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Abstract

In the framework of the Dual Parton Model we present an approximation scheme to
describe high energy photoproduction processes. Based on the distinction between
direct, resolved soft, and resolved hard interaction processes we construct an effec-
tive impact parameter amplitude. In order to treat low mass diffraction within the
eikonal formalism in a consistent way a phenomenological ansatz is proposed. The
free parameters of the model are determined by fits to high energy photoproduction
cross sections. We calculate the partial photoproduction cross sections and give
predictions for HERA energies.
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1 Introduction

The HERA collider allows the investigation of photoproduction processes at much higher
energies than previously possible (for a general review see Ref. [1]). First data have
already been published [2-6]. In this new energy range, soft particle production is strongly
connected to hard scattering processes resulting in minijets. Several attempts have been
made to understand photoproduction at HERA in these terms [7-12]. Although a number
of models designed to give an almost complete description of photoproduction processes
are described in the literature [13-18], a model based on the Dual Parton Model (DPM)
has as yet not been presented. It is worthwhile investigating the predictions of this model
for the following reasons.

Within the framework of the DPM (for a recent review see [19]) one can calculate both
elastic processes (i.e. cross sections) and inelastic processes (i.e. multiparticle production)
in a consistent way. The model relates the free parameters necessary to describe the cross
sections directly to multiparticle production. Furthermore the DPM connects both soft
and hard subprocesses by an unitarization scheme. This unified treatment of soft and
hard processes is necessary because of the rapid increase of the minijet contribution at
higher collision energies.

Previous studies have shown that the DPM successfully describes most features of
high energy hadronic processes. For example the violation of Feynman scaling, the rise
of the central rapidity plateau, long range correlations, violation of Koba-Nielsen-Olesen
scaling, and multiplicity-transverse momentum correlations.

Furthermore we want to emphasize that diffraction plays an important role in inelastic
photoproduction processes. This follows from the fact that the main contribution to
photon-hadron scattering at low momentum transfer results from processes where the
photon couples directly to virtual ¢g states. Therefore, elastic and inelastic corrections
to the Born amplitude implied by unitarity cannot be neglected. To our knowledge no
detailed photoproduction model involving inelastic absorptive corrections exists. In order
to take these corrections into account we use a two-channel eikonal model to approximate
low and high mass diffraction [20]. In this scheme we can describe the essential features
of photoproduction while keeping the number of free parameters as small as possible.

Using the assumptions of the Dual Parton Model, a detailed model of both elastic and
inelastic photoproduction processes is presented. Within this model, processes involving
soft and hard interactions are considered. Furthermore, a self-consistent approximation
giving effective amplitudes for elastic and inelastic photoproduction cross sections is dis-
cussed. The free parameters of the model are determined by a fit to photoproduction
data and predictions for the partial cross sections at HERA energies are given. In a
forthcoming paper [21], these amplitudes will be used in a Monte-Carlo event generator
to investigate the model predictions for multiparticle production. There, the model will
be compared to experimental data on photoproduction at an energy of /s =~ 15 GeV.
Predictions for multiparticle production at HERA energies will be given.

The outline of this paper is as follows. In section 2 we discuss the resolved and direct
interactions of photons with hadronic matter. In section 3 we present a general phe-
nomenological treatment of low and high mass diffraction within the eikonal approxima-
tion. Based on the typical interaction processes and the assumptions of the Dual Parton
Model, we construct, in section 4, an effective impact parameter amplitude to describe



photoproduction. In section 5 we determine the free parameters of the model by fits to
high energy photoproduction cross sections and compare our results with measurements.
In addition, predictions for HERA energies are given.

2 Classification of photon hadron interactions

In leading order perturbative QCD, the classification of photon interactions into direct
and resolved processes is an efficient way of describing the dual nature of the photon. In
this picture we consider the physical photon as a superposition of the bare photon and
the hadronic photon.

The hadronic photon results from the fluctuations of the photon into ¢¢ pairs and
the further development of this system. Due to the quantum numbers of the photon,
it is expected that the gg-pairs form particles with small masses like vector mesons or
two pion states. In the framework of the vector meson dominance model (VDM) [22] the
hadronic component of the photon consists of the three lightest vector mesons p°,w, and ¢.
As the collision energy is increased vector meson states with higher mass will enter the
interaction. This is recognized in the generalized vector meson dominance model (GVDM)
[23]). But there is also a nonvanishing probability that the photon couples directly to two
pions [24]. As we cannot calculate this two pion contribution no standard method exists
to correct experimental vector meson production cross sections for this background. To
avoid the resulting ambiguities we neither distinguish between ¢gq states and two pion
states nor vector mesons. We use the mass of these fluctuations as an effective parameter
to characterize the hadronic component of the photon. For definiteness we will restrict
ourselves in the following discussion to photon proton collisions.

