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This article presents the review of the current understanding on the pion-nucleon Drell-Yan process from the point of view of the
TMD factorization. Using the evolution formalism for the unpolarized and polarized TMD distributions developed recently, we
provide the theoretical expression of the relevantphysical observables, namely, the unpolarized cross section, the Sivers asymmetry,
and the cos 2𝜙 asymmetry contributed by the double Boer-Mulders effects.The corresponding phenomenology, particularly at the
kinematical configuration of the COMPASS 𝜋𝑁 Drell-Yan facility, is displayed numerically.

1. Introduction

After the first observation of the 𝜇+𝜇− lepton pairs produced
in 𝑝𝑁 collisions [1], the process was interpreted that a quark
and an antiquark from each initial hadron annihilate into a
virtual photon, which in turn decays into a lepton pair [2].
This explanation makes the process an ideal tool to explore
the internal structure of both the beam and target hadrons.
Since then, a wide range of studies on this (Drell-Yan) process
have been carried out. In particular, the𝜋𝑁 Drell-Yanprocess
has the unique capability to pin down the partonic structure
of the pion, which is an unstable particle and therefore cannot
serve as a target in deep inelastic scattering processes. Several
pion-induced experiments have been carried out, such as the
NA10 experiment at CERN [3–6], the E615 [7], E444 [8],
and E537 [9] experiments at Fermilab three decades ago.
These experimental measurements have provided plenty of
data, which have been used to considerably constrain the
distribution function of the pion meson. Recently, a new
pion-induced Drell-Yan program with polarized target was
also proposed [10] at the COMPASS of CERN, and the first
data using a high-intensity 𝜋 beam of 190 GeV colliding on a
NH3 target has already come out [11].

Bulk of the events in the Drell-Yan reaction are from the
region where the transverse momentum of the dilepton 𝑞⊥ is
much smaller than the mass 𝑄 of the virtual vector boson;

thus the intrinsic transverse momenta of initial partons
become relevant. It is also the most interesting regime where
a lot of intriguing physics arises. Moreover, in the small 𝑞⊥
region (𝑞⊥ ∼ ΛQ𝐶𝐷), the fixed-order calculations of the cross
sections in the collinear picture fail, leading to large double
logarithms of the type 𝛼ln2(𝑞2⊥/𝑄2). It is necessary to resum
such logarithmic contributions to all orders in the strong
coupling 𝛼𝑠 to obtain a reliable result. The standard approach
for such resummation is the Collins-Soper-Sterman (CSS)
formalism [12], originated from previous work on the Drell-
Yan process and the 𝑒+𝑒− annihilation three decades ago. In
recent years the CSS formalism has been successfully applied
to develop a factorization theorem [13–15] in which the
gauge-invariant [16–19] transverse momentum dependent
(TMD) parton distribution functions or fragmentation func-
tions (collectively called TMDs) [20, 21] play a central role.
From the point of view of TMD factorization [12, 13, 15, 22],
physical observables can bewritten as convolutions of a factor
related to hard scattering and well-defined TMDs. After
solving the evolution equations, the TMDs at fixed energy
scale can be expressed as a convolution of their collinear
counterparts and perturbatively calculable coefficients in the
perturbative region, and the evolution from one energy scale
to another energy scale is included in the exponential factor
of the so-called Sudakov-like form factors [12, 15, 23, 24].The
TMD factorization has been widely applied to various high
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energy processes, such as the semi-inclusive deep inelastic
scattering (SIDIS) [14, 15, 22, 23, 25, 26], 𝑒+𝑒− annihilation
[15, 27, 28], Drell-Yan [15, 29], andW/Z production in hadron
collision [12, 15, 30]. The TMD factorization can be also
extended to themoderate 𝑞⊥ regionwhere an equivalence [31,
32] between the TMD factorization and the twist-3 collinear
factorization is found.

One of the most important observables in the polarized
Drell-Yan process is the Sivers asymmetry. It is contributed
by the so-called Sivers function [33], a time-reversal-odd
(T-odd) distribution describing the asymmetric distribu-
tion of unpolarized quarks inside a transversely polarized
nucleon through the correlation between the quark trans-
verse momentum and the nucleon transverse spin. Remark-
ably, QCD predicts that the sign of the Sivers function
changes in SIDIS with respect to the Drell-Yan process [16,
34, 35]. The verification of this sign change [36–41] is one
of the most fundamental tests of our understanding of the
QCD dynamics and the factorization schemes, and it is
also the main pursue of the existing and future Drell-Yan
facilities [10, 11, 42–45]. The advantage of the 𝜋𝑁 Drell-
Yan measurement at COMPASS is that almost the same
setup [11, 46] is used in SIDIS and Drell-Yan processes,
which may reduce the uncertainty in the extraction of the
Sivers function. In particular, the COMPASS Collaboration
measured for the first time the transverse-spin-dependent
azimuthal asymmetries [11] in the 𝜋−𝑁 Drell-Yan process.

Another important observable in the Drell-Yan process is
the cos 2𝜙 angular asymmetry, where 𝜙 corresponds to the
azimuthal angle of the dilepton. The fixed-target measure-
ments from the NA10 and E615 collaborations showed that
the unpolarized cross section possesses large cos 2𝜙 asymme-
try, which violates the Lam-Tung relation [47]. Similar vio-
lation has also been observed in the 𝑝𝑝 colliders at Tevatron
[48] and LHC [49]. It has been explained from the viewpoints
of higher-twist effect [50–53], the noncoplanarity effect [30,
54], and the QCD radiative effects at higher order [55, 56].
Another promising origin [57] for the violation of the Lam-
Tung relation at low transverse momentum is the convolution
of the two Boer-Mulders functions [58] from each hadron.
The Boer-Mulders function is also a TMD distribution. As
the chiral-odd partner of the Sivers function, it describes
the transverse-polarization asymmetry of quarks inside an
unpolarized hadron [57, 58], thereby allowing the probe of
the transverse spin physics from unpolarized reaction.

This article aims at a review on the current status of
our understanding on the Drell-Yan dilepton production at
low transverse momentum, especially from the 𝜋𝑁 collision,
based on the recent development of the TMD factorization.
We will mainly focus on the phenomenology of the Sivers
asymmetry as well as the cos 2𝜙 asymmetry from the double
Boer-Mulders effect. In order to quantitatively understand
various spin/azimuthal asymmetries in the 𝜋𝑁 Drell-Yan
process, a particularly important step is to know in high
accuracy the spin-averaged differential cross section of the
same process with azimuthal angles integrated out, since
it always appears in the denominator of the asymmetries’
definition. Thus, the spin-averaged cross section will be also
discussed in great details.

The remained content of the article is organised as fol-
lows. In Section 2, we will review the TMD evolution formal-
ism of the TMDs, mostly following the approach established
in [15]. Particularly, we will discuss in detail the extraction of
the nonperturbative Sudakov form factor for the unpolarized
TMD distribution of the proton/pion as well as that for the
Sivers function. In Section 3, putting the evolved result of the
TMD distributions into the TMD factorization formulae, we
will present the theoretical expression of the physical observ-
ables, such as the unpolarized differential cross section, the
Sivers asymmetry, and the cos 2𝜙 asymmetry contributed
by the double Boer-Mulders effect. In Section 4, we present
the numerical evolution results of the unpolarized TMD
distributions and the Boer-Mulders function of the pion
meson, as well as that of the Sivers function of the proton.
In Section 5, we display the phenomenology of the physical
observables (unpolarized differential cross section, the Sivers
asymmetry, and the cos 2𝜙 asymmetry) in the 𝜋𝑁 Drell-
Yan with TMD factorization at the kinematical configuration
of the COMPASS experiments. We summarize the paper in
Section 6.

2. The TMD Evolution of the
Distribution Functions

In this section, we present a review on the TMD evolution of
the distribution functions. Particularly, we provide the evo-
lution formalism for the unpolarized distribution function𝑓1, transversity ℎ1, Sivers function 𝑓⊥1 , and the Boer-Mulders
function ℎ⊥1 of the proton, as well as 𝑓1 and ℎ⊥1 of the pion
meson, within the Collins-11 TMD factorization scheme [15].

In general, it is more convenient to solve the evolution
equations for the TMD distributions in the coordinate space
(b space) other than that in the transverse momentum k⊥
space, with b conjugate to k⊥ via Fourier transformation
[12, 15]. The TMD distributions 𝐹(𝑥, 𝑏; 𝜇, 𝜁𝐹) in b space
have two kinds of energy dependence, namely, 𝜇 is the
renormalization scale related to the corresponding collinear
PDFs, and 𝜁𝐹 is the energy scale serving as a cutoff to
regularize the light-cone singularity in the operator defini-
tion of the TMD distributions. Here, 𝐹 is a shorthand for
any TMD distribution function and the tilde denotes that
the distribution is the one in b space. If we perform the
inverse Fourier transformation on 𝐹(𝑥, 𝑏; 𝜇, 𝜁𝐹), we recover
the distribution function in the transverse momentum space𝐹𝑞/𝐻(𝑥, 𝑘⊥; 𝜇, 𝜁𝐹), which contains the information about the
probability of finding a quark with specific polarization,
collinear momentum fraction 𝑥, and transverse momentum𝑘⊥ in a specifically polarized hadron𝐻.

