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A general method for analyzing solenoid compensation schemes is developed, which projects the effect of each
coupling magnet, i.e. a solenoid or a rotated quadrupole, onto a common reference point. This leads to a perturbative
method of solution of the exact decoupling conditions.

First-order decoupling solutions are demonstrated for local solenoid, local skew-quadrupole, and remote solenoid
compensation. The merits of five different schemes are compared.

Theoretical and experimental evidence is presented showing how a two skew-quadrupole pair scheme can interfere
destructively with the beam-beam interaction. The exact compensation of the CLEO solenoid in CESR, using three
pairs of skew quadrupoles, is described.

Dispersion coupling is analyzed in general. Vertical dispersion is shown to disappear outside any "straight-line"
compensation scheme, and a proposal for a vertical-emittance knob at CESR is outlined.

I. INTRODUCTION

Most storage rings, whether built or planned, in­
corporate at least one longitudinal magnetic field
at the centre of an experimental detector. Un­
compensated solenoid fields at the intersection
points couple the horizontal and vertical betatron
oscillations, dispersions, and emittances. This
makes a ring less dynamically stable and lowers
the peak luminosity attainable.

A variety of compensation schemes exist which
have been used, or are planned to be used, in
order to decouple the equations of motion. The
simplest scheme, in use or once used at SPEAR,
PEP and CESR, places a half-strength anti-so­
lenoid on either side of the experimental sole­
noid, before the first quadrupole. PETRA reaches
satisfactory, but incomplete, compensation by
optimum choice of the relative polarities of three
experimental solenoids. 1 LEP designs2 ,3 and the
present CESR mini beta configuration4 ,5,6 com­
pensate with two or three pairs of rotated quad­
rupoles.

The projection approach7 was originally used
to design a compensation scheme for the super­
conducting CLEO solenoid that would place the
minimum number of constraints on the intersec­
tion-region geometry of CESR. Elimination of
the proposed superconducting anti-solenoids
meant that the first quadrupole Ql could be
moved much closer to the intersection point, low­
ering the vertical beta ~z* at the IP, and raising
the luminosity.
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The projection method is generally applicable
to the quantitive analysis of any weak or inter­
mediate-strength coupling system in a lattice. Its
simple and powerful perspectives complement
the other treatments already available. 8

-
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II. COUPLER PROJECTION

The general decoupling problem in a storage ring
is represented symbolically in Fig. 1. A segment
of the lattice AB contains the n couplers of in­
terest and a reference point C. Entrance and exit
planes of the coupling magnets are labeled 1
through 2n. The insertion as a whole does not
couple horizontal (x, x') and vertical (z, z') mo­
tion if the 4 x 4 transfer matrix TBA across it is
block diagonal in form.

When all the coupling fields are turned off, the
linear motion from any point i to any point j is
represented by the block diagonal matrix Mji .

Motion across the k'th coupler is given by
N 2k,2k-l. So the insertion is exactly decoupled
if

= MB,2nN2n,2n-IM2n-I,2n-2 ••• NMN ••• M1,A

(1)
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WEST EAST pIing conditions are simply

n

)
L kiK i = O.
i=1

(6)

Pi

(9)

(7)

[L, R] = [F, R] = o.
But what is the matrix K s ? If M is the uncou­

pled matrix from C to the entrance plane of the
solenoid, then

P s = I + 8Ks + 8 2 ••• = M- 1 L -I FRM, (10)

All the coupling terms are contained in the matrix
R(8), which represents the rotation of transverse
co-ordinates about a longitudinal axis. The angle
of rotation 8 is usually small. For example, using
typical values from the CLEO solenoid

BI 1 x 3
8 = -- == == 0.1 ~ 1. (8)

2(Bp) 2 x 5 x 3.34

F(/, 82
) is an uncoupled matrix that differs from

the drift matrix L(/) only by a second-order fo­
cusing "effect, identical in both transverse planes.
Since R must commute with the matrix repre­
senting any cylindrically symmetric element,

Solenoids

The exact linear matrix N s representing a sole­
noid of length I and field B with cylindrically sym­
metric thin fringe fields can be written as 14

Once the K matrices have been found for cou­
plers in general configurations of interest Eq. (6)
is readily solved.