The bare photon interacts via direct processes, i.e. the photon participates directly
in the scattering process. For interactions involving sufficiently large momentum transfer
this direct contribution can be estimated by lowest order perturbative QCD,

cutoff ’?1—8&:!( i)
o-d”‘sp_l. /d:r/dtzl+6 fpv( Q)-—,E—, (1)
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where f,i(z,@?) denotes the parton distribution function of the proton for the parton :
and the sum runs over all possible parton configurations ¢, k,l. The Mandelstam variables
of the parton subprocesses are given by & and t. The integrations over = and t are
limited by the transverse momentum cutoff pcumf ! Within the Parton Model only the
two processes shown in figure 1 contribute.

The interactions of the hadronic component of the photon are called resolved processes.
It is assumed that the photon fluctuates into a qg pair which interacts hadronically. This
reduces the problem to the calculation of the interaction of ¢g states with hadrons, but
currently this cannot be done from first principles. Therefore, we split this contribution
into hard interactions and the remaining soft interactions. In order to distinguish between
these two contributions we again use a transverse momentum cutoff p**//. All the
subprocesses involving transverse momenta greater than this scale are considered as hard.
We estimate the contribution resulting from hard subprocesses again by lowest order
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Figure 1: Direct processes contributing to yp — X scattering: a) gluon Compton scat-
tering, b) photon gluon fusion.

perturbative QCD,

=k, d\S
di ’
(2)
where f, :(z1,Q?) and f,(z2,@?) denote the parton distribution functions of the photon
and proton for the parton :. The sum runs over all possible parton configurations z, j, k, .
For example, we show in figure 2 a gluon-gluon scattering subprocess.

do2°E (5,1)
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Figure 2: Hard process contributing to resolved yp scattering.

In our approach, all the graphs of lowest order perturbative QCD form the hard part
of the Pomeron. We assume that the remaining hadronic part can be described by a
parametrization frequently used for the so called soft Pomeron. In contrast to 7, 9] we
use a supercritical soft Pomeron as demanded by our fits to the cross sections [25, 26].



This splitting of the Pomeron into hard and soft Pomerons is totally artificial but enables
us to use well confirmed results of the Parton model.

In addition to the Pomeron pole with ap(0) ~ 1 we have to include at least one
effective Reggeon pole with ar(0) ~ 0.5 at center of mass energies /s in the region of 5
to 10 GeV.

The general single Reggeon amplitude can be written as

A(3,8) = g2y Ihgq M(a(0)) (i)am)expu(s) ) with A(s) =¥ +o/(0) (1n () -7

So S0

(3)

where g%, and g% ,; denote the momentum transfer independent part of the Reggeon-
proton and Reggeon-qg state coupling constant. The corresponding Reggeon trajectory
and signature factor are

a(t) = a(0) + o'(0)t and n(a(t)) = — {1 + cexp(—iwa(t))} /sinTa(t)  (4)

where o = +1 denotes the signature of the Reggeon pole. The parameter b° = 159 4 152,
results from the coupling constants

1
gpp(t) = gp, exp(§b§’, t) and gpeq(t) = g, exp(5b0; t). (5)

In the following the real part of the Reggeon amplitude will be neglected. This approxi-
mation is justified by the restriction to high-energy photoproduction.

The splitting of the resolved processes into hard and soft contributions depends cru-
cially on the value of the p{**° 1 parameter but, due to the unitarization, the dependence
of the physical cross sections on this parameter is strongly reduced.

3 The eikonal approximation and diffraction

At high energies absorptive corrections to the single Pomeron amplitude Eq. (3) cannot be
neglected. Therefore, we use an eikonal approximation to estimate the hadronic amplitude
of photon proton interactions. The contribution to the amplitude resulting from direct
processes can be treated separately since the direct cross section is small in comparison
to the resolved cross section. Hence we unitarize the resolved hard and soft contributions
only.

The calculation of the absorptive corrections in the framework of Gribov’s Reggeon
calculus[27, 28] and the assumption that the multiple discontinuity (see Fig. 3)

. Mz, dMZ,
NOG) = [ =2 = Diseys v TG M2y M y)  (6)

w a(n-1)

can be approximated by the product of pole contributions (i.e. coupling constants)

n

NO(F) HgPa Gi) (7)



Figure 3: Graph with n Pomeron exchange contributing to the eikonal approximation.

lead to the standard eikonal approximation (see for example [29] and references therein).
Here the masses of the intermediate states are labeled by M, 1, M, 2, ..., My (n_1). But
in this case the unitarity cuts not passing through any Pomeron involve only elastic
intermediate states rather than diffractive and elastic states.