2.1. TMD Evolution Equations. The energy evolution for the𝜁𝐹 dependence of the TMD distributions is encoded in the
Collins-Soper (CS) [12, 15, 63] equation:

𝜕 ln𝐹 (𝑥, 𝑏; 𝜇, 𝜁𝐹)𝜕√𝜁𝐹 = 𝐾̃ (𝑏; 𝜇) , (1)

while the 𝜇 dependence is driven by the renormalization
group equation as
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𝑑𝐾̃𝑑 ln 𝜇 = −𝛾𝐾 (𝛼𝑠 (𝜇)) , (2)

𝑑 ln𝐹 (𝑥, 𝑏; 𝜇, 𝜁𝐹)𝑑 ln 𝜇 = 𝛾𝐹(𝛼𝑠 (𝜇) ; 𝜁2𝐹𝜇2) , (3)

with 𝛼𝑠 being the strong coupling at the energy scale 𝜇,𝐾̃ being the CS evolution kernel, and 𝛾𝐾, 𝛾𝐹 being the
anomalous dimensions. The solutions of these evolution
equations were studied in detail in [15, 63, 64]. Here, we
will only discuss the final result. The overall structure of the
solution for 𝐹(𝑥, 𝑏; 𝜇, 𝜁𝐹) is similar to that for the Sudakov
form factor. More specifically, the energy evolution of TMD
distributions from an initial energy 𝜇 to another energy 𝑄 is
encoded in the Sudakov-like form factor 𝑆 by the exponential
form exp(−𝑆)

𝐹 (𝑥, 𝑏, 𝑄) = F × 𝑒−𝑆 × 𝐹 (𝑥, 𝑏, 𝜇) , (4)

whereF is the factor related to the hard scattering. Hereafter,
we will set 𝜇 = √𝜁𝐹 = 𝑄 and express 𝐹(𝑥, 𝑏; 𝜇 = 𝑄, 𝜁𝐹 = 𝑄2)
as 𝐹(𝑥, 𝑏; 𝑄).

As the 𝑏-dependence of the TMDs can provide very
useful information regarding the transverse momentum
dependence of the hadronic 3D structure through Fourier
transformation, it is of fundamental importance to study the
TMDs in 𝑏 space. In the small 𝑏 region, the 𝑏 dependence
is perturbatively calculable, while in the large 𝑏 region, the
dependence turns to be nonperturbative andmay be obtained
from the experimental data. To combine the perturbative
information at small 𝑏 with the nonperturbative part at
large 𝑏, a matching procedure must be introduced with a
parameter 𝑏max serving as the boundary between the two
regions. The prescription also allows for a smooth transition
from perturbative to nonperturbative regions and avoids the
Landau pole singularity in 𝛼𝑠(𝜇𝑏). A 𝑏-dependent function 𝑏∗
is defined to have the property 𝑏∗ ≈ 𝑏 at low values of 𝑏 and𝑏∗ ≈ 𝑏max at large 𝑏 values. In this paper, we adopt the original
CSS prescription [12]:

𝑏∗ = 𝑏
√1 + 𝑏2/𝑏2max

, 𝑏max < 1ΛQCD
. (5)

The typical value of 𝑏max is chosen around 1 GeV−1 to guar-
antee that 𝑏∗ is always in the perturbative region. Besides the
CSS prescription, there were several different prescriptions
in literature. In [65, 66] a function 𝑏min(𝑏) decreasing with
increasing 1/𝑄 was also introduced to match the TMD
factorization with the fixed-order collinear calculations in the
very small 𝑏 region.

In the small 𝑏 region 1/𝑄 ≪ 𝑏 ≪ 1/ΛQCD, the
TMD distributions at fixed energy 𝜇 can be expressed as
the convolution of the perturbatively calculable coefficients
and the corresponding collinear PDFs or the multiparton
correlation functions [22, 67]

𝐹𝑞/𝐻 (𝑥, 𝑏; 𝜇) = ∑
𝑖

𝐶𝑞←󳨀𝑖 ⊗ 𝐹𝑖/𝐻 (𝑥, 𝜇) . (6)

Here,⊗ stands for the convolution in the momentum fraction𝑥

𝐶𝑞←󳨀𝑖 ⊗ 𝑓𝑖/𝐻1 (𝑥, 𝜇)
≡ ∫1

𝑥

𝑑𝜉𝜉 𝐶𝑞←󳨀𝑖 (𝑥𝜉 , 𝑏; 𝜇)𝑓𝑖/𝐻1 (𝜉, 𝜇) (7)

and 𝑓𝑖/𝐻(𝑥, 𝜇) is the corresponding collinear counterpart of
flavor 𝑖 in hadron𝐻 at the energy scale 𝜇.The latter one could
be a dynamic scale related to 𝑏∗ by 𝜇𝑏 = 𝑐0/𝑏∗, with 𝑐0 = 2𝑒−𝛾𝐸
and the Euler Constant 𝛾𝐸 ≈ 0.577 [22].Theperturbative hard
coefficients 𝐶𝑞←󳨀𝑖, independent of the initial hadron type,
have been calculated for the parton-target case [23, 68] as the
series of (𝛼𝑠/𝜋) and the results have been presented in [67]
(see also Appendix A of [23]).

2.2. Sudakov Form Factors for the Proton and the Pion. The
Sudakov-like form factor 𝑆 in (4) can be separated into the
perturbatively calculable part 𝑆P and the nonperturbative part𝑆NP

𝑆 = 𝑆P + 𝑆NP. (8)

According to the studies in [26, 39, 69–71], the perturbative
part of the Sudakov form factor 𝑆𝑃 has the same result
among different kinds of distribution functions, i.e., 𝑆𝑃 is
spin-independent. It has the general form

𝑆P (𝑄, 𝑏∗)
= ∫𝑄2

𝜇2
𝑏

𝑑𝜇2
𝜇2 [𝐴 (𝛼𝑠 (𝜇)) ln 𝑄2

𝜇2 + 𝐵 (𝛼𝑠 (𝜇))] . (9)

The coefficients 𝐴 and 𝐵 in(9) can be expanded as the series
of 𝛼𝑠/𝜋:

𝐴 = ∞∑
𝑛=1

𝐴(𝑛) (𝛼𝑠𝜋 )𝑛 , (10)

𝐵 = ∞∑
𝑛=1

𝐵(𝑛) (𝛼𝑠𝜋 )𝑛 . (11)

Here, we list𝐴(𝑛) to𝐴(2) and 𝐵(𝑛) to 𝐵(1) up to the accuracy of
next-to-leading-logarithmic (NLL) order [12, 23, 26, 69, 72,
73]:

𝐴(1) = 𝐶𝐹 (12)

𝐴(2) = 𝐶𝐹2 [𝐶𝐴(6718 − 𝜋26 ) − 109 𝑇𝑅𝑛𝑓] (13)

𝐵(1) = −32𝐶𝐹. (14)

For the nonperturbative form factor 𝑆NP, it can not be
analytically calculated by the perturbative method, which
means it has to be parameterized to obtain the evolution
information in the nonperturbative region.

The general form of 𝑆NP(𝑄; 𝑏) was suggested as [12]

𝑆NP (𝑄; 𝑏) = 𝑔2 (𝑏) ln 𝑄𝑄0 + 𝑔1 (𝑏) . (15)

The nonperturbative functions 𝑔1(𝑏) and 𝑔2(𝑏) are functions
of the impact parameter 𝑏 and depend on the choice of 𝑏max.
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To be more specific, 𝑔2(𝑏) contains the information on the
large 𝑏 behavior of the evolution kernel 𝐾̃. Also, according
to the power counting analysis in [74], 𝑔2(𝑏) shall follow
the power behavior as 𝑏2 at small-𝑏 region, which can be
an essential constraint for the parameterization of 𝑔2(𝑏).
The well-known Brock-Landry-Nadolsky-Yuan (BLNY) fit
parameterizes 𝑔2(𝑏) as 𝑔2𝑏2 with 𝑔2 a free parameter [72].
We note that 𝑔2(𝑏) is universal for different types of TMDs
and does not depend on the particular process, which is an
important prediction of QCD factorization theorems involv-
ing TMDs [15, 23, 39, 75].The nonperturbative function 𝑔1(𝑏)
contains information on the intrinsic nonperturbative trans-
verse motion of bound partons, namely, it should depend
on the type of hadron and the quark flavor as well as 𝑥 for
TMDdistributions. As for theTMD fragmentation functions,
itmay depend on 𝑧ℎ , the type of the produced hadron, and the
quark flavor. In other words, 𝑔1(𝑏) depends on the specific
TMDs.

There are several extractions for 𝑆NP in literature, we
review some often-used forms below.

The original BLNY fit parameterized 𝑆NP as [72]

(𝑔1 + 𝑔2 ln( 𝑄2𝑄0) + 𝑔1𝑔3ln (100𝑥1𝑥2)) 𝑏2, (16)

where 𝑥1 and 𝑥2 are the longitudinal momentum fractions
of the incoming hadrons carried by the initial state quark
and antiquark. The BLNY parameterization proved to be
very reliable to describe Drell-Yan data and 𝑊±, 𝑍 boson
production [72]. However, when the parameterization is
extrapolated to the typical SIDIS kinematics in HERMES and
COMPASS, the transversemomentumdistribution of hadron
can not be described by the BLNY-type fit [76, 77].

Inspired by [72, 78], a widely used parameterization of𝑆NP for TMD distributions or fragmentation functions was
proposed [39, 67, 72, 78–80]

𝑆pdf/ffNP = 𝑏2 (𝑔pdf/ff
1 + 𝑔22 ln 𝑄𝑄0) , (17)

where the factor 1/2 in front of 𝑔2 comes from the fact
that only one hadron is involved for the parameterization
of 𝑆pdf/ffNP , while the parameter in [78] is for 𝑝𝑝 collisions.
The parameter 𝑔pdf/ff

1 in (17) depends on the type of TMDs,
which can be regarded as the width of intrinsic transverse
momentum for the relevant TMDs at the initial energy scale𝑄0 [23, 73, 81]. Assuming a Gaussian form, one can obtain

𝑔pdf
1 = ⟨𝑘2⊥⟩𝑄04 ,

𝑔ff
1 = ⟨𝑝2𝑇⟩𝑄04𝑧2 ,

(18)

where ⟨𝑘2⊥⟩𝑄0 and ⟨𝑝2𝑇⟩𝑄0 represent the relevant averaged
intrinsic transverse momenta squared for TMD distributions
and TMD fragmentation functions at the initial scale 𝑄0,
respectively.

