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ABSTRACT

Amplitudes with total cross—sec-
tions rising asymptotically like (1og s )F+
require shrinkage of the diffraction peak.
For 0 < ﬁ_‘_s 1, it is sufficient to have
a leading positive signature trajectory
which is regular at t=0, but not a cons-
tant. For 1 <€ ﬁ + < 2, the trajectory
must have a branch point at t=0. BExplicit
amplitudes with complex Pomeranchuk trajec-
tories are given which are compatible with
t channel unitarity. The limiting case of

maximal absorption is considered briefly.
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INTRODUCTION

Recent and future experiments with the new accelerators and storage rings
are expected to shed some light on the asymptotic properties of scattering amplitudes.
Whatever may be the outcome of these experiments, within the framework of dispersion
theory, it is of interest to explore the constraints imposed upon the amplitudes by

specific assumptions about the asymptotic form of total cross-sections.

In this lecture, we consider the possibility that total cross-sections rise

with increasing energy. We know from the Froissart bound 1 that

Gy = o((&gs)") | ()

For an asymptotic increase of the cross-section corresponding to

g~ (%S)A) (1.2)

we find that some shrinkage of the diffraction peak is required. If ﬁt_g{ 1, this
minimal shrinkage is at most logarithmic and can be obtained with a leading positive
signature trajectory *) o (t) which is a regular analytic function near t = O.

However, for p+> 1, we have a quite different situation. Within the framework of
complex angular momentum methods, we can show that the trajectory function must have

a branch point at t = 0. In particular, it should be an appropriate branch of a

/
o) = |+ m'f.'t p) w 4 £ /Q &2 (1.3)

function like

near t = 0. Unless ’3 = 2, we need special new branch points ("hiding cuts") in
order to remove those branches of Ol(t), which violate s channel unitarity, from

the physical sheet of the complex angular momentum plane 2).

*
) We use the word "trajectory" for a singular surface of the continued partial wave
amplitude F(t,)). The character of this surface is not specified, a priori. It

may be a branch point surface or a pole surface.
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The complex Pomeranchuk trajectories of the form (1.3) are rather natural
in connection with impact parameter representations of the amplitude. We explore
this connection, and we give special examples of amplitudes with rising cross-sections
which are also compatible with +t channel unitarity. Finally, we discuss the limiting

case of maximal absorption.

II. RISING CROSS-SECTIONS AND SHRINKAGE

We consider in the following only the positive signature amplitude, assumin%
that the highest negative signature trajectory has an intercept well below ) =1 3 .

For the forward amplitude, we make then the ansatz

@ -1
E(S)O) oC IS loat) *4- %ﬁsceoas)& d e (2.1)

for s - ®, which is consistent with the dispersion relations for F+ =P + F, where

F and T are the amplitudes for particle and anti-particle scattering respectively.

The minimal shrinkage required by the condition G’el < 6-tot can be seen

from the inequality

0 2 s d Fts,0)
t ) £
_{d [feel s |Fs,00|*

) (2.2)

where

{(s‘t) = F.___—(“t) . (2.3)

F(s,o0)

With the ansatz (2.1), and the assumption that there is no negative signature trajectory

with ©&_(0) =1, 3) we nave for s — ®

s (?W«F'(:,o))-'zv (.e.as)'ﬁ* | (2.4)

If ﬁ+> 0, and hence the total cross-section increases with a power of
logs, we see that the bound (2.2) requires some shrinkage of the diffraction peak.
Hence, in this case, the leading singularity at ;\ = 1 in the complex angular momentum

*

plane cannot be a fixed (i.e., t independent) one ‘.

o o o e o o o e o B e = e S S e B O (G o e B e G B e e

*
) As required here, a fixed singularity by itself would, of course, violate t channel

unitarity, but this could be avoided by introducing the appropriate shielding cuts 4)
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For 0 & @_‘_{ 1, it is sufficient to have a trajectory ¢¥¢ (t) which is

regular near t = O. In particular, f+ = 1 requires a non-vanishing linear term :

! !
olit) = |+0((0>t+m) Aty >0 (2.5)

On the other hand, if ﬁ_‘_ > 1, a regular trajectory function & (t) is
no more sufficient in order to produce the necessary shrinkage as indicated by the
inequality (2.2). A trajectory o((t) with a branch point at +t = 0 1is now required.
At least, this is the case if the shrinkage is to be generated by the properties of
the function O (t), which is the case for pole and branch point surfaces of the
continued partial wave amplitude F(t,A). There could be other possibilities only if
we allow essential singularities to be present at (t,A) = (0,1). Here we do not
consider this case. Essential singularities are comnsiderably restricted by t channel
unitarity, and, already for this purpose, they must have a very special 1t dependent

character 5 .

