the corresponding ones for normal

mass ordering, just performing the following transformation:

γ21, ∆̃21 → γ31, ∆̃31, (3.5)

γ32, ∆̃32 → γ21, ∆̃21. (3.6)

Moreover, note that since the three decoherence parameters and the three mass split-

tings are related (see eqs. (2.7) and (2.13)), these two transformations automatically

imply that

γ31, ∆̃31 → γ32, ∆̃32. (3.7)

Eqs. (3.1)-(3.4) illustrate why a proper consideration of the matter effects in

the context of three families is of key importance in order to correctly interpret

the bounds extracted within a simplified two-flavour approximation (as done in e.g.

Ref. [7]). According to our analytical results, which will be confirmed numerically

below, the constraints obtained from SK in a two-family approximation cannot be

simply applied to γ31 or γ32, contrary to the naive expectation. In fact, the inter-

pretation of such limits depends strongly on the ordering of neutrino masses and

on whether the sensitivity is dominated by the neutrino or antineutrino channels:

for neutrinos the decoherence effects at high energies would be mainly driven by γ21

(γ31) for normal (inverted) ordering. Conversely, in the antineutrino channel deco-

herence effects are essentially controlled by γ32 (γ21) for normal (inverted) ordering.

Therefore, we conclude that in order to avoid any misinterpretation of the bounds

from atmospheric neutrinos, a three-family approach including matter effects should

be considered.

Figure 1 shows the numerically obtained νµ → νµ (top panels) and νµ → νµ
(bottom panels) oscillation probabilities for NO (left panels) and IO (right panels),

with and without decoherence, as a function of the neutrino energy for a three-layer

model (details on the accuracy of our three-layer model and the specific parameters
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Figure 1: The νµ → νµ (top panels) and νµ → νµ (bottom panels) oscillation

probabilities with (n = 0) and without decoherence effects as a function of the

neutrino energy. The probabilities have been computed for normal (left panels) and

inverted (right panels) neutrino mass ordering, using the three-layer model for the

Earth matter density profile, and correspond to the case in which the neutrinos cross

the center of the Earth core, namely, cos θz = −1.

used in our simulations can be found in Appendix A). For the sake of simplicity, in

this section we focus on the case n = 0, where the γij do not depend on the neutrino

energy (the results for different values of n show a similar qualitative behavior). The

standard oscillation parameters have been fixed to the best fit values given in [4, 5].

Figure 1 clearly shows how the decoherence tends to damp the oscillatory be-

havior, in qualitative agreement with eq. (2.15) and the corresponding approximated

expressions given by eqs. (3.1)-(3.4). Nevertheless, we should stress that eq. (2.15)

has been obtained under several approximations, in particular only one layer with

constant matter density. Therefore, even though eq. (2.15) is useful to understand

the general damping effect of the oscillation and which terms are expected to dom-
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inate the sensitivity, it may not explain all the features observed in the DeepCore

and IceCube analysis presented in section 5, which has been performed numerically

using the exact probability considering three layers (see appendix A for details).

Since the three γij are not completely independent from one another (see eq. (2.7)),

in view of equations (3.1)-(3.4) and in order to simplify the analysis, hereafter we

will distinguish three different representative cases, where the decoherence effects are

dominated by just one parameter:

(A) Atmospheric limit: γ21 = 0 (γ32 = γ31),

(B) Solar limit I: γ32 = 0 (γ21 = γ31),

(C) Solar limit II: γ31 = 0 (γ21 = γ32).

In appendix B, we will show that the bounds derived in these limits correspond

to the most conservative bounds that can be extracted in the general case. As a

reference value for the decoherence parameters in this section, we have considered

γ = 2.3 · 10−23 GeV, for each of the three limiting cases listed above.

The results in figure 1 show that, for neutrinos with a NO (top left panel),

the impact of decoherence is essentially controlled by γ21, in good agreement with

eq. (3.1): no significant effects are seen in the atmospheric limit (A), while a similar

impact is obtained in the solar limits I (B) and II (C). Conversely, for IO (top right

panel) the effects are dominated by γ31 instead: no effect is observed for the solar

limit II (C), while in scenarios (A) and (B) the effect is very similar. This can

be qualitatively understood from the approximate probability derived in eq. (3.3),

which only depend on the decoherence parameter γ31. On the other hand, in the

antineutrino case for NO (bottom left panel) no observable decoherence effects take

place in case (B), while cases (A) and (C) show a similar behavior, in agreement with

eq. (3.2). Conversely, for IO (bottom right panel) decoherence effects are essentially

controlled by γ21 as shown in eq. (3.4): therefore, no significant effects are observed

in case (A) while a similar impact is obtained for case (B) and (C).

Moreover, it should be pointed out that the transformations listed in Eqs. (3.5)-

(3.7) automatically imply the following equivalence for the results obtained in the

three limiting cases listed above:

(A)NO ←→ (C)IO,

(B)NO ←→ (A)IO, (3.8)

(C)NO ←→ (B)IO.

This is confirmed at the numerical level as it can be easily seen by comparing the

different lines shown in the left (NO) and right (IO) panels in figure 1 for the three

limiting cases.
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It is also remarkable that, for both normal and inverted hierarchy, even when

the standard oscillations turn off (at very high energies), there is still a large effect

on the probability due to decoherence effects, that could potentially be tested with

neutrino telescopes like IceCube. In particular, for E >∼ 200 GeV one can approxi-

mate cos ∆̃ij ≈ 1, ∀i, j. Therefore, in the standard case (with γij = 0) the last three

terms in eq. (2.15) approximately vanish, leading to Pµµ ≈ 1. However, in presence of

decoherence those terms will not vanish completely, as e−γijL cos ∆̃ij 6= 1. This leads

to a depletion of Pµµ, which is no longer equal to 1 in this case. The size of the effect

will of course depend on the baseline of the experiment. Since at high energies the

oscillation probability does no longer depend on the neutrino energy, at oscillation

experiments with a fixed baseline the effect may be hindered by the presence of any

systematic errors affecting the normalization of the signal event rates. However, at

atmospheric experiments this effect can be disentangled from a simple normalization

error by comparing the event rates at different nadir angles.

