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ABSTRACT 

The geometric quantization scheme is applied to the com- 
Pact Kaehler orbit manifolds of a one-parameter family of 
deformations of the Kepler problem. Thus we obtain the quan- 
tization of the magnetic charge and energy spectrum of the 
Corresponding quantum problem. A new regularization of the 
Standard Kepler problem is presented. 

In this paper we use reduction and geometric quantiza- 

tion to compute the discrete quantum energy spectrum of the 

Hamiltonian system (T*R 3, ~ , H ), where 

T*R 3 = {(p,q),R3×R3 : q ~ 0} 

3 3 
= r, dp. + ~ Z ~ (I) 

f~]~ j=1 3Adqj ~ q--~ j,k,l = I jklqjdqk dql 

H -- ½1pl  z + - 21q] 2 ]~];  c~,ta R, (x>0 

~Ollowing Iwai and Uwano [ I], we call (I) the MiC-Kepler 

PrOblem (after Mclntosh and Cisneros [2] who seem to have 

been the first to study it sistematically - see also [3]). 

The MIC-Kepler problem describes the motion of a charged 

Particle in the presence of a Coulomb field, a centrifugal 

POtential and a magnetic monopole with charge ~. We may 

treat (I) as a one-parameter family (V) of deformations of 

the classical Kepler problem (~=0) [4]. It is known that for 
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any real value of u,the symmetry group of the system is SO(4). 

If p ~ 0, then for any E < 0, all orbits lying on the ener- 

gy hypersurface H-I(E), are periodic (when u = 0 one must 

regularize LS] - see also sect. 2). 

In the present approach the quantization of the energy 

of the system (I) is possible only if one quantizes also the 

magnetic charge U, and the p-spectrum obtained coincides 

with the classical Dirac quantization of the magnetic mono- 

pole. This phenomenon occurs only in dimension three, and 

the geometric fact underlying it (responsible also for seve- 

ral recent developments in mathematical physics - e.g. self- 

duality) is the fact that the quadric surface in p3 is de- 

composable (biholomorphic to PIxPI) or what amounts to the 

same thing, that S0(4) = SO(3)®SO(3). When the energy E< 0, 

and the magnetic charge p take all allowed (quantum) values, 

the corresponding eigenspaces of wave functions carry all 

(finite dimensional) irreducible representations of S0(4) 

(see Theorem I below). 

Reduction of the symplectic manifold (T*R 3, ~p), with 

respect to the flow of H , followed by geometric quantiza- 

tion of the symplectic manifolds obtained, yields as quantum 

bundles all positive line bundles on PlxPl (the flag mani- 

fold of SO(4)) , whence the last statement is a special case 

of the Borel-Weil-Bott theorem. 

Theorem I. The Hamiltonian system (I) has a discrete 

quantitum energy spectrum if the magnetic charge p is ~alf) " 

integer. 

p = O, ±½, ± I ,  . . .  (Z) 

If we fix a value of p from (2) then the allowed negative 

energy levels are 

° - ° " / 2N  2 ; N = iP l  * 1 ,  IP l  + z ,  . . .  
C3) 

with multiplicities 

m(EN ) = N 2 . p2. C4) 
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The proof of the theorem (I) is based on the explicit 

description of the orbit manifolds of the MIC-Kepler problem. 

For a fixed per and E < 0, we denote by @ (E) the orbit mani- 

fold of the flow of the Hamiltonian H on the level set 
11 

H-I (E). All orbits are periodic (after regularization at 

~=0), whence the flow of H defines an S I action on H-I(-%0), 

with momentum map H~. By the Marsden-Weinstein reduction 

theorem ~ (E) = H[I(E)/s~~ is a symplectic manifold with re- 

duced symplectic form ~ (E). We have 

Theorem 2. Let E < 0, X -- /Z'~. Then 
- 1 ( E ) / $ 4  ~- p lxp1 .  (i) if li~ l < 2a then ~(E) = H i 

if I IV I = 2~ then H~ I(E) = P consists of fixed ( i i )  
p o i n t s  of  the  f l o w ,  

(iii) if I I~ I > 2~ then H[ I(E) = 9. 

the reduced symplectic form on ~ (E) is Moreover, 

fl (E) 2~(2~+ k~) ~I + 2~(2~-A~) ~2 (5) ............ ~ .............. ~ 

Where 
i d~jAd~j .2 

~o . . . . . .  ; j = 1,2; i -- -I (6) 
3 2~T (I + IF~j I 2)2 

fo r  any p a i r  (~1 '~2 )  of  nonhomogeneous c o o r d i n a t e s  on p lxp1 .  

