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Abstract In statistical mechanics Gibbs’ paradox is avoided if the particles of a
gas are assumed to be indistinguishable. The resulting entropy then agrees with
the empirically tested thermodynamic entropy up to a term proportional to the
logarithm of the particle number. We discuss here how analogous situations arise
in the statistical foundation of black-hole entropy. Depending on the underlying
approach to quantum gravity, the fundamental objects to be counted have to be
assumed indistinguishable or not in order to arrive at the Bekenstein–Hawking
entropy. We also show that the logarithmic corrections to this entropy, including
their signs, can be understood along the lines of standard statistical mechanics. We
illustrate the general concepts within the area quantization model of Bekenstein
and Mukhanov.
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1 Introduction

Black holes are fascinating objects that have not yet revealed all their secrets. If
described by Einstein’s classical theory of relativity, they are characterized by an
event horizon which encloses a region from which nothing, not even light, can
escape. If quantum theory on a black-hole background is considered in addition,
it is found that black holes emit thermal radiation [1]. Black holes thus play a key
role in the search for a quantum theory of gravity [2].

Our contribution deals with the black-hole entropy and its interpretation. We
are especially interested in logarithmic corrections to the Bekenstein–Hawking
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formula of black-hole entropy and their relation to similar terms in ordinary sta-
tistical mechanics. By highlighting their role in the discussion of Gibbs’ paradox,
we give an interpretation of these terms that should encompass all cases discussed
in the literature (see [3] and the references cited therein).

Let us, however, first give a brief introduction to this subject; more details can
be found in [4] and many other references. The concept of black-hole entropy
first arose from formal analogies of mechanical black-hole laws with the laws of
thermodynamics. The First Law of black-hole mechanics reads1

dM =
κ

8πG
dA+ΩHdJ +Φdq, (1)

where M is the black-hole mass, A the area of the event horizon, ΩH its angu-
lar velocity, J the angular momentum, Φ the electric potential, and q the electric
charge of the black hole (if it has a charge). The quantity κ denotes the surface
gravity of the black hole. For a Kerr black hole, κ is explicitly given by the expres-
sion

κ =

√
(GM)2−a2

2GMr+

a→0−→ 1
4GM

=
GM
R2

S
, (2)

where

r+ = GM +
√

(GM)2−a2

denotes the location of the event horizon. In the Schwarzschild limit a → 0, one
recognizes the well-known expression for the Newtonian gravitational accelera-
tion. (RS ≡ 2GM there denotes the Schwarzschild radius.)

Since within the classical theory, the area A of the event horizon never decreases,
this suggests a formal analogy to the Second Law of thermodynamics, where the
entropy, S, of a closed system never decreases. This is re-enforced by the analogy
of (1) with the First Law of thermodynamics:

dE = T dS− pdV + µdN ; (3)

M, in particular, corresponds to E. If we tentatively identify S with a constant
times A, the temperature should be proportional to the surface gravity.

In the classical theory, this correspondence would remain purely formal. Its
physical significance is revealed by taking quantum theory into account: black
holes radiate with a temperature proportional to h̄, the Hawking temperature [1],

TBH =
h̄c3

8πkBGM
≈ 6.17×10−8

(
M�
M

)
K. (4)

The black-hole entropy is then found from (1) to read

SBH =
kBc3A
4Gh̄

= kB
A

4l2
P

; (5)

1 Here and in most of the following expressions we set c = 1.
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here, lP denotes the Planck length,

lP =

√
h̄G
c3 ≈ 1.62×10−35 m. (6)

For a Schwarzschild black hole with mass M (to which we shall mostly restrict
ourselves), one has

SBH ≈ 1.07×1077kB

(
M

M�

)2

. (7)

In conventional units, this reads

SBH ≈ 1.5×1054 J
K

(
M

M�

)2

. (8)

Since the entropy of the Sun is of the order of 1057kB, it would experience an
increase in 20 orders of magnitude in entropy after collapsing to a black hole.2
Gravitational collapse thus ensues an enormous increase of entropy.