The dependence of the neutrino probabilities with the zenith angle θz is illus-

trated in figure 2, assuming a normal mass ordering and fixing the standard oscillation

parameters to the best fit values given in [4, 5]. The results are shown as a neutrino

oscillogram (see for instance [35]), which represents the oscillation probability in the

Pµµ channel as a function of neutrino energy and zenith angle θz (which can be related

to the distance traveled by the neutrino). Figure 2 shows the oscillation probability

Pµµ in the three limiting cases described above, comparing it to the results in the

standard scenario (γij = 0). As expected, the effects depend on the direction of the

incoming neutrino and they are more relevant in the region −1 . cos θz . −0.4, this

is, for very long baselines. This was to be expected, since the decoherence effects

are driven by e−γijL. In addition, the dependence of the oscillation probability with

the zenith angle at very high energies (E > 100 GeV) is clearly visible in the bot-

tom panels of figure 2. As we will show in section 5, this will lead to an impressive

sensitivity for the IceCube setup. Finally, note that the results for inverted ordering

show similar features to those in figure 2, once the mapping in eq. (3.8) is applied,

and are therefore not shown here.

4 IceCube/DeepCore simulation details and data set

The IceCube neutrino telescope, located at the South Pole, is composed of 5160

DOMs (Digital Optical Module) deployed between 1450m and 2450m below the ice

surface along 86 vertical strings [36]. In the inner core of the detector, a subset

of these DOMs were deployed deeper than 1750m and closer to each other than in

the rest of IceCube. This subset of strings is called DeepCore. Due to the shorter

distance between its DOMs, the neutrino energy threshold in DeepCore (∼ 5 GeV)

is lower than in IceCube (∼ 100 GeV). This allows DeepCore to observe neutrino
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Figure 2: Oscillograms for the neutrino oscillation probability Pµµ, assuming normal

mass ordering. The top-left panel corresponds to the case of no decoherence γij = 0

whereas the rest of the panels correspond to the three limiting cases mentioned in

the text: (A) γ32 = γ31 (top-right), (B) γ31 = γ21 (bottom-left) and (C) γ32 = γ21

(bottom-right). In all cases, the size of the decoherence parameters that are turned

on is set to a constant value, γ = 2.3 · 10−23 GeV.

events in the energy region where atmospheric oscillations take place, see figure 1,

whereas IceCube only observes high-energy atmospheric neutrino events.

As outlined in section 2, for high energy astrophysical neutrinos the effect of

non-standard decoherence in the probability would be completely erased by the time

they reach the detector. Therefore, in this work we will focus on the observation

of atmospheric neutrino events at both IceCube and DeepCore, in the energy range

∼ 10 GeV to ∼ 1 PeV. In particular, we have used the three-year DeepCore data on
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atmospheric neutrinos with energies between ∼ 10 GeV and ∼ 1 TeV, taken between

May 2011 and April 2014 [37], and the one-year IceCube data taken between 2011-

2012 [38–40], corresponding to neutrinos with energies between 200 GeV and 1 PeV.

At IceCube and DeepCore, events are divided according to their topology into

“tracks” and “cascades” [41]. Tracks are produced by the Cherenkov radiation of

muons propagating in the ice. In atmospheric neutrino experiments, muons are typ-

ically produced by two main mechanisms: (1) via charged-current (CC) interactions

of νµ with nuclei in the detector, and (2) as decay products of mesons (typically pions

and kaons) originated when cosmic rays hit the atmosphere. Conversely, cascades

are created in CC interactions of νe or ντ
3: in this case, the rapid energy loss of

electrons as they move through the ice is the origin of an electromagnetic shower.

At IceCube/DeepCore, cascades are also observed as the product of hadronic show-

ers generated in neutral current (NC) interactions for neutrinos of all flavors. Our

analysis considers only track-like events observed at both IceCube and DeepCore

although, as we will see, some small contamination from cascade events can be ex-

pected (especially at low energies).

4.1 IceCube simulation details

For IceCube, the observed event rates are provided in a grid of 10 × 21 [39], using

10 bins for the reconstructed energy (logarithmically spaced, ranging from 400 GeV

to 20 TeV), and 21 bins for the reconstructed neutrino direction (linearly spaced,

between cos θrecz = −1.02 to cos θrecz = 0.24). The muon energy is reconstructed with

an energy resolution σlog10(Eµ/GeV) ∼ 0.5 [38], while the zenith angle resolution is in

the range σcos θz ∈ [0.005, 0.015], depending on the scattering muon angle.

The number of events in each bin is computed as:

Ni(E
rec, θrecz ) = (4.1)

∑

±

∫
dE d cos θz φ

atm
µ,±(E, θz)P

±
µµ(E, θz)A

eff
i,±,µ(E, θz, E

rec, θrecz )e−X(θz)σ±(E),

where E, θz denote the true values of energy and zenith angle, while Erec, θrecz refer

to their reconstructed quantities. Here, φatm
µ,± is the atmospheric flux for muon neu-

trinos (+) and anti-neutrinos (-), P±µµ(E, θz) is the neutrino/antineutrino oscillation

probability given by eq. (2.27), and Aeff
i,±,µ(E, θz) is the effective area encoding the

detector response in neutrino energy and direction (which relates true and recon-

structed variables), the interaction cross section and a normalization constant, and

has been integrated over the whole data taking period. In our IceCube simulations,

3Technically, a CC ντ event could be distinguished from a νe CC event, e.g., by the observation

of two separates cascades connected by a track from the τ propagation [42]. However, for atmo-

spheric neutrino energies the distance between the cascades cannot be resolved by the DOMs at

IceCube/DeepCore, leaving in the detector a signal similar to a single cascade.
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we have used the unpropagated atmospheric flux (HondaGaisser) provided by the

collaboration [38, 43], and for the effective area we have used the nominal detec-

tor taken from Refs. [38, 43]. On the other hand, the exponential factor takes into

account the absorption of the neutrino flux by the Earth, which increases with the

neutrino energy. Here, X(θz) is the column density along the neutrino path and

σ±(E) is the total inclusive cross section for νµ or ν̄µ. Note that in eq. (4.1) no

contamination from cascade events is considered since the mis-identification rate is

expected to be negligible at these energies [44]. Similarly, the number of atmospheric

muons that pass the selection cuts can also be neglected, given the extremely good

angular resolution at these energies [38].
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Figure 3: Event distributions obtained for IceCube in our numerical simulations as

a function of the reconstructed value of the cosine of the zenith angle, for neutrinos

in different reconstructed energy ranges. The lines have been obtained assuming

a normal mass ordering, for the following values for the decoherence parameters:

γ21 = γ31 = 2.3 · 10−23 GeV (solid blue line), γ21 = γ31 = 10−22 GeV (dashed green

line) and without decoherence (dashed red line). The observed data points [39] are

represented by the black dots, and the error bars indicate the statistical uncertainties

for each bin.

