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1. Introduction 

Quantum electrodynamics is accurate to a few parts in 9. million. Its remarkable success is 

due to the smallness of the coupling constant and to the possibility of renormalizing the perturbatiol"l­

theory divergences. The usual theory of weak interactions, on the other hand, is not renormal­

izable. Therefore, in spite of the smallness of the coupling constant ( Gm l .. f 0 -5) higher-order
p 

calculations are meaningless. The quadratic divergences present a problem not only because the 

theory is not finite, but because it is not clea.r how the hi~her-<>rder corrections can be smaller 

than the lowest order. For instance, if a process goes like G in lowest order. the next order will 
2 2 

go like C'11. , where 11. is a cutoff, and it will not be smaller unless Gi\ is appreciably smaller 

than unity. For some processes, this kind of interpretation requires rather small values of A, an 

admission that the theory fails at uncomfortably small energies. 

One may hope that a unified theory of weak and electromagnetic interactions based on a gauge 

group will be renormalizable because of the cancellations due to the Yang-Mills relations among 

the couplings. Furthermore, because of the properties 0 f the nonabelian gauge group. it could explain 

the universality of both interactions. Since the intermediate boson must be taken to be masslve 

and the theory of Yang·Mills fields with mass is not renormalizable. a special procedure had to 

be found~-the Higgs mechanism; as described below, a renormalizable theory seems possible. 

Universality, on the other hand, has been only partially achieved. In the presently known models 

either the electromagnetic or the weak universality has to be put in by hand. t 

II. Spontaneously Broken Gauge Groups� 

The Higgs2. Lagrangian� 

with F =IlA -SA 
IJ.V 11 v "..,. 

is invariant under the gauge transformation 

A ..... A + a A, <f> ..... f/leigi\ . 
..,. IJ. ... 

Treating it at first classically (tree diagrams) we distinguish the two situations ..,.2 > 0 and ....2 < 0 

(in both cases h > 0). In the second case the potential 

V(¢) = l!lid Z 
+ hl~14 

has a minimum for '1/11 = " = (_P.2. fh)'! /2 and the complex field til has a nonvanishing vacuum expec­

tation value. Choosing it to be real, <~> = x., we see that the solution no longer has the symmetry 
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of the equations. Rather, the group transforms the particular solution chosen into an infinity of 

equivalent solutions, none of which exhibits the gauge symmetry_ The symmetry is spontaneously 

broken. In the absence of ga.uge fields the spontaneous breaking of a symmetry implies the exi8t~ 

ence of ma.ssless bosons (Goldstone hosans). as many as the number of generators of the original 

group which are no longer conserved. In the presence of gauge fields some or all of these mass­

less bosons diappear from the physical spectrum and provide instead the additional degreea of 

freedom necessary to give a mass to a corresponding number of gauge fields. In the Higgs model 

this can be seen by introducing the fields X and e through 

Under the gauge transformation. the field e transforms as 

e - e + g>0\, 

while the field l( and the vector field 

are invariant. The Lagrangian can be expressed completely in terms of these gauge-invariant 

fields 

h .0& t Z 2 2 - 4" X - r g B~ (Z~X + X ), 

We see that the phase e has disappeared and at the same time the vector field has acquired a mass 

m = g>... The gauge group is no longer visible, although the particular relations among the coupling 

constants are a reminder of the original gauge invariance. 

The pervading idea of the work described here is that if a theory is renormalizable in the 

symmetric case (~2 < OJ. it will also be renormalizable in the case of spontaneous symmetry 

breaking. Since the original Higgs Lagrangian is renormalizable in the symmetriC case, we 

expect the new form to correspond to a renormalizable theory. In the new form the vector meson 

propagator 

.... (6 +~) 
~v 2 _ m 

will give rise to highly divergent Feynman diagrams. Cancellations will hopefully take place which 

will render the theory renonnalizable. This kind of quantization which uses the conventional 

vector meson propagator and no unphysical fields gives rise to a manifestly unitary S-matrix and 

is therefore called the U-formalism. In this formulation renormalizability is the hard thing to 

show. 