It is a big challenge for any approach to quantum gravity to provide a micro-
scopic derivation of black-hole entropy. The aim is to identify fundamental quan-
tum gravitational entities which can be counted in Boltzmann’s sense to yield the
entropy. Both string theory and quantum general relativity have provided partial
answers; the fundamental entities can there be D-branes or spin networks [2]. The
picture is, however, far from being complete. In fact, one suffers from an embar-
rassment of riches, as Steven Carlip has called it [5]: there are many, not obviously
related, approaches which yield the same result (5). There thus seems to be a uni-
versal principle behind all of them, a principle that is still veiled.

A general mechanism which could provide such a universal principle is con-
nected with the notion of entanglement entropy. If one divides Minkowski space-
time into two different regions and considers quantum correlations across these
regions, there is a non-vanishing entanglement entropy that is proportional to the
area that divides these regions [6; 7; 8]. This result has been discussed as a sup-
port for the area law (5) in black-hole physics. But what could give the entangled
quantum degrees of freedom? Previous work uses quantum fields on a background
[6; 7; 8]. A universal result could perhaps be obtained from the quasi-normal
modes which are typical for the black hole itself [9; 10]. These quasi-normal
modes describe the characteristic perturbations of a black hole before it reaches
its final unique stationary state. No entanglement entropy, however, has yet been
calculated in this case.

An area law for the entanglement entropy is also found in analogous situa-
tions in statistical mechanics, for example in the case of general bosonic harmonic
lattice systems [11]. This enforces its universal nature.

As mentioned above, there exist various microscopic derivations of black-hole
entropy. In many of these derivations, logarithmic corrections to (5) are found
if one goes beyond the leading order of the combinations. These corrections are
proportional to lnSBH, but both the sign and the exact coefficient vary. We shall
address below these terms in more detail, but turn before to a discussion of analo-
gous terms in statistical mechanics.

2 In reality, only stars with masses bigger than about 3M� collapse to a black hole.
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Fig. 1 A box with an ideal gas of particles is divided into two parts with equal volume and
particle number

2 Gibbs’ paradox and logarithmic corrections

Statistical mechanics provides a microscopic explanation of thermodynamical rela-
tions. As has already been emphasized by Josiah Willard Gibbs, one arrives at the
Boltzmann entropy only when dividing the number of permutations by N!, where
N is the number of particles. The Boltzmann entropy coincides with the expres-
sion for the entropy found in thermodynamics, which is known to be empirically
correct. The particles are thus counted as being indistinguishable, a procedure that
receives its justification only from quantum theory. With this “Indistinguishabil-
ity Postulate” one then gets an entropy which is additive, at least approximately
(see below). This problem in counting states is discussed in many places, see, for
example, [12] and [13].

To illustrate this situation, we consider a system of N free particles in classical
statistical mechanics. The partition sum of this model is given by

Z =
∫

d3Nqd3N p exp
(
− H

kBT

)
= V N (CmT )3N/2 , (9)

where

H =
3N

∑
i=1

p2
i

2m

(all masses being equal), and C is a constant which is independent of the nature of
the atoms. For the entropy one gets, using standard formulae of statistical mechan-
ics,

S = kB lnZ + kBT
∂ lnZ
∂T

= kBN
(

lnV +
3
2

ln(CmT )+
3
2

)
. (10)

This expression for the entropy is not additive, that is, the entropy does not dou-
ble if volume and particle number are doubled. It would thus be in conflict with
thermodynamics.

Consider now the following consequence of this formula. We have a box filled
with an ideal gas of free particles, see Fig. 1.

