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ABSTRACT

Proton-proton collisions at the Large Hadron Collider provide insight into fundamen-

tal dynamics at unprecedented energy scales. After the discovery of the Higgs boson

by the ATLAS and CMS experiments completed the Standard Model picture of par-

ticle physics in 2012, the focus turned to investigation of new phenomena beyond

the Standard Model. Variations on Supersymmetry, which has strong theoretical

underpinnings and a wide potential particle phenomenology, garnered attention in

particular. Preliminary results, however, yielded no new particle discoveries and set

limits on the possible physical properties of supersymmetric models. This thesis de-

scribes a search for supersymmetric particles that could not have been detected by

earlier efforts. The study probes collisions with a center of mass energy of 13 TeV

detected by ATLAS from 2015 to 2016 that result in events with a large number of

jets. This search is sensitive to decays of heavy particles via cascades, which result in

many hadronic jets and some missing energy. Constraints on the properties of reclus-

tered large-radius jets are used to improve the sensitivity. The main Standard Model

backgrounds are removed using a template method that extrapolates background be-

havior from final states with fewer jets. No excess is observed over prediction, so

limits are set on supersymmetric particle masses in the context of two different theo-

retical models. Gluino masses below 1500 and 1600 GeV, respectively, are excluded,

a significant extension of the limits set by previous analyses.
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Chapter 1

Introduction

If this all seems ambiguous, that’s because it is; and if that troubles you,
you’d hate it here; but if it gives you a feeling of relief, then you are in
the right place and might consider staying.

—Neal Stephenson, Anathem

The third graders in the Nunaka Valley classroom of my home school district of

Anchorage Alaska leaned eagerly forward at their desks, their faces raptly attentive.

They were arrayed in a semi-circle facing the blackboard, which was adorned with

the ornaments of Planet Week in science class. I had just finished explaining, in a few

simple words, my work as a particle physics student at CERN (European Organization

for Nuclear Research) outside Geneva, Switzerland. I had told them about the most

fundamental building blocks of nature, about the primal forces that bind them, and

about the engineering marvel constructed to explore them. I had explained the long

history of collaboration between scientists the world over that had culminated in

the discovery of the Higgs boson, the final piece in a puzzle whose construction has

stretched over decades. I hinted at the mysteries still unsolved. Hands shot up and

I fielded the expected questions: what’s my favorite planet (Saturn); what’s it like

inside a black hole (very uncomfortable); do aliens exist because my mom said they

might (you should listen to your mom); can I dunk a basketball (not reliably). Finally

I called on one boy who took his time, screwing up his eyes for a moment, before
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asking: “I just don’t get it. Why don’t you just smash rocks together? I do it all the

time—that would be way, way easier!”

We can chuckle at the näıveté of a young kid grappling with a complex scientific

process. But honoring the question’s intent forces us to explore some meaty ideas. We

must discuss how we aim to keep breaking down matter until its most fundamental

components are reached, smashing rocks into smaller rocks, on and on, even until

those components are point-like in extension. Experimental and theoretical efforts

have worked together to construct the Standard Model (SM) of particle physics, a

marvel of structured and predictive science. Sometimes the experimental results are

a surprise, as in the discovery of the τ lepton before any model had predicted its

existence [1]. Other times the discovery is a long time coming, like the observation

of the Higgs boson fifty years after it was predicted to be an integral part of the

Standard Model [2, 3].

We must talk about electro-weak symmetry breaking and how an energy scale

of about 1 tera-electronvolt (TeV), the energy scale at which the collisions at the

Large Hadron Collider (LHC) at CERN take place, is essential to probe regions that

have potential for new physics. After all, the ultimate goal of the experiments at

CERN is to discover something never-before-seen. Supersymmetry (SUSY) stands

out among potential new theories as an elegant extension to the Standard Model and

could answer some of the remaining questions about mass hierarchy and dark matter.

We must dig into the speed, the bunch crossing arrangement, and pileup of the

collisions; the magnets, silicon components, and chambers of the detector, the aes-

thetic simplicity (or lack thereof) in the underlying high-energy theory. The history of

particle physics is one of a string of bigger, more powerful, more precise experiments

dotting the globe. The machinery and ideas behind even the simplest detections are

worthy of note.

In the end, though, the serious question from the earnest boy in the grade school
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classroom in Anchorage, Alaska stands out in my memory because it reminds me of

the almost visceral excitement of opening something up to see what’s inside. That is

what these years of study have been about. This thesis presents a search for SUSY

using events at the LHC, recorded by the ATLAS (A Toroidal LHC ApparatuS) detec-

tor in collisions from 2012 through 2016. This search features events with many jets,

large composite-jet mass, and missing transverse momentum, to probe an untouched

SUSY parameter space. I will begin with the theory: Chapter 2 will introduce the

Standard model, followed by Chapter 3 on jets and their construction and Chapter 4

on SUSY. Chapter 5 will discuss the LHC and the ATLAS detector. Chapter 6 will

present the framework, results, and analysis of this search, and Chapter 7 will finish

with conclusions and suggestions for further inquiry.
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Chapter 2

The Standard Model

If you want sense, you’ll have to make it yourself.

—Norton Juster, The Phantom Tollbooth

Particle physics as we know it today is built upon the extraordinary successes of

the Standard Model (SM). At its heart, the SM is based on the idea that symmetry

is a basic and predictive property of nature. This concept, related to the idea of

naturalness, will be revisited in the discussion of SUSY, in Chapter 4. Pieced to-

gether over the course of 50 years (though primarily in the ’60s and ’70s), the SM

is a powerful set of interlocking theories that describe all fundamental particles and

the fundamental interactions between them. Experiment has matched the SM with

remarkable precision. Take, for example, the measurement of the electromagnetic

coupling constant, α, which has a measured value recorded within one part in 1010 of

the predicted theoretical value [4]. Indeed, measurements at the LHC have verified

the predictions of the SM to such a degree as to make one wonder where new physics

beyond the SM might be found. See Figure 2.1, which shows the match between

theory and experiment in the measurement of SM cross-sections. The SM does have

limits, however; most notably it lacks any treatment of gravity, but the scale at which

particle experiments take place makes gravitational forces negligible.
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Figure 2.1: A recent summary of Standard Model cross sections as measured by
ATLAS. Theory and experiment agree closely across all channels.

As this thesis takes an experimental approach, in the following chapter I will first

address the physical building blocks, that is, the particle composition, of the SM (2.1).

Next I will motivate that particle composition by introducing the SU(2)C⊗SU(2)W⊗

U(1)Y symmetry group of the SM with a brief treatment of the Lagrangian, dividing

it into its distinct components (2.2). Finally I will look toward physics beyond the

SM with some examples of its shortcomings (2.3)
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2.1 The Particle Composition of the Standard

Model

The contents of the SM are fundamental, point-like, zero-extension particles, perhaps

the logical conclusion of my favorite student’s plan to smash smaller and smaller

rocks. The particles are classified by their intrinsic angular momentum quantum

number, or spin, which can take on integer or half-integer values (in units of h̄). The

latter, half-integer spin, are fermions, what we think of as matter. The former, integer

spin, are bosons, which are carriers for the electromagnetic, weak, and strong forces

(gravity is still excluded) and appear as particles as well.

The complete assortment of fundamental fermions is listed in Tables 2.1 and 2.2.

Every fermion has an anti-fermion partner that is equivalent in mass but opposite in

charge. Fundamental fermions are further divided between quarks and leptons.

Quarks may interact with any of the forces of the SM, as they are charged under

both the strong force SU(3)C and the electroweak SU(2)W⊗U(1)Y . They are divided

into three generations; up/down, charm/strange, and top/bottom. Note how strongly

tiered the quark masses are. The up and down quarks that make up protons and

neutrons are only a few MeV, while the top quark is orders of magnitude larger at

173 GeV [5, 6], so heavy that it must decay before it can even hadronize and is thus

never observed in a bound state. These masses are free parameters in the theory of the

SM, which says nothing about the values they must take and does nothing to explain

this striking hierarchy. In addition, single quarks are not found in nature—they must

be confined to composite particles of 2 (mesons) or 3 (baryons) quarks.

Leptons may be either charged or neutral: charged leptons may only interact

with the electromagnetic and weak forces, while neutral leptons, or neutrinos, only

interact with the weak force. The SM predicts that neutrinos are massless, though

experimental observation has revealed they do possess a non-zero mass [7]. The
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neutrino masses are so small, however, that they make negligible experimental impact

at the LHC. Leptons are also divided into three generations; the electron, muon, and

tau. The tau lepton has a much shorter lifetime and decays quickly to hadrons or

other leptons and so is much more difficult to identify and study. For this reason

leptonic analyses at the LHC often only consider the first two generations. The

analysis presented in the thesis is a 0-lepton analysis, but uses control regions with a

single lepton by this two-generation definition.

All elementary bosons of the SM can be found in Table 2.3. The first four listed are

gauge bosons and force carriers; photons are the force carriers of the electromagnetic

force, W± and Z are the force carriers of the weak force, and gluons are the force

carriers of the strong force. Higgs bosons, meanwhile, do not carry a force like the

others, but rather give the vector bosons and charged fermions mass via the Higgs

Mechanism. The Higgs was the final elementary particle of the SM to be discovered,

at CERN in 2012 [2, 3].

Quark Mass Charge Spin Discovered in:

up u 2.3 MeV +2
3

1
2

1968 [8, 9]

down d 4.8 MeV −1
3

1
2

1968 [8, 9]

charm c 1.3 GeV +2
3

1
2

1974 [10, 11]

strange s 95 MeV −1
3

1
2

1968 [8, 9]

top t 173 GeV +2
3

1
2

1995 [5, 6]

bottom b 4.2 GeV −1
3

1
2

1977 [12]

Table 2.1: The quark contents of the Standard Model and their properties, divided
by generation.
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Lepton Mass Charge Spin Discovered in:

electron e 0.51 MeV -1 1
2

1896 [13]

e neutrino νe < 2 eV 0 1
2

1956 [14]

muon µ 106 MeV -1 1
2

1936 [15, 16]

µ neutrino νµ < 0.19 MeV 0 1
2

1962 [17]

tau τ 1.8 GeV -1 1
2

1977 [1]

τ neutrino ντ < 18 MeV 0 1
2

2000 [18]

Table 2.2: The lepton contents of the Standard Model and their properties, divided
by generation.

Boson Mass Charge Spin Force Discovered in:

photon γ < 10−18 eV 0 1 electromagnetic 1923 [19]
W± 80 GeV ±1 1 weak 1983 [20, 21]
Z 91 GeV 0 1 weak 1983 [22, 23]
gluon g 0 0 1 strong 1979 [24]
Higgs h 125 GeV 0 0 – 2012 [2, 3]

Table 2.3: The boson contents of the Standard Model and their properties. The
0 gluon mass is not an experimental result, but a theoretical value. Experimental
results constrain the gluon mass to below O(1) MeV [25].
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2.2 The Dynamics of the Standard Model

The interactions of the pantheon of particles described in the previous section have a

rich theoretical underpinning, beginning with the formulation of relativistic quantum

mechanics in the early to mid 20th century. The fundamental concept was to de-

scribe particle behavior using the mathematics of field theory. Thus, to understand

SM dynamics, we write down the SM Lagrangian in terms of interacting fields. In

doing so it is important to revisit the idea of symmetry, which here surfaces through

constraining the Lagrangian to be invariant under certain transformations. Imposing

such invariance for each piece of the Lagrangian results in interacting gauge bosons,

force carriers and motivators of SM dynamics. The purpose of performing a cursory

outline of SM theory in this thesis is to prepare for and inform further discussion of

Supersymmetry, which leans heavily not only on the particle structure but on the

dynamics of the SM. As such, I will focus on a few key results, and gloss over the

intermediate steps. For a more in-depth treatment, see [26, 27].

LSM = LEW + LQCD + LHiggs (2.1)

2.2.1 Electroweak Interactions

To tackle the electroweak term in LSM , we address the SU(2)W ⊗U(1)Y components

of the SM symmetry and introduce the electroweak force. The formalism for the

electroweak force was built up from the simpler quantum electrodynamics (QED)

Lagrangian which details the interactions of charged particles through the exchange

of photons. In QED a U(1) symmetry, symmetry of rotations, is imposed on the

Lagrangian, resulting in the introduction of gauge fields. The gauge fields must be

massless, spin-1 bosons, that is, they must be photons. Electroweak theory expands

on the symmetry of QED by including SU(2), two-dimensional rotational symmetry,
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and an analogous process follows. It should be noted that the U(1)Y symmetry of the

electroweak symmetry is not the same electromagnetic U(1) from before, but instead

is the gauge group of the weak hypercharge. In addition, the mass eigenstates of the

W and Z bosons arise from linear combinations of the gauge fields required by the

new SU(2)W symmetry [28–30].

The Lagrangian of the electroweak component, including all gauge-invariant

terms, is as follows:

L = −1

4
(W a

µν)
2 − 1

4
B2
µν + (DµH)†(DµH) +m2H†H − λ(H†H)2 (2.2)

Bµν ≡ ∂µBν − ∂νBµ

Dµ = ∂µ − igW a
µ τ

a − 1

2
ig′Bµ

Examining the first two terms, W a represents the gauge bosons from SU(2), Bmu is

the boson from U(1), and H is a presciently labeled complex doublet with hypercharge

1/2. The covariant derivative Dµ is defined above, where g and g′ are the couplings

for SU(2) and U(1) respectively and τa is the ordinary generator for SU(2).

The remaining terms in the Lagrangian can be usefully grouped together as a

potential:

V (H) = −m2|H|2 + λ|H|4 (2.3)

which comes to a minimum at |〈H〉| =
√

2m2

λ
, and therefore the scalar field must have

a vacuum expectation value (vev). This is crucial because the vev forces the ground

state to spontaneously break the symmetry of the potential V (H). After simplifying

by specifying the direction of the complex doublet H and using the proper choice of

gauge to ignore the phase, the vev maybe written,
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H =
1√
2

 0

v + h

 (2.4)

where v = m/
√
λ and h is a real scalar field, identified as the Higgs boson. Through

the process known as electroweak symmetry breaking, the Higgs component of the

SM Lagrangian has already been identified [31–33]. Plugging in H, expanding the co-

variant derivative, and glossing over intermediate steps involving gauge boson mixing,

yields the third term of the electroweak Lagrangian, (DµH)†(DµH),

LEW,Higgs =
1

4
g2(h2+2vh+v2)W+

µ W
−µ+

1

8
(g2+g′2)(h2+2vh+v2)ZµZ

µ−m2h2−λvh3−λ
8
h4

(2.5)

Even though the original Lagrangian contained only massless bosons, using this

expression we can use the functional form of the Lagrangian L = 1
2
mXX

2 to read off

the masses:

mγ = 0

mW =
1

2
vg

mZ =
1

2

√
g2 + g′2v

mh =
√

2|m| = v
√

2λ

The important takeaways here are twofold: First, we have established the electroweak

dynamics of the SM. Second, in doing so we have broken the symmetry of the Higgs

potential and not only given mass to the originally massless bosons, but introduced

the final degree of freedom in h, the Higgs boson. The discovery of the Higgs boson

in 2012 [2, 3] signified the acquisition of the final piece of the SM model puzzle.
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2.2.2 Strong Interactions and QCD

Requiring gauge invariance leads to the generation of gauge bosons as carriers of the

force of the theory. In the previous section, that meant photons, W and Z bosons,

and finally the Higgs. But in the case of quantum chromodynamics (QCD), we will

generate the gluon as force carrier of the strong force. Here imposing a local SU(3)

symmetry group characterizes the interactions between quarks.

LQCD = φ̄(iγµDµ −m)φ− 1

4
Ga
µνG

µν
a (2.6)

Here the covariant derivative is given:

Dµ = ∂µ + gsTaG
a
µ

where gs is the strong coupling constant and T a are the eight generators of SU(3)C .

The subscript ’c’ denotes ’color’, analogous to charge for the strong force, with values

of red, blue, or green. Also,

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν

where fabc are the structure constants for SU(3) that relate the generators via the

commutation relation [Ta, Tb] = ifabcTc. G
a
µ are the gluon vector fields, analogous to

the W , Z, and γ force carriers from electroweak interactions. These vector fields,

however, are carriers of color charge as well, which means they themselves feel the

strong force and are self-interacting, in stark contrast to QED.

2.3 Shortcomings

In this chapter I outlined the Standard Model of particle physics by first describing the

composition of the particles, then building up some of the underlying mathematical

framework motivating how they interact. While the study and verification of SM
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Figure 2.2: An example of a second order Feynman diagram, for an interaction be-
tween a photon and a charged fermion (e.g., an electron). As long as momentum is
conserved at each vertex, the intermediate momenta of k and k′ are not constrained,
and are free to diverge.

properties is a vital component of particle physics work, here I introduce the SM

mostly to motivate the next steps beyond it.