The state of the world outside the insertion
really only enters this analysis through the im­
plicit assumption that the rest of the lattice is
decoupled. While the K matrices will shortly be
conveniently written in terms of Twiss parame­
ters and phases, which are global concepts, in
fact they only depend on non-coupling magnet
strengths inside the insertion, for a given geom­
etry. In a local insertion the magnet strengths
can, in principle, remain fixed during drastic
global lattice changes, while in practice they
change very little. It should be emphasized here
that any local decoupling scheme is essentially
independent of the injection/luminosity status of
a storage ring, and of the fractional betatron
tunes.

(2)

(3)

N2i 2i-1
I

because, upon subsitution into 1),

TBA = MBC(Pn ••• P2P 1) M CA '

Pi = I + k i K i + k? .... (5)

that is, if eight simultaneous equations containing
the n coupler strengths k1 , ••• kn are satisfied.
It will be shown later that, in the cases of interest,
only four of these equations are independent.

This description is simplified if the i' th coupler
is represented by its projection matrix Pi, where

The projection matrix Pi depends only on the
type of coupler represented, on its strength ki ,

on the chosen reference point C, and on the state
of the intervening non-coupling lattice. It does
not depend on the state or location of any other
coupler.

This representation is powerful because in
practice Pi is often very close to the identity
matrix and can be expanded as a polynomial in
ki

so that the exact decoupling conditions become

-tl---------i~~-----+_ICOUPLERS
A l' B OFF

A 1 2 3 .... 4 C 2i -1 2i 2n . B

+----EJ---O----*---EJ- -G--t- COU6~ERS ~

FIGURE 1 Symbolic description of couplers and transfer
matrices near a reference point C in an insert AB.

Here K i is a block anti-diagonal matrix. Putting
Eq. (5) into Eq. (4), the general first-order decou-
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so that, using first order approximations for F
andR,

where

[
0 S]

K s =
-st 0 '

(11)

(12)

Any rotated quadrupole field can be decom­
posed into a superposition of a regular quadru­
pole (tV = 0) and a "skew" quadrupole (tV =
45°). For the present it is convenient to concen­
trate on thin skew quadrupoles, but later it will be
shown how to deal with thick magnets in a real
situation.

A thin skew quadrupole has the coupling ma­
trix

The adjoint (t) transformation of a 2 x 2 matrix
merely involves reordering the matrix elements

1 0
I

0 0I

0 1
I

Ilf 0I
I

(19)- - - - - - -1- - - - - - -
I

0 0 I 1 0
I

Ilf 0 I 0 1I

so that, since S has a unit determinant,

st = S-l = M z - 1 M x .

(13)

(14)

and has an exact projection matrix

P Q = I + q K Q = M - 1N 45 M. (20)

An expression will soon be found for K Q for
skew quadrupoles that is identical to Eq. (11)
with S replaced by Q, where Q is a singular ma­
trix.

Solenoids a Drift Away From C

An experimental solenoid centered at C, or an
anti-solenoid only a drift away, has the simple K
matrix

(15)

For a collection of such magnets, as in the sim­
plest compensation scheme, the eight first-order
decoupling conditions (6) become one condition

Now, defining the dimensionless strength of a
skew quadrupole as

(21)

we have

where, in terms of Twiss parameters at C and at
the skew quadrupole

L e = 0,

which is also the exact condition.

(16) 1/2

- SxSz(~x*~z*)1/2

Thin Skew Quadrupoles

A quadrupole of length l and gradient g that has
been rotated about the beam axis by an angle tV
away from midplane symmetry is represented by
the coupling transfer matrix14

1/2

(23)

Trigonometric functions of the betatron phase ~
with origins at C are written as

Comparing the expressions for K s and K Q ,

Eqs. (11) and (22), the first-order decoupling con-

Here N Q(O, l, g) is an uncoupled matrix that does
not commute with R.

(18)

Cz = cos(<Pz) (24)
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ditions (6) for a set of solenoids and skew quad­
rupoles have now become the four independent
simultaneous equations.

gitudinal field B. This makes them very attractive
in the congested lattice geometries near collision
points.

~ eiSi + ~ ~Qj = O. (25)
i j

It appears that in general only four couplers
are needed to compensate for an experimental
solenoid.