Since the original BLNY fit fails to simultaneously
describe Drell-Yan process and SIDIS process, in [77] the
authors proposed a new form for 𝑆NP which releases the
tension between the BLNY fit to the Drell-Yan (such as 𝑊,𝑍 and low energy Drell-Yan pair productions) data and the
fit to the SIDIS data from HERMES/COMPASS in the CSS
resummation formalism. In addition, the 𝑥-dependence in
(16) was separated with a power law behavior assumption:(𝑥0/𝑥)𝜆, where 𝑥0 and 𝜆 are the fixed parameters as 𝑥0 =0.01 and 𝜆 = 0.2. The two different behaviors (logarithmic
in (16) and power law) will differ in the intermediate 𝑥
regime. Reference [76] showed that a direct integration of the
evolution kernel from low𝑄 to high𝑄 led to the form of ln(𝑄)
term as ln(𝑏/𝑏∗)ln(𝑄) and could describe the SIDIS andDrell-
Yan data with 𝑄 values ranging from a few GeV to 10 GeV.
Thus, the 𝑔2(𝑏) term was modified to the form of ln(𝑏/𝑏∗)
and the functional form of 𝑆NP extracted in [77] turned to
the form

𝑔1𝑏2 + 𝑔2 ln( 𝑏𝑏∗) ln( 𝑄𝑄0)
+ 𝑔3𝑏2 ((𝑥0𝑥1)

𝜆 + (𝑥0𝑥2)
𝜆) .

(19)

At small 𝑏 region (𝑏 is much smaller than 𝑏max), the parame-
terization of the 𝑔2(𝑏) term 𝑔2ln(𝑏/𝑏∗) can be approximated
as 𝑏2/(2𝑏2max), which satisfied the constraint of the 𝑏2 behavior
for 𝑔2(𝑏). However, at large 𝑏 region, the logarithmic behavior
will lead to different predictions on the 𝑄2 dependence,
since the Gaussian-type parameterization suggests that it is
strongly suppressed [82]. This form has been suggested in
an early research by Collins and Soper [83], but has not
yet been adopted in any phenomenological study until the
study in [77]. The comparison between the original BLNY
parameterization and this form with the experimental data
of Drell-Yan type process has shown that the new form of𝑆NP can fit with the data as equally well as the original BLNY
parameterization.

In [66], the 𝑔2(𝑏) function was parameterized as 𝑔2𝑏2, fol-
lowing the BLNY convention. Furthermore, in the function𝑔1(𝑏), the Gaussian width also depends on 𝑥. The authors
simultaneously fit the experimental data of SIDIS process
fromHERMES and COMPASSCollaborations, the Drell-Yan
events at low energy, and the𝑍 boson production with totally
8059 data points. The extraction can describe the data well in
the regions where TMD factorization is supposed to hold.

To study the pion-nucleon Drell-Yan data, it is also
necessary to know the nonperturbative Sudakov form factor
for the pion meson. In [59], we extended the functional form
for the proton TMDs [77] to the case of the pion TMDs:

𝑆𝑓𝑞/𝜋1NP = 𝑔𝑞/𝜋1 𝑏2 + 𝑔𝑞/𝜋2 ln 𝑏𝑏∗ ln
𝑄𝑄0 , (20)

with 𝑔𝑞/𝜋1 and 𝑔𝑞/𝜋2 the free parameters. Adopting the func-
tional form of 𝑆NP in (20), for the first time, we performed
the extraction [59] of the nonperturbative Sudakov form
factor for the unpolarized TMD PDF of pion meson using
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the experimental data in the 𝜋−𝑝 Drell-Yan process collected
by the E615 Collaboration at Fermilab [7, 84].The data fitting
was performed by the package MINUIT [85, 86], through a
least-squares fit:

𝜒2 (𝛼) = 𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(theo (𝑞⊥𝑖𝑗,𝛼) − data𝑖𝑗)2
err2𝑖𝑗

. (21)

The total number of data in our fit is 𝑁 = ∑8𝑖 𝑁𝑖 = 96. Since
the TMD formalism is valid in the region 𝑞⊥ ≪ 𝑄, we did
a simple data selection by removing the data in the region𝑞⊥ > 3 GeV. We performed the fit by minimizing the chi-
square in (21), and we obtained the following values for the
two parameters:

𝑔𝑞/𝜋1 = 0.082 ± 0.022,
𝑔𝑞/𝜋2 = 0.394 ± 0.103, (22)

with 𝜒2/d.o.f = 1.64.
Figure 1 plots the 𝑞⊥-dependent differential cross section

(solid line) calculated from the fitted values for 𝑔𝑞/𝜋1 and 𝑔𝑞/𝜋2
in (22) at the kinematics of E615 at different 𝑥𝐹 bins. The full
squares with error bars denote the E615 data for comparison.
As Figure 1 demonstrates, a good fit is obtained in the region𝑥𝐹 < 0.8.

From the fitted result, we find that the value of the
parameter 𝑔𝑞/𝜋1 is smaller than the parameter 𝑔𝑞/𝑝1 extracted
in [77] which used the same parameterized form. For the
parameter 𝑔𝑞/𝜋2 we find that its value is very close to that of
the parameter 𝑔𝑞/𝑝2 for the proton [77] (here 𝑔𝑞/𝑝2 = 𝑔2/2 =0.42). This may confirm that 𝑔2 should be universal, e.g., 𝑔2
is independent on the hadron type. Similar to the case of the
proton, for the pion meson 𝑔𝜋2 is several times larger than 𝑔𝜋1 .
We note that a form of 𝑆𝑓1,𝑞/𝜋NP motivated by the NJLmodel was
given in [87].

2.3. Solutions for Different TMDs. After solving the evolution
equations and incorporating the Sudakov form factor, the
scale-dependent TMD distribution function 𝐹 of the proton
and the pion in 𝑏 space can be rewritten as

𝐹𝑞/𝑝 (𝑥, 𝑏; 𝑄)
= 𝑒−(1/2)𝑆P(𝑄,𝑏∗)−𝑆𝐹𝑞/𝑝NP (𝑄,𝑏)F (𝛼𝑠 (𝑄))∑

𝑖

𝐶𝑞←󳨀𝑖
⊗ 𝐹𝑖/𝑝 (𝑥, 𝜇𝑏) ,

(23)

𝐹𝑞/𝜋 (𝑥, 𝑏; 𝑄)
= 𝑒−(1/2)𝑆P(𝑄,𝑏∗)−𝑆𝐹𝑞/𝜋NP (𝑄,𝑏)F (𝛼𝑠 (𝑄))∑

𝑖

𝐶𝑞←󳨀𝑖
⊗ 𝐹𝑖/𝜋 (𝑥, 𝜇𝑏) .

(24)

Here, 𝐹𝑖/𝐻(𝑥, 𝜇𝑏) is the corresponding collinear distributions
at the initial energy scale 𝜇𝑏. To be more specific, for the

unpolarized distribution function 𝑓1,𝑞/𝐻 and transversity dis-
tribution function ℎ1,𝑞/𝐻, the collinear distributions 𝐹𝑖/𝐻(𝑥,𝜇𝑏) are the integrated distribution functions 𝑓1,𝑞/𝐻(𝑥, 𝜇𝑏) andℎ1,𝑞/𝐻(𝑥, 𝜇𝑏). As for the Boer-Mulders function and Sivers
function, the collinear distributions are the corresponding
multiparton correlation functions. Thus, the unpolarized
distribution function of the proton and pion in 𝑏 space can
be written as

𝑓1,𝑞/𝑝 (𝑥, 𝑏; 𝑄)
= 𝑒−(1/2)𝑆pert(𝑄,𝑏∗)−𝑆𝑓1,𝑞/𝑝NP (𝑄,𝑏)

F (𝛼𝑠 (𝑄))∑
𝑖

𝐶𝑞←󳨀𝑖
⊗ 𝑓1,𝑖/𝑝 (𝑥, 𝜇𝑏)

(25)

𝑓1,𝑞/𝜋 (𝑥, 𝑏; 𝑄)
= 𝑒−(1/2)𝑆pert(𝑄,𝑏∗)−𝑆𝑓1,𝑞/𝜋NP (𝑄,𝑏)

F (𝛼𝑠 (𝑄))∑
𝑖

𝐶𝑞←󳨀𝑖
⊗ 𝑓1,𝑖/𝜋 (𝑥, 𝜇𝑏) .

(26)

If we perform a Fourier transformation on the 𝑓1,𝑞/𝐻(𝑥, 𝑏; 𝑄),
we can obtain the distribution function in 𝑘⊥ space as

𝑓1,𝑞/𝑝 (𝑥, 𝑘⊥; 𝑄) = ∫∞
0

𝑑𝑏𝑏2𝜋 𝐽0 (𝑘⊥𝑏) 𝑓1,𝑞/𝑝 (𝑥, 𝑏; 𝑄) , (27)

𝑓1,𝑞/𝜋 (𝑥, 𝑘⊥; 𝑄) = ∫∞
0

𝑑𝑏𝑏2𝜋 𝐽0 (𝑘⊥𝑏) 𝑓1,𝑞/𝜋 (𝑥, 𝑏; 𝑄) . (28)

where 𝐽0 is the Bessel function of the first kind, and 𝑘⊥ = |k⊥|.
Similarly, the evolution formalism of the proton transver-

sity distribution in 𝑏 space and 𝑘⊥-space can be obtained as
[75]

ℎ̃1,𝑞/𝑝 (𝑥, 𝑏; 𝑄)
= 𝑒−(1/2)𝑆P(𝑄,𝑏∗)−𝑆ℎ1NP(𝑄,𝑏)H (𝛼𝑠 (𝑄))∑

𝑖

𝛿𝐶𝑞←󳨀𝑖
⊗ ℎ1,𝑖/𝑝 (𝑥, 𝜇𝑏) ,

(29)

ℎ1,𝑞/𝑝 (𝑥, 𝑘⊥; 𝑄) = ∫∞
0

𝑑𝑏𝑏2𝜋 𝐽0 (𝑘⊥𝑏) ℎ̃1,𝑞/𝑝 (𝑥, 𝑏; 𝑄) , (30)

whereH is the hard factor, and 𝛿𝐶𝑞←󳨀𝑖 is the coefficient con-
voluted with the transversity. The TMD evolution formalism
in (30) has been applied in [75] to extract the transversity
distribution from the SIDIS data.