Perhaps the most glaring omission from the SM, gravity, will not be addressed in

these pages, nor will the addition of neutrino masses to the picture, but other signifi-

cant shortcomings do exist that are targets for new physics research. The techniques

of perturbation theory are used to calculate SM interactions via approximations ac-

curate only to a given order in some small parameter. That is, expanding a term

like (1 + σ)3 and approximating to leading order in σ yields 1 + 3σ, with a quadratic

correction of 3σ2. But when applied to the SM, this perturbation theory process

hits a snag in the calculation of higher-order corrections, because it requires the use

of loop integrals. Loop integrals do not constrain the momenta of the intermediate

particles (beyond conservation of momentum), as shown in Figure 2.2.

Because of this lack of constraint, higher-order terms may diverge at very high

(ultra-violet) or very low (infra-red) momentum. This means that terms can grow very
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large and must be canceled with another similarly enormous term to tie the theory

to a predictive energy scale. In the case of the Higgs mass, quadratic divergences in

the higher-order corrections mean that prior to this canceling process, the Higgs mass

is at the Planck scale, or around 1019 GeV, while experimentally it sits comfortably

at 125 GeV. Attempting to reconcile those values amounts to a highly unlikely ‘fine-

tuning’. This so-called hierarchy problem is a major unresolved issue in the SM,

especially targeted by Supersymmetry, and will be addressed in Chapter 4 along with

further motivations for physics beyond the SM.

Conclusions

This chapter outlined the theoretical framework that lies behind particle physics and

introduced a pantheon of fundamental particles and forces. The mathematically sym-

metric structure of this framework appeals on its own, but the remarkable feature of

the Standard Model is how well it matches experimental measurement. With that in

mind, and looking ahead to the forthcoming Chapter 4 on Supersymmetry, any at-

tempt to look for physics beyond the SM must take into account its predictive power.

The goal moving forward is to reproduce the success of the SM, while simultaneously

adding new theoretical structure to cope with its shortcomings. Achieving this goal

will require delving into the theory behind particle detection.
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Chapter 3

Jets

And if these incidents now seem full of significance and all of a piece, it’s
probably because I’m looking at them in the light of what came later...

—Kazuo Ishiguro, Never Let Me Go

The essential mandate of a particle physics experiment is to collect the whole

output from particle collisions, tally and measure the spray of outgoing particles,

and trace backward to the intermediate states between that collision and that mea-

surement. Crucially, detectors are not equipped to observe the partons immediately

resulting from the hard-scatter. The original hadrons may be too short-lived to

even reach the detector, or may be non-interacting particles like neutrinos, and pass

through all of ATLAS without leaving a mark. These intermediate states hold the

information vital to understanding fundamental particles and the interactions that

govern them, but the experiment must perform some detective work to get to them.

To complicate matters even further, particles governed by the strong force–quarks

and gluons–cannot be measured on their own because of the phenomenon of confine-

ment. Color charge, described in the previous chapter, is hidden by confinement:

Strongly interacting particles are never found alone and must form color-neutral

bound states. Free quarks and gluons hadronize from QCD partons to create stable

hadrons in the form of either mesons (two quarks) or baryons (three quarks). After
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hadronization, the newly formed color-neutral hadrons then may (or may not) go

on to interact with the detector. Therefore the particles registered by the detector

are not immediate remnants of the collision but are rather a chaotic mess–a parton

shower–of fresh particles descended from the original particles. Studying quarks and

gluons or other potential new strong interactions requires the introduction of addi-

tional structure to make order out of that mess. The fundamental organizing object

is a jet.

The term jet refers to the collimated particle spray that originated with quarks

and gluons, then underwent showering and hadronization (which will be discussed

presently). The search for new physics presented in this thesis will make much use of

jets as tools for organizing very complicated but potentially interesting events. With

that direction in mind, this chapter will first build up the underlying behavior of

partons in collisions, then move on to discuss the algorithms through which jets are

constructed.

3.1 Connecting Collisions to Jets

Collisions at the LHC are not simple parton-parton interactions because the colliding

particles are composites made up of quarks and gluons. On top of its influence

on outgoing jets, confinement also plays an important role in the dynamics of the

incoming colliding particles. A collision is never simply a proton-proton scattering,

then, but rather a complex interaction between the partons that make up those

protons. This means that the calculation of the cross-sections of possible outputs from

the collisions cannot be limited to single set of particle inputs or a specific energy.

Instead the calculation must average over all possible parton-parton interactions and

energies. Thus when we say collisions at the LHC take place at a center of mass energy

of
√
s = 13 TeV, we are quoting the upper bound on the energy, not necessarily the
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actual energy of the collision taking place.

In fact, the collision may involve more pieces than just the constituent two up

quarks and one down quark composing the protons. The gluons binding together

these hadrons may decay into virtual quark/anti-quark pairs and then reform again

into gluons. The new virtual quarks are called sea partons, in contrast with the

valence partons making up the proton. Virtual quark/anti-quark pairs flicker into

and out of existence very quickly, but still register as important considerations in

collision dynamics. So a seemingly simple proton-proton cross-section measurement

must take into account the valence quarks, the sea quarks, and the gluons as potential

participants in collisions.

3.1.1 Perturbative vs Non-perturbative QCD

Fortunately the QCD factorization theorem [34] states that the cross-section of the

original hard-scatter process may be reconstructed by considering all of the com-

ponent parton-parton cross-sections, weighting them, and combining them appro-

priately. The probability for a certain parton to interact with another parton at a

certain fraction of the whole proton’s energy is given by a parton distribution function

(PDF). A sum over all possible parton interactions will yield the total cross-section

between protons with momentum p1 and p2:

σ(p1, p2) =
∑
ij

∫
dx1fi(x1, µ

2)

∫
dx2fj(x2, µ

2)σ̂ij(x1p1, x2p2, µ
2, Q2) (3.1)

Here the component partons are colliding with fractions x1 and x2 of the total

hadron momenta p1 and p2. The matrix element cross-section σ̂ij between two partons

i and j depends on the momenta of those partons and the overall momentum scale

Q2. The parton distribution functions fi and fj are summed over all possible parton

interactions. They depend on the momentum fractions, and on the scale at which

17



factorization takes place, µ2. This scale essentially divides the non-perturbative and

perturbative regimes, separating the relatively long-distance physics of the hadron

collision from the relatively short-distance physics of the constituent parton collisions.

It is worth examining the factorization scale µ2 a bit more closely. Particle inter-

actions can be well modeled by perturbation theory techniques, as described in Sec-

tion 2.3, as long as the couplings are weak. For QED processes, perturbative methods

work because the coupling constant increases with scale. Only energy regimes be-

yond an enormous ∼ 1090 GeV enter the non-perturbative region for QED. The QCD

coupling αS, on the other hand, decreases with scale, so that the non-perturbative

region occurs at low energy instead. Indeed at energy scales much below a few GeV

the coupling constant αS grows unmanageably large, as can be seen in Figure 3.1. A

perturbative description of QCD physics at this scale fails. This feature of QCD mo-

tivates the use of data-driven non-perturbative techniques for intra-hadron dynamics.

The factorization scale, chosen so that the strong coupling is not too great, defines

this non-perturbative region for which we must make use of PDFs.

Figure 3.2 shows an example set of PDFs, demonstrating the probability that a

specific parton from the original protons will interact, for a given momentum fraction

x and momentum scale Q2. At the lower momentum Q2 = 10 GeV 2, the constituents

of the proton dominate–the valence up and down quarks and the gluons that hold

them together. But at higher momentum Q2 = 104 GeV 2, sea charm and bottom

quarks begin to register a higher probability, indicating a significant influence on the

overall cross-section. PDFs are derived from the results of a host of experiments,

and a number of different collaborations produce their own PDFs [36, 37]. Different

assumptions and techniques used for fitting lead to slightly different experimental

predictions and uncertainties among the various PDF sets.
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QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  
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Figure 3.1: Measurements of the strong coupling αS as a function of energy scale Q
[35]

Figure 3.2: A set of example PDFs, the MSTW from 2008, next-to-leading order
(NLO). This plot shows the probability that a specific particle constituent of the pro-
ton will interact as a function of the momentum fraction x and the overall momentum
scale Q2, to a one-sigma confidence level [36].
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3.1.2 Parton Showering and Hadronization

The complex collision process described above is followed by the process of parton

showering, through which the momentum carried by the original quarks produces a

multitude of new particles. Parton showering is explained by the inverse relationship

between energy and distance: Saying QCD coupling decreases with energy is tan-

tamount to saying it increases with the separation between the interacting partons.

Thus as the partons from a collision move apart, a sizable color potential is created.

That potential causes quark/anti-quark pairs to spring into existence, splitting the

original parton’s momentum between them. The new partons are carried apart and

again a color potential arises, producing yet more particles, and so on and so forth.

Thus a single energetic parton produces a shower of other partons propagating in the

same direction as the original.

Once the momentum of the parton shower has been exhausted and is no longer

sufficient to produce a new quark/anti-quark pair, the resulting quarks will recombine

once again into color-neutral hadrons, a process called hadronization. The resultant

hadrons may then decay according to the SM branching ratios. In the end the energy

deposited in the detector’s calorimeter comes from these descendent hadrons, but still

carries the history of that original parton. These final collimated energy deposits can

be usefully constructed into jets, toward the purpose of cataloguing the final state

particles and probing the original physics that produced them.

The final category of products from the collisions is the so-called underlying event.

So far all partons discussed, and their resultant hadrons, originated from a single

colliding parton pair. But other partons from the colliding hadrons are carried away

from their hadron partners, yielding a color potential and producing their own parton

showers. These partons may also experience lower-energy interactions, or may radiate

energy. The underlying event is the umbrella term for all of these additional collision

products, a separate story from the hard-scattering.
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Figure 3.3: A recent example of a di-jet event measured by ATLAS

3.2 Jet Algorithms

On the surface, identifying the jets in an event would seem to be exceedingly simple.

One can see, by eye, the spray of particles oriented in the same direction, governed

by conservation of momentum. The task, then, is to sum up the 4-momenta of the

particles in that group, registered as energy deposits in the detector’s calorimeter.

Figure 3.3, for example, shows two clear back-to-back jets; in principle jets are a very

straightforward structure.

Complications quickly pile up, however. Suppose an event has six, or eight, or

twelve jets, as in Figure 3.4. No longer is it so clear which particle ought to pertain

to which jet. Even getting that far may be difficult, because a typical LHC event

will produce many sources of energy, clouding the clarity of the calorimeter’s energy

deposits. Matching a signature in the detector to the proper particle can prove

a challenge. Additional challenges arise on the theoretical side: Clearly a single

particle ought to be considered a jet, but what happens when an outgoing particle

radiates some energy, producing two adjacent particles, for example a quark radiating

a gluon? Should that adjacent energy be absorbed into that same jet, or should it be
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Figure 3.4: A recent example of a twelve-jet event measured by ATLAS

considered its own proper jet? From a practical perspective jet choices must share

some consistent standard. To meet these challenges, a litany of jet algorithms have

been suggested over decades of particle physics [38].

A jet algorithm defines the grouping process for three separate stages described

in the previous section: the energy deposits in the detector, the hadron products

from the parton shower, and the outgoing partons from the hard scatter. Each of

these is collected into jets by the jet algorithm such that a roadmap exists tracing the

path all the way from the collision to the detector and linking the kinematics of the

collision output to the final state that has been detected. This procedure is called a
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recombination scheme.

Over the years of particle physics experiments there has been significant disagree-

ment over what constitutes a ‘good’ jet algorithm. Theorists tend to prefer that the

algorithm be calculable, whereas experimentalists place the greatest value upon effi-

ciency and simplicity. In 1990 a group of influential experimentalists and theorists at

the Summer Study on High Energy Physics in Snomass laid down the first attempt

to set standard criteria for jet algorithms [39, 40]:

1. Simple to implement in an experimental analysis

2. Simple to implement in the theoretical calculation

3. Defined at any order of perturbation theory

4. Yields finite cross section at any order of perturbation theory

5. Yields a cross section that is relatively insensitive to hadronization

While this agreement moved the ball forward in terms of achieving consensus, in

practice no standardized algorithm was reached. The jet algorithms used by various

experiments, meeting the above criteria to varying extents over the years fall into two

broad categories: First, those based on “cones” of energy, which can be considered

“top-down” algorithms. The features of QCD described in the previous section dictate

that parton showering and subsequent hadronization will leave the energy flow of an

event by-and-large intact. That is, the energy flows outward from the original parton

in a cone shape. Second, algorithms based on sequential recombination, or “bottom-

up” algorithms. These build up the jet structure by repeatedly combining a particle

with its nearest neighbor, according to a chosen distance criterion.

3.2.1 Cone Algorithms

The most basic version of a cone algorithm proceeds as follows [38]:
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1. Select a seed particle, usually the highest-energy object.

2. Draw a cone of radius R =
√

∆η2 + ∆φ2 around the seed.

3. Combine all objects captured within the cone: this is the jet.

4. Select the next seed particle and repeat steps 1-3.

5. Resolve any ambiguities that arise between jets.

Beyond its simplicity and intuitiveness, the greatest strength of the cone algorithm

is its speed. Constructing jets only requires computing the distance between the

objects and the seed, so the complexity of the algorithm simply scales with the

number of objects. Here objects can refer to the components of jets at any stage; the

final state energy clusters detected by the experiment or the QCD partons from the

collision. Here ∆φ is the difference in azimuthal angle and ∆η1 is the difference in

pseudorapidity (a spacial coordinate describing the angle of the particle relative to

the beam axis).

Most cone algorithms in use today are “iterative cones” (IC). In these algorithms

an extra step is added after step 3 above. Once the objects captured within the cone

have been combined into the jet, the jet axis is redefined to be in the direction of the

resultant sum of momenta. Steps 1 through 3 are repeated for the same jet, drawing

a new cone around the redefined axis. Again the objects are collected into a jet, and

again the jet axis is redefined. This process is repeated until the resulting cone is

stable.

Iterative cone algorithms vary by how they cope with the problem of overlap-

ping cones. One approach is the “progressive removal” technique [39], in which all

components collected into a jet are removed from consideration as subsequent seed

particles in step 4 above. A more prevalent technique, however, is the “split-merge”

1∆η = −ln(tan( θ2 )) where θ is the angle with the beam axis.
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approach [38]. This method considers the fraction of the softer (lower-energy) cone’s

momentum that is carried by particles shared by the harder cone. If that fraction is

above some parameter f , the cones are merged. If it’s below f , the cones are split

and shared particles are given to the closer jet.

Unfortunately, though cone algorithms succeed admirably in achieving item 1 of

the Snomass criteria listed in the previous section, they struggle with the remaining

four. These latter items treat the robustness of an algorithm: how reliable it is in

theoretical calculation; how well it stands up to minor alterations in combined jet

objects. These difficulties are better understood now than they were when those

criteria were laid out, and can be more clearly defined using the terms infrared and

collinear safety (together, IRC safety). Infrared safety requires that the result of a

jet algorithm not change if an additional small radiation occurs, such as the emission

of a low-energy gluon. Collinear safety requires that the result of a jet algorithm not

change upon the splitting of a hard particle into two almost collinear softer particles.

In each case the specific evolution of objects from the parton shower should not matter

because the same energy with the same origin is propagating in the same direction. A

robust algorithm will form safe jets that remain consistent under small fluctuations.

Cone algorithms are IRC unsafe. They fail infrared safety because a soft emission

between two overlapping cones may fool the algorithm into merging the jets. They

fail collinear safety because splitting one hard particle in two may cause the softer

particles to be considered separately, so that one jet becomes two. In the language of

the Snomass criteria, cone algorithms clearly fail item 5 as they may be sensitive to

different parton showerings. Less obviously, they also fail items 2-4, which treat their

performance in theoretical calculations (of cross sections, momentum spectra, etc.).

In perturbative calculations the terms representing soft radiation and collinear split-

ting are divergent. Fortunately, each case produces terms that appear with opposite

signs, thereby canceling the infinities. But if the divergent terms are allocated to
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separate objects by the jet algorithm, they can no longer cancel and the calculation

breaks down. Reliable comparison of data and theory requires a different algorithmic

approach.

3.2.2 Sequential Recombination Algorithms

The problems with cone algorithms are twofold: The forced selection of a seed at

the beginning prevents collinear safety, and the split/merge process at the end makes

the algorithm sensitive to small fluctuations in energy. Sequential recombination

algorithms aim to address each of these by eliminating the seed entirely and focusing

on the relationship between close-together pairs of particles. The structure of the

algorithm is to define a distance parameter between these pairs, combine them if they

are within some maximum distance apart, and iterate until no more combinations are

possible.

