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Abstract.
This is a brief description of some recent achievements in the theory of dynamical Casimir

effect, mainly in connection with the experiment which is under preparation in the University
of Padua. The first part of this paper is devoted to the theory of quantum damped oscillator
with arbitrary time dependence of the frequency and damping coefficient. New results for the
mean number of created photons, its variance and photon distribution function are given. The
second part is devoted to calculations of the time-dependent shift of resonance frequency of an
electromagnetic cavity due to strong variations of dielectric properties in a thin layer near an
ideally conducting wall. A simple analytical formula for this shift is derived. It generalizes the
known Schwinger–Bethe–Casimir result. The influence of different parameters on the photon
generation rate is discussed. A brief review of recent publications on the subject is also included.

1. Introduction
The so-called Dynamical Casimir Effect (DCE), i.e., a generation of photons from vacuum due
to the motion of uncharged boundaries, was a subject of numerous theoretical studies for almost
40 years. An extensive list of publications until 2000 can be found in the review [1], whereas the
papers published in the period from 2001 to 2004 were briefly discussed in [2]. Also, the status
of the research in this area by 2005 was demonstrated in several papers published in the special
issue of Journal of Optics B [3]. Therefore here I shall concentrate mainly on the publications
from 2005 to 2008 and main results obtained for this period.

Among the most important publications of the past years I would like to mark out the
papers [4–8] containing different concrete experimental proposals. The scheme of [6, 7] is based
on the suggestion (formulated for the first time in [9, 10]) to excite true surface vibrations of a
cavity wall in the GHz band and to use a beam of atoms passing through the cavity as a detector.
Another idea, proposed by the MIR group of the university of Padua [4, 5], is to simulate a
motion of a boundary, using an effective electron-hole ‘plasma mirror’, created periodically on
the surface of a semiconductor slab by illuminating it with a sequence of short laser pulses. If the
interval between pulses exceeds the recombination time of carriers in the semiconductor, a highly
conducting layer will periodically appear and disappear on the surface of the semiconductor film,
thus simulating periodical displacements of the boundary. A different scheme of simulating the
dynamical Casimir effect, where periodical changes of the cavity eigenfrequency can be achieved
by changing the surface impedance of a superconducting film illuminated by laser pulses, was
proposed recently in [8]. However, it seems that the scheme of [4, 5] is the most promising one
from the point of view of reaching the result in the nearest future. Therefore I concentrate only
on this scheme.
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It is worth remembering that the history of the dynamical Casimir effect began almost 40
years ago, when Moore showed that the motion of ideal boundaries can result in creation
of quanta of the electromagnetic field from the initial vacuum state [11]. But he concluded
that the effect should be extremely small, if the velocities of boundaries are much less than
the velocity of light. However, even earlier, a possibility of a significant amplification of
classical electromagnetic fields inside cavities with oscillating boundaries under the conditions
of parametric resonance was pointed out for the first time by Askar’yan in 1962 [12]. Later, a
possibility of enhancement of vacuum (zero point) fluctuations under the conditions of resonance
between field modes and oscillations of boundaries was discussed in [13, 14]. However, the first
evaluations of the effect gave unrealistic numbers for two reasons: (i) approximate perturbation
approaches, used in that papers, are invalid, as a matter of fact, under resonance conditions; (ii)
the chosen amplitudes of oscillations of the cavity length were many orders of magnitude bigger
than those which could be actually achieved in practice.

More precise and realistic calculations were performed only in 1990s in the frameworks of
different approaches [9, 10, 15–18]. It was shown that a significant amount of photons could be
created from vacuum, if boundaries of a high-Q cavity perform small oscillations at a frequency
which is multiple of some cavity eigenfrequency. In particular, if a plane boundary of a three-
dimensional cavity performs harmonical oscillations with an amplitude a at the frequency
ωw = 2ω0, where ω0 is the eigenfrequency of the lowest electromagnetic mode in the cavity
with fixed geometry, then the mean number of photons created from vacuum in this mode is
given by the formula [9, 10]

〈n〉(t) = sinh2
(
εω0tη

3
)

, (1)

where ε = a/λ is the maximal relative displacement of the boundary (with respect to the
wavelength λ = 2πc/ω0) and η = λ/(2L0) < 1 is a numerical coefficient, which depends on the
cavity geometry (L0 is the average distance between vibrating walls).

Formula (1) can be derived from a general solution for a quantum harmonic oscillator with
an arbitrary time-dependent frequency obtained for the first time in the seminal paper by
Husimi [19] in 1953, if one remembers that field modes behave as a set of harmonic oscillators.
Husimi showed that all dynamical properties of the quantum oscillator are determined by the
fundamental system of solutions of the classical equation of motion

ε̈ + ω2(t)ε = 0. (2)

In particular, if ω(t) = ωi for t → −∞ and initially (at t → −∞) the oscillator was in the
vacuum state, then the mean energy at the moment t equals

E(t) =
1
4

[
|ε̇(t)|2 + ω2(t)|ε(t)|2

]
, (3)

where the function ε(t) satisfies equation (2) and the initial condition

εt→−∞ = ω
−1/2
i e−iωit. (4)

Formula (3) holds for an arbitrary function ω(t), provided this function is real , i.e., the quantum
evolution is unitary .

According to (1), one of the most important parameters which determines a possible number
of created photons is an achievable value of the wall displacement amplitude. For the cavity
dimensions of the order of 1 ÷ 100 cm, the field resonance frequencies (ω0/2π) belong to the
band from 30 GHz to 300 MHz. An idea of [9, 10] was not to force the wall to oscillate as a
whole at such a high frequency, but to excite oscillations of the surface of the cavity wall. In
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such a case, the amplitude a of a standing acoustic wave at frequency ωw = 2ω0 (coinciding with
the amplitude of oscillations of the free surface) is related to the relative deformation amplitude
δ inside the wall as δ = ωwa/vs, where vs is the sound velocity. Since usual materials cannot
bear the deformations exceeding the value δmax ∼ 10−2, the maximal possible velocity of the
boundary is vmax ∼ δmaxvs ∼ 50 m/s (independent of the frequency). The maximal relative
displacement ε = a/L0 is εmax ∼ (vs/2πc)δmax ∼ 3 ·10−8 for the lowest mode with the frequency
ω0 ∼ cπ/L0. Then, taking ε = 10−9, ω0/(2π) = 10GHz and η3 = 1/3, in t = 1 s one could
get a big number sinh2(10) ∼ 108 photons in an empty cavity. However, in such a case one
needs a cavity with the Q-factor of the order of 1010. Moreover, it is necessary to maintain the
resonance condition, which means that the frequency of the wall oscillations must not deviate
from 2ω0/(2π) by more than δ/(2π) < ε ω0η

3/(2π) ∼ 3Hz during the time 1 s.
On the other hand, what we really need to create photons from vacuum, it is a possibility

to change the resonance frequency in a periodical way. But this can be achieved not only by
changing the geometry, but by changing the electric properties of the walls or some medium
inside the cavity. Hence the idea of simulating DCE and other quantum effects arose about two
decades ago in the article by Yablonovitch [20], who proposed to use a medium with a rapidly
decreasing in time refractive index (‘plasma window’) to simulate the so-called Unruh effect.
Also, he pointed out that fast changes of electric properties can be achieved in semiconductors
illuminated by laser pulses. This idea was propagandized by Man’ko [21], who proposed to use
semiconductors with time-dependent properties to produce an analogue of the nonstationary
Casimir effect (see also [22,23]). A more developed scheme, based on the creation of an electron-
hole ‘plasma mirror’ inside a semiconductor slab, illuminated by a femtosecond laser pulse, was
proposed in [24] (in the single-pulse case). But only recently a possibility of creating an effective
‘plasma mirror’ in a semiconductor slab was confirmed experimentally [25].

Quantum effects caused by a time dependence of properties of thin slabs inside resonance
cavities were studied by several authors [26–29]. However, only very simple models of the
media were considered in that papers: lossless homogeneous dielectrics with time-dependent
permeability [29], ideal dielectrics or ideal conductors suddenly removed from the cavity [26,27]
or infinitely thin conducting slabs modeled by δ-potentials with time-dependent strength [28]
(this model of ‘plasma sheet’ was introduced in [30]). Moreover, all that models, as well as
the estimations of the photon generations rate based on the simple formula (1), did not take
into account inevitable losses inside the semiconductor slab during the excitation-recombination
process. This is the immediate consequence of the fact that the dielectric permeability ε(x) of
the semiconductor medium is a complex function: ε = ε1 + iε2, where ε2 = 2σ/f0, σ and f0

being the conductivity (in the CGS units) and frequency in Hz, respectively. Good conductors
have ε2 ∼ 108 at microwave frequencies, which is essentially bigger than ε1 ∼ 1÷ 10. Although
ε2 is negligibly small in the non-excited semiconductor at low temperatures, it rapidly and
continuously grows up to the values of the order of 105 ÷ 106 during the laser pulse, returning
to zero after the recombination time. In order to predict possible results of experiments and
to suggest optimal choices of different parameters, one has to take into account the internal
dissipation in the slab, which means that one has to generalize the Husimi solution to the case
of damped quantum nonstationary oscillator. Such a generalization is considered in sections
2 and 3. In addition to the formulas for the mean number of quanta created in the process
of parametric excitation, obtained in previous papers [2, 31–36], I give several important new
results. Namely, I calculate the distribution function of created quanta and the variance of
their number, which characterizes fluctuations in the quantum state of the field mode. The
distribution function turns out to be larger than in the thermal state. Such states are called
sometimes super-chaotic states.