It is known from hadron hadron collider experiments that the total diffractive cross
section at high energies becomes comparable to the elastic cross section. Therefore, the
inelastic absorptive corrections cannot be neglected. The main contribution to these
corrections results from diffractive intermediate states with low masses. For definiteness
consider the diffractive contribution resulting from the two Pomeron exchange graph
shown in Fig. 4. We subdivide the unitarity sum running over all possible intermediate
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Figure 4: Approximation of the diffractive contribution of the two Pomeron graph: a) Two

Pomeron graph with diffractive cut, b) low mass and elastic states, and c¢) multiperipheral
high mass states.

states into elastic, low mass and high mass states. In the following diffractively produced
particle systems with a mass lower than ¥; = 5GeV? are called low mass excitations. In
the case of the photon as incoming particle we consider the quasi-elastically produced p°,
w and ¢ mesons as elastic states.

Assuming multiperipheral kinematics we can use Regge theory to calculate the ampli-
tudes for the elastic and high mass intermediate states. The low mass states can be treated
by summing all possible resonances up to a certain mass scale. This would, however, result
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in a model with too many free parameters. In order to get an efficient approximation, it is
reasonable to introduce a generic low mass resonance as done in Ref. [30]. The amplitude
characterizing the transition from the particle to this resonance and via versa cannot be
calculated without further assumptions. We will comment on this later.

The contributions of higher diffractive masses M} > X, to the diffractive cut can be
calculated using the triple and loop Pomeron graphs (see Fig. 5) [31, 30]. To maintain

v Y

p p

> >

Figure 5: Simplest enhanced graphs: a) triple Pomeron graph, b) loop Pomeron graph

consistency we have to make sure that the terms in the scattering amplitude containing
multiple triple or loop Pomeron graphs are small in comparison to the lowest order graphs.
This is guaranteed by the smallness of the triple Pomeron coupling gsp and the restriction
to energies /s below 500 GeV [32]. At higher energies it is necessary to include further
graphs in the unitarization. Using a reasonable ansatz for the multi-Pomeron coupling,
the summation of these graphs can be done [33]. Note that the triple and loop Pomeron
amplitudes have opposite sign to the single Pomeron amplitude. This is a manifestation
of the absorptive character of diffraction.

Now we discuss a simple ansatz for the amplitude describing the transition to a low
mass excitation. For simplicity it is assumed that the dynamics of this process can be de-
scribed by an amplitude similar to the elastic amplitude Eq. (3) but with mass dependent
coupling constants and slopes.

One requirement is that there should be a smooth transition between the low mass and
the high mass amplitude given by the triple or loop Pomeron graph. The mass dependent
slope of the single Pomeron amplitude Eq. (3) can be parametrized by (see Fig. 6)

S$So

2 2 2 — ’
bP(M17M2’M3’M42) - b?’(Mf’MgaMg’MZ)_*'a(O)ln (M12 +M3?)(M22+MZ)

(8)
For b%(MZ, M2, M3, M?) we make the following ansatz
b(I))(Mlz’ M22’ M??’ M42) = i)?),qq e ¢ (M —Ms)* + B(I)’,p e~ ¢ (M2—M4)2. (9)

Here i)?;,p and i)‘},,qq are energy and mass independent parameters and ¢ = 3GeV~2. In the
limit of high masses M3 and My, this ansatz reproduces the correct diffractive slopes bsp
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Figure 6: Interaction of particles or resonances by Pomeron exchange

and bpp for single and double diffraction, respectively:

eSM2>M?
%p(s, M2, M2, M2, M2) N3N~ 4 20/(0) In S
3. (10)
s 2’ 2 2' 2
> M MaZMM bpp = 2a'(0) In _TQ‘TMSSM

3774

2bp(s, M2, M2, M2, M?)

Here we have assumed that the slope parameter bsp of the triple Pomeron coupling,

9op s, 82, 8) = G3p exp {bopo (@ + &+ )} (1)
can be neglected in comparison to b%. In Fig. 7 we show the slope Eq. (8) together with
data for pions and photons incident on protons at /s & 15 GeV [34, 35]. The same slope
behaviour can be assumed for the proton diffractive vertex as shown in Fig. 8. The data
on proton diffraction and elastic scattering are taken from [36] and [37].