The advantages of this approach are clear. No longer does a seed threshold force

the jet algorithm to depend on a single particle’s energy. Instead, the jets flow with

the path of the energy through the event, free of strict association with one particle

or another. In addition, the merging of objects has a clear end condition, avoiding

the conflicts that arose from overlapping jet cones.

The origins of sequential recombination algorithms lie in e+e− experiments, where

the leptonic nature of the collisions avoided the messiness of the underlying event and

the high jet-multiplicity of hadronic experiments. The first example was the JADE

algorithm [41, 42] which used the distance metric between a pair particles i, j:

yij =
2EiEj(1− cosθij)

Q2
(3.2)

where Ei and Ej are the energies of the two particles and θij is the angle between

them. Q is the total energy of the event. The iterative process goes as follows [38]:

First, find the closest-together particles with distance ymin. If ymin < ycut, where the
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jet resolution cut ycut is the algorithm’s single parameter, then combine particles into

a new single object and repeat. If ymin > ycut, the process is over and all remaining

objects are jets. The JADE algorithm is IRC safe because any soft radiation or

collinear particles will be recombined early on in the clustering process.

Experiments with hadronic collisions complicate matters because the total energy

is no longer a well-defined quantity. The momentum of the partons engaging the

collision is unknown, and may be uneven. Thus only the transverse energy ET is

meaningful, as that quantity is invariant under boosts in the longitudinal direction,

and it makes sense to choose a dimensionful distance parameter dij instead of the

dimensionless yij. In addition, in hadronic collisions most of the particles continue

down the beam pipe with zero transverse momentum, and particles close to the beam

ought to be recombined with it and taken out of the picture.

For the purposes of the ATLAS experiment and the purposes of this thesis, the

accepted jet algorithm is the anti-kt algorithm [43]. It has distance metrics as follows:

dij = min(p−2
T i , p

−2
Tj )

∆R2
ij

R2
(3.3)

∆R2
ij = ∆φ2

ij + ∆y2
ij (3.4)

diB = p−2
T i (3.5)

where pT i is the transverse momentum of particle i. The first distance metric dij is

the distance between particles i and j, while the second metric diB is the distance to

the beam. R is the algorithm’s size parameter, which replaces the earlier ycut. This

parameter has the same units as the angular distance ∆R, so it allows the resultant

jets to be thought of loosely as cones with radius R.

The iterative process for the anti-kt algorithm is identical to that of the JADE

algorithm, except that now the minimum of both distance metrics is chosen. If dij is

minimum, the particles i and j are combined and the process starts over as before.

27



If diB is minimum, particle i is considered a jet and removed from the list of input

particles, and the minimizing process starts over. The iterations continue until there

are no more particles.

The anti-kt algorithm clusters objects that are close together, like the cone algo-

rithms do, but in contrast it first combines low-pT particles to nearby high-pT particles

before combining them with each other. The result is an intuitive conical jet, but

without the failures that arise from seed particles and the merge/split process. Be-

cause it is IRC safe and performs well in reconstruction and calibration, the anti-kT

algorithm was adopted by experiments at the LHC. In implementing the algorithm,

the goal is to create a jet that corresponds directly to the output from the original

hard-scatter parton. In practice, however, energy from other partons may overlap

with that defined jet, so a balancing act is required. For ATLAS the R parameter

typically takes on values of R = 0.4 or R = 0.6, which are big enough to contain

the breadth of a large parton shower, but small enough to avoid most contamination

from the underlying event.

3.3 Conclusions

Jets are a powerful structure for tracing the path of particles from the original col-

lision through to the deposition of energy in the detector. This chapter detailed

the physics of that path, spelled out fundamental difficulties that must be overcome

in the construction of a jet object, and introduced a progression of jet algorithms.

The objective of jets, to probe QCD structures, will prove integral to the search for

Supersymmetry, which predicts a whole new library of strong interactions.
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Chapter 4

Supersymmetry

A la realidad le gustan las simetŕıas y los leves anacronismos.

—Jorge Luis Borges, Ficciones

The Standard Model has had enormous success in uniting disparate theories into a

coherent fundamental particle physics and predicting many experimentally-observed

processes. The SM is not without its shortcomings and blindspots, however, some

of which were touched upon at the end of chapter 2. Numerous extensions to the

SM have been suggested over the years, and though none has emerged as a cure-all,

Supersymmetry (SUSY) stands out from the rest. SUSY is an extension of the very

symmetries of the SM that have proven such a strong tool for defining and explaining

fundamental particle dynamics.

The following chapter will serve as an overview of SUSY, building up its moti-

vation, outlining its particle structure, and introducing the concepts behind searches

specific to the LHC [44, 45].

4.1 Motivations

With the goal of demonstrating its fallibility, Section 2.3 introduced some shortcom-

ings of the SM, specifically those inherent in the use of perturbation techniques in
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calculations containing loop diagrams. Now I will revisit that treatment with an eye

towards some major improvements SUSY has the potential to make over the SM.

The subsequent outline of SUSY particles and interactions will address each of these

motivating factors directly.

4.1.1 Fine-tuning and Naturalness

Perhaps the primary guiding directive in physics is towards simplicity. The strength

of a theory lies in its ability to cohere a set of complex observations of physical

phenomena into a simple pattern. In the case of the SM, this has meant recognizing

the way an introduction of SU(3) color symmetry can transform the ocean of observed

hadrons from a messy ad hoc chaos into an ordered model. Writing down the terms

of the Lagrangian is a matter of examining the symmetries of the system; there are no

random or accidental terms. A top-down model that uses a fundamental structure to

make predictions is superior to a patchwork model that only aims to tie observations

together. This underlying concept serves as a physicist’s ‘aesthetic’ sense.

Re-examining the hierarchy problem from Section 2.3 with this aesthetic in mind

clarifies the sense of wrongness in the Higgs mass corrections. To review, calculations

in perturbation theory may contain loop terms that contain intermediate momenta

that may diverge. Calculations of the Higgs mass parameter are hardly immune:

Figure 4.1a shows the quantum correction from a loop with a fermion f . If the Higgs

field H and the fermion f couple via a Lagrangian term like −λfHf̄f , then this

Feynman diagram describes a correction term

∆m2
H = −|λf |

2

8π2
Λ2
UV + ... (4.1)

where λf is the coupling with the fermion. All fundamental SM particles other than

photons couple to the Higgs (which is how they gain their mass) with the exception of

the gluon. The largest contribution comes from the top quark, in which case λf ≈ 0.94
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Figure 4.1: One-loop quantum corrections to the Higgs mass parameter m2
H , for (a)

a fermion f and (b) a scalar particle S [44].

[44]. Here ΛUV is the ultraviolet cutoff in momentum, specific to the theory. If the SM

describes physics all the way up to the Planck scale, where a quantum gravitational

picture must take over, a serious problem arises. If ΛUV is of the same order of the

Planck mass MP = 1.22×1019 GeV, then it is some thirty orders of magnitude greater

than the Higgs mass itself, which was measured in 2012 at 125 GeV [46]. This means

that in order to hit that magical observed value the bare Higgs mass m0 is forced

to take on an exact value so that it precisely cancels with the correction ∆m2
H with

the remainder 125 GeV. The SM will only match observed results if the bare mass is

defined to within one part in 1019.

The ugliness of this correction lies in the way it contradicts the philosophy of

simplicity. There is no underlying symmetry to motivate it. A theory is weak indeed

if it must be fine-tuned after the fact to match experimental results; it is somehow

unnatural to rely so on pure ‘luck’. The concept of naturalness–the degree to which a

model must be patch-fixed to obtain observed masses–is fundamental in judging the

worth of supersymmetric models in solving this hierarchy problem.

4.1.2 Dark Matter

The next reason to explore physical descriptions beyond the standard model lies in its

failure to address the phenomenon of dark matter. The term ‘dark matter’ refers to
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excess mass in the universe the existence of which can be inferred from gravitational

behaviors, but that emits no light whatsoever. The evidence comes primarily from

observation of the motion of galaxies, which indicate that dark matter comprises

some 85% of the mass of the universe [47]. The astrophysical case for dark matter,

already decades old, is steadily increasing in strength: observations of galaxy mergers

[48], the rotation of spiral galaxies [49], the cosmic microwave background [47], and

much more are painting a clearer and clearer picture of the role of dark matter in the

universe.

Every other piece of matter can be deconstructed into component particles so the

natural next step, from a particle physics perspective, is to wonder how dark matter

might appear as a particle. It emits no light so it must not interact with other matter

beyond gravitation, and yet astronomical observation requires that it be ubiquitous.

The natural SM candidate is the neutrino, which is suitably non-interacting and

(though the SM does not predict so) has mass. But the neutrino mass is so small as

to elude measurement, such that neutrinos do not interact gravitationally either and

could not cluster to produce the dark matter distribution observed. Neutrinos (and

other SM particles) won’t suffice, and particle representation of dark matter must

await further discoveries beyond the SM [50].

4.1.3 Unification

One final quirk of the SM lies in the different treatment it gives to the electroweak

and strong components. Indeed, the unification of electromagnetism and the weak

nuclear force into the electroweak model was itself a triumph, demonstrating that

two previously linked but disparate forces are one and the same. As discussed in

chapter 2, electroweak symmetry is broken by the Higgs mechanism, but the unity

above that scale still prompts the question of whether a deeper symmetry might

exist to combine all SM forces. The behavior of the SM coupling constants, shown

32



Figure 4.2: The dependence of the SM couplings αi on energy scale [45].

in Figure 4.2, hints at this larger unification. Though the couplings never meet at

the same point, they cross each other in a small enough region to evoke curiosity.

Unification is not essential to the success of a model, but it certainly would follow

the successful trend of the SM, to simplify, simplify, simplify.

4.2 The Particle Composition of SUSY

The underlying concept behind the particle composition of SUSY, at least outside of

the Higgs sector, is to double the population, so that each established SM particle

gains a supersymmetric partner, denoted with a tilde. Just as in the SM particles

and anti-particles differ only by one quantum number–electric charge–SUSY only

affects one quantum number–spin. Each spin-1/2 fermion, divided by helicity (right-

handed or left-handed) is matched with a spin-0 bosonic superpartner (right or left

respectively). Each gauge boson, which is a spin-1 vector boson prior to electroweak

symmetry breaking, has a fermionic superpartner for each helicity state–a massless

spin-1/2 fermion. (Note that in the SM neutrinos are only left-handed, and so only

have a single superpartner). The nomenclature for labeling these new particles goes
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as follows: For quarks and leptons, an “s” (which stands for “scalar”) is prepended to

the name, creating squarks and sleptons. Tops become stops t̃ and taus become staus

τ̃ . A character with a tilde x̃ represents that SM particle’s supersymmetric partner.

For bosons, “-ino” is appended to the name, creating higgsinos, gluinos, etc. The

complete list of particles in the minimal supersymmetric extension to the Standard

Model (MSSM), the simplest version of SUSY that will still address the hierarchy

problem, is shown in Table 4.1.

The Higgs sector of the MSSM is more complex. The single Higgs h of the SM

is replaced by two spin-0 chiral multiplets, one of which couples only to up-type

fermions while the other couples only to down-type fermions. The old h becomes a

linear superposition of the neutral scalar Higgs H0
u and H0

d . Through electroweak

symmetry breaking the new H0
u and H0

d gain vacuum expectation values (vev) of

vu and vd respectively, which must satisfy v2
u + v2

d = v2 where v is the SM Higgs.

This larger Higgs sector predicts not one, but five Higgs bosons: two CP-odd neutral

scalars h0 and H0, a CP-even neutral scalar A0, and two charged scalars H±. The

Higgs boson observed at the LHC would be the lighter h0.

Also via electroweak symmetry breaking, mixing occurs between the higgsinos

and electroweak gauginos. Linear combinations of the four new neutral supersym-

metric particles (H̃0
u, H̃0

d , W̃ 0, and B̃0) produce four neutral mass eigenstates, called

neutralinos χ̃0
i (where i = 1, 2, 3, 4 ranks the mass from lowest to highest). Likewise,

linear combinations of the four new charged particles (H̃+
u , H̃−d , W̃+, and W̃−) form

four charged mass eigenstates, or charginos χ̃±i (i = 1, 2).

This new supersymmetric pantheon of particles is a mathematically elegant ex-

tension of the symmetries in the SM, and serves to address each of the concerns

with the SM listed in the previous section. First, the MSSM is motivated by the

hierarchy problem, so it solves it by design. Returning to the quadratic divergence

from the loop correction to the Higgs mass shown in Figure 4.1 and Equation 4.1, it
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Particle Spin 0 Spin 1/2 Spin 1

quark/squark (ũL d̃L) (uL dL)

ũR, d̃R uR, dR

(c̃L s̃L) (cL sL)

c̃R, s̃R cR, sR

(t̃L b̃L) (tL bL)

t̃R, b̃R tR, bR

leptons/sleptons (ν̃e ẽL) (νe eL)

ẽR eR

(ν̃µ µ̃L) (νµ µL)

µ̃R µR

(ν̃τ τ̃L) (ντ τL)

τ̃R τR

Higgs/higgsinos (H+
u H0

u) (H̃+
u H̃0

u)

(H0
d H

−
d ) (H̃0

d H̃
−
d )

gluons/gluinos g̃ g

W bosons/winos W̃±, W̃ 0 W±,W 0

B bosons/binos B̃0 B0

Table 4.1: The particle contents of the MSSM divided by spin, before electroweak
symmetry breaking[44].
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is evident that resolution of the dangerous terms in ∆m2
H can only come about via

systematically canceling the divergence. Consider Figure 4.1b, the diagram for loop

corrections from a scalar particle that couples to the Higgs with a term −λS|H|2|S|2

in the Lagrangian. This Feynman diagram yields the correction

∆m2
H =

λS
16π2

[Λ2
UV − 2m2

Sln(ΛUV /mS) + ...] (4.2)

Comparing Equations 4.1 and 4.2 suggests that a new symmetry, adding new terms

to the Lagrangian, could cancel out the divergence, provided the new contribution has

the proper sign. Because the fermion loop and boson loop corrections to ∆m2
H have

opposite signs, solving the hierarchy problem means relating fermions to new bosons

and bosons to new fermions–the precise structure of the MSSM. Adding two new

scalars with λS = |λf |2 neatly cancels the ΛUV terms and eliminates the troublesome

quadratic dependence on the UV scale. Additional restrictions on the theory may be

added to further cancel higher-order terms in the corrections.

SUSY also provides a natural candidate for dark matter. A quantity called ‘R-

parity’ is conserved under the transformations in the MSSM. R-parity is defined as

PR = (−1)(B−L)+2s, where B and L are the baryon and lepton numbers and s is

the spin. This takes on a value of +1 for SM particles (any particles without a

tilde) and a value of −1 for supersymmetric particles. Conservation of R-parity is

not a hard requirement for a SUSY model, but (most) models that break R-parity

make statements about the lifetime of a proton that seem at odds with reality. In

addition, requiring R-parity means that no supersymmetric particle can be produced

on its own, nor can it decay solely to SM particles. Thus there must exist a lightest

supersymmetric particle (LSP) that is stable. This LSP would only interact under

the electroweak force, along with gravity, fulfilling the main dark matter criterion of

non-interaction. The MSSM typically assumes the lightest neutralino χ̃0
1 to be the

LSP and therefore the missing dark matter particle.
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Figure 4.3: The dependence of the MSSM couplings αi on energy scale [45]. Now the
three couplings meet at around the µ = 1016 GeV scale.

Finally, revisiting the unification of the strong force with the electroweak, SUSY

again possesses a tantalizing feature. As shown in Figure 4.3, SUSY changes the

evolution of the coupling constants so that they meet at a mass scale of µ = 1016.

This suggests that a larger symmetry group might be able to unify all three forces

at high mass. While certainly not a necessity of the theory, and perhaps it is just a

coincidence, the simplicity of this result adds significantly to the appeal of SUSY.

4.3 SUSY Breaking

Given the aesthetic purity of its symmetries and considering how it provides potential

solutions to each of these outstanding physical problems, SUSY seems like a panacea.

But it has one major downside; no supersymmetric particle has yet been observed. If

SUSY were exact, if it existed in precisely the form described so far in this chapter,

all sparticles would have masses that match their SM partners. They would appear

everywhere in nature and would have been discovered hand-in-hand with the SM

particles. Thus SUSY must be ‘broken’ in order to allow sparticles to have much

higher masses such that they have eluded detection by lower-energy experiments.
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This SUSY breaking must be performed cautiously so that the quadratic divergence

in the Higgs mass corrections is still cancelled. Otherwise the SM’s hierarchy problem

is simply replaced by a new SUSY one.