An alternative quantization scheme leaves the unphysical degrees of freedom and makes 

explicit use of the gauge group. Here renormalizability is obvious by simple power counting and 

therefore one speak.s about the R-formalism. Unitarity, however, has to be proved. This can be 
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done either by showing that the unphysical singularities cancel as a consequence of the Ward 

identities of the group, or by showing 'that the R-formalisffi is equivalent to the unitary U-fonnalism. 

Let us write 

The real fields 41 and ~z. have vanishing vacuum expectation value and transform into each other
i 

under the gauge group. One can fix the gauge by taking as Lagrangian 

where L is the Higgs Lagrangian expressed in terms of 41 and tb2,' Other gauge conditions are1 
possible but the above is especially convenient because it cancels the bilinear AlJ.af1~ term in L 

generated by the shift in the scalar field. Now the vector meson has a propagator with good high­

momentum behavior 

AA 
IJ. v� 

'--"� 

while the would-be Goldstone boson 4J has the propagator
2 

1 
4Jz 412, '" -2.--2,­
'--' k +m It; 

Observe that the vector meson propagator differs from its unitary counterpart given earlier by 

k k 
II. v 

This scalar ghost must cancel in all amplitudes against the Goldstone ghost to give a unitary S­

matrix. Notice that for; .. 0, the vector propagator tends to the unitary form whUe the Goldstone 

ghost acquires infinite mass and drops out of the theory. Therefore. there exists a one-parameter 

set of renormalizable gauges. starting from; , CZ) (Landau ga.uge), which tends in the limit of ~ - 0 

to the unitary gauge. The on -mass -shell S -matrix elements must be independent ot the particular 

gauge chosen. These considerations provide the basis for a proof of equivalence between the R­

and the U -formalism. 

Let us already mention here that in the nonabelian case the proof is complicated by the 

occurrence, in the correct Feynrnan rules. of the Feynman-Faddeyev-Popov ghoste. 3 It turns out 

that the interaction between these ghosts and the residual physical scalar (the analogue of 4l above)
t 

is proportional to 1 It; . Therefore, the ghost loops with external physical scalar lines give a con­

tribution which diverges in the limit as S~ O. In this case one must combine the ghost loops with 

all other diagrams contributing to the same amplitude. The S-matrix element itself is well behaved 

as ~ - O. Finally, let us remark that for a satisfactory proof one must first regularize and sub­

tract the divergences. These points will be discussed later. 
4The Higgs model has been shown by B. W. Lee to be renormalizable to all orders, The 

generalization of the Higgs mechanism to the nonabelian case is due to Kibble. 5 
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6m. The W~inberg-Salam Mode1

If one tries to construct a minimal gauge theory containing the known currents and only the 

presently known leptons, one is led almost unavoidably to the group SU(2) x Uti). Consider, for 

instance, the electromagnetic current e'V,./ of the electron and the charged weak current 

~YIJ.(t+'{~/2 v with its hennihan conjugate. In terms of the left-handed doublet e 

L 0 t~5 ( :e 1 
the charged current is 

Together with its hermihan conjugate, it closes to an SU(3) structure with 

Since this neutral current differs from the electromagnetic current, one must introduce at least 

one more neutral current. Using the right-handed singlet 

t -"5 
R=-2- e 

one notices that 

and that the current t L 'VIJ.L + Rv/t COmmutes with the above SU(Z) group. The Yang-Mills 

interaction is written in the form 

where BIJ. is the vector field of the Uti) group. The charged intermediate boson field is identified 

as 

W =_1_(A +iA .,} , 
llf.L .J2 1J.1 ," 

while the photon field is fixed by the fact that it couples to the electromagnetic current. It is 

given by 

2 2 ..t 
A =(g'A 3+ gB )/(g +g')2

jJ. jJ. 11 

while the orthogonal combination 
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describes a neutral intermediate boson. One finds easily that the electron charge satisfies 

1 1 1 
- ~- +­Z 
e l g'Z 

{rom which it follows that g > e, g' > e. The muon is treated in a perfectly analogous way. 