A partition divides the box into two equal parts, each of which is character-
ized by volume V and particle number N. If one removes the partition at constant
temperature, one gets from (10) the following increase in entropy:

∆S = 2kBN ln2. (11)

On the other hand, in phenomenological thermodynamics one would expect that
∆S = 0 because the situation is reversible: removing and re-inserting the partition
is a reversible process, since the state of the gas does not change. This discrepancy
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is known as Gibbs’ paradox [14]. It is usually remedied by assuming that the
particles are indistinguishable and therefore dividing the partition sum Z by N!,
the number of particle permutations. Instead of (9) one then gets the expression

Z =
V N(CmT )3N/2

N!
. (12)

In order to calculate the new entropy expression, we use Stirling’s formula, which
is valid for large particle numbers N � 1,

lnN! = N lnN−N +
1
2

lnN +
1
2

ln(2π)+O

(
1
N

)
. (13)

Instead of (10) we then find the expression for the “Gibbs entropy”,

SGibbs = S− kB lnN!

≈ kBN
(

ln
V
N

+
3
2

ln(CmT )+
5
2
− lnN

2N
− ln(2π)

2N

)
. (14)

(This is sometimes called the “Sackur–Tetrode equation” [13].) Apart from the last
two terms (which are very small), this expression for the entropy is now additive.
Removing the partition in the box described above, we now get for the change in
entropy the result

∆S≈ 1
2

kB lnN � 2kBN ln2, (15)

which, in contrast to (11), is almost zero. Up to a term proportional to lnN, the
result of statistical mechanics now coincides with the thermodynamical result
∆S = 0.

The fact that there is not an exact coincidence can easily be understood: the
term proportional to lnN describes fluctuations. If the partition is removed, fluctu-
ations with larger magnitude than in the presence of the partition become possible;
thus, a little more states become available. In this sense, the removal of the parti-
tion is not quite reversible. As discussed in detail in [14], this situation corresponds
to a “microscopic preparation”, where N identical particles are initially placed on
each side of the partition at the same temperature. If, instead, one makes a “macro-
scopic preparation” (with knowledge only about the pressure and the temperature,
but with no information about the exact value of N), one finds the exact result
∆S = 0 upon removing the partition.

It is important to emphasize in this connection the important difference between
identity and indistinguishability [12]. In classical mechanics, different particles
are not identical even if they are indistinguishable; in principle, they can be identi-
fied and have therefore to be counted separately.3 In quantum theory, on the other
hand, one does not have “particles”, but only field modes. If one has, for example,
a wave packet with two bumps, the exchange of the bumps describes the same

3 To quote from Otto Stern’s paper [15]: “The conception of atoms as particles losing their
identity cannot be introduced into the classical theory without contradiction. This is possible
only on the ground of the non-classical ideas of quantum theory.”
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state—in this sense both states (before and after the exchange) are identical. It is
only this identity that justifies the division of the partition sum by N!.

Quite generally, one can write the ensemble entropy related to a reduced den-
sity operator as a sum of the averaged physical entropy (which is a definite func-
tion of volume, temperature, etc.) plus the entropy of missing information, the
latter being usually much smaller than the former [12]. Consider, for example, the
case of a grand-canonical ensemble, for which the density operator reads

ρ =
1
Z

exp
(
−H−µN

kBT

)
, (16)

where µ is the chemical potential. Only the mean particle number is specified
here, because the system is assumed to be in contact with a particle reservoir. If
this contact is closed, the particle number assumes a definite value, but this value
is unknown. The corresponding relative entropy of missing information about this
value is of order lnN/N, which just corresponds to the entropy increase in (15).

To conclude this section, we briefly discuss a simple model which can also
serve as an analogy for the black-hole case. Consider a set of N spin-1/2 particles
out of which n point up and N−n point down:

Since N is assumed to be given, we have a microcanonical ensemble. We
define the entropy as the logarithm of the number of configurations with n spins
up and N−n spins down,

S = ln
(

N
N−n

)
= ln

(
N
n

)
. (17)

In a realistic setting, n could correspond to the magnetization as the given macro-
scopic quantity.