Writing down a complete SUSY Lagrangian amounts to following the same pro-

cedure as the SM, but with the new taxonomy of particles and their interactions. On

top of that, however, the final piece of the MSSM Lagrangian comes in terms that

introduce such a ‘soft’ breaking. Conserving R-parity and requiring gauge invariance

yields the following additions in the most general case: [44]

LMSSM
soft =− 1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.)

− (˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + c.c.)

− Q̃†m2
QQ̃− L̃†m2

ū
˜̄u† − ˜̄dm2

d̄
˜̄d† − ˜̄em2

ē
˜̄e†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + c.c.)

(4.3)

Here, bold characters represent 3×3 matrices across the families of fermions. In the

first line, M3, M2, and M1 are the gluino, wino, and bino mass terms. In the second

line, au, ad, and ae are the scalar couplings.

All told, the MSSM adds a total of 105 new parameters (on top of the SM pa-

rameters) and there are many varying theories as to the precise mechanism of SUSY

breaking. This thesis focuses on the search for SUSY from an experimental viewpoint,

so it will not favor one specific SUSY model over another. Indeed the search will be

designed to cast a large net–to be general to as many potential models as possible.

The experimental approach, with the goal of covering as much parameter space as

possible, commonly uses the strategy of implementing simplified models in searches.

The idea is to form a list of particles that appear in a specific observable signature.

These particles are hypothesized to be at low mass, while the remaining sparticles

are set at very high mass. The model may not be descriptive of reality, but it will
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shine light on a particular signature of interest.

Naturalness Revisited

The main motivation behind seeking a solution to the hierarchy problem, naturalness,

can now be thought of as a rough judge of the effectiveness of a SUSY model. If a

model avoids the fine-tuning of the SM Higgs mass only to fine-tune other parameters,

it ought not to be considered effective. Naturalness is difficult to quantify and so is

more of a guideline than a strict rule, but it governs the evolution of SUSY theory as

results at the LHC continue to limit the parameter space available.

What requirements on SUSY parameters are unavoidable? The stop, which plays

such a big role in canceling the primary contribution to the divergence Higgs mass

correction from the top quark, must be light because the remaining correction is

proportional to both the top and stop masses. The gluino couples strongly to the stop

and so must also be light (about twice the stop mass) [51]. The higgsinos should not

be much heavier than the Higgs, so the lightest neutralino χ̃0
1, which contains higgsino

components from the mixing, will be light as well [45]. Beyond these criteria, SUSY

models are free to tinker with parameters. This relative parameter freedom allows

experimentalists to engage with a potential SUSY signature without committing to

a specific SUSY breaking model.

4.4 SUSY and the LHC

SUSY could be detected indirectly because it adds terms to the calculation of loop

corrections, so observing the branching ratios of decays from heavy particles could

uncover deviation from the predicted SM values. The most convincing case for SUSY,

however, would be direct detection. The LHC collides protons, and therefore quarks

and gluons. This means that particles that couple most strongly to these quarks and
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gluons will have the greatest production in LHC collisions. The SUSY particles with

the largest production cross-sections are squarks and gluinos.

Once the new SUSY particles have been (hypothetically) produced, they will tend

to decay immediately thanks to the large mass gap between these particles and the

LSP. For example, in the simplest of simplified models, the SUSY particle will decay to

its SM partner and the LSP (g̃ → g+ χ̃0
1). The colored particle (g) will hadronize and

form a jet, while the LSP will pass right through the detector undetected because it is

non-interacting. The LSP shows up as significant missing energy in the accounting of

the collision. More complex models may introduce some intermediate SUSY particles,

but their production will be small compared to the squark or gluino, thanks to the

dependence of the cross-section on sparticle mass. Intermediate particles and their

decays may favor signatures with more, softer, objects and without the high missing

energy from the LSP.

Since the beginning of collisions at the LHC, the ATLAS experiment has con-

ducted a comprehensive program of searches for SUSY [52–63]. To date, no significant

excess above the predictions of the SM has been found. Each of these searches sets

limits on the parameter space allowed for potential SUSY models. As the parameter

space shrinks, the physically possible values of the squarks and gluinos are pushed to

the fringes, and achieving naturalness becomes more and more difficult.

Figure 4.4 shows some example summaries of limits provided by SUSY searches

at ATLAS. On the left is a simplified model of gluino pair production, in which the

gluino decays promptly to four tops and two lightest neutralinos via two off-shell

stops. Such gluinos are excluded up to 1900 GeV. The plot on the right combines

stop searches from a number of different decay channels and assumed mass hierarchies

and essentially excludes stops up to 850 GeV. The physical constraints on SUSY get

tighter and tighter. This thesis presents a search that contributes to the limiting

process.
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(a)

(b)

Figure 4.4: Example summary limits on parameter space for (a) the Gtt simplified
model of gluino production and (b) stop pair production from the ATLAS SUSY
group [64].
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4.5 Conclusions

SUSY presents an elegant extension to the SM, offering fixes to some important

outstanding problems. The power of SUSY is undeniable; it addresses the hierarchy

problem, potentially identifies dark matter, and perhaps even unifies disparate forces.

Efforts to search for physics beyond the SM are well served to use SUSY as a con-

ceptual guide. The analysis presented in this thesis will use simplified SUSY models

to optimize the reach of the search as well as to analyze its results. But because it is

a broken symmetry, SUSY still suffers limitations. Experimental results at the LHC

are continually tightening those constraints.
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Chapter 5

The LHC and ATLAS

One moment it was a calculating machine, attempting dispassionately to
keep up with the gouts of data. And then awash in those gouts, something
metal twitched and a patter of valves sounded that had not been instructed
by those numbers. A loop of data was self-generated by the analytical
engine. The processor reflected on its creation in a hiss of high-pressure
steam. One moment it was a calculating machine. The next, it thought.

—China Miéville, Perdido Street Station

A Toroidal LHC ApparatuS, or ATLAS, is one of four large-scale experiments

in operation at the Large Hadron Collider (LHC), which is located at CERN (The

European Organization for Nuclear Research) near Geneva, Switzerland. The follow-

ing pages will introduce the LHC and its collision behavior, ATLAS and its detector

makeup, and the process by which particles are reconstructed for later use in analysis.

5.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [66] is the largest and most powerful particle

accelerator in the world. It occupies an underground ring 27 km in circumference

spanning the border between France and Switzerland, running under the pastures

and suburbs outside the city of Geneva at a depth between 175 m (near the Jura

mountains) and 50 m (by Lake Geneva) [67]. The experiments located around the
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Figure 5.1: An aerial view of Geneva and surroundings with the LHC ring superim-
posed. Courtesy of the ATLAS experiment [65].

ring along with the collider itself bring together 10,000 scientists and engineers from

113 countries, making the LHC perhaps the biggest large-scale collaborative scientific

endeavor ever [67].

The ring occupied by the LHC once housed the Large Electron Positron (LEP)

collider [68]. The excavation of the LEP tunnel was the largest civil engineering

project in Europe’s history until the excavation of the Channel Tunnel. The first

beams circulated in 1989 and collisions ran for 11 years. LEP focussed on an in-depth

study of electroweak interactions and proved, among many other things, that there

exist exactly three generations of particles as outlined in chapter 2. Construction of

the LHC began immediately upon the shutdown of LEP.

The purpose of the LHC, as an upgrade over LEP, is not only to produce higher-

energy collisions at higher rates but to probe strong interactions as well, using pro-
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Figure 5.2: Photo of the LHC tunnel and beam pipe. Courtesy of the ATLAS exper-
iment [65].

tons.1. Protons are extracted from hydrogen gas using a powerful electric field, then

accelerated to 99.9999991% the speed of light via a chain of synchrotron accelerators,

and finally injected into the LHC ring in the form of two beams circulating in oppos-

ing directions. The injection system is described in Figure 5.3. At various stages of

the acceleration, protons are parsed into bunches by a process called radio-frequency

(RF) acceleration. The protons traverse time-varied electric fields that accelerate

the in-phase particles while decelerating the out-of-phase particles. The resultant

beam is comprised of uniformly distributed bunches, and enters the LHC at a spe-

cific energy. In order to reach high energies, the beam first passes through the linear

accelerator LINAC 2, followed by the Proton Synchrotron Booster (PSB), the Proton

Synchrotron (PS), and the Super Proton Synchrotron (SPS), all circular accelerators,

before injection [69].

1The LHC also accelerates and collides lead ions. Heavy ion collisions are of interest in the
study of the early universe because the ‘quark-gluon plasma’ that results is a good imitation of the
state of matter at the very incipient stage of the universe, before any hadronization occurred. These
collisions are, however, unrelated to the scope of this thesis.
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Figure 5.3: The injection system of the LHC and the placement of the four main
LHC experiments around the ring [70].

The proton beams are guided through the beam pipe using superconducting elec-

tromagnets. Two types of magnets are required; one to maintain the beam’s circu-

lation energy and one to maintain the beam’s focus. The former is provided by two

sets of dipole magnets, one for each beam direction. The magnetic field deflecting the

protons into the proper orbit comes from coils carrying current parallel to the beam

pipe. The proton beam’s extremely high energy requires a similarly extremely strong

8.33 Tesla magnetic field [71]. In order to achieve the current necessary to create

such a strong field, the superconducting coils must be cooled to a temperature of 1.9

K using liquid helium. The second variety of magnets are quadrupoles placed along

the straight sections of the ring to tighten the beam and prevent it from becoming

diffuse. Additional focusing magnets are placed near each interaction point.

The LHC beam pipe is not a perfect circle, but rather is made up of eight curves

and eight straight sections so that the proton beams may meet as close to head-on

as possible [72]. Each straight piece could house a detector, but only four of the

potential interaction points are occupied. ATLAS, the experiment used in this anal-
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ysis, is located at Point 1 closest to the CERN facilities (See Figure 5.3). Continuing

clockwise around the ring, ALICE (A Large Ion Collider Experiment), which focuses

on studies of heavy ion collisions, is at Point 2. CMS, an all-purpose experiment like

ATLAS, is at Point 5 and LHCb, which studies b-meson decays, is at Point 8.

The end properties of the colliding proton bunches differ between the two main

periods of operation at the LHC. Run-1 began pp collisions at a center of mass energy

of
√
s = 7 TeV from 2010-2011 and ended with

√
s = 8 TeV in 2012. Bunches were 5

ns long, contained ∼ 1013 protons, and were spaced 50 ns apart [73]. Following Run-1,

the LHC closed down for repairs and upgrades during the Long Shutdown 1 (LS1)

from February 2013 to April 2015. In particular, the splice connections between the

LHC dipole magnets were upgraded to permit beams with energy 6.5 TeV, nearing

the design energy of 7 TeV [74]. The upgrade allows Run-2, from 2015-present, to

collide
√
s = 13 TeV proton bunches spaced 25 ns apart [75].

Though the beams of protons are tightly compressed into bunches and meet at

staggeringly high energy, the infinitesimal size of the proton means that crossing

beams can simply pass through each other without any interaction. The rate at which

events are produced, events being registered instances of proton-proton collision, is

the collision’s luminosity. Precisely, luminosity is the number of events per second

per unit cross section, in cm2s-1. Luminosity depends on the number of protons per

bunch, the number of bunches per beam, the width and height of the beam, the

revolution frequency, and the crossing angle at collision. The total number of events

recorded in a certain period of time is given by the integrated luminosity
∫
dtL and

is typically given in units of inverse pico-barns, pb-1 = 1036 cm2 [76].

Thus the total number of events with a certain signature is the product of the

integrated luminosity and the cross section of that process. This means that processes

with very small cross sections require very high integrated luminosity to register in

the detectors. We need data, lots and lots of it. Figure 5.4 shows the cumulative
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Figure 5.4: Cumulative luminosity versus day delivered to ATLAS during stable
beams and for high energy p-p collisions [75].

integrated luminosity of the LHC pp collisions over time. The conditions of Run-2

have delivered much higher luminosity to the detectors, permitting them to probe

new physics that was inaccessible in Run-1. The search presented in this thesis uses

data from Run-2, up until August 2016, amounting to 18.2 ± 0.7 fm-1 of
√
s = 13

TeV collisions.

High luminosity is crucial for producing the necessary bank of data needed for

analysis of interesting processes at the LHC, but it comes with a downside. The higher

the chance of a collision during a bunch crossing, the higher the chance there will be

more than one interaction. The extra collisions contribute to pileup, which describes

the chaotic condition of multiple interactions per crossing. Pileup is quantified by µ,

the average number of collisions per bunch-crossing. As luminosity increases, so does

µ, so that interesting events must be extracted from a background of other collisions.

The pileup profiles for Run-2 to-date are presented in Figures 5.5 and 5.6. In analysis,

steps must be taken to separate and discard pileup objects, e.g. to select only jets

originating from the event and reject all jets originating in pileup.
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(a)

(b)

Figure 5.5: The peak interactions per crossing, averaged over all colliding bunch pairs
(a), and the peak luminosity per fill (b), in 2016 [75].
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Figure 5.6: Mean number of interactions per crossing in 2015 and 2016, weighted by
luminosity. [75].

5.2 The ATLAS Detector

The purpose of a particle detector is to produce a picture of the collision. The final

outgoing particles are measured, their momentum and energy are determined, and

they are used to reconstruct the event. By recombining the 4-momenta appropriately,

the detector traces backward in time from the collision output, through the decay

products, to the original particle of interest. For this detective work to even begin,

the detector must accurately and precisely measure the particles emanating from the

collision. Searches for new physics depend on the faithful representation of the output

product.

In order to register an outgoing particle’s trajectory, the detector measures its

interaction with matter. Charged particles moving through matter will interact elec-

tromagnetically, leaving behind evidence of their passing that can be built into a

record of their paths. As shown in Figure 5.7, different particles with different prop-

erties require different treatment in the detector. Electrons and photons have low

(or zero) mass and interact easily with matter. By contrast, muons, which do not
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Figure 5.7: A slice of the ATLAS detector demonstrating how outgoing particles from
the collision interact with the various materials of the detector layers [65].

interact much, will survive passage through most matter, and neutrinos, which are

virtually non-interacting, escape detection all together. Detection of muons must

be treated as a special case, and neutrinos must be reconstructed by inferring their

existence using conservation of momentum. To accommodate these various needs,

particle detectors use a tiered system. First, the particles enter a tracking region,

which traces the particles’ paths from the collision deeper into the detector. Next,

a series of calorimeters measures the energy and position of electrons, photons, taus,

and hadrons. Finally, the passage of muons through the detector is tracked, and the

muons are identified in the outermost region.

ATLAS [77] faces extraordinary challenges beyond those of a typical particle detec-

tor. The unprecedented center-of-mass energy of
√
s = 13 TeV at the LHC produces

high particle multiplicity in all directions, so the detector must have fine granular-

ity and comprehensive angular coverage. The tightly spaced 25 ns bunches create a

rapid interaction rate of 40 MHz, requiring an advanced readout system to handle the

massive influx of events. The new presence of pileup in collisions makes event recon-
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struction a challenge. Proximity of the detector to the LHC beam raises durability

concerns from radiation.

Designed to meet this host of challenges, ATLAS looks like general purpose de-

tectors of the past, but on a new scale (25 m tall and 44 m long). It is cylindrically

symmetric about the beam pipe and consists of layers of subsystems; Figure 5.8 shows

the tiered structure of the detector. Closest to the interaction point is the inner de-

tector which primarily serves to reconstruct the trajectory of charged particles. It

consists of the pixel detector, the semiconductor tracker (SCT), and the transition

radiation tracker (TRT). A solenoid magnet surrounding the inner detector produces

a 2 T axial magnetic field throughout, allowing precise measurement of particle mo-

mentum. Next are the electromagnetic and hadronic calorimeters (EMCAL, HCAL),

which collect energy measurements of interacting objects. The calorimeters are made

up of the liquid argon detectors (LAr) in the barrel and endcap and the plastic scin-

tillator tiles (TileCal) in the barrel only. Outside this layer is another magnet system,

this time toroidal, which provides a ∼ 4 T magnetic field to bend particle trajectories.

The final, farthest, tier is the muon system, for muon identification and momentum

measurement, set among and beyond the toroidal magnets.

5.2.1 Coordinate definitions

The coordinate system used by ATLAS is right-handed, with the origin at the in-

teraction point in the center of the detector. The beam pipe is the z-axis, pointing

toward Geneva, the x-axis points to the center of the LHC ring, and the y-axis points

up. Cylindrical coordinates are preferred in the transverse x-y plane; r =
√
x2 + y2

is the distance from the beam pipe, φ = tan−1( y
x
) is the azimuthal angle around

it. The polar angle between an object and the beam is given by θ, which defines

the pseudorapidity η = −ln[tan( θ
2
)] which is a more commonly-used quantity. ‘Cen-

tral’ events have low η and ‘forward’ events have high η. The rapidity, in terms of
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Figure 5.8: A schematic of the ATLAS detector, with people for scale [78].

momentum, is given y = 1
2
lnE+pz
E−pz , which is equivalent to pseudorapidity in the zero-

mass limit. In this coordinate system the distance between two objects is defined

∆R =
√

(∆φ)2 + (∆η)2, which may look familiar from the earlier discussion of jet

algorithms.