The low mass distribution in diffractive processes is connected to the appropriate high
mass distribution by finite mass sum rules (FMSRs) [38, 39]. Diffractive mass distributions
have been measured and compared to the first moment FMSR by several experimental
groups (see for example [40, 41, 35]). Within the experimental uncertainties, no violation
of the FMSRs was found. The first moment FMSR can be written as

da.el Veut dO—SD Veut do-SD
t =
| ] ( dt )ezper + [/5: g (dt dl/)e.rper dV /Vst v (dt dl/ param dV (12)

where v and Mgsp denote the cross-symmetric variable v = MZ%, — M? —t and the diffrac-
tively produced mass, respectively. The integral of the RHS in Eq. (12) is taken over a
parametrization obtained from high mass single diffraction whereas experimentally mea-
sured cross section enter the LHS directly. Using the single Pomeron and triple Pomeron
amplitude of the model, the mass dependence of the coupling constants g3 (M3, M7) and
9P o;(M{, M3) can be estimated (see Fig. 6). Here we assume that multiple scattering
processes do not drastically change the relative ratios of the different cross sections of
Eq. (12) at energies below /s =~ 50 GeV. In this energy range the contribution of the
hard Pomeron can be neglected. The lower cutoff of the integral in Eq. (12) is given by
the smallest diffractive mass possible, M., and ¢t. The upper cutoff has to be greater
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Figure 7: Single diffractive slope bsp in the region 0.02 (GeV/c)? < [t| < 0.1 (GeV/c)? as
a function of the diffractive mass M2 for 7~p — Xp and yp — Xp. The data are taken
from [35].

than typical resonance masses. Within the model the upper cutoff coincides with .
The partial cross sections resulting from the Born amplitudes are:

o b0y (2) " exp {2bp(MB, M2 MB M) 15 (1)
o = b s OV M) ()
x exp {2bp(M%, M2, Mip, M2) t} (M2, — ME);  (14)
oD = o0k, 0) (2) " (22)
x exp {2bp(M%, M2, M2, M?) t}, (15)

with Ap = ap(0) — 1. The slope parameters bp(MZ, MZ, M2, M?) are given by Eq. (8).
In Eq. (14) the ratio of the elastic coupling to the coupling describing low mass excitation
and the mass of the effective low mass resonance are denoted by A(M?, M3) and Mg,
respectively. Inserting Eq. (13-15) into Eq. (12) one gets

1 s5 9ap(0) z
(M, M7) = 7y v t{gpqq(()O)a(l ~A) exp {b?;'qq exp(—c(M}, — M%)) |t|}
P L]

(=) - ()
x ———— —
So So
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Figure 8: Single diffractive slope bsp in the region 0.15 (GeV/c)? < |t| < 1.45 (GeV/c)?
as a function of the diffractive mass M2 for pp — Xp at ISR [36, 37].

] xp { (B g xp(—c( M — ME)) — B35 — B2,) 111} } (16)

Using the values for the coupling constants explained in Sec. 5 this yields values for A
between 0.3 and 0.5 with ¢ = -0.01 GeV2. Here we have used the effective resonance
masses Mp,=1.2GeV and Mg.,=1GeV for the proton and photon vertices. Taking the
triple Pomeron cross section Eq. (15) as high mass parametrization, we have assumed that
the triple Pomeron is dual to the diffractive low mass resonances. To account for the other

triple Reggeon-Pomeron graphs possible, the value of A(M?, M?) has to be increased by
10-20%.

4 Construction of an effective photoproduction am-
plitude

In the following we denote the effective low mass resonance states of the proton and |gg) by
|p*) and |¢@*), respectively. The coupling constants and momentum transfer independent
parts of the slopes are given by the parametrizations Eq. (8) and (16). The masses M«
and M4+ of these resonance states are limited by the masses of the proton or lowest vector
meson and the ¥; parameter of the triple and loop Pomeron graph integrations.

The hadronic part of the photon state is built up by superposition of the |¢g) and |gg*)
states whereas the proton corresponds directly to the |p) state. One gets for the physical

10



photon

/ € 3
Z3 |7bare ‘qq> f qu ) (17)
>

with
1 1
Z3=1—6 —2_+72'—, (18)
aq q7*

where e denotes the elementary charge.

The absorptive corrections to the direct processes are suppressed by the factor e?/ f2
and can be neglected. Therefore, we unitarize only the resolved Born amplitude by
eikonalization. Using the transformation into the impact parameter space

a(i)(Eas) = dqu

A(i)(S, t)e—itﬂ.'g 7 = P, R, H, TP, L (19)
4s 2w

one can define the mass dependent Born amplitude of the resolved processes by

ap(M{, My, M3, M}) = ap(M7, M3, M3, M{) + ap(M{, M3, M3, M7) +
aH(Mlz’M‘zza Mg, Mf) + aTP(Mlz’ M227 M32vM3) + aL(M127 M22a Mg, M42) (20)
where the subscripts P, R, H, TP, and L are used to denote the soft Pomeron, Reggeon,
hard Pomeron, triple Pomeron, and loop Pomeron amplitudes. For simplicity we have

omitted the arguments s and B. The complete impact parameter expressions for the Born
amplitudes are given in appendix A.