Consider first the “equilibrium case” n = N/2. Using (13), one gets from (17),
neglecting terms of order 1/N,

S = N ln2− 1
2

lnN +
1
2

ln
2
π

. (18)

Defining S0 ≡ N ln2, we see that the relative contribution of the second term is
just of order lnN/N. In contrast to the above, it comes with a minus sign; the
reason is that it does not describe missing information because N is fixed from the
very beginning (since we have here a microcanonical ensemble). Note that we can
approximately write

S≈ S0−
1
2

lnS0.

In the general case (17) we get (assuming both n and N to be large numbers)

S =−N(w lnw+(1−w) ln(1−w))− 1
2

ln(Nw(1−w))− 1
2

ln(2π), (19)



Gibbs’ paradox and black-hole entropy 7

Fig. 2 Comparison of the exact entropy (17) with the approximations with, Eq. (21), and with-
out, Eq. (20), the logarithmic correction term for N = 20. The difference between the exact
expression and (21) is hardly noticeable

Fig. 3 Symbolic attachment of bits to the surface of a black hole

where w = n/N. Defining now

S0 ≡−N (w lnw+(1−w) ln(1−w)) , (20)

we find

S = S0−
1
2

lnS0−
1
2

ln
(

2πw(1−w)
α

)
, (21)

where α = (w−1) ln(1−w)−w lnw.
Figure 2 compares the exact expression for the entropy with S0 and S according

to (19). One easily sees that (19) is an excellent approximation unless n or N are
small numbers.

3 Logarithmic corrections to black-hole entropy

The big challenge in understanding black-hole entropy is to provide a microscopic
interpretation for it. This is possible only in quantum gravity, a theory which
presently does not exist in a complete form. Two major approaches within which
the interpretation of the entropy can be tackled are quantum general relativity and
string theory [2]. For example, loop quantum gravity, which is a particular case of
quantum general relativity, gives a discrete spectrum for an appropriately defined
area operator; the area of the event horizon can then only assume discrete values
[2; 16]. Before we turn to this case, we demonstrate the essential features in the
context of a much simpler model: we assume the presence of an equidistant area
spectrum as put forward by Bekenstein and Mukhanov [17]. Such a spectrum can
also be found from quantum geomtrodynamics [18]. It is given by

AN = (4lnk)l2
PN, (22)

where k is an integer number > 1. The intuitive picture is that the horizon is
divided into small cells with area (4lnk)l2

P, see Fig. 3.
In each cell there are “spins” which can assume k different values. The simplest

case is k = 2, so one bit of information can be put on each cell, cf. Wheeler’s
notion of “it from bit” [19]. Inspecting the spin model discussed at the end of
the last section, one recognizes that one can identify the Bekenstein–Hawking
entropy (5) with the leading term S0 = N ln2 of the equilibrium entropy. This is
not possible for the non-equilibrium case (19), which sounds reasonable, since
one would expect that the spins are equally distributed on the surface of a big
black hole. Taking into account the corrections to S0 from (18), one arrives at
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the following expression for the black-hole entropy in the Bekenstein–Mukhanov
model when using (22):

S =
AN

4l2
P
− 1

2
ln

AN

4l2
P

+
1
2

ln
2
π

+
1
2

ln(ln2). (23)

The logarithmic correction term has a negative sign because one has here a micro-
canonical ensemble—the value of the area is fixed, and one therefore has a slight
increase of information from the knowledge of the microstate compared to (5).
The situation would be different in a grand-canonical setting in which the area can
fluctuate and only the mean value of A is known; then the sign of the logarithmic
term would be positive, corresponding to missing information. This difference has
been clearly emphasized by Gour [20].

The analogue of the black-hole mass M is in statistical mechanics the energy
E; the analogue of the area A is the particle number N. Situations in which A
is fixed lead to an increase of information by going beyond the highest order in
N, whereas situations in which A fluctuates lead to a decrease of information (of
information about the exact value of A).