Figure 3 shows the expected number of events for IceCube from our numerical

simulations including decoherence, for γ21 = γ31 = 2.3 · 10−23 GeV (solid blue lines)

and γ21 = γ31 = 10−22 GeV (dashed green lines), as a function of cos θrecz , for events

in different reconstructed energy ranges. For simplicity, we have considered the n = 0

case (that is, γij independent of the neutrino energy). The expected result without

decoherence is also shown for comparison (dashed red lines), while the observed data

are shown by the black dots.

For the analysis of the IceCube data we have performed a Poissonian log-likelihood

analysis doing a simultaneous fit on the following parameters: ∆m2
32, θ23 and γij. The
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Source of uncertainty Value

Flux - normalization Free

Flux - π/K ratio 10%

Flux - energy dependence as (E/E0)η ∆η = 0.05

Flux - ν̄/ν 2.5%

DOM efficiency 5%

Photon scattering 10%

Photon absorption 10%

Table 1: The most relevant systematic errors used in our analysis of IceCube data,

taken from Refs. [38, 40, 43].

rest of the oscillation parameters have been kept fixed to their current best-fit values

from Ref. [4]. The most relevant systematic errors used in the fit are summarized in

Table 1, and have been taken from Ref. [38, 40, 43]. For each systematic uncertainty

a pull term is added to the χ2 following the values listed in the table, except in the

cases indicated as “Free” (when the corresponding nuisance parameter is allowed to

float freely in the fit).

4.2 DeepCore simulation details

In the case of DeepCore, the observed event rates are provided in a grid of 8×8 bins,

using 8 bins for the reconstructed neutrino energy and 8 bins for the reconstructed

neutrino direction. The energy resolution σE/GeV is in the range of 30%-20% while

the zenith angle resolution improves with the energy, from σθz = 12◦ at Eν = 10 GeV

to σθz = 5◦ at Eν = 40 GeV [37]. In each bin, the number of events is computed as

Ni(E
rec, θrecz ) =

∑

±,α,β

∫
dE d cos θz φ

atm
α,±(E, θz)P

±
αβ(E, θz)A

eff
i,±,β(E, θz, E

rec, θrecz )

+Ni,µ(Erec, θrecz ). (4.2)

Unlike for IceCube, at DeepCore muon tracks can be produced from νµ → νµ and

νe → νµ events4. Moreover, the track-like event distributions at DeepCore will also

receive a partial contributions from cascades which are mis-identified as tracks: hence

the sum over β = e, µ, τ in eq. (4.2). Therefore, here φatm
α,± stands for the atmospheric

flux for neutrinos/antineutrinos of flavor α (where we have used the fluxes from

Ref. [45]), and P±αβ refers to the neutrino/antineutrino oscillation probability in the

channel να → νβ for neutrinos (+) (or ν̄α → ν̄β, for antineutrinos (-)). The rejec-

tion efficiencies for the contamination are included in the detector response function

Aeff
i,±,β, which now depends on the flavor β of the interacting neutrino. Finally, an

4The flux from ντ can be considered negligible at these energies.
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estimate of the atmospheric muons that overcome the selection criteria (taken from

Ref. [37, 43]) is also added for each bin in reconstructed variables, Ni,µ.

Figure 4 shows the expected number of events for DeepCore obtained from our

numerical simulations including decoherence, for γ21 = γ31 = 2.3 · 10−23 GeV (solid

blue lines) and γ21 = γ31 = 10−22 GeV (dashed green lines), as a function of cos θrecz ,

for events in different reconstructed energy ranges. For simplicity, we have considered

the n = 0 case (that is, γij independent of the neutrino energy). The expected

result without decoherence is also shown for comparison (dashed red lines), while

the observed data are shown by the black dots.
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Figure 4: Event distributions obtained for DeepCore in our numerical simulations as

a function of the reconstructed values of the cosine of the zenith angle, for neutrinos

in different reconstructed energy ranges. The lines have been obtained assuming

a normal mass ordering, for the following values for the decoherence parameters:

γ21 = γ31 = 2.3 · 10−23 GeV (solid blue line), γ21 = γ31 = 10−22 GeV (dashed green

line) and without decoherence (dashed red line). The observed data points [37] are

represented by the black dots, and the error bars indicate the statistical uncertainties

for each bin.

In this work a Gaussian maximum likelihood is used to analyze the DeepCore

data, performing a simultaneous fit on the following parameters: ∆m2
32, θ23 and γij.

The rest of the oscillation parameters have been kept fixed to their current best-fit

values from Ref. [4]. The systematics used in the fit are those associated with the

flux, the detector response and the atmospheric muons given in Ref. [37] and are

summarized in Table 2. For each systematic uncertainty a pull term is added to the

χ2 following the values listed in the table, except in the cases indicated as “Free”

(when the corresponding nuisance parameter is allowed to float freely in the fit). We
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Source of uncertainty Value

Flux - normalization Free

Flux - energy dependence as (E/E0)η ∆η = 0.05

Flux - (νe + ν̄e)/(νµ + ν̄µ) ratio 20%

Background - normalization Free

DOM efficiency 10%

Optical properties of the ice 1%

Table 2: Systematic errors used in our analysis of DeepCore data, taken from

Refs. [37, 41].

have checked that our analysis reproduces the confidence regions in the ∆m2
32 − θ23

plane obtained by the DeepCore collaboration in Ref. [37] to a very good level of

accuracy.