The Sivers function and Boer-Mulders function,
which are T-odd, can be expressed as follows in 𝑏-space
[39]

𝑓⊥𝛼(DY)
1𝑇,𝑞/𝐻 (𝑥, 𝑏; 𝜇, 𝜁𝐹)
= ∫𝑑2k⊥𝑒−𝑖󳨀→k ⊥⋅󳨀→b 𝑘𝛼⊥𝑀𝑝

𝑓⊥(DY)1𝑇,𝑞/𝐻 (𝑥, k⊥; 𝜇) ,
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Figure 1: The fitted cross section (solid line) of pion-nucleon Drell-Yan as functions of 𝑞⊥, compared with the E615 data (full square), for
different 𝑥𝐹 bins in the range 0 < 𝑥𝐹 < 0.8. The error bars shown here include the statistical error and the 16% systematic error. Figure from
[59].

ℎ̃⊥𝛼(DY)1,𝑞/𝐻 (𝑥, 𝑏; 𝜇, 𝜁𝐹)
= ∫ 𝑑2k⊥𝑒−𝑖󳨀→k ⊥⋅󳨀→b 𝑘𝛼⊥𝑀𝑝

ℎ⊥(DY)1,𝑞/𝐻 (𝑥, k⊥; 𝜇) .
(31)

Here, the superscript “DY” represents the distributions in
the Drell-Yan process. Since QCD predicts that the sign of
the distributions changes in the SIDIS process and Drell-Yan
process, for the distributions in SIDIS process, there has to be
an extra minus sign regard to 𝑓⊥(DY)1𝑇,𝑞/𝐻 and ℎ⊥(DY)1,𝑞/𝐻 .
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Similar to what has been done to the unpolarized dis-
tribution function and transversity distribution function, in
the low 𝑏 region, the Sivers function 𝑓⊥𝛼(DY)

1𝑇,𝑞/𝐻
can also be

expressed as the convolution of perturbatively calculable
hard coefficients and the corresponding collinear correlation
functions as [69, 88]

𝑓⊥𝛼(DY)1𝑇,𝑞/𝐻 (𝑥, 𝑏; 𝜇)
= (−𝑖𝑏𝛼2 )∑

𝑖

Δ𝐶𝑇𝑞←󳨀𝑖 ⊗ 𝑓(3)𝑖/𝑝 (𝑥󸀠, 𝑥󸀠󸀠; 𝜇) . (32)

Here,𝑓(3)
𝑖/𝑝

(𝑥󸀠, 𝑥󸀠󸀠) denotes the twist-three quark-gluon-quark
or trigluon correlation functions, amongwhich the transverse
spin-dependent Qiu-Sterman matrix element 𝑇𝑞,𝐹(𝑥󸀠, 𝑥󸀠󸀠)
[89–91] is the most relevant one. Assuming that the Qiu-
Sterman function 𝑇𝑞,𝐹(𝑥, 𝑥) is the main contribution, the
Sivers function in 𝑏-space becomes

𝑓⊥𝛼(DY)1𝑇,𝑞/𝐻 (𝑥, 𝑏; 𝑄) = (−𝑖𝑏𝛼2 )FSiv (𝛼𝑠 (𝑄))∑
𝑖

Δ𝐶𝑇𝑞←󳨀𝑖
⊗ 𝑇𝑖/𝐻,𝐹 (𝑥, 𝑥; 𝜇𝑏) 𝑒−𝑆sivNP−(1/2)𝑆P ,

(33)

where FSiv is the factor related to the hard scattering. The
Boer-Mulders function in 𝑏-space follows the similar result
for the Sivers function as:

ℎ̃𝛼⊥(DY)1,𝑞/𝐻 (𝑥, 𝑏; 𝑄) = (−𝑖𝑏𝛼2 )HBM (𝛼𝑠 (𝑄))∑
𝑖

𝐶BM
𝑞←󳨀𝑖

⊗ 𝑇(𝜎)𝑖/𝐻,𝐹 (𝑥, 𝑥; 𝜇𝑏) 𝑒−𝑆BMNP −(1/2)𝑆P ,
(34)

Here, 𝐶BM
𝑞←󳨀𝑖 stands for the flavor-dependent hard coefficients

convoluted with 𝑇(𝜎)
𝑖/𝐻,𝐹

, HBM the hard scattering factor and
𝑇(𝜎)
𝑖/𝐻,𝐹

(𝑥, 𝑥; 𝜇𝑏) denotes the chiral-odd twist-3 collinear corre-
lation function. After performing the Fourier transformation
back to the transverse momentum space, one can get the
Sivers function and the Boer-Mulders function as

𝑘⊥𝑀𝐻

𝑓⊥1𝑇,𝑞/𝐻 (𝑥, 𝑘⊥; 𝑄)
= ∫∞

0
𝑑𝑏( 𝑏22𝜋) 𝐽1 (𝑘⊥𝑏)FSiv (𝛼𝑠 (𝑄))∑

𝑖

Δ𝐶𝑇𝑞←󳨀𝑖
⊗ 𝑓⊥(1)1𝑇,𝑖/𝐻 (𝑥, 𝜇𝑏) 𝑒−𝑆sivNP−(1/2)𝑆P ,

(35)

𝑘⊥𝑀𝐻

ℎ⊥1,𝑞/𝐻 (𝑥, 𝑘⊥; 𝑄)
= ∫∞

0
𝑑𝑏( 𝑏22𝜋) 𝐽1 (𝑘⊥𝑏)HBM (𝛼𝑠 (𝑄))∑

𝑖

𝐶BM
𝑞←󳨀𝑖

⊗ ℎ⊥(1)1,𝑖/𝐻 (𝑥; 𝜇𝑏) 𝑒−𝑆BMNP −(1/2)𝑆P ,
(36)

and 𝑇𝑞,𝐹(𝑥, 𝑥; 𝜇𝑏) and 𝑇(𝜎)
𝑖/𝐻,𝐹

(𝑥, 𝑥; 𝜇𝑏) are related to Sivers
function and Boer-Mulders function as [69, 88]

𝑇𝑞/𝐻,𝐹 (𝑥, 𝑥) = ∫𝑑2𝑘⊥
󵄨󵄨󵄨󵄨󵄨𝑘2⊥󵄨󵄨󵄨󵄨󵄨𝑀𝐻

𝑓⊥(DY)1𝑇,𝑞/𝐻 (𝑥, 𝑘⊥)
= 2𝑀𝐻𝑓⊥(1)(DY)1𝑇,𝑞/𝐻 (𝑥) ,

(37)

𝑇(𝜎)𝑞/𝐻,𝐹 (𝑥, 𝑥) = ∫𝑑2𝑘⊥
󵄨󵄨󵄨󵄨󵄨𝑘2⊥󵄨󵄨󵄨󵄨󵄨𝑀𝐻

ℎ⊥(DY)1,𝑞/𝐻 (𝑥, 𝑘⊥)
= 2𝑀𝐻ℎ⊥(1)(DY)1,𝑞/𝐻 (𝑥) .

(38)

The TMD evolution formalism in (35) has been applied
to extract [39, 70, 81, 92, 93] the Sivers function. The similar
formalism in (36) could be used to improve the previous
extractions of the proton Boer-Mulders function [62, 94–96]
and future extraction of the pion Boer-Mulders function.

3. Physical Observables in 𝜋𝑁 Drell-Yan
Process within TMD Factorization

In this section we will set up the necessary framework for
physical observables in 𝜋-𝑁 Drell-Yan process within TMD
factorization by considering the evolution effects of the TMD
distributions, following the procedure developed in [15].

In Drell-Yan process

𝐻𝐴 (𝑃𝜋) + 𝐻𝐵 (𝑃𝑁) 󳨀→
𝛾∗ (𝑞) + 𝑋 󳨀→

𝑙+ (ℓ) + 𝑙− (ℓ󸀠) + 𝑋,
(39)

𝑃𝜋/𝑁 and 𝑞 denote the momenta of the incoming hadron 𝜋/𝑁
and the virtual photon, respectively; 𝑞 is a time-like vector,
namely, 𝑄2 = 𝑞2 > 0, which is the invariant mass square of
the final-state lepton pair. One can define the following useful
kinematical variables to express the cross section:

𝑠 = (𝑃𝜋 + 𝑃𝑁)2 ,
𝑥𝜋/𝑁 = 𝑄22𝑃𝜋/𝑁 ⋅ 𝑞 ,
𝑥𝐹 = 2𝑞𝐿𝑠 = 𝑥𝜋 − 𝑥𝑁,
𝜏 = 𝑄2𝑠 = 𝑥𝜋𝑥𝑁,
𝑦 = 12 ln

𝑞+𝑞− = 12 ln 𝑥𝜋𝑥𝑁 ,

(40)

where 𝑠 is the center-of-mass energy squared; 𝑥𝜋/𝑁 is the
light-front momentum fraction carried by the annihilating
quark/antiquark in the incoming hadron 𝜋/𝑁; 𝑞𝐿 is the
longitudinal momentum of the virtual photon in the c.m.
frame of the incident hadrons; 𝑥𝐹 is the Feynman 𝑥 variable,
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which corresponds to the longitudinal momentum fraction
carried by the lepton pair; and 𝑦 is the rapidity of the lepton
pair.Thus, 𝑥𝜋/𝑁 is expressed as the function of 𝑥𝐹, 𝜏 and of 𝑦,𝜏

𝑥𝜋/𝑁 = ±𝑥𝐹 + √𝑥2𝐹 + 4𝜏
2 ,

𝑥𝜋/𝑁 = √𝜏𝑒±𝑦.
(41)

3.1. Differential Cross Section for Unpolarized Drell-Yan Pro-
cess. The differential cross section formulated in TMD fac-
torization is usually expressed in the 𝑏-space to guarantee
conservation of the transverse momenta of the emitted soft
gluons. Later on it can be transformed back to the transverse
momentum space to represent the experimental observables.
We will introduce the physical observables in the following
part of this section.

