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Abstract:
Inflation is widely studied as the theory describing the very early universe and now it

is considered as an indispensable component of the standard model of cosmology. During
inflation, cosmological perturbations are generated from the quantum fluctuations and
subsequently become the seed of the cosmic structures which are currently observed.
The prediction of inflation, the scale invariant spectrum of the curvature perturbation,
is tested various observation, especially by the cosmic microwave background radiation
(CMB) observations with great accuracy and is confirmed to be consistent.
Nevertheless, the mechanism of inflation is still unclear. The scalar perturbation

which has been observed by the CMB observations puts strong constraints on a number
of inflation models. But it is not sufficient to determine the correct model. Thus in the
next generation of cosmology, the perturbations other than the scalar one, namely vector
perturbation and tensor perturbation become increasingly important.
Although primordial vector perturbation is not intensively investigated so far, it ac-

quires a strong motivation from recent observations. It is known for a long time that
galaxies and galaxy clusters have their own magnetic fields. However, the magnetic field
even in void regions is detected in 2010 by blazar observations. Since astrophysical pro-
cesses are not active there, it may indicate the primordial origin of the observed magnetic
fields. Indeed, if primordial magnetic field is generated in the early universe, magnetic
fields in galaxies, clusters and voids can be explained in an integrated way. Thus the
generation of magnetic field during inflation, or inflationary magnetogenesis, is a very
interesting possibility.
It has been pointed out that the models of inflationary magnetogenesis proposed

so far have problems. In this thesis, we discuss the kinetic coupling model (Ratra’s
model) and explore its obstacles in detail. Then we make model-independent arguments
which universally constrain the possibility of inflationary magnetogenesis. In addition, we
also consider the possibility that the magnetic field produced during inflation is further
amplified during the subsequent inflaton oscillation phase. As a result, it turns out that
the generation of magnetic field with a sufficient strength to explain the void observation
is difficult mainly because of the consistency with the CMB observation.
The tensor perturbation with a primordial origin has been investigated as the pri-

mordial gravitational wave (GW) in the theoretical and observational context. However,
previous works have focused on the tensor mode generated from the vacuum fluctuation
and ignore the other possibilities. In this paper, we consider not only that the conven-
tional GW but also GW produced by an alternative mechanism during inflation. That is
the second order perturbation of a scalar field. If GWs from alternative sources dominate
the observed primordial GW, the relation between the observation of the primordial GW
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and the properties of inflation can be drastically changed. Therefore it is important to in-
vestigate the alternative scenario of the GW generation. Contrary to the previous work,
we show that the GW induced by the second order perturbation of a single spectator
scalar field during inflation cannot be larger than the conventional GW from the vacuum
fluctuation in a very general framework, namely the action with the k-essence and the
Galileon term.
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Chapter 1

INTRODUCTION

How did our universe begin? A number of works have been done to reveal the very
beginning of the universe and it is known that inflation which is an era of accelerating
cosmic expansion in the primordial unverse is consistent with observations [1, 2, 3]. Now
the inflation theory plays a central role in the research on the primordial universe. Its
key prediction is the generation of perturbations from the quantum fluctuation and it has
been tested mainly by observations of cosmic microwave background radiation (CMB) [4].
Since the inflation theory provides the initial condition of the subsequent evolution of the
universe, by theoretically solving the evolution and observing signals which holds infor-
mation of the initial condition, one can constraint the inflation theory. Both theoretical
and observational works have brought a better understanding of inflation, however, it
is not sufficient to answer fundamental questions, for example, what the actual infla-
tion mechanism is. While we have a number of models of inflation, we are lack of the
discrimination capability [5, 6].
Conventional ways to access the primordial universe are based on scalar perturba-

tion, namely the curvature perturbation (or the density perturbation) and its property.
The theoretical and observational discussions on it is very mature. However, the cos-
mological perturbation includes not only scalar perturbation but also vector and tensor
perturbations. Compared to scalar perturbation, the understanding of vector and tensor
perturbations has been not yet well established. It might be because the observational
result of them was limited. Recently, however, their observation or observational project
are being pushed forward. Thus it is good time to develop theoretical understanding of
the vector and tensor perturbation which are generated during inflation.
An interesting candidate of the vector perturbation produced in the early universe is

the cosmic magnetic field. It is known for a long time that galaxies and galactic clusters
have their own magnetic fields with typical strength ∼ 10−6G and it is argued that a
‘seed’ magnetic field is necessary to form the currently observed magnetic fields during
the structure formation [7, 8, 9, 10]. In addition, it is reported recently that even in void
region where astrophysical processes are not active, weak magnetic fields are detected.
The lower bound on that void magnetic field is ∼ 10−15G [11, 12, 13, 14, 15, 16, 17, 18, 19].
This result supports the primordial origin of the magnetic fields in the universe because
if magnetic fields are generated and fill up the entire universe in a very early epoch,
they naturally evolve into both the galactic/cluster magnetic fields which are amplified
during the structure formation and the void magnetic field which merely dilutes due to
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the cosmic expansion so far. Therefore theoretical works on the generation of magnetic
field or “magnetogenesis” aim to produce the magnetic field with 10−15G at present.
In this thesis, we discuss inflationary magnetogenesis, namely the generation of pri-

mordial magnetic field during inflation. In the context of inflationary magnetogenesis,
many models have been proposed so far [20, 21, 22, 23, 24, 25, 26, 27]. During infla-
tion, large scale perturbations can be produced and hence inflation was thought to be
a promising candidate of the magnetogenesis mechanism. However some critical and
general obstacles are realized recently.
Among the obstacles, the backreaction problem [28] and the curvature perturbation

problem [29, 30] are very important. The backreaction problem refer to the consistency
between the stability of inflation and the generation of the electromagnetic fields. If one
produces too much electromagnetic fields, their energy density may exceed that of inflaton
and the dynamics of inflation can be significantly altered. Thus the energy density of
the electromagnetic field should be much smaller than that of inflaton. The curvature
perturbation problem refers to the generation of additional curvature perturbation by
the produced electromagnetic fields. Since the amplitude or the non-gaussianity of the
curvature perturbation is constrained by observations [31], any magnetogenesis model
which predicts too much induced curvature perturbation is excluded. So far, no model
overcomes these obstacles and produces the cosmic magnetic field with the sufficient
strength.
In this thesis, we intensively explore the above two problems by using a specific model

and in a model-independent way. First, we review the IFF (or Ratra’s) model [20] and
investigate the backreaction and the curvature perturbation problem in the model. It
is found that the constraint from the non-linear parmeter τNL is the most stringent if
the COBE normalization is used and the allowed strength of the magnetic field is far
weaker than the observational lower bound. If one introduces a curvaton like mechanism
and relax the COBE normalization, then the backreaction gives the strongest restriction
while the allowed strength is far insufficient again [32].
Then we argue two model-independent constraints on inflationary magnetogenesis.

One is derived by the backreaction problem [33] and the other is derived by the curvature
perturbation problem [34]. The latter gives a tighter constraint while the former has
a broader scope of application. We also discuss the post-inflation amplification of the
magnetic field. We explore the model proposed in ref. [35] which is an extension of the
IFF model and the electromagnetic field grow during the inflaton oscillating phase. It
is found that in the model with the proposed model parameters in ref. [35], the curva-
ture perturbation induced by the electromagnetic field is much larger than the Planck
constrant and thus the model is under pressure.
In terms of tensor perturbation, the primordial gravitational wave (GW) attracts

attention. In particular, the GW which generated during inflation from the vacuum
fluctuation is well studied [36]. It is critically important because its power spectrum
is proportional to the energy density of inflation. However, the GW from the vacuum
fluctuation is not the only source of the primordial GWs. Therefore the GWs which
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will be observed in the future is not necessary it. If the observed GW is dominated by
that generated in an alternative way, the relationship between the property of the GW
and inflation would be dramatically changed. Thus it is important to explore alternative
generation mechanism of primordial GWs.
In this thesis, we consider the generation of GW from the second order perturbation

of a single spectator scalar field. At the second order of perturbation, the scalar and
tensor modes are coupled and hence scalar fluctuations can produce GWs. In ref. [37],
the authors argued that if the sound speed of a spectator scalar field is sufficiently small
during inflation, the induced GW can be larger than the GW from the vacuum fluctuation.
However, we investigate the curvature perturbation induced by the spectator scalar field
with a small sound speed and find that GW cannot be dominated by the alternative
source because the induced curvature perturbation would be too large in that case and it
is inconsistent with the CMB observation [38]. Since we work in a very general framework,
our result can be interpreted that any single spectator field cannot produce a dominant
GW.
The rest of this thesis is organized as follows. In sec. 2, we introduce the inflation

theory and explain the standard calculation of the generation of scalar perturbation. In
sec. 3, we explore inflationary magnetogenesis. First, the observaiton of cosmic magnetic
fields are introduced. Second, the IFF model is reviewed and its constraints are discussed
in detail. Third, the model-independent arguments are developed. Fourth, we investigate
the possibility that the magnetic field produced during inflation is further amplified after
inflation. The model in ref. [35] is reviewed and the induced curvature perturbations
are calculated. In sec. 4, we discuss primordial GWs. First, the GW generated from the
vacuum fluctuation is explained and its amplitude is computed. Second, as an alternative
source of primordial GWs, the contribution of the second order perturbation of a spectator
scalar field is considered. Third, we calculate the GW and curvature perturbation induced
by a spectator scalar field. In sec. 5, we conclude.





Chapter 2

INFLATIONARY COSMOLOGY

Contents
2.1 Motivation of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The FRW universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Problems in the hot big bang model . . . . . . . . . . . . . . . . . 6

2.1.3 Definition of inflation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Mechanism of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Action of inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 The slow-roll parameters . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Generation of Scalar Perturbation . . . . . . . . . . . . . . . . . . 12

2.1 Motivation of Inflation

Cosmic inflation [1, 2, 3] is an epoch in the history of the universe in which the universe
expands at an accelerating pace. The inflation theory is now considered as the standard
paradigm in primordial cosmology. In the standard model of cosmology, the initial con-
dition is assumed to be given by inflation which takes place in the very early universe. In
this section, we introduce the motivation to study inflation. We have two major reasons
to consider inflation. One is that inflation solves the problems of the hot big bang model.
The other is that inflation can generate small density fluctuations which become the seed
of cosmic structures observed today. As an additional motivation, by using the inflation
theory and associated observations, we can access phenomena governed by the high en-
ergy physics whose typical energy is beyond the scope of ground-based experiments (e.g.
particle accelerators).

2.1.1 The FRW universe

First of all, let us quickly introduced the flat FRWmetric which represents a homogeneous
and isotropic expanding universe. The FRW metric based on the cosmological principle
which is a statement that the universe is homogeneous and isotropic on a sufficiently large
scale for an observer. Current observation confirms that this principle approximately
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holds on scales larger than 100Mpc. The metric satisfying the cosmological principle is
given by [39]

ds2 = dt2 − a2(t)

[
dr2

1 − Kr2
+ r2dΩ2

]

, (2.1)

where t is cosmic time, a(t) is the scale factor which represent the expansion of the
universe, and K represents the spatial curvature. If K = 0, the metric is called the flat
FRW.
The Einstein equations in the flat FRW metric read

3M 2
PlH

2 = ρ +
Λ

3
−

3M2
PlK

a2
, (2.2)

ä

a
= −

ρ + 3p

6M2
Pl

+
Λ

3
, (2.3)

where H(t) ≡ ȧ/a is the Hubble parameter which represents the expansion rate of the
universe, MPl ≈ 2.43 × 1018GeV is the reduced Planck mass, Λ, ρ and p denote the
cosmological constant, the energy density and pressure, respectively. The first equation
is called the Friedmann equation. From these equations one can derive

ρ̇ = −3H(ρ + p). (2.4)

If one assumes the equation of state with a constant parameter w as

p = wρ, (2.5)

the time evolution of the energy density is solved as

ρ ∝ a−3(1+w). (2.6)

For a radiation component with w = 1/3, the density evolves as ρ ∝ a−4, while ρ ∝ a−3

for a matter component with w = 0. If the energy density is constant, the equation of
state parameter w is −1. In the flat FRW universe, the scale factor a(t) can be solved as

a(t) ∝ t
2

3+3w (w 6= −1), a(t) ∝ eHt (w = −1). (2.7)

2.1.2 Problems in the hot big bang model

From the Friedmann equation, the spacial curvature K is written as

K = a2H2 [Ω(t) − 1] , (2.8)

where Ω(t) ≡ ρ/3M2
PlH

2 is the dimensionless density parameter, and here the cosmo-
logical constant Λ is absorbed in ρ. Then we define the dimensionless parameter of the
spatial curvature as

ΩK(t) ≡ Ω(t) − 1 =
K

a2H2
. (2.9)
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ΩK parameterizes the deviation of ρ from the critical density ρc ≡ 3M2
PlH

2. The present
value of ΩK has not been detected by observations and the constraint on it is imposed
by the Planck satellite and other observations as [4]

100ΩK = −0.10+0.62
−0.65 (95%CL; Planck + lensing + WP + highL + BAO). (2.10)

Therefore ΩK should be small at present. However, the hot big bang model does not
explain why the spatial curvature is so small. It can be shown that if the universe
includes a energy component with the equation of state parameter w and the spatial
curvature, ΩK evolves as

ΩK ∝ a1+3w. (2.11)

Thus for w > −1/3, ΩK increases and to match the current observation bound, its
initial value must be extremely tiny. Such a initial condition looks unnatural without
any mechanism which makes ΩK small in the early universe.
The inflation model solves this problem as follows. Eq. (2.11) indicates ΩK decreases

if w < −1/3 and inflation is nothing but the epoch with w < −1/3. As we see later,
slow-roll inflation gives the almost constant Hubble parameter and the scale factor which
grows exponentially, a(t) ∝ eHt. Then ΩK = K/a2H2 rapidly decreases in proportional
to e−2Ht. Therefore if inflation lasts for a sufficient duration in the early universe, the
smallness of present ΩK is naturally explained. This can be simply understood that since
the universe substantially expands during inflation, the space is stretched and the typical
scale of the spacial curvature becomes much larger than the our observable scale.
The second problem is related to causality. To clarify the problem, let us introduce

the particle horizon Lphwhich represents the length scale of the causally connected region.
The particle horizon is defined as the length that light can travel from t = 0 till t

Lph ≡ a(t)

∫ t

0

dt′

a(t′)
. (2.12)

In the matter dominated universe (w = 0), the particle horizon is calculated as

Lph(w = 0) = 3t =
2

H(t)
. (2.13)

On the last scattering surface on which the photons observed as cosmic microwave back-
ground radiation (CMB) are emitted, the particle horizon is Lph ∼ 0.4Mpc. Thus two
photons which are separated by more than 0.4Mpc at the last scattering are causally
disconnected and there is no reason to expect their temperature is almost same. How-
ever, CMB observations show that CMB photons coming from all the sky have the almost
same temperature only with a tiny (O(10−5) fluctuation. This problem is call the horizon
problem.
If the universe exponentially expands in the early epoch, this problem is solved because
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during inflation the particle horizon is computed as

Lph = a(te)

∫ te

ti

dt′

a(t′)
(2.14)

= eN

[

2ti +
1 − e−N

H

]

(2.15)

' eN [2ti + 1/H], (2.16)

where ti and te is the onset and the end of inflation. Here we introduce the e-fold number
which is defined as

N ≡ ln

(
a(te)

a(ti)

)

. (2.17)

Therefore if inflation lasts for a sufficient duration, the causally connected region sub-
stantially expands and the horizon problem is solved.
Finally let us refer to the so-called monopole problem or unwanted relic problem.

In the hot big bang model, the temperature in the very early universe is extremely
high. In such a thermal bath with high temperature, some theories of particle physics
predict the production of particles beyond the standard model of particle physics. Since
these particles are heavy and stable, they do not disappear and the detection of them is
expected. However, we do not observe these particles in the present universe. Inflation
gives a simple solution to this problem. Even if such a particle is produced before inflation,
the substantial expansion during inflation decreases the density of the particle. Therefore
it is no surprise that we do not observe the heavy and stable particles. Nevertheless if such
a particle is produced after inflation, inflation cannot solve the problem. For example, in
particle physics models with the supersymmetry, this problem is serious and it is known
as gravitino problem because gravitino often becomes the problematic particle.

2.1.3 Definition of inflation

Inflation is defined as a epoch in which the universe experiences an accelerated expansion.
With the scale factor a(t) and the Hubble parameter, this condition can be written in
several ways as

ä > 0 ⇐⇒
d

dt

(
1

aH

)

< 0 ⇐⇒ −
Ḣ

H2
< 1. (2.18)

The first condition is trivial. The second condition indicates that (aH)−1 decreases during
inflation. (aH)−1 is called the comoving Hubble radius and it represents the scale of the
causal region during inflation. The third condition implies that the time variation of the
Hubble parameter is small during inflation.
If the Hubble parameter is almost constant, |Ḣ| � H2, the scale factor is given by a

exponential function of time, a ∝ eHt and the universe is well approximated by the de
Sitter spacetime. In the Einstein theory of gravity, the above conditions are equivalent
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to w ≡ p/ρ < −1/3. Since the physics of the big bang nucleosynthesis (BBN) and
subsequent evolution of the universe is well understood and confirmed by observations,
inflation have to takes place before BBN, if any. The energy scale of BBN is 10MeV and
hence the energy scale of inflation is beyond 10MeV.
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2.2 Mechanism of Inflation

In the previous section, we see that inflation can solve the three problems in the hot big
bang scenario. In this section, we discuss how inflation takes place. To realize an acceler-
ating expansion, the equation of state parameter w should be less than −1/3. Although
an ordinary matter does not satisfy this condition, a scalar field with potential energy
and small kinetic energy satisfies the condition. This mechanism is known as the slow-roll
paradigm and the most popular mechanism of inflation. Although the cosmological con-
stant can also be responsible for inflation, inflation never ends in that case. In slow-roll
inflation, inflation ends when the scalar field starts to roll down its potential rapidly. We
briefly review the slow-roll paradigm in this section.

2.2.1 Action of inflaton

The lagrangian of a scalar field is given by

Sφ =

∫
dtdx3

√
−g

[
1

2
∂μφ∂μφ − V (φ)

]

. (2.19)

Although the extensions of this minimal lagrangian have been intensively studied, here
we consider this simple case. Then the energy momentum tensor is written as

Tμν = 2
∂Lφ

∂gμν
− gμνLφ, (2.20)

where L is the lagrangian of the scalar field. In the FRW metric, it is rewritten as

T00 = ρ =
1

2

[
φ̇2 + a−2(∂iφ)2

]
+ V (φ), (2.21)

a−2Tii = p =
1

2

[
φ̇2 + a−2(∂iφ)2

]
− V (φ). (2.22)

Then the equation of state parameter is given by

w =
p

ρ
=

1
2

[
φ̇2 + a−2(∂iφ)2

]
− V (φ)

1
2

[
φ̇2 + a−2(∂iφ)2

]
+ V (φ)

. (2.23)

Therefore if the kinetic energy of the scalar field is negligible compared to the potential
energy, w ' −1 and the exponential expansion is realized. Once inflation takes place,
the scale factor becomes huge and the term with the spatial derivative of the scalar field
is negligible. 1 The condition of inflation is given by

φ̇2 � V (φ). (2.24)

This condition is called the slow-roll condition. This scalar field which is responsible fot
the occurrence of inflation is called inflaton.

1When one discusses the onset of inflation, the spatial derivative term is also relevant.
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2.2.2 The slow-roll parameters

Next, let us investigate the dynamics of slow-roll inflation. When the inflaton dominates
the energy density of the universe, the Friedmann equation reads

3M2
PlH

2 =
1

2
φ̇2 + V (φ). (2.25)

The equation of motion for the inflaton derived from the action is given by

φ̈ + 3Hφ̇ + ∂φV = 0. (2.26)

From these two equation, one can derive

2M2
PlḢ = −φ̇2. (2.27)

As mentioned above, the kinetic energy of the inflaton is negligible compared to the
potential energy during inflation. Then the first term in the Friedmann equation is
ignored, we obtain the approximated equation as

3M2
PlH

2 ' V (φ). (2.28)

Using this equation, the equation of motion is also approximated as

3Hφ̇ ' −∂φV. (2.29)

This is called the slow-roll equation. Using these approximated equations,the slow-roll
condition, eq. (2.24), is rewritten as

ε ≡
M 2

Pl

2

(
V ′

V

)2

� 1. (2.30)

This parameter ε is called the slow-roll parameter and this condition is also called the
slow-roll condition. Using the slow-roll equation again, ε is recast as

ε ' εH ≡ −
Ḣ

H2
. (2.31)

In a similar manner, the condition that the first term in the equation of motion is neg-
ligible compared to the second term, φ̈ � 3Hφ̇, can be rewritten in terms of another
slow-roll parameter,

|η| � 1, η ≡ M2
Pl

∂2
φV

V
. (2.32)

Note that the slow-roll parameters, ε and η, are given in terms of the potential of inflaton.
Thus a model with a potential which satisfies the slow-roll conditions can realize inflation.
However, observations put tight constraints on the slow-roll parameters as we see in the
next section.
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2.3 Generation of Scalar Perturbation

The most important prediction of inflation is the generation of perturbations from the
quantum fluctuations. In this section, we calculate the scalar perturbation produced dur-
ing inflation. Technically speaking, we should take into account the metric perturbation,
while for simplicity we ignore it and calculate only the perturbation of the scalar field in
this section. The metric perturbation is considered and the Mukhanov-Sasaki equation
is derived in sec. 4.3.2 (see eq. (4.70)).
First we introduce the conformal time,

dη =
dt

a
, η =

∫ t dt′

a(t′)
. (2.33)

Especially in de Sitter specetime, it reads

η = −
1

aH
. (2.34)

With the conformal time, the action of the inflaton is rewritten as

Sφ =

∫
dηdx3

[
a2

2

(
φ′2 − (∂iφ)2

)
− a4V (φ)

]

, (2.35)

where the prime denotes the derivative with respective to the conformal time. For con-
creteness, we assume the quadratic potential,

V (φ) =
1

2
m2φ2. (2.36)

Then the slow-roll conditions imply

ε = 2
M2

Pl

φ2
� 1 ⇐⇒ φ � MPl, (2.37)

η =
m2

3H2
� 1 ⇐⇒ m � H. (2.38)

The field value of the inflaton should be much larger than the reduced Planck mass
and the mass of the inflaton should be much smaller than the Hubble parameter during
inflation. With this potential, the action is now

Sφ =

∫
dηdx3a2

[
1

2

(
φ′2 − (∂iφ)2

)
− a2m2φ2

]

. (2.39)

To obtain the canonical kinetic term, we redefine the field as

χ(η, x) ≡ a(η)φ(η, x). (2.40)

Then the action reads

Sχ =
1

2

∫
dηdx3

[

χ′2 − (∂iχ)2 +

(
a′′

a
− a2m2

)

χ2

]

. (2.41)
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The equation of motion in Fourier space is given by

χ′′
k +

[

k2 −

(

2 −
m2

H2

)
1

η2

]

χk = 0, (2.42)

with

χ(η, x) =

∫
d3k

(2π)3
eik∙x χk(η). (2.43)

Now let us quantize the scalar field. The field χk is decomposed into the mode function
uk(η) and the creation/annihilation operators ak, a

†
kas

χk(η) = akuk(η) + a†
−ku

∗
k(η), (2.44)

where the mode function depends on the absolute value of wave number k because the
equation of motion includes only k2. The equal-time commutation relation for the canon-
ical scalar field χ(η, x) and its conjugate momentum Π(η, x) ≡ χ′(η, x) is given by

[χ(η, x), Π(η, y)] = iδ(x − y), (2.45)

[χ(η, x), χ(η, y)] = [Π(η, x), Π(η, y)] = 0. (2.46)

If one imposes the usual commutation relation on the creation/annihilation operators,
[
ak, a

†
k′

]
= (2π)3δ(k − k′), [ak, ak′ ] =

[
a†
k, a

†
k′

]
= 0. (2.47)

one finds that the equal-time commutators in real space read

[χ(η, x), Π(η, y)] =

∫
d3k

(2π)3
eik∙(x−y)

(
u∗

k(η)u′
k(η) − uk(η)u∗

k
′(η)
)
, (2.48)

and [χ(η, x), χ(η, y)] = [Π(η, x), Π(η, y)] = 0. Thus the following normalization condition
on the mode function uk(η) is required to satisfy eq. (2.45):

u∗
ku

′
k − uku

∗′
k = i. (2.49)

Next let us consider the initial condition of the scalar field χ. In the far past, η → −∞,
the equation of motion is approximated by u′′

k(η) + k2uk(η) = 0 and the general solution
is uk(η) = C1e

ikη + C2e
−ikη where C1 and C2 are constants of integration. Then the

normalization condition eq. (2.49) reads

2k
(
|C1|

2 − |C2|
2
)

= 1. (2.50)

However, it does not fix C1 and C2. Here, we fix the initial condition by assuming that
the inflaton fluctuation, namely χk(η) with k 6= 0, is in the vacuum state in the far past.
Hamiltonian of the scalar field in the far past is given by

H(η → −∞) =
1

2

∫
d3k

(2π)3

(
χ′
kχ

′
−k + k2χkχ−k

)
(2.51)
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When this Hamiltonian acts on the Fock vacuum state defined by ak|0〉 = 0, it yields

H(η → −∞)|0〉 =

∫
d3k

(2π)3
k2
(
(|C1|

2 + |C2|
2)(2π)3δ(0) + 2C1C2a

†
−ka

†
k

)
. (2.52)

In the right hand side, the first term represents the vacuum (zero-point) energy and it is
c-number, while the second term should vanish if the Hamiltonian is an eigen-operator of
the vacuum. Therefore C1C2 = 0 is required. Here we chose C2 = 0 and the normalization
condition fixes C1 = 1/

√
2k. This initial condition is called “the Bunch-Davies vacuum”

and it is obtained as,

uk(η) →
1

√
2k

e−ikη, (|kη| � 1). (2.53)

With this initial condition, we can fully solve the equation of motion eq. (2.42) and the
solution of the mode function uk(η) is given by the Bessel function,

uk(η) =

√
−πη

2
[Jn(−kη) − iYn(−kη)] , n ≡

√
9

4
−

m2

H2
. (2.54)

On super-horizon scales, |η| � k−1, its asymptotic form is

uk(η) →
iΓ(n)

2

√
−η

π

(
2

−kη

)n

, (|kη| � 1). (2.55)

The root mean square of the amplitude of the scalar fluctuation can be computed as the
power spectrum,

Pχ = 〈0||χk|
2|0〉 = |uk(η)|2 =

π|η|
4

[
J2

n(−kη) + Y 2
n (−kη)

]
. (2.56)

In cosmology, the dimensionless power spectrum defined as P = k3P/2π2 is often used.
Therefore the dimensionless power spectrum of the original scalar field φ = χ/a is

Pφ(η, k) '

(
H

2π

)2(
k

2aH

) 2m2

3H2

. (2.57)