In this model neutral currents are very important. rn particular, vf.1e scattering and vp 

scattering are consequences of the theory. To make the model realistic one must find a way 

to generalize it to hadrons so as to explain why AS ~ 1 neutral currents are suppressed experi­

mentally by a factor of i 0 -4 - to -5 in the amplitude Wit~ respect to charf{cd -cuneot processes. 

The same applies to c..S 2 transitions. This can be done by using- an idea due to Glashow.0 

7
lliopoulos, and Maiani who make use of cancellations between intermediate states with ordinary 

hadrons and states with new "charmed" hadrons (or quarks). 

The vector mesons Wj.l and ZjJ. must be /::iven masses by means of the Higgs mechanism. 

One takes a scalar doublet 

and writes its Lagrangian 

When </I. due to its self-interaction. acqui,'es a Vacuum expectation value 

I 

the vectors acquire masses m i \.g, l1'lZ i \.(g2 + gIG) 2 • Identifyin~ the Fermi constant 
W 

fl'om 

one finds m z> mW> 37.2 GeV. The photon is, of course, massless. Observe that 

This is an eXBIIlple of a "erath -order relation among observable parameters which may be 

corrected but should remain finite when loops are included (see later). 

IV. Anoroal ie s 

We have mentioned that the proof of unitarity in the R -formalism makes use of the Ward 

identities to prove that the unphysical ghost singularities do not appear in the S-matrix. In 

theories like the Weinberg-Salam model in which the gauge group involves chiral transformations. 

the Ward identities may develop anomalies. 8 and it is easy to see that the presence of anomalies 
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spoils the proof of unitarity. Fortunately it is possible to arrange things so that the anomalies due 

to the various fWldamental spinor fields cancel. This has been shown for one-loop anomalies by 

Bouchiat, lliopoulos and Meyer, 9 by Gross and Jackiw, to and by Wess and the author. t t The 

more difficult question of cancellation in higher orders has been considered by Bardeen. t2 who 

reached the conclusion that the anomalies will not cause ditficulties in higher order if they cancel 

in the one-loop case. 

The one-loop anomaly is relatively easy to treat. Its general form in the nonabelian case 

has been given by Bardeen. t 3 The relevant property here is that it is proportional to the symbol 

of the gauge group. In the case of the Weinberg-Salam model the interaction can be written in 

general (for leptons as for quarks) in the form 

L 'V (s. C .:it + ~ C B l L - R 'V g' Q B R
II- Z II- 2 0 II- fl. IJ.' 

where Q is the (diagonal) charge matrix, Co = C - ZQ and L and R are the left-handed and right­
3 

handed parts of the spinor fields which we imagine arranged in a single column '1' containing all 

leptons and quarks. The matrices C , C ' and C of the SUeZ) algebra will therefore have, int z 3 
general, a highly reduced form. Separating the vector and the axial vector part in the above inter­

action, one can write it as 

where 

Now we use the fact that the anomaly can always be eliminated from the vector Ward identities by 

a suitable definition of the one-loop amplitudes (which always allow redefinition by contact terms), 

The axial vector anomaly will cancel if the corresponding d b symbol vanishes. This gives rise
Z a c 

here to the condition Tr C Q = O. In all models based on SUeZ} x U(f) which have been proposed.3 
the eigenvalues of the matrix C 3 are such that this equation simplifies to Tr Q = O. So, if the sum 

of the charges of all elementary spinor fields vanishes. the one-loop anomaly cancels. This con­

dition can be satisfied by arranging the quark charges in a suitable way. However, it is not 

possible. e. g., to cancel the electron against the muon since they have the same charge. 

A further restriction to be considered in model building is that the purely hadronic part of 

the anomaly should give the right TfO -+ Z'i decay amplitude in both magnitude and sign. This re­
Z

qUires that 2 Tr T 3 Q .. f. where T 3 is the hadronic isospin matrix and only the hadronic part of 

the charge matrix is taken in the trace. 
14

Georgi and Glashow have considered the general question of anomaly-Cree gauge group. 