Section 4 is devoted to a new approximate formula for the resonance frequency shift in the
cavity, which holds (in contradistinction to all previous studies) even for big changes of the
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complex dielectric permeability. The knowledge of this frequency shift is absolutely necessary
for calculating the number of created quanta. Corresponding estimations are given in section 5.

But before going to the main goal and concrete calculations, it seems useful to provide a list
of other publications related to the dynamical Casimir effect, which appeared during the period
from 2005 to 2008. The role of different boundary conditions was studied in [37] for a scalar
field in 1+3 dimensions with the Neumann boundary condition on a single moving deformed
mirror. A functional approach was applied to the problem of a single moving dispersive mirror
in 1+1 dimensions in [38]. A comparison of the Dirichlet and Neumann conditions for a single
relativistic mirror in 1+1 dimensions was made in [39]. The spectrum of radiation from a single
dynamically deforming mirror was calculated in [40]. A scalar field between two mirrors in
1+1 dimensions with different (Dirichlet or Neumann) conditions on the mirrors was considered
in [41–43]. The case of a 3D cavity with conducting and permeable oscillating plates (described
by means of the Dirichlet and Neumann boundary conditions) was studied in [44, 45]. The
Robin boundary conditions in 1+1 dimensions were considered in [46,47]. The one-dimensional
cavity with one and two oscillating mirrors was considered within the framework of the ‘optical’
approach in [48]. Generalizations of Moore’s approach to the one-dimensional vibrating cavities
were considered in [49]. A one-dimensional uniformly contracting cavity was studied in [50,51].
The authors of [41,52] pointed out on a possible physical realization of one-dimensional models in
the case of TEM modes in cylindrical waveguides. Oscillating spherical cavities were considered
in [41, 53, 54]. A multiple scale analysis was used in studies on oscillating ideal cavities in
three dimensions in [55, 56], giving the same results that were obtained during the preceding
decade. The Hamiltonian approach to the dynamical Casimir effect was revised in [57–61] and
applied to the calculation of the spectrum of created particles in [62, 63] and to cosmological
problems in [64]. Possible cosmological manifestations of the Dynamical Casimir Effect were
studied also in [65, 66]. A comparison of analytical and numerical results was made in [67–69].
The relationship between DCE, Unruh-Hawking and other effects was analyzed in [70–72]. An
account of nonlinear effects in the DCE was made in [73]. Photon creation in nonstationary
media was considered in [74,75]. Different parametric processes which can be thought as analogs
of the DCE were studied in [76–85]. Methods of detection of Casimir photons were considered
in [86]. The dynamical Casimir–Polder effect was the subject of studies [87–90]. The phenomena
of decoherence and entanglement in connection with DCE were studied in [91–95].

2. Quantum damped oscillator with time-dependent parameters in the
Heisenberg–Langevin approach
An immediate consequence of the time variation of electromagnetic properties of the cavity
walls is the time dependence of the eigenmode frequencies. Hence it follows a simple idea that
one could understand the main features of the behavior of the quantum field in the cavity by
considering a single selected mode and describing it as a quantum oscillator with ‘instantaneous’
time-dependent frequency [96, 97]. Later on, it was justified (see, e.g., [9, 10, 98, 99]) for three-
dimensional cavities without accidental degeneracy of the spectrum of eigenmode frequencies and
for harmonic variations of the effective frequency. Thus I assume that even in the presence of
dissipation and non-monochromatic periodical variations, the field problem still can be reduced
approximately to the dynamics of a single selected mode described in the classical limit as a
harmonic oscillator with time-dependent complex frequency ωc(t) = ω(t)− iγ(t), which can be
found from the solution of the classical electrodynamical problem by taking the instantaneous
geometry and material properties (as was done in the non-dissipative case in [28,29]).

The scheme presented below was developed in [2, 31, 32]. It is a generalization of the
quantum noise operator approach, first proposed in [100–103] for systems with time-independent
parameters, to the case of arbitrary time dependence of the frequency and damping coefficient.
In this approach, dissipative quantum systems are described within the framework of the
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Heisenberg–Langevin operator equations. In the case concerned these equations can be written
as

dx̂/dt = p̂− γx(t)x̂ + F̂x(t), dp̂/dt = −γp(t)p̂− ω2(t)x̂ + F̂p(t). (5)

Here x̂ and p̂ are the dimensionless quadrature operators of the selected mode, normalized in
such a way that the mean number of photons equals

N =
1
2
〈p̂2 + x̂2 − 1〉. (6)

In other words, in the subsequent formulas ω and γ are the frequency and damping coefficient
normalized by the initial frequency ωi. The two noncommuting noise operators F̂x(t) and F̂p(t)
are necessary to preserve the canonical commutator between the Heisenberg operators x̂(t) and
p̂(t) (however, it is supposed that F̂x(t) and F̂p(t) commute with x̂ and p̂). At first glance, the
presence of two extra terms −γx(t)x̂ + F̂x(t) in the first equation in (5) seems unusual (from
the point of view of the classical theory of Brownian motion). However, these terms arise quite
naturally in quantum optics, for example, if one rewrites the standard Heisenberg–Langevin
equation of motion for the annihilation operator dâ/dt = (−iω − γ)â + F̂a [103] in terms of
quadrature components.

The system of linear equations (5) can be solved explicitly for arbitrary time-dependent
functions γx,p(t), ω(t) and F̂x,p(t). It is convenient to represent the solutions in the form

x̂(t) = x̂s(t) + X̂(t), p̂(t) = p̂s(t) + P̂ (t), (7)

where the first terms represent the solutions of the homogeneous parts of equations (5) (the
subscript ‘s’ stands for ‘source’):

x̂s(t) = e−Γ(t) {x̂0Re [ξ(t)]− p̂0Im [ξ(t)]} , (8)

p̂s(t) = e−Γ(t) {x̂0Re [η(t)]− p̂0Im [η(t)]} . (9)

Here x̂0 and p̂0 are the initial values of operators at t = 0 (taken as the initial instant) and

Γ(t) =
∫ t

0
γ(τ)dτ, γ(t) =

1
2

[γx(t) + γp(t)] . (10)

The operators X̂(t) and P̂ (t) represent the influence of the stochastic forces (note that the
‘source’ and ‘noise’ parts of the solutions commute with each other):

(
X̂(t)
P̂ (t)

)
= e−Γ(t)

∫ t

0
dτeΓ(τ)

(
ax

x(t; τ) ap
x(t; τ)

ax
p(t; τ) ap

p(t; τ)

) (
F̂x(τ)
F̂p(τ)

)
, (11)

where
ax

x(t; τ) = Im [ξ(t)η∗(τ)] , ap
x(t; τ) = Im [ξ∗(t)ξ(τ)] , (12)

ax
p(t; τ) = Im [η(t)η∗(τ)] , ap

p(t; τ) = Im [η∗(t)ξ(τ)] . (13)

Function ξ(t) is the special solution to equation (2) with ω2(t) replaced by the effective
frequency

ω2
ef (t) = ω2(t) + δ̇(t)− δ2(t), δ(t) =

1
2

[γx(t)− γp(t)] . (14)

This special solution is selected by the initial condition ξ(t) = exp(−it) for t → −∞, which is
equivalent to fixing the value of the Wronskian:

ξξ̇∗ − ξ̇ξ∗ = 2i. (15)
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The function η(t) is defined as
η(t) = ξ̇(t) + δ(t)ξ(t). (16)

It satisfies the identity following from (15)

Im [ξ(t)η∗(t)] ≡ 1. (17)

It seems natural to identify the functions ω(t) and γ(t) in equations (5), (10) and (14) with the
real and imaginary parts of the instantaneous complex cavity eigenfrequency ωc(t) = ω(t)−iγ(t).
An immediate consequence of equations (7)-(9), (15) and (17) is the formula

[x̂(t), p̂(t)] = ih̄e−2Γ(t) +
[
X̂(t), P̂ (t)

]
. (18)

Using equations (11) and (17), one can verify that the commutator [x̂(t), p̂(t)] = ih̄ is preserved
exactly for arbitrary functions ω(t) and γ(t), if one assumes that the noise operators are delta-
correlated (the Markov approximation) with the following commutation relations:

[
F̂x(t), F̂p(t′)

]
= 2ih̄γ(t)δ(t− t′),

[
F̂x(t), F̂x(t′)

]
=

[
F̂p(t), F̂p(t′)

]
= 0. (19)

Indeed, under these conditions one obtains
[
X̂(t), P̂ (t)

]
= e−2Γ(t)

∫ t

0
2ih̄γ(t)e2Γ(τ)dτ = ih̄

[
1− e−2Γ(t)

]
.