As discussed in chapter 3, though the momentum of the protons entering the

collision is known, the precise momentum fraction of the constituent partons that

actually do the colliding is not. This complicates any discussion of dynamics in

the longitudinal direction. In general, quantities in the transverse plane, like the

transverse momentum ~pT = (px, py), are preferable because the total initial ~pT is

zero. For example, the missing energy in collisions, an important quantity for any

search for new particles, is most usefully given by Emiss
T which is defined as the

negative vector sum Σ~pT over all recorded particles.
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5.2.2 The Inner Detector

The inner detector of ATLAS, closest to the interaction point, provides the crucial

link between the collision and the deposition of energy in the calorimeters. Its purpose

is to reconstruct the trajectories taken by particles traversing the detector, known

as their tracks. Tracks are very useful: Combined with knowledge of the magnetic

field from the solenoid surrounding the inner detector, a particle’s momentum can be

measured precisely. Tracks also serve to identify the original hard-scatter vertex in an

event, so that a clear distinction can be made between particles emanating from the

vertex and particles emitted from displaced, softer, secondary vertices. To separate

these tracks, the inner detector has very fine granularity, and the closer the detector

layer is to the interaction point, the finer the granularity must be.

The structure of the inner detector is outlined in Figure 5.9. The innermost

component is the pixel detector, followed by the SCT, and finally the TRT farthest

from the beam crossing. Each detector has a cylindrical component centered on the

beam pipe, the ‘barrel’, and two disk components perpendicular to the beam pipe

at each end, the ‘end-caps’. Prior to the start of Run-2 in 2015, an additional piece

of the pixel detector was installed, called the Insertable B-Layer (IBL), to combat

radiation damage from proximity to the beam and to provide additional granularity.

All components of the inner detector must have some built-in redundancy so that

they will be resilient to the inevitable loss of sensors due to prolonged exposure to

radiation.

The pixel detector [80] stretches from ∼ 50 to 150 mm from the interaction point

and is made up of three barrel layers and two sets of three-layer end-cap disks. The

layers are composed of 1,744 silicon sensors and each sensor has 46,080 readout chan-

nels, resulting in a total of approximately 80 million pixels of size 50 × 400 µm or

50 × 600 µm. The IBL [81] sits even closer to the beam, at r = 26 mm, and adds

286 sensors containing a total of 13 million pixels with even finer segmentation 50 ×
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(a)

(b)

Figure 5.9: The structure of the ATLAS inner detector showing its component sensors.
Figure (b) is missing the IBL, which was installed between Run-1 and Run-2 [79].
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250 µm. As a charged particle travels through the detector, it registers a hit in each

layer. These position measurements, in the context of the solenoidal magnetic field,

begin the process of building a particle track.

What constitutes a ‘hit’? Each sensor is made of superconducting silicon, and

when an energetic charged particle passes through, it pulls or pushes electrons, ion-

izing the atoms and producing electron-hole2 pairs in the silicon. The more energetic

the particle, the more charge is displaced. A bias voltage applied across the ends of

the sensor induces an electric field that pulls the electrons and holes to the sensor’s

surface where the charge separation is amplified and recorded. In practice, a particle

moving through the pixel detector will not register a hit in only one single pixel–rather

it affects a group of adjacent pixels called a cluster. The magnitude of the signal in

the various members of the cluster provides the position information necessary. In

this way the charged particle’s position can be measured with a precision of ∼ 10 µm

in the transverse plane within the detector’s range of |η| < 2.5.

The semiconductor tracker (SCT) [82], located just beyond the pixel detector

between 275 and 560 mm from the interaction point, is comprised of four barrel

layers and nine end-cap layers per side. The end-caps are staggered so that the SCT

can maintain the coverage within |η| < 2.5 while ensuring particles pass through four

layers. The SCT, like the pixel detector, also uses superconducting silicon sensors,

and develops tracks in the same way. It has 4088 sensor modules organized into

strips parallel to the beam in the barrel and radially outward in the end-caps. The

barrel strips are uniform rectangles 80 µm wide, ∼ 12 cm long, and 285 µm thick

and the end-cap strips are trapezoids of similar dimensions. A second set of sensors

is then stacked on top, but rotated by the small stereo-angle of 40 mrad. This allows

measurements to a precision of 580 µm in z for barrel and r for the endcap. All told,

there are ∼ 6.2 million channels in the SCT, providing particle position measurements

2A hole is a region of negative charge in the silicon lattice due to the electron’s removal.
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in the r-phi plane precise up to 16 µm.

The Transition Radiation Tracker (TRT) [83], furthest from the interaction point

at r ≈ 550 to 1080 mm, differs from the other components of the inner detector. It

is made up of straw detectors–metal tubes 4 mm in diameter filled with xenon gas.

A thin anode wire runs through the straw’s center. The barrel has 52,544 straws

of length 144 cm and the end-caps each have 122,880 straws of length 37 cm. This

amounts to 420,000 readout channels. When a particle traverses the detector, it frees

electrons in the gas which travel to the central wire, liberating more electrons in a

cascade. The resultant electrons and positive ions travel to the anode and cathode

ends respectively, where the time of their arrival is recorded. The drift time can be

used to calculate an impact parameter for the charged particle, but not its precise

position as before–the resolution is only 170 µm.

In addition, polypropylene sheets between the straws mean that the dielectric con-

stant varies. As a relativistic charged particle passes between materials of differing

dielectric constant, it emits transition radiation, prompting the xenon gas to cascade

higher-energy electrons. This process provides a tool for electron identification be-

cause the highly relativistic particles that are capable of producing this radiation are

mainly electrons.

5.2.3 Calorimeters

The ATLAS calorimeters, located outside the inner detector and solenoid, are capa-

ble of measurement in a much wider, almost hermetic, cylinder about the interaction

point–they cover a region in pseudorapidity up to |η| < 4.9 [77]. Rather than register-

ing and recording a particle’s passage through material, calorimeters force particles

to deposit their energy into induced particle showers. Their purpose is to record

the position and four-momentum of all electrons, photons, taus, and hadrons, while

impeding passage so that only muons and neutrinos reach the muon spectrometer.
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Figure 5.10: The composition and layout of the calorimeters in the ATLAS detector
[84].

Calorimeters are crucial to any hadronic study because, in contrast to tracking de-

tectors, they can measure neutral particles.

The complete ATLAS calorimeter system, shown in Figure 5.10, is divided up

into the electromagnetic calorimeter (EMCal): the LAr electromagnetic barrel and

the LAr electromagnetic end-cap (EMEC), and the hadronic calorimeter (HCal):

the tile barrel, the extended barrel, the LAr hadronic end-cap (HEC), and the LAr

forward calorimeter (FCal). All of these calorimeters can measure not only a particle’s

position, but the position and evolution of the shower particles resulting from its

passage.

The calorimeters are designed to be sampling detectors, meaning that they alter-

nate between material that passively absorbs the energy of the incoming particle and

material that actively produces signals. The absorbent material should be dense to

force interactions with the incoming particles, impeding their passage. As an added

58



benefit, the resultant cascade of subsidiary lower-energy particles is easier to mea-

sure. The layers of active material record the energy deposited by that cascade. As

an energetic particle passes through the calorimeter its progress is repeatedly slowed

and measured, until the particle and the shower carrying its momentum are stopped.

Energy is lost with each repetition, so the calorimeter must be calibrated to correct

the energy measured in the active layers to match that of the incoming particle. Cal-

ibration will always come at the cost of energy resolution, however, due to variations

between the evolution of different showers.

The EMCal [77, 85] is again made up of a barrel and two end-caps. The barrel,

located between 2.8 and 4 m from the beam, covers the region |η| < 1.475 while the

end-caps, located between 33 and 210 cm from the beam, cover the region 1.375 <

|η| < 3.2. The absorbing layers are made of lead and the active layers are made

of liquid argon, with readout electrodes located halfway between the lead layers.

Particles traveling through the liquid argon liberate electrons, creating positive ions.

A strong voltage applied across the detector causes the free electrons to drift to

one side, where the signal can be measured. The layers are arranged in like the

bellows of an accordion (Fig. 5.11), end-to-end-to-end and so on, to ensure complete

coverage in φ while minimizing the drift time between the particle interaction and

its measurement. The position measurements of the LAr detectors are governed by

readouts that come in the form of approximately square cells, or ‘’towers’, in η × φ

space [86].

Beyond the EMCal is the HCal [77], which has both LAr and tile calorimeter

components [88]. The tile barrel and extended barrel, spanning the |η| < 1.7 region,

use iron plates as absorbing layers and plastic scintillator tiles as active layers. These

detectors are composed of 64 module wedges stacked the length of the barrel, each

with a size of ∆φ ≈ 0.1. Though they use different materials, tile detectors function

based on the same principles as the LAr detectors: Incoming particles interact with
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Figure 5.11: The ‘accordion’ structure of the LAr electromagnetic barrel. Courtesy
of the ATLAS experiment [65].

Figure 5.12: Schematic showing the structure and optical readout system of a wedge
in the tile calorimeter [87].
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the iron, losing energy and creating a shower of new particles. These new particles

meet the scintillator where they excite the material, emitting light. The light is carried

through fibers to photomultiplier tubes and read out as a signal containing position

and momentum information (see Fig. 5.12) [87]. The HEC, covering 1.5 < |η| < 3.2

and the FCal, covering 3.1 < |η| < 4.9, are LAr calorimeters, but use copper plates

instead of lead as absorbing material.

5.2.4 Muon System

The Muon Spectrometer (MS) is the furthest detector component of ATLAS from

the interaction point. It covers the range |η| < 2.7 with a small gap around |eta| = 0

for the cabling and cooling systems headed to the calorimeters. The purpose of

the MS is to reconstruct the charged particles that make it all the way through the

calorimeters which means that, in contrast to the other detector systems, it essentially

only measures muons. Figure 5.13 shows the various components of the ATLAS muon

system.

The largest component of the MS comes in the form of monitored drift tubes

(MDTs). The 1088 MDTs in ATLAS operate in a similar fashion to the straws of the

TRT, but on a bigger scale. The aluminum tubes, filled with a mixture of Argon gas

and CO2, are 30 mm in diameter and between 0.7 and 6.3 m in length. The toroidal

magnets provide a strong field which bend the muons as they traverse the detector.

The MDTs are arranged parallel to the magnetic field to maximize their coverage of

the muon curvature. The result is a resolution of 35 µm in the z direction [77].

More forward in the detector, but not yet at the end-cap, particle density increases

to beyond the capabilities of the MDTs, which begin to be too sparse. Cathode

Strip Chambers (CSCs), which have a faster response rate, are added in that region

(2.0 < |η| < 2.7) to supplement the MDTs. The 32 CSCs are multi-wire proportional

chambers made up of two parallel metal sheets, divided up into cathode strips, with
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Figure 5.13: Diagram of the ATLAS muon system, in the context of the whole detector
[89].

anode wiring connecting them. Each chamber is filled, again, with Ar/CO2, and

contains four parallel planes of wires, meaning four different position measurements

for a particle traversing the chamber. The end resolution is 40 µm in the r and 5 mm

in φ [77].

The remaining subsystems of the MS, the Resistive-plate Chambers (RPCs) and

the Thin-gap Chambers (TGCs), are used for triggering because of their rapid re-

sponse time. Triggering, which will be discussed in the next section, refers to the

selection of ‘interesting’ events from the sea of events containing no useful informa-

tion. RPCs, in the barrel region, are parallel plates 2 mm apart that record hits

using ionizing gas. They have a very course spatial resolution of 10 mm, but a much

faster time resolution of 1 ns (drift times in the MDTs can near 500 ns). TGCs are

to RPCs what CSCs are to MDTs; they have finer granularity for use in the more
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forward regions where particle multiplicity is high. TGCs are also multi-wire propor-

tional chambers, have a response speed suitable for a trigger system, and can measure

particles to within about 5 mm [77].

Though the MS is fully capable of measuring muons on its own, it is typically

used in conjunction with the tracking results from the other ATLAS detectors. The

magnetic field from the toroidal magnets bends muons in a direction perpendicular to

the solenoid surrounding the inner detector, so the two measurements are essentially

independent. Matching tracks from the inner detector to tracks from the MS improves

the precision of muon selection.

5.3 Triggers

With the 25 ns bunch spacing of Run-2, collisions now occur at the LHC at a rate of

40 MHz, or 40 million times per second [77]. Multiplying that by the massive amount

of information contained in each event (on the order of a megabyte) yields a potential

output from the ATLAS detector far exceeding even the vast data storage available

to the experiment. The solution is to implement a trigger system to decide when to

store an event for further investigation and analysis, and when to discard it.

The ATLAS trigger system is tiered so that different studies and analyses can

select the appropriate trigger menu. Level 1 (L1), the first trigger stage and the

only trigger entirely implemented in hardware, looks for ‘regions of interest’ in the

calorimeters and the MS. L1 already reduces the event rate to ∼ 100 kHz and feeds

the remaining events to the high level trigger (HLT). The HLT conducts a software-

based reconstruction of the entire output of the detector, further cutting the rate to

∼ 1 kHz [90].

The analysis presented in this thesis will use a multi-jet trigger, so I will briefly

outline it here. At the L1 stage, jets are triggered on towers in the calorimeters. The
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signals in adjacent calorimeter cells are combined to form coarse-grained 0.1 × 0.1

towers in ∆η×∆φ space. A sliding window algorithm runs over these trigger towers,

identifying regions of significant ET . Then, the HLT stage constructs topological

clusters from the complete output of the calorimeters. Low-energy jets are removed

and pileup is subtracted. In the end, the multijet trigger requires six jets above

pT = 45 GeV. It is 90% efficient for a sixth jet with pT = 50 GeV [90].

5.4 Data Quality

ATLAS is a massively complex experiment operating sealed underground, bombarded

by high radiation. Pauses and gaps in the accumulation of usable data, planned and

unplanned, are unavoidable and must be managed. Figure 5.14 shows the cumulative

luminosity over time through 2015 and 2016. In total, of the 4.2 fb-1 delivered in 2015

by the LHC, only 3.9 fb-1 (93%) was recorded and only 3.2 fb-1 (76%) was certified

as ‘good’ for use in physics analysis. The data acquisition efficiency to date in 2016

is similarly 93% but the overall efficiency will be higher3 [75].

Some of the inefficiencies are built in: ATLAS misses recording data during the

‘warm start’ period, when the silicon detectors engage their high voltage power sup-

plies, because they must wait to do so until a stable beam has been achieved by

the LHC. Some inefficiency comes from recorded data being unusable, whether due

to some non-operational subsystems (the IBL was turned off for two runs in 2015)

or a large fraction of noisy channels. Minor inefficiencies from, e.g. channels in the

inner detector disabled due to radiation, can be offset by strict object quality re-

quirements. All told, ATLAS is an impressively efficient machine given the number

of moving parts.

3The overall 2016 efficiency is not yet presented because detectors can often recover ‘bad’ data
by administering corrections and reconstructing events offline.
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(a) (b)

Figure 5.14: The cumulative luminosity versus time delivered to ATLAS (green),
recorded by ATLAS (yellow), and deemed good quality data (blue) in (a) 2015 and
(b) 2016 (ongoing) [75].

5.5 Simulation

Accurate simulation of ATLAS events is not only a crucial step to demonstrating un-

derstanding of the processes underlying the collisions the detector measures, but also

an important tool for studies seeking a benchmark for observations in data. Whether

it is for calibrating a detector, measuring a Standard Model quantity, or searching for

new physics, an ATLAS analysis will compare Monte Carlo (MC) simulations against

the observed data.

The goal of a MC simulation is to generate reproduced events starting from the

collision output partons and ending with the final state particles which would be

received by the detector. This process begins with a calculation of the collision matrix-

element (see section 3.1), with corrections, resulting in a set of outgoing partons.

Because of the probabilistic nature of parton-parton interactions in pp collisions, the

outputs can be simulated repeatedly to achieve a distribution matching that observed

in real collisions. Next, often using a new simulation program, the matrix element

generators are interfaced [91] with the parton decays, showering, and hadronization,

which are modeled so that the end product of the MC program looks just like the
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input particles hitting the detector. Data from the detector and MC simulation form

a symbiotic relationship: Data provides the template for evaluating the accuracy of

MC. MC can then help calibrate later data readouts, or identify variations in data

from the expected program.

