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It is known that the dynamic parameters of the automatic correc­
tion system increase the order of the nonlinear differential equation 
which describes the motion of the accelerated particles. The conven­
tional investigations of the acceleration process by the phase plane 
method permit to consider only the transfer coefficient of automatic 
systems [1]. The method of harmonic linearization proposed in this 
paper permits a study of the oscillation process with a consideration 
of the coefficient of transfer as well as of inertness and of other 
dynamic properties of the individual loops of the correction system. 

The phase motion of particles can be described by the nonlinear 
differential equation 

M(p)ψ + N(p)F(ψ) = 
,(1) [= H(p)[h(t) + g(t)], p ≡ d ,(1) [= H(p)[h(t) + g(t)], p ≡ dt 
,(1) 

where M(p), N(p) and Hp are linear polynoms. 

A very essential influence upon the oscillatory motion of charged 
particles is exerted by the nonlinearity 

F (Ψ) = sin ψs — sin ψ = 
(2) = sinψs — Ψ + 1 ψ3 — 1 ψ5 + ... 
(2) = sinψs — Ψ + 6 ψ

3 — 120 ψ5 + ... 
(2) 

of the accelerating voltage. By considering the great difference in 
the frequencies of the equilibrium ψs and the oscillatory ψα components 

*) This report was not read. 
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of the phase motion 
ψ = ψs + ψα = ψs + aφ sin θ, 

daφ = 
(3) 

ψ = ψs + ψα = ψs + aφ sin θ, dt = (3) 
= — aφ γa. 

dθ 
= ω, 

(3) 
= — aφ γa. dt = ω, 

(3) 

we divide the external effects also into adiabatic h(t) which determine 
the equilibrium phase ψs and into resonance g(t), vibratory synchrotron 
oscillations ψα. 

1. Investigation of the oscillatory motion of particles 

In the analysis of nonlinear processes the structural scheme of 
the system is divided according to equation (1) into a linear part 

W1(p) = N(p) ,(4) W1(p) = M(P) ,(4) 
and a nonlinear part F(ψ) (fig. 1). The nonlinear properties of the 

Fig. 1. 

Fig. 2. 
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oscillation process represent the result from a successive nonlinear 
transformation (fig. 2) and a linear filtration. By assuming that the 
condition for an ideal filter 

| N(jω) |»| N(kjω) | (k = 2,3,...) (5) | M(jV) |»| M(kjω) | (k = 2,3,...) (5) 
is fulfilled at the egress of the nonlinearity F(ψ), we consider only 
the first harmonics of oscillations amplified q times as compared with 
the process ψ at the input, as well as the adiabatic component Fs (see 
fig. 2). 

The harmonic amplification coefficient q and the translocation function Fs can be written in the shape 

q = 1 
2π 
(sin ψ s — ψ + 1 ψ3- 1 ψ5 +... 

)× 

(6) q = 1 
∫ (sin ψ s — ψ + 1 ψ3- 1 ψ5 +... 

)× 

(6) q = 
πaφ ∫ (sin ψ s — ψ + 6 ψ

3- 120 ψ5 +... 
)× 

(6) q = 
πaφ 

0 
(sin ψ s — ψ + 6 ψ

3- 120 ψ5 +... 
)× 

(6) 
× sinθ dθ = 1 — 1 ψ2s-

1 α2φ+ 1 ψ4s + × sinθ dθ = 1 — 2 ψ2s- 8 α2φ+ 24 ψ4s + 
+ 1 α2φψ2s + 1 α4φ— ... ≈ 1 — 1 ψ2s — 

1 
α2φ ; + 16 α2φψ2s + 192 α

4
φ— ... ≈ 1 — 2 ψ2s — 8 α2φ ; 

Fs= 
1 

2π 

(sin ψ s — ψ + 1 ψ3— 1 ψ5+...) dθ= Fs= 
1 ∫ (sin ψ s — ψ + 1 ψ3— 1 ψ5+...) dθ= Fs= 2π ∫ (sin ψ s — ψ + 6 ψ

3— 120 ψ
5+...) dθ= Fs= 2π 

0 
(sin ψ s — ψ + 6 ψ

3— 120 ψ
5+...) dθ= 

= sinψs—ψs (1 — 1 ψ2s — 1 
α2φ + 1 ψ4s + (7) = sinψs—ψs (1 — 6 ψ2s — 12 α2φ + 120 ψ4s + (7) 

+ 1 ψ2sα2φ + 1 α 4
φ - . . . ) ≈ + 24 ψ2sα2φ + 64 α 4
φ - . . . ) ≈ 

≈ sin ψ S—ψ s ( 1 -
1 ψ2s— 1 α2φ 

· ≈ sin ψ S—ψ s ( 1 - 6 ψ2s— 12 α2φ 
· 

At the nonlinearity egress we have the harmonically linearized process 

ξ1 = F(ψ1) = Fs + qψa. (8) 
A translocation of the oscillation process is energetically impossible 
without the adiabatic component of the external effect h(t). The dif­
ferential equation (1) can be presented in the harmonically linearized 
shape 