In contrast to the classical Langevin equations, which contain a single stochastic force, in the
quantum case one must use two noise operators, otherwise the canonical commutation relations
cannot be saved. The Markov approximation implies the relations

〈F̂x(t)F̂x(t′)〉 = δ(t− t′)χxx(t), 〈F̂p(t)F̂p(t′)〉 = δ(t− t′)χpp(t), (20)

〈F̂x(t)F̂p(t′) + F̂p(t′)F̂x(t)〉 = 2δ(t− t′)χs(t). (21)

Strictly speaking, the ‘noise coefficients’ χxx(t), χpp(t) and χs(t) must be derived from some
‘microscopical’ model, which takes into account explicitly (1) the coupling of the field mode with
electron–hole pairs inside the semiconductor slab and (2) the coupling of electrons and holes
with phonons or other quasiparticles, responsible for the damping mechanisms. Unfortunately,
it seems that no model of this kind was considered until now. Nonetheless, some conclusions
on the relations between the noise coefficients can be made, if one calculates the second-order
moments of the quadrature operators. Namely, using equations (11), (17), (20) and (21) one
can obtain the following exact expressions for the mean values of the operators x̂2(t) and p̂2(t)
(from now on we shall use dimensionless variables, putting h̄ = 1; besides, we replace the symbol
of function f(t) by a short form ft):

〈x̂2(t)〉 = e−2Γ(t)
{
〈x̂2〉0 [Re (ξt)]

2 + 〈p̂2〉0 [Im (ξt)]
2 − 〈x̂p̂ + p̂x̂〉0Re (ξt) Im (ξt)

}

+ e−2Γ(t)
∫ t

0
dτe2Γ(τ)

{
χxx(τ) [Im (ξtη

∗
τ )]

2 + χpp(τ) [Im (ξtξ
∗
τ )]2

−2χs(τ)Im (ξtη
∗
τ ) Im (ξtξ

∗
τ )

}
, (22)

〈p̂2(t)〉 = e−2Γ(t)
{
〈x̂2〉0 [Re (ηt)]

2 + 〈p̂2〉0 [Im (ηt)]
2 − 〈x̂p̂ + p̂x̂〉0Re (ηt) Im (ηt)

}

+ e−2Γ(t)
∫ t

0
dτe2Γ(τ)

{
χxx(τ) [Im (ηtη

∗
τ )]

2 + χpp(τ) [Im (ηtξ
∗
τ )]2

−2χs(τ)Im (ηtη
∗
τ ) Im (ηtξ

∗
τ )

}
. (23)
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Let us consider the case of time-independent frequency ω = ωi = 1 and time-independent
damping and noise coefficients. Assuming that γ ¿ 1 (small damping) one can neglect the
correction δ2 ∼ γ2 in function ωef (t) (14) and use the solution ξ(t) = exp(−it). Then integrals
in equations (22) and (23) can be calculated exactly. Supposing that γx,p ∼ γ and χjk ∼ γ (in
accordance with the fluctuation–dissipation theorem) and neglecting terms proportional to γ2,
one can obtain the following mean values at t →∞:

〈x̂2〉∞ =
1
4γ

[χxx + χpp + 2γpχs] , 〈p̂2〉∞ =
1
4γ

[χxx + χpp − 2γxχs] , (24)

〈x̂p̂ + p̂x̂〉∞ =
1
2γ

[γxχpp − γpχxx] . (25)

We see that the steady-state moments of the second order coincide with the thermodynamical
equilibrium values

〈x̂2〉eq = 〈p̂2〉eq = 1/2 + 〈n〉th, 〈x̂p̂ + p̂x̂〉eq = 0 (26)

(where 〈n〉th is the mean number of quanta in the thermal state) with the accuracy of the order
of γ2 (i.e., without linear corrections with respect to the damping coefficients), provided the
noise coefficients are chosen as follows

χs = 0, χxx = γxG, χpp = γpG (27)

where
G = 1 + 2〈n〉th = coth

(
h̄ωi

2kBΘ

)
(28)

and Θ is the temperature of the reservoir.
It is important that the noise and damping coefficients cannot be quite arbitrary and

independent. Namely, the coefficients χpp and χxx must obey the restriction χppχxx ≥ γ2,
which prevents from possible violations of the positivity of the density matrix during the
evolution [104,105]. Therefore we must demand the fulfillment of the inequality

G2γxγp ≥ (γx + γp)
2 /4. (29)

At zero temperature of the reservoir (G = 1) inequality (29) can be satisfied only for

γx = γp = γ. (30)

In the case of nonzero temperature (when G > 1), the positivity of the density matrix can be
preserved for unequal damping coefficients γx and γp. Their exact values could be calculated in
the frameworks of the ‘microscopical’ theory, which does not exist yet. Therefore I assume in
this paper that equation (30) holds for nonzero temperatures, as well, so that the diffusion and
damping coefficients are given by the relations

χs = 0, χxx = χpp = γG. (31)

In such a case, δ ≡ 0, η(t) ≡ ξ̇(t) and the effective frequency in equation (14) coincides exactly
with ω(t). For this special set of coefficients, the stationary asymptotical values of the second-
order statistical moments coincide exactly with the equilibrium values (26) for an arbitrary (not
necessarily small) function γ(t) (if ω = const). This will be shown in subsections 2.1 and 2.2.

The main arguments in favor of the assumption (31) are based on the analysis of different
‘microscopical’ models describing the interaction of a selected harmonic oscillator (field mode)
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with a fixed frequency with an ‘environment’ described by means of multidimensional quadratic
Hamiltonians of the most general form. Namely, it was shown in [104, 106, 107] that time-
independent damping and noise coefficients, satisfying all the requirements (i.e., not allowing
violations of the positivity of the density matrix), arise in these models in the only case: when
the coupling between the selected and the ‘bath’ oscillators has the so-called ‘rotating wave
approximation’ (RWA) form

∑
j âb̂†j + H.c. (this special kind of coupling is considered in all

textbooks on quantum optics, see, e.g., [108]). Under this restriction, the models of this kind
result in the set of coefficients given by equations (30) and (31). It is worth remembering in
this connection that the usual justification for the exclusion of ‘antirotating’ terms âb̂j + H.c. is
that such terms give rapidly oscillating corrections to the equations of motion, whose influence
becomes small after averaging over many periods of the field mode oscillations. The problem
is that the duration of laser pulses in the MIR experiment is much smaller than the period
of the field oscillations. Therefore, strictly speaking, one cannot exclude a possibility that the
assumption (31) is not correct. These observations show the necessity of a rigorous microscopical
theory of the dynamical Casimir effect in dissipative media with time-dependent parameters.

2.1. The mean number of created quanta
The formula for the time dependence of the mean number of quanta (6) can be split in two parts

N (t) = Ns(t) +Nr(t) (32)

where the first term depends on the initial state (‘signal’) while the second term is determined
completely by the interaction with the reservoir (it is represented by the integrals containing the
coefficients χjk). The contribution of noise to the mean number of quanta under the condition
(31) is given by the formula

Nr(t) = E(t)J(t)− Re
[
Ẽ∗(t)J̃(t)

]
, (33)

where

J(t) = Ge−2Γ(t)
∫ t

0
dτe2Γ(τ)γ(τ)E(τ), J̃(t) = Ge−2Γ(t)

∫ t

0
dτe2Γ(τ)γ(τ)Ẽ(τ) (34)

and
E(t) =

1
2

[
|ξ(t)|2 + |ξ̇(t)|2

]
, Ẽ(t) =

1
2

[
ξ2(t) + ξ̇2(t)

]
. (35)

In the special case of the initial coherent state |α〉 (which corresponds to the initial ‘classical’
signal in the cavity), the ‘signal’ contribution is given by the formula

N (coh)
s (t) = e−2Γ(t)

{
(Re[αξ(t)])2 +

(
Re[αξ̇(t)]

)2
+

1
2
E(t)

}
− 1

2
. (36)

For the initial thermal state we have

N (th)
s (t) =

1
2

{
G0e

−2Γ(t)E(t)− 1
}

. (37)

One should remember that formulas (33), (36) and (37) hold for sufficiently big values of time
t, when the time dependent normalized frequency ω(t) returns to its initial value ω(−∞) = 1.
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2.2. Fluctuations of the number of quanta
Fluctuations of the number of created quanta are characterized by the variance

σN = 〈N̂ 2〉 − 〈N̂ 〉2, N̂ =
1
2

(
p̂2 + x̂2 − 1

)
. (38)

Using the decomposition (7) we can write

4σN = 〈P̂ 4〉 − 〈P̂ 2〉2 + 〈X̂4〉 − 〈X̂2〉2 + 〈P̂ 2X̂2 + X̂2P̂ 2〉 − 2〈P̂ 2〉〈X̂2〉
+〈p̂4

s〉 − 〈p̂2
s〉2 + 〈x̂4

s〉 − 〈x̂2
s〉2 + 〈p̂2

sx̂
2
s + x̂2

sp̂
2
s〉 − 2〈p̂2

s〉〈x̂2
s〉

+4〈p̂2
s〉〈P̂ 2〉+ 4〈x̂2

s〉〈X̂2〉+ 4〈p̂sx̂s〉〈P̂ X̂〉+ 4〈x̂sp̂s〉〈X̂P̂ 〉. (39)

Let us consider, for example, the quantity 〈P̂ 4〉. In view of equation (11), it is given by the
four-fold integral containing different average values of the stochastic force operators of the form
〈F̂i(τ1)F̂j(τ2)F̂k(τ3)F̂l(τ4)〉. We assume that stochastic forces are Gaussian. Then the fourth-
order average values are factorized in the sum over all different products of the second-order
moments, so that we can use the following formula:

〈F̂i(τ1)F̂j(τ2)F̂k(τ3)F̂l(τ4)〉 = χij(τ1)χkl(τ3)δ(τ1 − τ2)δ(τ3 − τ4)
+χik(τ1)χjl(τ2)δ(τ1 − τ3)δ(τ2 − τ4)
+χil(τ1)χjk(τ3)δ(τ1 − τ4)δ(τ2 − τ3). (40)

As a consequence, all four-fold integrals are also factorized in the sums of the products of two
ordinary integrals of the following structure:

Iνρ
µλ = e−2Γ(t)

∫ t

0
dτe2Γ(τ)aν

µ(τ)aρ
λ(τ)χνρ(τ), µ, ν, λ, ρ = x, p. (41)

The functions aν
µ(t) were defined in (12) and (13). Making the only assumption χs = 0, one

obtains the following noise contribution to the second-order moments of X̂ and P̂ :

〈P̂ 2〉 = Ixx
pp + Ipp

pp , 〈X̂2〉 = Ixx
xx + Ipp

xx. (42)

Besides, the following relations hold due to identities χxp = −χpx = iγ and (17):

Ipx
ab + Ixp

ba ≡ 0, a, b = x, p, (43)

Ipx
xp + Ixp

xp = −Ixp
px − Ipx

px =
i

2
θ(t), θ(t) ≡ 1− e−2Γ(t). (44)

Taking into account (42)-(44) and the relation Iνν
ab = Iνν

ba , one can write the part of σN given by
the first line in equation (39) (which depends on the noise operators only) as follows:

σr
N (t) =

1
2

[(
Ixx
pp + Ipp

pp

)2
+ (Ixx

xx + Ipp
xx)2 +

(
Ixx
px + Ipp

px

)2
+

(
Ixx
xp + Ipp

xp

)2
]
− 1

4
θ2(t). (45)

If χpp = χxx, then (45) can be simplified as follows,

σr
N (t) = (2E2 − 1)J2 + E2|J̃ |2 + Re

(
Ẽ2J̃∗2 − 4EẼJJ̃∗

)
− 1

4
θ2(t), (46)

where the functions J(t), J̃(t), E(t) and Ẽ(t) were defined in (34) and (35).
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For the initial thermal state characterized by parameter G0 (which can be different from
the reservoir factor G) we obtain the following expressions for the sums of terms in the second
(‘signal’) and third (‘signal–noise’) lines of equation (39):

σs
N (t) =

1
4
e−4Γ(t)

(
G2

0

[
2E2(t)− 1)

]
− 1

)
, (47)

σs−r
N (t) = e−2Γ(t)

{
G0J(t)

[
2E2(t)− 1)

]
− 2G0E(t)Re

[
Ẽ∗(t)J̃(t)

]
− 1

2
θ(t)

}
. (48)

The correctness of formulas (46)-(47) can be verified in the special case of relaxation from one
temperature (characterized by parameter G0) to another (with parameter G) without changing
the frequency ω = const = 1. In this case E ≡ 1, Ẽ = J̃ ≡ 0, J(t) = Gθ(t)/2, so that we obtain
for an arbitrary function γ(t)

N (t) =
1
2

[Gef (t)− 1] , Gef (t) = Gθ(t) + G0 [1− θ(t)] (49)

and
σN (t) =

1
4

[
G2

ef (t)− 1
]
≡ N (t)[N (t) + 1], (50)

as it must be for thermal states.

3. Periodical variations of parameters
Having in mind applications to the dynamical Casimir effect, we are interested in the special
case when the functions ω(t) and γ(t) have the form of periodical pulses with the periodicity
T , separated by intervals of time with ω = 1 and γ = 0 (we neglect the damping of the field
between pulses, supposing that the quality factor of the cavity is big enough). Then the integrals
in equation (34) are reduced to the sums of n (the total number of pulses) integrals taken between
the initial and final time moments of each pulse ti and tf . In the interval between the kth and
(k + 1)th pulses the solution to equation (2) can be written as

εk(t) = ake
−it + bke

it, a0 = 1, b0 = 0, (51)

where ak and bk are constant coefficients. Consequently, during these intervals functions E(t)
and Ẽ(t) assume constant values

Ek = |ak|2 + |bk|2, Ẽk = 2akbk. (52)

Evidently, every two sets of the nearest constant coefficients, (ak−1, bk−1) and (ak, bk), are related
by means of a linear transformation

(
ak

bk

)
= Mk

(
ak−1

bk−1

)
. (53)

Four complex elements of the 2× 2 matrix Mk for the single pulse (which can be treated also
as an effective ‘potential barrier’, if one wishes to interprete (2) as an analog of the stationary
Schrödinger equation) can be expressed through two complex amplitude reflection coefficients
and two complex amplitude transmission coefficients, which connect the ‘plane waves’ coming
from the ‘left’ and from the ‘right’. Namely, if the pulse begins at t = 0 at terminates at t = t∗,
then one can write two independent solutions of equation (2) for t < 0 and t > t∗ as (remember
that we assume the constant initial and final value of the frequency to be equal to ωi = 1)

ε(−)(t) =
{

eit + r−e−it, t < 0
s−eit, t > t∗

ε(+)(t) =
{

s+e−it, t < 0
e−it + r+eit, t > t∗

(54)
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The reflection coefficients r± and transmission coefficients s± are not independent, because
equation (2) is invariant with respect to complex conjugation (the frequency ω(t) is real). The
following relations hold [109] (the simplest way to obtain them is to calculate Wronskians for
suitable pairs of independent solutions):

s− = s+ ≡ s, r−s∗ + r∗+s = 0, |r−|2 + |s−|2 = |r+|2 + |s+|2 = 1. (55)

Comparing equations (51) and (53) with (54) and taking into account identities (55), one can
express the elements of matrix Mk as follows:

M
(0)
k =

∥∥∥∥
fk g∗k
gk f∗k

∥∥∥∥ , fk ≡ s−1, gk ≡ r+/s, (56)

where the superscript ‘(0)’ means that the phases of reflection and transmission coefficients
correspond to the pulse starting at the moment t = 0 (the subscript k is supressed in coefficients
s and r±). If the kth pulse begins at the moment tk−1 (so that t0 = 0), then one should make
the time shift t → t−tk−1 in equation (54). This means that matrix Mk in (53) can be expressed
through the matrix M

(0)
k as

Mk = Φ†k−1M
(0)
k Φk−1, Φk ≡

∥∥∥∥
exp(itk) 0

0 exp(−itk)

∥∥∥∥ . (57)

An important consequence of identities (55) is the condition of unimodularity of matrix Mk

det Mk = |fk|2 − |gk|2 ≡ 1 (58)

which is equivalent to the Wronskian identity (15).
For n pulses shifted in time with respect to the initial instant t = 0 by tk, k = 1, . . . , n−1, we

have the relation (here Mn is the total transfer matrix , whereas M
(0)
n , M

(0)
n−1, . . . , M

(0)
1 ≡ M1

are the matrices describing the action of individual pulses)

(
an

bn

)
= Mn

(
a0

b0

)
, Mn = Φ†n−1M

(0)
n Φn−1Φ

†
n−2M

(0)
n−1 · · ·Φ†1M (0)

2 Φ1M1. (59)

For strictly periodic pulses all matrices M
(0)
k coincide with M1 and Φk ≡ Φk

1, so that

Mn = Φ†n(ΦM1)n, Φ ≡
∥∥∥∥

exp(iT ) 0
0 exp(−iT )

∥∥∥∥ , (60)

where T is the periodicity of pulses. Since det(ΦM1) = 1, one can use the well-known formula
for the powers of any two-dimensional unimodular matrix S (see, e.g., [110])

Sn = Un−1(z)S − Un−2(z)E, z ≡ 1
2
TrS, (61)

where E means the unit matrix and Un(z) is the Tchebyshev polynomial of the second kind. In
the case involved one has z = 1

2Tr(ΦM1) = Re[f exp(iT )] (with f ≡ f1). An amplification can
happen if |z| > 1. Then it is convenient to use the parametrization

1
2
Tr(ΦM1) = Re[f exp(iT )] = cosh(ν). (62)
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Using (59)–(62), one can arrive at the following expressions [2]:

an = f
sinh(nν)
sinh(ν)

e−iT (n−1) − sinh[(n− 1)ν]
sinh(ν)

e−iTn, bn = g
sinh(nν)
sinh(ν)

eiT (n−1). (63)

If Re[f exp(iT )] > 1, then ν is real parameter. If Re[f exp(iT )] < −1, then one can write
ν = ν̃ + iπ, where ν̃ is real. The maximal values of |Re[f exp(iT )]| correspond to the cases of
strict resonance with

T = Tres =
1
2
T0 (m− ϕ/π) , (64)

where f = |f | exp(iϕ), T0 is the period of oscillations in the selected field mode and m = 1, 2, . . .
(even values of m correspond to Re[f exp(iT )] > 1, whereas odd values of m correspond to
Re[f exp(iT )] < −1). Introducing the parameter

δ = ω0 (T − Tres) (65)

characterizing a detuning from the strict resonance, one can write

cosh(ν) = |f |(−1)m cos(δ). (66)

One can check the fulfillment of the identity |an|2 − |bn|2 ≡ 1 as a consequence of the initial
identity |f |2 − |g|2 ≡ 1.

Hereafter we confine ourselves to the simplest case of the strict resonance (a more general
treatment can be found in [32]). Then |f |2 = cosh2(ν) and |g|2 = sinh2(ν), so that

ak = cosh(kν)e−ikT , bk = sinh(kν)eiT (k−1)+iφ, (67)

Ek = cosh(2kν), Ẽk = sinh(2kν)ei(φ−T ), (68)

where φ is the phase of complex number g.