A large library of MC models allows analyses to pick and choose from programs

that best simulate data for each study’s various important topologies. For example,

POWHEG [92] tends to be used for simulating tt̄ events. It is interfaced with a parton

shower and hadronization model; either PYTHIA [93, 94], which orders input partons

by pT , or HERWIG [95], which uses an angular ordering scheme. Alpgen [96] is used

for V+jet events, along with Sherpa [97], which is also used to reproduce diboson

and multijet topologies. Madgraph [98] is used for multijet and γ+jet processes. The

outputs from these event generators are lists of particle 4-momenta. These outputs

are ‘truth level’ because they are not altered by the features and constraints of the

ATLAS detector.

In order to match simulation to data, the MC output must be exported to a

program that models the effect of the detector. GEANT4 [99] processes the truth

level input in the context of a full simulation of ATLAS and its subsystems, including

any limits in coverage, resolution, or the read-out system [100]. Multiple events

are stacked to imitate the pileup distribution in data. In the end, the detector-

level simulation output has undergone the exact same reconstruction process as real

recorded data, and is identical in format. Offline studies can then treat simulation

and data the same way.

5.6 Conclusion

Any effort to probe the physical processes such as those described in Chapter 2, 3, and

4 faces a daunting task and the ATLAS detector, a globally collaborative effort, has
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risen to the challenge. ATLAS is a massively complex endeavor, with its multitude of

subsystems, and the experiment itself is a feat of physics and engineering. The success

of ATLAS lies in the studies it advances, be they measurements of known quantities

or searches for new physics. The analysis presented here would be impossible without

the support, infrastructure, and personnel of ATLAS.

67



Chapter 6

Searching for SUSY in Multijet Events

He wanted to achieve something of surpassing beauty that would last. A
creation that would mean that he...had been born, and lived a life, and
had come to understand a portion of the nature of the world, of what ran
through and beneath the deeds of women and men in their souls and in
the beauty and the pain of their short living beneath the sun.

—Guy Gavriel Kay, Sailing to Sarantium

New physics at the TeV energy scale could emerge from collisions through a variety

of processes. Theoretical models and predictions help build an informed judgment of

the likelihood that a given search will yield fruit, so that experimental studies can

focus their efforts where they will have the biggest impact. The ATLAS experiment

divides up the potential new physics scenarios for maximum coverage. The value of

each individual search depends upon its context within the whole, and the existence

of the whole depends upon the thoroughness of each individual search.

As outlined in chapter 4, supersymmetry provides a structure for model creation.

SUSY solves the hierarchy problem, offers a particle candidate for dark matter, and

potentially hints at deeper unification of forces. If SUSY hopes to avoid the problems

with fine-tuned mass parameters that plague the SM, the existence of new TeV-scale

particles is very important. At minimum, naturalness suggests a light stop t̃, a light

gluino g̃, and a light chargino χ̃0
1. SUSY searches seek out events with conditions

amenable to the existence of one of these new particles.
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This chapter presents a search for new strongly interacting particles in final states

with very high jet multiplicity and some missing energy, where the distribution of the

jets is consistent with decays from heavy objects such that the jets can be reclustered

into fewer high-mass jets. In the context of SUSY, this signature could come from

pair-produced squarks or gluinos. These new strong particles then produce a decay

to a heavy SM particle such as a top quark or a W, Z, or Higgs boson, or simply their

own cascade decay chains, and either the cascade or the heavy SM particle decay

will produce a large number of jets. The following sections will build up the models

tested in this analysis, identify what the signature should look like in data, establish

the SM background, and, finally, will evaluate the existence of new phenomena.

The data, amounting to a total integrated luminosity of 18.2 ± 0.7 fb-1, was col-

lected from April 2015 through 2016 from pp collisions with a center-of-mass energy

of
√
s = 13 TeV.

6.1 Motivation

The larger ATLAS search for evidence of SUSY in collisions at the LHC has been

ongoing since the beginning of 2010, when the proton beams first crossed at center-

of-mass energy
√
s = 7 TeV. Run-1 saw many different SUSY searches implemented,

covering a wide swath of potential values for SUSY parameters, but no deviations

from the expected SM production was discovered. Instead, each search set limits on

the possible values of the basic parameters, such as gluino mass. Every subsequent

search that yields no new physics adds to the breadth of coverage of those limits in

parameter space.

After the long shutdown (LS1), Run-2 began collisions at
√
s = 13 TeV in 2015,

entering a new energy frontier. Higher energy corresponds to much higher heavy

particle cross-sections, opening up a whole new region in SUSY parameter space.
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This meant that the strategy of the first studies was to aim for the lowest-hanging

fruit; searches in events where the heavy particles decay to well-understood final

states, using tried and tested techniques. The initial Run-2 analyses still found no

SUSY, and set even tighter limits on the SUSY models viable in reality. Figure 6.1

shows the cumulative mass limits set by ATLAS at this stage.

The next cohort of searches, then, must target regions of parameter space un-

touched by the more typical analyses. With that in mind, this generation of searches

can (1), take the time to optimize old analysis techniques, (2), use new or unorthodox

techniques, or (3), investigate rare events that require very high integrated luminosity

or are very clean channels. The study presented here, though it is still an early result,

takes a combination of the second and third approaches. In contrast to many other

searches for SUSY in hadronic channels at both ATLAS [52–62] and CMS [101–108],

this search does not expect a large missing energy because of the high jet multiplic-

ity requirement. Traditional hadronic searches need high missing energy to use as a

trigger or to reject SM backgrounds, so they are insensitive to potentially interesting

final states in which Emiss
T is low. Events with so many jets are rare, but the signal

channel is comparatively clear and is uniquely sensitive to some SUSY processes.

This analysis represents the latest in a series of ATLAS analyses targeting a multi-

jet+missing energy. The methods are inspired by Ref. [109], the first multijet analysis

conducted in the lower energy conditions of Run-1, and Ref. [110], which added the

selection based on large-radius jets. The first multijet study at
√
s = 13 TeV is

Ref. [63], which solely presents the results of the b-tagged jet stream1. In comparison

to these previous analyses, the higher statistics now available from continued colli-

sions provide better sensitivity, especially to particles with large mass. The selection

on the sum of masses of large-radius reclustered jets (described in Section 6.6) im-

1B-tagging means identifying and labeling jets from bottom quarks because they have different
properties from other jets. This tag is useful for organizing selection criteria, for example.
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proves sensitivity to heavy objects as well. The results of this update were published

in an ATLAS conference note and presented at the SEARCH conference in August

2016 [111].

6.2 Signal models

Signal models are necessary both at the start of an analysis, to optimize the search for

discovery, and at the end, to provide context and interpret the results. Early searches

in Run-2, like this one, focus on discovery, so only a couple of optimal signal models

are chosen for each analysis. Later studies aiming to set limits can afford to consider

a wide range of models. Two classes of SUSY signal models are considered here. The

first comes from the Run-1 multijet analysis [110], which was the most sensitive one

for the ‘2-step’ model, but was uncompetitive in others, so the 2-step is carried over

to the current analysis and the others are not. The 2-step grid2 involves the decay of

the gluino in two steps; through a chargino, a heavier neutralino, and finally to the

LSP. The second model, discussed in detail here, is a slice of the ’pMSSM’ chosen

based on the results of a scan of the parameter space.

6.2.1 2-step

The 2-step grid is a simplified model in which gluinos are pair-produced, then decay

via a cascade:

2The term ‘signal grid’ refers to the practice of producing an array of potential values for one
parameter of the model and matching it against an array for another parameter to create a search
grid. Pairs of parameter values are signal ‘points’ on the grid. Each point on the grid is a model.
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Figure 6.2: Feynman diagram of the 2-step decay process.

g̃ → q + q̃′ + χ̃±1 (q = u, d, s, c)

χ̃±1 → W± + χ̃0
2

χ̃0
2 → Z + χ̃0

1

The parameters of this process are the masses of the gluino, mg̃, and the lightest

neutralino, mχ̃0
1
. These lower masses constrain the masses of the intermediate par-

ticles, with mχ̃±
1

= 1
2
(mg̃ + mχ̃0

1
) and mχ̃0

2
= 1

2
(mχ̃±

1
+ mχ̃0

1
). Figure 6.2 shows the

Feynman diagram of this model. The 2-step model is characterized by very high jet

multiplicity, from the decays of the quarks and W and Z bosons, and low lepton

multiplicity. The limits on mg̃ and mχ̃0
1

are displayed in Figure 6.3. The summary of

Run-1 SUSY analyses [112] found that this analysis outperformed all others—even

the combination of the 1-lepton and 0-lepton lower jet multiplicity analyses—in a

large section of the mg̃/mχ̃0
1

plane, motivating continued exploration of this region

using these methods. Figure 6.4 shows the signal points on the 2-step grid that were

chosen for this analysis, with the 2015 limits for reference.
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Figure 6.3: (a), the Run-1 limits for the 2-step simplified model, including the most
sensitive analyses in this region [112] and (b), the first Run-2 limits from the 2015
multijet search [63].
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Figure 6.4: The distribution of the generated points in the 2-step grid with the
expected and observed limits from the 2015 multijet analysis [63].

6.2.2 A slice of the pMSSM

The second model considered by this analysis is drawn from a two-dimensional sub-

space, or ‘slice’, of the 19-parameter phenomenological minimal supersymmetric ex-

tension to the Standard Model (pMSSM) [113]. Following Run-1, a large scan of

the pMSSM was performed [114], revealing a class of models that were excluded by

the Run-1 version of this analysis and not by any other analysis. Naturally, because

they are difficult to search via other means, these are the most important areas of

parameter space here. A representative sample of these interesting pMSSM points is

shown in Figure 6.5.

These points are not random—there is a pattern that relates them. Each has

a bino as the LSP near either the Higgs or the Z pole mass, light higgsinos, and a

gluino around 1.2 TeV. Recognizing this allows the creations of a slice of pMSSM

parameter space: Recalling the SUSY-breaking addition to the MSSM Lagrangian

from Equation 4.3, the higgsino physical mass (−µ) and gluino physical mass (M3)

are varied and the LSP mass (M1) is fixed at 60 GeV. The x- and y- axes in the signal

grid become the higgsino and gluino masses, respectively. The remaining parameters

in the pMSSM model, defined in Ref. [113], are not generally within the reach of
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Figure 6.5: Particle spectra for a sample of potential SUSY models which are ex-
cluded by the multijet analysis and not excluded by any other analysis. Circled
particles are the gluino, Higgsinos, and the bino LSP. Further examples are available
in Appendix 7.
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collider physics, and are set as follows:

mA = M2 = 3 TeV, Aτ = 0, tanβ = 10

At = Ab = m(e,µ,τ)L = m(e,µ,τ)R = mqL(1,2,3) = m(u,c,t)R = m(d,s,b)R = 5 Tev

which gives a Higgs mass around the true value of 125 GeV. It should be noted here

that this model respects the constraints on new physics set by the invisible width of

the Higgs [115] because the branching ratio to the LSP is very low.

Considering an example point on the signal grid, (m(g̃),m(χ̃±1 )) = (1200, 200)

GeV, yields a decay chain with the following branching ratios:

g̃ → t+ b+ χ̃±1 (44%)

g̃ → tt̄+ χ̃0
2,3 (39%)

g̃ → tt̄+ χ̃0
1 (2%)

g̃ → bb̄+ χ̃0
1 (1%)

g̃ → qq̄ + χ̃0
1 (9%)

χ̃±1 → W + χ̃0
1 (100%)

χ̃0
2,3 → Z + χ̃0

1 (70%)

χ̃0
2,3 → h+ χ̃0

1 (30%)

The physical result of this decay is a large quantity of jets and a small Emiss
T from

the neutralinos. In contrast to simplified models like the 2-step, models like this

one do not fix the branching ratios, but rather allow them to vary as the masses of

the sparticles change from point to point on the grid. In the regions of parameter

space most relevant to this search, however, the branching fractions remain roughly

constant.
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Figure 6.6: The truth-level kinematic distributions a selection of pMSSM signal sam-
ples in comparison to a similar mass Gtt point. The dashed lines show Run-1 signal
selections for the multijet analysis (top) and 2-6 jet analysis (centre and bottom).

To ensure that points like this one indeed do present a different analysis profile,

truth-level samples were generated. Figure 6.6 compares the kinematic distributions

of pMSSM signal points to a similar Gtt point typical of other hadronic searches.

The trend toward low Emiss
T means that searches optimized for models like this Gtt

point will miss regions accessible to the multijet analysis.

Using the truth-level grid and data from the 8 TeV collisions, the reach of various

Run-1 analyses can be evaluated. As shown in Figure 6.7, different searches are
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Figure 6.7: The limits from 8 TeV in the pMSSM plane. The various searches are
complimentary.

sensitive to different parts of the plane. The lighter the higgsino mass, the less

Emiss
T is present, and the 0-lepton and 3-b-jet searches get less and less effective. This

is convincing evidence that the multijet analysis has a niche in parameter space where

it is particularly sensitive and will detect a potential excess above the SM easily.

Signal events are simulated using the Monte Carlo generator Madgraph5, inter-

faced to Pythia8. The cross-section input is taken from a series of predictions for

different choices of PDF, factorization, and renormalization, as described in Ref. [116].
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6.3 Object definitions and Event Cleaning

This section will outline the key physical objects of the multijet search; how they

are defined, how they are constructed from detector information, how their quality is

ensured, and how they are used in this analysis.

6.3.1 Physical objects

Primary vertices

The points of origin of parton-parton interactions, vertices, are reconstructed from

at least two particle tracks in the inner detector. The vertex with the largest sum of

track transverse momentum Σ|~pT |2 is defined to be the primary vertex of the event.

Jets

Jets are reconstructed using the anti-kt clustering algorithm from Chapter 3 with

a jet radius parameter R = 0.4. The inputs to the algorithm are the position and

energy of clusters of cells in the calorimeter. These clusters are formed by choosing

cells registering uncommonly high energy, indicating the passage of a particle, and

then combining neighboring cells. The jet momentum is constructed by treating

each cluster of calorimeter cells as a 4-vector with zero mass and summing up those

4-vectors. The effect of pileup on jet energy is accounted for with a pT -density

correction applied on an event-by-event basis. All jets must satisfy pT > 20 GeV3

and |η| < 2.8, and must pass overlap removal (described below).

Jets are also required to pass a ‘jet cleaning’, designed to remove non-collision

jets originating from cosmic rays, detector noise, or beam background. Any event

containing a jet that fails this cleaning is rejected. Jets produced in pileup interactions

3These requirements are known as a “cut”. Stricter or gentler requirements are tighter or looser
cuts.
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are identified and removed by using a multivariate selection tool called the Jet Vertex

Tagger [117] which develops a likelihood that a given jet originated at the primary

vertex. Jets are not considered signal quality if they have pT < 50 GeV, |η| < 2.4,

and JV T < 0.59.

An algorithm that exploits the long lifetime, large mass, high decay multiplicity,

and hard fragmentation of b-hadrons is used to identify to within some certainty

the jets containing those b-hadrons, called b-jets [118]. These b-jets have been used

in previous analyses to define signal regions, but here they are used only to divide

control regions to target W+jets and tt̄ and in overlap removal.

Leptons

Leptons (here referring only to electrons and muons) are used in this analysis to dis-

tinguish between signal regions and control regions. We distinguish between ‘baseline’

leptons, which are looser lepton candidates, and ‘signal’ leptons, which must pass a

stricter selection. Baseline electrons must have pT > 10 GeV and |η| < 2.47 and sat-

isfy the “Loose” quality criterion from [119], which combines track properties from

the inner detector with shower shape in the calorimeter to judge potential electron

candidates. Baseline muons similarly must have pT > 10 GeV and |η| < 2.5 and

satisfy the “Medium” quality criterion from [120], which matches tracks from the

inner detector with tracks from the muon spectrometer. Both electrons and muons

must also pass overlap removal. If an event contains a baseline lepton, it is rejected

in the signal region.

Signal leptons are used in the definition of the control regions. Signal electrons

must satisfy the “Tight” quality criterion, rather than “Loose”, and both electrons

and muons must pass the “GradientLoose” isolation criteria [119, 120], which ex-

amines the lepton candidate’s position with respect to nearby objects. Lastly, sig-

nal leptons must be associated to the primary vertex, with |z0sinθ| < 0.5 mm and
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d0/σ(d0) < 5(3) for electrons (muons), where z0 and d0 are the longitudinal and

transverse impact parameters.

Taus are not used in this analysis, though a muon or electron resulting from tau

decay and fulfilling the criteria above is treated the same way.

Photons

This analysis does not use photons for event selection, but they are important to the

calculation of missing transverse energy described below. Photons are identified by

requiring pT > 25 GeV and |η| < 2.37, excluding 1.37 < |η| < 1.52, and imposing the

“Tight” criterion from [121], which again uses inner detector tracking information

and calorimeter shower properties.