We o u t l i n e  the  p r o o f s  of  Theorem 1 and Theorem 2 in the  

next  s e c t i o n .  Complete p r o o f s  a p p e a r  i n [ 6 ]  . 

Remark. The p r e s e n t  a p p r o a c h  to g e o m e t r i c  q u a n t i z a t i o n  
Via orbit manifolds originates from Simms [7]. Related prob- 

lems concerning interchangeability of quantization and reduc- 

tion were studied recently in [8]. The opposite approach of 

lifting classical systems and then quantizing has recently 

been applied to a veriety of problems by Kibler et all (cf. 

[9] and references therein). 

Outline of the proof of the theorems. 

Let (T*R 4 [~) denote the symplectic manifold 
4 

T*I~ 4 = { (x ,y )eR4xR4 : x ;~ 0},  f~ =j=ldyjr. Adx.j (7) 
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For an arbitrary constant % >0, we introduce complex coordi- 

nates on T*I~ 4 ( c o m p a r e  [ I ] ) .  

Zl = ~Xl +Y2 + i(Y1-~x2); z2 = ~x3-Y4 + i(Y3+Xx4) (8) 

z3 = %xI -Y2 + i(Y1+%x2); z4 = Xx3 +Y4 + i(Y3-kx4) 

Obviously 
~ dz Ad~ = i 4 = Z dz .Ad~'. (9) 

=I J 

Thus T*R 4 = C4\D where, 

D = {zeC4 " z1" = -~3; z2 = -~4 ). (10) 

We introduce three hamiltonians on T*R 4 

H = ---h--1  r(ly12-8 ), (11) 

 =½(Xlyz-x2y1+x3y4-y3x 4) -- (Lz112+Iz212-1z312-Lz41 z) (13) 
The Hamiltonian system (T*R 4, ~, H) is called the conformal 

Kepler problem. We note that the harmonic oscillator K, 

the moment M and the symplectic form ~ are well defined on 

C 4. Let ~4 = C4\(0}. We denote by Kt, M s the flows of the 

Hamiltonian systems (K,~,~4), (M,~,~ 4) respectively. 

Lemma I. ([6]). For any ze~4, s, teR we have 

Ktz = ei%t z = (ei%tzl ei%tz2, ei%tz ei%tz ' S' 4 ) (14) 

MsZ = (eiS/2zl, eiS/2z2, e-iS/2z3, e-iS/2z4) (15) 

Thus Kt, M s define two commuting free actions of U(1) on ~4, 

where moment maps are K : ~4 ÷ R, M : ~4 ÷ R given by formul~e 

(1 2), (1 3). We denote by J : ~4 + R 2 = u~l)xu~l), the moment 

map of the action of U(1)×U(1) on ~4 defined by z + KtOMsZ, 

t h u s  

J(z) = (K(z), M(z)). (16) 

We also remark that the U(1)×U(1) action defined by (14), 

(15) is free on the set C4\(D'OD tl) where, 
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"4 2 = 0} = {zeC ; K+ 2kM = 0} D ,  = { z  : J z 112+ J z x (17) 
D" = { z  : I z 3 i 2 +  I z 4 1  = 0 }  = K-Z  = 0 }  

Lemma 2. ( [ 1 ] , [  6 ] ) .  Le t  F.< 0,  X = ,,C-8"-E. Then 

H -I (E) = K -I (4oOnT*l~. 4 (18) 

Moreover, on the level set (18) we have 

4[xI2XH = X K (19) 

where XH, X K are the hamiltonian vector fields of H, K res- 

pectively. By Lemma 2, the flows of H, K on the level set 

(17) coincide up to a monotone change of parameter, whence 

the orbits of the harmonic oscillator K on ~4 are extensions 

of the conformal Kepler problem. Thus we may treat (~4,~,K) 

(T*I~ 4 as a regularization of ,~,H). Another consequence of 

Lemma I and Lemma 2, is that all three flows of the hamilto- 

nians H, K, M commute on T*R 4. 

The following crucial result was established by Iwai and 

Uwano [ I ] . 