3.1. Approximate formulas for effective single-pulse reflection and transmission coefficients
For small variations of the frequency ω(t) one can write a solution to equation (2) in the form
(generalizing the standard WKB solution and following the approach of [111])

εW (t) =
1 + ζ(t)√

ω(t)
exp[−iΩ(t)] + ρ1(t) exp[iΩ(t)], Ω(t) =

∫ t

0
ω(τ)dτ. (69)

Putting function (69) with ζ(t) = 0 into equation (2) one arrives at the inhomogeneous equation

ρ̇1 +
ω̇

2ω
ρ1 =

iσ̈

2ω
exp[−2iΩ(t)] +

iρ̈1

2ω
, σ(t) ≡ [ω(t)]−1/2. (70)

It is assumed that |ρ1| ¿ σ and ρ1 = 0 if ω = const. This means that the second term in (69)
describes a weak reflection of the ‘wave’ going in the negative t-direction (caused by deviations of
function ω(t) from a constant value), but it is not a part of another fundamental solution of the
second order differential equation (2). Since function ρ1(t) is determined by the inhomogeneous
term in equation (69), it is reasonable to suppose that the rates of time variations of ρ1(t) are
more or less the same as for the function σ(t). Then one can suppose also that the second term in
the right-hand side of equation (70) (which contains the second derivative of ρ1) is much smaller
than the first one. Neglecting this term (as was done in [111]), one arrives at the first order
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differential equation, whose solution, satisfying the condition ρ1 ≡ 0 for t < 0 (when ω̇(t) ≡ 0),
is as follows,

ρ1(t) =
ρ(t)√
ω(t)

, ρ(t) =
i

2

∫ t

0
σ(τ)

d2σ

dτ2
exp[−2iΩ(τ)]dτ. (71)

If ω(t) returns to its initial value for t ≥ tf , then ρ(t) given by (71) also does not depend on
time for t ≥ tf . Comparing equations (54), (56) and (71), one finds that for a single pulse

g = ρ(tf ) exp [iΩ(tf )− iω0tf ] , f = [1 + ζ(tf )] exp [iω0tf − iΩ(tf )] .

Writing
ω(t) = ω0[1 + χ(t)], |χ| ≤ χ0 ¿ 1 (72)

(the function χ(t) should not be confused with the noise coefficients χxx and χpp), one obtains
the following expression for the phase of the inverse single-pulse transmission coefficient f :

ϕ = −ω0

∫ tf

ti

χ(t)dt (73)

(the sign of the phase is corrected here, compared with previous papers [2, 32, 33, 35, 36, 112]).
The function ζ(t) can be found if one calculates the Wronskian for two independent solutions:
ε(t) (69) and its complex conjugate partner. Neglecting higher-order terms, containing squares
of function ζ(t) and products of ρ(t) and ζ(t) (or their derivatives), and demanding the fulfilment
of identity (15), one can obtain the following result:

ζ(t) =
1
2
|ρ(t)|2 + iζI(t), ζI(t) =

∫ t

0
Im(ρρ̇∗)dτ −

∫ t

0

σ̈

2σ
dτ. (74)

For t = tf the second integral in function ζI(t) can be written as (using the integration by parts
and taking into account that σ̇(0) = σ̇(tf ) = 0)

∫ tf

0

σ̈

2σ
dτ =

∫ tf

0

σ̇2

2σ2
dτ.

Consequently, the imaginary part of ζ(tf ) is of the order of χ2, so that it can be considered as a
small (of an order of χ2

0) correction to the phase ϕ (73) of the coefficient f . Formula (71) can be
simplified for t = tf , if one performs an integration by parts, taking into account that function
σ̇ equals zero for t = 0 and t = tf . Neglecting the integral containing the term σ̇2 (since it has
an order of χ2

0), one obtains

ρ(tf ) ≈ −
∫ tf

0

σ̇

σ
exp[−2iΩ(τ)]dτ.

Making the replacement σ̇/σ ≈ −χ̇/2 (neglecting again the terms of the order of χ2
0) and making

one more integration by parts, one can arrive at the final simple formula (since χ(0) = χ(tf ) = 0)

ρ(tf ) ≈ iω0

∫ tf

0
χ(t)e−2iω0tdt. (75)

The phase Ω(t) is replaced here by the product ω0t, because an account of the additional term∫
χ(τ)dτ in the phase is equivalent to corrections of the order of χ2

0 for ρ(tf ), which were
neglected in the derivation of (75). Thus we obtain the following elements of matrix M

(0)
1 (56)

satisfying the unimodularity condition with an accuracy of the order of χ2
0

g ≈ iω0

∫ tf

0
χ(t)e−2iω0tdt. f =

(
1 +

1
2
|g|2

)
eiϕ (76)

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012027 doi:10.1088/1742-6596/161/1/012027

13



The phase ϕ is given by (73). The validity of the approximation used can be checked if one puts
function ρ1(t) given by formula (71) in the right-hand side of equation (70) and integrates this
equation again with the additional inhomogeneous part. It can be shown that corrections to the
solution arising due to the new term are, indeed, of an order of χ2

0 at t = tf . ¿From (66) and
(76) one obtains the formula

ν2 = ν̃2 = |g|2 − δ2. (77)

3.2. The contribution of noise
To find the contribution of the kth pulse to the functions J(T ) and J̃(t) one should use the
solution ε(t) in the form akεW (t− tk−1) + bkε

∗
W (t− tk−1) and calculate the integrals defined in

(34) from tk−1 to tk. But it is clear from the explicit form of function εW (t) (69) obtained in the
preceding section that functions E(t) and Ẽ(t) are close to constant values (52) for tk−1 ≤ t ≤ tk,
with small corrections of the order of χ0. Neglecting these corrections, one can calculate the
integrals over the duration of each pulse exactly (since γ(t) = dΓ/dt). Consequently, after n
pulses one has

Jn =
G

2
e−2Λn

(
1− e−2Λ

) n∑

k=1

e2ΛkEk, J̃n =
G

2
e−2Λn

(
1− e−2Λ

) n∑

k=1

e2ΛkẼk (78)

where Jn ≡ J(nT ), J̃n ≡ J̃(nT ) and

Λ =
∫ tf

ti

γ(τ)dτ. (79)

Numerical evaluations confirmed a high accuracy of this approximation.
Using (68) one can obtain the following explicit formulas for the sums in equation (78):

Jn = An + Bn, J̃n = ei(φ−T ) (An −Bn) , (80)

An =
GΛ

4(ν + Λ)

(
e2nν − e−2nΛ

)
, Bn =

GΛ
4(ν − Λ)

(
e−2nΛ − e−2nν

)
. (81)

I take into account that Λ, ν ¿ 1. In particular, the difference 1− exp(−2Λ) is replaced by 2Λ.

3.3. Mean number of created quanta and its variance
In view of equations (33), (68) and (80), the mean number of ‘noise’ quanta created after n
pulses in the resonance case is given by a simple formula

Nr(n) = Ane−2nν + Bne2nν , (82)

where Nr(n) stands for the value Nr(t) of the function (33) at the moment t = nT (I hope that
such a replacement will not lead to a confusion). Adding to the quantity (82) the expression
(37), we obtain the total number of quanta created from the initial thermal state:

N (th)(n) = e2nν
(

Bn +
G0

4
e−2Λn

)
+ e−2nν

(
An +

G0

4
e−2Λn

)
− 1

2
. (83)

Only the first term in the right-hand side of this expression grows with time (the number of
pulses n), and for 2nν À 1 one arrives at the following asymptotical formula:

N (th)(n) =
1
4
e2n(ν−Λ)

(
G0 +

GΛ
ν − Λ

)
+O(1). (84)
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We see that photons can be generated provided ν > Λ.
Combining formulas (46)-(48) with (68) and (80) we obtain the variance of the number of

photons in the case of resonance excitation of the initial thermal state:

σ
(th)
N (n) = 2e4nν

(
Bn +

G0

4
e−2Λn

)2

+ 2e−4nν
(

An +
G0

4
e−2Λn

)2

− 1
4
. (85)

The leading asymptotical term of this expression for n(ν − Λ) À 1 is

σ
(th)
N (n) ≈ 1

8
e4n(ν−Λ)

(
G0 +

GΛ
ν − Λ

)2

≈ 2
[
N (th)(n)

]2
(86)

This means that the fiels mode goes asymptotically to the so called ‘superchaotic’ [113, 114]
quantum state, whose statistics is essentially different from the statistics of the initial thermal
state, characterized by formula (50).