Missing transverse momentum

Emiss
T is defined to be the negative vector sum of the momenta of physics objects,

taken in a plane perpendicular to the axis of the beam. All of the objects above—

jets, leptons, and photons—participate in the reconstruction, along with a soft term

[122] derived solely from tracks that are associated with the primary vertex but are

not identified as any of these objects. The result is a 2-vector pointing opposite this

sum of objects.

Large-R jets

Jets with a larger radius parameter R are produced by repeating the application of the

anti-kt clustering algorithm, but using the calibrated R = 0.4 jets as the algorithm’s

input. Jets must have pT > 20 GeV and |η| < 2.0 and pass overlap removal to be

used in the reclustering process. In the control regions, which contain leptons, the

leptons are treated as jets in the reclustering and must pass the same requirements.
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6.3.2 Overlap Removal

In order to avoid double counting of objects, overlap removal is applied to distinguish

between them as follows:

• If an electron and a muon share an inner detector track, the electron is removed.

• If an electron and a jet are within ∆R =
√

(∆η)2 + (∆φ)2 < 0.2 of each other,

the jet is removed, unless that jet is b-tagged with at least 85% efficiency in

which case the electron is removed.

• If an electron is within ∆R < 0.2 of a jet, the electron is removed.

• If a muon track is ghost-associated4 to a jet or is within ∆R < 0.2 of a jet, the

jet is removed

• If a muon is within ∆R < 0.4 of a jet, the muon is removed.

This process ensures that jets, muons, and electrons are all considered separately.

6.3.3 Event Cleaning

The stochastic nature of the detector and the unpredictability of environmental fac-

tors mean that incoming data must be examined event-by-event for quality. For

example, cosmic rays (muons) from the atmosphere or stray particles from the beam

might reach the detector and happen to coincide with the timing of a collision, lead-

ing to events that should be rejected. Table 6.1 itemizes the event cleaning and data

quality requirements for a good event.

4Ghost association is a technique by which the tracks are treated as infinitesimally soft particles
by scaling down their pT . The tracks are added as input to the jet algorithm, but because of their
negligible pT they make no impact on the reconstruction of calorimeter jets. Afterward, though,
one can identify which tracks were clustered into which jets.
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Requirement Description

Good Runs List Events must occur during time periods on a list of
good runs (GRL) compiled by the experiment to en-
sure data quality.

LAr, Tile, and SCT Errors Reject events with known detector errors.

Jet Cleaning As described in Section 6.3, any event that fails to
pass jet cleaning cuts is vetoed.

Bad Muons Poorly reconstructed muons can add a tail to
Emiss
T distributions, so events with muons that have

> 20% track momentum error are vetoed.

Good Vertex Events lacking at least one primary vertex with at
least two constituent tracks are vetoed.

Dead Tile Among jets with pT > 50 GeV and |η| < 2, if the jet
closest to the direction of the Emiss

T is within the dead
tile region (−0.1 < η < 1.0, 0.8 < φ < 1.1), the event
is vetoed.

Pileup jets Events are rejected if there exists a jet with
50 < pT < 70 GeV, |η| < 2.0, JV T < 0.64, and
∆φ(jet, Emiss

T ) > 2.2.

Table 6.1: Summary of the event cleaning and data quality requirements.
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6.3.4 Key definitions

For clarity in the coming sections and plots, here are a few important variable defi-

nitions.

• HT is the scalar sum of jet and lepton transverse momentum: HT = ΣpjetT +

ΣplepT . Jets included in this quantity must pass the requirements outlined in the

object definition and the leptons are signal leptons. Both must satisfy pT > 40

GeV and |η| < 2.8.

• mT , the transverse mass, is only defined for leptons:

mT =
√

2Emiss
T plepT (1− cosφ) where φ = φ(Emiss

T )− φ(lepton).

• MΣ
J is the sum of the masses of the large-R jets: MΣ

J =
∑

jm
R=1.0
j . These

composite jets must satisfy pR=1.0
T > 100 GeV and |ηR=1.0| < 1.5.

• Emiss
T /
√
HT is a proxy for the Emiss

T significance. It is a crucial quantity in this

analysis because the shape of Emiss
T /
√
HT is roughly invariant over changes in

jet multiplicity. More details are forthcoming in the sections on event selection

and multijet background.

6.4 Event Selection

The same distinct features of the multijet analysis that give it competitive sensitivity

to some SUSY models—no leptons and a high jet multiplicity arranged into larger-

R jets—provide the basis for selection of events and definition of signal regions. In

comparison to the earlier Run-2 analysis [63] which focused on multiplicity of b-jets,

this search introduces a ‘fat-jet’ stream using the properties of the large-radius jets

described in Section 6.3.1.
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All events are recorded after the decision of the multijet trigger from Section 5.3

which requires at least six jets with pT > 45 GeV and |η| < 2.4. Additional selections

for each region tighten these jet requirements.

6.4.1 Signal Regions

The first step toward defining signal regions (SRs) is performing the lepton veto

described in Section 6.3; any event containing a baseline lepton is rejected. Next,

the number of jets with pT > 50 GeV and |η| < 2.0 is counted and events with

at least 8 jets are chosen. The number of jets provides the first division of signal

regions into three regions containing ≥ 8, ≥ 9, and ≥ 10 jets. The signal regions

are further subdivided by the sum of the fat-jet masses MΣ
J , defined in Section 6.3.4,

requiring MΣ
J > 340 or MΣ

J > 500 GeV. These regions are inclusive, such that the

higher-multiplicity signal regions are subsets of the lower-multiplicity ones and the

stricter MΣ
J SRs are subsets of the looser ones.

The cross-section of QCD multijet production just from SM physics, called the

‘multijet background’ from now on, is very large, so much so that it dominates even

at very large jet multiplicities. All of the models investigated in this search expect

some amount of Emiss
T , either from the non-interacting LSP neutralino χ0

1 or from

Z → νν decay resulting in neutrinos. Thus it is sensible to cut on Emiss
T in search

of signal events. Because of the multijet cross-sections, however, it is impossible

to set an Emiss
T requirement that keeps signal events without also keeping a large

multijet background. On top of this, multijet production is poorly modeled at high

jet multiplicity so subtracting that remaining background is very challenging.

The solution to this conundrum, and the last selection variable, is Emiss
T /
√
HT ,

the ratio of Emiss
T to the square root of the scalar sum of jet and lepton momenta.

This value is closely related to the Emiss
T significance, Emiss

T /σ(Emiss
T ), where σ(Emiss

T )

is the uncertainty in the missing energy, because the dominant component of that
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uncertainty is jet mismeasurement. Most importantly, though, Emiss
T /
√
HT can be

used to manage the multijet background with a data-driven approach because it is

invariant over changes in jet multiplicity. This feature and its use in a template

method will be covered further in Section 6.5.2. For now, we set a threshold of

Emiss
T /
√
HT> 4 GeV1/2 on all signal regions.

This threshold value balances sufficient signal acceptance with manageable multi-

jet background. Lowering this cut leads to drastically increased background. Raising

it increases the uncertainty on modeling of the non-QCD background and strains

the statistics in the leptonic control regions. Perhaps most importantly, increasing

the value takes away this search’s advantage over other similar SUSY searches in

exploring low-Emiss
T regions.

The choices of 340 and 500 GeV for the MΣ
J divisions are based on a study

of expected signal strength. The 340 GeV cut provides sensitivity to smaller mass

splittings, but at twice the top mass it still avoids most SM backgrounds. The 500

GeV cut extends sensitivity to large mass splittings without cutting control region

statistics too harshly. The exclusion contours for MΣ
J thresholds of 340, 420, 500, and

580 GeV are shown in Figure 6.8. The plot demonstrates that the 500 GeV cut is

important for reaching sensitivity to higher gluino mass, while the 340 GeV cut is

needed to cover regions where the intermediate states are compressed. A 420 GeV cut

would not add significance in either direction, while a 580 GeV cut sacrifices control

region yield without substantially improving signal sensitivity.

Table 6.2 shows a summary of the signal regions used for this analysis. The

shorthand for regions is read out as follows: SR - (Njets)ij(jet pT cut) - (MΣ
J cut)

where ‘i’ means inclusive. For example, the signal region with at least 8 jets and a

340 GeV MΣ
J cut is labeled SR-8ij50-MJ340.

87



(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Expected exclusion contours in the 2-step (left) and pMSSM (right) planes
for signal region selections with MΣ

J > 340, 420, 500, 580 GeV.
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Signal region 8ij50 9ij50 10ij50

R = 0.4 jet |η| < 2.0 for all SRs

R = 0.4 jet pT > 50 GeV for all SRs

Njet ≥ 8 ≥ 9 ≥ 10

MΣ
J > 340 GeV and > 500 GeV for each case

Emiss
T /
√
HT > 4 GeV1/2 for all SRs

Table 6.2: Signal region definitions.

6.4.2 Leptonic Control Regions

Leptonic control regions (CRs) are used to normalize backgrounds from non-QCD

sources. To that end, two control regions are defined for each signal region, for a

total of 12 regions. Each of these two control regions targets a major background;

W → (`ν) + jets by requiring zero b-jets, and leptonically-decaying tt̄ by requiring

≥ 1 b-jets.

The control regions require exactly one lepton (electron or muon), using the defini-

tions outlined in Section 6.3. To increase the yield, the control regions for a signal re-

gion withNjet requires only (Njet−1) jets, with the relaxed cutEmiss
T /
√
HT > 3 GeV1/2.

The transverse mass (defined in Section 6.3.4) is limited to mT < 120 GeV to elim-

inate contamination from other sources, like potential signals. Otherwise we want

the events entering the control regions to resemble those entering the signal regions

as much as possible. To that end, leptons in the control regions are treated as jets

and included in quantities like HT and Emiss
T /
√
HT , as long as they pass the same

requirements jets must.

The summarized requirements on control regions are shown in Table 6.3. The

control regions are labeled in the same way as the signal regions, with the addition of

‘0eb’ for exactly zero b-jets or ‘1ib’ for at least one b-jet; i.e. CR-7ej50-1ib-MJ340

is a region with exactly 7 jets, at least one of which is a b-jet, and a MΣ
J cut at 340

GeV.
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Control regions

Trigger Six jets with pT > 45 GeV and |η| < 2.4

Lepton pT > 20 GeV

Lepton multiplicity Exactly one, ` ∈ e, µ
mT < 120 GeV

Jet pT > 50 GeV

Jet |η| < 2.0

Number of jets including lepton NSR − 1

b-jet multiplicity = 0 (W ) or ≥ 1 (tt̄)

MΣ
J Same as SR

Emiss
T /
√
HT > 3 GeV1/2

Table 6.3: Definitions of the control regions, which are used to normalized the main
non-QCD backgrounds.

6.4.3 Multijet Template Regions

The multijet background is estimated using a template method, covered in detail

in Section 6.5.2. The concept is to use the distribution of Emiss
T /
√
HT at a lower

jet multiplicity as a representative template of the multijet background at higher jet

multiplicity. ‘Template regions’ are defined by selecting exactly six jets and applying

cuts in Emiss
T /
√
HT . High Emiss

T /
√
HT template regions do the actual signal region

background estimates and extraction. Low Emiss
T /
√
HT template regions are used

for normalization. In addition, ‘validation regions’ that have only seven jets but are

otherwise identical to the signal regions are used to validate the template background

estimation and determine systematic uncertainties.

6.5 Standard Model Backgrounds

The new physics signature expected, based on the model predictions, is a large number

of jets from the heavy particle decay cascade combined with missing energy from the
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non-interacting LSP. Extracting a signal requires identifying which Standard Model

processes result in similar signatures and establishing their impact within the signal

regions. If a significant number of events remain after the background events that

leaked into the the signal regions are subtracted, we may have a discovery.

The dominant SM processes that produce background in the signal regions are

multijet, tt̄, and W+jets. The first source, the QCD multijet background, results in

Emiss
T primarily via mismeasurement of jets. The second and the third are referred to

as the leptonic background, from fully or semi-leptonic tt̄ decays or W or Z bosons

that decay leptonically in conjunction with jets. The Emiss
T comes from the neutrinos

produced in these decays. The leptonic background contributes events to the zero-

lepton signal regions when no actual e or µ is produced (Z → νν or W → τν with a

hadronically decaying τ), or when leptons are indeed produced but do not pass the

acceptance criteria and are not identified.

Different techniques are used to estimate these two classes of background. As

addressed in Section 6.4.1, events with such high jet multiplicity are not modeled

well in simulation so the multijet background uses a completely data-driven template

method. The leptonic backgrounds are simpler to simulate because comparatively

lower order is required in QCD calculations to achieve accuracy. Thanks to this

feature, the smaller backgrounds are determined solely by simulation and the larger

ones are simulated and then normalized to data. The mulijet templates themselves

require an estimation of the leptonic background so the leptonic methods will be

addressed first.

6.5.1 Leptonic Background

The leptonic background is dealt with using the leptonic control regions described

in Section 6.4.2 and summarized in Table 6.3. These regions are enriched in the

primary sources of background, namely tt̄ and W+jets, and designed to minimize
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contamination of the signal regions while maximizing the kinematic similarities to

them. The tt̄ and W+jets backgrounds are estimated using simulated events, then

normalized to the data using a combined fit. The systematic uncertainties in the

control and signal regions will cancel each other, assuming the kinematics are not too

different.

Each of the two control regions associated with a signal region, characterized by b-

jet multiplicity, manages one of the two main backgrounds; tt̄ events will tend to have

b-jets while W+jets events will not. In order to improve the yield, all control regions

require one fewer jet than their partner signal regions and have a looser Emiss
T /
√
HT

requirement. To ensure potential signals do not contaminate the control regions, a

maximum is set on transverse mass. Otherwise, though, the control region and signal

region selections are identical (beyond, of course, the one-lepton selection). To further

ensure that control region events look like signal region events, the selected electron

or muon is treated as a jet for the purposes of jet counting, jet reclustering, and

jet momentum calculations. The combination of these factors ensures that desired

kinematic alignment.

Yields for further less-dominant backgrounds are calculated using exclusively sim-

ulation. Subdominant processes include Z+jets, vector boson pairs (WW , WZ, ZZ),

tt̄ production with a W , Z, or Higgs boson, and single-top production.

Figures 6.9 (number of jets), 6.10 (MΣ
J ), and 6.11 (Emiss

T /
√
HT ) show the distri-

butions of various kinetic variables for the six Emiss
T /
√
HT > 3GeV1/2 control regions.

Distributions for a more complete set of variables are available in Appendix 7. Good

agreement is seen between data and simulation.

The leptonic background simulations are created using a variety of Monte Carlo

generators, as shown in Table 6.4. A brief outline of each can be found in Section 5.5.

In particular, top production is simulated using the POWHEG [92] or Madgraph [98] event

generator integrated with PYTHIA [93, 94] for parton showering and hadronization.
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Figure 6.9: The number of jets for the tt̄ and W+jets control regions for 7 (top), 8
(center) and 9 (bottom), with MΣ

J > 340 GeV.
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Figure 6.10: The sum of large-R jet mass MΣ
J for the tt̄ and W+jets control regions

for 7 (top), 8 (center) and 9 (bottom), with MΣ
J > 340 GeV.
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Figure 6.11: The distribution of Emiss
T /
√
HT for the tt̄ and W+jets control regions

for 7 (top), 8 (center) and 9 (bottom), with MΣ
J > 340 GeV.
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Boson (W , Z, diboson) production is simulated with Sherpa [97], which specializes

in multijet topologies in comparison with other MC generators. All MC samples are

reweighted so that their pileup distributions match the distribution observed in data.

The detector response is processed using a full simulation of the ATLAS detector

based on GEANT4 [99].

Background Baseline Generator

tt̄ POWHEG+PYTHIA6

W+jets Sherpa2.2

Z+jets Sherpa2.2

single top (Wt) POWHEG+PYTHIA6

single top (t−chan) POWHEG +PYTHIA6

tt̄+X Madgraph5+PYTHIA8

tt̄+H Madgraph aMC@NLO+PYTHIA8

diboson Sherpa

Table 6.4: Generators used for the central values for each of the SM backgrounds.
The ‘X’ in tt̄+X includes t, tt̄, W , Z and WW . See Section 5.5

6.5.2 Multijet Background

The data-driven template method for modeling the multijet background proceeds

as follows: First, data is collected in a template region with exactly six jets (Sec-

tion 6.4.3). Next, all of the SM leptonic backgrounds described in the previous section

are subtracted. The assumption that Emiss
T /
√
HT is invariant across jet multiplicity

allows the template distributions to be extrapolated to higher multiplicity. Finally,

the multijet background is predicted at signal region jet multiplicity by normalizing

the shape of the lower-multiplicity template. The low- Emiss
T /
√
HT (< 1.5 GeV1/2)

region is used for this process so that the signal region remains hidden.