In order to sum all eikonal graphs involving different configurations of particles or
resonances we write the eikonal function x(s, B) as the matrix

x(s,B) =
([ aB(qq,p — 94,p)  aB(9T.p — qd,p) aB(9dp* — ¢4,p)  aB(qT,P* — ¢@,p) \
ap(qq,p — 99*,p) aB(qq*,p — q3*,p) ap(qqd,p* — q3*,p) as(9q",p* — 93*,p)

ap(qq,p — 94,p*) aB(9¢*,p — q3,p*) ap(9q,p* — qq,p*) as(qq*,p* — q4,p*)

\ a5(9%,p — 97",p*) apB(¢q",p — ¢¢*,P*) a(44,p" — ¢7p*) aB(4T,P" — 4T,7") |

(21)

Due to unitarity the eigenvalues of the matrix x(s, B) have to be non-negative for all
impact parameters B. This can be expressed approximately by the inequalities:

ap(s, B =0;qq,p — 4§, p) S ag(s, B = 0;43,p — ¢7*,p)
b(q¢q,p — ¢4, p) - b(qq,p — q3*,p)

ap(s, B =0;¢4,p — ¢4, p) S ap(s, B = 0;43,p — qq,p*)
b(qq,p — q4,p) - b(qq,p — ¢4, p*)

11



ap(s, B =0,9q,p = ¢4,p)  ap(s,B=0,493,p — qq*, p*)

, 24
b(qq,p — 44,p) N b(¢q,p — 47*,p*) 2
where the impact parameter amplitude is approximated by
~ a(s,B=0,...) B2
B,..)=x —— . 25
ap(s, B;.) 8rb(..) P { 4b(. . .)} (25)
The effective eikonal amplitude of resolved processes reads
Qres(s, B) = %(1 — e~x(s:B)y, (26)
The different amplitudes can be calculated using the states
1 0 0
_ 0 - 1 - 0
lag:p) > | le7p) >~ | 4 log,p") = |
0 0 0
0 e/ fe
—% % O € a*
) = | 0| e | | (27)
1 0
With the normalization of Eq. (26), the cross sections are given by:
Ttot = 4/d2B Sm (ZB adir(S,B) + (7had3pl a'res(SaB) |7had,p>) (28)
Tel = 4/d2B | Z3 adir(SaB) + <7had’p| arcs(SaB) ‘7hadap> |2 (29)

where the impact parameter amplitude agq;-(s, B) is given in appendix A. The |¢q) state
is essentially a superposition of the low mass vector mesons p® and w. Therefore, we can
write the cross section of quasi-elastic vector meson production as

Cpetpiw =4 [ @B | (i p ares(s, B) 11,p) I (30)

According to the assumptions of the previous section the cross sections for single and
double low mass diffractive dissociation are given by:

U.IS'%,p = 4/d2B ' (qq,p*l ares(saB) l')’hadap> |2 (31)
ooy = 4 [ @B 1 {(42)stspl Gres(s, B) 1hats ) (32)
oy = 4 [ B | (aq" 0" aves(s, B) Pnass ) I (33)
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In Eq. (32), the normalized state {(¢§)sq4, p| orthogonal to (Ysad, p| is introduced to ensure
that there is no mixing of low mass quasi-elastic scattering and low mass single diffractive
excitation. The elastic yp — yp amplitude can be neglected in comparison to the single
diffractive amplitude in Eq. (32).

The cross sections for high mass single and double diffraction can be calculated using
the Abramovski-Gribov-Kancheli cutting rules[42]. We will comment on this in a forth-
coming paper and refer the reader to [43, 20]. With the weight factor —1 for the diffractive
cut through a triple or loop Pomeron one obtains in lowest order of the triple Pomeron
coupling gsp

O'SD'V = /d B(Yhad, Pl (—2XTPA(8, B))e™ Ax(eB) |Yhad, P) (34)
o3P = /d B(Yhads Pl (=2x1Pp(5, B))e™XB) |yp04, p) (35)
oBp = /d B(Yhad» Pl (—2x1(s, B))e B |y;04, p) (36)

For completeness we give the formula to calculate the slope of quasi-elastic vector
meson photoproduction [44]

/d2B B? (44, p| ares(s, B) |7, p)

b
2/d2B (qq,pl ares(SsB) |’7,P>

pow T

(37)

The expressions for the cross sections resulting from Eq. (28) - (36) and Eq. (21) are
given in appendix B.

5 Describing photoproduction data

The free parameters of the model can be determined by a global fit to high-energy pho-
toproduction data.

For the coupling f,; we take the value suggested by low energy data e?/ fE ~1/220.
It is expected that only a small part of the hadronic component of the photon results from
the ¢g* state with hlgher virtuality. Therefore, this coupling is assumed to be roughly 10
times smaller, e?/ f2.. ~ 1/2200.