It is well known that trajectory functions 0( (t) do not inherit the left-
hand cuts of the partial wave amplitude P(t,A ). They can have branch points at a
point like t = O only if there are two or more singular surfaces which cross there,

and only if these surfaces have the same character 6 . Then, we can have

Y
. mze (2.6)

o
M) = ofee) + 2 ¢ t
"
near t = 0 without the partial wave amplitude having a singularity at this point

which is not allowed. The n branches of the singular surface (2.6) must appear in

a completely symmetric fashion in F(t,A). For t — 0, we have then

]
Kit) = olte) ¢ Cawa".'t‘n . (2.7)

However, if additional, very special branch points A = Nc(t) are present in F(t, A ),
we can arrange for some of the branches of the function (2.6) to be in unphysical sheets
of the A plane. With such additional "hiding cuts", we can even have any number/3

in place of the ratio n/m in Eg. (2.7). For example, we may have

: |
O((ﬂt 0o + Co'\Mio-tlﬁ (2.8)

near t = 0 if the amplitude F(t, A) has a branch point of the type ()\ - o(c(t))ﬁ
with &c(t) = p{(0) + 0(t). This hiding cut can then remove almost all of the branches
of (2.8) from the physical sheet.
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In order to have sufficient shrinkage for amplitudes with rising cross-
sections as in Eq. (1.2), we need a branch point in (¢ (t) of the form (2.7) or (2.8)

with pf (0) = 1,

&éﬁﬁ'z, (2.9)

and a branch with ReD{(t) < 1 for t < 0. In addition, if ﬁ < 2, there are always
also branches with Re{(t) > 1 for t < 0. These branches must be removed from the
physical sheet with the help of the hiding cuts mentioned above. They would violate the

bound

Jm Fis,t) € M Fis,0) fe tso

(2.10) -

There is also the familiar bound

|Fis,t)| = O(s'+ﬁ) b octet, |

(2.11)

where Jé’ is the radius appearing in Lma.x = %,/EE log s, the maximal orbital angular
momentum for which partial waves are relevant for s — ® 7 . Hence branches of
a(t) =1 + cth with Re ¢ >0 for t >0 are only allowed in the physical sheet

if sz amd Rec<,/d for f=o2.

If the amplitude F(t, A) has no hiding cut, then all branches of X (%)
are in the physical sheet. Since for 1 < ﬁ < 2 there is always a branch with
Re@l(t) > 1 for t < 0, the bound (2.10) implies then that /3 = 2, and we are left.

with trajectories of the form

W) = 1+ efE + O

(2.12)
near t = 0. In this case, O{ (%) is real for t>0 (t < t, = threshold) and

complies with the bound (2.11) for c < .Jfa as well as with (2.10) because Re®(t) < 1
for t < 0. : .

EXPLICIT AMPLITUDES

In this and the following Section, we consider explicit examples of amplitudes
with complex trajectories of the form (2.12) which give rise to increasing total cross-
sections. In particular, we are interested in showing that one can write down ampli-
tudes which also comply with the usual analyticity and unitarity requiremenfs of s

and t channels.
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In earlier publications 8)’9), we have shown that a rather general class of

amplitudes with complex trajectories can be expressed in the form

_ A D)
h (t,3) o¢ !Jg et

(3.1)

for (t, \) mnear (0,1). The high energy limit of F+(‘s,t) is then obtained from

the transform

E.(s,f) ~&L..-fof:\ Sa S+CA) K“:\A) E (+.A), (3.2)

We write here

(3.3)

S, () = ep(- i3

*
and absorb the factor K(t,a\ ) in the definition of F+(‘t,;‘) ). Then, we find

for s — @

!
F;(s.t) ~s ‘g&? ﬁ(f,f)Jo(fm(&ag-f_{)> . (3.4)

10)

T=-at (Coas)z) (5.5)

For fixed values of

2)

the leading asymptotic terms are given by

l
Futst) ~ s fd? &L;ﬁ),}oﬁfﬁ)

!
) {SEO‘? ﬁ,qat)g J' QF) 1o (3.6)

Note that this is an expansion in powers of *-at; and not of -at lbgs' ={E: .
For fixed values of 1%, other terms in Eq. (3.4) cannot be neglected. .

We are interested in amplitudes which reduce to Eq. (2.1) in the limit of
forward scattering. In particular, let us consider the case fa+ = 2, Appropriate

forms can be obtained from the representation (3.1) by choosing

K Kit,A) = Q'Q?{)PCAﬁé)[Pthl)ﬁ om{;\].'