Local Skew-Quadrupole Schemes

Compensation of an experimental solenoid is
achieved to first order by n thin skew quadru­
poles when, according to Eqs. (15) and (25),

III. A FIRST LOOK AT LOCAL
COMPENSATION SCHEMES

(26)

Most lattices are symmetric about an intersec­
tion point, so that two points at equal distances
on either side of C bear the relationship

Hence two of the decoupling conditions in Eq.
(26) are automatically satisfied if symmetrically
placed skew-quadrupole pairs are excited anti­
symmetrically

(30)

(29)

= o.

i1( - s) = -i1(s). (27)~(-s) = ~(s)

q( -s) = -q(s),

x

leaving two conditions

6(~ n+ 2 ~ qi
s~o

Only two pairs of skew quadrupoles are nec­
essary to solve these equations. Unfortunately,
two skew-pair schemes interfere with the beam­
beam effect, in a way that straight line anti-so­
lenoid schemes do not. In general it is necessary
to use three skew-quadrupole pairs. These state­
ments will be expanded shortly, when the subject

This makes the matrix elements of the general Q
matrix given in Eq. (23) even or odd functions
of s, according to

Q = (Odd(S) even(s)) (28)
even(s) odd(s) ·

Straight-Line Anti-Solenoids

One intuitively promising scheme rotates each
thick quadrupole on the east (west) of a solenoid
of strength eby an angle + e/2 ( - e/2). Anti-so­
lenoids of strength - e/2 are then placed at con­
venient locations in the east and the west, de­
coupling the lattice to all orders of e.

This conjecture is easily proven, in the absence
Of bends between the anti-solenoids, if the matrix
TBA is written down in terms of its component
matrices. When the forms (7) and (17) are used
to represent solenoids and rotated quadrupoles,
the only coupled matrices present are R matrices.
These can all be annihilated by virtue of the com­
mutation relations (9). This procedure does not
work in the presence of a bend because R does
not commute with the linear dipole matrix.

There are, however, practical disadvantages
to this compensation scheme. If the experimental
field (or energy) is a variable, each individual
quadrupole must either rotate mechanically, or,
in an approximate scheme, have an attendant
skew quadrupole. This becomes unnecessarily
complicated if the anti-solenoid is separated from
the IP by two or more quadrupoles. Why not just
use four skew quadrupoles, and get rid of the
anti-solenoids?

Skew quadrupoles have the great advantage of
being much shorter than their equivalent sole­
noids, because a skew field of gradient Blr is ~/

r times stronger in its coupling effect than a lon-

Luminosity conditions in an experiment are im­
proved when the intersection region quadrupoles
are moved as close as possible to the intersection
point. How can compensation be achieved when
the immediate anti-solenoids are moved or re­
moved?
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is rejoined after a discussion of the PETRA com­
pensation scheme.

IV. REMOTE SOLENOID COMPENSATION

always be vertical emittance growth in the major
parts of the ring where the one-turn matrix is not
block diagonal.

Consider a storage ring with 2n + 1 experimental
solenoids, with n placed on either side of C at
identical intersection points, separated in phase
from each other by f1x* and f1z*. How must the
fields of these solenoids be arranged to decouple
the motion across them all? This question is im­
portant for PETRA where the minimum emit­
tance-coupling ratio K = Ez/Ex , is found empiri­
cally by varying the polarities, but not the
strengths, of three experimental solenoids.

The S matrix at the i'th intersection point· is
given explicitly by

V. SKEW QUADRUPOLES AND THE
BEAM-BEAM EFFECT

Peak luminosity conditions in electron storage
rings are reached by making the vertical collision
size of the beams as small as possible, and by
colliding the largest currents allowed by the
beam~beam interaction. Both of these limits are
disrupted in general by the skew quadrupoles of
a two-pair compensation scheme.

When the beam-beam interaction is negligible,
at small current I, the vertical beam size has a
contribution due to skew quadrupoles that will
be represented by a pseudo-coupling constant X.
That is, for small I,

(35)

K, X ~ 1, (34)

, (Q. *) 1/2Z' = 3- _tJz_
K 1/2 Ex(

Q. *) 1/2X'=x' ~
Ex

so even the low-current luminosities are reduced.
There is a negligible change in the horizontal size.

At high currents the situation gets even worse,
because the beam-beam equations of motion are
destructively modified by the presence of skew
quadrupoles. There is more beam-beam blow-up,
and the maximum stable current is reduced.

These problems would all disappear if the one­
turn matrix at C itself was block diagonalised,
that is, if the sets of couplers on the west and
east of C were independently balanced. This
would require four pairs of skew quadrupoles. In
fact, three pairs are sufficient to free the collision
performance of a storage ring from the compen­
sation scheme.