Hadronic data support the hypothesis that the soft Pomeron and Reggeon couple
predominantly to quarks [45]. As a direct consequence of this, the ratio of the coupling
constants g, and gp ; can be approximated by

e 2 (3)

This is in agreement with the values found in [45]. For the constant parts of the elastic
slopes bg and bgq the relation
10
o3 (39)
bo, 2
97
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is assumed. The triple Pomeron coupling is independent of the particular scattering
process and can be taken from other fits to pp or pp cross sections [30]. We use the values
gsp = 0.08 vmb GeV~? and bsp = 0.5 GeV~2. The Reggeon intercept is well determined
by fits to the masses of particles with the same quantum numbers and is taken from
Ref. [45]. For the parameters a/p(0) and a’g(0) we use the known values 0.27 GeV~? and
0.9 GeV~2. Since there are not enough data on diffractive cross sections, the resonance
masses Mg+ and M, cannot be determined by a fit. We have used the values Mysx=1GeV
and M,«=1.2GeV.

In order to restrict the calculation of the hard input cross section 9P to the region
in which perturbative QCD and the Parton model are reliable we choose a transverse
momentum cutoff of pi‘t"f / =3 GeV/c. To show the dependence of our results on this
parameter a fit was also performed for a cutoff of 2.5 GeV/c. For lower values of the
transverse momentum cutoff, the low z region of the parton distribution functions enters
the cross section calculation (see Eq. (2)) and would lead to double counting [46].

Thus we have reduced the free parameters to be determined by a fit to the following: the
Pomeron intercept ap(0); the Pomeron proton and Reggeon proton coupling constants
gp,; and g% ; and the slope parameters i)‘};’p and i)?;,p. We have used for the fit not only
the inelastic photoproduction cross sections [4, 2, 6, 47] but also slope data from quasi-
elastic vector meson production [6, 48]. Because of the dependence of the hard input cross
sections on the parton distribution function (PDF) parametrization used, separate fits for
each set of PDF parametrizations are performed. In table (1) we list the values for some
photon [49, 50] and proton [51, 52] parton distribution functions.

Table 1: Model parameters obtained by a global fit to the total inelastic photoproduction
cross sections and the forward slopes of quasi-elastic vector meson production.

proton PDF | photon PDF g%(\/n7)) g%(\/nﬁ) ap(0) i)(};,p(GeV“z) E‘}z,p(GeV”)
MRS[DO) GRV 1 4.68 780 | 1.067 |  3.48 1.63
MRS[DO] Gs 1 4.65 788 | 1.070 3.49 1.63
MRS(D-] GRV 1 4.69 779 | 1.067 |  3.48 1.64
CTEQ1L GS1 4.63 7.94 1.072 3.48 1.64
CTEQIMS GS1 4.66 7.86 1.070 3.49 1.65

The model allows a good fit to available data on the total photoproduction cross
section and to the quasi-elastic vector meson production cross section and slope. In Fig. 9
we compare the inelastic photoproduction cross section with data [4, 2, 53, 54, 47]. In
contrast to the fast increasing hard input cross sections the model shows a rather weak
energy dependence of the inelastic cross section. This is a result of both the unitarization
of the Born amplitudes and the inclusion of inelastic absorptive corrections in the eikonal
approximation.

In Fig. 10 we show the diffractive cross sections predicted by the model. As a direct
consequence of Eq. (38) and (39) the model predicts a larger single diffractive cross section
for the photon vertex in comparison to the proton vertex. Due to the contribution of the

14



300 T T T v LR | T T T RN R | T
vyp— X a(0) > 1.0
pell =95 —3 Gevye s

250

T

200

[EY
[
o
I
1

0 i L P S S A | " N PSSR I |
10 100
Vs (GeV)

Figure 9: Inelastic yp — X cross section as a function of the center of mass energy /s
calculated with the model and compared to experimental data. The lower and upper
curves correspond to model predictions calculated with a p‘ft"f ! of 2.5 GeV/c and 3
GeV /c, respectively.

triple Pomeron graph to single diffraction the difference between these two cross sections
increases with the energy.

In Fig. 11 we compare the cross section of quasi-elastic photoproduction of p° on
protons predicted by the model with data [55]. The high energy measurement is obtained
by scaling the total vector meson cross section by 0.82 [53]. In addition, in Fig. 12 the
slope of the forward quasi-elastic p® production calculated with the model and data [48, 6]
are shown.
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vp — XpXp as a function of the center of mass energy +/s calculated with the model.
The lower and upper curves correspond to model predictions calculated with a pj_“tof ! of