So far, we work in the flat gauge in which the scale factor is independent of the
position space x and calculate the perturbation of the scalar field δφ(t, x). However,
the perturbation of the scalar field is not a gauge invariant variable and not directly
compared with observations. The curvature perturbation ζ(η, k) is known as a useful
gauge invariant variable because ζk is conserved on super-horizon scales |kη| � 1 if
the universe is dominated by a single component, and ζ is directly connected to the
observations. ζ is defined as the perturbation of the scale factor on the uniform density
slice

a(t, x) = a(t)eζ(t,x), (uniform density slice), (2.58)
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where the scale factor a(t, x) in the left hand side depends on x, since the fluctuation of
scalar field δφ(t, x) generated during inflation changes the duration of inflation at each
local patch of the universe. For example, if a negative value of the scalar perturbation,
δφ < 0, is generated in a local patch of the universe, it takes the time δt = −δφ/φ̇ for
φ(t, x) to catch up the homogeneous value φ0(t). During this extra time δt, the local
universe additionally expands a(t + δt) − a(t) ' a(t)Hδt. Therefore at the leading order
of the perturbation, the relation between the scalar perturbation δφ and the curvature
perturbation ζ is given by

ζ(t, x) = −
H(t)

φ̇(t)
δφ(t, x). (2.59)

Now the power spectrum of the scalar field perturbation Pφ can be translated into the
power spectrum of the curvature perturbation as

Pζ(k, η) '

(
H

φ̇

)2(
H

2π

)2(
k

2aH

) 2m2

3H2

. (2.60)

Using the slow-roll approximation, one can rewrite it as

Pζ(k, η) '
H2

8π2εM 2
Pl

(
k

2aH

) 2m2

3H2

. (2.61)

The dependence on the wave number k remains while it is very weak because the power
2m2/3H2 is small as we see in eq. (2.38). Therefore inflation predicts the almost scale
invariant power spectrum of the curvature perturbation.
Let us compare this prediction and the observational results. The Planck satellite

have reported [4]

Pζ(k0) = 2.196+0.051
−0.060 × 10−9 (68%CL; Planck + WP), (2.62)

where k0 = 0.05Mpc−1 and WP denotes the polarization data of the WMAP experiment.
Neglecting the weak k dependence of Pζ , one obtain the slow-roll parameter ε as a function
of the energy density of inflation ρinf

ε =
1

24π2Pζ

ρinf

M 4
Pl

≈ 5.5 × 10−4

(
ρ

1/4
inf

1016GeV

)4

, (2.63)

with ρinf = 3M2
PlH

2. This relation is known as “the COBE normalization” for the historical
reason. One can also quantify the k dependence of the curvature power spectrum. The
spectrum index defined as

ns − 1 ≡
d lnPζ

d ln k
, (2.64)

indicates the scale dependence of Pζ . The Planck observation puts constraint on it as [4]

ns = 0.9603 ± 0.0073 (68%CL; Planck + WP). (2.65)



16 Chapter 2. INFLATIONARY COSMOLOGY

Thus the completely scale invariant spectrum, ns = 1, is excluded. The red tilted (ns < 1)
spectrum is favored. In addition to ns, the tensor-to-scalar ratio is also a very use-
ful quantity to constraint inflation models. We discuss it in sec. 4.1.2. Moreover, the
non-gaussianity of the curvature perturbation can be used to exclude various models of
inflation [31, 40]. In spite of these constraints, an enormous number of inflation models
still survive (e.g. see refs. [5, 6]). Therefore we need to explore observational signatures
other than the scalar perturbation to determine the correct model of inflation.
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3.1 Observation of Cosmic Magnetic Fields

In this section, we introduce observations of magnetic fields in the universe. These ob-
servations strongly motivate the theoretical research on the generation and the evolution
of the cosmic magnetic fields.
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3.1.1 Galactic Magnetic Fields

It has been known for a long time that galaxies and galactic clusters have their own mag-
netic fields [7, 8, 9, 10]. Radio synchrotron observations have revealed that the strength
of the magnetic fields in galaxies are typically 10−6 ∼ 10−5G, while stronger magnetic
fields up to O(10−4)G are observed in some starburst galaxies (e.g. M82, NGC4038,
NGC4039) [41]. Galactic clusters also have magnetic fields with similar strength whose
correlation lengthes are typically 10kpc. In our Milky Way galaxy, the strength of the
magnetic field averaged over the 1kpc sphere around the Sun is about 6 × 10−6G. The
configuration of magnetic fields in galaxies have been also studied. In spiral galaxies,
magnetic fields are randomly oriented in the spiral arms while more ordered magnetic
fields are often observed in inter-arm regions and they are parallel to the adjacent gas
spiral arms [42, 43]. They may indicate that the galactic magnetic fields co-evolve with
the structure of the galaxy itself. However, the evolution of the magnetic fields in galaxies
are not yet clear.

The galactic magnetic fields are widely considered to be amplified by the contraction
associated with the structure formation and the plasma motion (dynamo mechanism,
see ref. [44] for recent review). Nonetheless, neither adiabatic contraction nor dynamo
mechanism can generate the magnetic fields from nothing. Therefore to explain the ob-
served galactic magnetic fields, ‘seed’ magnetic fields should exist before its amplification
mechanisms work. Accordingly, in astrophysics, seed magnetic fields are usually assumed
while their origin is an outstanding problem. Since the seed magnetic fields give the
initial condition of not only the galactic magnetic fields but also the galaxy structure in
the light of their co-evolution, it is fundamental to find the origin of the seed magnetic
fields (see refs. [45, 46, 47] for review).

Recently in ref. [48], the authors have performed a simulation which calculates the
evolution of a Milky Way like galaxy taking into account magnetic fields for the first
time. They set a homogeneous magnetic field with strength of 10−14G as the initial
seed magnetic field and follow its evolution in the ideal MHD (MagnetoHydroDynamics)
approximation. They found that the magnetic fields are amplified by dynamo mechanism
and the differential rotation of the galaxy, and they finally reached the strength 6μG which
is consistent with the observed value. They reported that lowering or increasing the initial
strength of the magnetic field by factors as large as 105 does not significantly change the
results. This kind of simulation will be performed numerous times and will be refined. At
this point, however, according to the result of ref. [48], primordial magnetic fields whose
strength is larger than 10−19G are required to explain the galactic magnetic fields. Thus
we have a motivation to seek a mechanism which produces primordial magnetic fields at
least with 10−19G in the early universe.
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3.1.2 Void Magnetic Fields

Recently the generation mechanism of the primordial magnetic fields in the early universe
attracts much attention because there are several reports that magnetic fields are found
even in void regions. Such void magnetic fields (extragalactic magnetic fields) could be
detected by blazar observations [11, 12, 13, 14, 15, 16, 17, 18, 19] and it is reported that
their strength is larger than ∼ 10−15G with an uncertainty of a few orders.

3.1.2.1 Detection method

The detection methodology is as follows. Observations of blazars which mainly radiate
TeV scale gamma rays are used. The TeV blazars originally emit gamma rays with TeV
scale energy but these gamma rays interact with extragalactic background lights (EBL)
while they travel from the blazar to the earth. EBLs typically have energy of ∼ 1eV and
the interaction creates pairs of charged particles, namely electron and positron. Since
the gamma ray from the blazar has much higher energy than the EBL photons, the pair-
created charged particles travel in the same direction as the original gamma ray. Then
these charged particles interact with CMB photons which fill up the entire universe.
The charged particles kick the CMB photons through the inverse Compton scattering
and typically give GeV scale energy to the photons. This series of process is called
electromagnetic cascade process. It implies that all the TeV gamma rays emitted by
blazars do not reach the earth but some of them produce GeV gamma rays and these
GeV gamma rays reach the earth instead. Thus if a blazar radiates TeV gamma rays and
we can observe them, we should also observe GeV gamma rays simultaneously.
Since H.E.S.S telescope which is a atmospheric cherenkov telescope array and sensitive

to gamma rays with TeV scale energy had observed several TeV blazars, after the launch
of Fermi telescope which is sensitive to GeV gamma rays, Fermi telescope tried to observe
the cascaded GeV gamma rays by targeting known TeV blazars. However, Fermi telescope
failed to detect GeV gamma rays from the blazars and put an upper bound on the flux of
GeV gamma rays. Since the electromagnetic cascade process is described by the known
physics and can be simulated with the intrinsic spectrum of the blazars reconstructed by
the H.E.S.S observation, the result of Fermi telescope cannot be understood unless some
phenomena reduce the cascaded GeV gamma rays.
Neronov and Vovk [11] (see also [49]) explored the possibility that magnetic fields

in void regions bended the orbit of the pair-created charged particles and thus the flux
of cascaded GeV gamma rays is reduced. Note that even if the magnetic field changes
the direction of charged particles, the total number of GeV gamma rays which reach the
earth is not necessarily decreased. A charged particle which originally heads to a slightly
different direction from the earth can be directed to the earth by the void magnetic field.
Therefore the magnetic fields extend and blur the image of a blazar. The gamma rays
coming from a small sky area around the position of the blazar with the width of the point
spread function θPSF are taken as gamma rays from the blazar in observations. Neronov
and Vovk calculated how the void magnetic fields extend the blazar image of the cascaded
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gamma rays θext. If θPSF < θext, it can be attributed to the cosmic magnetic fields which
significantly decrease the gamma ray flux. In this way, the extragalactic magnetic fields
can explain the observations of H.E.S.S and Fermi telescope simultaneously.

3.1.2.2 Several results

In ref. [11], they used four blazars, namely 1ES1101-232 (z = 0.186), 1ES0229+200
(z = 0.14), 1ES0347-121 (z = 0.188) and H2356-309 (z = 0.165) which were observed in
the first year of the Fermi telescope operation. In the cases of two out of four blazars,
the upper bound on the GeV gamma ray flux from Fermi telescope is lower than the
expected flux from the H.E.S.S observation. As a result, they derived the lower bound
on the strength of the void magnetic field as

Bvoid ≥ 3 × 10−16G ×

{
1 (LB > 1Mpc)

(
LB

1Mpc

)−1/2

(LB < 1Mpc)
, (3.1)

where LB is the correlation length of the void magnetic field and we will explain the
reason of the last factor below. Here 1Mpc is roughly the cooling scale on which the
electron/positron lose most of their energy by kicking many CMB photons through the
inverse Compton scattering [15]. If the correlation length of the magnetic field, namely
the size in which the magnetic field can be seen as a homogeneous field, is larger than
the cooling length, the magnetic field bends the orbit of the charged particle uniformly.
However, if the correlation length is shorter than the cooling length, the direction of the
magnetic field changes repeatedly while a charged particle travels in a void region. Then
the effect of the magnetic fields are partially cancelled out. Since the direction of mag-
netic fields is expected to change randomly, the deviation of the electron/positron path is
modeled as random walk. The charged particles pass through 1Mpc/LB different patches
of correlated magnetic fields and their total effect are weaker than the entirely homoge-
neous case by the factor of

√
LB/1Mpc. Therefore the averaged strength of the magnetic

fields should be stronger than the homogeneous case by the factor of
√

1Mpc/LB. Con-
sequently, if LB < 1Mpc, the lower bound on the strength of the void magnetic field is
increased by

√
1Mpc/LB as eq. (3.1).

Some other groups also worked on the lower limit on the void magnetic field and
obtained similar bounds. If LB > 1Mpc, the lower bound is derived as 2 × 10−15G
by Tavecchio et al. [12], 5 × 10−15G by Dolag et al. [13], 10−18G by Dermer et al. [14]
2× 10−16G by Huan et al. [15]. In ref. [17], Neronov, Vovk and have updated the original
work [11] with latest blazar observations, and obtained a new lower bound as 10−15G by
assuming the intrinsic flux of blazars do not vary significantly. They also reported that
the lower bound is relaxed to 10−17G if a possible variability of blazar flux is taken into
account. Thus, although a few order of uncertainty remains, the several different groups
working on the method of Noronov and Vovk obtained the consistent results and they
imply the detection of non-zero void magnetic field.
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In ref. [18], the authors have obtained a conservative lower bound on the void magnetic
field as 10−20.5G by exploiting a different methodology from that of Neronov and Vovk.
They again use simultaneous GeV-TeV observations of blazars, however, they focus on the
time delay of the cascaded gamma rays. Their method does not depend on a long-term
variability of blazar flux and is more reliable. On the other hand, Essey et al. [16] assumed
that blazars produce not only gamma rays but also cosmic rays and the contribution
from the cosmic ray dominates the cascaded (secondary) gamma rays. In that case, they
obtained both lower and upper bound on the strength of the void magnetic field as

10−17G < Bvoid < 3 × 10−14G. (3.2)

Note that they assume LB = 1Mpc.
In addition, the upper bound on the strength of primordial magnetic fields can also

be obtained from the cosmic microwave background (CMB) and the large scale structure
(LSS) observations. In terms of CMB, the anisotropic stress of the primordial magnetic
field produces the curvature perturbation as well as the gravitational wave on super-
horizon scales via gravitational effects, and they eventually generate CMB anisotropies.
Regarding the matter power spectrum and the observation of LSS, the key physics is that
the primordial magnetic field affects the baryon perturbation through Lorentz force after
the decoupling between baryon and photon. The matter power spectrum (or the dark
matter perturbation) is amplified by the induced baryon perturbation via gravitational
force. In researches on these effects, resultant upper bounds on the strength of the
magnetic field is typically 10−9G, since the energy density of nano-Gauss magnetic field
is comparable to that of the perturbation of the CMB photons at the last scattering.
(see, e.g. [50, 51], and references therein) 1. Therefore a conservative constraint on the
primordial magnetic fields is given by

10−20G . Bvoid . 10−9G. (3.3)

Nevertheless, their origin is still unknown and no successful quantitative model is estab-
lished.
We also refer to refs. [53, 54, 55, 56]. In this series of works by Tashiro, Vachaspati and

their collaborators, they develop the method to measure the correlators of both helical
and non-helical void magnetic fields and they have reported to find ∼ 10−14G helical
magnetic field by using the diffused gamma ray observed by the Fermi telescope. If it is
confirmed by further research and it has the primordial origin, this observational result
indicates that a parity violating process involves in the magnetogenesis mechanism.
Consequently, although the accurate strength of the void magnetic field is still un-

known, it can be expected to be around 10−15G with an uncertainty of a few orders.
When one seeks the primordial generation mechanism of the cosmic magnetic field, the
target strength should be ∼ 10−15G.

1 Ref. [52] also reported an independent upper limit on primordial magnetic fields during big bang
nucleosynthesis (BBN) as 10−6G.
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3.1.2.3 Effective strength of void magnetic field

By Fermi and HESS observations, there is a lower limit on the bending angle of GeV scale
cascade electrons and positrons in the inter-galactic medium. However, in the literatures
enumerated above, the constraint on the cosmic magnetic field is given only in terms
of the correlation length of magnetic fields while theorists need the constraint in terms
of the magnetic power spectrum. In this subsection, we shall generalize the constraint
on the cosmic magnetic field to more general spectra. Such a generalization makes the
connection between the cosmic magnetic power spectrum PB and the bending angle θ.
Provided that a charged particle travels distance L in the background of a weak

magnetic field B(r) from t1 till t2. We adopt L = 1Mpc since the characteristic length
scale for energy losses of charged particles due to inverse Compton scattering is around
1Mpc [15]. Then the bending angle is given by

θ '
v(t1) − v(t2)

v
, (3.4)

where v(t) is the velocity vector of the particle. Note the absolute value of the velocity
vector is constant. By using the equation of motion with Lorentz force, the difference of
the velocity vectors is written as

v(t2) − v(t1) =

∫ t2

t1

dt̃ v̇(t̃) =
e

m

∫ t2

t1

dt̃ v(t̃) × B(t̃) =
e

m

∫ L

0

dx × B(x), (3.5)

where e and m are the charge and the mass of the particle, respectively, x(t) denotes the
orbit of the particle and its initial value is set to x(t1) = 0. Then, we assume θ is so small
that the orbit can be approximated as a straight line, x(t) ' x1(t)ê1 where ê1 is the unit
vector in the direction of the axis 1. By Fourier transforming B(x), we can perform the
line integral

∫ L

0

dx1 ê1 × B(x1ê1) =

∫
d3k

(2π)3

eik1L − 1

ik1

ê1 × B̃(k). (3.6)

By using these equations, we find that the variance of θ is given by

〈θ2〉 =
( e

mv

)2
∫

d3kd3k′

(2π)6

(
eik1L − 1

) (
eik′

1L − 1
)

−k1k′
1

(δij − δi1δj1)〈B̃i(k)B̃j(k
′)〉. (3.7)

Since the divergence of magnetic field vanishes (kiB̃i(k) = 0) and the cosmic magnetic
fields are statistically isotropic and homogeneous, the square bracket in eq.(3.7) can be
written as

〈B̃i(k)B̃j(k
′)〉 =

1

2
(2π)3δ(3) (k + k′)

[(

δij −
kikj

k2

)
2π2

k3
PB(k) + iεijlklH(k)

]

, (3.8)

where PB(k) is the magnetic power spectrum and H(k) stands for the helicity component
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of magnetic fields [57]. By substituting eq.(3.8) into (3.7), we obtain

〈θ2〉 =
2

3

(
eL

mv

)2 ∫
dk

k
PB(k) F (kL), (3.9)

F (z) ≡
3

2
z−2

[

cos(z) −
sin(z)

z
+ zSi(z)

]

∼

{
1 + O(z2) (z � 1)
3π
4z

+ O(z−2) (z � 1)
, (3.10)

where Si(z) denotes the sine integral function. For z ≥ 0, F (z) satisfies

0 < F (z) ≤ 1, 0 ≤ zF (z) ≤ α, α ≡ Max[zF (z)] ' 2.48. (3.11)

In order to find a proper definition of the effective strength of the magnetic field
(including its normalization) for a given spectrum PB(k), as a fiducial configuration we
consider a homogeneous magnetic field whose direction is perpendicular to the particle’s
trajectory. Denoting the strength of the fiducial magnetic field as B⊥, the bending angle
is θ = L/RL = (eB⊥L)/(mv), where RL is the Larmor radius. On the other hand, for
a statistically isotropic spectrum, the variance of the magnetic field in three-dimensions
is three halves of the variance of the magnetic field projected onto the two-dimensional
subspace perpendicular to the particle’s trajectory. Thus, it is natural to define the
effective strength of the magnetic field as

B2
eff ≡

3

2

(mv

eL

)2

〈θ2〉. (3.12)

In addition, one should take into account the diffusion damping of the magnetic field.
Combining Faraday’s law ∂tB = −∇ × E, Ampere’s law ∇ × B = J and Ohm’s
law J = σE where J is the electric current and σ is the electric conductivity, one
finds the magnetic field obeys ∂tB = ∇2B/σ. This equation implies that even with
high conductivity magnetic fields decay on small scales due to the diffusion term in the
right hand side. The present typical scale of the magnetic diffusion is estimated as
kdiff ' (1AU)−1 [58]. Thus the effect of the magnetic diffusion can be expressed as the
cutoff in the power spectrum as

PB(ηnow, k) ' 0 (for k > kdiff). (3.13)

Combining eqs. (3.9), (3.12) and (3.13), we obtain

B2
eff =

∫ kdiff

0

dk

k
F (kL)PB(k) ≥ B2

obs. (3.14)

Therefore one can take the lower bound on the void magnetic field from blazar obser-
vations (i.e. Bobs ∼ 10−15G) is actually the bound on this effective strength Beff . Since
Beff is given in terms of the magnetic power spectrum, it is useful to compare theoretical
predictions and observational bounds.



24 Chapter 3. INFLATIONARY MAGNETOGENESIS

Now we provide intuitive understanding of Beff and discuss the consistency with
eq. (3.1). For this purpose, let us replace F (kL) by its asymptotic forms eq. (3.10)
and drop O(1) numerical factors to obtain the approximate formula as

B2
eff(ηnow) ∼

∫ 1/L

0

dk

k

[

PB(ηnow, k)

]

+

∫ kdiff

1/L

dk

k

[
1

kL
PB(ηnow, k)

]

. (3.15)

Let us now think of a Fourier mode of the magnetic field. For kL � 1, the corresponding
magnetic field can be treated as a homogeneous field, as far as the particle’s trajectory
(with the total length L) is concerned. Thus modes with kL � 1 contribute to the
bending angle as if they are homogeneous fields. This explains the first term in the right
hand side of (3.15). On the other hand, for kL � 1, the direction of the corresponding
magnetic field randomly changes N ∼ kL times while the charged particle travels the
total length L. If we were interested in the trajectory of the charged particle within
one of short segments of the length ∼ k−1 then the magnetic field could be treated as
a homogeneous field. Actually, we are interested in the total bending angle due to N

segments. Because of the randomness of the direction, the total bending angle from N

segments adds up to only
√

N times the contribution from each segment. Therefore the
contribution of modes with kL � 1 to the variance of the bending angle should acquire
the weight of order 1/N ∼ 1/(kL). This explains the second term in the right hand side
of (3.15).
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3.2 The Kinetic Coupling Model (Ratra’s Model)

In the previous section, we see the observations of the cosmic magnetic fields and they
give a strong motivation for theoretical studies on the generation of these magnetic fields
in the early universe. To explore inflationary magnetogenesis with a concrete example, in
this section, we introduce a model proposed by Ratra in 1991 [20]. Although a U(1) gauge
field does not acquire quantum fluctuations during inflation in its minimal form due to
the conformal symmetry, several ideas to extend it are proposed [21, 22, 23, 24, 25, 26, 27].
Among them, Ratra’s model or the kinetic coupling model [20] is nicely simple, free of
ghost instabilities [59] and well motivated by the supergravity or the string theory frame
work [60, 61, 62, 63, 64, 65]. The model action is given by

SA =

∫
dηd3x

√
−g

[

−
1

4
I2(φ)FμνF

μν

]

, (Fμν ≡ ∂μAν − ∂νAμ) , (3.16)

where Aμ is a U(1) gauge field, φ is a homogeneous and dynamical scalar field which is
not necessarily the inflaton and η is the conformal time.
This section is organized as follows. 2 In sec. 3.2.1, we introduce the model and

briefly review its calculations and predictions. One will see that the kinetic coupling
model apparently produces strong magnetic fields, however, it has some shortcomings
that prevent the model from generating the magnetic field being strong enough to ex-
plain the observations. In the following two subsections, we describe these obstacles.
In sec. 3.2.2 and sec. 3.2.3, the back reaction problem and the curvature perturbation
problem are explained, respectively. They basically concerns that the produced elec-
tromagnetic fields during inflation may spoil the inflation dynamics which is consistent
with cosmic microwave background (CMB) observations. In sec 3.2.4, these problems are
quantitatively evaluated with the constraint from the Planck observation. It turns out
that the magnetic field produced in the kinetic coupling model is severely limited and it
cannot explain the observation of the cosmic magnetic fields, unfortunately.

3.2.1 Brief review on the model

We briefly review the kinetic coupling model [20, 59, 62, 60, 61, 63, 64, 65] in this sub-
section. Although it is known it can not generate the primordial magnetic field which
is strong enough to be more than 10−15G at present because of several obstacles as we
see later, it is nicely simple and gives us the essential understanding of the problem.
Moreover this model is interesting in terms of CMB observations because it can produce
detectable level of non-gaussianities.
In the kinetic coupling model, the kinetic term of the U(1) gauge field is modified

as FμνF
μν → I2(φ)FμνF

μν where φ is a homogeneous scalar field and is not necessarily
inflaton. In the original work, Ratra identifies φ as the inflaton and considers the coupling

2This section is based on my work [32].
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I(φ) ∝ eαφ with a constant parameter α and the inflaton potential V (φ) is also given
by a exponential function of φ [20]. Bamba and Yokoyama assume that φ is a spectator
field while both the coupling I(φ) and its potential V (φ) are exponential functions [62].
In both cases, it is found that the kinetic coupling function I(φ) approximately behaves
as a power-law function of the conformal time in the slow-roll regime during inflation.
Hereafter, therefore, we phenomenologically assume I(φ) is the power-law function of
conformal time, I ∝ ηn. It should be noted that the kinetic coupling may change the
φ dynamics due to the backreaction from the gauge field and hence it may change the
behavior of I ∝ ηn at certain point during inflation [66]. In that sense, the assumption
of I ∝ ηn is an optimistic one for magnetogenesis. To restore the Maxwell theory after
inflation, I is required to be unity at the end of inflation ηf . Thus I(φ) is assumed to
behave as

I(φ) =

{
(η/ηf)

n (η < ηf)

1 (η ≥ ηf)
. (3.17)

We also assume the quasi de Sitter inflation, the Einstein gravity and the flat FLRW
metric. Note that hereafter we consider only positive n to avoid the strong coupling
problem. Because if n is negative and the QED coupling eψ̄γμψAμ exists, its effective
coupling constant, e/I , becomes much larger than unity during inflation. In that case,
we can not calculate the behavior of Aμ without fully taking account of the interaction
effects [28] (see sec. 3.3.1.1 for a further discussion).
Let us take the radiation gauge, A0 = ∂iAi = 0, and expand the transverse part of Ai

with the polarization vector e
(λ)
i and the creation/annihilation operator a

†(λ)
k /a

(λ)
k as

Ai(η, x) =
2∑

λ=1

∫
d3k

(2π)3
eik∙xe

(λ)
i (k̂)

[
a

(λ)
k A(λ)

k (η) + a
†(λ)
−k A

(λ)∗
k (η)

]
, (3.18)

where A(λ)
k is the mode function of the gauge field, the hat of k̂ denotes the unit vector

and (λ) is the polarization label. The polarization vector e
(λ)
i satisfies

kie
(λ)
i (k̂) = 0,

2∑

p=1

e
(λ)
i (k̂)e

(λ)
j (−k̂) = δij −

kikj

k2
, (3.19)

and the creation/annihilation operators satisfy

[a(λ)
p , a

†(σ)
−q ] = (2π)3δ(p + q)δλσ. (3.20)

Notice the behavior of Ak does not depend on the polarization (λ) in this model and
hence we omit the label. Then the canonical commutation relation for Ai requires the
normalization condition of mode function Ak(η) as

I2 (Ak ∂ηA
∗
k −A∗

k ∂ηAk) = i. (3.21)
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Using eq. (3.17), one finds that the equation of motion of the mode function during
inflation is given by [

∂2
η + k2 −

n(n − 1)

η2

]

(IAk) = 0 . (3.22)

Assuming that the modes are in the Bunch-Davies vacuum on the sub-horizon scales,

IAk(η) =
1

√
2k

e−ikη, (−kη � 1), (3.23)

the asymptotic solution of eq. (3.22) in the super-horizon limit is

|IAk(η)| =
Γ(n − 1/2)

√
2πk

(
−kη

2

)1−n

,

(

−kη � 1, n >
1

2

)

, (3.24)

where we have neglected the constant phase factor. For 0 < n < 1/2, the asymptotic
solution is different and the generated electromagnetic fields are weaker than the cases of
n > 1/2. Hence we focus on n > 1/2 hereafter. In that case, one finds that Ak ∝ η1−2n

from eq. (3.24) and the mode function of the gauge field grows on super-horizon scales.
This behavior is quite distinct from that of a light scalar field or gravitons which stay
almost constant on super-horizon scales. In the kinetic coupling model, the gauge field is
not only produced but also significantly amplified after the horizon crossing.
At this point, we can acquire three important consequences in this model. First, the

generated magnetic field is much smaller than the electric field on super-horizon scales.
The power spectrum of electric and magnetic fields are given by

PE(η, k) ≡
k3|∂ηAk|2

π2a4
, PB(η, k) ≡

k5|Ak|2

π2a4
, (3.25)

where two polarization modes are already summed. Then one easily sees

PB

PE

' |kη|2 � 1, (|kη| � 1). (3.26)

Since this relation originates in the definition of the electromagnetic fields and the power-
law behavior of the mode function, Ak(η) ∝ η1−2n, it is inevitable in this model with
the setup eq. (3.17). Second, the unique model parameter n controls both the time
dependence and the tilt of the electromagnetic energy spectrum. The energy contribution
from each ln k mode of electric and magnetic fields can be calculated from the action
eq. (3.16) ,

dρE

d ln k
=

1

2
I2PE(η, k) =

Γ2(n + 1
2
)

22−2nπ3
H4 (−kη)2(2−n) , (3.27)

dρB

d ln k
=

1

2
I2PB(η, k) =

Γ2(n − 1
2
)

24−2nπ3
H4 (−kη)2(3−n) ,

where H is Hubble parameter. The above equation tells that the electric field grows
(decays) and the spectrum of the electric energy density is red-tilted (blue-tilted) for
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n > 2 (n < 2). The flat spectrum can be realized in n = 2 case where the electric field
stays constant. In the case of the magnetic field, the border of n is 3 in stead of 2.
Finally, the magnetic power spectrum at present is computed as

P1/2
B (ηnow, k) =

Γ(n − 1
2
)

2
3
2
−nπ

3
2

(afH)n−1k3−n ∼ 1023n−80G ×

(
ρ

1/4
inf

1016GeV

)n−1(
k

1Mpc−1

)3−n

,

(3.28)
where ρinf is the energy density of the inflaton and af is a scale factor at the end of
inflation (a = 1 at the present). Here we assume the instantaneous reheating and have
a4

f = ργ/ρinf with ργ being the present energy density of the radiation which is given by
ργ ≈ 5.7×10−125M 4

Pl. Note that the instantaneous reheating is the most optimistic case for
inflationary magnetogenesis because the magnetic energy density decays faster than the
background energy density in matter dominated (inflaton oscillating) era and the present
strength of the magnetic field gets smaller as the matter dominated era lasts longer. Here
the produced magnetic fields are assumed not to be amplified after inflation and to decay
in proportional to a−2 as a radiation component. After the reheating, thermally produced
charged particles fill up the universe and the electric conductivity reaches O(10− 102)T ,
where T is the temperature of the thermal bath [21, 67, 68, 69, 70]. With such a high
conductivity, it can be shown that the magnetic field decay in proportional to a−2 which
is called the freeze of magnetic field [65]. On the other hand, electric fields vanish in
the thermal plasma with a high conductivity and their energy is thermalized. Although
one may wonder if a portion of the electric energy is transferred to the magnetic energy,
it does not occur. It can be understood that the electric field is the time derivative of
the vector potential and its decreasing does not imply that the amplitude of the vector
potential increases. Hence eq. (3.28) is an optimistic but reasonable estimation of the
present cosmic magnetic field produced in Ratra’s model.
From eq. (3.28), we find that n & 3 is required to make the cosmic magnetic field

whose strength is more than the observational lower bound from blazars, 10−15G, at Mpc
scale.