These comments will now be justified, at first
theoretically, and then experimentally.

Theory

A useful 'normalized' system of coordinates
(capitals) at the crossing point is related to the
'physical' system (lower case) by

In the flat-beam limit, K ~ 1, a statistically typical
unperturbed particle rotates around unit-radius

(33)
n sin ( (1*)
~ ei i = O.

i= -n cos 8*

Sx = sin(if1x*) etc.

CzSx CxSz-----
~x*. ~z*

the four first-order decoupling conditions be­
come

(31)

After putting this into Eq. (25), and using some
trigonometrical identities that introduce the sum
and difference phases

(1* = f1x* + f1z*, 8* = Hx* - Hz*, (32)

Two of these conditions are automatically sat­
isfied if the solenoid strengths ei are purely sym­
metric or antisymmetric. If the solenoid at C is
active, the solution cannot be antisymmetric.

Remote solenoid compensation schemes are
explicitly sensitive to changes in betatron tune.
This means, for example, that explorations of the
tune plane at PETRA are restricted by the re­
quirement of satisfactory compensation. Finally,
even if a lattice is exactly decoupled, there will
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circles in horizontal and vertical normalised
phase space planes. It advances by an angle 27TQ
between each crossing.

The beam-beam impulse is also conceptually
simple in the normalised system, namely

WEST

SOLENOID
C

EAST

~X' = - 41T~xXg(X)

az' = - 47T~zZf(X, Z). (36)

Here f and g are positive form factors, even func­
tions ofX and Z, which are below unity for finite­
amplitude particles. Beam-beam instability in
either plane occurs, very roughly speaking, when
47T~ is comparable to 1, because then the angular
kick a typical particle receives is comparable to
its amplitude.

When a balanced set of couplers is turned on,
a particular trajectory coming into the insertion
will be distorted, acquiring new coordinates at
the IP that will be denoted by a subscript C(e.g.
Xc, xc). The old coordinates are still useful, how­
ever, because they label the exterior trajectori~s,

which the compensation scheme does not dIS­
turb. The true stability of a trajectory is deter­
mined by writing the coupled beam-beam impulse
in terms of uncoupled natural coordinates.

The linear relationship between coupled and
uncoupled physical coordinates, for a decoupling
scheme with n - 1 pairs of skew quadrupoles,
is simply

Xc = P w X

xc' x'

Zc

zc'
z
z'

P w = P- 1P- 2 ••• P- n

(37)

COUPLERS------)*c(------ OFF

FIGURE 2 The west and east projection matrices P wand
PE •

where X is the pseudo coupling constant intro­
duced in Eq. (34), and where

X1/2 = L q sine<Px) sine<Pz), (39)
WEST

Since the matrix elements P W13 and P W31 are
identically zero, the beam ribbon at the IP in a
successful compensation scheme is not tilted.

The matrix elements b essentially measure the
screw pitch of the beam ribbon. Because b does
not affect the size of the beam and does not ap­
pear below in the modified beam-beam equa­
tions, it may be ignored. A fourth skew quad­
rupole pair is not necessary.

In the case of interest the effect of the skew
quads is strong, but the beams remain flat. That
is,

This is illustrated in Fig. 2. It is conceptually
convenient here to break the experimental so-, , .
lenoid into two halves, with equal and OpposIte
fringe fields an infinitesimal distance on either
side of the collision point. This does not affect
any of the physical conclusions of this discussion.

If motion across the whole insert has been
properly decoupled ~ then P w is generally para­
meterized to first order by

(41)

(40)

( )

1/2

Zc = ~ X',Xc = X

The beams are blown up vertically but not af­
fected horizontally, so the beam-beam impuls~,

in a mixture of coupled and uncoupled coordI­
nates, becomes

so that the coupled and uncoupled natural dis­
placements are related by

o X1/2 ( ~x~z) 1/2

b 0
1 0
o 1

1 0
o 1
o X1/2 ( ~x~z)1/2

b 0

P w =

(38) In consistent natural uncoupled coordinates, the
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beam-beam impulse becomes

When such a coupling scheme is turned on, the
exterior world sees no change in the horizontal
motion of a typical particle, but sees enormous
vertical beam-beam kicks, which are apparent
displacements.