Finally, it should be noted that our fit does not include the latest atmospheric

data recently published by the DeepCore collaboration [46]. The new analysis uses

a different data set (from April 2012 to May 2015) and a new implementation of

systematic errors, which lead to smaller confidence regions in the ∆m2
32 − θ23 plane.

However, the detector response parameters and systematic errors used in the latest

release have not been published yet. In view of the better results obtained for the

standard three-family oscillation scenario, a similar improvement is to be expected

if the analysis performed in this work were to be repeated using the latest DeepCore

data.

5 Results

Following the procedure described in section 4 we have obtained the χ2 for every

point in the parameter space. Marginalizing over the relevant mixing and mass

parameters, namely, ∆m2
32 and θ23, the sensitivity of the data to γij parameters is

determined by evaluating the
√

∆χ2, with ∆χ2 ≡ χ2−χ2
min, where χ2

min is the value

at the global minimum. The rest of the standard mixing parameters have been fixed

to their best-fit values from Refs. [4, 5].

In this section we will only show the results obtained for normal neutrino mass

ordering, since we have checked that extremely similar results are obtained for IO

after applying the mapping given in eq. (3.8). Nevertheless, in Sec. 6 we will also

provide the 95% CL bounds obtained in our numerical analysis for the IO case. The

bounds obtained are in very good agreement with the mapping given in eq. (3.8).

Figure 5 shows the obtained
√

∆χ2 as a function of γ0 for the three limiting cases

defined in Sec. 3: (A) atmospheric limit, γ0 = γ0
32 = γ0

31 (red curve); (B) solar limit I,

γ0 = γ0
21 = γ0

31 (green curve); and (C) solar limit II, γ0 = γ0
21 = γ0

32 (blue curve). In
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Figure 5: Values of the
√

∆χ2 as a function of the decoherence parameter for

the Atmospheric limit (red), Solar limit I (green) and Solar limit II (blue) defined

in Sec. 3. The results obtained from our analysis of IceCube (DeepCore) data are

denoted by the solid (dashed) lines. The three panels have been obtained for NO,

assuming a different dependence on the neutrino energy: n = 0 (top panel), n = 1

(middle panel) and n = 2 (bottom panel). The shaded regions are disfavored by

previous analysis of SK [7] and KamLAND [15] data, see text for details. The

horizontal black line indicates the value of the
√

∆χ2 corresponding to 95% CL for

1 degree of freedom.

all cases, the solid (dashed) lines correspond to the results obtained from our analysis

of the IceCube (DeepCore) data, and each panel shows the results obtained assuming

– 20 –



a different energy dependence for the decoherence parameters, see eq. (2.13): n = 0

(top panel), n = 1 (middle panel) and n = 2 (bottom panel). The shaded regions are

disfavored by previous analysis of SK [7] (90% CL) and KamLAND [15] data (95%

CL). As explained in section 3, the KamLAND constraints derived in [15] apply to

γ0
12 (solar limits) while it is not clear to which γij the bounds from SK obtained in [7]

would apply, since this depends on the true neutrino mass ordering (which is yet

unknown).

Figure 5 shows that for both DeepCore and IceCube the best sensitivity is

achieved for the solar limits (B) and (C) while the weakest limit is obtained in

the atmospheric limit (A). In particular, the strongest bound is obtained for (C).

This is in agreement with the behaviour of the oscillation probability in presence of

strong matter effects, discussed in section 3. On one hand, as shown in section 3,

for NO the decoherence effects are mainly driven by γ21 in the neutrino channel and

γ32 in the antineutrino channel. On the other hand, the number of antineutrino

events is going to be suppressed with respect to the neutrino case, due to the smaller

cross section and flux. Hence, the best sensitivity is expected for case (C), where

γ0 = γ0
21 = γ0

32, since both neutrinos and antineutrinos are sensitive to decoherence

effects. Conversely, in case (B), where γ0 = γ0
21 = γ0

31, only neutrinos are sensitive to

decoherence effects, and therefore some sensitivity is lost with respect to the results

for case (C). Finally, in case (A), with γ0 = γ0
32 = γ0

31, the bounds come mainly

from the impact of decoherence on the antineutrino event rates and, since these are

much smaller than in the neutrino case, the obtained bounds are much weaker when

compared to the results obtained in case (B).

Figure 5 shows a flat asymptotic feature of the
√

∆χ2 for large values of γ0, where

the sensitivity becomes independent of γ0. In fact, for IceCube there is a decrease

in sensitivity for values of γ above a certain range: for example, for n = 0 the best

sensitivity is achieved for γ0 ∼ O(10−22) GeV while it decreases for higher values.

This behaviour can be understood as follows. For the neutrino energies observed at

IceCube (above 100 GeV) the oscillation phases do not develope and the probabilities

do not depend on the energy (cos ∆̃ij ≈ 1 in eq. (2.15)). Therefore, at IceCube the

sensitivity to the decoherence effects comes from the observation of a non-standard

behaviour of the number of events with the zenith angle. Naively, eq. (2.14) gives

the values of L and γ that yield a large effect. Considering n = 0, for example,

where there is a one-to-one relation between the two, we get that for γ0 ∼ 10−22 GeV

the effect will be maximal for distances of the order L ∼ O(103) km. This is the

typical distance traveled by atmospheric neutrinos crossing the Earth and therefore

the sensitivity of IceCube is maximized in this range. Conversely, for larger (smaller)

values of γ0, only neutrinos coming from the most horizontal (vertical) directions are

affected, leading to a reduced impact on the χ2.