2.5 GeV/c and 3 GeV/c, respectively.
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Figure 11: Quasi-elastic yp — p°p cross section as a function of the center of mass energy
/s calculated with the model and compared to data [53, 55].
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Figure 12: Slope parameter of quasi-elastic p° production compared with the results
calculated with the model. The low energy data are taken from [48], the two high energy
measurements are preliminary data of the H1 Collab. [6].
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As recently discussed by the authors of [56], the unitarized high mass diffractive am-
plitude should show a peripheral shape at high energies. Once we have determined the
free parameters of the model we can estimate the energy range where the model shows
this transition from the central to the peripheral shape. In Fig. 13 we show the unitarized
impact parameter amplitude for high mass diffraction Eq. (35). According to the param-
eters obtained in the fit, the model predicts that the transition to the peripheral shape
takes place at energies above /s = 200 GeV. Consequently, below this energy the model
predicts that the diffractive cross section increases faster than log(s). In Fig. 14 we show
the amplitude related to low mass diffraction. Low mass diffraction is approximated in a
quite different way (see Eq. (31)) but the resulting amplitude exhibits similar behaviour.
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Figure 14: Impact parameter amplitude of low mass single diffraction (see Eq. (31)) for

the collision energies /s = 50,200,500 GeV.
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6 Conclusions

A detailed model of photoproduction has been presented, based on the assumptions of
the DPM. This allows the construction of soft and hard photoproduction amplitudes. In
contrast to [14] we distinguish only two classes of photon hadron interactions, the direct
and resolved component rather than the direct, VDM and anomalous component. This
obviates the necessity of modifications to the parton distribution functions. Furthermore,
this model takes into account elastic and inelastic absorptive corrections by unitarization
of the partial cross sections. Introducing a mass dependent slope and parametrization
of the coupling constant, we extend the two channel eikonal formalism to get a smooth
transition between low and high mass diffraction. High mass inelastic absorptive correc-
tions are treated in lowest order of the triple Pomeron coupling. Within the two channel
formalism, both the high mass single diffractive and the low mass single diffractive ampli-
tude show, at high energies; a peripheral impact parameter shape. Using the numerical
values resulting from our fits the model predicts that there are no indications for this
asymptotic behaviour in the range of HERA energies.

The partial cross sections calculated with the model show an overall agreement with
the results obtained in [14], but our model predicts a larger single diffractive cross section
of the photon than of the proton. This follows directly from the assumption that the
Pomeron couples predominantly to quarks.

Finally we want to emphasize that within the framework of the DPM, the model
presented can be used directly for the description of multiparticle photoproduction at
high energies [21].
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Appendix A

In the following we give the complete expressions for the Born amplitudes transformed
into the impact parameter representation.

In the formulae, the dependence on the external masses (see Fig. 6) is symbolized by
M;. All the amplitudes are approximated by a gaussian impact parameter dependence

tot (. A2 32
= o5i(s; My) B
, . = =22 EL g 4
ap,i(s, B; M) 8 bi(s, M?) exp{ 4 bi(s, M}?) “0)

The index ¢ stands for P, R, H,T P, and L which denote the soft Pomeron, Reggeon, hard
Pomeron, triple Pomeron, and loop Pomeron amplitude, respectively.
The Pomeron and Reggeon total cross sections are parametrized by (see Eq. (3))

s\ 8r s \Ar
o5ip(s) = 9, (M) g MD) () lin(s) = ghy(M2) dhsMD) ()

(41)
with Ap = ap(0) — 1 and Ar = agr(0) — 1. The slope parameters bp(M?) and bp(M})
are given by the parametrizations Eq. (8) and Eq. (9).

The hard resolved cross section is calculated from Eq. (2) using the scale @* = p?.
The hard input cross section then reads

e’ e2 \ 7!
Ug,tH = o‘l?a(:dD,res(S’thOff) (-2_ + T) . (42)
99 97"
It is assumed that the hard Pomeron contributes to low mass diffraction in a way similar
to the soft Pomeron. Therefore, the hard input cross section is scaled by the ratio resulting
from the soft Pomeron couplings. The impact parameter amplitude of the hard Pomeron
is written as Eq. (40) with by = 1.5 GeV~2. The slope of the hard Pomeron is assumed to
be energy independent [57, 58]. The direct input cross section is calculated from Eq. (1)
with the same cutoff as used for the resolved hard contribution. The impact parameter
amplitude ag;, (s, B) is also approximated by Eq. (40).
The calculation of the input cross section resulting from the triple Pomeron graph
shown in Fig. 5 a) yields [31, 30]

2 0 A 0
iy 9200 92(0) g5p (_s_) " exp (_ b + bap Ap)

orPa(s,¢° = 0) = —

167 2a/(0) So 2o/
b + bsp s by + bsp
Ei|[2—2+InZ-|Ap| - E; InSy| A 43

x { [( 500 0) +lne ) Ap 200 (0) +InEy | Ap | ¢ (43)
where the integration over the diffractive mass Mp is performed from M3 = ¥ to
MIZ) = S/Eu.
The contribution of the loop Pomeron shown in Fig. 5 b) can be written as [30]

a0 0s(0) (880 5\ [ Dby

2 =0)=— 2 9a( 3P (__) .