In this simple model we can also evaluate the exact value for the entropy by
making use of (17). Inserting there N = AN/4l2

P ln2 and n = N/2, one gets

S = ln

(
AN

4l2
P ln2

)
![(

AN
8l2

P ln2

)
!
]2 . (24)

It may be of interest to compare this exact expression with the approximate expres-
sion (23) in order to see how good the approximation is. Consider, for example,
a small black hole with N = 20. We then have A20 ≈ 55.45 l2

P, and the number of
states is (

20
10

)
= 184756,

which corresponds to the exact entropy S = ln184756≈ 12.127. The approximate
entropy, as found from (23), is S ≈ 12.139, which is only slightly larger than the
exact value. (The dominant term A/4l2

P is about 13.86.) Thus, although this black
hole is rather small, the approximation found by using Stirling’s formula is still
quite good. This black hole has a radius RS ≈ 2.1 lP, a mass M ≈ 1.05 mP, where
mP = h̄/lP is the Planck mass and, from (4), a temperature TBH ≈ 4.7×1017 GeV.
Once the black hole approaches the Planck scale, the whole approximation breaks
down and one would have to use the full quantum theory of gravity [2].

As we have seen, the relative contribution of the logarithmic correction term
is negligible even for relatively small black holes. Even a primordial black hole
with M ≈ 10−18M� (which could have been formed in the early universe) gives a
logarithmic correction with relative contribution only of 4.4×10−40.

In the Bekenstein–Mukhanov model, logarithmic contributions to the main
contribution to the entropy appear naturally, see (23). Such terms also arise from
various approaches to quantum gravity [3]. Let us concentrate on two of them:
loop quantum gravity and string theory.
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In loop quantum gravity, black-hole entropy follows from counting all possible
punctures of a spin network with the horizon. A spin network is characterized by a
collection of quantum numbers j and m, where j∈{ 1

2 ,1, 3
2 , . . .} and m =− j, . . . , j.

The combinatorial problem is difficult [21; 22; 23]. The entropy turns out to be
proportional to the area only if the exchange of nodes in the spin network produces
a different state, that is, if the counting is performed without dividing by the cor-
responding number of permutations. Otherwise the entropy would come out to be
proportional to the square root of the area instead of the area itself. This would be
in conflict with the laws of black-hole mechanics, which correspond to the level
of thermodynamics. If the nodes are treated as distinguishable, the proportionality
to the area is found. The exact expression (5) can only be recovered if an unknown
parameter of loop quantum gravity (the Barbero–Immirzi parameter β ) is chosen
appropriately. A logarithmic correction term arises if one imposes in addition a
“spin projection constraint” of the form ∑i mi = 0. It turns out to be of the same
form as in (23), that is, it comes with a factor −1/2. As we have discussed above,
the reason for the minus sign is the fact that the area of the horizon is assumed to
be fixed in this approach and that the additional constraint therefore can only lead
to an increase of information (decrease of entropy), different from the case where
the area fluctuates.

In string theory, the situation is different. There, the Bekenstein–Hawking
entropy (5) is recovered by counting states of D-branes in a weak-field situa-
tion without black holes but duality-related to a situation with black holes, see,
for example, [24] and the references therein. Corrections are also found, and they
start in many cases with a term proportional to lnA. The signs of these terms vary,
which again seems to depend on whether area is fixed or not. In contrast to loop
quantum gravity, invariance under permutations is assumed, that is, the fundamen-
tal “particles” are assumed to be indistinguishable.

As the analogy with the above examples shows, the terms proportional to lnN
come mainly into play through the application of Stirling’s formula beyond the
highest order. They are thus not necessarily of “quantum origin”, but can arise
already from classical statistical mechanics (as can be seen from the fact that they
are not proportional to h̄).