The anomaly of a gauge group is proportional to the d symbol of the representation to which
abc 

one assigns the fundamental spinOI' fields. Now. pseudoreal representations (equivalent to their 
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conjugates) have vanishing d ' Groups which have only pseudoreal representations cannot haveabc 
anomalies. This leads to a classification of gauge groups which are safe for model buildinll. On 

the other hand "vector-like" models in which the interaction can be transformed into a purely 

vector interaction by redefining the spinor fields have no anomaly since the one-loop amplitudes 

can always be defined so as to satisfy anomaly-free vector Ward identities. 

Absence or cancellation of the anomalies is necessary to obtain a finite unitary S-matrix. 

On the other hand. the anomalies would begin to cause problems only in a relatively high order 

(sixth order), and one may ask oneself if the constraint on model building is not being taken too 

seriously since the essential physical requirement is perhaps not renormalizability but rather the 

smallness of the second order with respect to the first. The constraint given by the 'lfO - loy 
15

amplitude may also possibly be relaxed if different explanations of the process� turn out to be 

correct. 

V. Regularization 

An important step in the proof of finiteness and unitarity is that of regularizing the theory in 

a gauge-invariant way. Most known regularization methods violate the Yang-Mills gauge invartance. 

Two regUlarization methods which preserve gauge invariance will be described here. 
tbThe first is the use of higher-order covarillllt derivatives due to Slavnov and Lee and Zinn­

Justin. f7 As an example, in the Yang-Mills theory one can take the Lagrangian 

The first term is the usual Yang-Mills Lagrangian. The second and third term contain derivatives 

up to sixth order and give rise to a regularized propaga.tor 

+ gauge-dependent terms. 

At the same time, the need to use covariant derivatives in the second and third term of the 

Lagrangian introduces additional interactions of maximum dimension eight. The occurrence of 

additional Interactions limits the order of derivatives since interactions of too high dimension off­

set the advantage due to the higher derivatives. With the above choice one finds that only one-loop 

diagrams with two, three, and four external lines are primitively divergent (like 1\2, fl., and log fI. 

respectively). Although not all divergences are regularized. the divergence of the theory is 

sufficiently reduced and the divergences identified and isolated so as to become amenable to treat­

ment. Lee and Zinn-Justin use this regularization in combination with the use of regulator fields 

for scalars and spinal's. 

The� second regularization method is the n -dimensional regularization of It Hooft and 
19Veltman. i8 which had been used earlier in a different context by Bollini and Giarnbiagi and 

others. A Feynman integral can be transformed by the standard parameter method. For a one­

loop diagram, for instance, one obtains an integral like 
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.1-m r(m-~) 
00_1__ 

---r<mT . 
(Z,J:; )n

[k2 -L+i£] m 

where n is the dimension of space-time. The divergence of such an integral for n = 4 appears in 

the right-hand side as a pole in the garmna function at n ~ 4. For instance, if the original integral 

was logarithmically divergent, one would find a pol~ at n = 4; if it was quadratically divergent, one 

would find poles at n = 2 and n = 4. With n away from the poles. the integral is regularized 

and one can evaluate the Feynman graph by using formulas such as g gfJ.
V

= n. k k _.!- kZg
IJ.v fJ. v n fLv 

etc. The important point is that It Hooft and Veltman were able to prove that this regularization 

method respects the Ward identities coming from gauge invariance. It also provides a way of 

defining a subtraction procedure by subtracting the poles at n " 4 with appropriate residues so that 

the amplitude becomes finite for n = 4. 

The n-dimensional regUlarization method can be used in connection with either the U- or the 

R~formalism. It seems to bc the best available at this time. In the case of theories with spinors 

and chiral gauge groups. it cannot be applied to the spinor loops because of the special properties 

of the matrix 'is in four dimensions. It must then be supplemented by another regularization 

method, such as the Pauli-Villars regularization, for the spinoI' loops. 