The general differential cross section for the unpolarized
Drell-Yan process can be written as [12]

𝑑4𝜎𝑈𝑈𝑑𝑄2𝑑𝑦𝑑2q⊥ = 𝜎0 ∫ 𝑑2𝑏
(2𝜋)2 𝑒𝑖

󳨀→q ⊥ ⋅
󳨀→b 𝑊̃𝑈𝑈 (𝑄; 𝑏)

+ 𝑌𝑈𝑈 (𝑄, 𝑞⊥)
(42)

where 𝜎0 = 4𝜋𝛼2𝑒𝑚/3𝑁𝐶𝑠𝑄2 is the cross section at tree
level with 𝛼𝑒𝑚 the fine-structure constant, 𝑊̃(𝑄; 𝑏) is the
structure function in the 𝑏-space which contains all-order
resummation results and dominates in the low 𝑞⊥ region
(𝑞⊥ ≪ 𝑄); and the 𝑌 term provides necessary correction at𝑞⊥ ∼ 𝑄. In this workwewill neglect the𝑌-term, whichmeans
that we will only consider the first term on the r.h.s of (42).

In general, TMD factorization [15] aims at separating
well-defined TMD distributions such that they can be used
in different processes through a universal way and expressing
the scheme/process dependence in the corresponding hard
factors. Thus, 𝑊̃(𝑄; 𝑏) can be expressed as [97]

𝑊̃𝑈𝑈 (𝑄; 𝑏) = 𝐻𝑈𝑈 (𝑄; 𝜇)
⋅ ∑
𝑞,𝑞

𝑒2𝑞𝑓sub
𝑞/𝜋 (𝑥𝜋, 𝑏; 𝜇, 𝜁𝐹) 𝑓sub

𝑞/𝑝 (𝑥𝑝, 𝑏; 𝜇, 𝜁𝐹) , (43)

where 𝑓sub
𝑞/𝐻 is the subtracted distribution function in the𝑏 space and 𝐻𝑈𝑈(𝑄; 𝜇) is the factor associated with hard

scattering. The superscript “sub” represents the distribution
function with the soft factor subtracted. The subtraction
guarantees the absence of light-cone singularities in the
TMDs and the self-energy divergencies of the soft factors
[15, 22]. However, the way to subtract the soft factor in
the distribution function and the hard factor 𝐻𝑈𝑈(𝑄; 𝜇)
depends on the scheme to regulate the light-cone singularity
in the TMD definition [12, 14, 15, 22, 98–103], leading to the
scheme dependence in the TMD factorization. In literature,
several different schemes are used [97]: the CSS scheme
[12, 22], the Collins-11 (JCC) scheme [15], the Ji-Ma-Yuan
(JMY) scheme [13, 14], and the lattice scheme [103]. Although
different schemes are adopted, the final results of the structure

functions 𝑊̃(𝑄; 𝑏) as well as the differential cross section
should not depend on a specific scheme. In the following we
will apply the JCC and JMY schemes to display the scheme-
independence of the unpolarized differential cross section.

The hard 𝐻𝑈𝑈(𝑄; 𝜇) have different forms in the JCC and
JMY schemes:

𝐻JCC (𝑄; 𝜇) = 1 + 𝛼𝑠 (𝜇)2𝜋 𝐶𝐹 (3 ln 𝑄2𝜇2 − ln2𝑄2𝜇2 + 𝜋2

− 8) ,
(44)

𝐻JMY (𝑄; 𝜇, 𝜌) = 1 + 𝛼𝑠 (𝜇)2𝜋 𝐶𝐹 ((1 + ln 𝜌2) ln 𝑄2𝜇2
− ln 𝜌2 + ln2𝜌 + 2𝜋2 − 4) .

(45)

Like 𝜁𝐹, here 𝜌 is another variable to regulate the light-cone
singularity of TMD distributions. The scheme dependence
of the distribution function is manifested in the hard fac-
tor F(𝛼𝑠(𝑄)), which has the following forms in different
schemes:

F̃
JCC (𝛼𝑠 (𝑄)) = 1 + O (𝛼2𝑠 ) , (46)

F̃
JMY (𝛼𝑠 (𝑄) , 𝜌)
= 1 + 𝛼𝑠2𝜋𝐶𝐹 [ln 𝜌 − 12 ln2𝜌 − 𝜋22 − 2] , (47)

The𝐶 coefficients in (25) and (26) do not depend on the types
of initial hadrons and are calculated for the parton-target case
[23, 68] with the results presented in [67] (see also Appendix
A of [23])

𝐶𝑞←󳨀𝑞󸀠 (𝑥, 𝑏; 𝜇, 𝜁𝐹)
= 𝛿𝑞𝑞󸀠 [𝛿 (1 − 𝑥) + 𝛼𝑠𝜋 (𝐶𝐹2 (1 − 𝑥))] , (48)

𝐶𝑞←󳨀𝑔 (𝑥, 𝑏; 𝜇, 𝜁𝐹) = 𝛼𝑠𝜋 𝑇𝑅𝑥 (1 − 𝑥) , (49)

where 𝐶𝐹 = (𝑁2𝐶 − 1)/(2𝑁𝐶), 𝑇𝑅 = 1/2.
One can absorb the scheme-dependent hard factors𝐻𝑈𝑈(𝑄; 𝜇) and F of the TMD distributions into the 𝐶-

functions using

𝐶󸀠𝑗←󳨀𝑖 = 𝐶𝑗←󳨀𝑖 ×F × √𝐻𝑈𝑈 (𝑄; 𝜇 = 𝑄). (50)

The results for the splitting to quark are

𝐶󸀠𝑞←󳨀𝑞󸀠 (𝑥, 𝑏; 𝜇𝑏) = 𝛿𝑞𝑞󸀠 [𝛿 (1 − 𝑥)
+ 𝛼𝑠𝜋 (𝐶𝐹2 (1 − 𝑥) + 𝐶𝐹4 (𝜋2 − 8) 𝛿 (1 − 𝑥))] ,

(51)

𝐶󸀠𝑞←󳨀𝑔 (𝑥, 𝑏; 𝜇𝑏) = 𝛼𝑠𝜋 𝑇𝑅𝑥 (1 − 𝑥) . (52)

The new 𝐶-coefficients turn out to be scheme independent
(independent on 𝜌) [104] but process dependent [105, 106].
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With the new 𝐶-coefficients in hand, one can obtain the
structure functions 𝑊̃𝑈𝑈(𝑄; 𝑏) in 𝑏-space as

𝑊̃𝑈𝑈 (𝑄; 𝑏) = 𝑒−𝑆pert(𝑄2 ,𝑏)−𝑆𝑓𝑞/𝜋1NP (𝑄2 ,𝑏)−𝑆𝑓𝑞/𝑝1NP (𝑄2 ,𝑏)
×∑
𝑞,𝑞

𝑒2𝑞𝐶󸀠𝑞←󳨀𝑖 ⊗ 𝑓𝑖/𝜋− (𝑥1, 𝜇𝑏)𝐶󸀠𝑞←󳨀𝑗
⊗ 𝑓𝑗/𝑝 (𝑥2, 𝜇𝑏) .

(53)

After performing the Fourier transformation, we can get the
differential cross section as

𝑑4𝜎𝑑𝑄2𝑑𝑦𝑑2q⊥ = 𝜎0 ∫∞
0

𝑑𝑏𝑏2𝜋 𝐽0 (𝑞⊥𝑏) × 𝑊̃𝑈𝑈 (𝑄; 𝑏) , (54)

where 𝐽0 is the zeroth order Bessel function of the first kind.

3.2. The Sivers Asymmetry. In the Drell-Yan process with a 𝜋
beam colliding on the transversely polarized nucleon target,
an important physical observable is the Sivers asymmetry, as
it can test the sign change of the Sivers function between
SIDIS and Drell-Yan processes, a fundamental prediction
in QCD. The future precise measurement of the Sivers
asymmetry in 𝜋𝑁 Drell-Yan in a wide kinematical region
can be also used to extract the Sivers function. The Sivers
asymmetry is usually defined as [39]

𝐴𝑈𝑇 = 𝑑4Δ𝜎/𝑑𝑄2𝑑𝑦𝑑2q⊥𝑑4𝜎/𝑑𝑄2𝑑𝑦𝑑2q⊥ , (55)

where 𝑑4𝜎/𝑑𝑄2𝑑𝑦𝑑2q⊥ and 𝑑4Δ𝜎/𝑑𝑄2𝑑𝑦𝑑2q⊥ are the spin-
averaged (unpolarized) and spin-dependent differential cross
section, respectively.The latter one has the general form in the
TMD factorization [39, 69, 88]

𝑑4Δ𝜎𝑑𝑄2𝑑𝑦𝑑2q⊥ = 𝜎0𝜖𝛼𝛽⊥ 𝑆𝛼⊥ ∫ 𝑑2𝑏
(2𝜋)2 𝑒𝑖

󳨀→q ⊥ ⋅
󳨀→b 𝑊̃𝛽

𝑈𝑇 (𝑄; 𝑏)
+ 𝑌𝛽𝑈𝑇 (𝑄, 𝑞⊥) .

(56)

Similar to (42), 𝑊̃𝑈𝑇(𝑄, 𝑏) denotes the spin-dependent struc-
ture function in the 𝑏-space and dominates at 𝑞⊥ ≪ 𝑄,
and 𝑌𝛽𝑈𝑇 provides correction for the single-polarized process
at 𝑞⊥ ∼ 𝑄. The antisymmetric tensor 𝜖𝛼𝛽⊥ is defined as𝜖𝛼𝛽𝜇]𝑃𝜇𝜋𝑃]

𝑝/𝑃𝜋 ⋅𝑃𝑝, and 𝑆⊥ is the transverse-polarization vector
of the proton target.