3.4. Photon statistics
Due to the linearity of the Heisenberg–Langevin equations of motion (5), any initial Gaussian
state remains Gaussian in the process of evolution [105]. In particular, this is true for initial
thermal states. The photon statistics in the Gaussian states was studied in [105, 115, 116]. If
the mean values of the quadrature operators (or electric and magnetic fields) are equal to zero,
then this statistics is determined completely by two parameters (we assume here h̄ = 1),

τ = σxx + σpp ≡ 1 + 2N , ∆ = σxxσpp − σ2
px ≡ 1/(4µ2), (87)

where µ ≡ Tr(ρ̂2) is the purity of the (Gaussian) quantum state of the field mode described by the
statistical operator ρ̂. The photon distribution function f(m) ≡ 〈m|ρ̂|m〉 (i.e., the probability
to detect m quanta in the state ρ̂) can be expressed in terms of the Legendre polynomials [105]:

f(m) =
2√

1+2τ +4∆

(
1+4∆−2τ

1+4∆+2τ

)m/2

Pm

(
4∆−1√

(4∆+1)2−4τ2

)
. (88)

The variance of the photon number distribution for an arbitrary Gaussian state (with zero
quadrature mean values) is given by the formula [105]

σN =
1
2
τ2 −∆− 1

4
. (89)

Comparing this formula with (83) and (85) we find

∆(n) =
(

2Bn +
G0

2
e−2Λn

) (
2An +

G0

2
e−2Λn

)
. (90)

In the asymptotical regime nν À 1 we have

∆(n) ≈ GΛ
4(ν + Λ)

(
GΛ

ν − Λ
+ G0

)
e2n(ν−Λ),

2∆
τ
≈ ∆
N ≈ GΛ

ν + Λ
. (91)

Formula (88) is exact. However, since we are interested in the cases of large numbers of
photons created due to the parametric resonance (when m > 1000), it is convenient to use its
asymptotical forms for m À 1. Note that the argument of the Legendre polynomial in (88)

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012027 doi:10.1088/1742-6596/161/1/012027

15



is always outside the interval (−1, 1), being equal to 1 only for thermal states with τ = 2
√

∆.
Therefore it is convenient to use the following asymptotical formula [117]:

Pm(cosh ξ) ≈
(

ξ

sinh ξ

)1/2

I0 ([m + 1/2] ξ) (92)

(where I0(z) is the modified Bessel function), because it holds even for complex values of variable
ξ, provided Reξ ≥ 0 and |Imξ| < π. The parameter ξ is given by the formula

ξ = ln

(
4∆− 1 + 2

√
τ2 − 4∆√

(4∆ + 1)2 − 4τ2

)
. (93)

Under realistic conditions the ratio 2∆/τ , given by equation (91), is of the order of unity for
τ À 1 (see section 5). Consequently, parameter ξ is also of the order of unity. In such a case,
the function I0(x) in (92) can be replaced by its asymptotical form I0(x) ≈ (2πx)−1/2 exp(x).
Then, using (93) to calculate sinh(ξ), we obtain an approximate formula

f(m) ≈
[
π(m + 1/2)

√
τ2 − 4∆

]−1/2
(

4∆− 1 + 2
√

τ2 − 4∆
4∆ + 1 + 2τ

)m+1/2

. (94)

Obviously, one can neglect the term 4∆ ¿ τ2 in the first factor. The fraction in the second
factor can be simplified as follows under the same conditions:

4∆− 1 + 2
√

τ2 − 4∆
4∆ + 1 + 2τ

=
4∆− 1 + 2τ − 4∆/τ +O(1/τ)

4∆ + 1 + 2τ
= 1− 1

τ
+O(1/τ2).

Replacing (1− x)m ≈ exp(−mx) for x ¿ 1, we arrive finally at the following simple formula:

f(m) ≈ exp[−(m + 1/2)/τ ]√
πτ(m + 1/2)

≈ exp[−(m + 1/2)/(2N )]√
2πN (m + 1/2)

. (95)

It holds under the conditions τ ≈ 2N À 1 and m À 1. Using the Euler–MacLaurin summation
formula, one can verify that the distribution function (95) has the correct normalization with
an accuracy O(τ−1/2):

∞∑

m=0

f(m) ≈
∫ ∞

0
f(m)dm +O[f(0)] ≈

∫ ∞

0

exp(−x/τ)√
πτx

dx +O(τ−1/2) = 1 +O(τ−1/2).

With the same accuracy, the moments of the distribution function are given by the formula

〈mk〉 ≡
∞∑

m=0

mkf(m) ≈
∫ ∞

0
xk exp(−x/τ)√

πτx
dx = τk (2k − 1)!!

2k
≈ N k(2k − 1)!! . (96)

For k = 2 equation (96) reproduces the result (86): σN = 〈m2〉 − 〈m〉2 ≈ 2N 2.

4. Frequency shift of the cavity mode
We see that the time-dependent relative frequency shift χ(t) is the main ingredient of the
theory of DCE. The problem of shift of resonance frequencies of electromagnetic cavities due to
perturbations of geometry and material properties of the walls or internal parts of the cavities
was considered for the first time by Müller [118]. It is remarkable that it was also studied (a
few years later) by two persons whose names are inseparable forever from the Casimir effect:
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Schwinger [119] and Casimir himself [120], although that papers are less known than the others,
and the results waited for their use in this field for more than half a century (for different other
applications see, e.g., [121–127]). In particular, the cavity perturbation techniques is one of the
main methods used in studies on photoexcitation of semiconductors [128,129].

The main formula for the resonance frequency shift in electromagnetic cavities with ideal
boundaries was derived in [118–120]. We consider its special form in the case of nonmagnetic
materials, assuming that the magnetic permeability µ ≡ 1, so that the magnetic vectors B and
H coincide everywhere (we use the Gauss system of units). Considering monochromatic electric
and magnetic fields of the form E(r, t) = E0(r) exp(−iω0t) and H(r, t) = H0(r) exp(−iω0t), we
have the following set of equations for complex vector fields E0(r) and H0(r) in an empty cavity:

rotE0 =
iω0

c
H0 (97)

rotH0 = − iω0

c
E0 (98)

For a cavity filled in with a medium described by means of a complex dielectric function
ε(r) = ε1(r)+iε2(r) we have equations without the subscript ‘0’, where ω is the shifted resonance
frequency:

rotE =
iω

c
H (99)

rotH = − iω

c
εE (100)

Now we multiply equation (99) by the complex conjugate function H∗
0, equation (100) by −E∗0,

the complex conjugate equation (97) by H and the complex conjugate equation (98) by −E.
Taking the sum of these four new equations we have

H rotE∗0 −E∗0 rotH + H∗
0 rotE−E rotH∗

0 =
i

c
[δω (EE∗0 + HH∗

0) + ω δεEE∗0] , (101)

where
δω = ω − ω0, δε(r) = ε(r)− 1. (102)

Now we integrate both sides of equation (101) over the total volume of the cavity, taking into
account the identity

div[a× b] ≡ b rota− a rotb. (103)

Due to the Gauss theorem, the volume integral in the left-hand side can be transformed into
the surface integral over the total surface of the cavity

∫

walls
([H×E∗0]− [E×H∗

0]) d s. (104)

But this integral is equal to zero, because the scalar product of the vector integrand and the
vector surface differential d s only depends on tangential components of vectors E and E0, which
turn into zero on the surface of an ideal cavity. Thus we arrive at the exact formula

δω

ω
= −

∫
δε(r)EE∗0 dV∫

(EE∗0 + HH∗
0) dV

. (105)

If the magnetic permeability µ is also different from zero, one should add to the numerator of
the fraction in the r.h.s. of (105) the integral

∫
δµ(r)HH∗

0 dV (this general formula is called
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sometimes ‘Bethe–Schwinger formula’). A good discussion of formula (105) and its applications
can be found in [122].

It is assumed usually that the unperturbed fields E0(r) and H0(r) are known at all points
of the empty cavity. But the perturbed fields E(r) and H(r) are not known, as a rule (except
for the simplest cases when they can be obtained by scaling the fields E0(r) and H0(r) in all
points [122]). If the variation δε(r) is small everywhere, then one can believe that the perturbed
field E(r) is close to E0(r) and replace E(r) by E0(r) in the r.h.s. of (105). Besides, if δω ¿ ω0,
then one can replace ω by ω0 in the denominator of the fraction in the l.h.s., arriving at a simple
approximate formula given in many textbooks [130,131],

δω

ω0
≈ −

∫
δε(r)E0E∗0 dV∫

(E0E∗0 + H0H∗
0) dV

= −
∫

δε(r)E0E∗0 dV

2
∫

E0E∗0 dV
(106)

(the second equality holds due to the well known equality of energies of electric and magnetic
fields in ideal resonance cavities,

∫
E0E∗0 dV =

∫
H0H∗

0 dV ).
If the function δε(r) is different from zero only inside some small volume δV ¿ V (where V is

the total cavity volume), then it is clear that the ratio δω/ω0 is small even for big values of this
function. Moreover, it seems reasonable to believe that the difference between functions E(r)
and E0(r) remains small outside the volume δV [120,122,125]. Then assuming that the energy
of the field concentrated in the volume δV is still much less than the total energy of the field in
the cavity, one can replace in the first approximation E(r) by E0(r) in the denominator of the
r.h.s. of (105). But this certainly cannot be done in the numerator if δε(r) is big (otherwise the
frequency shift can become arbitrarily big for δε →∞, which is obviously not true).