PL§E) = & P | 6.

with ? f) satlsfylng the conditions

J\J (eq) =0 - (3.8)

and

{'dg 12018) >o. 5

Then we find for t — 0

R ~ ot f $ee) o0

and F+(t,A;! 1) 1is regular at t = O. The asymptotic forward amplitude becomes

(3.11)

E; (5,0) ~ fa@ﬂ ‘P(?) -{cs[&ﬁs)
+~ S -2033

In order to give a simple and explicit example of an amplitude which complies

also with +t channel unitarity, we wr:.te
!

Plpyec § NI V?\ﬁ: (9(/—;)
+ Y_T.?.G(/a-‘ i)j

where ﬁ and { are real parameters satisfying the conditions

(3.12)

o‘((i?l) bep<!| , /g‘*'h’ (3.13)

The normalization factor N can be chosen to be

(3.14)



in order to have
!
| S ? /
- ) .
7] “T f ‘P(?) (3.15)
0
The ansatz (3.12) satisfies Eqs. (3.8) and (3.9), and in addition

!
for 17 ety =0

so that F+(t, A=1) is also regular at t = O. The continued partial wave amplitude

is of the form

N 2R -
F].UZ\M oC )t {VCA-!\‘-d - \/Mr-{;: VG0 -pat

- l-r Y
+ = ‘,-'_‘,—.%‘ Y(-1)t-yat j .

It has the square-root branch points at positions corresponding to Eq. (2.12). These

(3.16)

branch points are compatible with 1 channel unitarity without requiring a threshold

in the trajectory function or shielding devices

Since the model (3.16) is meant only as a mathematical example, we do not
discuss here the details of its high energy limit. From Eq. (3.6) we see that the
leading term for s — ® and fixed values of % is given by

oy 3,0
5“0’”“'8(%)‘;’%’-{ .\;f

_!_'_‘_I_? JIN/TT-) + I.'//? Jt(/F> } (3.17)
G-& Vr -k v

which reduces to is(logs)2 for t = 0.
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LIMITING CASES

More familiar physical models are obtained if we choose the weight function
?(’) in Eq. (3.7) to be of the form 2)

/
@g) o< O (§-4,) (a.1)

with 0 & ;o ¢ 1, or superpositions thereof. We obtain then for the continued
partial wave amplitude in the neighbourhood of (%, a) = (0,1)

F(ha) o< [Gaen™ glat ]"“‘ (4.2)

As it stands, this expression does not comply with the requirements of ¢ channel
unitarity if continued to t 2 tye But it should be viewed as a degenerate limit
for small [tl of several complex pole and related branch-point trajectories which
are different from each other for larger values of [t' and which are separately
compatible with the +t channel constraints. We have discussed similar pole-cut

relations in previous publications 2)’6)’9).

The partial wave amplitude (4.2) gives rise to the high energy limit

Fo(st) o< c's(eoas-!'.f) J) (§,V=at days )

= is(lys) T ¢ Eslogs T 7
+ 0 (at),

where % = -at(logs )2,

In Eq. (4.3) we have also expanded the asymptotic expression in powers of

at, exhibiting the leading terms for s — ® and fixed values of T.

The expression (4.3> may be compared with the impact parameter representa-
by ’. 203(s,bk)
(s,b)e - |
Fisit)~ %f‘l“‘ (e Jo (bi-t) ) (4.4)
o

tion 11)

2y



2)

which we write in the form

l
Fist) ~ S SJ? Y(,8) J° (?ﬁ) (4.5)

'035\/6-%3 ool ﬁ"/:&"é‘?s- (4.6)

The radius ‘a has been defined before.

We have the identification

Re Y t4,8) = (Qo-;.s)"g | amdd
D Y1,8) = (Logs) g R(1-puedd)

(4.7)

The model (4.3) corresponds to a weight function ]P with the high energy limit

biwn Y (hs) o< ,‘(&1:)139(-‘&,) + O(Legs) o
N X
*)

where we cornsider ? as a fixed parameter

In the following, we write simply (s, f) and 5 (s,{) in the place of
<S’b(§ ,s)) and :(s,b(s,‘)), where b(s,s) is given in Eq. (4.6). Using
Eq. (4.7), we see then that

\3;:0 7(3,@)«»25};,3) =0 (4.9)

and

o o o o o e 20 e o S S e o e e o P B B e e e e O

*) In the re i i j
presentation (4.5) the variables { and Y P are conjugate to each other
like b and -t in the usual impact parameter representation (4.4).
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for fixed 0 € {5 to, and zero for t>’°° We note that b(e,,)-o: for
S > ®.