The structure function 𝑊̃𝑈𝑇(𝑄, 𝑏) can be written in terms
of the unpolarized distribution function of pion and Sivers
function of proton as

𝑊̃𝛼
𝑈𝑇 (𝑄; 𝑏) = 𝐻𝑈𝑇 (𝑄; 𝜇)
⋅ ∑
𝑞,𝑞

𝑒2𝑞𝑓1𝑞/𝜋 (𝑥𝜋, 𝑏; 𝜇, 𝜁𝐹) 𝑓⊥𝛼(DY)1𝑇𝑞/𝑝 (𝑥𝑝, 𝑏; 𝜇, 𝜁𝐹) , (57)

with 𝑓⊥𝛼(DY)
1𝑇𝑞/𝑝

(𝑥𝑝, 𝑏; 𝜇, 𝜁𝐹) given in (33). Similar to the unpo-
larized case, the scheme-dependent hard factors can be
absorbed into the 𝐶-coefficients, leading to [69, 88]

Δ𝐶𝑇𝑞←󳨀𝑞󸀠 (𝑥, 𝑏; 𝜇𝑏) = 𝛿𝑞𝑞󸀠 [𝛿 (1 − 𝑥)
+ 𝛼𝑠𝜋 (− 14𝑁𝑐 (1 − 𝑥) + 𝐶𝐹4 (𝜋2 − 8) 𝛿 (1 − 𝑥))] .

(58)

The spin-dependent differential cross section in (56) thus
has the form

𝑑4Δ𝜎𝑑𝑄2𝑑𝑦𝑑2q⊥ = 𝜎04𝜋 ∫∞
0

𝑑𝑏𝑏2𝐽1 (𝑞⊥𝑏) ∑
𝑞,𝑖,𝑗

𝑒2𝑞Δ𝐶𝑇𝑞←󳨀𝑖
⊗ 𝑇𝑖,𝐹 (𝑥𝑝, 𝑥𝑝; 𝜇𝑏)𝐶𝑞←󳨀𝑗
⊗ 𝑓1,𝑗/𝜋 (𝑥𝜋, 𝜇𝑏) 𝑒−(𝑆SivNP+𝑆𝑓1𝑞/𝜋NP +𝑆P).

(59)

Combing (55), (54), (59), one can get the Sivers asymmetry
in the Drell-Yan process with a 𝜋 beam colliding on a
transversely polarized proton target.

3.3. The cos 2𝜙 Asymmetry in the Unpolarized Drell-Yan from
Double Boer-Mulders Effect. The angular differential cross
section for unpolarized Drell-Yan process has the following
general form

1𝜎 𝑑𝜎𝑑Ω = 34𝜋 1𝜆 + 3 (1 + 𝜆 cos2𝜃 + 𝜇 sin 2𝜃 cos 𝜙
+ ]2 sin2𝜃 cos 2𝜙) ,

(60)

where 𝜃 is the polar angle and 𝜙 is the azimuthal angle of
the hadron plane with respect to the dilepton plane in the
Collins-Soper (CS) frame [107].The coefficients 𝜆, 𝜇, ] in (60)
describe the sizes of different angular dependencies. Partic-
ularly, ] stands for the asymmetry of the cos 2𝜙 azimuthal
angular distribution of the dilepton.

The coefficients 𝜆, 𝜇, ] have been measured in the process𝜋−𝑁 󳨀→ 𝜇+𝜇−𝑋 by the NA10 Collaboration [5, 6] and the
E615 Collaboration [7] for a 𝜋− beam with energies of 140,
194, 286 GeV, and 252 GeV, with𝑁 denoting a nucleon in the
deuterium or tungsten target. The experimental data showed
a large value of ], near 30% in the region 𝑄𝑇 ∼ 3 GeV. This
demonstrates a clear violation of the Lam-Tung relation [47].
In the last decade the angular coefficients were also measured
in the 𝑝𝑁 Drell-Yan processes in both the fixed-target mode
[108, 109] and collider mode [48, 49]. The origin of large
cos 2𝜙 asymmetry–or the violation of the Lam-Tung relation–
observed in Drell-Yan process has been studied extensively
in literature [30, 50–57, 110–114]. Here we will only consider
the contribution from the coupling of two Boer-Mulders
functions from each hadron, denoted by ]BM. It might be
measured through the combination 2]BM ≈ 2] + 𝜆 − 1, in
which the perturbative contribution is largely subtracted.

The cos 2𝜙 asymmetry coefficient ]BM contributed by the
Boer-Mulders function can be written as
]BM

= 2∑𝑞F [(2ĥ ⋅ k⊥ĥ ⋅ p⊥ − k⊥ ⋅ p⊥) (ℎ⊥1,𝑞/𝜋ℎ⊥1,𝑞/𝑝/𝑀𝜋𝑀𝑝)]
∑𝑞F [𝑓1,𝑞/𝜋𝑓1,𝑞/𝑝] , (61)
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Figure 2: Subtracted unpolarized TMD distribution of the pion meson for valence quarks in 𝑏-space (left panel) and 𝑘⊥-space (right panel),
at energies:𝑄2 = 2.4 GeV2 (dotted lines), 𝑄2 = 10 GeV2 (solid lines), and 𝑄2 = 1000 GeV2 (dashed lines). From [59].

where the notation

F [𝜔𝑓𝑓] = 𝑒2𝑞 ∫𝑑2k⊥𝑑2p⊥𝛿2 (k⊥ + p⊥ − q⊥)
⋅ 𝜔𝑓 (𝑥𝜋, k2⊥)𝑓 (𝑥𝑝, p2⊥)

(62)

has been adopted to express the convolution of transverse
momenta. q⊥, k⊥ and p⊥ are the transverse momenta of
the lepton pair, quark, and antiquark in the initial hadrons,
respectively. ĥ is a unit vector defined as ĥ = q⊥/|q⊥| =
q⊥/𝑞⊥. One can perform the Fourier transformation from q⊥
space to b space on the delta function in the notation of (62)
to obtain the denominator in (61) as

F [𝑓1,𝑞/𝜋𝑓1,𝑞/𝑝] = ∑
𝑞

𝑒2𝑞 ∫ 𝑑2𝑏
(2𝜋)2

⋅ ∫ 𝑑2k⊥𝑑2p⊥𝑒𝑖(q𝑇−k⊥−p⊥)⋅b𝑓1,𝑞/𝜋 (𝑥𝜋, k2⊥)
⋅ 𝑓1,𝑞/𝑝 (𝑥𝑝, p2⊥) = ∑

𝑞

𝑒2𝑞
⋅ ∫ 𝑑2𝑏

(2𝜋)2 𝑒𝑖q⊥ ⋅b𝑓1,𝑞/𝜋 (𝑥𝜋, 𝑏; 𝑄) 𝑓1,𝑞/𝑝 (𝑥𝑝, 𝑏; 𝑄)

(63)

where the unpolarized distribution function in 𝑏 space is
given in (25) and (26). Similar to the treatment of the denom-
inator, using the expression of the Boer-Mulders function in
(34) the numerator can be obtained as

F[(2ĥ ⋅ k⊥ĥ ⋅ p⊥ − k⊥ ⋅ p⊥) ℎ⊥1,𝑞/𝜋ℎ⊥1,𝑞/𝑝𝑀𝜋𝑀𝑝

] = ∑
𝑞

𝑒2𝑞

⋅ ∫ 𝑑2𝑏
(2𝜋)2 ∫𝑑2k⊥𝑑2p⊥𝑒𝑖(q𝑇−k⊥−p⊥)⋅𝑏 [(2ĥ ⋅ k⊥ĥ

⋅ p⊥ − k⊥ ⋅ p⊥) ℎ⊥1,𝑞/𝜋ℎ⊥1,𝑞/𝑝𝑀𝜋𝑀𝑝

] = ∑
𝑞

𝑒2𝑞

⋅ ∫ 𝑑2𝑏
(2𝜋)2 𝑒𝑖q⊥⋅b (2ℎ̂𝛼ℎ̂𝛽 − 𝑔⊥𝛼𝛽) ℎ̃𝛼⊥1,𝑞/𝜋 (𝑥𝜋, 𝑏; 𝑄)

⋅ ℎ̃𝛽⊥
1,𝑞/𝑝

(𝑥𝑝, 𝑏; 𝑄) = ∑
𝑞

𝑒2𝑞 ∫∞
0

𝑑𝑏𝑏38𝜋 𝐽2 (𝑞⊥𝑏)
⋅ 𝑇(𝜎)𝑞/𝜋,𝐹 (𝑥𝜋, 𝑥𝜋; 𝜇𝑏) 𝑇(𝜎)𝑞/𝑝,𝐹 (𝑥𝑝, 𝑥𝑝; 𝜇𝑏)
⋅ 𝑒−(𝑆𝑓1,𝑞/𝑝NP +𝑆

𝑓1,𝑞/𝜋
NP +𝑆P).

(64)

Different from the previous two cases, the hard coefficients𝐶BM
𝑖 and HBM for the Boer-Mulders function have not

been calculated up to next-to-leading order (NLO), and still
remain in leading order (LO) as 𝐶𝑞←󳨀𝑖 = 𝛿𝑞𝑖𝛿(1 − 𝑥) and
H = 1.
4. Numerical Estimate for the
TMD Distributions

Based on the TMD evolution formalism for the distributions
set up in Section 2, we will show the numerical results for
the TMD distributions. Particularly attention will be paid on
those of the pion meson, as those of the proton have been
studied numerically in [23, 71, 77].

4.1.The Unpolarized TMDDistribution of the PionMeson. In
[59], the authors applied (26) and the extracted parameters𝑔𝜋1 and 𝑔𝜋2 to quantitatively study the scale dependence of
the unpolarized TMD distributions of the pion meson with
the JCC Scheme. For the collinear unpolarized distribution
function of the pionmeson, theNLOSMRSparameterization
[115] was chosen. The results are plotted in Figure 2, with the
left and right panels showing the subtracted distribution in𝑏 space and 𝑘⊥ space, for fixed 𝑥𝜋 = 0.1, at three different
energy scales: 𝑄2 = 2.4 GeV2 (dotted line), 10 GeV2 (solid
line), 1000 GeV2 (dashed line). From the 𝑏-dependent plots,
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one can see that at the highest energy scale 𝑄2 = 1000 GeV2,
the peak of the curve is in the low 𝑏 region where 𝑏 <𝑏max, since in this case the perturbative part of the Sudakov
form factor dominates. However, at lower energy scales, e.g.,𝑄2 = 10 GeV2 and 𝑄2 = 2.4 GeV2 , the peak of the 𝑏-
dependent distribution function moves towards the higher𝑏 region, indicating that the nonperturbative part of the
TMD evolution becomes important at lower energy scales.
For the distribution in 𝑘⊥ space, at higher energy scale the
distribution has a tail falling off slowly at large 𝑘⊥, while at
lower energy scales the distribution function falls off rapidly
with increasing 𝑘⊥ . It is interesting to point out that the shapes
of the pion TMD distribution at different scales are similar to
those of the proton, namely, Fig. 8 in [77].