Skew quadrupoles interfere dangerously with
the beam-beam effect, unless care is taken to
ensure that X is much smaller than K. Ideally,

X1/2 = L - q sin (<Px) sin..( <Pz) = 0 (44)
s>o

LlX' = - 41T~xXg(X)

dX = 0

LlZ' ~ 0

( )

1/2

6.Z = ~ 41T~xXg(X)

(43)
1mA o· 4 Tesla

0 2· 7 solenoid

A 5· 4

L11
2 X 12·0

decoupled
I

0 I
Specific

Luminosity 0

10
28 2/6~1

cm-2 S-1 mA- 2 I
6 I

1 /x~x 6

1

\

x "

o

VI. COMPENSATION AT CESR WITH
THREE SKEW QUADRUPOLE PAIRS

FIGURE 3 Specific luminosity versus Skew Strength in a
trial two skew quadrupole pair compensation scheme in
CESR.

Conclusions

If an experimental solenoid is strong enough to
need compensation, that is, if

In September 1981, CESR resumed operation
with a mini-beta geometry at both crossing
points, and with a 1.5-Tesla superconducting so­
lenoid in the CLEO experiment. Figure 4 shows

(45)X1/2 ~ q ~ e ~ K 1/2,

then a two skew-quadrupole pair scheme will
only be satisfactory if judicious phase locations
are available, and can be maintained. In the pres­
ent LEP scheme, with skew quads five and seven
regular quads away from an IP, there is not
enough phase stability to compensate in both 60°
and 90° lattices. An experimental solenoid usu­
ally needs three pairs of skew quadrupoles for
successful compensation.

effect was being felt, and was having most effect
at large X1/2 values, in qualitative agreement with
theory.

With currents approaching the usual beam­
beam limit in CESR, I = 12.0 mA, it was im­
possible to turn the skew quadrupoles up to more
than half their decoupling strengths.

Experimental Results at CESR

A local two skew-pair compensation scheme was
tested at CESR in April 1981, with a constant
field of 0.4 Tesla in the CLEO solenoid. IS Ob­
servations were made with the skew strengths at
various fractions of their theoretical decoupling
solution. Their strengths were conveniently par­
ameterized by X1/2 which was 0.18 for full com­
pensation, a value comparable or larger than
K I/2.

Single beam measurements of the vertical dis­
persion Tlz around CESR gave quantitative con­
firmation that the theoretical decoupling strengths
were correct. Coupled vertical dispersion waves
outside a straight-line compensation scheme in
a lattice with finite Tlz* only disappear when the
insertion is properly decoupled.

Colliding-beam measurements of the specific
luminosity L/12 as a function of skew strength
Xl/2 are shown in Fig. 3, as they were taken for
three different beam currents.

In the low-current case, 1 = 2.7 mA, the beam­
beam interaction was negligible, and the specific
luminosity depended on X and K through the ver­
tical size (Tz* as given in 34). When the skew
quadrupoles were off, X1/2 = 0, the substantial
lattice coupling made both K 1/2 and (Tz* large.
Near the decoupled setting, X1/2 = 0.18, K 1/2 was
a minimum, but X1/2 \vas large enough to domi­
nate the vertical size.

At the intermediate current, 1 = 5.4 mA, the
average specific luminosity was less and the op­
timum skew strength decreased, lowering the
curve and moving it leftward. The beam-beam
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(47)

Pz
-P2 P3

b

: PI
Px I

: b
I
I---------.--------- .
I
I
I
I
I

-PI:

PE =

SOFT BEND

SEPARATOR
PLATES

Q1
WITHDRAWN

CLEO
SOLENOID

~§]

H
1 metre

FIGURE 4 The CESR mini-beta geometry just east of
CLEO.

Here Px and Pz differ from unit matrices by sec­
ond order (e 2

) terms that represent, for example,
the focusing effect of the solenoid.

Two more vectors are necessary for a compact
iterative algorithm. The implicitly antisymmetri­
cal excitation of the skew quads is written as

while the location of the i'th skew quadrupole is
described by the vector

the crowded geometry of the lattice elements
between the south IP and the first soft dipole.
Quadrupole Q1 is mounted on rails and slides
back along the vacuum chamber, allowing rapid
experimental access, but denying the only pos­
sible location for a local anti-solenoid.