In terms of ?(s, f), the inelastic cross-section is given by

'
q‘“‘( ~ dra (!.ag)" {0033 (l-l’%!,&)) , (4.11)

which is maximal for 7 - 0 in the high energy limit.

Suppose we require that the inelastic cross-section approaches the largest

*)
value
. e
G-: ~ FTQ (438) (4.12)
Y
which is compatible with the bound T f I’max = 1/2(8-.; logs for the relevant orbital

angular momenta in the s channel partial wave expansion. Then Egs. (4.9) end (4.10)

imply

.ﬁs‘m Y“,‘) = 3‘ [l'ﬁs)z? (4.13)

S=e0

for the leading asymptotic term, and for fixed values of ¥°, the high energy limit
*%
of the amplitude becomes

2 Q 23‘,(5)
&

F(:){) s:J.o I‘SA('eOa&) + O(s%:) (4.14)

which corresponds to the expression (4.3) with o = 1 and the factor a/4 2). The

leading term of the dispersive (real) part is given by the dispersion relation. We
see that the requirement (4.12) is sufficient to determine the asymptotic form of the

High energy cosmic ray experiments may also give important bounds on the asymptotic

increase of § .
er inel.

*% ’
) Tteration schemes in the + channel often lead to amplitudes which overshoot
the Froissart bound. If these are then unitarized by further iteration in the

s channel, we are likely to get an amplitude corresponding to Eq. (4.14)) or (4.3)
12 .

because complete absorption is required in order to restore unitarity
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*)

amplitude for fixed values of %'. The total cross-section becomes in this case

Cut ~ 26 ~ 2ra (bys)? (519

In the high energy limits considered in this and in the previous section, we
have not specified the normalization of the variable s in the logarithmic factors.
Although this is a question which affects secondary terms only, and which is, therefore,
more model dependent, it is of course important from a phenomenological point of view.
In particular, at presently available energies, we expeci that possible logarithmically
increasing terms in the amplitudes are superimposed upon constant ones or others which

are due to secondary singularities in the angular plane.

V., CONCLUSIONS

Let us sum up the conclusions of our discussion of rising cross-sections

within the framework of dispersion theory. We find the following .

1. Any increase of the total cross-section with a power of (logs) requires

some shrinkage of the diffraction peak.

2. 12 G~ (logs)P+ with 0 & 3, €1, it is sufficient to have a
positive signature trajectory which is regular at t = O. For ﬂ+ =1, a trajectory
of the form “(t) =1+ 0'(0)t + oo with ol'(0) > 0 is reguired near % = O,
Whenever ﬁ +> 0, it is not sufficient to have a fixed (and shielded) singularity at

A=,

*
) We use the normalization

Tyt ™ .{-" I Fre0)
Figt) = ‘-'_-{ Frtsds + = (st ).

——

Complete saturation of the Froissart bound would imply Q ~ 47a(logs )2 and
€,pc1 ~ 0+ This case corresponds to S(s, ) - /2 and (s,’) -1 for
s - ®, = fixed ; it also gives rise to a unique limit of “the amplitude for

fixed values of ¥, which is given by Eq. (4.14) except for a factor two 10)’13).
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3. If § o4 ™ (logs)ﬁ*’ with A+>1 (F+g 2 in general), then the
positive signature trajectory near +t = O must have a square-root branch point :
oh(t) = 1 + const./T + 0(t) *), if no hiding cuts are present. With hiding cuts, we
can have trajectories like o( (¢) =1+ const.t1/‘ with p+ glsg 2, provided only
branches with ReU(t) <1 for t < 0 are in the physical sheet of the complex angu-

lar momentum plane.

A trajectory O (t) may, of course, have a branch point at t = 0 also in

cases where this is not reguired by s channel unitarity 6).

We have shown that amplitudes with complex trajectories of the form (1 .3)
are rather naturally related to Bessel function representations. Exsamples can be
written down which are compatible with the usual requirements of analyticity and
unitarity in both channels. We have also considered limiting cases which correspond
to the maximal allowed asymptotic value of the inelastic cross-section.
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*) We have assumed nerec that any shrinkage of the diffraction peak, which may be
required, is due to the properties of the trajectory function 0f (t). This is
the case for pole and branch point trajectories. In some situations, where +
is not an integer, there may be other possibilities if complicated essential
“singularities with 't dependent character are allowed. We have not explored these

it is sufficient to use the bound (2.2) in order to

possibilities. For P = 2,
10)

+
show that a trajectory of the form (1.3) is required

We also assume that (¢ _(0) ¢ 1 for the leading negative signature

trajectory 3) .
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