4.2. The Sivers Function of the Proton. The scale dependence
of the T-odd distributions, such as the Sivers function and
the Boer-Mulders function, is more involved than that of the
T-even distributions. This is because their collinear counter-
parts are the twist-3 multiparton correlation functions [39,
60, 61, 69, 88], for which the exact evolution equations are far
more complicated than those for the unpolarized distribution
function. In numerical calculation, some approximations on
the evolution kernels are usually adopted.

In [39], the Qiu-Sterman function was assumed to be
proportional to 𝑓1, namely, it follows the same evolution
kernel as that for 𝑓1. A different choice was adopted in [60],
where the homogenous terms of the exact evolution kernel
for the Qiu-Sterman function [88, 116–124] were included to
deal with the scale dependence of Qiu-Sterman function:

𝑃QS
𝑞𝑞 ≈ 𝑃𝑓1𝑞𝑞 − 𝑁𝑐2 1 + 𝑧21 − 𝑧 − 𝑁𝑐𝛿 (1 − 𝑧) , (65)

with 𝑃𝑓1𝑞𝑞 the evolution kernel of the unpolarized PDF

𝑃𝑓1𝑞𝑞 = 43 ( 1 + 𝑧2(1 − 𝑧)+ + 32𝛿 (1 − 𝑧)) . (66)

To solve the QCD evolution numerically, we resort to the
QCD evolution package HOPPET [125] and we custom
the code to include the splitting function in (65). For a
comparison, in Figure 3 we plot the TMD evolution of the
Sivers function for proton in 𝑏 space and the 𝑘⊥ space using
the above-mentioned two approaches [60]. In this estimate,
the next leading order 𝐶-coefficients Δ𝐶𝑇𝑞←󳨀𝑖 was adopted
from [69, 88] and the nonperturbative Sudakov form factor
for the Sivers function of proton was adopted as the form
in (17). The Sivers functions are presented at three different
energy scales: 𝑄2 = 2.4 GeV2 , 𝑄2 = 10 GeV2 and 𝑄2 =100 GeV2. Similar to the result for 𝑓1, one can conclude
from the curves that the perturbative Sudakov form factor
dominated in the low 𝑏 region at higher energy scales and
the nonperturbative part of the TMD evolution becamemore
important at lower energy scales. However, the 𝑘⊥ tendency
of the Sivers function in the two approaches is different,
which indicates that the scale dependence of theQiu-Sterman
function may play a role in the TMD evolution.

4.3. The Boer-Mulders Function of the Pion Meson. The
evolution of the Boer-Mulders function for the valence quark
inside𝜋meson has been calculated from (34) and (36) in [61],
in which the collinear twist-3 correlation function 𝑇(𝜎)𝑞,𝐹 at the
initial energy scalewas obtained by adopting amodel result of
theBoer-Mulders function of the pionmeson calculated from
the light-cone wave functions [126]. For the scale evolution of𝑇(𝜎)𝑞,𝐹 , the exact evolution effect has been studied in [116]. For
our purpose, we only consider the homogenous term in the
evolution kernel

𝑃𝑇(𝜎)𝑞,𝐹𝑞𝑞 (𝑥) ≈ Δ𝑇𝑃𝑞𝑞 (𝑥) − 𝑁𝐶𝛿 (1 − 𝑥) , (67)

with Δ𝑇𝑃𝑞𝑞(𝑥) = 𝐶𝐹[2𝑧/(1 − 𝑧)+ + (3/2)𝛿(1 − 𝑥)] being
the evolution kernel for the transversity distribution functionℎ1(𝑥). We customize the original code of QCDNUM [127] to
include the approximate kernel in (67). For the nonpertur-
bative part of the Sudakov form factor associated with Boer-
Mulders function, the information still remains unknown.
The assumption that 𝑆NP for Boer-Mulders function is same
as that for 𝑓1 can be a practical way to access the information
of TMD evolution for Boer-Mulders function.

We plot the 𝑏-dependent and 𝑘𝑇-dependent Boer-
Mulders function at 𝑥 = 0.1 in the left and right pan-
els of Figure 4, respectively. In calculating ℎ̃⊥1,𝑞/𝜋(𝑥, 𝑏; 𝑄) in
Figure 4, we have rewritten the Boer-Mulders function in 𝑏
space as

ℎ̃⊥1,𝑞/𝜋 (𝑥, 𝑏; 𝑄) = 𝑖𝑏𝛼𝜋 ℎ̃𝛼⊥1,𝑞/𝜋 (𝑥, 𝑏; 𝑄) . (68)

The three curves in each panel correspond to three different
energy scales: 𝑄2 = 0.25GeV2 (solid lines), 𝑄2 = 10GeV2
(dashed lines), 𝑄2 = 1000GeV2 (dotted lines). From the
curves, we find that the TMD evolution effect of the Boer-
Mulders function is significant and should be considered in
phenomenological analysis. The result also indicates that the
perturbative Sudakov form factor dominates in the low 𝑏
region at higher energy scales and the nonperturbative part of
the TMD evolution becomes more important at lower energy
scales.

In conclusion, we find that the tendency of the distri-
butions is similar: the distribution is dominated by pertur-
bative region in 𝑏 space at large 𝑄2, while at lower 𝑄2 the
distribution shifts to the large 𝑏 region, indicating that the
nonperturbative effects of TMDevolution become important.
For the distributions in 𝑘⊥ space, as the value of𝑄2 increases,
the distributions become wider with a perturbative tail, while
at low values of 𝑄2, the distributions resemble Gaussian-
type parameterization. However, the widths of the transverse
momentum differ among different distributions.

5. Numerical Estimate for the Physical
Observables in 𝜋-𝑁 Drell-Yan Process

Based on the general TMD factorization framework provided
in Section 3, we present several physical observables in 𝜋-𝑁
Drell-Yan process in this section.
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in (65), respectively. Figure from [60].

QCD predicts that the T-odd PDFs present generalized
universality, i.e., the sign of the Sivers function measured in
Drell-Yan process should be opposite to its sign measured
in SIDIS [16, 34, 35] process. The verification of this sign
change [36–41] is one of the most fundamental tests of our
understanding of the QCD dynamics and the factorization
scheme, and it is also the main pursue of the existing and
future Drell-Yan facilities [10, 11, 42–45].TheCOMPASS Col-
laboration has reported the first measurement of the Sivers
asymmetry in the pion-induced Drell-Yan process, in which
a 𝜋− beam was scattered off the transversely polarized NH3
target [11]. The polarized Drell-Yan data from COMPASS
together with the previous measurement of the Sivers effect
in the 𝑊- and 𝑍-boson production from 𝑝↑𝑝 collision at
RHIC [45] will provide the first evidence of the sign change of

the Sivers function. As COMPASS experiment has almost the
same setup [11, 46] for SIDIS and Drell-Yan process, it will
provide the unique chance to explore the sign change since
the uncertainties in the extraction of the Sivers function from
the two kinds of measurements can be reduced.

5.1. The Normalized Cross Section for Unpolarized 𝜋-𝑁 Drell-
Yan Process. The very first step to understand the Sivers
asymmetry in the 𝜋-𝑁 Drell-Yan process is to quantitatively
estimate the differential cross section in the same process
for unpolarized nucleon target with high accuracy, since
it always appears in the denominator of the asymmetry
definition. The differential cross section for unpolarized
Drell-Yan process has been given in (54). Applying the
extracted nonperturbative Sudakov form factor for pion
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meson in [59] and the extracted 𝑆NP for nucleon in [77], we
estimated the normalized transverse momentum spectrum
of the dimuon production in the pion-nucleon Drell-Yan
process at COMPASS for different 𝑞⊥ bins with an interval
of 0.2 GeV. The result is plotted in Figure 5. From the curves,
one can find the theoretical estimate on the 𝑞⊥ distribution
of the dimuon agreed with the COMPASS data fairly well in
the small 𝑞⊥ region where the TMD factorization is supposed
to hold. The comparison somehow confirms the validity of
extraction of the nonperturbative Sudakov form factor for
the unpolarized distribution 𝑓1𝜋 of pion meson, within the
TMD factorization.Thismay indicate that the framework can
also be extended to the study of the azimuthal asymmetries in
the 𝜋𝑁 Drell-Yan process, such as the Sivers asymmetry and

Boer-Mulders asymmetry. We should point out that at larger𝑞⊥, the numerical estimate in [59] cannot describe the data,
indicating that the perturbative correction from the𝑌𝑈𝑈 term
may play an important role in the region 𝑞⊥ ∼ 𝑄. Further
study on the 𝑌 term is needed to provide a complete picture
of the 𝑞⊥ distribution of lepton pairs from 𝜋𝑁 Drell-Yan in
the whole 𝑞⊥ range.
5.2. The Sivers Asymmetry. In [39], the authors adopted the
Gaussian form of the nonperturbative Sudakov form factor𝑆NP in (17) and the leading order 𝐶 coefficients to perform
a global fit on the Sivers function from the experimental
data at HERMES [128], COMPASS [129, 130], and Jefferson
Lab (JLab) [131]. With the extracted Sivers function from
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SIDIS process at hand, they made predictions for the Sivers
asymmetry in Drell-Yan lepton pair and 𝑊 production at
future planned Drell-Yan facilities at COMPASS [10], Fermi-
lab [42, 43], and RHIC [44, 132], which can be compared
to the future experimental measurements to test the sign
change of the Sivers functions between SIDIS and Drell-Yan
processes. The predictions were presented in Fig. 12 and 13 of
[39].