3.2.2 Back reaction problem

In the previous subsection, we calculate the produced magnetic field in the model by
assuming that inflation continues and the electromagnetic generation does not change
regardless of the amount of the electromagnetic fields. But if the energy density of the
electromagnetic field ρem becomes comparable with that of inflaton, inflation itself or
the generation of electromagnetic fields must be altered. Thus for the consistency of the
above calculation,

ρem < ρinf (3.29)

should be satisfied. Unfortunately, however, in the parameter range where the generated
magnetic field is enough strong to explain the blazar observation, namely n & 3, ρem
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Figure 3.1 : The prediction of P1/2
B (k = 1Mpc−1) at present and the upper bound on that

derived only by the backreaction problem. The blue and purple lines show the prediction,
eq. (3.28) with ρ

1/4
inf = 1016GeV and 1GeV, respectively. The red line is the upper bound

derived from the combination of eq. (3.28) and eq. (3.31) with Ntot = 50. The maximum
value is P1/2

B ≈ 7 × 10−28G at n ≈ 2.68.

becomes larger than ρinf [28]. This problem is called “the back reaction problem". It
should be noted that in Ref. [66], the authors have investigated the possibility of the
electromagnetic generation by taking into account its back reaction and the dynamics of φ.
In their case, although the inflation still continues, the generation of the electromagnetic
field is altered and fails to produce the magnetic field which is strong enough to explain
the blazar observation.
From eq. (3.24), the energy density of electromagnetic field during inflation is given

by

ρem(η) '
I2

2

∫ aH

kmin

dk

k
PE(η, k) =

Γ2(n + 1
2
)

22−2nπ3
H4

[
(−kminη)2(2−n) − 1

2n − 4

]

, (3.30)

where we ignore the contribution of PB and kmin is the wave number of the mode which
crosses the horizon when I(η) starts to behave as (η/ηf)

n. Because of −kminη < 1, ρem(η)

is an increasing function of η for n ≥ 2 while the η dependence is negligible for n < 2.
Thus for n ≥ 2, it is sufficient to require ρinf > ρem(η) at the end of inflation for its
satisfaction over the entire period of inflation. This condition puts the upper limit on
ρinf ,

ρinf

M4
Pl

<
22−2n32π3

Γ2(n + 1
2
)
D−1

n (Ntot) (n ≥ 2), (3.31)

where Ntot ≡ − ln |kminηf | and we define a new function Dn for later simplicity,

Dn(X) ≡
e(2n−4)X − 1

2n − 4
, lim

n→2
Dn(X) = X . (3.32)

Substituting eq. (3.31) into eq. (3.28), one can obtain the upper limit of the magnetic
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power spectrum at present. For example, the upper limits for n = 3 are

P1/2
B (ηnow, k, n = 3) < 1.8 × 10−28G × exp [50 − Ntot] . (3.33)

For n > 3, the upper bound on PB(ηnow, k) is more stringent. In fig. 3.1, we plot
the prediction of and the upper bound on P1/2

B (k = 1Mpc−1) at present. The allowed
maximum value is less than 10−27G and it is far weaker than the observational lower
bound. Therefore the kinetic coupling model can not generate the primordial magnetic
field with sufficient strength because of the back reaction problem.

3.2.3 Curvature perturbation problem

Since the electromagnetic fields produced during inflation behave as isocurvature pertur-
bations, they can source the adiabatic curvature perturbation on super-Hubble scales.
The induced curvature perturbation has distinguishing non-gaussianities which can be
large enough for detection [29, 71]. The Planck mission has given precise information
about the primordial curvature perturbation and also tighter constraints on the non-
linearity parameters which parameterize the non-Gaussian features of the primordial cur-
vature perturbation. These Planck constraints can be translated into the limits on the
parameters of the kinetic coupling model and inflation, and also the restrict on inflation-
ary magnetogenesis. In this subsection, we derive the curvature perturbation induced
by the electromagnetic fields in the kinetic coupling model during inflation. Then we
compute its two-point, three-point, four-point correlators and their related non-linearity
parameters. The observational constraints are discussed in the next subsection.

3.2.3.1 Evolution equation of ζem

The curvature perturbation ζ(t, x) is defined as the perturbation of the local scale factor
a(t, x) on the uniform density slice, ζ(t, x) ≡ ln [a(t, x)/a(t)] where t is the cosmic time.
It is well known that the curvature perturbation ζ(t, x) is conserved on super-Hubble
scales, if the universe is dominated by a single component. 3 However, when the universe
has multiple components, ζk(t) can be amplified even on super-horizon scales. Indeed, the
electromagnetic fields produce the curvature perturbation in addition to that generated on
sub-Hubble scales. Let us derive the evolution equation of ζ(t, x). The energy continuity
equation holds on super-Hubble scales [72],

ρ̇(t) = −3
ȧ(t, x)

a(t, x)
[ρ(t) + p(t, x)]

= −3
(
H(t) + ζ̇(t, x)

)
[ρ(t) + p(t) + δpnad(t, x)] , (3.34)

3If the universe is dominated by a single component, the right hand side in eq. (3.35) is zero and the
curvature perturbation is conserved on super-Hubble scales.
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where the non-adiabatic pressure δpnad is defined as δpnad(t, x) ≡ δp(t, x) − ṗ(t)
ρ̇(t)

δρ(t, x),

in general, while δpnad(t, x) = δp(t, x) on the uniform density slice. By subtracting
the homogeneous part of the above equation, we obtain the evolution equation of the
curvature perturbation on super-Hubble scales,

ζ̇(t, x) = −
H(t)δp(t, x)

ρ(t) + p(t)
. (3.35)

In our case where the background energy density is dominated by the inflaton field and
the energy density of the electromagnetic field is treated as a perturbation, we have

pinf ' −

(

1 −
2

3
ε

)

ρinf , δp =
1

3
ρem, (3.36)

where ε is the slow-roll parameter and indices “inf” and “em” denote the contribution
from inflaton and electromagnetic fields, respectively. Hence eq. (3.35) reads

ζ̇em(t, x) = −
2H(t)

ερinf

ρem(t, x), (3.37)

in the leading order of ε. Integrating it, we obtain the expression of curvature perturbation
induced by electromagnetic fields as [30]

ζem(t, x) = −
2H

ερinf

∫ t

t0

dt′ρem(t′, x), (3.38)

where H, ε and ρinf are assumed to be constant during inflation and t0 denotes an initial
time when ζem(t0, x) = 0. Note that the total amplitude of the curvature perturbation
is the sum of ζem and the intrinsic ζ which is generated on sub-Hubble scales usually by
the inflaton perturbation. Let us assume that the electromagnetic fields are originally
absent before the generation during inflation and thus all electromagnetic fields exist as
perturbations, and hence we have ρE = 1

2
I2(η)E2(η, x) and neglect the contribution of

the magnetic energy (see the discussion below eq. (3.25)). By performing Fourier trans-
formation of E(η, x), the electromagnetic energy density is written in the convolution of
two Fourier transformed electric fields as

ρem(η, k) '
1

2
I2(η)

∫∫
d3p d3q

(2π)3
δ(p + q − k)E(η, p) ∙ E(η, q) . (3.39)

By using eq. (3.18), (3.24), (3.39) and the definition of the electric field, Ei ≡ a−2∂ηAi,
eq. (3.38) reads 4

ζem(η, k) =
c2
nρinf

9εM 4
Pl

∫∫ kmax

kmin

d3p d3q

(2π)3
δ(p + q − k) p

1
2
−nq

1
2
−n

×
∑

λ,σ

ε
(λ)
i (p̂) ε

(σ)
i (q̂)

(
a(λ)
p + a

†(λ)
−p

)(
a(σ)
q + a

†(σ)
−q

)∫ η

η0

dη̃ η̃3−2n (3.40)

4 To be precise, the constant phase of the mode function which is neglected in eq. (3.24) should be

included in eq. (3.40) like
(
a
(λ)
p eiξ + a

†(λ)
−p e−iξ

)
where eiξ is the constant phase factor. However, since

such phase factors vanish after the calculation of the vacuum expectation value, we suppress them.
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where the lower end of the time integration, η0 = −max[p, q]−1, represents that only
super-horizon modes are considered as physical modes, kmax = −η−1

f is the maximum
wave number exiting the horizon during inflation and we define cn as

I∂ηAk(η) = cn k
1
2
−nη−n, cn ≡

2nΓ(n + 1
2
)

√
2π

. (3.41)

Before closing this sub-subsection, let us note that the anisotropic stress which can
also source the curvature perturbation is not taken into account here. However, the con-
tribution from the electromagnetic anisotropic stress is suppressed by slow-roll parameter
ε in comparison to the contribution from the non-adiabatic pressure during inflation [30].
Thus eq. (3.38) is the leading order equation.

3.2.3.2 Calculation of 2, 3, 4-point correlators

Let us calculate two, three and four-point correlation function of the curvature perturba-
tion in the Fourier space. At first, we consider m-point correlator,

〈
m∏

i=1

ζem(η, ki)

〉

=

〈
m∏

i=1

(
c2
nρinf

9εM 4
Pl

)∫∫ kmax

kmin

d3pi d
3qi

(2π)3
δ(pi + qi − ki)p

1
2
−n

i q
1
2
−n

i

×
∑

λi,σi

ε
(λi)
ji

(p̂i)ε
(σi)
ji

(q̂i)
(
a(λi)
pi

+ a
†(λi)
−pi

)(
a(σi)
qi

+ a
†(σi)
−qi

)∫ η

η0,i

dη̃i η̃
3−2n
i

〉

, (3.42)

where the bracket 〈∙ ∙ ∙ 〉 denotes the vacuum expectation value and is only relevant to a
(λ)
k

and a
†(λ)
−k . One can show 〈m−point〉 ≡

〈∏m
i=1

(
a

(λi)
pi + a

†(λi)
−pi

)(
a

(σi)
qi + a

†(σi)
−qi

)〉
is given by

〈2−point〉 = 2(2π)6δ(p1 + q2)δ(p2 + q1)δ
λ1σ2δλ2σ1 , (3.43)

〈3−point〉 = 8(2π)9δ(p1 + q2)δ(p2 + q3)δ(p3 + q1)δ
λ1σ2δλ2σ3δλ3σ1 , (3.44)

〈4−point〉 = 16
{
(2π)12δ(p1 + q2)δ(p2 + q3)δ(p3 + q4)δ(p4 + q1)δ

λ1σ2δλ2σ3δλ3σ4δλ4σ1

+(2 ↔ 3) + (3 ↔ 4)
}

+ (disconnected terms) , (3.45)

Since the calculation processes for m =2, 3 and 4 are analogous, we illustrate only the
m = 2 case in detail. By virtue of the delta function and the Kronecker delta in eq. (3.43),
the polarization factor in eq. (3.42) reads

∑

λ1,λ2

ε
(λ1)
j1

(p̂1)ε
(λ2)
j1

(−p̂2)ε
(λ2)
j2

(p̂2)ε
(λ1)
j2

(−p̂1) =
(
δj1j2 − (p̂1)j1(p̂1)j2

)(
δj1j2 − (p̂2)j1(p̂2)j2

)
.

(3.46)
and the η̃ integral in eq. (3.42) reads

2∏

i=1

∫ η

η0

dη̃i η̃
3−2n
i =

[
η4−2n − (−max[p1, p2])

2n−4

2n − 4

]2

. (3.47)
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Next one can perform the qi integrals by using δ(pi +qi+1). In the m = 2 case, we obtain

〈
ζem
k1

ζem
k2

(η)
〉

= 2δ(k1 + k2)

(
c2
nρinf

9εM 4
Pl

)2 ∫∫ kmax

kmin

d3p1d
3p2δ(p2 − p1 − k2) p1−2n

1 p1−2n
2

×
(
δj1j2 − (p̂1)j1(p̂1)j2

)(
δj1j2 − (p̂2)j1(p̂2)j2

)[η4−2n − (−max[p1, p2])
2n−4

2n − 4

]2

. (3.48)

If n ≥ 2, the biggest contributions of the integrals in eq. (3.48) come from the lower limit
of the integration, namely p1 ' kmin and p2 ' kmin, which we call “the pole contribution”
following ref. [29]. Hereafter we concentrate on the cases where n ≥ 2. Then eq. (3.48) can
be evaluated by the pole contributions. Note the integrand has the symmetry of p1 ↔ p2.
Even in the case of m = 3 and 4, the cyclic symmetry like, p1 → p2 → ∙ ∙ ∙ → pm → p1,
exists. Thus if the p1 pole is evaluated, the other contributions can be easily duplicated.
The p1 pole contribution in eq. (3.48) is evaluated as

〈
ζem
k1

ζem
k2

(η)
〉 ∣∣

p1'kmin
=

32π

3 k3
1

δ(k1+k2)

(
c2
nρinf

9εM 4
Pl

)2 [
(k1/kmin)

2n−4 − 1

2n − 4

] [
(−k1η)4−2n − 1

2n − 4

]2

,

(3.49)
where we use the angular integral,

∫
dΩkk̂ik̂j = 4π

3
δij , and assume k1 = k2 � kmin. 5

Notice additional factors like (max[k1, k3]/min[k1, k3])
2n−4 ≥ 1 appear in the case ofm = 3

and 4. Nevertheless, we conservatively ignore those factors for simplicity by assuming all
reference wave numbers are close to the CMB scale, ki ∼ kCMB. Except for this point, the
calculations of m = 3, 4 case are closely analogous to m = 2 case. Therefore we obtain
2, 3 and 4-point connected correlation function of the electromagnetic induced curvature
perturbation at the end of inflation ηf as

〈
ζem
k1

ζem
k2

(ηf)
〉

=
64π

3k3
1

δ(k1 + k2)

(
c2
nρinf

9εM 4
Pl

)2

Dn(Ntot − NCMB)Dn(NCMB)2, (3.50)

〈
ζem
k1

ζem
k2

ζem
k3

(ηf)
〉

=
64π

3
δ(k1 + k2 + k3)

(
c2
nρinf

9εM 4
Pl

)3

Dn(Ntot − NCMB)Dn(NCMB)3

×

[
1 + (k̂1 ∙ k̂2)

2

(k1k2)3
+ 2 perms

]

, (3.51)

〈
ζem
k1

ζem
k2

ζem
k3

ζem
k4

(ηf)
〉

=
128π

3
δ(k1 + k2 + k3 + k4)

(
c2
nρinf

9εM 4
Pl

)4

Dn(Ntot − NCMB)Dn(NCMB)4

×

[
(k̂1 ∙ k̂2)

2 + (k̂1 ∙ k̂13)
2 + (k̂2 ∙ k̂13)

2 − (k̂1 ∙ k̂2)(k̂1 ∙ k̂13)(k̂2 ∙ k̂13)

(k1k2k13)3
+ 11 perms

]

,

(3.52)

5The assumption of kCMB � kmin which corresponds to NCMB < Ntot means the generation of
electromagnetic fields begins much earlier than the horizon-crossing of CMB modes. Although it may
be interesting to consider the case where it begins after the CMB scale horizon-crossing, we focus on the
former case here.



34 Chapter 3. INFLATIONARY MAGNETOGENESIS

where k13 ≡ k1 + k3 , Dn(X) ≡ (e(2n−4)X − 1)/(2n − 4) , e−NCMB = −kCMBηf and
eNtot−NCMB = kCMB/kmin . In the limit of n → 2, these results coincide with the previous
works [29, 71].
When n < 2, the correlators of induced ζ can not be computed in the same way

as eq. (3.49) because there is no pole. Then we have to calculate the correlators by
brute force. But if n is not too close to 2, the results are expected to depend on neither
Ntot nor NCMB. It is because the contribution to the electric energy density from the k

mode, I2PE(η, k), rapidly decreases on the super-horizon as η2(2−n) (see eq. (3.27)) and
its contribution to generate ζ is effective only for a short interval right after its horizon-
crossing. Therefore the resultant correlators are much weaker than those in n ≥ 2 case
and the motivation to constrain them is inadequate. Thus we concentrate on the cases
where n ≥ 2, hereafter.

3.2.3.3 Power spectrum and Non-gaussianities

Let us connect 2,3,4-point correlators to the observable quantities in order to compare
them with the CMB observation results. Here relevant observable quantities are the power
spectrum of the primordial curvature perturbations Pζ , and local-type non-linearity pa-
rameters f local

NL and τNL which parameterize the amplitudes of the 3- and 4-point functions
of the curvature perturbations in Fourier space, respectively. These are defined as

〈ζk1ζk2〉 = (2π)3δ(k1 + k2)
2π2

k3
1

Pζ , (3.53)

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3) (2π2 Pζ)
2 6

5
f local

NL

∑3
i=1 k3

i∏3
i=1 k3

i

, (3.54)

〈ζk1ζk2ζk3ζk4〉 = (2π)3δ(k1 + k2 + k3 + k4) (2π2Pζ)
3 τNL

×

[
1

(k1k2k13)3
+ 11 perms

]

, (3.55)

where the small deviation from scale invariant spectrum of Pζ is neglected. By sub-
stituting eq. (3.50) into eq. (3.53), one can easily obtain the induced power spectrum
as

Pem
ζ (k, ηf) =

4

3

(
c2
nρinf

9π2εM 4
Pl

)2

Dn(Ntot − NCMB)D2
n(NCMB). (3.56)

As for f local
NL and τNL, however, ki dependence of eq. (3.51) and (3.52) is different from that

of eq. (3.54) and (3.55), respectively. Thus they can not be compared straightforwardly 6.
But when eq. (3.51) and (3.52) are averaged over the direction of k̂i, their ki dependence

6Planck team also investigated the bispectrum which has such non-trivial ki dependences [31]. In order
to parameterize the angular dependence of the bispectrum they introduced the Legendre Polynomial
expansion [71], and they obtained the constraint on each coefficient of the expansion. The result seems
to be almost comparable to the constraint on f local

NL and hence for simplicity we apply f local
NL constraint

to our result.
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accord with that of eq. (3.54) and (3.55), respectively. 7 Further discussion on the validity
of this averaging can be found in ref. [29]. After angular averaged, eq. (3.51) and (3.52)
read

〈
ζem
k1

ζem
k2

ζem
k3

(ηf)
〉

ave
=

28π

32
δ(k1 + k2 + k3)

(
c2
nρinf

9εM 4
Pl

)3

Dn(Ntot − NCMB)D3
n(NCMB)

∑3
i=1 k3

i∏3
i=1 k3

i

(3.57)

〈
ζem
k1

ζem
k2

ζem
k3

ζem
k4

(ηf)
〉

ave
=

27π

3
δ(k1 + k2 + k3 + k4)

(
c2
nρinf

9εM 4
Pl

)4

Dn(Ntot − NCMB)D4
n(NCMB)

×

[
1

(k1k2k13)3
+ 11 perms

]

.

(3.58)

Therefore we obtain electromagnetic induced local-type non-gaussianities

f em
NL =

225

33

(
c2
nρinf

9π2εM 4
Pl

)3

P−2
ζ Dn(Ntot − NCMB)D3

n(NCMB), (3.59)

τ em
NL =

2

3

(
c2
nρinf

9π2εM 4
Pl

)4

P−3
ζ Dn(Ntot − NCMB)D4

n(NCMB), (3.60)

where f em
NL and τ em

NL are f local
NL and τNL which are induced by the electromagnetic fields,

respectively. Note our three results can be written in the similar form as

Pem
ζ ' Dn(Ntot − NCMB) G2

n, (3.61)

f em
NLP

2
ζ ' Dn(Ntot − NCMB) G3

n, (3.62)

τ em
NLP

3
ζ ' Dn(Ntot − NCMB) G4

n, (3.63)

where Gn ≡ c2
nρinfDn(NCMB)/9π2εM 4

Pl and O(1) numerical factors are dropped. Then
we obtain the general relationship between f em

NL and τ em
NL in the kinetic coupling model of

n ≥ 2,
τ em
NL ' [PζDn(Ntot − NCMB)]−

1
3 f em

NL

4
3 . (3.64)

Therefore even if fNL ∼ O(1), the kinetic coupling model can produce a large τNL.

3.2.4 Observational constraints

In this subsection, in the light of the back reaction problem and the curvature perturba-
tion induced by the produced electric field, we translate the Planck constraints on Pζ ,

7Taking angular average, one can show (k̂1 ∙ k̂2)2 yields 1/3 if these two unit vectors are independent.
But for example, the averaged value of (k̂1 ∙ k̂13)2 depends on k1 and k3. In the limit of k1 = k3, which
is the squeezed limit where the terms with k13 become most important, the averaged (k̂1 ∙ k̂13)2 is 1/2
and averaged (k̂1 ∙ k̂2)(k̂1 ∙ k̂13)(k̂2 ∙ k̂13) is 1/6. Thus we approximate the angular averaged value of the
product of vectors depending each other by that in the relevant squeezed limit.
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f local
NL and τNL [4, 31] into the constraints on the model parameters of kinetic coupling
model. The following results are computed in ref. [32]. Planck collaboration reports:

Pζ(kCMB) ≈ 2.2 × 10−9 , (3.65)

f local
NL ≤ f obs

NL ≡ 14.3 (95%CL) , (3.66)

τNL ≤ τ obs
NL ≡ 2800 (95%CL) . (3.67)

The expressions of these observable quantities predicted in the kinetic coupling model,
namely eq. (3.56), (3.59) and (3.60), include four unknown parameters n, ε,Ntot and ρinf .
Therefore, when three parameters out of four are fixed, the other one can be constrained
by the observation. Note that NCMB can be estimated as

NCMB ' 62 + ln

(
ρ

1/4
inf

1016GeV

)

, (3.68)

where the instantaneous reheating is assumed for simplicity. In addition, if one assume the
dominant component of the power spectrum of the curvature perturbation is generated
by a single slow-rolling inflaton, the curvature perturbation, Pζ , is given by

P inf
ζ ≡

ρinf

24π2εM 4
Pl

, (3.69)

and then ε can be determined by ρinf under eq. (3.65). However, this assumption is
not mandatory because the dominant component of the curvature perturbation can be
generated by the other mechanism like curvaton or modulated reheating8. Let us call the
Pζ = P inf

ζ case “inflaton” case while the conservative case where Pζ = P inf
ζ is not assumed

is called “curvaton” case although we do not specify the generation mechanism of Pζ as
curvaton or any other models.

3.2.4.1 Constraint on Ntot − NCMB

First, let us discuss the constraint on Ntot −NCMB with changing the parameter n. Since
we assume Ntot > NCMB in the derivation of eq. (3.56), (3.59) and (3.60), we only consider
the positive value of Ntot − NCMB for consistency. Combined with the restriction that
Pem

ζ , f local
NL and τ em

NL can not exceed the observed value or upper limits, eq. (3.31), (3.56),

8 Here, we neglect the non-Gaussianity generated in the curvaton or modulated reheating scenario.
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Figure 3.2 : The upper limit of Ntot − NCMB for n ≥ 2 when inflaton generates the
observed curvature perturbation. The horizontal axis is n − 2 and the vertical axis is
Ntot −NCMB. The inflation energy scale is set as ρ

1/4
inf = 1016GeV (left panel) or 10−1GeV

(right panel). The blue line denotes the upper limit of Ntot−NCMB coming from the back
reaction condition, ρinf > ρem, while the red, yellow and green lines represent the upper
limit from the induced Pζ , fNL and τNL from the electromagnetic field respectively. In
both panels, one can see that the smaller the Ntot or n − 2 is, the milder the constraints
are.

(3.59) and (3.60) can be rewritten as

BR : Ntot − NCMB <
1

2n − 4
ln

[

1 + (n − 2)

(
6π

cn

)2
M4

Pl

ρinf

]

− NCMB, (3.70)

Pζ : Ntot − NCMB ≤
1

2n − 4
ln

[

1 + (n − 2)
3

2
Pζ G−2

n

]

, (3.71)

f local
NL : Ntot − NCMB ≤

1

2n − 4
ln

[

1 + (n − 2)
27

10
f obs

NL P2
ζ G−3

n

]

, (3.72)

τNL : Ntot − NCMB ≤
1

2n − 4
ln

[

1 + (n − 2)
27

8
τ obs
NL P3

ζ G−4
n

]

, (3.73)

where Gn = 8
3
c2
nPinfDn(NCMB) by using eq. (3.69) and “BR" denotes the constraint from

the back reaction problem.
In fig. 3.2, we plot the upper limit on Ntot−NCMB of the “inflaton" case with changing

n. From these figures, we find that the constraint becomes more stringent as n becomes
larger. It is because the generated electric field becomes stronger for larger n > 2 (see
eq. (3.27)) and thus the induced curvature perturbation is amplified. Aside from the back
reaction constraint eq. (3.70), the upper limit from m-point correlator contains the factor(

8
3
cnDn(NCMB)

)−m
in the argument of logarithm. In case with n = 2, it reads

(
8

3
cnDn(NCMB)

)−m
n→2
−−→

(

600

(
NCMB

50

))−m

(m = 2, 3, 4) (3.74)

and it is even smaller for n > 2. Because of this factor, the higher m is, the more stringent
the constraint is. This behavior can be seen in fig. 3.2 as the fact that the constraint of
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Figure 3.3 : The upper limit of Ntot −NCMB for n ≥ 2 when the assumption that inflaton
generates the observed curvature perturbation is relaxed. The horizontal axis is n−2 and
the vertical axis is Ntot−NCMB. The inflation energy scale and slow-roll parameter are set
as ρ

1/4
inf = 1016GeV (left panel) or 10−1GeV (right panel) and ε = 10−2, respectively. The

blue line denotes the upper limit of Ntot−NCMB coming from the back reaction condition,
ρinf > ρem, while the red, yellow and green line represent the upper limit from the induced
Pζ , fNL and τNL from the electromagnetic field respectively. The back reaction constraint
is unchanged from the “inflaton" case since it does not depend on ε. But one can see the
other three constraints are much milder than those in fig.3.2.