From the comparison between the different panels in figure 5 we can see that

the limits change considerably with the value of n, which parametrizes the energy
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Figure 6: 95% CL bounds on the decoherence parameters γ0, for NO, as a (discrete)

function of the power-law index n for for the Atmospheric limit (red), Solar limit

I (green) and Solar limit II (blue). The solid circles (triangles) correspond to the

DeepCore (IceCube) analysis.

dependence of the decoherence parameters (see eq. (2.13)). In particular, we observe

in figure 5 that the sensitivity improves as n is increased and that, as the vaule of n is

increased, the results for IceCube improve much faster (compared to DeepCore) due

to the higher neutrino energies considered. The behaviour of the sensitivities with

the value of n is better appreciated in figure 6, where we show the bounds obtained

at 95% CL (for 1 degree of freedom) as a (discrete) function of the power-law index

n, for n = −2,−1, 0, 1 and 2. The DeepCore bounds are represented by solid circles

while the IceCube constraints are given by the solid triangles. The results seem to

follow the linear relation

ln(γ0/GeV) = constant− n ln(E0/GeV), (5.1)

where E0 ' 2.5 TeV (30 GeV) for IceCube (DeepCore). This can be understood

as follows. Decoherence effects enter the oscillation probabilities only through the

factor γL = γ0(E/GeV)nL, for any value of n. Naively, we expect that the sensitivity

limit is obtained for γL ∼ O(1) (although the precise value will eventually depend

on the neutrino mass ordering, on the particular γij which drives the sensitivity,

and on the data set considered). Taking the logarithm of γ0(E/GeV)nL = constant,

we reproduce eq. (5.1). At first approximation, the value of E0 in eq. (5.1) can be

estimated as the average energy of the IceCube and DeepCore event distributions,
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〈E〉, as

〈E〉 ≡

∫
dN

dE
EdE

∫
dN

dE
dE

, (5.2)

where dN/dE is the event number distribution. This leads to 〈E〉 ' 4 TeV (40 GeV)

for IceCube (DeepCore), which are in the right ballpark although somewhat different

from the values of E0 giving the best fit to the data shown in figure 6. Nevertheless,

we find these to be in reasonable agreement, given our naive estimation of E0 as the

mean energy for each experiment.

6 Conclusions

NO n = −2 n = −1 n = 0 n = 1 n = 2

IceCube (this work)

atmospheric (γ31 = γ32) 2.8 · 10−18 4.2 · 10−21 4.0 · 10−24 1.0 · 10−27 1.0 · 10−31
solar I (γ31 = γ21) 6.8 · 10−19 1.2 · 10−21 1.3 · 10−24 3.5 · 10−28 1.9 · 10−32
solar II (γ32 = γ21) 5.2 · 10−19 9.2 · 10−22 9.7 · 10−25 2.4 · 10−28 9.0 · 10−33

DeepCore (this work)

atmospheric (γ31 = γ32) 4.3 · 10−20 2.0 · 10−21 8.2 · 10−23 3.0 · 10−24 1.1 · 10−25

solar I (γ31 = γ21) 1.2 · 10−20 5.4 · 10−22 2.1 · 10−23 6.6 · 10−25 2.0 · 10−26

solar II (γ32 = γ21) 7.5 · 10−21 3.5 · 10−22 1.4 · 10−23 4.2 · 10−25 1.1 · 10−26

Previous Bounds

SK (two families) [7] 2.4 · 10−21 4.2 · 10−23 1.1 · 10−27

MINOS (γ31, γ32) [29] 2.5 · 10−22 1.1 · 10−22 2 · 10−24

KamLAND (γ21) [15] 3.7 · 10−24 6.8 · 10−22 1.5 · 10−19

Table 3: DeepCore/IceCube bounds on γ0
ij in GeV (γij = γ0

ij(E/GeV)n), at the

95% CL (1 degree of freedom) and for NO. Previous constraints are also provided for

comparison, and the dominant limit in each case is highlighted in bold face (notice

that we considered the most conservative bound from the two solar limits).

In this work, we have derived strong limits on non-standard neutrino decoherence

parameters in both the solar and atmospheric sectors from the analysis of IceCube

and DeepCore atmospheric neutrino data. Our analysis includes matter effects in

a consistent manner within a three-family oscillation framework, unlike most past

literature on this topic. In Sec. 2 we have developed a general formalism, dividing

the matter profile into layers of constant density, which permits to study decoherence

effects in neutrino oscillations affected by matter effects in a non-adiabatic regime.

Our analysis shows that the matter effects are extremely relevant for atmospheric

neutrino oscillations and their importance in order to correctly interpret the two-

family limits obtained previously in the literature, as outlined in Sec. 3.

– 23 –



We have found that the sensitivity to decoherence effects depends strongly on the

neutrino mass ordering and on whether the sensitivity is dominated by the neutrino

or antineutrino event rates. For neutrinos, the decoherence effects at high energies are

mainly driven by γ21 (γ31) for normal (inverted) ordering, while in the antineutrino

case they are essentially controlled by γ32 (γ21) for normal (inverted) ordering. This

means that, considering a three-family framework including matter effects is essential

when decoherence effects in atmospheric neutrino oscillations are studied. Our results

are summarized in table 3 for normal ordering (NO) of neutrino masses, and in table 4

for inverted ordering (IO). The two tables summarize, together with the most relevant

bounds present in the literature, the 95% CL bounds extracted from our analysis

of DeepCore and IceCube atmospheric neutrino data, for the three limiting cases

considered in this work: (A) atmospheric limit (γ21 = 0), (B) solar limit I (γ32 = 0)

and (C) solar limit II (γ31 = 0). In Appendix B we show that the bounds derived in

these limits correspond to the most conservative results that can be extracted in the

general case.

In this work, we considered a general dependence of the decoherence parameters

with the energy, as γij = γ0
ij (E/GeV)n with n = ±2, 0,±2. Our results improve over

previous bounds for most of the cases studied, with the exception of the n = −1

case. For n = −1, KamLAND gives the dominant bound on γ21 while MINOS gives

the strongest constraints on γ31 and γ32. Indeed, both KamLAND and MINOS are

also expected to give the strongest bound for n = −2, although to the best of our

knowledge no analysis has been performed for this case yet. Our results show that,

for n = 0 (which is the case most commonly considered in the literature), IceCube

improves the bound on γ31 and γ32 in (more than) one order of magnitude with

respect to the SK constraint, obtained in a simplified two-family approximation, and

by more than one order (almost two orders) of magnitude for NO (IO) with respect to

the KamLAND constraint on γ21. In particular, we find that the reference value for

γ23 considered in Ref. [17] to explain the small tension previously reported between

NOvA and SK data is indeed already excluded by IceCube data. Regarding the

cases with n = 1, 2, we find that the sensitivity of IceCube is particularly strong.