In most of the above foundations of black-hole entropy, the black hole is con-
sidered to be in a state corresponding to a microcanonical ensemble. The canonical
ensemble (black hole in a heat bath) is undefined in an asymptotically flat space-
time because it would yield a negative specific heat and formal energy fluctuations
with a negative variance. Therefore, logarithmic corrections cannot be computed
in this case. The situation improves if the black hole is put in a box [25] or in anti-
de Sitter spacetime [3]. As discussed in detail by Don Page, logarithmic terms can
easily show up by going from a microcanonical to a canonical ensemble and vice
versa. This shows that “entropies need to be defined carefully before there is any
unambiguous meaning to logarithmic corrections” [3].

We conclude this section by presenting some numerical examples for the size
of the logarithmic corrections. We assume that we have the relation (in units of
kB)

S = SBH−
1
2

lnSBH + · · · . (25)
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Let us consider, for example, the galactic black hole, which lurks in the centre of
our Milky Way and which has a mass M ≈ 3.6×106M� [26]. From (7) one gets

SBH ≈ 2×1067 J
K

, (26)

which is, of course, enormous compared to any laboratory-scale entropy. It is even
bigger than the entropy of the cosmic background radiation, which is known to
dominate the non-gravitational entropy of the observable part of our Universe [12].
The galactic black hole also possesses angular momentum, which slightly reduces
its entropy [in the extremal case, one would have half of the value in (25)]. The
logarithmic correction leads to the following tiny decrease in entropy:

− 1
2

lnSBH ≈−1.4×10−21 J
K

, (27)

which is about 7× 10−89 of SBH. This would be a negligible number even for
laboratory scales!

4 Interpretation and conclusion

We have seen that various conceptual issues that arise in the counting of micro-
scopic states for the black hole are fully analogous to ordinary statistical mechan-
ics. We have shown, in particular, that logarithmic corrections to the Bekenstein–
Hawking area law occur in a natural way. These corrections are not a priori of
quantum nature, but have their origin in combinatorial relations such as Stirling’s
formula. The sign of a logarithmic term can be understood as either related to
missing information (if it is positive) or increase of information (if it is negative),
depending on whether the horizon area is fixed or not.

The traditional Gibbs paradox has been resolved by assuming that the micro-
scopic particles are identical. While in the classical theory this is an ad hoc assump-
tion without justification, it can be understood from quantum theory, which does
not contain fundamental particles. This shows that one should get rid of classical
pictures as much as possible [12].

In the case of black holes, the Bekenstein–Hawking area law (5) plays in a
certain sense the role of the entropy expression in thermodynamics; microscopic
derivations from quantum gravity are expected to recover it at leading order. It is
therefore of interest to see whether a new type of Gibbs paradox may arise. Sur-
prisingly, the situation seems to be opposite in loop quantum gravity and in string
theory: whereas the former needs fundamental entities that are distinguishable, the
latter works with indistinguishable structures in order to recover (5). In analogy
with quantum theory one would have expected that the fundamental “particles”
are identical, so the situation in loop quantum gravity needs perhaps some further
understanding to become intuitive.

Black holes are open systems. They can thus only be understood if their inter-
action with other degrees of freedom are consistently taken into account [27].
In quantum theory, this is known to lead to the emergence of classical properties
through decoherence [28]. In a similar way, the black hole, which is fundamentally
described by quantum theory, should assume classical properties by interacting
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with other fields: these could be additional quantum fields or the quantum pertur-
bations (the quasi-normal modes) of the black hole itself. The thermal nature of
Hawking radiation can, for example, be understood as arising from decoherence
[29]. The quantum entanglement between these other fields and the quantum grav-
itational states of the black hole could be at the heart of the black-hole entropy. The
corresponding calculation should automatically avoid Gibbs’ paradox and lead to
further insight into the interpretation of the underlying quantum theory of gravity.

Acknowledgments C. K. thanks Thomas Mohaupt and H.-Dieter Zeh for useful discussions.
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