VI. Renormalization 

Different aspects of the rcnor'malization program for a theory with :l Rpontancously broken 

gauge group have been studied among others by 't Hooft, 2.0 't Hooft and Veltman, 2.t B. W. Lee and 

Zinn-Justin, 22 Ross and J. C. Taylor,23 From the work of these authors emerges the possibility 

of a proof of renormalizability and unitarity to all orders in the R-formalism. No attempt has 

buen made to give a proof in the U-formalism although a number of concrete calculations have 

been� performed in the U-formalism, in the one-loop approximation, with finite results after 
24

rllDormalization. 

The proof in the R-formalism is too involved to be reported here. The main idea, which is 

simple, is to make usc of an invariant regUlarization procedure, subtract the infinities, and then 

prove the unitarity of the renormalized on-mass-shell amplitudes either by using the Ward 

identities in the particUlar renormalizable gauge being used or by proving gauge independence and 

the equivalence to the U-formalism. Be cause of the length of its expression, we renounce 

writing here a Lagrangian with all necessary counterterms. Let us only observe that, contrary 

to the familiar situation in electrodynamics, the simplest choice for the finite parameters entering 

in the Lagrangian (coupling constants) does not correspond to a simple and direct physical meaning 

in terms of observable processcs. Furthermore, the gimpIest choice of renormalized fields does 

not correspond to normalized fields, so that additional multiplicative renormalizations will be 

needed in the S-rnatrix elements. Finally, let us observe that the field and coupling constant 

renormalization are not inversely proportional 

1 

A unr. "z 2" A ren. 
... 3 ... 



f 

gunr. = Z3- 2 Z' gren. 

and the additional renormalization constant Z' is infinite in general. This means that the renor­

malized field transforms under the gauge group by a transformation with an infinite coefficient 

and the Ward identities for the renormalized quantities are correapondingly complicated. 

VII. Mass Relations 

In a renormalizable modeL such as the Weinberg-Salam model, all renormali:z:ed masses 

are finite since there must exist a sufficient number of cOUflterterrns to obtain this result. How­

ever, the masses and mass differences are arbitrary. Are there situations in which finite cal­
Z5 Z6

culable mass relations arise? Weinberg and Georgi and Glashow have discussed this possi­

bility. Suppose that in a particular model a relation among masaes is satisfied to zeroth order 

(tree graphs and tadpoles). Suppose further that the mass relation is valid to zeroth-order for all 

renormalizable Lagrangians which are invariant under the given gauge group and which are con­

structed with a given Bet of fields. [n gene!'al, the original gauge group will be spontaneously 

broken down to a subgroup, but let us consider the case in which the mass relation is not a con­

sequence of the invariance under the SUbgroup. Then the inclusion of loops will be expected to 

modify the mass relation. Nevertheless, if the theory is renormalizable, the corrections must be 

automatically finite since one has already taken into account all counterterms allowed by the 

original gauge group. Zeroth-o!'de!' masS relations of the kind described here can arise because 

of the special representation content of the scalar multiplet giving riae to the Higgs phenomenon 

(which may imply for instance that certain spinoI' fields do not couple to a scalar which has a non­

vanishing vacuum expectation value and therefore have no zeroth-order mass) or because of the 

particular dynamics of the scalar multiplet (which may imply that a particular scalar does not 

acquire a nonvanishing vacuum expectation value although this is not a consequence of group 

theoretic. arguments). 

The ideas outlined here open the possibility of understanding, within the framework of 

spontaneously broken gauge theories, mass relations such as the Gell~Mann-Okubo relation. They 

generate the hope that one might find models in Which, e. g., the neutron -proton mass difference 

or the electron-mass are calculable. For instance, if in a model the electron-mass vanishes to 

zeroth~order. it could come out proportional to llmf1 in the one-loop approximation. Unfortunately, 

so far these are only possibilities in principle since no realistic models have been found. 

Finally, let us point out that the above considerations apply equally well to relations involving 

not only masses but also other observable parameters such as coupling constants. 

VIII. Conclusion 

The renormalization program appears to work. However, it seems fair to say that none of 

the mddels suggested for a unified theory of weak and electromagnetic interactions is physically 

satisfactory. The experience gathered poses very strong constraints on model building. If a 

model exists which satisfies them all, it has a good chance of being the right theory. We must 

continue to look for it. 
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