4.1. An approximation for small field variations: TE mode in a cylindrical cavity
Note that the fields depend not only on the coordinate vector r, but also on the frequency ω which
enters the Maxwell equations (99) and (100), so that we should write in fact the electric field as
E(r; ω). Let us suppose that for some geometrical configurations small variations of frequency
are accompanied by small variations of the electric field. Then using the approximation

E(r; ω) ≈ E0(r; ω0) +
∂E0(r; ω)

∂ω

∣∣∣∣
ω=ω0

δω (107)

and putting this expression in the numerator of the fraction in the r.h.s. of equation (105) (but
neglecting the term with a derivative over ω in the denominator, where it is not multiplied by
the possibly big quantity δε), we arrive at the following generalization of (106):

δω

ω0
≈ −

∫
δε(r)E0E∗0 dV

∫ [
2E0E∗0 + ω0δε(r)E∗0 ∂E0(r; ω)/∂ω|ω=ω0

]
dV

. (108)

Now we may expect that the frequency shift will remain finite even if δε →∞.
Let us show that formula (108) gives a correct result in the case of a thin semiconductor layer

on a plane surface of a cylindrical cavity in the case of TE polarization of the electromagnetic
field (this case was studied in detail, using different approaches, in [2, 31, 32]). Having in mind
that the laser radiation is absorbed in a very thin layer of the width l = α−1 ∼ 10−4–10−2 cm
(where α is the absorption coefficient), which is much smaller than the characteristic scale of
spatial variations of the field E0 in an empty cavity (the resonance frequency f = 2.5GHz
corresponds to the free space wavelength λ = 12 cm) and that the creation of electron-hole
pairs results in a high conductivity without a noticeable change of the real part of dielectric
susceptibility, we can assume that the function δε(r) inside the slab can be approximated as

δε(r) = ε̃1 + iBg(r⊥)δ(z), ε̃1 = ε1 − 1, (109)
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where ε1 is the lattice dielectric constant of a non-excited semiconductor (ε1 ≈ 13 for GaAs),
z is the coordinate in the direction perpendicular to the slab surface (which is assumed to be
z = 0) and r⊥ is the two-dimensional vector in the surface plane. The function g(r⊥) ≤ 1 takes
into account a possible non-uniformity of the laser pulse in the transverse plane, whereas the
coefficient B is equal to the maximal total concentration of electron-hole pairs in the slab per
unit surface area (we ascribe the value r⊥ = 0 to this point on the surface, so that g(0) = 1):

B =
∫ D

0
Imδε(0, z)dz =

4πbtot|e|
ω0

∫ D

0
n(0, z)dz , g(r⊥) =

∫ D
0 n(r⊥, z)dz∫ D
0 n(0, z)dz

. (110)

Here D is the slab thickness, n is the concentration of electron-hole pairs, btot = be + bh is the
total mobility of carriers related to the pair and e is the electron charge. Then (108) leads to
the following formula for the relative frequency shift with respect to the empty cavity:

δω

ω0

∣∣∣∣
empty

≈ − iBµ + ϕ1

1 + iBν
, (111)

where
µ =

1
W

∫

Σ
g(r⊥) |E0(r⊥, 0)|2 dS, (112)

ν =
ω0

W
∫

Σ
g(r⊥)E∗0(r⊥, 0;ω)

∂E0(r⊥, 0;ω)
∂ω

∣∣∣∣
ω=ω0

dS, (113)

W = 2
∫

cav
E0E∗0 dV, ϕ1 =

1
W

∫

slab
ε̃1E0E∗0 dV. (114)

The surface integrals in (112) and (113) are taken over the area Σ of the slab (the plane z = 0).
The term with ϕ1 is neglected in the denominator in equation (111), because it is obviously
much smaller than unity for limited values of ε1.

For a non-illuminated semiconductor slab we have B = 0, since we consider the case of a
low temperature, when the proper conductivity of the semiconductor can be neglected. In this
case the resonance frequency is shifted from the empty cavity value by the quantity −ω0ϕ1.
Consequently, the relative resonance frequency shift between the cavities with illuminated and
non-illuminated semiconductors is

δω

ω0
≈ iBν (ϕ1 − µ/ν)

1 + iBν
. (115)

The maximal relative frequency shift χmax corresponds to the case B →∞:

χmax = ϕ1 − µ/ν. (116)

On the other hand, taking the same limit in equation (111) we arrive at the frequency shift
corresponding to the case when an ideal boundary of an empty cavity is shifted by the distance D
inside the cavity: χid = −µ/ν. But the formula for χid is well known since the papers [118–120]:

χid =
1
W

∫

slab

(
|H0|2 − |E0|2

)
dV . (117)

Consequently,

χmax =
1
W

∫

slab

(
|H0|2 + (ε1 − 2)|E0|2

)
dV (118)
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and we can exclude the coefficient ν, expressing it through µ and χid, which can be calculated
more easily. Then the actual frequency shift can be written as

δω

ω0
≈ Aχmax

A + i
=

A(A− i)
A2 + 1

χmax, (119)

where

A = Bµ/χid = B

∫
Σ g(r⊥) |E0(r⊥, 0)|2 dS∫
slab (|H0|2 − |E0|2) dV

. (120)

The structure of equation (119) is exactly the same as was obtained in [2,31,32]) through finding
solutions of the Helmholtz equation in different parts of the cavity and their adjustment on the
surface of the slab. Moreover, it can be shown that formulas (118) and (120) give the same
values for the coefficients χmax and A as in the cited papers in the case of TE-mode (when the
electric field is parallel to the slab surface, so that |H0| À |E0| inside the slab). Formula (119)
was verified in an experiment [132].

5. Evaluations of the photon generation rate
The time dependence of parameters A(t) (120) and B(t) (110) is determined by the time
dependence of the integral concentration of carriers created by the laser pulse

∫
n(z, t)dz over

the semiconductor slab. It can be found from equations which take into account, besides the
photo-absorption, the effect of diffusion and different recombination processes. In the simplest
case we have [33]

∂n/∂t = ∇ · (Y∇n) + (αζ/Es)I(t)e−αz − β1n. (121)

Here Y is the coefficient of ambipolar diffusion, α is the absorption coefficient of the laser
radiation inside the layer, Es is the energy gap of the semiconductor (which is close to the
energy of laser photons), I(t) is time-dependent intensity of the laser pulse which enters the slab
(it can be less than the intensity of the pulse outside the slab, because the reflection coefficient
from the semiconductor surface can be rather big, due to the big value of the dielectric constant
ε1 ∼ 10; however, the reflection can be diminished if some quarter-wavelength film is put on
the surface), ζ ≤ 1 is the efficiency of the photo-electron conversion and β1 is the trap-assisted
recombination coefficient. We have disregarded nonlinear terms −β3n

3−β2n
2 in the right-hand

side of (121), because for modeling the DCE one needs very small recombination times, of the
order of Tr ≡ β−1

1 ∼ 20 ÷ 30 ps. Under these conditions, the contribution of neglected terms is
several orders of magnitude smaller than that of the term β1n [33]. In the most general case,
one should use the function I(t − z/v) instead of I(t), where v is the group velocity. But for
materials with high absorption coefficients the coordinate dependence can be neglected, if the
duration of each pulse is of the order of a few picoseconds. Since equation (121) is linear, it can
be solved exactly. The details of calculations can be found in [33,36].

Here we give the most important results of our previous studies. The maximal photon
generation rate is expected under the following conditions.

1) An ideal surface of the semiconductor slab, when the effect of surface recombination can
be neglected, so that the boundary condition to equation (121) is ∂n/∂z|z=0 = 0.

2) A high absorption coefficient α À D−1, where D is the slab thickness, so that the presence
of the second boundary does not affect the carrier distribution near the irradiated surface.

3) A very short duration of the laser pulse: much less than the recombination time Tr.
4) A uniform illumination of the semiconductor slab.
Under these conditions, the time-dependent function A(t) in equation (119) has a simple form

A(τ) = A0e
−τ/Z , (122)
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where the following dimensionless variables and parameters are introduced:

τ = ω0t Z =
ω0

β1
=

2πTr

T0
A0 =

8π2|eb|ζWD

c2T0EsS
. (123)

Here W is the total energy of the single laser pulse, S is the surface area of the semiconductor
slab, T0 is the period of oscillations in the chosen field mode, b is the effective mobility of a pair
of carriers (electrons and holes) and e is the electron charge (we use the Gauss system of units).

According to equation (84), the rate of the photon generation is determined by the difference
ν − Λ. In the case of the fundamental TE-mode of a rectangular cavity with the longitudinal
length L and the transverse length B, this difference can be expressed as follows [2, 33],

ν − Λ = η3∆F, ∆ = 2D/λ0, η = λ0/(2L), F = ν̃ − Λ̃, (124)

where λ0 = cT0 is the wave length of the excited field mode.
The coefficients ν̃ and Λ̃ are given by the expressions following from (76), (79) and (119):

ν̃ = Z

∣∣∣∣∣
∫ ∞

0

dx e−2iZx [A0 exp(−x)]2

1 + [A0 exp(−x)]2

∣∣∣∣∣ , (125)

Λ̃ = Z

∫ ∞

0

dxA0 exp(−x)
1 + [A0 exp(−x)]2

= Z tan−1 (A0) . (126)

The integral in (125) can be calculated analytically in terms of the Gauss hypergeometric
function [36]. The behavior of function F (A0, Z) was studied in detail in [2]. It was shown
that the generation of quanta is impossible (F < 0) if Z > 0.54 or A0 < 4. For moderate
values of parameter A0, the maximal values of F are achieved for Z ≈ 0.3, which is an optimal
value. The corresponding recombination time is close to T opt

r = T0/(2π2). For T0 = 400 ps (or
f0 = 2.5GHz) this means that T opt

r ≈ 20 ps, and in no case Tr should exceed 35 ps. The value
T opt

r ≈ 20 ps is quite realistic from the point of view of the available technology (and it was
confirmed in recent preliminary measurements [5]).