For instance, IceCube improves the bound from KamLAND on γ21 by almost 9 (8)

orders of magnitude for n = 1 and NO (IO), while for n = 2 the bound on γ31 and

γ32 is improved in 4 (5) orders of magnitude with respect to the SK limit for NO

(IO).
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A Computation of oscillation probabilities in three-layers

The simulation of atmospheric neutrino experiments is computationally demanding

in the standard three-family scenario, and even more if decoherence effects are in-

cluded in the analysis. Therefore, due to the cost of implementing a large number

of layers for the PREM profile density, in this work we consider a simplified three-

layer model for the Earth matter density profile assuming a core and Earth radii of

3321 km and 6371 km, respectively. The values of the matter densities of the inner

layer (core) and the outer layer (mantle) are taken to be around ρ = 12 g/cm3 and

4.6 g/cm3, respectively. However, their values are slightly adjusted depending on

the distance traveled by the neutrinos to match as close as possible the profile of
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Figure 7: Oscillograms for Pµµ without decoherence considering our three layer

approximation (left panel) and the PREM model (right panel) for the Earth matter

density profile.

the PREM model [47]. Note that, in our simulations, we have not considered the

atmosphere as an additional layer. This is a good approximation for neutrinos going

upwards in the detector (cos θz < 0), but is not a valid approximation in the region

cos θz > 0. Nevertheless, this has no impact in our analysis since for neutrinos with

cos θz > 0 the distance travelled is very short and, therefore, they would only be

sentive to extremely large values of the decoherence parameters which are already

ruled out by other experiments.

In figure 7 we compare the results obtained for the oscillation probability for our

modified three-layer approximation (left panel) against the exact numerical results

using the full PREM profile [47] (right panel), which divides the Earth into eleven

layers given by a polynomial function of the distance traveled. In this figure, the

results are shown for the standard three-family scenario with no decoherence, in

order to illustrate the accuracy of our three-layer approximation. The results are

shown as a neutrino oscillogram, which represents the oscillation probability in the

Pµµ channel in terms of energy and the zenith angle θz of the incoming neutrino. In

this figure, a normal mass ordering was assumed, together with the following input

values for the oscillation parameters [4, 5]: ∆m2
21 = 7.4·10−5 eV2, ∆m2

31 = 2.515·10−3

eV2, θ12 = 33.62◦, θ13 = 8.54◦, sin2 θ23 = 0.51, and δ = 234◦.

As can be seen from the comparison between the two panels, some differences

take place but only for energies below the IceCube/DeepCore energy threshold

∼ O(5 GeV). Therefore, we conclude that the agreement between the probabili-

ties obtained using the exact PREM model (right) and our approximate three-layer
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model (left) is sufficiently good for the purposes of this work. We have also checked

that, using our simplified three-layer model applied to the standard case without de-

coherence, we are able to reproduce up to a very good approximation the DeepCore

oscillation fit for the atmospheric parameters θ23 and ∆m2
32 [37].

B Five-dimensional analysis

The γij are not completely independent parameters as we have already pointed out

(see eq. (2.7)). In order to simplify the analysis, in this work we have studied three

different representative cases: (A) Atmospheric limit, γ21 = 0 (γ32 = γ31); (B) Solar

limit I, γ32 = 0 (γ21 = γ31); and (C) Solar limit II, γ31 = 0 (γ21 = γ32). Considering

these one-γij dominated cases is expected to be a very good approximation in view

of equations (3.1)-(3.4). In any case, in this Appendix we will show that the results

obtained in these simplified scenarios apply to the more general case in which the

three γij are different from zero.

Let us assume that just one Dm matrix contributes to the decoherence term of

the evolution equations given by eq. (2.2). In such a case, one of the γij parameters

is a function of the other two γij. Without loss of generality, we chose γ21 and γ31 as

the free parameters and γ32 is then given by

γ32 = (
√
γ21 ±

√
γ31)2 . (B.1)

In order to understand how general are the results presented in sec. 5, we have

performed a five-dimensional analysis varying γ21, γ31, θ23 and ∆m2
32 in the fit, and

imposing the constraint given by the equation above. In figure 8 we show the
√

∆χ2

obtained from the five-dimensional DeepCore analysis as a function of γ21 (dashed

green curve) and γ31 (dashed red curve), marginalizing over the rest of the free

parameters, for the n = 0 case (the same conclusions apply to the other cases studied

in this work). For the sake of comparison, the
√

∆χ2 associated to the atmospheric

(solid red curve), solar I (solid green curve) and solar II (solid blue curve) limits

is also included in the same figure. NO was assumed but the results can be easily

extrapolated to the IO case using the mapping given in eq. (3.8).

Figure 8 shows that the five-dimensional
√

∆χ2 distribution projected into γ31

coincides with the Atmospheric limit one, while when it is projected into γ21 resembles

the most conservative of the two solar limits. This is due to the marginalization over

the parameters which are not shown. For instance, in the case of γ21 the marginaliza-

tion selects, between the two solar limits, the most conservative result. We conclude

therefore that our analysis distinguishing the three limits (A), (B) and (C), provides

the most conservative bounds that can be applied to the general case in which the

three γij are different from zero.
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Figure 8:
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Chapter6

Conclusions

The work developed in this thesis has been focused into the physics reach of the
new generation of neutrino telescopes. In particular, we have concentrated on the
scientific program developed by IceCube and DeepCore related to the measurement
of flavor oscillation and the discovery of New Physics signals. This thesis can be
framed within a broad research project, which aims the determination of the neutrino
oscillation parameters, as well as to look for new physics signals by studying the
present and future neutrino experiments.