τNL is the tightest in the left panel. Since low ρinf corresponds to low NCMB as shown in
eq. (3.68), the hierarchies among the constraints derived from Pζ , fNL and τNL are less
significant as can be seen in the right panel of fig. 3.2 where we plot the upper limit of
Ntot − NCMB for ρ

1/4
inf = 10−1GeV case. For n = 2 case, the upper limit from τNL can be

obtained from eq. (3.73) as

Ntot − NCMB . 17 ×

(
NCMB

50

)−4(
τ obs
NL

2800

)

, (n = 2, “inflaton” case) . (3.75)

In fig. 3.3, we plot the upper limit on Ntot − NCMB of the “curvaton" case by setting
ε = 10−2. In this figure, one can see that the constraint is considerably milder than the
“inflaton" case. It is interesting to note that the hierarchy among the four constraint is
inverted in the low ρinf plot (right panel). In fact, the upper bound from the back reaction
problem is most stringent for ρ

1/4
inf . 1015GeV. Except for eq. (3.70), the upper limit from

m-point correlator contains the factor Pm−1
ζ /Pm

inf in the argument of logarithm. Although
it reads P−1

ζ in the “inflaton" case, in the “curvaton" case it yields an extra factor,

(
Pζ

Pinf

)m

'

(

18 ×
( ε

0.01

)((1016GeV)4

ρinf

))m

(m = 2, 3, 4). (3.76)

Therefore the constraints from higher correlator substantially relaxed especially in low
ρinf region. At ρ

1/4
inf ' 1016GeV, this factor compensates the factor of eq. (3.74) and three

constraints from Pζ , fNL and τNL are almost degenerate (see the left panel). They are
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coincident with the back reaction constraint at ρ
1/4
inf ' 1015GeV. Thus the back reaction

bound is the most stringent for ρ
1/4
inf . 1015GeV.

One can understand why the “curvaton" case with ε = 10−2 gives much milder bound
than the “inflaton" case as follows. From eq. (3.61)-(3.63), one can find Pem

ζ , f em
NL and τ em

NL

are increasing function of ρinf and decreasing function of ε. Thus one way of relaxing the
upper limit is to increase ε. However ε can not vary freely in the “inflaton" case because
the COBE normalization requires ε at the horizon crossing of the CMB scale modes to
be as small as

ε = 5.5 × 10−4

(
ρinf

(1016GeV)4

)

. (3.77)

Therefore the “curvaton" case does not always put milder constraint than the “inflaton"
case but it does only when ε is larger than eq. (3.77).

3.2.4.2 Constraint on the inflation energy scale ρinf

If we change the set of input parameters from {n, ε, ρinf} into {n, ε,Ntot}, we can constrain
ρinf instead of Ntot − NCMB. Although eq. (3.31) gives the upper limit of ρinf explicitly,
we have to numerically calculate the bounds from Pζ , fNL and τNL. Provided that Ntot >
3
2
NCMB, one can show that the constraints from Pζ , fNL and τNL give upper limits on ρinf .

9 Thus we adopt Ntot = 100, 300 and 1000 as the fiducial values. Note the energy scale
of inflation is naively restricted by the indirect observation of gravitational wave and the
big bang nucleosynthesis as

10−1GeV . ρ
1/4
inf . 1016GeV , (3.78)

regardless of the kinetic coupling model.
In fig. 3.4, we plot the upper limits on ρ

1/4
inf . The basic property of the constraint is

unchanged from that on Ntot − NCMB because the origin of constraints is same. Again,
one can see that the larger n is, the tighter the constraints are. τNL gives the most
stringent bound in the “inflaton" case while the bound from the back reaction problem
is the tightest in low energy region of the “curvaton" case. In addition, now it is clear
that the lower ρinf is, the milder the constraints are. It is remarkable that Ntot & 300 is
excluded in the “inflaton" case. It is consistent with the right panel of fig. 3.2. Even if
Ntot < 300, n and ρinf are severely restricted in the “inflaton" case. On the other hand, the
constraints in the “curvaton" case are much more moderate. Especially ρinf is free from a
new restriction if n is sufficiently small. Furthermore, at low energy region, the tightest
constraint is given by the back reaction condition whose analytic formula is available.
Since in the right hand side of eq. (3.31) the most important factor is exp[(2n − 4)Ntot],

9 One can find the condition when Pem
ζ , f em

NL and τ em
NL are increasing function of ρinf by differ-

entiating them with respect to ρinf and looking at their sign. It can be shown the conditions are
Ntot > m+1

m NCMB, (m = 2, 3, 4) in the “inflaton" case while the conditions are far milder in the “curva-
ton" case.
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Figure 3.4 : The upper limit of ρ1/4
inf for n ≥ 2. The horizontal axis is n−2 and the vertical

axis is ρ
1/4
inf [GeV]. In top two panels it is assumed that inflaton generates all observed

curvature perturbation (“inflaton" case) while that assumption is relaxed and instead
ε = 10−2 is adopted in the bottom two panels (“curvaton" case). The total duration
of the electromagnetic field generation is set as Ntot = 100 (left panels), 300 (top right
panel) or 1000 (bottom right panel). The shaded regions represent the restriction from
gravitational wave (blue) and big bang nucleosynthesis (red), respectively.
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eq. (3.31) can be approximated by n − 2 . ln(M4
Pl/ρinf)/2Ntot. Then the largest allowed

n at ρ
1/4
inf = 10−1GeV is

n − 2 .
90

Ntot

, (“curvaton” case ). (3.79)

Since NCMB is as small as ≈ 23 at such low energy scale, n can be larger than 4 in
principle. However, the resultant magnetic field strength at present is depends on ρinf as
PB ∝ ρ

(n−1)/4
inf and thus a large n does not necessarily lead to a strong magnetic field.

3.2.4.3 Constraint on the strength of the magnetic field B

In terms of magnetogenesis, it is interesting to put the upper limit on the present strength
of the magnetic field, PB(ηnow, k). Combined with eq. (3.28), the upper limits on ρinf

which we obtain in the previous sub-subsection by numerical calculations can be converted
into the upper limits on PB(ηnow, k). Those limits are shown in fig. 3.5.
It is known that the strength of magnetic field generated is kinetic coupling model

has been already bounded above due to the back reaction problem and its present value
can not exceed 10−32G for Ntot = 70 and k = 1Mpc−1 [28]. But it turns out that the
upper limit is 10−47G due to the constraint from τNL in the “inflaton" case (see the top
left panel of fig. 3.5). If Ntot is larger, the constraint becomes even severer. On the other
hand, in the “curvaton" case, the strongest value of magnetic field in the allowed region is
smaller by only a few orders of magnitude than that without the curvature perturbation
constraints.

3.2.4.4 Summary of constraints

The kinetic coupling model (or IFF model) has drawn attention as both a magnetogenesis
model and a generation mechanism of the curvature perturbation and non-gaussianities.
Although it is known that the back reaction problem (BR) and the strong coupling
problem restrict this model from generating the magnetic field which is strong enough to
explain the blazar observation at present, the constraints from the curvature perturbation
induced by the electromagnetic fields during inflation are not yet investigated adequately.
In this subsection, we compute the curvature power spectrum Pζ and non-linear pa-

rameters f local
NL , τNL of the curvature perturbation induced by the electromagnetic fields in

the kinetic coupling model with I ∝ a−n for n ≥ 2. Recently Pζ , f
local
NL and τNL are pre-

cisely determined or constrained by the Planck collaboration. Thus by using the Planck
result, we constrain the parameters of the kinetic coupling model and inflation. We found
that Pem

ζ , f em
NL and τ em

NL are given by the functions of four parameters {n,Ntot, ρinf , ε} of
the model and inflation (see eq. (3.56), (3.59) and (3.60)). Therefore when three param-
eters out of four are fixed, the other one can be constrained by the observation. Note in
the case where a single slow-rolling inflaton is responsible for all the observed curvature
power spectrum, which we call “inflaton" case, the slow-roll parameter ε is determined
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Figure 3.5 : The upper limit of the current strength of the magnetic field for n ≥ 2.
The horizontal axis is n − 2 and the vertical axis is P1/2

B (ηnow, 1Mpc−1) [G]. In top two
panels it is assumed that inflaton generates all observed curvature perturbation (“inflaton"
case) while that assumption is relaxed and instead ε = 10−2 is adopted in the bottom
two panels (“curvaton" case). The total duration of the electromagnetic field generation
is set as Ntot = 100 (left panels), 300 (top right panel) or 1000 (bottom right panel).
The shaded region represent the restriction from gravitational wave (blue) and big bang
nucleosynthesis (red), respectively.
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by inflation energy scale ρinf . On the other hand, if the other mechanism like curvaton
or modulated reheating produces observed Pζ , ε can be a free parameter. For simplicity,
this case is called “curvaton" case while we do not specify any model.
In order to illustrate the constraints from the BR, Pem

ζ , f em
NL and τ em

NL , we show three

kinds of plot which represent the upper limit of Ntot−NCMB, ρinf and P1/2
B (ηnow, 1Mpc−1)

with respect to n, respectively. The upper limits of the total e-folding number of mag-
netogenesis before the CMB scale exits the horizon, Ntot − NCMB, can be expressed by
analytical formula as eq. (3.70)-(3.73). The upper limits of the inflation energy density,
ρinf , need numerical calculations to be obtained and can be translated to the upper limits
of the present amplitude of the cosmic magnetic field at Mpc scale, P1/2

B (ηnow, 1Mpc−1).
In general, all four constraints from the BR, Pem

ζ , f em
NL and τ em

NL become tighter as n (≥ 2) is
larger. It is simply because the strength of generated electromagnetic fields are amplified
as n (≥ 2) is larger.
In the “inflaton" case, interestingly, τNL gives the strongest limitation on parameters.

Even for ρ
1/4
inf = 10−1GeV and n = 2, the constraint from τNL puts Ntot . 300 and

it becomes more stringent for higher ρinf or n. For Ntot = 100 and n = 2, in turn,
ρ

1/4
inf . 104GeV is required and ρinf should be even lower for larger Ntot or n. As for the
magnetic field strength, we find the upper limit from τNL is P

1/2
B . 10−47G at present

Mpc scale for Ntot = 100. It is 10−15 times lower than the upper limit of the conventional
BR condition.
In the “curvaton" case, however, the constraints are more moderate if the free pa-

rameter ε is larger than the “inflaton" case. For clarity we fix ε = 10−2 and show the
constraints from Pem

ζ , f em
NL and τ em

NL are weaker than the BR constraint if ρinf is sufficiently
small. Thus even if the induced curvature perturbation is taken into account, the resul-
tant constraint is not dramatically changed from the conventional BR restriction in the
low ρinf region. In fact, one can see in fig. 3.5 that the constraint on PB at present Mpc
scale becomes tighter only by O(10−1) than that given solely by the BR.
Aside from the constraints, we find the general relationship between f em

NL and τ em
NL in

eq. (3.64). According to it, even if fNL ∼ O(1) which is too small to be observed by the
Planck satellite, the kinetic coupling model can compatibly produce detectable τNL &
560 [73]. In addition, it is expected that this model generates much higher correlators
of the curvature perturbation. Thus it is also interesting to investigate the higher order
correlators both in theoretical and observational sides. Furthermore, we use the averaging
over the direction of k̂i for fNL and τNL. It should be interesting to consider the direction
dependence of τNL as well as fNL.
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3.3 Problems and General Constraints

In the previous section, we see that although the kinetic coupling model (Ratra’s model)
can generate primordial magnetic fields during inflation, the back reaction problem and
the curvature perturbation problem constrain the model from producing the magnetic
field which is strong enough to explain the observations. However, we have investi-
gated only one model with a specific parameterization of an arbitrary function I(η) (see
eq. (3.17)). Thus one may wonder if in another model of inflationary magnetogenesis or
even in Ratra’s model with a different functional form of I(η), it is possible to avoid these
problems. In other words, at this point, it is not clear how the back reaction and the
curvature perturbation problem are universal in inflationary magnetogenesis scenarios.
To answer this important question, we have to investigate inflationary magnetogenesis in
a model-independent way. Actually such model-independent arguments have been devel-
oped for both the back reaction problem and the curvature perturbation problem [33, 34].
According to them, the answer of the above question is yes: These problems are very gen-
eral for inflationary magnetogenesis and even model-independent constraints derived from
the two problems are quite stringent. In this section, we make these model-independent
arguments in sec. 3.3.1 and sec. 3.3.2.

As we see in the following, upper limits on the inflation energy scale ρinf can be derived
by the model-independent arguments. Provided that the observed void magnetic fields
are totally generated during inflation, the back reaction problem requires

ρ
1/4
inf < 6 × 1011GeV ×

(
Bobs

10−15G

)−2

, (3.80)

while the curvature perturbation problem requires

ρ
1/4
inf < 30GeV

(
pB

1Mpc−1

)5/4(
Bobs

10−15G

)−1

, (pB ≥ 1Mpc−1), (3.81)

where Bobs is the present strength of the void magnetic field and pB ' L−1
B is its peak

wave number. The upper bound derived from the curvature perturbation problem is
much tighter than that of the back reaction problem. Eq. (3.81) is so stringent that it is
very difficult to realize such a extremely low energy inflation with a viable dark matter
production and baryogenesis. Note that a key assumption to derive these constraint is
that the magnetic field observed today is generated during inflation and it just decays
in proportional to a−2 after inflation. Therefore the difficulty of pure inflationary mag-
netogenesis might infer that the primordial magnetic field is somehow amplified after
inflation. We consider this possibility in the next section. In this section, we derive the
above two model-independent constraints and see that it is generally difficult to find a
viable model of pure inflationary magnetogenesis.
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3.3.1 Model-independent argument on the back reaction problem

In this subsection 10 , we develop a model-independent argument on the back reaction
problem of inflationary magnetogenesis. Interestingly, from the argument we can derive
the upper bound on the energy density of inflation. If inflation is responsible for the gen-
eration of the void magnetic fields then the inflation energy scale is bounded from above
as ρ

1/4
inf < 2.5× 10−7MPl × (Bobs/10−15G)−2 in a wide class of inflationary magnetogenesis

models, where Bobs is the observed strength of cosmic magnetic fields. The tensor-to-
scalar ratio is correspondingly constrained as r < 10−19 × (Bobs/10−15G)−8. Therefore,
if the reported strength Bobs ≥ 10−15G is confirmed and if any signatures of gravita-
tional waves from inflation are detected in the near future, then our result indicates some
tensions between inflationary magnetogenesis and observations.

3.3.1.1 Four Assumptions

To discuss the back reaction problem of inflationary magnetogenesis in a model-
independent way, we make the following four assumptions.

Assumption 1: the form of kinetic term

First, we assume that the kinetic term of the photon field Aμ is of the form

Lkin = −
1

4
I2(η)FμνF

μν , (3.82)

where it is understood that the time-dependence of I(η) is due to its dependence on
homogeneous, time-dependent fields present in the theory. Thus, Lkin includes various
interactions between the photon field and other fields [20, 61, 62, 28]. This form of
coupling does not have to break either gauge or local Lorentz symmetry. In general the
photon field can have additional interactions Lint:

LA = Lkin + Lint. (3.83)

However, we let Lint unspecified. Even so, under the four assumptions introduced in
this sub-subsection, we can derive the upper limit on the inflation energy scale in a
model independent way. Note that when I = 1 and Lint = 0, the usual Maxwell theory
is restored. Note that an assumption on the form of the kinetic term is necessary to
quantize the photon field and to define the kinetic energy density.
Now we can quantize the photon field in the same way as sec. 3.2.1. Let us consider

the contribution of modes with k < kdiff , i.e. those whose comoving length scale are longer
than the cosmic diffusion length, to the kinetic energy density of the electromagnetic field

10This subsection is based on my work [33].
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as 11

ρkin(kdiff , η) =
I2

2

∫ kdiff

0

dk

k
[PE(η, k) + PB(η, k)] , (3.84)

where we have defined power spectra of electric and magnetic fields as

PE(η, k) =
k3|A′

k(η)|2

π2a4(η)
, PB(η, k) =

k5|Ak(η)|2

π2a4(η)
. (3.85)

Assumption 2: Avoidance of strong coupling

The second assumption is that

I(η) ≥ 1 for ηdiff ≤ η, (3.86)

where ηdiff is the conformal time when the comoving cosimic diffusion length exits the
horizon, thus defined as kdiffηdiff = −1.
This assumption essentially states that the effective coupling constants of the photon

field to other fields should be always smaller than present values. For example, let us
consider the interaction between the photon and a charged fermion as

Lint 3 −eψ̄γμψAμ. (3.87)

In order to evaluate the effective coupling constant, we should canonically normalize
the fields. Let us suppose that the fermion ψ is already canonically normalized. The
canonically normalized photon field is Ac

μ ≡ IAμ. Then the interaction term is rewritten
as

Lint 3 −
e

I
ψ̄γμψAc

μ. (3.88)

It is now clear that e/I is the effective coupling constant. Therefore if I � 1, the effective
coupling constant becomes large and the tree level analysis would be invalidated. In order
to justify the tree level analysis, we need to assume that I is bounded from below by a
positive constant I0. For simplicity we set I0 to be the present value of I, i.e. I0 = 1.

Assumption 3: Small back reaction

The third assumption is that the kinetic energy density eq.(3.84) is smaller than that of
inflaton 12,

ρkin(kdiff , η) < ρinf for ηdiff ≤ η ≤ ηf , (3.89)

11 It is understood that the domain of integration over k in eq.(3.84) is the same as in eq.(3.14). As a
result, ρkin(kdiff , η) is not the sum of all modes that exist during inflation but the sum of modes whose
scales are relevant to observed cosmic magnetic fields.
12We are interested in modes with k < kdiff only. One can show that these modes do not significantly

contribute to the vacuum enegy part of ρkin. Validity of the effective field theory requires that the
contribution of each mode ωk to the vacuum energy must be smaller than the Planck mass scale MPl.
Hence, |ρvac(kdiff , η)| < (Maxk≤kdiff |ωk|)(kdiff/a)3 < MPlH

3 � ρinf for ηdiff ≤ η ≤ ηf . Therefore
distinction between renormalized and unrenormalized expressions is irrelevant for (3.84). One can show
that such distinction is unimportant also for (3.14).
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where ηf is the conformal time at the end of inflation and hereafter we ignore the time-
dependence of the inflaton energy density ρinf .
This assumption is closely related to the condition for avoidance of the back reaction

problem

|ρkin(η) + ρint(η)| < ρinf for ηdiff ≤ η ≤ ηf . (3.90)

Note that eq.(3.89) and eq.(3.90) are different. In general, the total energy density of the
photon field includes not only the kinetic energy density ρkin but also the interaction en-
ergy density ρint due to the additional interaction terms Lint. Also, ρkin(η) in (3.90) should
be understood as ρkin(∞, η) and thus is in general larger than ρkin(kdiff , η) in (3.89). If
the interaction energy density is non-negative (ρint ≥ 0) then eq.(3.90) requires eq.(3.89).
Even if the interaction energy is negative (ρint < 0), unless the two contributions ρkin

and ρint cancel each other with a sufficiently good precision, eq.(3.90) generically requires
eq.(3.89). Therefore the third assumption eq.(3.89) is mandatory unless negative ρint

precisely cancels out positive ρkin.
In sec. 3.3.1.3, we confirm the necessity of the third assumption in the case of gauge

and local Lorentz invariant quadratic interactions and explore the possibility of the precise
cancellation between ρkin and ρint.

Assumption 4: Magnetogenesis during inflation

The fourth assumption is that all observed magnetic fields are generated during inflation.
In particular, the conformal symmetry of the photon field action is broken appreciably
only in the inflationary era. Since the electric conductivity of the universe increases after
the completion of reheating [21, 65] and by assuming the instantaneous reheating, we
have 13

B2
eff(ηnow) ≤ a4

fB
2
eff(ηf ), (3.91)

where we have set a(ηnow) = 1.
By using eq.(3.86), (3.89) and the fact that Beff is smaller than the usual definition

of magnetic field strength (0 < F (kL) ≤ 1), we obtain

B2
eff(ηdiff) < 2ρinf . (3.92)

Assuming the instantaneous reheating, we find the scale factor at the end of inflation is
given by

a4
f =

ργ

ρinf

(3.93)

where ργ ' 5.7 × 10−125M4
Pl ' 5.2 × 10−12G2 is the present energy density of radiation.

13With the electric conductivity σc, the equation of motion of the vector potential is modified as
Äi(t, x)+(H +σc)Ȧi(t, x)−∂2

j Ai(t, x) = 0 [65]. Thus with a very high conductivity, Ai becomes almost
constant, the electic field vanishes and the magnetic field behaves as Bi ∝ a−2 on large scales. This
phenomena is called the “freeze” of magnetic fields.
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Eq.(3.91), (3.92), (3.93) and (3.14) lead to the following inequality.

a4
diffB2

eff(ηdiff)

a4
fB

2
eff(ηf )

< 10−42 × exp[−4(ΔN − 35)]

(
Bobs

10−15G

)−2

, (3.94)

where ΔN ≡ ln(af/adiff). This inequality implies that

a4
diffB2

eff(ηdiff) � a4
fB

2
eff(ηf ), (3.95)

and thus states that the magnetic fields have to be significantly amplified during inflation
to explain the observational lower limit, eq.(3.14).

3.3.1.2 Upper limit on inflation energy scale

With the four assumptions stated in the previous sub-subsection, we are now ready to
derive the upper limit on the inflation energy scale. The derivation is independent of
details of inflationary magnetogenesis models, the behavior of photon mode functions or
the spectrum of the electromagnetic fields.
Independently from the specific functional form of the mode function Ak(η), it can

be shown that

|Ak(ηf )|
2 − |Ak(ηdiff)|2 =

∫ ηf

ηdiff

dη 2|Ak(η)| |Ak(η)|′

≤
∫ ηf

ηdiff

dη

k
2k|Ak(η)| |A′

k(η)|

≤
∫ ηf

ηdiff

dη

k

(

k2|Ak(η)|2 + |A′
k(η)|2

)

, (3.96)

where we have used the general inequalities |z(η)|′ ≤ |z′(η)| for a complex function z(η)

and 2xy ≤ x2 + y2 for real numbers x and y. Multiplying the both ends of eq.(3.96) by
F (kL)k4/π2 and integrating it over k from 0 to kdiff , we obtain

a4
fB

2
eff(ηf ) − a4

diffB2
eff(ηdiff) <

α

L

∫ ηf

ηdiff

dη a4(η)

∫ kdiff

0

dk

k
[PE(η, k) + PB(η, k)] , (3.97)

where we have used the second inequality listed in (3.11). Using the second, third and
fourth assumptions as well as eq.(3.95), we obtain

B2
eff(ηnow) <

2α

L
ρinf

∫ ηf

ηdiff

dη a4(η) '
2α

3HinfL
a3

fρinf (3.98)

where Hinf (' const.) is the Hubble expansion rate during inflation.
Note that 1/Hinf and a3

f , which appear in the r.h.s. of (3.98), are decreasing functions
of the inflation scale. Indeed, by substituting (3.93) for af and using the Friedmann
equation for Hinf , we can see that the r.h.s. of (3.98) is a decreasing function of the
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inflation scale. Hence, substituting eq.(3.14) and eq.(3.93) into eq.(3.98), we finally obtain
the upper limit on the inflation energy scale,

ρ
1/4
inf <

2α
√

3L
ρ3/4

γ MPlB
−2
obs ≈ 2.5 × 10−7MPl ×

(
Bobs

10−15G

)−2

. (3.99)

Note this upper limit can become even stronger if details of reheating is taken into
consideration instead of eq.(3.93). Provided that the dominant energy density behaves
like matter (∝ a−3) during reheating, the right-hand side of eq.(3.99) is multiplied by
an additional factor (ρreh/ρinf)

1/4 < 1, where ρreh is the energy density at the end of
reheating era.
Eq.(3.99) can be converted into the upper bound on the tensor-to-scalar ratio r under

the slow-roll approximation,

r < 10−19 ×

(
Bobs

10−15G

)−8

. (3.100)

Therefore, if all observed cosmic magnetic fields are generated during inflation, it is
extremely difficult to detect any signatures of primordial gravitational waves, for example
direct detections or CMB B mode polarization. Conversely, if some observations reveal
that r is larger than the upper bound (3.100), it implies that inflation cannot explain the
origin of cosmic magnetic fields under the four assumptions.
Now let us discuss the intuitive understanding of the reason why we obtain the upper

limit on the inflation energy scale. Roughly speaking, a4PB has to increase significantly
during inflation for inflationary magnetogenesis (see eq.(3.95)). It is easy to show in the
same way as eq.(3.96) that

1

k

d

dη

(
a4(η)PB(η, k)

)
≤ a4(η) (PE(η, k) + PB(η, k)) . (3.101)

From the second and third assumption we know right-hand side of eq.(3.101) integrated
by lnk should be smaller than a4ρinf . Thus essentially, time variation of a4PB is bounded
from above by a4ρinf . Then we can rewrite a4ρinf by using eq.(3.93) as

a4(η)ρinf = ργe
−4N , N ≡

√
ρinf

3M2
Pl

(tf − t). (3.102)

where N is e-folding number, t is cosmic time and tf denotes the end of inlation. Therefore
a4ρinf is actually emdecreasing function of ρinf during inflation. Since lower ρinf is favored
to relax the upper bound on time variation of a4PB, we obtain the upper bound on
inflation energy scale.

3.3.1.3 Additional Interaction Terms

The action for the photon field consists of not only the kinetic term Lkin but also the addi-
tional interaction terms Lint. As already mentioned below eq. (3.90), the third assumption



50 Chapter 3. INFLATIONARY MAGNETOGENESIS

eq.(3.89) is avoidable if negative ρint precisely cancels out positive ρkin. Therefore whether
such a precise cancellation is possible is a significant question. The answer we shall draw
in the following discussion is that it is difficult to achieve such a cancellation. Here, it is
perhaps worthwhile stressing that, as long as the four assumptions (including the third
one) are satisfied, our main result eq.(3.99) holds even if ρint and ρkin precisely cancel out.

Gauge and Lorentz invariant quadratic term

In the quadratic level, the most general renormalizable interaction term which preserves
gauge and local Lorentz symmetry is given by

Lint =
1

8
f(η)εμνρσFμνFρσ +

1

2
m2(η)AμA

μ, (3.103)

where εμνρσ is the totally anti-symmetric tensor with ε0123 = 1/
√
−g, f(η) is a function

of homogeneous scalars. The first term is called axial coupling term [22, 25]. The second
term is the effective mass term of the photon induced by expectation values of charged
scalars. It stems from the kinetic term of the charged scalars, and the positivity of the
time kinetic term implies the positivity of the mass squared m2. This term spontaneously
breaks the U(1) gauge symmetry, and the longitudinal mode of photon field becomes a
physical degree of freedom.
Actually, the axial coupling term does not contribute to the energy density of the

photon field. Since the axial coupling term does not depend on the metric, its contribution
to the energy momentum tensor is exactly zero. The effective mass term does contribute
to ρint but the contribution is always positive because of the positivity of the mass squared.
Therefore the cancellation between ρint and ρkin cannot occur.