The optimal value of the parameter A0 can be found in the following way. According to
(123), this parameter is proportional to the energy of the laser pulse. On the other hand, if
we fix the number of photons which can be created after n pulses, then formula (84) shows
that n ≈ const/F . Consequently, the function B0(A0, Z) = A0/F (Z, A0) is proportional to the
total energy of all necessary laser pulses. Choosing for each value of A0 the optimal value of
parameter Z, we obtained [2] the following best choice of parameters (marked with an asterisk),
corresponding to the minimal total energy of all pulses:

A0∗ = 11.3, Z∗ = 0.29, F∗ = 0.18, ν̃∗ = 0.61, Λ̃∗ = 0.43. (127)

Then formula (84) with G = G0 = 1 (i.e., for zero absolute temperature of the initial field state
and the cavity walls) and nΛ À 1 can be written as

Nn ≈ ν̃

4F
exp

(
2η3F∆ n

)
, N∗n ≈ 0.85 exp

(
0.36 η3∆ n

)
. (128)

A specific property of highly doped semiconductors (which are necessary to achieve a small
recombination time) is a low mobility of carriers at zero absolute temperature (because the
scattering on charged impurities results in the contribution to the mobility b ∼ Θ3/2 for Θ → 0).
Therefore it seems that an optimal strategy could be to prepare somehow only the resonance
field mode in the vacuum state, while maintaining the walls at some finite temperature Θ chosen
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according to the following requirements: a high mobility of carriers, an optimal recombination
time and a high quality factor of the cavity. Note that for the frequency ω0/(2π) = 2.5GHz
the temperature gain factor G defined in (28) has the numerical value G ≈ 17 Θ if Θ > 1 is
expressed in Kelvins. Then formula (84) with G À G0 = 1 becomes

Nn ≈ GΛ̃
4F

exp
(
2η3F∆ n

)
, N∗n ≈ 10Θ exp

(
0.36 η3∆n

)
(129)

and the ratio of the number of created photons to the mean number of thermal photons at
temperature Θ is

N∗n
〈n〉th(Θ)

≈ 1.2 exp
(
0.36 η3∆ n

)
. (130)

An idea to use the initial thermal state of the field to facilitate the observation of the dynamical
Casimir effect was put forward in [18]. We emphasize that here we assume that the initial
field state is vacuum, and the amplification of the photon generation rate is due to the finite
temperature of the walls.

An optimal value of the geometrical factor η can be determined as follows [32, 36]. The
resonance wavelength λ, corresponding to the mode TE101 with the lowest eigenfrequency of
the rectangular cavity, is related to the cavity length L and the biggest transverse dimension
B as λ = 2LB/

√
L2 + B2 (the third dimension should be taken much smaller than L and B in

order to diminish the illuminated surface of the slab; this choice excludes automatically the TM
mode for the lowest eigenfrequency). Consequently, B = λ/(2

√
1− η2). For the fixed values of

parameter A0 and the smallest transverse dimension, the energy of the pulse is proportional to
the surface area, i.e., B, whereas the necessary number of pulses depends on L as η−3 ∼ L3.
Therefore the total energy is proportional to the product BL3. Minimizing this product for
the fixed value of λ, which is equivalent to maximization of the function f(η) = η3

√
1− η2,

we find the optimal value ηopt =
√

3/2 = 0.866, which corresponds to L = λ/
√

3 ≈ 7 cm and
B = λ = 12 cm (for ω0/(2π) = 2.5GHz). However, since it can be difficult to illuminate such a
long plate, we should consider other reasonable values of η. Fortunately, the profile of function
f(η) is rather flat in the vicinity of point ηopt. For this reason, the main requirement is to avoid
resonances with other cavity eigenfrequencies for the given modulation depth ∆ (we considered
D = 2 mm and ∆ = 1/30). These resonances can happen due to the highly anharmonical profile
of the frequency shift function (119), and their presence can diminish significantly the photon
generation rate in the fundamental mode under consideration [99,133]. The analysis shows that
the best choice, permitting to avoid at least 4 accidental resonances, corresponds to the values
of η in the interval between 2/3 and 3/4. Taking η = 3/4 (i.e., L = 8 cm and B = 9 cm) we have
η3 = 0.42 and f(η1) = 0.28, which is not very far from the maximal value f(ηopt) = 0.325.

Taking ∆ = 1/30, η = 3/4 and using (128), we evaluate that 104 photons can be created
from vacuum at zero temperature of the cavity walls after about 2000 laser pulses. This number
can be reduced to 500 if the walls are maintained at the liquid nitrogen temperature Θ = 77 K,
according to formula (129) (in this case 〈n〉th(Θ) ≈ 650).

If the third dimension can be reduced to 2.5 mm [134], then taking Tr = 20ps, b =
0.7m2V−1s−1 ≈ 2.1× 106 CGS units and Eg = 1.4 eV (GaAs) we find that the optimal value of
parameter A0 ≈ 10 can be achieved for the energy of a single laser pulse about 0.1mJ. In such
a case, the total energy of 500 pulses must be about 50 mJ. It can be diminished if materials
with a higher mobility can be found.

What can happen if conditions 1)–4) are not satisfied completely? This can be taken into
account by using the function A(t) in the form

A(τ) = exp(−τ/Z)J (τ) (131)
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with some ‘formfactor’ J (τ). In this general case integrals generalizing (125) and (126) can
be calculated only numerically. For example, the general boundary condition to equation (121)
in the case of non-ideal surface is Y ∂n/∂z|z=0 = Rn(0), where R is the surface recombination
velocity. This case was analyzed in detail in [33]. The corresponding formfactor has the form

Jg(τ, h) =
1

g − 1

[
gehτErfc

(√
hτ

)
− ehτg2

Erfc
(
g
√

hτ
)]

, g = R/(αY ), h = α2Y /ω0,

where Erfc(x) is the complementary error function. It was shown that for nonzero surface
recombination velocity an increase of parameter h (or the absorption coefficient) diminishes the
value of F . Also, an increase of h diminishes the maximal possible values of the recombination
time (parameter Z) for which F > 0 (if h À 1). Usual mechanically polished semiconductor
surfaces have the surface recombination velocity R ∼ 106 ÷ 107 cm/s [135]. Using the Einstein
relation Y = kBΘ|b/e| we estimated the diffusion coefficient at Θ = 4 K as Y ∼ 3 cm2/s for
b ∼ 1m2V−1s−1. Thus for usual surfaces the parameter g is greater than unity, moreover, it
can be much greater than unity for the values of absorption coefficient smaller than 106 cm−1.
Therefore in order to have sufficiently big values of the amplification factor F , parameter h must
be smaller than unity (by an order of magnitude). For the frequency 2.5GHz this means that the
absorption coefficient α should not exceed the value of an order of 105 cm−1. Using some special
procedures (e.g., etching the surface) one can reduce the surface recombination velocity to the
values of the order of 102 ÷ 103 cm/s [135]. In such a case one has g < 1 for α > 102 cm−1, so
that the influence of parameters g and h becomes insignificant. One can also diminish parameter
g by means of increasing the diffusion coefficient (or the mobility). But in this case parameter
h increases in the same proportion. It was shown in [33] that one should avoid big values of α
and R, trying to maintain the parameter M = gh = Rα/ω0 in the region M < 1. For instance,
preferable values of α are less than 103 cm−1 for ‘bad’ surfaces with R ∼ 107 cm/s. Or one
should keep R < 104 cm/s if α ∼ 106 cm−1.

Another reason for introducing a formfactor in equation (131) is a finite duration of laser
pulses or non-uniformity of illumination. This subject was studied in [36], where different
functions J (t) were considered. It was concluded that the non-uniformity of illumination or
temporal spread of laser pulses will not deteriorate significantly the rate of photon generation if
the recombination time is in the interval 10-20 ps.

In the derivation of the formulas for the frequency shift in section 4 we assumed that only the
imaginary part of the complex dielectric function is changed due to the generation of electron-
hole pairs in the semiconductor slab. A change of the real part can be taken into account, if one
replaces the factor B in equations (109)–(120) by B(1− iµ), where µ = Re(∆ε)/Im(∆ε) and ∆ε
is the total change of the dielectric function [35,36]. In the case of the Drude model we have

b = eτc/mef , µ = ω0τc = ω0bmef/|e|,

where τc is the mean time between collisions and mef an effective mass of carriers. For realistic
values b ∼ 1m2V−1s−1, mef ∼ m0 (the mass of free electron) and ω0/(2π) = 2.5GHz we obtain
µ ∼ 0.1 ¿ 1. It was shown in [35] that the amplification coefficient F = ν̃ − Λ̃ decreases as
function of parameter µ in the interval 0 < µ < 1, although it can become significantly bigger
than F (0) for µ À 1. The latter case corresponds to the plasma model considered in [28–30]
(see also a recent paper [136]), where the role of dissipation (the imaginary part of dielectric
function) was neglected. However, at low frequencies (of an order of a few GHz) this can happen
only in materials with extremely high mobilities of carriers, b À |e|/(mefω0) ∼ 10m2V−1s−1,
which probably do not exist.
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6. Summary
I have described several theoretical achievements of the past few years, which are connected
with planned experiments on the observation of the dynamical Casimir effect. One of them
is the construction of a consistent model of a damped nonstationary quantum oscillator with
arbitrary time-dependent frequency and damping coefficients, based on the generalization of the
Senitzky–Schwinger–Haus–Lax noise operator approach. New results given in this paper include
formulas for the distribution function of photons created in a resonantly excited field mode and
the fluctuations of the number of photons.

Another achievement consists in a generalization of the Müller–Schwinger–Bethe–Casimir
formula for the shift of the complex resonance frequency of a cavity to the case of strong
variations of the complex dielectric permeability inside a thin inhomogeneous slab. The new
formula can be applied to thin semiconductor slabs irradiated by laser pulses of arbitrary shapes
in space and time. The theoretical analysis and concrete numerical evaluations performed in
this and previous papers show that an experimental demonstration of the dynamical Casimir
effect is a quite feasible task which can be achieved in the nearest future.
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