The most simple scenario which explains the neutrino flavor oscillation observed
by most of the neutrino experiments, consist of an oscillation between the three
active neutrinos included the SM. In this theoretical model, I have collaborated
in a global fit where all the neutrino oscillation data available up to 2016 have
been combined. My contribution has consisted of studying the flavor oscillation
measured by DeepCore in atmospheric neutrinos. DeepCore can identify muon
neutrinos by looking for signals composed by a “track” and a “cascade”. The low
energy threshold of this experiment Eν > 5 GeV, allows the observation of νµ in an
energy window where neutrino oscillations induce a sizeable effect. In the framework
of three neutrino mixing, the flavor oscillation is determined by six parameters,
DeepCore is mainly sensitive to ∆m2

3l and θ23. The fit shows that θ23 is close to
maximal mixing (sin2 θ23 ∼ 0.5), and ∆m2

3l is a bit above (∆m2
32 ∼ 2.7 × 10−3eV2)

the preferred values by long baseline experiments (∆m2
3l ∼ 2.5 × 10−3eV2). The

statistical significance of DeepCore over the global fit is very small, the precision over
these two parameters is mainly due to long baseline experiments like T2K or NOνA.
In the global fit, where those results were included, was discussed the complementary
role played by atmospheric/accelerator (mainly sensitive to νµ → νµ disappearance
channel) and the reactor data (mainly sensitive to νe → νe disappearance channel),
on the determination of ∆m2

3l, showing how a consistent combination of both sets
can modify the inferred value of the neutrino mass ordering.

IceCube can be used as a tool to look for New Physics. The simplest extension
of the SM that account for the neutrino masses is known as “SeeSaw Type I”, and
predicts the existence of a sterile neutrino. The mass of this new fermion is not
predicted by any model and can take any value over several orders of magnitude.
Masses in the MeV to GeV range can be tested in DeepCore and IceCube by looking
for “Double Cascades” signals. We have found two scenarios where that event
topology can be created by sterile neutrinos:

- Heavy neutrino production via mixing with an active neutrino, and the Z
boson. This process takes place via mixing of light and heavy (N) states. For
νe and νµ, the coupling with the sterile fermion has been widely tested by
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accelerator experiments, but for ντ the constraints are much weaker since the
production of this neutrino flavor is much more complicated. For IceCube, ντ
arrive at the detector by the oscillation of atmospheric νµ. In this scenario,
the first cascade is created by the NC interaction of ντ with an ice nucleon (n)
inside the detector ντn→ Nn. The second shower is given by the decay of N
into charged particles. Making a numerical estimation of the number of events
in six years of data, it is shown that IceCube can increase the bounds by one
or two orders of magnitude for masses of the heavy state around mN ∼ 1 GeV.

- Heavy neutrino production via a transition magnetic moment. In this sce-
nario, both cascades are created by the interaction of the active neutrino with
the heavy state through the magnetic moment operator. We have studied the
transition between the two light states, νµ and ντ , and a heavy state. The
sensitivity of the experiment has been obtained by making an estimation of
the number of events for six years of data taking. The results show that Ice-
Cube can measure heavy states with masses from ∼MeV up to ∼ GeV. About
the transition magnetic moment, the greatest sensitivity over the current con-
strains is obtained for ντ .

Another scenario where we have looked for New Physics signals is the astro-
physical neutrinos, which were recently discovered by IceCube. The energy of the
events measured is in the range of 30 TeV to PeV. These particles arrive at the
detector as an incoherent superposition of massive states, and the oscillation proba-
bility depends only on the mixing matrix elements. In the presence of non-standard
interactions between neutrinos and ordinary matter, the matter potential can be
generalized to a 3 × 3 complex matrix, where all the elements are different from
zero. We have used the bounds over these new interactions to study the flavor
modifications on the astrophysical neutrinos once they cross the Earth. The results
show an oscillation of the flavor with the distance travel by the neutrino through
the Earth. This oscillation allows to distinguish the New Physics effects from the
uncertainties on the production source, which are translate as different final states at
the detector. The size of the modifications depends on the initial flavor composition
of the neutrino flux. In the cases where a flux is initially dominated by a specific
flavor, the final state shows a wide range of values in flavor spectrum.

In addition to the existence of new interactions, the evolution of neutrinos
through the Earth can be modified in the presence of decoherence effects created
by New Physics. Those effects can be parametrized in terms of three real param-
eters (γ21, γ31, γ32) associated to the three standard oscillations mass splittings. In
another work, we have studied the effects of these parameters on the atmospheric
neutrinos measured by IceCube and DeepCore. We have assumed a possible depen-
dence of the with the neutrino energy, γij = γ0

ij(E/GeV)n with n = 0,±1,±2. We
have derived strong limits over γij in both the solar and the atmospheric sectors by
making a fit of the atmospheric events measured by IceCube and DeepCore. To do
so, we have developed a general formalism to study the decoherence in non-adiabatic
regimes dividing the matter profile into layers of constant density. The results show
a dependence of the decoherence effects with the neutrino mass ordering. The limits
obtained on γ31 and γ32 shows that IceCube improve the current bounds by one or-
der of magnitude for n = 0. For a higher energy dependence (n ≥ 1), the constraints
obtained for the three parameters are even stronger. For n = −2, DeepCore present
the stronger constraints, but for n = −1 the bounds are still dominated by MINOS
and KamLAND.
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El trabajo desarrollado en esta tesis se centra en el estudio de la f́ısica accesi-
ble por la nueva generación de telescopios de neutrinos. En particular, nos hemos
centrado en el programa cient́ıfico desarrollado por IceCube y DeepCore en f́ısica
de neutrinos. Esta tesis puede ser enmarcada en un programa de investigación más
ámplio, que tiene como objetivo determinar los paámetros de oscilación de los neu-
trinos, aśı como la busqueda de señales de nueva f́ısica en los experimentos actuales
y futuros.