o1(s,q ) 0T 6 2¢/(0) S0 P o

bsp S50 bsp 880 bsp
() {5 | rn ) o] - 5[ (T rwse) oo}
+ Aipexp [(;‘zg) +In EU) Ap} — Aipexp [(of)'?}(;) +In ;—?) AP:l } (44)
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The integrations over the masses Mp; and Mp , are performed from M hi=Mp,=%
to M3 Mp , = sso/Ty. Following Ref. [30] we take ¥y = 2.5 and £ =5 GeV2

For numerical calculations we use an effective exponential t dependence of the triple
and loop Pomeron introduced in Ref. [31].

Tp(s,t) = AZ7p(s,0) exp (bzpt) (45)
Ar(s,t) = AL(s,0) exp(byt) (46)

where the slope parameters 4%, and by, are given by
a 1 0 0 / S
teo= 5 (62 +89) + b3p + a (0)In =
s (1 %+ bsp +20/(0) In(s/5p) |
LYy b + bsp + 2¢/(0) In Sy
(bg + bg) +2bsp + o'(0) In 2

So
bap/a/(0) +In 3
b3p/a'(0) +In¥y

W = N = N -

a'(0) In

(47)

o~
~
li

Q\
~~
o
A
—_—
=}

[~}

-1
880 bsp 880 880
! g2
5,52 In =00 +In 2 n 5 (48)
L L L

We want to emphasize that b%p and by, are the effective slopes of the uncut graphs shown
in Fig. 5 a) and b) and not the diffractive slopes bsp and bpp relevant to the description
of single and double diffraction.

Appendix B

The eikonal matrix x(s, B) (see Eq. (21)) can be written as the sum of the eikonal matrices
related to the different graphs.

x(s, B) = xp(s, B) + xr(s, B) + xu(s, B) + xrp(s, B) + XTPp($, B) + x1(s, B) (49)

All these matrices commute approximately. Therefore, both the total and the partial cross
sections for different processes can be calculated by diagonalizing the matrices x;(s, B).
It proves useful to introduce the following linear combinations

XM = ap(9d,p — 44,p) + an(9d, p — 4, p) — an(qd, p* — q93,p) — ag(qq*,p* — qq,p)

p) p) (

x® = as(¢q,p — 93,p) ~ an(ad,p - 93,p) + a5(qq, p* — 43, p) — (7", p* — ¢4, p)

X = ap(qq,p — 94,p) — ap(47*,p = 43, p) — a5(qd,7* — qd,p) + aB(q7*, " — 94,p)
)

XY = ap(9q,p - 44,p) + an(9q" p — ¢4, p) + a(qd, p* — q4,p) + ap(¢q, p* — 44, p).
(50)

The elastic amplitude in impact parameter representation then reads

('7,}7] a(s,B) h’p) = Z3 Xdir(saB)
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The amplitudes necessary to calculate low mass diffractive processes are given by:

(¢q*,p| a(s, B) |v,p) =

+
| R

9]

€ —x(1(s,B) —x(?)(s,B) —x©)(5,B) -x®)(s,B)
+ — {—eXEB) 4 X +e —e
4fqti { }
+ 4f {4 (V@B 4 exXP0B) y (XD0B) 4 X)) (52)
aq*

(qq,p"| a(s, B) |v,p) =

+ i {+6—X(1)(S,B) _ e_x(2)(sz) _+_ 6’X(3)(5vB) — e—x“)(sz)}
4fq<i

+ fe +eXDB) o XDB) _ o xXVeB) _ xBeB)) (53)
4foer

(97", p"| a(s, B) |v,p) =

+ 4f {+ -x(s,B) +e -xP(s,B) _ ~xNs.B) _ e—x(*)(s,B)}
9

+ 4; +6_X(1)(5,B) . C_X(z)(s’B) + e"x(s)(s'B) _ e_xu)(s,B)} . (54)
qq*

The cut amplitudes which enter the calculation of high mass single diffraction can be
written as

(7hadap| ("2XTP,a(SsB))e_2X(S'B) I7had’p> =
e (1 1\? (1) —2x() (4) —25(®)
1 (E“FE) [( -2 TPa) T+ ( 2XTPa) X ]

e (1 1\? 9 (2) —25(®
) (o) e+ (adh) ] o
99 qq*

Here the index a labels the diffractively dissociating particle yp.q or p, respectively. The
eikonal functions xg,f};,a are linear combinations of the triple Pomeron amplitudes arp,
which are analogous to Eq. (50). By substituting the loop Pomeron amplitude for the

triple Pomeron amplitude in Eq. (55) one gets a similar expression relevant for high mass
double diffraction.
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