Model with negative interaction energy

There is an existing model which gives a emnegative energy contribution from an addi-
tional interaction term. Turner and Widrow [21] proposed a model with non-minimal
coupling, Lint ∝ RAμA

μ, where R is the Ricchi scalar. This coupling can become an
effective mass term of photon with negative mass squared. However this model has three
critical problems. First, the longitudinal mode of photon becomes ghost [59, 28, 74].
Second, the negative energy contribution from Lint exceeds ρinf and the back reaction
spoils inflation when we require generated magnetic field is sufficient [28]. Third, this
coupling explicitly breaks the gauge symmetry.

Energy conserving term

From purely phenomenological viewpoints, let us investigate the additional interaction
term of the form

√
−gLint =

1

2
a2J2(η)V 2

i (J2 > 0) (3.104)

where J(η) is a function of homogeneous scalar fields and Vi is the photon vector mode,
Aμ = (A0, Vi + ∂iS) , ∂iVi = 0. This term is effective mass term of photon field with a
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negative mass squared. Note that this term breaks both gauge invariance and Lorentz
invariance. It does not yield ghost field because it contains only vector modes by break-
ing Lorentz symmetry and we still assume that the kinetic term of photon is given by
eq. (3.82). Although it may be hard to embed such a term in a viable elementary particle
theory, it is worth investigating it since we can find an interesting way to realize the
cancellation between ρint and ρkin.
From eq.(3.104), the equation of motion is given by

A′′
k +

(
k2 − a2J2

)
Ak = 0. (3.105)

Here we have assumed I(η) = 1 for simplicity, since otherwise the weak coupling effect
due to I � 1 would make the interaction term irrelevant. At the same time we require
the cancellation between ρint and ρkin for each mode,

|A′
k|

2 + (k2 − a2J2)|Ak|
2 = 0. (3.106)

It is easy to show that eq.(3.105), eq.(3.106) and eq.(3.21) imply that

a2J2(η) = const. (3.107)

In other words, the coefficient of the quadratic term (3.104) should be constant.
The reason why only the interaction term with constant coefficient leads the can-

cellation is simple. It is the energy conservation. If there is no explicit dependence on
time in the action (for example, if the time-dependence due to the scale factor a(η) is
canceled by time-evolving scalars), then the energy of the system is conserved by virtue
of Noether’s theorem. In the case of eq.(3.104), if J(η) cancels the time dependence of
a(η), the photon energy (with respect to the conformal time η) is conserved. Note that
the kinetic term of the photon field is originally free from a(η). Therefore the energy
density of photon does not increase even if the electromagnetic field strength increases.
It is notable that, for this mechanism to work, the dynamics of the scalar fields included
in J(η) has to restore the time translation symmetry accidentally.
The above analysis implies that the magnetogenesis from inflation whose energy is

larger than the constraint of eq.(3.99) may not be impossible in principle. However, in
practice it is not easy to realize a model which exploits the energy conserving mechanism
because the accidental symmetry restoration by the scalar field dynamics can be easily
spoiled by various effects such as the back reaction of the photon field. Therefore it is fair
to say that all the four assumptions (including the third one) are likely to be mandatory
in a rather broad class of models and the derived upper limit on the inflation energy scale
is considerably general.

3.3.1.4 Summary of subsection 3.3.1

In this subsection we have derived a universal upper limit on the inflation energy scale
under the following four assumptions. (i) The kinetic term of the photon field is of the
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canonical form up to a time-dependent overall factor. (ii) The effective coupling constants
do not exceed present values and thus do not exhibit strong coupling. (iii) The kinetic
energy of the photon field is always lower than the inflaton energy density during inflation.
(iv) All observed cosmic magnetic fields are generated during inflation.
The derived constraint is eq.(3.99), ρ

1/4
inf < 2.5 × 10−7MPl × (Bobs/10−15G)−2. As

a consequence, the tensor-to-scalar ratio r is bounded from above as eq.(3.100), r <

10−19 × (Bobs/10−15G)−8. We hardly expect that inflation is the origin of both cosmic
magnetic fields and detectable gravitational waves if Bobs > 10−15G. Therefore the future
detection of signatures of inflationary gravitational waves, if any, would imply tension
between inflationary magnetogenesis and observations.
Although our constraint is valid in fairly broad class of inflationary magnetogenesis

scenarios, we have investigated the possibility to evade it. In order to evade the constraint,
at least one of the assumptions should be violated. The third assumption can be violated
only if the energy density due to additional interaction terms and the kinetic energy
density precisely cancel out. We have considered a possible mechanism which exploits
a energy conservation law to realize the cancellation. However, it seems a challenge to
build a realistic model equipped with such a mechanism.
Nonetheless, the resultant bound is expected to be useful, providing a new judgment

condition. Namely, if tensor-to-scalar ratio is detected in the future, any possibilities of
magnetogenesis model within our assumptions will be excluded. Alternatively, if one can
derive a lower limit on inflation energy scale by different arguments for a class of models
then the upper limit can be used to rule out the class of models. In this sense the upper
bound we have found may be considered as an obstacle to inflationary magnetogenesis
as well as an important guideline for model building.

3.3.2 Model-independent argument on the curvature perturba-
tion problem

In this subsection 14 , we develop a model-independent argument on the curvature pertur-
batino problem. In inflationary magnetogenesis models, additional primordial curvature
perturbations are inevitably produced from iso-curvature perturbations due to generated
electromagnetic fields. We explore such induced curvature perturbations in a model in-
dependent way and derive a severe upper bound on the energy scale of inflation from
the observed cosmic magnetic fields and the observed amplitude of the curvature per-
turbation. We show that if one requires inflation magnetogenesis is responsible for the
generation of the observed magnetic fields and assumes no additional amplification after
inflation, the inflation energy scale is constrained by the curvature power spectrum Pζ as

Pobs
ζ > Pem

ζ ⇒ ρ
1/4
inf < 30GeV ×

(
pB

1Mpc−1

) 5
4
(

Bobs

10−15G

)−1

, (3.108)

14This subsection is based on my work [34].
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where ρinf is the energy scale of inflation, pB > 1Mpc−1 is the peak wave number of the
void magnetic field and Bobs is the magnetic field strength today [34]. Therefore, without
a dedicated low energy inflation model or an additional amplification of magnetic fields
after inflation, inflationary magnetogenesis on Mpc scale is generally incompatible with
CMB observations.

3.3.2.1 Basis of the idea

In this sub-subsection, we briefly explain our approach to obtain the model independent
constraint.
Again, remember the reported lower bound for the peak strength of the magnetic field

is given by [16, 17]

B(ηnow, pB) & 10−15G ×

{(
pB

1Mpc−1

)1/2

(pB > 1Mpc−1)

1 (pB < 1Mpc−1)
, (3.109)

where B(ηnow, k) denotes the void magnetic field at present in Fourier space, pB is its
peak wave number. Note that B(ηnow, k) is assumed to have a peak at k = pB with a
peak width Δ ln k = O(1) in accordance with the definite correlation length p−1

B ' LB.
15 In this subsection, we focus on the case with pB ≥ 1Mpc−1.
Let us discuss general properties of electromagnetic fields in the FLRW universe in-

cluding the inflation era. In the FLRW universe, the Fourier transformed components of
the electromagnetic fields are given in terms of the vector potential as

Ei(η, k) = −a−2∂ηAi(η, k), Bi(η, k) = a−2iεijl kjAl(η, k), (3.110)

in the radiation gauge. Here, a is the scale factor, k denotes wave number, η denotes
conformal time and Ai(η, k) is the vector potential in Fourier space. Note that Bi is
proportional to a−2 and substantially decrease as the universe expands. For simple dis-
cussion about the strength of the electromagnetic fields, here we suppress the vector legs
of Ei, Bi and Ai. A mathematically strict treatment including the vector legs will be
shown in the following sections.
If the magnetic field is generated during inflation and it monotonically decreases by

the adiabatic dilution after the inflation, the present lower bound B(ηnow, pB) & 10−15G
can be translated into the lower bound on the strength of the magnetic field at the end
of inflation as

B(ηf , pB) & 10−15G

(
anow

af

)2

= 2 × 1040G

(
ρ

1/4
inf

1015GeV

)2

, (3.111)

where subscript f denotes the end of inflation and the instantaneous reheating is as-
sumed for simplicity. Therefore, to explain the observational lower bound by inflationary

15 A more rigorous treatment of the magnetic lower bound is discussed in sec. 3.1.2.3.



54 Chapter 3. INFLATIONARY MAGNETOGENESIS

magnetogenesis, strong magnetic fields should be produced during inflation. However,
the magnetic field also decreases rapidly during inflation because of the factor a−2. To
compensate the adiabatic dilution and produce the magnetic field effectively, the vector
potential A(η, pB) must be amplified at least faster than a2 as

A(η, pB) ∝ |η|−n (n > 2). (3.112)

In such case where the vector potential evolves in time, from eq. (3.110) we can easily find
that the amplitude of the electric field should be much larger than that of the magnetic
field on super-horizon scales. From eqs. (3.110) and (3.112), we obtain

∣
∣
∣
∣
E

B

∣
∣
∣
∣ =

∣
∣
∣
∣

n

kη

∣
∣
∣
∣ = neNk � 1 (on super-horizon scales), (3.113)

where Nk ≡ − ln |kη| is the e-fold number measured from the end of inflation to the time
at the horizon exit of the k mode. This equation means that at the end of inflation the
electric field is bigger than the magnetic field whose strength is eq. (3.111) by the factor
of neNpB . Hence it is easy to imagine that including the effect of such strong electric field
into the investigation of the inflationary magnetogenesis would give a strong constraint
on the scenarios.

Model-independent approach

While most previous works specify a model of magnetogenesis and fix the behavior of
the vector potential A(η, k), we assume A(η, k) is well approximated by a power-law of
η only for the last one e-fold of inflation. It should be noted that the vector potential
A(η) can be a more complicated function of η in general. In such case, the approximation
of the simple power-law gets worse for considering long duration. However, in terms of
obtaining a conservative constraint in model independent approach, it should be sufficient
to focus on the contribution from the last one e-fold before the end of inflation and assume
constant n during such short duration. We also consider only the contribution from the
electromagnetic fields around the peak scale k ∼ pB as shown in (3.109). Of course, in
general the electromagnetic fields might have the power at the separate scales from the
peak with depending on the models and they also give some contributions. Also in this
respect, our constraint should be conservative, which is obtained in model independent
approach. Thus, the key assumption of this argument for the vector potential is given by

A(η, k) =

(
η

ηf

)−n

A(ηf , k), for eηf ≤ η ≤ ηf , k ∼ pB, and n = const. (3.114)

By using this assumption for the vector potential, we will calculate the curvature pertur-
bation induced by the electric field for the last one e-folding time and obtain the constraint
by requiring that the induced curvature perturbation is smaller than the observed value
as eq. (3.108).
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Before closing this sub-subsection, it should be noted that the constraint apparently
becomes very weak when A(η, pB) significantly grows before N = 1 and A(η, pB) is
nearly constant, |n| � 1, for the last one e-fold. However, in that case, we can obtain
an even more stringent constraint by considering not last one e-fold but the time when
n ∼ O(1) before the last one e-fold. The details of this case will be discussed in last part
of sec. 3.3.2.3.

3.3.2.2 Power spectrum of induced curvature perturbations

In this sub-subsection, we derive an equation that evaluates the power spectrum of the
curvature perturbation induced by the electric field during inflation. As we discuss in
sec. 3.2.3.1, the curvature perturbation induced by electromagnetic fields on super-horizon
scales is given by (see eq. (3.38)) [30]

ζem
k = 2

∫
dN

ρem
k

ε ρinf

. (3.115)

The energy density of the electromagnetic field in Fourier space ρem
k is given by

ρem
k =

1

2

∫
d3p d3q

(2π)3
δ(p + q − k) [E(η, p) ∙ E(η, q) + B(η, p) ∙ B(η, q)] . (3.116)

Note since ρem = (E2 + B2)/2 in the real space, ρem
k is written in terms of the convo-

lution of the electromagnetic fields. In this subsection, the kinetic term of the Maxwell
theory, L = −F μνFμν/4, is assumed. If one consider the kinetic coupling model where
an arbitrary function of time I(η) is multiplied, L = −I(η)F μνFμν/4, eq. (3.116) is also
multiplied by I(η) (The relation between E and B given by eq. (3.113) still holds.). In
such case, to avoid the strong coupling problem, I(η) should be larger than unity even
during inflation. Therefore, ρem

k is larger than eq. (3.116) and the resultant constraint
becomes tighter. In other words, eq. (3.116) is a conservative estimate in view of the
kinetic coupling model. Moreover, in inflationary magnetogenesis models, some interac-
tion terms between Aμ and other fields are considered to amplify the magnetic field. In
those cases, the energy density of the interaction terms also contribute to source ζ (see
sec. 3.3.1.3). Nonetheless they can be conservatively ignored.
In FLRW universe, when electromagnetic fields do not have helical component, the

power spectra of the electromagnetic fields are respectively defined as 16

〈Ei(η, k)Ej(η, k′)〉 ≡ (2π)3δ(k + k′)
1

2

[
δij − k̂ik̂j

] 2π2

k3
PE(η, k), (3.117)

〈Bi(η, k)Bj(η, k′)〉 ≡ (2π)3δ(k + k′)
1

2

[
δij − k̂ik̂j

] 2π2

k3
PB(η, k), (3.118)

16We consider the non-helical case where the parity is not violated. The extension to the helical case
is straightforward [26].



56 Chapter 3. INFLATIONARY MAGNETOGENESIS

where 〈∙ ∙ ∙ 〉 denotes the vacuum expectation value. The gauge field (or the vector poten-
tial) Ai(η, x) is quantized in the same way as eq. (3.18). First, substituting eq. (3.116)
into eq. (3.115), we obtain

〈ζem
k ζem

k′ 〉 =

∫
dNdN ′ 1

ε ρinf

1

ε ρinf

∫
d3p d3qd3p′ d3q′

(2π)6
δ(p + q − k)δ(p′ + q′ − k′)

× 〈(Ep ∙ Eq + Bp ∙ Bq) (Ep′ ∙ Eq′ + Bp′ ∙ Bq′)〉 . (3.119)

Here, 4-point correlation functions of the electromagnetic fields appear. Then the 4-point
correlation function of E can be computed as

〈Ep ∙ Eq Ep′ ∙ Eq′〉 = a−4(η)a−4(η′)
∑

λ,σ,λ′,σ′

ε
(λ)
i (p̂)ε

(σ)
i (q̂)ε

(λ′)
j (p̂′)ε

(σ′)
j (q̂′)

× ∂ηAp(η)∂ηAq(η)∂η′Ap′(η
′)∂η′Aq′(η

′)

×
〈(

a(λ)
p + a

†(λ)
−p

)(
a(σ)
q + a

†(σ)
−q

)(
a

(λ′)
p′ + a

†(λ′)
−p′

)(
a

(σ′)
q′ + a

†(σ′)
−q′

)〉
. (3.120)

Since the bracket of the annihilation/creation operators yields 2(2π)6δ(p + q′)δ(p′ +

q)δλσ′
δλ′σ [32], performing the q and q′ integrals by using the delta functions, one obtains

∫
d3q d3q′

(2π)6
〈Ep ∙ Eq Ep′ ∙ Eq′〉

= 2a−4(η)a−4(η′)∂ηAp(η)∂ηA
∗
p′(η)∂η′Ap′(η

′)∂η′A∗
p(η

′)
[
1 + (p̂ ∙ p̂′)

2
]
. (3.121)

Repeating similar calculations, one can show
∫

d3q d3q′

(2π)6
〈Ep ∙ Eq Bp′ ∙ Bq′〉

= 4a−4(η)a−4(η′)∂ηAp(η)∂ηA
∗
p′(η)Ap′(η

′)A∗
p(η

′) [p ∙ p′]
2
, (3.122)

∫
d3q d3q′

(2π)6
〈Bp ∙ Bq Bp′ ∙ Bq′〉

= 2a−4(η)a−4(η′)Ap(η)A∗
p′(η)Ap′(η

′)A∗
p(η

′) p2p′2
[
1 + (p̂ ∙ p̂′)

2
]
. (3.123)

As we discussed in sec. 3.3.2.1, the magnetic field is far smaller than the electric field
on super-horizon. Thus we neglect the contributions that include B, namely eqs. (3.122)
and (3.123), and focus on eq. (3.121). Note that this procedure underestimates eq. (3.119).
Substituting eq. (3.121) into eq. (3.119), we obtain

〈ζem
k ζem

k′ 〉 > 2δ(k + k′)

∫
dNdN ′ 1

ε ρinf

1

ε ρinf

∫
d3p d3p′δ(p − p′ − k)

∂ηAp(η)∂ηA∗
p′(η)

a4(η)

∂η′Ap′(η
′)∂η′A∗

p(η
′)

a4(η′)

[
1 + (p̂ ∙ p̂′)

2
]
. (3.124)
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By using the definition of the curvature power spectrum eq. (3.53), eq. (3.124) can be
rewritten in terms of the induced power spectrum Pem

ζ as

Pem
ζ (k) >

k3

23π5

∫
dNdN ′ 1

ε ρinf

1

ε ρinf

∫
d3p d3p′δ(p − p′ − k)

∂ηAp(η)∂ηA∗
p′(η)

a4(η)

∂η′Ap′(η
′)∂η′A∗

p(η
′)

a4(η′)

[
1 + (p̂ ∙ p̂′)

2
]
. (3.125)

This expression is a general result.
Since we consider the case where the electromagnetic fields has a peak strength at

pB ≥ 1Mpc−1 that is much smaller than the Planck pivot scale k = 0.05Mpc−1, the delta
function δ(p − p′ − k) in the integration in terms of p and p′ can be approximated by
δ(p − p′). Performing the p′ integral with δ(p − p′), eq. (3.125) reads

Pem
ζ (k) >

k3

22π5

∫
dNdN ′ 1

ε ρinf

1

ε ρinf

∫ k

d3p
|∂ηAp(η)|2

a4(η)

|∂η′Ap(η
′)|2

a4(η′)
. (3.126)

By using eq. (3.25), we finally obtain

Pem
ζ (k) >

k3

4π

∫
dNdN ′ 1

ε ρinf(η)

1

ε ρinf(η′)

∫ k d3p

p6
PE(η, p)PE(η′, p). (3.127)

In the following discussion, we investigate the constraint on the inflationary magnetoge-
nesis based on the above expression with the observed lower bound for the magnetic field
given by eq. (3.109).

3.3.2.3 Model independent constraint

In this sub-subsection, we discuss the condition that the induced curvature power spec-
trum eq. (3.127) does not exceed the observed value. That condition leads to a general
and critical constraint on the inflationary magnetogenesis scenarios.
To evaluate eq. (3.127), we adopt the strategy outlined in sec. 3.3.2.1. In eq. (3.127),

the interval of the N integral should be performed from the end of inflation to the
time when the electric field is produced. In the standard inflationary magnetogenesis
models, the electric field is initially produced when the scale of interest exits the horizon
and evolves until the end of inflation. Then the integration interval should be N =

[0, ln |kηf |−1] where k is the scale of interest and N = ln |kηf |−1 denotes a time at the exit
of the horizon. However, the time dependence of the electric field from the initial time to
the end of inflation is quite dependent on what model is considered. Hence, as we have
discussed in sec. 3.3.2.1, to obtain the conservative constraint in a model independent
way, we consider only the integration during last 1 e-folds N = [0, 1] and assume that the
vector potential Ak(η) is a simple power-law during that period. Moreover, we consider
that the power spectrum of the electric field has a peak at a wavenumber pB which is
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related to the observed magnetic fields as shown in eq. (3.109). That is, we assume the
mode function Ak(η) as

Ak(η) =

(
η

ηf

)−n

Ak(ηf), (e ηf ≤ η ≤ ηf , k ∼ pB), (3.128)

and by substituting this into eq (3.25) we can relate the time dependent power spectrum
of the electric field to that of the magnetic field at the end of inflation as

PE(η, k) =
n2

k2η2
PB(η, k) =

n2

k2η2

(
η

ηf

)4−2n

PB(ηf , k), (e ηf ≤ η ≤ ηf , k ∼ pB). (3.129)

To connect the magnetic field at the end of inflation, ηf , and the present value, we assume
that no amplification of the magnetic field occurs and hence it dilutes adiabatically after
inflation, PB ∝ a−4. As we discussed above eq. (3.13), the magnetic fields on small scales
vanish until today due to the dissipation effect. However, such dissipation scale is about
1 AU which is much smaller than the scale of interest here and then the adiabatic dilution
should be valid [58]. For simplicity, we also assume the instantaneous reheating.17 Then
PB(ηf , k) is directly connected with the present PB(ηnow, k) as

PB(ηf , k) =
ρinf

ργ

PB(ηnow, k), (3.130)

where ργ ≈ 5.2×10−12G2 is the present energy density of radiation. The lower bound for
the strength of the magnetic field given by eq. (3.109) is rewritten in terms of the power
spectrum as

PB(ηnow, k) & Pobs
B (pB) ≡ 10−30G2

(
pB

1Mpc−1

)

, for k ∼ pB ≥ 1Mpc−1. (3.131)

Substituting eqs. (3.129), (3.130) and (3.131) into eq. (3.127), the p integral in eq. (3.127)
reads

∫
d3p

p6
PE(η, p)PE(η′, p) =

(
ρinf

ργ

)2
n4

η2η′2

(
η

ηf

)4−2n(
η′

ηf

)4−2n ∫
d3p

p10
P2

B(ηnow, p)

& 4π

(
ρinf

ργ

)2
n4

η2η′2

(
η

ηf

)4−2n(
η′

ηf

)4−2n (
Pobs

B (pB)
)2 p−7

B

7
,

(3.132)

where eηf ≤ η, η′ ≤ ηf . In the second line of the above equation, an inequality comes
from the assumption that PB(ηnow, p) ' constant in p for p ∼ pB and PB(ηnow, p) ' 0 for
p � pB and p � pB while it may have a finite value (see the discussion below eq. (3.109)).

17In sec. 3.3.2.4 we relax this assumption for the reheating stage and show that the similar constraint
on the reheating energy scale ρreh can be obtained.
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Then, as we have discussed in sec. 3.3.2.1, N integral within N = [0, 1] in eq. (3.127) can
be calculated as

η2n−4
f

∫ 1

0

dN
η2−2n

ε ρinf

> ρ−1
inf η2n−4

f

∫ e ηf

ηf

dη η1−2n = ρ−1
inf η−2

f

1 − e2−2n

2n − 2
, (3.133)

where an inequality comes from the fact that we have used 0 < ε ≤ 1 and dN = −aHdη '
1

1−ε
d ln η > d ln η.18 We have also assumed that the energy density of the inflaton ρinf

does not significantly vary for the last 1 e-fold. Thus, we can obtain the conservative
lower bound for the power spectrum of the curvature perturbations induced from the
electromagnetic fields during inflation as

Pem
ζ (k) >

1

7

[

n2 1 − e2−2n

2n − 2

]2(
k

pB

)3

e4NB

(
Pobs

B

ργ

)2

, (3.134)

where we define |pBηf |−1 = eNB and NB is the e-folding number measured between the
end of inflation and a time when the pB mode exits the horizon during inflation. NB can
be written in terms of the energy density of the inflaton ρinf and pB as [75, 76]

NB ≥ 58.8 − ln

(
pB

H0

)

+ ln

(
ρ

1/4
inf

1015GeV

)

, (3.135)

where H−1
0 = 4.4Gpc is the present horizon scale and we have assumed the instantaneous

reheating, and then we have

Pem
ζ (k) >

e4×58.8

7

[

n2 1 − e2−2n

2n − 2

]2(
k

pB

)3(
H0

pB

)4(Pobs
B

ργ

)2
(

ρ
1/4
inf

1015GeV

)4

. (3.136)

Finally, by requiring that the induced curvature perturbations given by the above expres-
sion should not exceed the observed power spectrum Pobs

ζ (k) = 2.2 × 10−9 at the Planck
pivot scale k−1 = 20Mpc [40], we can obtain the upper bound on the inflationary energy
scale as

ρ
1/4
inf < 30GeV

(

n2 1 − e2−2n

2n − 2

)−1/2(
pB

1Mpc−1

)5/4(
Bobs

10−15G

)−1

. (3.137)

Here, we use Bobs given by Pobs
B = B2

obs(pB/1Mpc−1) for pB ≥ 1Mpc−1 which is the
strength of the magnetic field measured by blazar observations, as shown in sec. 3.3.2.1.
The result eq. (3.137) depends on the parameter n in the factor f(n) defined by

f(n) ≡

(

n2 1 − e2−2n

2n − 2

)−1/2

. (3.138)

f(n) is plotted in fig.3.6 as a function of n. In this figure, one can see f(n) ≤ 1 for
|n| ≥ 1. Therefore f(n) can be roughly replaced by 1 in eq. (3.137) in the case of |n| ≥ 1

and we obtain
18 The factor (1 − e2−2n)/(2n − 2) in eq. (3.133) should be replaced by 1 for n = 1.
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Figure 3.6 : The behavior of f(n) defined in eq. (3.138). The left panel is the log plot
while the right panel is the log-log plot. It is shown that f(n) = 1 for n = 1 and
n ≈ −0.42. One can easily see that f(n) ≤ 1 for |n| ≥ 1 and f(n) � 1 only for |n| � 1.