The TMD evolution effect of the Sivers asymmetry in
SIDIS and𝑝𝑝Drell-Yan at low transversemomentumhas also
been studied in [88], in which a frameworkwas built tomatch
SIDIS and Drell-Yan and cover the TMD physics with 𝑄2
from several GeV2 to 104GeV2 (for𝑊/𝑍 boson production).
It has shown that the evolution equations derived by a direct
integral of the CSS evolution kernel from low to high 𝑄 can
describe well the transverse momentum distribution of the
unpolarized cross sections in the 𝑄2 range from 2 to 100
GeV2. With this approach, the transverse moment of the
quark Sivers functions can be constrained from the combined
analysis of the HERMES and COMPASS data on the Sivers

asymmetries in SIDIS. Based on this result, [88] provided the
predictions for the Sivers asymmetries in 𝑝𝑝 Drell-Yan, as
well as in 𝜋−𝑝 Drell-Yan. The latter one has been measured
by theCOMPASSCollaboration, and the comparison showed
that the theoretical result is consistent with data (Fig. 6 in [11])
within the error bar.

With the numerical results of the TMD distributions
in (57), the Sivers asymmetry 𝐴Siv

𝑈𝑇 as function of 𝑥𝑝, 𝑥𝜋,𝑥𝐹, and 𝑞⊥ in 𝜋−𝑝↑ 󳨀→ 𝜇+𝜇− + 𝑋 in the kinematics of
COMPASS Collaboration was calculated in [60], as shown in
Figure 6. The magnitude of the asymmetry is around 0.05 ÷0.10, which is consistent with the COMPASS measurement
(full squares in Figure 6) [11] within the uncertainties of the
asymmetry. The different approaches dealing with the energy
dependence of Qiu-Sterman function lead to different shapes
of the asymmetry. Furthermore, the asymmetry from the
approximate evolution kernel has a fall at larger 𝑞⊥, which is
more compatible to the shape of 𝑞⊥-dependent asymmetry
of measured by the COMPASS Collaboration. The study may
indicate that, besides the TMD evolution effect, the scale
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dependence of the Qiu-Sterman function will also play a role
in the interpretation of the experimental data.

5.3.The cos 2𝜙Azimuthal Asymmetry. Using (64), the cos 2𝜙
azimuthal asymmetry contributed by the double Boer-
Mulders effect in the 𝜋𝑁 Drell-Yan process was analyzed
in [61], in which the TMD evolution of the Boer-Mulders
function was included. In this calculation, the Boer-Mulders
function of the proton was chosen from the parameterization
in [62] at the initial energy 𝑄20 = 1GeV2. As mentioned
in Section 4.3, the Boer-Mulders function of the pion was
adopted from themodel calculation in [126]. Here we plot the
estimated asymmetry ]𝐵𝑀 as function of 𝑥𝑝, 𝑥𝜋, 𝑥𝐹 and 𝑞⊥ in
the kinematical region of COMPASS in Figure 7. The bands
correspond to the uncertainty of the parameterization of the
Boer-Mulders function of the proton [62]. We find from
the plots that, in the TMD formalism, the cos 2𝜙 azimuthal
asymmetry in the unpolarized 𝜋−𝑝 Drell-Yan process con-
tributed by the Boer-Mulders functions is around several
percent. Although the uncertainty from the proton Boer-
Mulders functions is rather large, the asymmetry is firmly
positive in the entire kinematical region. The asymmetries
as the functions of 𝑥𝑝, 𝑥𝜋, 𝑥𝐹 show slight dependence on
the variables, while the 𝑞⊥ dependent asymmetry shows
increasing tendency along with the increasing 𝑞⊥ in the
small 𝑞⊥ range where the TMD formalism is valid. The

result in Figure 7 indicates that precise measurements on the
Boer-Mulders asymmetry ]𝐵𝑀 as functions of 𝑥𝑝, 𝑥𝜋, 𝑥𝐹, and𝑞⊥ can provide an opportunity to access the Boer-Mulders
function of the pion meson. Furthermore, the work may also
shed light on the proton Boer-Mulders function since the
previous extractions on it were mostly performed without
TMD evolution.

6. Summary and Prospects

It has been a broad consensus that the study on the TMD
observables will provide information on the partons’ intrinsic
transverse motions inside a hadron. In the previous sections
we have tried to substantiate this statement mainly focusing
on the unpolarized and single-polarized𝜋𝑝 Drell-Yanprocess
within the TMD factorization. In particular, we reviewed the
extraction of the nonperturbative function from the Drell-
Yan and SIDIS data in the evolution formalism of the TMD
distributions. We also discussed the further applications of
the TMD factorization in the phenomenology of unpolarized
cross section, the Sivers asymmetry, and the cos 2𝜙 azimuthal
asymmetry in the 𝜋𝑝Drell-Yan process. In summary, we have
the following understanding on the 𝜋𝑁 Drell-Yan from the
viewpoint of the TMD factorization:

(i) The extraction of nonperturbative Sudakov form
factor from the 𝜋𝑁 Drell-Yan may shed light on the
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evolution (scale dependence) of the pion TMD dis-
tribution. The prediction on transverse momentum
distribution of the dilepton in the small 𝑞⊥ region
is compatible with the COMPASS measurement and
may serve as a first step to study the spin/azimuthal
asymmetry in the 𝜋𝑁 Drell-Yan process at COM-
PASS.

(ii) The precise measurement on the single-spin asym-
metry in the kinematical region of COMPASS can
provide great opportunity to access the Sivers func-
tion. Besides the TMD evolution effect, the choice of
the scale dependence of the Qiu-Sterman function
can affect the shape of the asymmetry and should
be considered in the future extraction of the Sivers
function.

(iii) Sizable cos 2𝜙 asymmetry contributed by the con-
volution of the Boer-Mulders functions of the pion
meson and the proton can still be observed at COM-
PASS after the TMD evolution effect is considered.
Future data with higher accuracy may provide further
constraint on the Boer-Mulders function of the pion
meson as well as that of the proton.

Although a lot of progress on the theoretical framework
of the TMD factorization and TMD evolution has beenmade,
the improvement is still necessary both from the perturbative
and nonperturbative aspects. In the future, the study of 𝑆NP
based on more precise experimental data is needed, such
as including the flavor dependence and hadron dependence
on the functional form for 𝑆NP. From the viewpoint of the
perturbative region, higher-order calculation of the hard
factors and coefficients will improve the accuracy of the
theoretical framework. Moreover, most of the numerical
calculations are based on the approximation that the 𝑌-term
correction is negligible in the small transverse momentum
region; the inclusion of this term in the future estimate could
be done to test the magnitude of the term. In addition, the
TMD factorization is suitable to describe the small trans-
verse momentum physics, while the collinear factorization is
suitable for the large transverse momentum or the integrated
transverse momentum. The matching between the two fac-
torization schemes to study the unpolarized and polarized
process over the whole transverse momentum region may be
also necessary [65, 133].
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[39] M. G. Echevarŕıa, A. Idilbi, Z. B. Kang, and I. Vitev, “QCD
evolution of the Sivers asymmetry,” Physical Review D: Particles,
Fields, Gravitation and Cosmology, vol. 89, no. 7, Article ID
074013, 2014.

[40] J. Huang, Z. B. Kang, I. Vitev, and H. Xing, “Spin asymmetries
for vector boson production in polarized p + p collisions,”
Physical Review D, vol. 93, Article ID 014036, 2016.

[41] M. Anselmino, M. Boglione, U. D’Alesio, F. Murgia, and A.
Prokudin, “Study of the sign change of the Sivers function
fromSTARcollaborationW/Zproduction data,” Journal ofHigh
Energy Physics, vol. 04, p. 046, 2017.

[42] L. D. Isenhower, T. Hague, R. Towell et al., Polarized Drell-Yan
Measurements with the Fermilab Main Injector, 2012, http://
www.fnal.gov/directorate/program planning/June2012Public/
P-1027 Pol-Drell-Yan-proposal.pdf.

[43] D. Geesaman, P. Reimer, C. Brown et al., Letter of Intent for a
Drell-Yan experiment with a polarized proton target, 2014, http://
www.fnal.gov/directorate/program planning/June2013PACPublic/
P-1039 LOI polarized DY.pdf.

[44] E. C. Aschenauer, A. Bazilevsky, L. C. Bland et al.,Large Rapidity
Drell Yan Production at RHIC, 2011, https://www.bnl.gov/npp/
docs/pac0611/DY pro 110516 final.2.pdf.

[45] L. Adamczyk, J. K. Adkins, G. Agakishiev et al., “Measurement
of the Transverse Single-Spin Asymmetry in p↑+p󳨀→W±/Z0 at
RHIC,” Physical Review Letters, vol. 116, Article ID 132301, 2016.

[46] C. Adolph, M. Aghasyan, R. Akhunzyanov et al., “Sivers asym-
metry extracted in SIDIS at the hard scales of the Drell–Yan
process at COMPASS,” Physics Letters B, vol. 770, p. 138, 2017.

[47] C. S. Lam and W. K. Tung, “Systematic approach to inclusive
lepton pair production in hadronic collisions,” Physical Review
D, vol. 18, p. 2447, 1978.

[48] T. Aaltonen et al., “First Measurement of the Angular Coef-
ficients of Drell-Yan e+e− Pairs in the Z Mass Region from
pp Collisions at √s=1.96 TeV,” Physical Review Letters, vol. 106,
Article ID 241801, 2011.

[49] CMS Collaboration, V. Khachatryan, A. M. Sirunyan, A.
Tumasyan et al., “Angular coefficients of Z bosons produced in
pp collisions at sqrt(s) = 8 TeV and decaying to mu+mu- as a
function of transverse momentum and rapidity,” Physics Letters
B, vol. 750, p. 154, 2015.

[50] A. Brandenburg, O. Nachtmann, and E. Mirkes, “Spin effects
and factorization in theDrell-Yan process,”Zeitschrift für Physik
C Particles and Fields, vol. 60, no. 4, pp. 697–709, 1993.

[51] A. Brandenburg, S. J. Brodsky, V. V. Khoze, and D. Müller,
“Angular Distributions in the Drell-Yan Process: A Closer Look
at Higher Twist Effects,” Physical Review Letters, vol. 73, no. 7,
pp. 939–942, 1994.
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