Projection techniques were incorporated in a
computer program, SKEW, to design the three
skew-pair compensation scheme that best fits the
practical constraintsS

,6. Now used regularly in an
operational mode, SKEW determines the exact
decoupling strengths of real couplers in a given
lattice and calculates, for example, the second­
order tune shifts and the dispersion perturba­
tions.

iii =

(48)

(49)

(52)

(51)

Finding the Exact Decoupling Solution with
SKEW

On a first pass, SKEW assumes that all skew
quadrupoles are thin, and finds a decoupling so­
lution only to first order in e. Then, however, it
calculates an error vector p using exact transfer
matrices for the solenoid and for the thick skew
quadrupoles and approaches the exact solution
iteratively. Two or three iterations are usually
sufficient to reduce the apparent residual field in
CLEO to less than 1 Gauss.

The components of the error vector

(46)

are just the coupling matrix elements of the exact
projection matrix P E which must be reduced to
zero.

Now, defining the influence matrix A as

A=[al,a2,Q3], (50)

then, using Eqs. (15), (23) and (39), the error
vector to first order and with thin lenses is

p = Aq + ~ [ll
so that the first-order decoupling solution is just

q= -~A-l[ll
Iteration is straightforward with this notation.

If p is calculated exactly using an old set of ex­
citations iiold' a better set will be

iinew = iiold - A - I Pold (53)
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VII. CHROMATIC EFFECTS

So far, by using a 4 x 4 linear matrix analysis,
it has been implicitly assumed that all particles
have the nominal design energy. A better ap-

Skew Quadrupole Locations

Soon it will be shown that only skew quadrupoles
beyond the first soft bend B 1 couple· horizontal
dispersion into vertical dispersion. Unfortunately
for CESR, the vector a is almost constant be­
tween Q1 and B 1, leading to unreasonably large
excitations unless one skew quad is outside B 1.
The strength of the third skew quad and its dis­
persion coupling effect are minimised by choos­
ing a location where the length of a3 is maxi­
mized.

The vector a3 is dominated in length and di­
rection by its first component, so that

(57)

(56)

z" + Kz = Qx - Bx',

x" - Kx = Qz + Bz'

Dispersion Coupling

The differential equations for coupled disper­
sions

are identical to those for coupled betatron oscil­
lations

except for the horizontal dipole term, Gx = lip,
which drives the dispersion oscillations around
the lattice. In these equations, B stands for so­
lenoid fields, and Q stands either for skew-quad­
rupole fields or for cylindrically symmetric so­
lenoid fringe fields.

If Band Q are even and odd functions about
an IP, as in most compensation schemes, then,
applying periodic boundary conditions to Eq.
(56), 1")x and 1")z are respectively even and odd. In
a machine with only two crossing points, .like

proximation labels each particle with a constant
relative energy error 3 = IiEIE and defines the
dispersion function 1") by saying that the equilib­
rium orbit of a particle is displaced by 1")x3 and
1")z3.

The conventional solenoid-antisolenoid com­
pensation scheme is unique in decoupling parti­
cles of all energies. In general, however, a com­
pensated insertion will cause off-energy particles
to perform coupled betatron oscillations about
their new equilibrium orbits. Small oscillations can
still be described in a 4 x 4 matrix formalism by
a linearisation scheme7 if the second-order trans­
fer matrices are known.

Comparisons of compensation schemes on the
basis of their "coupling chromaticity" could be
made in this way, but the process would be quite
tedious, and the results would depend on the dis­
tribution of sextupoles. In practice, it is enough
to study the analytic behaviour of off-energy par­
ticles without betatron oscillations.

What is the vertical dispersion function 'Ylz'
around a ring with a given compensation scheme?
How should couplers be placed to minimise 1")z
and the vertical emittance?

(55)

(54)

<PZ3 = n1T,<Px3 = (m + !)1T

(~ *) 1/2I ih I= 13:* I sin (<Px3) cos (<Pz3) I,

and an ideal location has phases

where m and n are integers.
Because the first two skew quadrupoles are so

close to the IP, and because the direction of a3
is quite fixed, the solution vectors qlat and q2a2
are almost totally independent of global lattice
parameters. This preserves the high level of lat­
tice flexibility that is one of CESR's virtues. But
the two vectors cannot be well orthogonalised,
and comparatively large integrated skew gra­
dients of approximately 1.0 Tesla are necessary.
These fields are produced by mechanical rotation
of Q 1 and Q2 through independent angles of up
to ± 0.1 radians. At a typical energy of 5.0 GeV,
the angles are close to (but not equal to) !8CLEO ,

about 0.05 radians at a solenoid field of 1.0 Tesla.
The third skew quadrupole, placed just outside