ρ
1/4
inf < 30GeV

(
pB

1Mpc−1

)5/4(
Bobs

10−15G

)−1

, (|n| ≥ 1). (3.139)

This is a main conclusion of this subsection.
As for the case with |n| � 1, namely Ap ' const, the constraint eq. (3.137) seems to

be relaxed because the electric field, E ∝ ∂ηAp, becomes very small. Nevertheless, for
|n| � 1, we can obtain a tighter constraint than eq. (3.139) by the following argument.
This argument is based on the discussion that in order to achieve effective inflationary
magnetogenesis there must exist a time when n ∼ O(1) during inflation even if |n| � 1

for the last one e-fold, as we have mentioned in the last part of sec. 3.3.2.1.
For the last 1 e-folding time of inflation, the magnetic power spectrum behaves as

PB ∝ a2n−4 (see eqs. (3.25) and (3.114)). Thus PB decreases in proportion to a−4 for
|n| � 1, in other words, PB becomes much larger as goes back in time during inflation. On
the other hand, to realize the effective production of the magnetic field during inflation,
PB must significantly increase and hence n should reach O(1) at some e-folding time Nc.
Let us estimate the induced Pem

ζ generated within N = [Nc, Nc + 1] by assuming that
Ak(η) is well approximated as

Ak(η) =

(
η

ηc

)−n

Ak(ηc), (e ηc ≤ η ≤ ηc, k ∼ pB), (3.140)

where ηc ≡ eNcηf . In such case, the p integral in eq. (3.127) reads
∫

d3p

p6
PE(p,N)PE(p,N ′)

=

(
ρinf

ργ

)2
n4

η2η′2

(
η

ηc

)4−2n(
η′

ηc

)4−2n ∫
d3p

p10
e8NcP2

B(p, ηnow)

& 4π

(
ρinf

ργ

)2
n4

η2η′2

(
η

ηc

)4−2n(
η′

ηc

)4−2n (
e4NcPobs

B (pB)
)2 p−7

B

7
. (3.141)
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This equation looks similar to eq. (3.132). However, note that since PB ∝ a−4 for
N = [0, Nc], the required strength of the magnetic field becomes large as PB(pB, ηc) =

e4NcPB(pB, ηf) at Nc. The time integration in eq. (3.127) is given by

η2n−4
c

∫ Nc+1

Nc

dNη2−2n = η2n−4
c

∫ e ηc

ηc

dη η1−2n = η−2
c

1 − e2−2n

2n − 2
. (3.142)

In addition, the slow-roll parameter ε is much smaller than unity because Nc is taken to
be a some time during inflation. Thus, Pem

ζ (k, ηc) is bounded as

Pem
ζ (k, ηc) >

1

7

[

n2 1 − e2−2n

2n − 2

]2(
k

pB

)3(Pobs
B

ργ

)2

e4NB ×

(
e4Nc

ε2

)

, (3.143)

where we use e4Nc/(pBηc)
4 = e4NB . Note that except for the last factor, e4Nc/ε2 � 1, this

equation is same as eq. (3.134). As a result, the constraint on ρ
1/4
inf becomes tighter by√

εe−Nc than eq. (3.139) in cases where |n| � 1 for the last one e-fold of inflation, as

ρ
1/4
inf < 30GeV

(
pB

1Mpc−1

)5/4(
Bobs

10−15G

)−1 √
εe−Nc , (|n| � 1). (3.144)

The reason why the stronger constraint is obtained can be understood as follows. If the
vector potential Ap stops growing and becomes constant during inflation (n ∼ 0), the
electric field becomes negligible. But, at the same time, the magnetic field begins to
rapidly decrease, B ∝ a−2. To achieve the sufficient magnetic production, much stronger
magnetic field should be generated before Ap stops. Therefore the induced curvature
perturbation that are generated right before Ap stops is larger than the case with |n| ≥ 1.
19

Consequently, we conclude that eq. (3.139) holds as a conservative and general con-
straint on inflationary magnetogenesis for any n:

ρ
1/4
inf < 30GeV

(
pB

1Mpc−1

)5/4(
Bobs

10−15G

)−1

, (pB ≥ 1Mpc−1). (3.145)

3.3.2.4 Non instantaneous reheating case

In this sub-subsection, we relax the assumption of the instantaneous reheating. First, it
is useful to introduce the reheating parameter [77, 78]:

R ≡

(
af

areh

)(
ρinf

ρreh

)1/4

=

(
areh

af

) 1−3w̄
4

=

(
ρreh

ρinf

) 1−3w̄
12(1+w̄)

, (3.146)

19On the other hand, right before Ap stops, the physical wave length of the mode p is smaller than that
at the end of inflation. Thus the hierarchy between the electric field and the magnetic field is milder (see
eq. (3.113)). Although this effect somewhat weakens the constraint, the bound on ρinf becomes tighter
than eq. (3.139), as a result.
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where subscript “reh" denotes the end of reheating (thermalization) and w̄ is the effective
equation of state parameter that is the averaged w over the intermediate era between the
end of inflation and the end of thermalization. When the assumption of the instantaneous
reheating is relaxed, two equations in sec. 3.3.2.3 are modified. One is eq. (3.130) which
should be modified as

PB(p, ηf) = R−4 ρinf

ργ

PB(p, ηnow). (3.147)

The other is eq. (3.135) and it is changed as

NB = 58.8 − ln

(
pB

H0

)

+ ln

(
ρ

1/4
inf

1015GeV

)

+ ln R. (3.148)

Therefore the generalization to non-instantaneous reheating cases can be taken into ac-
count by multiplying the right hand side of eq. (3.145) by R. If w̄ > 1/3 and R > 1, the
constraint on ρinf becomes milder because the dominant component of the energy density
decays faster than the magnetic fields.
Nevertheless, it is important that ρ

1/4
reh can not be bigger than the upper bound on

ρ
1/4
inf of the instantaneous reheating case, namely eq. (3.145). Since eq. (3.146) reads

ρ
1/4
reh = R

3(1+w̄)
1−3w̄ ρ

1/4
inf , ρ

1/4
reh can not exceed R

4
1−3w̄× (r.h.s of eq. (3.145)). On the other hand,

ρreh is smaller than ρinf , by definition. Except for w̄ = 1/3, the constraint on ρ
1/4
reh can be

written as

ρ
1/4
reh <

{
R

4
1−3w̄ × 30γGeV (w̄ > 1/3, R

4
1−3w̄ < 1)

ρ
1/4
inf < R × 30γGeV (w̄ < 1/3, R < 1)

, (3.149)

where γ ≡
(

pB

1Mpc−1

)5/4 (
Bobs

10−15G

)−1
. Therefore the reheating (thermalization) energy scale

ρreh is maximized in the instantaneous reheating where R = 1 and ρinf = ρreh.

3.3.2.5 Summary of subsection 3.3.2

In this subsection, we show that inflationary magnetogenesis is generally constrained
as eq. (3.145) by requiring that the curvature perturbation induced by the electric field
during inflation should be smaller than the Planck observation value: Pobs

ζ (k) = 2.2×10−9.
We emphasize that our argument is model independent as we outlined in sec. 3.3.2.1.
The main result eq. (3.145) indicates that inflationary magnetogenesis is under pressure
in several ways.
First, it is known that the reheating (thermalization) energy scale is bounded as

ρ
1/4
reh & 10MeV in order to achieve a successful BBN [79]. Therefore even if eq. (3.145) is
almost saturated, for example ρ

1/4
inf ∼ 10GeV, the reheating should be quickly completed.

Second, the generation of the observed curvature perturbation is in danger.
Eq. (3.145) can be translated as

Hinf < 2 × 10−7eV

(
pB

1Mpc−1

)5/2(
Bobs

10−15G

)−2

, (3.150)
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where Hinf is the Hubble parameter during inflation. For a scalar field to acquire a
perturbation during inflation, its mass should be smaller than Hinf . Thus inflaton field
or a spectator field which is responsible to produce Pobs

ζ must be extremely light during
inflation. During reheating era, however, it has to quickly decay into the standard model
particles to cause the BBN properly. Furthermore, in the case of single slow roll inflation,
eq.(3.150) and the COBE normalization indicate an extreme slow-roll ε < 4×10−62 which
demands a dedicated inflation model. It is interesting to note that eq.(3.150) corresponds
to the very small tensor-to-scalar ratio, r < 7 × 10−61. Hence a detection of background
gravitational waves in the future excludes inflationary magnetogenesis. 20

Third, in such a low reheating temperature, thermal production of the dark matter
or the baryon number seems hopeless. Since 30GeV is accessible by particle accelerators,
effects beyond the standard model have been severely restricted. To realize the dark
matter production and baryogenesis, a non-thermal mechanism like the direct decay of
inflaton should be considered.
In spite of these negative implications, since we have the observational evidence of the

magnetic fields in the universe and we are lack of a plausible magnetogenesis model, the
inflationary origin of the magnetic field is still an appealing idea. It should be noted that
we assume no amplification of the magnetic fields after inflation to derive eq. (3.145).
Thus our result might imply that inflationary magnetogenesis need an additional ampli-
fication or a non-adiabatic dilution of magnetic fields after inflation. If the magnetic field
generated during inflation is amplified by some mechanism like preheating process [23] or
the inverse cascade the constraint is alleviated.
Another possible way out from our constraint is to produce a large amplitude of the

vector potential before the horizon crossing. It is known that, in the so-called strong
coupling regime of the kinetic coupling model, the electric field is not much stronger than
the magnetic field and the backreaction and curvature perturbation problems are evaded
(if loop effects are neglected) [28]. This is because the vector potential Ak is almost
constant on super-horizon (n ' 0 in our language). The magnetic field is produced
since Ak has a large amplitude at the horizon crossing due to the small kinetic function.
However, as discussed below eq. (3.116), such a model suffers from the strong coupling
problem and reliable calculations are difficult to be done. If a large amplitude of a static
vector potential is realized without the strong coupling or one can take into account the
loop effects in some non-perturbative way, sufficient magnetogenesis might be achieved.

20See ref. [76] in which our model-independent constraint is followed up in the light of the BICEP2
result [80].
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3.4 Post-Inflationary Amplification in IFF Model

In the earlier sections, we review a conventional model of inflationary magnetogenesis,
namely the kinetic coupling model, and find that the model cannot generate primor-
dial magnetic field which is strong enough to explain the observations. We also derive
model-independent constraints on inflationary magnetogenesis based on the back reaction
problem and the curvature perturbation problem. Now we know that it is considerably
difficult to generate primordial magnetic fields with the sufficient strength only during
inflation.

Therefore, we seek the possibility to amplify the magnetic fields after inflation in this
section. It should be noted that we consider only the cases where primordial magnetic
fields are generated during inflation and an amplification mechanism works in addition
to that. Hence this possibility is still classified as inflationary magnetogenesis.

In this section, we examine the possibility that an amplification of the magnetic fields
occurs between the end of inflation and reheating in the framework of the kinetic coupling
model. Since I(η) in the kinetic coupling model can continue to vary even after inflation
if I is driven by a spectator scalar field which is not inflaton, the magnetic field can
be amplified after inflation. Indeed, in ref. [35], Kobayashi proposed a behavior of the
kinetic function I(η) with which the magnetic field is substantially amplified after the
end of inflation. Since he claimed the primordial magnetic field with the strength 10−15G
on Mpc scale can be generated in his model, it deserves scrutiny here.

Unfortunately, however, this model is under pressure by the curvature perturbation
problem as we will see in sec. 3.4.2 and sec. 3.4.3. The curvature perturbation problem
described in sec. 3.2.3 and sec. 3.3.2 refers to the curvature perturbation induced by the
electromagnetic fields during inflation. On the other hand, the electromagnetic fields
reach their maximum value during the inflaton oscillating phase in Kobayashi’s model
and hence we should calculate the curvature perturbation produced in the period. The
calculation can be done in a similar manner because the only difference is the background
evolution. With the proposed model parameters given in ref. [35], it is found that the
non-linear parameter fNL of the induced curvature perturbation is larger than the obser-
vational upper bound by the factor of O(104). Therefore the generation of the 10−15G
magnetic field on Mpc scale in this model with the proposed parameters is inconsistent
with the CMB observation.

3.4.1 Brief review on the model

In ref. [35], the author has shown primordial magnetic fields can be significantly amplified
after inflation. He considered the kinetic coupling model (see sec. 3.2 for a review on the
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original work), and the following behavior of the kinetic function I.

I(a) =






I1(a/a1)
−s (aIR < a < a1)

I1 (a1 < a < a2)

I1(a/a2)
−n (a2 < a < a3)

I1(a3/a2)
−n ≡ If (a3 < a)

, (3.151)

where inflation ends at a = ae between a1 and a2, namely a1 < ae < a2. This behavior is
shown in fig. 3.7. This rather complicated behavior looks artificial, while we consider it
as a toy model and do not discuss how to realize it.
The mode function of the vector potential Ak(η) can be solved with the Bunch-Davies

initial condition, eq. (3.23). Before I stops at a = a1, Ak on super-horizon is given by

IAk =
Γ(s − 1/2)

√
2πk

(
2aHinf

k

)s−1

, (|kη| � 1, a < a1). (3.152)

Since the power spectrum of electric and magnetic fields are defined as eq. (3.25), the
power spectra during inflation are obtained as

I2PB(a < a1) =
8Γ2(s − 1/2)

π3
H4

inf

(
2aHinf

k

)2(s−3)

,

I2PE(a < a1) =
8Γ2(s + 1/2)

π3
H4

inf

(
2aHinf

k

)2(s−2)

. (3.153)

Next, I stops varying at a = a1. When I is constant, the mode function behaves as a
plane wave, IAk = C+e−ikη + C−eikη, and the power spectra decay as a usual radiation
component, PE,PB ∝ a−4. Thus it is easily shown

PB = 4s2
(a1

a

)4

PB(a1), PE =
(a1

a

)4

PE(a1), (a1 < a < a2), (3.154)

(a)

Figure 3.7 : The behavior of I(a) given in eq. (3.151). aIR, ae and areh denote the scale
factor at the onset of magnetogenesis, the end of inflation and at reheating, respectively.



66 Chapter 3. INFLATIONARY MAGNETOGENESIS

where the 4s2 factor in PB comes from the junction condition at a = a1.
At a = a2, I begins to vary again. Note that for ae < a < areh, the inflaton is

oscillating and the evolution of the scale factor a is assumed to be the one in the matter
dominated (MD) universe,

η =
2

aH
∝ a

1
2 =⇒ I ∝ a−n ∝ η−2n. (3.155)

Then the mode function for a super-horizon mode is given by

Ak = D1 + D2η
4n+1, (|kη| � 1, a2 < a < a3), (3.156)

where D1 and D2 are constant which are determined by the junction condition at a2.
One can show that the power spectra for super horizon modes are given by

I2PB(a) =

(
4s − 2

4n + 1

)2

I2
(a1

a

)4
(

a

a2

)4n(
a1Hinf

aH

)2

PB(a1) ∝ a2n−3,

I2PE(a) = I2
(a1

a

)4
(

a

a2

)4n

PE(a1) ∝ a2n−4, (|kη| � 1, a2 < a < a3). (3.157)

Here we assume that the oscillation phase lasts sufficiently long,
(

a

a2

)2n
a1Hinf

aH
=

(
a

a2

)2n
a1

ae

√
a

ae

� 1, (3.158)

and the growing part of Ak (the second term in eq. (3.156)) is dominant. In this period,
although inflation has already ended, the magnetic field can be rapidly amplified due to
the varying I. Thus a post-inflationary amplification is realized in the kinetic coupling
model.
One also sees in eq. (3.157) that the magnetic field grows faster than the electric

field by a1/2 in this period. This is because of the behavior of the conformal time. For
Ak ∝ ηm, the ratio between the magnetic and the electric power spectrum is obtained as

PB

PE

=
k2|Ak|2

|∂ηAk|2
=

k2η2

m2
∝

{
a−2 (inflation)

a (MD)
. (3.159)

Therefore the hierarchy between PB and PE is being relaxed during MD era. 21

Finally, I reaches its final value If and stops varying at a3. Again, the plane wave,
Ak(η) = C̃+e−ikη + C̃−eikη, is the solution and the junction condition fixes the coefficients
C̃±. One can show that the resultant power spectra are

I2PB(a) = (4s − 2)2 I2
f

(a1

a

)4
(

a3

a2

)4n(
a1Hinf

aH

)2

PB(a1) ∝ a−3,

I2PE(a) = I2
f

(a1

a

)4
(

a3

a2

)4n

PE(a1) ∝ a−4, (|kη| � 1, a3 < a < areh). (3.160)

21 If the equation of state parameter is w, this ratio reads PB/PE ∝ a1+3w. Thus during the radiation
dominant era (w = 1/3), for example, this ratio increases more rapidly, PB/PE ∝ a2.
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Here PB is proportional to not a−4 but a−3 because the plane wave on super-horizon
scales is approximated as

sin2[k(η − η3)]

a4
'

k2η2

a4
∝ a−3, (MD). (3.161)

Using I1/If = (a3/a2)
n and considering the vector potential is freezed after reheating (see

the discussion below eq. (3.28)), one obtains the magnetic power spectrum for a > areh

as

PB(a > areh) =
128Γ2(s + 1/2)

π3

(a1

a

)4
(

a3

a2

)2n(
a1Hinf

arehHreh

)2(
2aHinf

k

)2(s−3)

H4
inf .

(3.162)
This is the main result in ref. [35].
In ref. [35], the author discussed the case with following parameters as an example.

Hinf = 10−6MPl ' 1012GeV, Hreh = 10−21GeV (Treh ' 50MeV), (3.163)

s =
5

2
, n = 6, (3.164)

aIRHinf = 10−6Mpc−1, a1Hinf = 104Mpc−1, (3.165)
a3

a2

= 1.4 × 106,
areh

a3

= 10, (3.166)

which correspond to H2 ' 10−10GeV and H3 ' 10−20GeV. These parameters give
PB ∼ 10−15G on Mpc scale without the backreaction problem 22,

ρEM(a1)

3M 2
PlH

2
1

∼ 10−3,
ρEM(a3)

3M2
PlH

2
3

∼ 10−1. (3.167)

However, the curvature perturbation problem was not considered there. If the amplitude
or the non-gaussianities of the curvature perturbation induced by the generated electro-
magnetic fields exceed the observed value or the observational upper bound, the model
is excluded. Therefore the induced curvature perturbation should be explored.

3.4.2 The induced curvature perturbation

In this subsection, we calculate the amplitude and the non-gaussianity of the curvature
perturbation induced by the generated electric field in the model discussed in ref. [ 35]
with the parameter shown in the previous section.

22For ae < a ≤ a3, inflation has already ended and it is not a problem if the electromagnetic fields
dominate the universe. However, since the electromagnetic fields grow due to the varying I which is
driven by not inflaton but a spectator field, the energy density of the spectator field is expected to
be larger than the electromagnetic field. Otherwise its dynamics would be significantly affected by the
electromagnetic fields.
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3.4.2.1 The electric energy density

From eq. (3.153) and eq. (3.160) (or eq. (4.14) in ref. [35]), we see that when a3 < a < areh,
the electric power spectrum for the super-horizon modes k � a1Hinf is

PE '
k4Γ2(s + 1

2
)

2π3I2
fa4

(
a3

a2

)2n(
2a1Hinf

k

)2s

. (3.168)

Substituting

s =
5

2
, n = 6, (3.169)

one finds

PE '
26

π3I2
f

(
a3

a2

)12

(a1Hinf)
5 k−1

a4
reh

(areh

a

)4

. (3.170)

Then we also use

a3

a2

= 1.4 × 106, a1Hinf = 104Mpc−1, a2
reh ≈ 3 × 10−63 MPl

Hreh

, (3.171)

with Hreh = 10−21GeV and obtain

PE ≈ 3.7 × 10−13GeV4 I−2
f

(
k−1

Mpc

)(areh

a

)4

. (3.172)

Remembering ρE(k) = I2

2
PE(k) and I(η) = If for a > a3, the electric energy spectrum is

given by

ρE(k) ≈ 2 × 10−13GeV4

(
k−1

Mpc

)(areh

a

)4

, (k < a1Hinf , a3 < a < areh). (3.173)

Since kIR ' 10−6Mpc−1, ρE(kIR) reaches 2× 10−7GeV4 at reheating. On the other hand,
the total energy density is

ρtot = 3M 2
PlH

2
reh

(areh

a

)3

≈ 2 × 10−5GeV4
(areh

a

)3

. (3.174)

Thus the large scale electric field accounts for ≈ 1% of the total energy density of the
universe at areh and even ≈ 10% at a3 = areh/10. Such a large amount of isocurvature
perturbation on large scale causes the curvature perturbation problem.

3.4.2.2 The curvature perturbation induced by the electric field

It has been well known that the curvature perturbation is constant on super-horizon
scales if any isocurvature component does not exist as we see in eq. (3.35). However, we
now have a considerable isocurvature component and hence the curvature perturbation
can grow even on super-horizon scales.
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Substituting the non-adiabatic pressure δp = ρem/3 and the background behavior
ṗ/ρ̇ ' 9H2/4m2 � 1 for the oscillating inflaton 23 into eq. (3.35) and performing the
time integration, we obtain the curvature perturbations induced from the electromagnetic
field as

ζem
k '

1

3

∫
dt

Hρem
k

ρtot

. (3.175)

The energy density of the electromagnetic field in Fourier space ρem
k is given by

ρem
k =

I2

2

∫
d3p d3q

(2π)3
δ(p + q − k) [E(η, p) ∙ E(η, q) + B(η, p) ∙ B(η, q)] . (3.176)

Note since ρem ∝ (E2 + B2) in the real space, ρem
k is written in terms of the convolution

of the electromagnetic fields. Ignoring the subdominant contribution from the magnetic
fields, and remembering the super-horizon electric field is written as

Ei(k) = a−2∂ηAk(η)
2∑

λ=1

ε
(λ)
i (k̂)

[
a

(λ)
k + a

†(λ)
−k

]
, (3.177)

where ε
(λ)
i is the polarization vector and ak is the annihilation operator, we obtain

ζem
k '

1

6

∫
dtH(t)

∫
d3p d3q

(2π)3
δ(p + q − k)

I2∂ηAp∂ηAq

a4ρtot

×
∑

λ,σ

ε
(λ)
i (p̂) ε

(σ)
i (q̂)

(
a(λ)
p + a

†(λ)
−p

)(
a(σ)
q + a

†(σ)
−q

)
, (3.178)

where we use the fact that the mode function Ak is a real number up to a constant phase
on super-horizon scales.

23Approximating the oscillationg inflaton by φ = φi(a/ai)−3/2 cos(mt) where ai denotes a certain time
after the onset of the oscillation, φi is the field value at the time and m is the mass of the inflaton, and
taking the one cycle average, one can show ṗ/ρ̇ ' 9H2/4m2 � 1.
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3.4.2.3 The calculation of the curvature power spectrum

From eq. (3.178), it can be shown that the power spectrum of the induced curvature
perturbation is given by

(2π)3δ(k1 − k2)
2π2

k3
1

Pem
ζ (k1) =

〈
ζem
k1

ζem
k2

∗
〉

'
1

36

∫
dt̃dt′H(t̃)H(t′)

∫
d3p1d

3q1d
3p2d

3q2

(2π)6
δ(p1 + q1 − k1)δ(p2 + q2 − k2)

×
I2∂η1Ap1∂η1Aq1

a4ρtot

(t̃)
I2∂η2Ap2∂η2Aq2

a4ρtot

(t′)

×
∑

λ,σ

ε
(λ1)
j1

(p̂1)ε
(σ1)
j1

(q̂1)ε
(λ2)∗
j2

(p̂2)ε
(σ2)∗
j2

(q̂2)

×
〈(

a(λ1)
p1

+ a
†(λ1)
−p1

)(
a(σ1)
q1

+ a
†(σ1)
−q1

)(
a(λ2)†
p2

+ a
(λ2)
−p2

)(
a(σ2)†
q2

+ a
(σ2)
−q2

)〉

=
2

36
δ(k1 − k2)

∫
dt̃dt′H(t̃)H(t′)

∫
d3p1d

3p2 δ(p1 + p2 − k1)

×
I2∂η1Ap1∂η1Ap2

a4ρtot

(t̃)
I2∂η2Ap2∂η2Ap1

a4ρtot

(t′)
(
δj1j2 − (p̂1)j1(p̂1)j2

)(
δj1j2 − (p̂2)j1(p̂2)j2

)
.

(3.179)

For simplicity, let us focus on the generation of the curvature perturbation only when
a3 < a < areh and only for kIR < k < a1Hinf . Note that this treatment underestimates
the induced curvature perturbation and hence the resultant constraint is conservative.
Eq. (3.173) can be rewritten as

a−2I∂ηAk =
√

2π2k−3ρE(k) ' 2 × 10−6k−2
(areh

a

)2

GeV2Mpc−
1
2 . (3.180)

With eq. (3.174), one also finds

H
I2∂η1Ap1∂η1Ap2

a4ρtot

(t) ≈ 2 × 10−7Hreh

(
t

t3

)− 5
3

(p1p2)
−2Mpc−1. (3.181)

The time integral with t = [t3, treh] yields
∫ treh

t3

dt̃ H
I2∂η1Ap1∂η1Ap2

a4ρtot

(t̃)

≈ 2 × 10−7

[(
treh
t3

) 2
3

− 1

]

(p1p2)
−2Mpc−1,

≈ 2 × 10−6(p1p2)
−2Mpc−1. (3.182)

Then we obtain

Pem
ζ (k) &

k3(2 × 10−6)2

(2π)32π218
Mpc−2

∫
d3p1d

3p2 δ(p1 + p2 − k1)
1 − (p̂1 ∙ p̂2)

2

p4
1p

4
2

. (3.183)
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This momentum integral can be evaluated by focusing on the identical two pole contri-
butions from p1 ∼ kIR and p2 ∼ kIR as

∫
d3p1d

3p2 δ(p1 + p2 − k1)
1 − (p̂1 ∙ p̂2)

2

p4
1p

4
2

'
2

k4

∫

kIR

d3p
1 − (p̂ ∙ k̂)2

p4

=
4π

k4

∫

kIR

dp

p2

∫ 1

−1

d(cos θ)
[
1 − cos2 θ

]

=
16π

3k4

∫

kIR

dp

p2
'

16π

3k4kIR

, (3.184)

where we use kIR � k. Thus finally we obtain

Pem
ζ & 4 × 10−7

(
0.002Mpc−1

kCMB

)(
10−6Mpc−1

kIR

)

. (3.185)

This value is larger than the Planck observation result [40], Pobs
ζ ≈ 2.2× 10−9, and hence

the model in ref. [35] with his choice of parameters is excluded.
With the parameters given in eq. (3.166), the electric power spectrum PE(k) has a

peak at k = kIR which is a far larger scale than the CMB scale, kIR � kCMB. However,
the electric mode at the large scale contributes to induce the curvature perturbation at
the CMB scale because the electric energy density is given by the squared of the electric
field ρE ∝ E2, it becomes the convolution in the Fourier space and it contributes to
different scales.

3.4.3 Calculation of fNL

Next, let us compute the bispectrum of the curvature perturbation induced by the electric
field when a3 < a < areh and for kIR < k < a1Hinf . From eq. (3.178), the three-point
correlation function of the induced curvature perturbation in Fourier space is given by

〈ζem(k1)ζ
em(k2)ζ

em(k3)〉 (treh) &

〈
3∏

i=1

1

6

∫ treh

t3

dtiH(ti)

∫ a1Hinf

kIR

d3pi d
3qi

(2π)3
δ(pi + qi − ki)

×
I2∂ηi

Api
∂ηi

Aqi

a4ρtot

(ti)
∑

λi,σi

ε
(λi)
ji

(p̂i)ε
(σi)
ji

(q̂i)
(
a(λi)
pi

+ a
†(λi)
−pi

)(
a(σi)
qi

+ a
†(σi)
−qi

)
〉

, (3.186)

where the inequality sign represents that the r.h.s underestimates the bispectrum because
of the limited time and momentum integrals. It can be shown that the expectation value
of the creation/annihilation operators yield
〈

3∏

i=1

(
a(λi)
pi

+ a
†(λi)
−pi

)(
a(σi)
qi

+ a
†(σi)
−qi

)
〉

= 8(2π)9δ(p1 + q2)δ(p2 + q3)δ(p3 + q1)δ
λ1σ2δλ2σ3δλ3σ1 . (3.187)



72 Chapter 3. INFLATIONARY MAGNETOGENESIS

Using these delta functions and the Kronecker deltas, one finds that eq. (3.186) reads,

〈ζem(k1)ζ
em(k2)ζ

em(k3)〉 (treh) & 6−3

∫ treh

t3

dt1dt2dt3

×
∫ a1Hinf

kIR

d3p1d
3p2d

3p3δ(p1 − p3 − k1)δ(p2 − p1 − k2)δ(p3 − p2 − k3)

× H
I2∂η1Ap1∂η1Ap3

a4ρtot

(t1)H
I2∂η2Ap2∂η2Ap1

a4ρtot

(t2)H
I2∂η3Ap3∂η3Ap2

a4ρtot

(t3)

×
(
δli − (p̂1)l(p̂1)i

)(
δij − (p̂2)i(p̂2)j

)(
δjl − (p̂3)j(p̂3)l

)
. (3.188)

The time integrations can be performed in the same way as the two-point function,
eq. (3.182), and then we obtain

〈ζem(k1)ζ
em(k2)ζ

em(k3)〉 (treh) &

(
10−6

3

)3

Mpc−3

∫ a1Hinf

kIR

d3p1d
3p2d

3p3

p4
1p

4
2p

4
3

δ(p1 − p3 − k1)

× δ(p2 − p1 − k2)δ(p3 − p2 − k3)
(
δli − (p̂1)l(p̂1)i

)(
δij − (p̂2)i(p̂2)j

)(
δjl − (p̂3)j(p̂3)l

)
.