M(p)(ψs+ψa) + N(p)(Fs+qψa) = H(p)h(t) (9) 
or as interconnected through Fs and q with a system of equations for 
the adiabatic and oscillatory process 

M(p)ψs+N(p)Fs=H(p)h(t), (10) 
M(p)ψa+N(p)qψa=0. (11) 

For the equation (1) we can write 
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eU0(t) sin ψs(t)-J(t) = ba3 dHM 
,(12) eU0(t) sin ψs(t)-J(t) = ba3 dt ,(12) 

where U0(t) is the amplitude of the accelerating voltage, J(t) the 
intensity of the magnetic field. ψ(t) depends also on the frequency 
of the accelerating voltage and on the velocity of particles. 

The stability and quality of the acceleration process can be 
investigated according to the linear equation (11). The acceleration 
process proceeds normally when the particles delayed from the equili­
brium position with respect to the phase pass through the resonators 
at a higher voltage than in the equilibrium phase ψs. This requires 
that the roots of the characteristic equation 

M(p)+N(p)q = 0 (13) 
should not possess positive real parts. Equation (13) can be examined 
according to the Hurwitz criterion and by frequency and other criteria 
used in the analysis of linear systems. Random low-frequency varia­
tions of the parameters of the accelerating voltage and of the magnetic 
field lead to a gradual change of the values h(t) and ψs(t). 

In the investigation of the correction system of synchrotron 
oscillations by the position of the beam the analysis of the influence 
of external effects g(t) whose spectrum is located in the vicinity of 
the frequency Ωc(t) of synchrotron oscillations is of a great impor­
tance. Resonance interferences affect the slowly changing phase as 
well as the oscillatory component of the process: 

ψp=ψs+ψrand+aφ sin θ, (14) 
where ψsrandom + α sin θ is treated as a total random process. The 
translocation function is given by the equation 

Fsp = 1 
2π 
dθ 

∞ 

F(ψp)ωc(ψprandom)dψp, (15) Fsp = 1 ∫ dθ ∫ F(ψp)ωc(ψprandom)dψp, (15) Fsp = 2π ∫ dθ ∫ F(ψp)ωc(ψprandom)dψp, (15) Fsp = 2π 
0 
dθ 

—∞ 

F(ψp)ωc(ψprandom)dψp, (15) 

and the harmonic amplification coefficient is substituted by the equi­
valent [2] 

qequil = 

qst. + 2σ2p qtransloc. e q u i l . p h . 

(16) 
qequil = 

qst. + 

α2φ 
qtransloc. e q u i l . p h . 

(16) 
qequil = 

14 
2σ2p (16) 

qequil = 
14 α2φ 

(16) 
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which is determined from the condition of the minimum of the mean 
square deflection of the substituting function from the initial one 

M'[(F (ψ)-Fsp-q∂kBψα)2] = min, 

where 
ωc(ψprand)= 1 

2π 
ω(ψsrand+ αφ sin θ) dθ — ωc(ψprand)= 1 

∫ ω(ψs
rand+ αφ sin θ) dθ — ωc(ψprand)= 

2π ∫ ω(ψs
rand+ αφ sin θ) dθ — ωc(ψprand)= 

2π 
0 
ω(ψsrand+ αφ sin θ) dθ — 

is the differential law of the distribution of the process; qst. con-
siders the variation of the amplitude at ψs = const, and qtransloc. equl. Ph. 
the variation of the amplitude by a random translocation of the equili­
brium phase; M ' [ ] - symbol of the mathematical expectancy. 

If a stationary random disturbance is characterized by the two 
first probable moments (by the mathematical expectancy and dispersion), 
then because of the nonlinear structure of the accelerator the deter­
mination of the random component phases and of the oscillation pro­
cess is connected with the highest probable moments. Because of the 
closed state of the structural scheme of the accelerator the linear 
part smooths the highest probable moments. A consideration of the 
amplification of only the two first probable moments in the nonlinearity 
F(ψ) means a statistical linearization. 

2. Analysis of the system of automatic correction of the 
position of the center of the beam 

A variation of the amplitude of accelerating voltage leads to a 
change of the tolerable amplitude of synchrotron oscillations (fig. 3). 

Fig. 3. 
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An analogous result is obtained also from a variation of the frequency 
of the accelerating voltage and also of the magnetic field intensity 
[3]. 