Q 11 about 70 meters from the IP, is compara­
tively weak, typically about 0.1 Tesla. Built as
a current sheet magnet, 0.26 meters long, it can
be simultaneously used as a steering magnet. Its
location is not only advantageous because of the
phase conditions (55), but also because the dis­
persion coupling which will now be analyzed in
general, is very weak there.
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is automatically satisfied at both experiments.
The vertical dispersion solution of Eq. (56) is

found by breaking up the horizontal dispersion
into a local part 'llo and a global part· 'll b so that

CESR, the important beam-beam condition

'llz* = 0 (58)

peak Tlo values of about 3 meters. Typical vertical
dispersion waves then have amplitudes of about
0.02 meters, which is near the limit of experi­
mental resolution. PETROS 16 simulations in a
range of CESR lattices predict emittance cou­
pling values K of between 3 x 10- 4 and 7 x
10- 4 •

(62)

Now, using Eqs. (59) and (60), and taking B'llo'
to be zero, Eq. (56) becomes

The local part is chosen to be zero at the IP, and
is propagated through the insertion region as if
all the couplers were turned off. That is,

(65)

<PZ29 - <Pz14 = j 'IT, (63)

PE = (I + q29KQ29)(I + q14KQ14)

= (I - qI4KQI4)(I + q14KQ14) == I

<Px29 - <Px14 = i 'IT

Not only are the betatron oscillations at the
crossing points exactly decoupled, but also there
is a total absence of higher-order pertubations
such as second-order tune shifts.

It is necessary to power the east and west skew
quadrupoles antisymmetrically, not to decouple
the whole insertion, but rather to make Tln* iden­
tically zero. If i is an even number, then accord­
ing to Eqs. (56) and (62), the vertical dispersion
waves will be roughly confined between Q14 and
Q29. It is more convenient for the manufacture
of vertical emittance if i is odd, because then
vertical dispersion is made all round the ring.

If skew quadrupoles of strength I q I couple
peak horizontal dispersions T)x into a vertical dis­
persion wave of amplitude T)z around the lattice,

then their total projection matrix is identically
the unit matrix

q14 + (-I)i+j q29 = 0, (64)

where i andj are integers. Now, if the two (thin)
skew quadrupoles in the east are excited such
that

A Vertical-Emittance Knob

Finally, it is natural in the context of dispersion
coupling to describe a scheme, proposed at
CESR, which puts a controlled amount of vertical
emittance into the beams. 17 Remote skew quad­
rupoles at Q14 and Q29 are excited and balanced
to produce vertical dispersion round the ring
without disturbing any colliding-beam parame­
ters except the vertical emittance.

It is quite straightforward in practice to impose
the two phase-advance constraints on CESR lat­
tices

(59)

(60)

(61)

'llo" - K'llo = Gx •

'llx = 'llo + 'llb·

'llO* = 0

Tlz" + KTlz = QTlb - BTlb' + QTlo.

These equations are analogous to coupled be­
tatron oscillations of Eq. (57), with vertical dipole
steering fields QTlo. Assuming that the lattice is
decoupled, the vertical dispersion at a general
point outside the insertion is then just

Tlz sin (<Pz - 'IT Qz) ~ TlOi.
Q 1/2 = . ( Q) ~ q i Q .1/2 sIn (<p zi),
tJz sIn 'IT z I tJXl

where the sum is taken over only one member
of each antisymmetrically powered skew-quad­
rupole pair.

Straight-line compensation schemes of any
kind do not disturb the vertical dispersion outside
the insertion, because Tlo is identically zero up
to the first horizontal dipole. Such schemes do
not introduce any vertical emittance.

There is always vertical emittance growth at
the bends inside the CLEO insertion, due to the
nonzero vertical dispersion and to the twisting
of the trajectories. The main contribution, due
to vertical dispersion outside the insertion, is
minimized by choosing a location for the third
skew quad where all three terms in the sum of
Eq. (62) are small.

Despite lattice variations of Tlx* and Tlx3' the
local dispersion Tl03at Q 11 is consistently less
than 0.1 meters in magnitude, much less than the
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Since a regular quadrupole in a normal cell has
a I q I value very close to 2, even comparatively
weak skew quadrupoles are strong enough to
produce a useful amount of vertical emittance.
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