(3.189)

This time we have the identical three pole contributions from pi ∼ kIR. Note that if
p1 ∼ kIR � kCMB and k1, k2, k3 ' kCMB, the delta functions require that p2 ' k2 and
p3 ' k3. For example the pole contribution from p1 ∼ kIR is given by

(r.h.s of eq. (3.189)) (3.190)

⊃ δ(k1 + k2 + k3) 4 × 10−20Mpc−3k−4
2 k−4

3

×
(
δij − (k̂2)i(k̂2)j

)(
δjl − (k̂3)j(k̂3)l

)∫

kIR

d3p1

p4
1

(
δli − (p̂1)l(p̂1)i

)

= δ(k1 + k2 + k3) 4 × 10−20Mpc−3 8π

3kIR

1 +
(
k̂2 ∙ k̂3

)2

k4
2k

4
3

, (3.191)

where we use
∫

dΩkk̂ik̂j = 4π
3

δij to perform the p1 integral. The other pole contributions
have similar forms. Then we obtain

〈ζem(k1)ζ
em(k2)ζ

em(k3)〉 (treh) &

δ(k1 + k2 + k3)
32π

3
10−20 Mpc−3

kIRk2
CMB

[
1 + (k̂1 ∙ k̂2)

2

(k1k2)3
+ 2 perms

]

, (3.192)

where the approximation, ki ' kCMB, are used in the denominator. Comparing this result
to eq. (3.54), one obtains the induced f local

NL as

f em
NL & 2 × 105

(
0.002Mpc−1

kCMB

)2(
10−6Mpc−1

kIR

)(
2.2 × 10−9

Pζ

)2

. (3.193)
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Here, in order to evaluate the generated non-linearity as the local fNL, we approximate(
1+(k̂1∙k̂2)2

(k1k2)3
+ 2 perms

)
' 4

3

∑3
i=1 k3

i /
∏3

i=1 k3
i because if the angular average is taken, (k̂1 ∙

k̂2)
2 yields 1/3. In light of the Planck upper bound on f local

NL eq. (3.66), this result,
eq. (3.193), excludes Kobayashi’s model with his parameter choice.

3.4.4 Summary of the section

In this subsection, we review the post-inflationary amplification mechanism of the pri-
mordial magnetic field in the kinetic coupling model proposed in ref. [35] and then we
investigate the curvature perturbation problem. In the model, the magnetic field grows
between the end of inflation and reheating. Nevertheless, since the curvature perturbation
can be sourced by isocurvature perturbations even after inflation and the electric energy
accounts for as large as 10% of the total energy density of the universe, the non-gaussianity
of the induced curvature perturbation on CMB scale far exceeds the observational upper
bound in this model. With the model parameters proposed given in eq.(3.166) which are
provided by the author as the preferred parameters in ref. [35], we calculate the power
spectrum and the non-linear parameter fNL of the induced curvature perturbation as

Pem
ζ (kCMB) & 4 × 10−7, f em

NL(kCMB) & 2 × 105. (3.194)

Since these results are far greater than the observed value or the upper bound, the model
is under pressure and at least that parameter choice is excluded.
In this model, even though the magnetic field is amplified after inflation, the curvature

perturbation problem is still relevant. This is because the amplification mechanism due
to the kinetic function I inevitably leads to much stronger electric fields than magnetic
fields (see eq. (3.159)). Then the electric energy density induces curvature perturbation
to an unacceptable level. This is exactly same as the kinetic coupling model without a
post-inflationary magnetogenesis. Therefore Kobayashi’s model suffers from the problem
which excludes original Ratra’s model.
In addition, even if the kinetic function I continues to vary, magnetic fields cannot be

amplified after reheating because the electric conductivity works as a friction for magnetic
fields and the mode function Ak are forced to be constant after reheating [65]. Therefore
in Kobayashi’s model, the amplification mechanism cannot work during the subsequent
radiation dominated era and its effect has to be limited. Thus the reheating temperature
was set to be quite low (Treh ≈ 50MeV with the proposed parameters) to minimize the
decay of magnetic field during the radiation dominated era.
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4.1 Gravitational Waves from Vacuum Fluctuation

In this section, we review the generation of gravitational waves from vacuum fluctuation
during inflation and discuss the significance of the detection of primordial GW. It is widely
believed that detecting primordial GW straightforwardly implies the determination of the
inflation energy scale. However, it is not necessarily true because GW with an alternative
origin dominates the observed primordial GW, in principle.



76 Chapter 4. PRIMORDIAL GRAVITATIONAL WAVES

4.1.1 Quantization and mode function

Let us derive the basic prediction of inflation for gravitational waves. Tensor perturba-
tions hij on the FRW metric are introduced as

ds2 = a2(η)
[
dη2 − (δij + hij)dxidxj

]
, (4.1)

where hij satisfies the traceless and transverse (T.T.) condition;

hii = 0 (traceless), ∂ihij = 0 (transverse). (4.2)

These two condition guarantee that hij only has tensor component. Since hij is a sym-
metric tensor and the transverse and traceless condition kill one and three degrees of
freedom, respectively, two degrees of freedom remain in hij . Thus gravitational wave or
graviton has two polarizations and they are often called the plus (+) mode and the cross
(×) mode.
Substituting eq. (4.1) into the Einstein-Hilbert action,

SGR = −
M2

Pl

2

∫
d4x

√
−gR, (4.3)

one can show the action reads

Sh =
M2

Pl

8

∫
dηd3x a2(η)

[
h′2

ij − (∂lhij)
2
]
. (4.4)

To obtain a canonical field, one redefines the field as

vij(η, x) ≡
aMPl

2
hij(η, x). (4.5)

With this new variable, the action is rewritten as

Sv =
1

2

∫
dηd3x

[

v′2
ij − (∂lvij)

2 +
a′′

a
v2

ij

]

. (4.6)

This action coincides with the action of a massless scalar field except for the tensor leg
“ij”. Here we decompose vij into two independent modes in Fourier space as

vij(η.x) =

∫
d3k

(2π)3
eik∙x

∑

λ=±

[
âλ
kv

λ
k (η)eλ

ij(k) + âλ†
−kv

λ∗
k (η)eλ∗

ij (−k)
]

(4.7)

where we introduce the polarization tensors e±ij(k) which satisfy the symmetric, trans-
verse, traceless, orthogonal conditions,

eλ
ij(k) = eλ

ji(k), kie
λ
ij(k) = 0, eλ

ii(k) = 0, eλ
ij(k)eλ′

ij (k) = δλλ′
. (4.8)
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If one adopts the linear polarization tensors, they are written with the linear polarization
vectors ei(k) and ēi(k) as

e+
ij(k) =

1
√

2
[ei(k)ej(k) − ēi(k)ēj(k)] ,

e−ij(k) =
1
√

2
[ei(k)ēj(k) + ēi(k)ej(k)] . (4.9)

ei(k) and ēi(k) are two basis vectors which are orthogonal to each other and k. For
example, when k is parallel to the z-axis, these polarization vectors and tensors are
explicitly given by

ei =




1

0

0



 , ēi =




0

1

0



 , e+
ij =

1
√

2




1 0 0

0 −1 0

0 0 0



 , e−ij =
1
√

2




0 1 0

1 0 0

0 0 0



 . (4.10)

The quantization of each polarization mode of gravitational waves can be done in the
same way as the scalar field case. The usual commutation relation is imposed on the
creation and annihilation operators âλ

k, â
λ,†
k in eq. (4.7),

[
âλ
k, â

λ′†
k′

]
= (2π)3δλλ′

δ(k − k′),
[
âλ
k, â

λ′

k′

]
= 0,

[
âλ†
k , âλ′†

k′

]
= 0. (4.11)

The normalization condition of the mode function vk(η) is given by

vλ∗
k ∂ηv

λ
k − vλ

k∂ηv
λ∗
k = i. (4.12)

From the action eq. (4.6), one finds that the euqation of motion of the mode function is

v′′
k +

(

k2 −
a′′

a

)

vk = 0. (4.13)

Here we suppress the polarization label λ of the mode function because the two modes
are identical. In de Sitter universe, a(η) = −1/Hη, the above equation reads

v′′
k +

(

k2 −
2

η2

)

vk = 0. (4.14)

With Bunch-Davies initial condition,

vk(η) =
1

√
2k

e−ikη, (4.15)

the solution of the mode function is obtained as

vk(η) =
1

√
2k

(

1 −
i

kη

)

e−ikη. (4.16)

In the super-horizon limit, it reads

vk(η) '
1

√
2kkη

, (|kη| � 1), (4.17)

where we have neglected the constant phase factor.
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4.1.2 Power spectrum and observations

Let us consider the power spectrum of GW which is directly connected to observations.
The power spectrum of the tensor perturbation is defined as

〈hij(η, x)hij(η, x)〉 ≡
∫

d3k

(2π)3
Ph(η, k) =

∫
dk

k
Ph(η, k), (4.18)

with Ph = k3Ph/2π2. Substituting eq. (4.7) into eq. (4.18), one obtains

Ph(η, k) =
2k3

a2M2
Plπ

2

(
|v+

k (η)|2 + |v−
k (η)|2

)
. (4.19)

Therefore on the super-horizon scales in de Sitter universe, the GW power spectrum is
given by [36]

Ph(η, k) =
2H2

π2M2
Pl

, (|kη| � 1). (4.20)

This is the famous result as the basic prediction of GW in the inflation paradigm. The in-
flationary GW in eq. (4.20) shows the scale invariant spectrum Ph ∝ k0, and its amplitude
depends only on the energy scale of inflation, Ph ∝ H2 ∝ ρinf .
The ratio between the power spectrum of GW and the curvature perturbation ζ is

called the tensor-to-scalar ratio r;

r ≡
Ph

Pζ

. (4.21)

It is a useful quantity to compare the predictions of models and observations. In standard
slow-roll inflation, the curvature power spectrum on super-horizon scales is computed as
(see eq. (2.61))

Pζ =
ρinf

24π2εM 4
Pl

=
H2

8π2εM 2
Pl

, (4.22)

where ε is the slow-roll parameter. Then we obtain

r = 16ε. (4.23)

The tensor-to-scalar ratio is simply given by the slow-roll parameter. This is the basic
prediction of slow-roll inflation models. It should be also noted that the curvature power
spectrum has been already observed as Pζ ≈ 2.2× 10−9. Since we know the denominator
of r, Ph and r are basically equivalent.
Currently, the observational constraint of the Planck satellite on r is [40]

r < 0.11, (95% C.L., Planck + WP + high−`), (4.24)

where the pivot scale is 0.002Mpc−1, and the running of the scalar spectrum index
dns/d ln k and higher order quantities (e.g. running of running) are set to zero. Tak-
ing into account of the running n′

s, the constraint on r is relaxed to r < 0.23 [40]. On the
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other hand, the BICEP2 experiment reported to detect the CMB B-mode polarization
and it implies the primordial GW with the amplitude [80]

r ≈ 0.16+0.06
−0.05, (4.25)

with their subtraction scheme of the foreground dust emission. The BICEP2 team claim
that r = 0 is disfavored at 5.9σ in their analysis. Nevertheless
We should also refer to the so-called consistency relation between the tensor-to-scalar

ratio r and the spectrum index of the GW power spectrum nT . The GW spectrum index
(or the tensor tilt) is defined as

nT ≡
d lnPh

d ln k
. (4.26)

One can show that nT is computed as

nT =
d ln H2

Hdt
=

2Ḣ

H2
= −2ε. (4.27)

Eliminating ε from eq. (4.23) and eq. (4.27), we obtain the consistency relation as

r = −8nT . (4.28)

This relation is also considered as the basic prediction of single slow-roll inflation models.

4.1.3 Estimate inflation energy scale from GW

Provided that GWs generated from vacuum fluctuation druing inflation are detected, we
can know the energy density of inflation ρinf . Substituting eq. (4.20) into eq. (4.21), one
finds

r =
2H2

inf

π2M2
PlPζ

=
2ρinf

3π2M4
PlPζ

(4.29)

Solving this equation in term of ρinf and using the observational result Pζ ≈ 2.2×10−9 [4],
one obtains

ρ
1/4
inf = 7.5 × 10−3MPl

( r

0.1

)1/4

= 1.8 × 1016GeV
( r

0.1

)1/4

. (4.30)

Note that eq. (4.30) indicates ρinf at the time of the horizon crossing of the mode on the
CMB scale if r is detected by a CMB observation. In the same way, we can also estimate
the Hubble parameter as

Hinf = 3.3 × 10−5MPl

√
r

0.1
= 8 × 1013GeV

√
r

0.1
. (4.31)

The detection of primordial GW from vacuum fluctuation during inflation has the
following three major impacts. First, since it is the basic prediction of inflation, it can
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be crucial evidence of the inflation paradigm. Furthermore, if confirmed, its gaussian-
ity indicates that it comes from vacuum fluctuation and support the quantum origin of
fluctuations. Second, the tensor-to-scalar ratio is a excellent discriminator of inflation
models. For example, if r ∼ 0.1, only large-field models survive. The consistency re-
lation also distinguishes single slow-roll inflation models from other more complicated
models [88]. Finally, the discovered ρinf implies that there exists unknown new physics
on the energy scale. It is indispensable clue to construct the high energy theory because
particle accelerators are unlikely to reach ρinf . Then it would strongly motivates particle
theorist who work on physics beyond the standard model of particle physics. Therefore
the detection of primordial GW is important and meaningful.
However, when one claims that ρinf is determined by detecting r, a big assumption

is made. The assumption is that the GW coming from vacuum fluctuation, eq. (4.20),
dominates the detected primordial GW and any GWs from other sources are subdominant.
Nevertheless no theoretical or observational argument excludes the possibility that the
main contribution to the primordial GW is different from GW of vacuum fluctuation,
eq.(4.20). Therefore it is also quite important to investigate the alternative possibility
that GW of another source dominates the primordial GW. In the following sections, we
explore the cases where the second order perturbations induce GW. The key question is
whether such an alternative GW can be larger than the conventional GW from vacuum
fluctuation.
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4.2 GW Induced by Second Order Scalar Perturbation

In the previous section, we derive the gravitational wave generated from the vacuum
fluctuation during inflation, eq. (4.20). However, that is just one source of primordial
GWs. In this section, we consider the GWs induced by second order perturbations of a
spectator scalar field.

4.2.1 Alternative generation mechanism

It is well known that scalar, vector and tensor perturbations are decoupled at the linear
order of the perturbative expansion in the isotropic universe. However, they are coupled at
the second order. Thus the second order perturbations can produce tensor perturbations.
One can easily see that the anisotropic component of the energy momentum tensor of a
scalar perturbation ∝ ∂iδσ∂jδσ (or a vector perturbation ∝ δViδVj) induces gravitational
waves hij , according to the Einstein equation. Note that these second order perturbations
must exist if there are light scalar fields (or vector fields with a coupling which breaks the
conformal symmetry). Since known high energy theories (e.g. supergravity or superstring
theory) typically predict many scalar degrees of freedom, it is natural to expect some
of them acquire fluctuations during inflation. In fig. 4.1, the two different generation
mechanisms are sketched.
This alternative generation mechanism is totally different from the conventional one

in which the tensor modes are generated from the vacuum fluctuation as we review in
the previous section. If the primordial GW is dominated by the GW generated by the al-
ternative mechanism, the interpretation of the GW observation should be modified. It is
because the relation between the observational quantities associated with the primordial
GW (e.g. the power spectrum, the spectrum index) and the parameters of inflation (e.g.
the energy density ρinf , the slow-roll parameter ε) can be drastically changed. For exam-
ple, provided the power spectrum of the alternative GW has a different dependence on the
Hubble parameter during inflation, Palt

h ∝ H4
inf , from the conventional one, Pvac

h ∝ H2
inf ,

the estimation of Hinf from the observed GW changes in general. Therefore it is impor-
tant to investigate the possibility that GWs are generated from alternative mechanisms
and examine whether such a GW can dominate over the conventional GW.

4.2.2 Previous works

In this subsection, we briefly review previous works in which the generation of GW from
second order perturbations is studied.
In ref. [89, 90, 91, 92, 93, 94, 95, 96], GWs induced by the second order scalar per-

turbations after inflation are explored. Some of them have reported the induced GW
may be detectable by the future interferometer with very high sensitivities (e.g. LISA,
BBO and DECIGO). However, none of them found induced GW which is large enough
for CMB B-mode observations.
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Figure 4.1 : A sketch of two different generation mechanism of gravitational waves. Pvac
h

denotes GW which is directly generated from the vacuum fluctuation during inflation
(bottom-left box). On the other hand, if there exists a light scalar field σ during inflation,
σ also acquires the perturbation δσ from the vacuum fluctuation (top-right box). Then
its second order perturbation O(δσ2) induces another GW, P (σ)

h (bottom-right box). The
important question is which is dominant.

On the other hand, many works investigated the possibility the gauge field produced
during inflation via the axial coupling induces detectable GWs [27, 81, 83, 82, 84, 85, 86,
87, 97]. Since the Planck satellite puts the tight constraint on the axial coupling model,
the induced tensor modes on the CMB scale must be subdominant in the case where the
pseudo-scalar is the inflaton. If the pseudo-scalar field coupled to the gauge field is not
inflaton, the generation of detectable GW on the CMB scale is not completely excluded
while it seems that a dedicated model building is necessary to avoid the constraint [81, 97].

In ref. [37], GWs induced by the second order perturbation of a spectator scalar field
is investigated. The authors claimed that if the sound speed of the spectator field is suffi-
ciently small, the induced GW can be larger than the GW from the vacuum fluctuation,
and be detectable by CMB B-mode observations. If it is true, this possibility would be
very interesting. In the next subsection, we review the paper.

4.2.3 Review on Biagetti et al.(2013)

In this subsection, we quickly review ref. [37] in which the authors claims that the domi-
nant and observable GW can be generated by the second order perturbation of a spectator
scalar field during inflation. Here we skip most calculations, while they are explained in
detail in the next section with a more robust setup.

In ref. [37], the authors consider a spectator field which has a speed of sound, cs,
smaller than unity. Their calculation begins with the following action for the scalar
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perturbation 1:

Sδσ =

∫
dηd3x a4

[
1

2a2

(
δσ′2 − c2

s(∂iδσ)2
)
− ∂2

σV

]

. (4.32)

If the sound speed cs is constant, one can easily find the mode function of δσ as

δσk(η) =
Hinf√

2(csk)3/2
(1 + icskη)e−icskη. (4.33)

The power spectrum of the spectator field on super-horizon scales is given by

Pδσ =
1

c3
s

(
Hinf

2π

)2

. (4.34)

Thus the small sound speed amplifies the power spectrum by the factor of c−3
s .

Next, let us calculate the tensor mode induced by this spectator scalar field. In the
paper, the equation of motion for the tensor mode is written as [37]

h′′
ij + 2aHh′

ij − ∂2
l hij = −4

c2
s

M2
Pl

T̃ lm
ij ∂lδσ∂mδσ, (4.35)

where T̃ lm
ij is the projection tensor into the T.T. component. Nevertheless, it should be

noted that the source term in r.h.s. of this equation cannot be derived from the action
eq. (4.32) because the action does not respect the general covariance and the expression
of the energy momentum tensor in the general relativity is not applicable. However, the
authors somehow write down this equation. This equation indicates that the tensor mode
is induced by the second order perturbation of the spectator scalar field.
Eq. (4.35) can be solved by the Green function method in Fourier space. With the

Green function gk(η, τ ) (see eq. (4.76) for its expression), the inhomogeneous solution of
eq. (4.35) is written as

h
(σ)
k (η) =

1

a(η)

∫
dτa(τ)gk(η, τ )Sk(τ), (4.36)

where the superscript “(σ)” denotes quantities induced by the scalar, and Sk(τ) is the
Fourier transform of the source term. In principle, by substituting the solution into the
tensor power spectrum

P (σ)
h =

k3

π2
|h(σ)

k |2, (4.37)

where the contributions of the two polarization are summed, one obtains the amplitude
of the induced GW. However, since the calculation is technically difficult to be done, they

1Since this action explicitly violates the Lorentz symmetry and the general covariance, we consider
another action in the next section.
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perform the numerical calculation. 2 The numerical result is fitted to a ansatz for the
tensor power spectrum,

P (σ)
h = C

H4
inf

cn
s M4

Pl

(4.38)

and the parameters C and n are found as

C ≈ 3, n ≈
18

5
. (4.39)

This result implies that the induced GW is larger than the GW from the vacuum fluctu-
ation eq. (4.20), if the sound speed is sufficiently small as

c18/5
s <

3π2

2

H2
inf

M2
Pl

, =⇒ cs < 8 × 10−3

(
Hinf

1014GeV

)5/9

. (4.40)

Nevertheless, as we show in the next section, it cannot happen. It is because the spectator
scalar field simultaneously induces the curvature perturbation and the lower bound on
the sound speed derived from the CMB observation restricts the induced GW from being
dominant.

2In fact, this calculation can be analytically performed with several good approximations. See the
next section.
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4.3 No-go result for single spectator scalar field

In this section, 3 we consider the possibility of enhancing the inflationary tensor mode by
introducing a spectator scalar field with a small sound speed which induces gravitational
waves as a second order effect. We analytically obtain the power spectra of gravitational
waves and curvature perturbation induced by the spectator scalar field. We found that
the small sound speed amplifies the curvature perturbation much more than the tensor
mode and the current observational constraint forces the induced gravitational waves to
be negligible compared with those from the vacuum fluctuation during inflation.
This section is organized as follows. In sec. 4.3.1, we perturb the action and obtain

the power spectrum of the spectator field perturbation. In sec. 4.3.2, the power spectra
of the induced GWs and the curvature perturbation are derived and their constraints are
discussed. In sec. 4.3.3, we develop the understanding of the reason why such a stringent
constraint on the induced GWs is obtained. In sec. 4.3.4, the extended action of the
spectator field is briefly argued. We summarize this section in sec. 4.3.5.

4.3.1 Perturbed action

We consider the following Lagrangian:

L =
1

2
M2

PlR +
1

2
∂μφ∂μφ − V (φ) + P (X, σ), (4.41)

where φ is the inflaton, V (φ) is its potential, σ is a spectator field, and X ≡ 1
2
∂μσ∂μσ.

In this section, the inflaton φ is assumed to be responsible for both the occurrence of
inflation and the generation of the scalar perturbations imprinted in CMB [40, 31]. On
the other hand, the σ field is supposed to generate gravitational waves through its second
order perturbations. For the moment, we assume that the Lagrangian of σ is an arbitrary
function of X and σ, P (X, σ), while we further extend it in sec. 4.3.4. In this subsection,
we perturb the action and derive the equations of motion for the perturbed fields.
In the (3+1) decomposition, the metric is given by

ds2 = N2dt2 − γij(dxi + N idt)(dxj + N jdt), (4.42)

where we incorporate metric perturbations around the flat FLRW metric as,

N = 1 + δN, Ni = ∂iψ, γij = a2

(

δij + hij +
1

2
hikh

k
j

)

, (4.43)

working in the flat gauge for the scalar perturbations and the transverse-traceless (T.T.)
gauge for the tensor perturbations. One can show that the gravity sector of the perturbed

3This section is based on my work [38].
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action up to the second order is given by

S(1,2)
g =

∫
dtd3x a3

[
3M2

PlH
2δN (1st order)

− 3M2
PlH

2(δN)2 − 2M2
PlHδNa−2∂2

i ψ +
M2

Pl

8

(
ḣijḣij − a−2∂khij∂khij

)
(2nd order)

]
.