If the external perturbations cause a discrepancy of the voltage 
pulse with respect to the value α01, then in the uncorrected accelerator 
the center of the beam starts to perform synchrotron oscillations with 
the initial amplitude ψr"' - ψ' (fig. 4). By considering the opera-

Fig. 4. 

tional mechanism as a modulator of the frequency of the accelerating 
voltage, we find that the amplitude of the voltage varies with the 
variation of the frequency according to the characteristics of a real 
resonator (fig. 5). For the attainment of favorable conditions for the 

Fig. 5. 

automatic correction of the voltage in the phase of the center of the 
beam it is required that the mean value of the frequency ωp of the 
accelerating voltage should be slightly higher than the resonance fre-
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quency of the resonator (see fig. 5). Then the lagging of the center 
of the beam behind the equilibrium phase is compensated by an increase 
of the voltage pulse not only because of the increase of the period of 
the accelerating voltage, hut also because of a simultaneous increase 
of the voltage amplitude (see fig. 4). In the corrected accelerator 
the center of the beam performs synchrotron oscillations with an ampli­
tude of not ψs"' - ψ's but ψ"s - ψs' and transits into the new equilibrium 
phase ψs"' after several periods of synchrotron oscillations. 

For the oscillatory motion of the center of the beam in the cor­
rected accelerator we have [3] 

[M(p) + H(p)Wc(p)]ψα + N(p)qψα = 0. (17) 

According to the requirement of the process stability the maximum 
quick operation can be determined at a given transfer coefficient of 
the system from equation (17). 

3. Principle of the construction of extreme acceleration 
systems for charged particles 

An accelerator is discussed with an extreme regulation of the rate 
of growth of the magnetic field which decreases the energy losses 
caused by radiation without losses of particles in the beam. At the 
maximum rate of growth of the magnetic field the time of acceleration 
diminishes and the energy losses by radiation which are proportional 
to the radiation time decrease. The information concerning the magni­
tude of the equilibrium phase and the beam dimensions leaves the pick­
ups of the regulator and enters the analyzing assembly where the prompt 
values of the equilibrium phase are compared with the ones tolerable 
at certain dimensions of the beam and the signal is generated for an 
adjustment of the magnetic control field. 

If in the simplest case the characteristic equation obtained from 
the equations (11) or (17) possesses the shape 

p2 + 2γαp + Ω2bq = 0, (18) 
then the program of the analyzing assembly is determined from the con­
dition 

q = 1 — 1 ψ2s - 1 α2φ + 1 ψ2s + (19) 
q = 1 — 2 ψ2s - 8 α2φ + 24 ψ2s + (19) 

+ 1 ψ2sα2φ + ... ≥ γ2α , 
(19) 

+ 16 ψ2sα2φ + ... ≥ Ω2b , 
(19) 
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where α2 = 2α are the dimensions of the beam along the phase. 

Refined calculations obtained from a consideration of the highest 
harmonics of the oscillatory motion or by means of a simulator, show 
that the maximum values of the amplitude α of synchrotron oscillations 
in dependence on the magnitude of the equilibrium phase ψs (fig. 6) are 
determined from the equation 

1 - 2 |ψs| — 1 αφ=0. (20) 1 - π |ψs| — π αφ=0. (20) 
We believe that it is the easiest to materialize an extreme regu­

lator for an accelerator where the rate of growth of the magnetic field 
at the end of the acceleration cycle has been increased previously. In 
this case a commutator can be used as the performing mechanism which 

Fig. 6 

transfers the corresponding part of the energy from the source of the 
feeding of the electromagnet to other objects by the signal of the 
analyzing assembly. 

4. Refinement of the calculation results 
on a simulator 

The method of harmonic linearization is approximate and does not 
yield exact quantitative data, in particular for such processes which 
are close to the limit of stability. The calculating units of the 
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electronic simulator are connected according to the same structural 
scheme (see fig. 1) which is the basis for the calculation by the 
method of harmonic linearization. 

In the performance of calculations on the electronic simulator the 
condition (5) of the ideal filter is not indispensable, since at the 
egress of linear blocks we have not only a translocated first harmonics, 
but also a real process which corresponds to all parameters of the dif­
ferential equation. This explains the good accuracy of calculation by 
means of a simulator. A loss of the stability of motion of particles 
in the chamber corresponds in the simulating device to a periodically 
increasing process. In fig. 2 and 3 (dash curves) the intersection of 
the "dip" at the second half-period of the curve ξ(θ) with the line 
ξ = sin ψs characterizes the loss of stability. 

The perturbing effect is transmitted to the oscillation process 
in the simulating device by means of low-frequency generators. The 
circuits RC imitate the parameters of automatic correction systems. 

The method of harmonic linearization and the calculation procedure 
on a simulating device supplement each other and provide a compara­
tively simple and descriptive picture of the acceleration process for 
the choice of the optimum parameters of the accelerator. 
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