Population of *n*-unbound states of 65 Ni via one neutron transfer reaction ⁶⁴Ni(⁹Be, ⁸Be)

Rajkumar Santra^{1,4}*, Subinit Roy¹, Haridas Pai¹, Subhendu Rajbanshi², Sajad Ali^{1,4}, Balaram Dey¹, Saikat Bhattacharjee^{1,4}, Anjali Mukherjee¹, F. S.

Babra³, Md. S. R. Laskar³, Sanjoy Pal³, Rudrojyoti Palit³

¹Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata - 700064, INDIA.

²Deptartment of Physics, Presidency University, Kolkata-700073, INDIA.

³*Tata Institute of Fundamental Research, Mumbai - 400085, INDIA.*

⁴Homi Bhabha National Institute, Mumbai - 400094, INDIA. * * email: rajkumar.santra@saha.ac.in

Introduction

Transfer reaction indirect is an experimental technique to obtain the relevant quantities required to estimate the rate of astrophysical capture reaction [1]

In the present experimental investigation we explored the 1n transfer reaction (⁹Be, ⁸Be) on ⁶⁴Ni nucleus as an indirect probe for ⁶⁴Ni(n,γ) capture reaction. In (9Be, 8Be) reaction, the produced ⁸Be quickly breaks up into two α particles that can be detected as a clear signature of neutron transfer. The reaction ⁶⁴Ni(⁹Be, ⁸Be)⁶⁵Ni has a Q-value of 4.43 MeV. Being a positive Q-value reaction, the population probability of states above the n-threshold (S_n= 6.098 MeV) is high. We attempted the detection of γ -rays in coincidence with reaction α -particle for a high resolution determination of level energies and γ -branching factor of residual ⁶⁵Ni nucleus.

The branching factor will be used subsequently in ${}^{64}Ni(n,\,\gamma)$ capture reaction. The capture reaction ${}^{64}Ni(n, \gamma)$ has smallest Maxwellian Averaged Cross Section (MACS) among the even-even Ni-isotops[2] and may act as a bottleneck in the formation of 65 Cu and other heavier nuclei in the s-process nucleo-synthesis chain.

Experimental details and analysis

The experiment was performed using ⁹Be (30 MeV) beam (current~5 nA) from Pelletron Linac Facility (PLF) in Mumbai. A selfsupporting foil of 64 Ni (~500 µg/cm²) was used as the target. To detect outgoing ⁸Be from 1ntransfer reaction, we used CsI(Tl) detector for charged particle detection. The detector were put on both sides of the beam line covering an angular region from 22° to 67° in the reaction plane. CsI(Tl) detectors, each of size 15x15 mm², were placed approximately 5cm away from the target center on each side of the beam axis. Tantalum absorbers of thickness 30mg/cm² were used before the scintillator detectors to stop the elastically scattered particles from entering the detectors. De-exciting y-rays of residual nuclei were detected using the γ -detector setup consisting of 14 Compton-suppressed Clover detectors placed at 40°, 90°, 140°, 115° and 157° with respect to the beam direction. Data were recorded in list mode in a digital data acquisition system (DDAQ) based on Pixie-16 modules of XIA-LLC, which provides both energy and timing information. The γ -ray data were sorted using Multiparameter time stamped based Coincidence Search (MARCOS) [3] program to generate one dimensional histograms, γ - γ matrix, and γ - γ - γ cube for offline analysis. RADWARE software package [4] were used for subsequent analysis.

Results and Discussions

In **Fig. 1**, two representative γ -spectra of residual ⁶⁵Ni nucleus produced in the 1n-transfer channel have been shown. Some of known ylines like 310.4 keV, 382.5 keV and 1610.4 keV are marked. Decay γ -lines from resonance states in ⁶⁵Ni beyond the n-threshold are shown in Fig. 2. The direct transitions to the ground state of $^{65}\mathrm{Ni}$ are marked in the figure. However, the final confirmation of these states will be established by gating with the α -spectrum from CsI(Tl) detector data. A representative 2D particle spectrum is shown in **Fig. 3**. Attempt will be made to identify the 2α or ⁸Be band in single CsI(Tl) detector spectrum [5] to distinctly identify the γ -lines of ⁶⁵Ni nucleus through gating on . A detailed analysis is in progress and the results will be presented in the symposium.

Fig. 1 Gamma spectrum obtained by gating on 382.4 keV (top) and 310.4 keV (bottom) γ -rays of residual ⁶⁵Ni nucleus.

Fig. 2 Observed γ -rays of direct transitions from resonance states to ground state of ⁶⁵Ni.

Acknowledgement

The authors would like to thank the staff of Pelletron Linac Facility, Mumbai for delivering stable and uninterrupted beam during the experiment. Thanks are also due to Shri Shitalkumar V Jadhav and Dr. Balaji S Naidu for their continuous support and co-operation during the setting up of the experiment.

References

- R.E. Tribble, et al., Rep. Prog. Phys. 77, 106901 (2014)
- [2] G. Cescutti, et al., arXiv:1805.01250v1 [astro-ph.SR], May 3, 2018.
- [3] R.Palit, et al., Nucl. Instrum. Methods A 680,90 (2012).
- [4] D. Radford, Nucl. Instrum. Methods A 361, 294; 306 (1995).
- [5] J.M.Almond, et al, Phys. Rev. C 86, 031307(R) (2012).