El escenario más simple en el que las oscilaciones de neutrinos en sabor pueden
ser explicadas está formado únicamente por los tres neutrinos contenidos en el Mod-
elo Estandar (MS). Usando este modelo como marco teórico, he colaborado en un
análisis global que ha usado los datos disponibles en oscilaciones de neutrinos hasta
2016. Mi contribución, ha consistido en el estudio de las oscilaciones de neutrinos
medidas por DeepCore en neutrinos atmosféricos. DeepCore puede identificar neu-
trinos muónicos a través de señales compuestas por una “traza” y una “cascada”.
La enerǵıa mı́nima para este experimento es de Eν > 5 GeV, lo que le permite la
detección de neutrinos en un rango de enerǵıas donde aún las oscilaciones pueden
ser observadas. En el modelo de tres neutrinos las oscilaciones vienen determi-
nadas por seis parámetros, de los cuales DeepCore es sensible a ∆m2

3l y θ23. Los
resultados de este experimento indican que θ23 se ha de encontrar próximo a su
máximo valor (sin2 θ23 ∼ 0.5), y que el parámetro de masas ha de tomar un valor
un poco superior (inferior) al preferido en experimentos de long baseline, asumiendo
una jerarqúıa de las masas normar (invertida). La relevancia estad́ısica de los re-
sultados de DeepCore sobre el análisis global es pequeño, la precisión con que se
conocen esos dos parámetros se debe a T2K y NOνA. En el trabajo donde estos
resultados fueron incluidos, se discutió la complementariedad entre experimentos
atmosféricos/aceleradores (principalmente sensibles al canal νµ → νµ) y los exper-
imentos de reactores (principalmente sensibles al canal νe → νe) en la medida de
∆m2

3l. Los resultados mostraron que una combinación consistente de ambos conjun-
tos de datos puede afectar significativamente al resultado obtenido.

El experimento IceCube puede ser usado en la búsqueda de nueva f́ısica. La
mı́nima extensión del MS que permite explicar las masas de los neutrinos se conoce
como “SeeSaw Type I”, y predice la existencia de un nuevo fermión, denominado
neutrino estéril. La masa de este fermión no se encuentra predicha por ningún
modelo. Para masas comprendidas en el rango que va desde los MeV hasta GeV,
en otro trabajo hemos encontrado que IceCube puede estudiar a este nuevo fermión
buscando las señales conocidas como “Double-Cascade”. Hemos encontrado dos
escenarios donde estos eventos puede ser creados por neutrinos estériles:

- Un acoplo entre neutrinos activos, neutrinos pesados (N) y el bosón Z. Para
neutrinos νe y νµ, las cotas sobre el acoplo establecidas por experimentos con
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aceleradores son muy fuertes. Sin embargo, para ντ las cotas son más débiles
ya que este tipo de neutrinos son mucho más dif́ıciles de estudiar. Los ντ
llegan a IceCube a través de la oscilación en sabor de los νµ producidos en
la atmósfera. En este escenario, la primera cascada se produce a través de
una corriente neutra (CN) creada en la interacción de ντ con los nucleones
del hielo. La segunda cascada se produce en el decaimiento de N. A través
de una integración numérica hemos obtenido el número de eventos que el
detector puede observar en seis años. Los resultados muestran que IceCube
puede aumentar los ĺımites sobre el acoplo entre neutrinos activos y estériles
en varios órdenes de magnitud, para masas al rededor de mN ∼ 1 GeV.

- La producción de neutrinos pesados a través de un momento magnético de
transición. En este escenario ambas cascades se crean a través de la interacción
entre neutrinos activos y neutrinos pesados mediante un momento magnético
de transición. Hemos estudiado dos casos νµ y ντ . La sensitividad del ex-
perimento ha sido obtenida estimando el número de eventos medidos por el
detector en seis años. Los resultados muestran que IceCube puede observar
neutrinos estériles con masas comprendidas entre ∼ MeV hasta ∼ GeV. En
cuanto al momento magnético, el mayor incremento de sensibilidad frente a
los resultados actuales es obtenido para ντ .

Los neutrinos astrof́ısicos han sido recientemente descubiertos por IceCube. La
enerǵıa de estos eventos está comprendida entre 30 TeV to PeV. La distancia recor-
rida por estas part́ıculas hasta llegar a la Tierra las convierte en una superposición
incoherente de estados masivos, y por tanto, la probabilidad de oscilación del estado
|να〉 en el estado |νβ〉 viene dada únicamente por los elementos de la matriz de mez-
cla. En presencia de nuevas interacciones entre los neutrinos y la materia ordinaria,
el potencial que describe la evolución de los neutrinos a través de la Tierra puede
ser generalizado a una matriz compleja 3× 3, donde todos los elementos son distin-
tos de cero. En otro trabajo, hemos usado los ĺımites actuales sobre estas nuevas
interacciones para estudiar las modificaciones que pueden introducir en el sabor de
los neutrinos astrof́ısicos, una vez estos cruzan la Tierra. Los resultados muestran
una oscilación en sabor en función de la dirección de la distancia recorrida por el
neutrino a través de la Tierra. Este efecto ayuda a diferenciar a este modelo de
nueva f́ısica y la incertidumbre acerca de la fuente de producción de estos neutrinos.
Las desviaciones encontradas en el sabor dependen de la composición en sabor del
flujo inicial. En los casos en que el flujo está dominado por un sabor espećıfico,
el estado final muestra un mayor espectro de posibilidades. La desviación en sa-
bor introducida por la nueva f́ısica hace más dif́ıcil la identificación de la fuente de
neutrinos.

Además de la existencia de nuevas interacciones, la evolución de neutrinos at-
mosféricos a través de la Tierra se puede ver afectada, en presencia de nueva
f́ısica, por efectos adicionales de decoherencia. Estos efectos pueden ser descritos
en términos de tres parámetros (γ21, γ31, γ32), asociados a los tres parámetros de
masas de las oscilaciones estándar. En otro trabajo hemos estudiado este escenario,
considerando además la posibilidad de que los parámetros anteriores dependan de la
enerǵıa del neutrino, γij = γ0

ij(E/GeV)n con n = 0,±1,±2. A través de un ajuste a
los eventos atmosféricos medidos por IceCube y DeepCore hemos obtenido nuevos
ĺımites sobre γij. Para ello, hemos desarrollado un nuevo formalismo que permite
estudiar estos efectos en reǵımenes no adiabáticos. Los resultados muestran una
dependencia con el orden de las masas de los neutrinos. Los ĺımites obtenidos para
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γ31 y γ32 y n = 0 en IceCube son un orden de magnitud mayores a los obtenidos por
los experimentos actuales. Para una dependencia mayor en enerǵıa (n ≥ 1), el incre-
mento obtenido frente a los ĺımites actuales, en este caso para los tres parámetros,
es incluso mayor. Para n = −2, los ĺımites más fuertes son obtenidos por DeepCore,
pero para n = −1 todav́ıa dominan los valores de MINOS y KamLAND.
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