Proposition. Let ~eR. We have the U(1) action (15) on 
}4"I (~) and 

M-I(~) /U(1)  ~ T'R3" 

}4Oreover, the result of reducing the conformal Kepler prob- 

lem (T*~4 ~,H) with respect to the U(1) action (159 on the 

level set M = ~, is the MIC-Kepler problem (T*R3,~ ~ H ). 

The set C4\T*R4 is Ms-invariant , thus an orbit of (T*R 3, 

~,Hv) is closed if it is the image of closed orbits of 

(T*~,~,H) under reduction. The nonclosed orbits of (T*R3,~U, 

~) occur only at u=0. At the corresponding level set M -I(0) 

We have (D'UD")nM -I(0) = 0, and the periodic K-orbits on 

}4-I(0) are the closures of the H-orbits which are preimages 

of He orbits. Thus we get a new regularization of the clas- 

Sical Kepler problem. 

Now we observe that Lemma 2 and the Proposition imply 

~(~.) = j-1(4~,~)/U(1)xU(1) (2O) 

By (12), (15), (16) we get 

J'I(4~,~)={z, C4: [z 112+jz2j2=4(z~+kla) ; Iz312+[z412=4(2c~-,xv)} (21) 
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whence 

(i) J-1(4a,p)---SSxS 3 iff klp I < 2~; and by (17) 

U(1)xU(1) acts freely. 

(ii) j-1(4a,p) --- S 3 iff llVl = 2~, and by (I 7) 

j-I(4a,p)CD, or D". 

( i i i )  J - l ( 4 e , p ) = #  i f  ~,[~[ >2a .  

From formuli (14), (15) we see that in case (i) the map 

J-I(4~,~) ÷J-1(4u,~)/U(1)xU(1 ) is the direct product of P 
two Hopf maps which can be written explicitely in coordina- 

tes a s  

), p1xp1 (22) 
P(zI'z2'z3'z4 ) = (~I'~2) = (Z2/z 1'z4/z 3 

where (~I'~2) are a pair of nonhomogeneous coordinates on 
p1 xp1 • 

A straight computation using (21), (22) and the defining 

relation 

p*flp(F.) = ~ / j - 1 ( 4 ~ , ~ )  

yields theorem 2. 

Now we outline the proof of theorem I. We quantize the com- 

pact K~hler manifolds (~la(E),  f~l~(E)). 

By the  s t a n d a r d  p r o c e d u r e  of  g e o m e t r i c  q u a n t i z a t i o n  [ 1 0 1 ,  
the  a l l o wed  v a l u e s  of  the  p a r a m e t e r s  la, E a r e  e x a c t l y  those  

f o r  which t h e r e  e x i s t s  a quantum l i n e  b u n d l e ,  i . e .  a l i n e  
bundle  L ÷~1~(F.) such t h a t  

1 a (E) 1 (@ (E) )e H2 (O1j (E) , Z) (23) c l ( L )  = ~r~ - ~ c  1 

i s  a n o n n e g a t i v e  cohomology c l a s s .  I t  i s  a w e l l  known t h a t  

the cohomology class of the forms ~I' ~2 defined in formul~ 

(6) generate H2(pI×p I,Z) and that a nonnegative class must 

have nonnegative coeficients in them, whence the condition 

(23) reduces to 

Cl (L  ) = (N1-1 )~  1 + (N2-1)~  2 (24) 

where N I, N 2 are arbitrary positive integers. 

Taking ~ (F) from (5) and using (24) we get 
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(NI"I)~I + (N2-I)~I =--'f-- ~I + ~2- (mI+~2) 

whence 

= 4 (N I +Nz) ; = ½(N I-N z) (2S) 

Obviously V can take exactly all (half)-integer values. 

Fixing a (half)-integer ~, we introduce a new (half)-integer 

variable 

N = ½(NI÷N 2) 
Because of N I = N + ~ ~ I, N 2 = N- ~ ~ I, and X = ~  for- 

mula (25) gives exactly formula (3). In order to obtain the 

multiplicities we apply the Riemann-Roch theorem for fixed 

E N to the corresponding bundle LNI,N 2 and obtain 

m(E N) = dimH°(LNi,Nz,plxp I) = NIN 2 = N2-~ 2, 

which proves theorem I. 

We remark that using the degenerate situation of item 

(ii) in Theorem 2, one can also quantize ~, arriving at the 

same result. 
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