(4.44)

Here we ignore the third and higher order terms in the gravity sector. Although they
include O(hδσ2) coupling terms, these terms are slow-roll suppressed compared to similar
terms in the matter sector and hence they are sub-leading [98].
We now consider the matter sector of the action. The two scalar fields are decomposed

into the background part and the perturbation,

φ(t, x) = φ0(t) + δφ(t, x), σ(t, x) = σ0(t) + δσ(t, x). (4.45)

The calculation of the perturbed matter action is straightforward. First, let us compute
the perturbed Lagrangian of the σ field. The perturbation expansion of X ≡ 1

2
∂μσ∂μσ is

given by

X =
1

2
σ̇2

0 (0th order) + σ̇0
˙δσ − σ̇2

0δN (1st order)

+
1

2
˙δσ

2
− σ̇0a

−2∂iψ∂iδσ − 2δNσ̇0
˙δσ +

3

2
σ̇2

0δN
2 −

1

2
a−2(∂iδσ)2 (2nd order)

− ˙δσa−2∂iψ∂iδσ − δN
(

˙δσ
2
− 2σ̇0a

−2∂iψ∂iδσ
)

+ 3σ̇0
˙δσδN 2

− 2σ̇2
0δN

3 +
1

2
a−2hij∂iδσ∂jδσ (3rd order) + O(δσ4). (4.46)

Then one finds

NP (X, σ) = (1 + δN)P (X, σ)

= P (0) (0th order)

+ P (0)δN + P
(0)
X

(
σ̇0

˙δσ − σ̇2
0δN

)
+ P (0)

σ δσ (1st order)

+
1

2
P

(0)
X

[
˙δσ

2
− 2σ̇0a

−2∂iψ∂iδσ − 2σ̇0
˙δσδN + σ̇2

0(δN)2 − a−2(∂iδσ)2
]

+
1

2
P

(0)
XX

(
σ̇0

˙δσ − σ̇2
0δN

)2

+
1

2
P (0)

σσ (δσ)2 + P (0)
σ δσδN (2nd order)

+
1

2
P

(0)
XX σ̇0( ˙δσ)3 −

(
1

2
P

(0)
X − 2P

(0)
XX σ̇2

0

)

( ˙δσ)2δN +

(

P
(0)
X +

5

2
P

(0)
XX σ̇2

0

)

σ̇0
˙δσδN 2

−

(
1

2
P

(0)
X + P

(0)
XX σ̇2

0

)

σ̇2
0(δN)3 +

(
P

(0)
X + P

(0)
XX σ̇2

0

)(
σ̇0δN − ˙δσ

)
a−2∂iψ∂iδσ

−
1

2
P

(0)
XX σ̇0

˙δσa−2(∂iδσ)2 −
1

2

(
P

(0)
X − P

(0)
XX σ̇2

0

)
δNa−2(∂iδσ)2

+
1

2
P (0)

σσ (δσ)2δN +
1

2
P

(0)
X hija

−2∂iδσ∂jδσ (3rd order) + O(δσ4), (4.47)
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where P
(0)
Xn ≡ ∂nP/∂Xn|X=σ̇2

0/2,σ=σ0
. Note that we suppress the terms in proportion to

P
(0)
Xσ, P

(0)
σσσ and other higher derivatives which do not yield the hδσ2 coupling. A general

multi-field perturbed action can be found in ref. [99] while it does not include the tensor
perturbations. One can easily obtain the perturbed lagrangian of the φ sector by making
replacements, δσ → δφ, P

(0)
X → 1, P

(0)
XX → 0, P

(0)
σ → −V

(0)
φ and P (0) → φ̇2

0/2 + V (0) in
eq. (4.47).
Now we have the perturbed action with the four scalar perturbation quantities,

δN, ψ, δφ and δσ. However, the Hamiltonian and momentum constraints of the second
order action eliminates the two of them,

2M2
PlHδN = φ̇0δφ + P

(0)
X σ̇0δσ, (4.48)

−2M2
PlHa−2∂2

i ψ =
(
6M2

PlH
2 − φ̇2

0 − Kσ̇2
0

)
δN + φ̇0

˙δφ + V
(0)
φ δφ + Kσ̇0

˙δσ − P (0)
σ δσ,

(4.49)

with K ≡ PX + PXX σ̇2
0. Using these constraint equations and eliminating δN and ψ, we

obtain the second order action of δφ and δσ as [99]

S(2) =
1

2

∫
dtd3xa3

[
( ˙δφ)2 + K( ˙δσ)2 − a−2(∂iδφ)2 − PXa−2(∂iδσ)2

− μ2
φ(δφ)2 − μ2

σ(δσ)2 − Ωδφδσ − Ω̃δφ ˙δσ
]
, (4.50)

where

μ2
φ ≡ Vφφ +

3φ̇2
0

2M2
Pl

+
φ̇0Vφ

M2
PlH

−
φ̇2

0

4M4
PlH

2

(
φ̇2

0 + Kσ̇2
0

)
−

∂t(a
3φ̇2

0/H)

2M2
Pla

3
, (4.51)

μ2
σ ≡ −Pσσ +

3P 2
X σ̇2

0

M2
Pl

−
PσPX σ̇0

M2
PlH

−
P 2

X σ̇2
0

4M4
PlH

2

(
φ̇2

0 + Kσ̇2
0

)
−

∂t(a
3KPX σ̇2

0/H)

2M2
Pla

3
, (4.52)

Ω ≡ 3
φ̇0PX σ̇0

M 2
Pl

−
Pσφ̇0

M2
PlH

+
VφPX σ̇0

M2
PlH

−
φ̇0PX σ̇0

2M 4
PlH

2

(
φ̇2

0 + Kσ̇2
0

)
−

∂t(a
3φ̇0PX σ̇0/H)

M2
Pla

3
, (4.53)

Ω̃ ≡
φ̇0Kσ̇0

M2
PlH

+
φ̇0PXX σ̇3

0

M 2
PlH

. (4.54)

Note we omit the superscript “(0)” hereafter. To canonically normalize the fields, we
redefine

χ ≡ aδφ, Σ ≡ a
√

Kδσ. (4.55)

With these new variables, the second-order action reads

S(2) =
1

2

∫
dηd3x

[
χ′2 − (∂iχ)2 +

(
a′′

a
− a2μ2

φ

)

χ2

+ Σ′2 − c2
s(∂iΣ)2 +

(
(a
√

K)′′

a
√

K
− a2μ2

σ

)

Σ2

+
a

√
K

(

Ω̃
(a
√

K)′

a
√

K
− aΩ

)

χΣ −
a

√
K

Ω̃χΣ′
]
, (4.56)
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where the prime denotes the derivative with respect to the conformal time η and we
introduce the sound speed of the canonical field Σ,

c2
s ≡

PX

K
=

PX

PX + PXX σ̇2
0

. (4.57)

The equations of motion of the two canonical fields are given by

χ′′ − ∂2
i χ +

(

a2μ2
φ −

a′′

a

)

χ =
a

√
K

[(

Ω̃
(a
√

K)′

a
√

K
− aΩ

)

Σ − Ω̃Σ′

]

, (4.58)

Σ′′ − c2
s∂

2
i Σ +

[

a2μ2
σ −

(a
√

K)′′

a
√

K

]

Σ =
a

√
K

(

Ω̃
(a
√

K)′

a
√

K
− aΩ

)

χ +

(
a

√
K

Ω̃χ

)′

. (4.59)

Since these equations are coupled to each other due to the mixing terms (see the third
line in eq. (4.56)), it is hard to solve them if the mixing is significantly strong. Moreover,
if the masses, μ2

φ and μ2
σ, are not much less than H2, their fluctuations are not generated

during inflation. Thus we explore the condition in which both the mixing and their mass
are negligible and we focus on these cases in the following subsections.
The inflaton mass, μ2

φ, is evaluated as

μ2
φ

H2
' 3ηφ − 6εH + 6

√
εφεH − PX

ε2
H σ̇2

0

c2
sφ̇

2
0

+ O(ε2), (4.60)

where εH ≡ −Ḣ/H2, εφ ≡ M2
PlV

2
φ /2V 2, ηφ ≡ M2

PlVφφ/V as usual. We also use the
background equation, −2M2

PlḢ = φ̇2
0 + PX σ̇2

0. In eq. (4.60), only the last term can be
large for a very small cs. It requires a condition,

c2
s �

∣
∣
∣
∣ε

2
H

PX σ̇2
0

φ̇2
0

∣
∣
∣
∣ , (4.61)

for the inflaton mass to be negligibly small. Provided Pσσ . Vφφ, Pσ . Vφ and PX σ̇0 . φ̇0

which are natural conditions for a spectator field, one can show that eq. (4.61) guarantees
μ2

σ � H2 and Ω � H2. However, for a small cs, one finds

Ω̃

H
' 4

εH

c2
s

PX σ̇0

φ̇0

. (4.62)

To ignore the mixing, we need an additional condition;

c2
s �

∣
∣
∣
∣εH

PX σ̇0

φ̇0

∣
∣
∣
∣ . (4.63)

and they do not appear if σ has a usual kinetic term.
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When the two conditions, eqs. (4.61) and (4.63), are satisfied and the slow-roll pa-
rameters are sufficiently small, the mass terms and the mixing terms are safely ignored.
Then we obtain the mode functions of the two fields as

χk '
e−ikη

√
2k

(

1 −
i

kη

)

, Σk '
e−icskη

√
2csk

(

1 −
i

cskη

)

, (4.64)

where the time variation of K is assumed to be negligible compared with a. The power
spectrum of the original fields on super-horizon scales are given by

Pδφ '
H2

4π2
, Pδσ '

1

c3
sK

H2

4π2
=

1

csPX

H2

4π2
. (4.65)

Note that the power spectrum of the σ field is amplified by the factor of (csPX)−1.

4.3.2 Induced curvature and graviton perturbations

In this subsection, we calculate the curvature perturbations and gravitational waves in-
duced by the σ field through the third-order terms in the perturbed action. The third-
order action contains many terms,

S(3) ⊃
∫

dtd3xa3
[1
2
PXhija

−2∂iδσ∂jδσ −
1

2

(
PX − PXX σ̇2

0

)
a−2(∂iδσ)2δN

−

(
1

2
PX − 2PXX σ̇2

0

)

( ˙δσ)2δN +
1

2
Pσσ(δσ)2δN + ∙ ∙ ∙

]
, (4.66)

where we have shown only a few terms. Remember δN can be written by δφ and δσ using
eq. (4.48). Actually, there is only one h(δσ)2 coupling term (the first term in eq. (4.66)),
except for the slow-roll suppressed terms in the gravity sector . However, there are many
δφ(δσ)2 coupling terms and it is not transparent which one is most significant. Then
we focus on the term with δN(∂iδσ)2 (the second term in eq. (4.66)) because it has a
similar form to the graviton coupling term and it is easy to compare them.As we see later,
the curvature perturbation induced only by this term excludes the dominant production
of gravitational waves via the spectator field. Thus this treatment is conservative and
sufficient.
Since σ is a spectator field, the comoving curvature perturbation is determined by the

inflaton as

R ' −
H

φ̇0

δφ ' −
2MPlH

2

φ̇2
0

δN ' −
δN

εH

. (4.67)

As we see later, to produce the induced gravitons significantly, cs should be much smaller
than unity. Thus one can approximate

c2
s =

PX

PX + PXX σ̇2
0

� 1 =⇒ K ≡ PX + PXX σ̇2
0 ' PXX σ̇2

0. (4.68)

Then the first line in eq. (4.66) reads
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S
(3)
calc =

∫
dηd3x a2

[ 1

2
PXhij∂iδσ∂jδσ −

1

2
εHKR∂iδσ∂iδσ

]
. (4.69)

On the other hand, substituting eq. (4.67) into eq. (4.50), we obtain the relevant second
order action as

S
(2)
R,h =

∫
dηd3x

[

a2εM 2
Pl

(
R′2 − (∂iR)2

)
+

a2M2
Pl

8

(
h′

ijh
′
ij − ∂khij∂khij

)
]

. (4.70)

Note that all sub-leading terms are dropped and hij terms come from eq. (4.44). Com-
bining it with eq. (4.69), one obtains the equations of motion as

R′′ + 2HR′ − ∂2
i R = −

K

4M2
Pl

∂iδσ∂iδσ, (4.71)

h′′
ij + 2Hh′

ij − ∂2
khij =

2PX

M2
Pl

T̃ lm
ij ∂lδσ∂mδσ. (4.72)

Here T̃ lm
ij is the projection tensor into the T.T. component defined by

T̃ lm
ij (x) ≡

∫
d3k

(2π)3
eik∙x

[
e+

ij(k)e+
lm(k) + e−ij(k)e−lm(k)

]
. (4.73)

Here e±ij are the linear polarization tensors which are written in terms of the linear po-
larization vectors ei(k) and ēi(k) as

e+
ij(k) =

1
√

2
[ei(k)ej(k) − ēi(k)ēj(k)] , e−ij(k) =

1
√

2
[ei(k)ēj(k) + ēi(k)ej(k)] , (4.74)

where ei(k) and ēi(k) are two basis vectors which are orthogonal to each other and k.
The only differences between the source terms of R and hij are the coefficients and the
projection tensor. In what follows, we focus on the calculation of hij . One can solve the
equation of R in a similar manner.
Equation (4.72) can be solved by the Green function method. The Green function

gk(η, τ ) which satisfies
g′′

k + 2Hg′
k + k2gk = δ(η − τ), (4.75)

is given by

gk(η, τ ) =
θ(η − τ)

k3τ 2
<e
[
eik(η−τ)(1 − ikη)(−i + kτ )

]
, (4.76)

where θ(η) is the step function and <e[∙ ∙ ∙ ] represents the real part of [∙ ∙ ∙ ]. Using this
Green function, one finds the inhomogeneous solutions of eq. (4.72) as

h±
k (η) =

2PX

M 2
Pl

∫
d3pd3q

(2π)3
δ(p + q − k)e±ij(k)piqj

∫ ∞

−∞
dτgk(η, τ )σp(τ)σq(τ). (4.77)
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Substituting them into the definitions of the power spectrum,

〈
h±
k (η)h±

k′(η)
〉

=
2π2

k3
δ(k + k′)P±

h (k, η), (4.78)

one obtains

2π2

k3
δ(k + k′)P±

h (k, η) =

4P 2
X

M4
Pl

∫
d3pd3qd3p′d3q′

(2π)6
δ(p + q − k)δ(p′ + q′ − k′)e±ij(k)e±ml(k

′)piqjp
′
mq′l

×
∫ ∞

−∞
dτdτ ′gk(η, τ )gk′(η, τ ′) 〈σp(τ)σq(τ)σp′(τ

′)σq′(τ
′)〉 . (4.79)

Since we are treating the source terms of R and hij due to the spectator field σ

in eqs. (4.71) and (4.72) as classical stochastic quantities, momentum integrations in
eqs. (4.77) and (4.79) are performed only in the domain where the quantum operator σp
behaves as a classical stochastic variable. Specifically we introduce a parameter γ smaller
than unity such that one can approximate

σp(η) ∼=
H

√
2csPXp3/2

(
âp + â†

−p

)
, (4.80)

for |cspη| < γ, where âk and â†
k are creation and annihilation operators which satisfy the

usual commutation relation,
[
âk, â

†
−k′

]
= (2π)3δ(k+k′). Then both σp(η) and its canon-

ically conjugate momentum variable have the same operator dependence proportional to
âp + â†

−p and commute with each other.
Thus replacing σp in eq. (4.79) by

σp(η) ∼=
H

√
2csPXp3/2

θ(γ + cspη)
(
âp + â†

−p

)
, (4.81)

one finds

〈σp(τ)σq(τ)σp′(τ
′)σq′(τ

′)〉

=
H4

4P 2
Xc2

s

(pqp′q′)−
3
2 θ(γ + cspτ )θ(γ + csqτ )θ(γ + csp

′τ ′)θ(γ + csqτ
′)

× (2π)6 [δ(p + q′)δ(q + p′) + δ(p + p′)δ(q + q′)] . (4.82)

Substituting it into eq. (4.79), and using the symmetry p′ ↔ q′, we obtain

P±
h (η, k) = ±

k3

π2c2
s

H4

M4
Pl

∫
d3pd3p′δ(p − p′ − k)e±ij(k)e±ml(k)

pip
′
jp

′
mpl

(pp′)3

×

[∫ ∞

−∞
dτgk(η, τ )θ(γ + cspτ )θ(γ + csp

′τ)

]2

, (4.83)
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where the property of the linear tensor polarization, e±ij(−k) = ±e±ij(k), is used. The
time integration can be analytically performed as

k2

∫ ∞

−∞
dτgk(η, τ )θ(γ + cspτ )θ(γ + csp

′τ)

= 1 +
sin[k(η − η̃p)]

kη̃p

−
η

η̃p

cos[k(η − η̃p)], (4.84)

with
η̃p ≡ −

γ

cs max[p, p′]
, (4.85)

which is the sound horizon crossing time of either p or p′ mode, whichever exits the horizon
later. Finally, in the p integration, one can show that the contribution from p ∼ γk/cs

is dominant. Then eq. (4.84) can be approximated by 1 − x sin(x−1) for cs � γ, where
x ≡ csp/γk. After the angular integration, one finds

P±
h (η, k) ' ±

8γ

15πc3
s

H4

M4
Pl

∫ ξ

ε

dx
[
1 − x sin

(
x−1
)]2

, (4.86)

where ξ � 1 and ε � 1 are introduced to define the integration interval. Although
the x integration cannot be performed analytically, a numerical calculation shows that
it converges to ≈ 1/2 for a sufficiently large ξ and small ε. Since Ph = P+

h − P−
h as we

show in the next subsection, one obtains

P (σ)
h (η, k) '

8γ

15πc3
s

H4

M4
Pl

, (4.87)

where the superscript “(σ)” denotes that this Ph is induced by the σ field. In the same
way as P (σ)

h , one can show the induced power spectrum of the curvature perturbation is
given by

P (σ)
R (η, k) '

γ

32πc7
s

H4

M4
Pl

. (4.88)

Thus a spectator field which induces the gravitational waves of eq. (4.87) inevitably
produces the curvature perturbation of eq. (4.88) as well.
Since H � MPl, the induced Ph, eq. (4.87), is negligible compared to the one coming

from the vacuum fluctuation, eq. (4.20), unless the sound speed cs takes a tiny value
satisfying c3

s < 4πγH2/15M2
Pl. In that case, however, the tensor-to-scalar ratio induced

by the spectator field,

rσ ≡
P (σ)

h

P (σ)
R

'
256

15
c4
s, (4.89)

becomes very small. As a result, the requirement that the induced curvature perturbation
must not exceed the observed value, P (σ)

R ≤ Pobs
R ≈ 2.2 × 10−9, puts a lower bound on cs

and consequently constrains P (σ)
h as

P (σ)
h

Pvac
h

≤ 2 × 10−5 γ
4
7

(
H

1014GeV

) 2
7

, (4.90)
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where Pvac
h denotes the GW from the vacuum fluctuation, eq. (4.20). As mentioned above,

we expect γ . 1 and it is known H . 1014GeV from the CMB observations [40, 31, 80].
Therefore the induced GW cannot dominate the GW from the vacuum fluctuation.

4.3.2.1 The minus sign in the linear polarization tensor

In this subsection, we briefly comment on the sign of the tensor power spectrum which
depends on the choice of polarization tensor. The power spectrum of the tensor pertur-
bation is defined as

〈hij(η.x)hij(η.x)〉 =

∫
d3k

(2π)3
Ph(η, k) (4.91)

and hij(η.x) is decomposed as

hij(η.x) =

∫
d3k

(2π)3
eik∙x

∑

λ=±

[
âλ
kv

λ
k (η)eλ

ij(k) + âλ†
−kv

λ∗
k (η)eλ∗

ij (−k)
]

(4.92)

where âk and â†
k are creation/annihilation operators, v±

k (η) is the mode function and eλ
ij

is the polarization tensor. Substituting eq. (4.92) into eq. (4.91), one obtains the usual
result,

Ph(η, k) = |v+
k |

2 + |v−
k |

2, (4.93)

However, in the case of the linear polarization tensor eq. (4.74), it can be found

e+
ij(−k) = e+

ij(k), e−ij(−k) = −e−ij(k). (4.94)

This is because either of the linear polarization vectors, ei(k) or ēi(k), is odd for the
transformation k → −k. Using this property and comparing (4.92) and the standard
polarization decomposition,

hij(η, x) =

∫
d3k

(2π)3
eik∙x

[
e+

ij(k)h+
k + e−ij(k)h−

k

]
. (4.95)

one finds

h+
k (η) = â+

k v+
k (η) + â+†

−kv
+∗
k (η), h−

k (η) = â−
k v−

k (η) − â−†
−kv

−∗
k (η). (4.96)

Using eq. (4.78), one can show

P+
h (η, k) = |v+

k |
2, P−

h (η, k) = −|v−
k |

2. (4.97)

Therefore we see that Ph = P+
h − P−

h , or equivalently Ph = P+
h − P−

h . Note that if one
adopt the L and R polarization tensor, eL,R

ij (k) = e+
ij(k) ± ie−ij(k), this weird minus sign

does not appear.
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4.3.3 Interpretation

In the previous subsection, it was shown that the spectator field with a tiny sound speed
produces the curvature perturbation P (σ)

R ∝ c−7
s larger than the gravitational waves,

P (σ)
h ∝ c−3

s . This contrast originates in the difference of coupling constants. One can see
in the right hand side of eqs. (4.71) and (4.72) that the ratio of the coupling constants is
given by ∣

∣
∣
∣
hδσ2 coupling

Rδσ2 coupling

∣
∣
∣
∣ '

8PX

K
= 8c2

s. (4.98)

Hence the h(δσ2) coupling is highly suppressed compared to the R(δσ)2 coupling for
cs � 1. Now let us take a closer look at what makes these two couplings so different.
The difference stems from the perturbative expansion of the action, P (X, σ) = P +

PXδX + 1
2
PXX(δX)2 + ∙ ∙ ∙ . The h(δσ)2 coupling appears in the perturbation of X, (see

eq. (4.46))

δX ⊃
1

2
a−2hij∂iδσ∂jδσ. (4.99)

Since this is already the third order, no other perturbation can be multiplied to this term.
Thus only PXδX carries the hδσ2 coupling. On the other hand, δX also has the following
terms:

δX ⊃ σ̇2
0δN −

1

2
a−2(∂iδσ)2, (4.100)

where the first term in the right hand side is the first order of perturbation and includes
δφ (or R), while the second term is the second order. This time, PXX(δX)2 can carry
the R(δσ)2 coupling terms. Therefore although the coefficient of the h(δσ)2 coupling is
only PX , the R(δσ)2 coupling has PXX σ̇2

0 in its coefficient. Meanwhile, since the sound
speed is given by

c2
s =

PX

PX + PXX σ̇2
0

, (4.101)

PXX σ̇2
0 � PX is necessary to make cs tiny to boost P

(σ)
h . However, it results in suppres-

sion of the PX terms in comparison to the PXX σ̇2
0 terms. Thus the h(δσ)2 coupling is

suppressed compared to the R(δσ)2 coupling.
This feature can also be understood as follows. A small sound speed means that

the coefficient of the spacial kinetic term is smaller than that of the time kinetic term.
Nevertheless, gravitational wave is induced by the spacial kinetic term of the σ field since
the quadrupole component in the energy momentum tensor of a scalar field is given only
by its spacial kinetic energy. On the other hand, the adiabatic perturbation is sensitive to
both the time and spacial kinetic energy. Therefore the suppression of the GW production
in comparison with the curvature perturbation is a generic consequence of a small sound
speed of a scalar field.
In summary, if the sound speed of the spectator field is much smaller than unity, its

perturbation is amplified. As a result, both the gravitational waves and the curvature
perturbation induced by its second order perturbation are boosted. However, the sound
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speed also controls the coupling constants of the h(δσ)2 and R(δσ)2 coupling terms (see
eq. (4.98)). As cs becomes smaller, the h(δσ)2 coupling is more suppressed compared to
the R(δσ)2 coupling. Therefore, since a spectator field with a small sound speed induces
the curvature perturbation much more than the gravitational waves, it cannot produce
the dominant GW in a way that is consistent with the CMB observation.

4.3.4 Extension to the Galileon theory

So far the Lagrangian of the spectator field has been assumed to take a function of σ and
X only. In this subsection, we show that the result obtained in the previous subsection
does not change even if the action is extended to a more general form. Specifically we
consider the Galileon-like theory [100, 101, 102, 103],

Lσ = P (X, σ) − G(X, σ)�σ, (4.102)

where G(X, σ) is an arbitrary function of X and σ and the other pert of action is same
as eq. (4.41). With this action, the sound speed of δσ is given by [104]

c2
s =

PX + 2GX(σ̈0 + 2Hσ̇0) − 2Gσ + GXσσ̇2
0 + GXX σ̇2

0σ̈0

PX + 6HGX σ̇0 − 2Gσ − GXσσ̇2
0 + PXX σ̇2

0 + 3HGXX σ̇3
0

. (4.103)

To make the sound speed small, terms proportional to PXX or GXX in the denominator
have to be much larger than the other terms. As we discuss in the previous subsection,
however, that leads to the suppression of the h(δσ)2 coupling compared to the R(δσ)2

coupling because the h(δσ)2 coupling does not include PXX nor GXX in the coupling
constant while the R(δσ)2 coupling does. Indeed, the Galileon term additionally carries
the following coupling terms:

− NG(X, σ)�σ ⊃ a−2

(

Gσ −
3

2
Hσ̇0GX

)

hij∂iδσ∂jδσ +
3

2
a−2GXXHσ̇3

0δN(∂iδσ)2,

(4.104)
where we show only the leading terms. It is obvious that the discussion in sec. 4.3.3
holds even in this Galileon case. Therefore we conclude that a spectator field with a
small sound speed cannot produce the dominant GW even if its action is extended to the
Galileon theory. This result implies that it is impossible for a single scalar field with a
small sound speed to generate GW which is larger than the GW comes from the vacuum
fluctuation.

4.3.5 Summary of the section

It is important to explore an alternative source of primordial GWs other than GWs
from the vacuum fluctuation because it can contribute the observed GWs and change
the consequence on the inflation mechanism. We consider a spectator scalar field with
the a generalized kinetic function and/or the Galileon-like action which gives it a small
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sound speed. The scalar field induces both GWs and curvature perturbation which are
analytically obtained as eq. (4.87) and eq. (4.88), respectively. Since a small sound
speed makes the R(δσ)2 coupling much stronger than the h(δσ)2 coupling, the induced
curvature perturbation is considerably larger than the induced GWs. Then the CMB
observation put the lower limit on the sound speed, and the stringent constraint on the
induced GWs is derived. Consequently, we conclude that the GWs induced by the single
spectator scalar field cannot exceed Pvac

h . 4

4Recently, Biagetti et al [105] discussing the same topic showed up in the arXiv. Their conclusion is
basically consistent with ours.



Chapter 5

CONCLUSION

Inflation is widely studied as the theory describing the very early universe and now it
is considered as an indispensable component of the standard model of cosmology. Dur-
ing inflation, cosmological perturbations are generated from the quantum fluctuations
and subsequently become the seed of the cosmic structures which are currently observed.
The prediction of inflation, the scale invariant spectrum of the curvature perturbation,
is tested various observation, especially by the cosmic microwave background radiation
(CMB) observations with great accuracy and is confirmed to be consistent. Nevertheless,
the mechanism of inflation is still unclear. The scalar perturbation which has been ob-
served by the CMB observations puts strong constraints on a number of inflation models.
But it is not sufficient to determine the correct model. Thus in the next generation of
cosmology, the perturbations other than the scalar one, namely vector perturbation and
tensor perturbation become increasingly important.
Although primordial vector perturbation is not intensively investigated so far, it ac-

quires a strong motivation from recent observations. It is known for a long time that
galaxies and galaxy clusters have their own magnetic fields. However, the magnetic field
even in void regions is detected in 2010 by blazar observations. The observational lower
bound still has a few order of uncertainty depending on the method and assumptions,
and roughly given by Bobs & O(10−20 − 10−15)G. There is also the report that the helical
magnetic field with the strength ∼ 10−14G which can support magnetogenesis models
with parity violation.
The study on inflationary magnetogenesis was pioneered by Turner and Widrow in

1988, and many models have been proposed so far. However, recently, it is pointed
out that the models of inflationary magnetogenesis suffer from two serious problems,
namely the backreaction problem and the curvature perturbation problem. In this pa-
per, we first investigate the kinetic coupling model (Ratra’s model). We calculate the
energy density of the electromagnetic fields and the induced curvature perturbation in the
model and derive the constrains using the Planck observation. Furthermore, since these
problems are universal in inflationary magnetogenesis, a model-independent constraint
can be derived. The model-independent argument of the backreaction put the constraint
ρ

1/4
inf . 1011GeV. The model-independent constraint from the curvature perturbation is
much more stringent, ρ

1/4
inf . 30GeV. Therefore it is very difficult to achieve viable infla-

tion magnetogenesis, if the magnetic field just decays after inflation as a usual radiation
component, B2 ∝ a−4. We also consider the case where the kinetic function I(φ) in
the IFF model varies even after inflation and the magnetic field is amplified during the
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inflaton oscillating phase. However, it is found that the induced curvature perturbation
is abundantly produced again and the model is under pressure.
The tensor perturbation with a primordial origin has been investigated as the pri-

mordial gravitational wave (GW) in the theoretical and observational context. However,
previous works have focused on the tensor mode generated from the vacuum fluctuation
and ignore the other possibilities. In this paper, we consider not only that the conven-
tional GW but also GW produced by an alternative mechanism during inflation. That
is the second order perturbation of a scalar field. Although the scalar perturbation and
the tensor perturbation are decoupled at the first order of the cosmological perturbation,
they are coupled at the second order. If GWs from alternative sources dominate the
observed primordial GW, the relation between the observation of the primordial GW and
the properties of inflation can be drastically changed. For example, it is known that the
tensor-to-scalar ratio r is proportional to the energy density of inflation ρinf if the conven-
tional GW is dominant. However, if the GW induced by the second order perturbation, it
is changed into r ∝ ρ2

inf . Therefore it is important to investigate the alternative scenario
of the GW generation. In this paper, we discuss the possibility that the second order
perturbation of a spectator scalar field induces GW during inflation. We assume the very
general action of the spectator scalar field that is the k-essence and the Galileon term.
We perturb the action and calculate the induced GW as well as the induced curvature
perturbation. As a result, contrary to the previous work [37], we show that the induced
GW cannot be larger than the conventional GW because the curvature perturbation is
much more produced than the induced GW and the model becomes inconsistent with the
CMB observation. Since our setup is very general, our result can be interpreted that a
single spectator field cannot enhance the inflationary tensor mode.
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