The premise at the heart of the argument that Emiss
T /
√
HT is resistant to changes

in the number of jets is that Emiss
T in the multijet background is due to jet mis-
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measurement. Unfortunately, this assumption is not precisely true at lower jet mul-

tiplicities, and a template build straight from the six-jet distribution would fail, as

can be seen in Figure 6.12. The ratio of the higher multiplicity regions to the lowest

is far from flat.

The issue is that Emiss
T (Section 6.3), contains by definition energy from tracks

not associated with hard objects coming from the primary vertex. This definition is

useful in many ways (it deals with pileup well), but there is intrinsic Emiss
T in any

event from ‘soft’ tracks of neutral particles. This intrinsic Emiss
T is not related to jet

mis-measurement in any way, so some kind of fix must be developed.

Previous analyses using a multijet selection [63, 109, 110] solved the problem by

making templates in bins of HT . This analysis, however, sets a cut on MΣ
J , which

is strongly correlated with HT , as shown in Figure 6.13. Thus the analysis is always

choosing high HT , in effect skipping the need for the correction. The “closure” of

the template, or the extent to which data matches simulation, should be restored

simply by implementing the high MΣ
J requirement. Evidence of this effect is seen in

Figure 6.14: As the cut on MΣ
J becomes tight, the templates start to overlap. That

is, the templates for MΣ
J > 0, > 100, and > 200 GeV are quite separated, but the

templates for MΣ
J > 340, > 420, and > 500 coincide to within error.

Figure 6.15 puts this principle to the test. On the left are the template shapes

for various cuts on MΣ
J , including no cut at all. On the right, the template method

is applied and the multijet background is modeled. When the MΣ
J cuts are applied

the closure is much improved.

The results of the template method applied to the signal regions are shown in

Figure 6.16. The distribution of Emiss
T /
√
HT for events with at least 8, 9, and 10

jets is displayed. The dashed lines are the predicted yields at representative points

on the 2-step and pMSSM model grids, for which (m(g̃), m( ˜chi
0

1)) = (1200, 400)

GeV and (m(g̃), m( ˜chi
±
1 )) = (1200, 400) GeV respectively. After accounting for
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Figure 6.12: The distribution of Emiss
T /
√
HT at increasing jet multiplicities, prior to

any cut on MΣ
J . The ratios are far from steady, indicating that a template directly

from the six-jet region would be ill-advised.
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(right).
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MΣ
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all of the various backgrounds described above, the events in the signal regions are

well explained by SM processes. A small excess does seem to appear in the high-

Emiss
T /
√
HT bins for the higher jet multiplicities but, as will be shown in Section 6.7,

it turns out to be statistically insignificant when considered in the larger context

because of deficits in other nearby bins.

6.6 Systematic Uncertainty

Systematic uncertainties in this study have a variety of sources. Any prediction,

background or signal, using MC simulation is impacted by experimental systematics

on the resolution and energy scale of the jets and leptons, and by uncertainty due

to inefficiencies in the particle identification and reconstruction process. In addition,

there are uncertainties on the estimates of the SM background from theoretical sys-

tematics on the simulated cross-sections. Finally, any variation in the shape of the
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J > 500 GeV

Figure 6.15: The six-jet template region (left) and the seven-jet template validation
region (right) for various cuts on MΣ

J . Application of a cut on MΣ
J improves the

template prediction of the multijet background.
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Figure 6.16: Results of the template method in the six signal regions (without the
Emiss
T /
√
HT cut) for greater than 8, 9 and 10 jets. Shown is the distribution of

Emiss
T /
√
HT with leptonic backgrounds normalized to their post-fit values.
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multijet template is treated as another systematic uncertainty.

6.6.1 Experimental Systematics

The dominant experimental uncertainties are on the scale [123, 124] and resolution

[125, 126] of the energy and momentum measurements of jets. The jet energy scale

systematic is estimated by varying a set of key nuisance parameters5 and observing the

effect on jet energies. The jet energy resolution systematic is evaluated by smearing

the jet energies by a gaussian and extracting the width, determined from the difference

between the jet resolution measured in data and MC simulation.

Additional lower-impact sources of experimental uncertainty include the following:

The ATLAS luminosity uncertainty [76] affects signal yields and any MC background

predictions not normalized to data. All MC simulations come with a pileup uncer-

tainty due to potential mis-modeling of the interactions overlapping the hard scatter

event. Uncertainty in the lepton energy/resolution only impacts the signal region

yield through background measurements using the one-lepton control regions.

6.6.2 Theoretical Systematics

Predictions of the leptonic backgrounds to the signal and control regions all carry their

own theoretical systematics. These are estimated by comparing differences between

the event yields of different MC generators, by varying the input parameters used to

initialize the event within a single generator, and by comparing samples with differing

amounts of extraneous radiation from sources outside the hard scatter.

The dominant leptonic backgrounds are treated separately: For tt̄, the nominal

POWHEG+PYTHIA6 simulation is compared with POWHEG+Herwig and POWHEG+PYTHIA8

to examine the parton shower modeling, and with Madgraph5 aMC@NLO for the

5Nuisance parameters are parameters that are tangential in some way to the measurement. The
quantity of interest is treated as a Gaussian and the nuisance parameters are the width.
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matrix element generation. The uncertainty is computed from the difference in yield.

Comparison with samples which vary the amount of additional radiation (by e.g.

adding a pair of partons to the matrix element calculation) produces the largest

uncertainty, which can be greater than 70%. Uncertainties in W+jets production

are quantified by varying the factorization, renormalization, resummation, and jet

matching scales in the nominal Sherpa.

For the remaining simulated background systematics such comparisons are not

feasible, whether because variations are unavailable, too statistically limited, or sim-

ply not worth the effort to calculate. Instead a fixed global uncertainty, chosen

conservatively, is assigned to each background. The magnitudes are as follows: 50%

on diboson production, 40% on Z+jets, 30% on tt̄+X, and 30% on single top. Be-

cause each of these processes contributes minimally to the total leptonic background

in the signal regions, they are greatly outweighed by the above tt̄ systematics and the

uncertainties inherent in the multijet template method.

6.6.3 Multijet Template Systematics

The uncertainties on the data-driven prediction of the multijet background are quanti-

fied using closure tests of the template method. The closure test works like this: First,

the template is constructed in the appropriate 6-jet region and leptonic backgrounds

are subtracted, as described in Section 6.5.2. Next, closure regions are defined; regions

where little signal is expected. The template is applied to each closure region, the

multijet background is modeled, and the amount by which the yield differs between

the template prediction and data is the systematic uncertainty.

There are two categories of closure region. First, there are regions with jet mul-

tiplicity equal to that of the signal regions, but with Emiss
T /
√
HT below the signal

region cutoff. There are three closure regions for each signal region: Emiss
T /
√
HT ∈

(1.5, 2.0), (2.0, 2.5), (2.5, 3.5) GeV1/2. The second category contains the validation
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regions, which have exactly 7 jets and the same Emiss
T /
√
HT requirement as the signal

regions.

The closure tests use the results of a background-only fit, described in Section 6.7.

The fit output comes in the form of scale factors which are applied to the tt̄ and

W+jets components of the MC background and thus affect the template prediction.

The actual numerical systematic used for each signal region is taken to be the

maximum deviation from data in any of the closure regions that have the same or

lower jet multiplicity and the same MΣ
J requirement. For example, the systematic un-

certainty on the signal region SR-8ij50-MJ340, which has at least 8 jets and a cut at

MΣ
J > 340 GeV, is the largest deviation observed in the closure regions 8ij50-MJ340

(for all bins in Emiss
T /
√
HT ) and 7ej50-MJ340.

The complete list of uncertainties extracted from the closure tests is written in

Table 6.5 and shown visually in Figure 6.17. Table 6.6 presents the final multijet

template systematic, extracted from the maximum uncertainty registered each set of

closure regions.

6.6.4 Template Flavor

The multijet template method described so far does not require any selection on

b-jets. One might expect, however, that the jet flavor6 will have an impact on the

Emiss
T /
√
HT distribution because b-jets are more likely be associated with true Emiss

T

due to semi-leptonic decays of the b-hadrons. To explore this idea and to account for

differences in flavor composition of events, a ‘flavor template’ was created, in contrast

to the original ‘nominal’ template. The flavor template is comprised of a sum of two

sub-templates; one based on a region requiring no b-jets and one based on a region

requiring at least one, both otherwise identical in selection to the original template.

6‘Flavor’ refers to quark composition
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Figure 6.17: The degree of closure (after performing the background fit) observed
in each closure region. The prediction is given by the sum of the multijet template
prediction and the leptonic background. The solid lines are the predicted numbers
of events and the points are the observed numbers. The signal regions (4.0, ∞) for
8ij50, 9ij50 and 10ij50 are also included but are not considered in the calculation of
the systematic.
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N jets Emiss
T /
√
HT range / GeV1/2 Prediction Observation % difference

= 7 (1.5, 2.0) 25213.4 25414 -0.80
= 7 (2.0, 2.5) 11886.8 11741 1.23
= 7 (2.5, 3.5) 6150.3 6037 1.84
= 7 (4.0,∞) 1105.7 1021 7.66
≥ 8 (1.5, 2.0) 9984.5 10105 -1.21
≥ 8 (2.0, 2.5) 4716.8 4496 4.68
≥ 8 (2.5, 3.5) 2460.8 2280 7.35
≥ 9 (1.5, 2.0) 2333.3 2267 2.84
≥ 9 (2.0, 2.5) 1103.8 1052 4.69
≥ 9 (2.5, 3.5) 577.1 502 13.02
≥ 10 (1.5, 2.0) 453.9 443 2.41
≥ 10 (2.0, 2.5) 215.6 205 4.91
≥ 10 (2.5, 3.5) 112.7 99 12.13

(a) MΣ
J > 340 GeV

N jets Emiss
T /
√
HT range / GeV1/2 Prediction Observation % difference

= 7 (1.5, 2.0) 4075.4 4084 -0.21
= 7 (2.0, 2.5) 1799.9 1842 -2.34
= 7 (2.5, 3.5) 984.5 948 3.71
= 7 (4.0,∞) 243.2 232 4.61
≥ 8 (1.5, 2.0) 2412.0 2460 -1.99
≥ 8 (2.0, 2.5) 1067.8 1064 0.36
≥ 8 (2.5, 3.5) 593.5 552 7.00
≥ 9 (1.5, 2.0) 752.7 735 2.35
≥ 9 (2.0, 2.5) 334.7 327 2.30
≥ 9 (2.5, 3.5) 186.1 156 16.16
≥ 10 (1.5, 2.0) 193.1 180 6.78
≥ 10 (2.0, 2.5) 86.3 87 -0.84
≥ 10 (2.5, 3.5) 48.1 46 4.33

(b) MΣ
J > 500 GeV

Table 6.5: The degree of closure (after performing the background fit) observed in
each closure region. The prediction is given by the sum of the multijet template
prediction and the leptonic background.

Call the two templates Fb for the ‘flavor-blind’ original inclusive (0ib) template

and Fs for the new ‘flavor-split’ (0eb + 1ib) template. Table 6.7 shows that in fact

Fs predicts a larger uncertainty than Fb. This may be because Fs is overestimat-
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Region % difference

SR-7ej50-0ib-MJ340 7.66
SR-8ij50-0ib-MJ340 7.66
SR-9ij50-0ib-MJ340 13.02
SR-10ij50-0ib-MJ340 13.02

(a) MΣ
J > 340 GeV

Region % difference

SR-7ej50-0ib-MJ500 4.61
SR-8ij50-0ib-MJ500 7.00
SR-9ij50-0ib-MJ500 16.16
SR-10ij50-0ib-MJ500 16.16

(b) MΣ
J > 500 GeV

Table 6.6: Final multijet template systematic uncertainties.

Region Nominal Template Flavor Template Difference (%)

VR 7ej50 MJ340 484.88± 17.50 511.95± 18.54 -5.58
SR 8j MJ340 190.80± 6.89 215.66± 7.92 -13.03
SR 9j MJ340 44.34± 1.60 52.91± 1.97 -19.31

SR 10j MJ340 8.66± 0.31 11.03± 0.42 -27.38
VR 7ej50 MJ500 112.77± 9.79 119.01± 10.32 -5.54

SR 8j MJ500 65.48± 5.68 74.92± 6.58 -14.41
SR 9j MJ500 20.26± 1.76 24.15± 2.15 -19.21

SR 10j MJ500 5.23± 0.45 6.55± 0.59 -25.31

Table 6.7: The predicted multijet background as calculated by two methods.
The ‘nominal’ template Fb, extracted from inclusive b-jet regions (0ib), and the
‘flavor-split’ template Fs which sums templates created with exactly 0 b-jets (0eb)
and at least 1 b-jet (1ib). The percentage difference is calculated as (nominal-
flavour)/nominal. Created using 12.1 pb−1 of data.

ing the relative contribution of heavy flavor to the Emiss
T in comparison to jet mis-

measurement. Using Fs actually pulls the prediction farther away from observation

because, as can be seen in Table 6.5, Fb already overshoots the data slightly.

It is reasonable to expect that the differences in Table 6.7 come from overesti-

mating the additional systematic uncertainty. To find a more realistic estimate, the
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templates are interpolated via a linear combination of Fb and Fs where the final

template is given

T = f × Fb + (1− f)× Fs

where f ∈ (0, 1) is a free parameter optimized separately in each signal region. The

value of the optimal f is determined using the χ2 distributions of the signal regions:

χ2 =
(E − T )2

σ2

where E is the expected data in the region and σ2 is the quadratic sum of the error

on the data and the error on the template prediction. The value of f is chosen to

minimize the χ2 value, a process that is, unfortunately, not straightforward because

the errors in T depend on f. The flavor uncertainty for each closure region, shown

in Table 6.8, is the difference in yield between the nominal (f = 1) template and T .

Just as before, the largest deviation is chosen as the flavor systematic in each signal

region (Table 6.9).

6.7 Statistical Methods and Results

In order to ensure that the background predictions accurately represent the distri-

butions seen in experimental results, fitting techniques are used to normalize the

background profiles to measured data. Three such fits are employed in this analysis:

First, for each signal region, a simultaneous fit is applied to the corresponding con-

trol regions and template region to extract the background estimate. The second and

third fits take this background fit and extend it to include constraints on the signal

using two configurations, one targeting a potential discovery of new physics and one

aiming to set exclusion limits on SUSY parameters. These fits are carried out using

the HistFitter package [127].
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N jets Emiss
T /
√
HT range / GeV1/2 Prediction - Observation % difference

= 7 (1.5, 2.0) 2.1 0.01
= 7 (2.0, 2.5) 35.8 0.30
= 7 (2.5, 3.5) 25.7 0.42
= 7 (4.0,∞) 5.4 0.49
≥ 8 (1.5, 2.0) 13.9 0.14
≥ 8 (2.0, 2.5) 8.2 0.17
≥ 8 (2.5, 3.5) 5.14 0.21
≥ 9 (1.5, 2.0) 14.7 0.63
≥ 9 (2.0, 2.5) 8.8 0.80
≥ 9 (2.5, 3.5) 2.9 0.50
≥ 10 (1.5, 2.0) 10.4 2.30
≥ 10 (2.0, 2.5) 7.2 3.34
≥ 10 (2.5, 3.5) 3.2 2.88

(a) MΣ
J > 340 GeV

N jets Emiss
T /
√
HT range / GeV1/2 Prediction - Observation % difference

= 7 (1.5, 2.0) 8.9 0.22
= 7 (2.0, 2.5) 0 0
= 7 (2.5, 3.5) 11.9 1.21
= 7 (4.0,∞) 9.0 3.72
≥ 8 (1.5, 2.0) 0 0
≥ 8 (2.0, 2.5) 22.9 2.14
≥ 8 (2.5, 3.5) 6.5 1.09
≥ 9 (1.5, 2.0) 11.8 1.57
≥ 9 (2.0, 2.5) 9.1 2.72
≥ 9 (2.5, 3.5) 2.3 1.20
≥ 10 (1.5, 2.0) 3.3 1.69
≥ 10 (2.0, 2.5) 0.7 0.81
≥ 10 (2.5, 3.5) 4.0 8.3

(b) MΣ
J > 500 GeV

Table 6.8: Template flavor systematics, optimized for each region via a linear combi-
nation of the flavor-blind ‘nominal’ template and the flavor-split template.
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Region % difference

SR-7ej50-0ib-MJ340 0.49
SR-8ij50-0ib-MJ340 0.21
SR-9ij50-0ib-MJ340 0.80
SR-10ij50-0ib-MJ340 3.34

(a) MΣ
J > 340 GeV

Region % difference

SR-7ej50-0ib-MJ340 3.72
SR-8ij50-0ib-MJ340 2.14
SR-9ij50-0ib-MJ340 2.72
SR-10ij50-0ib-MJ340 8.3

(b) MΣ
J > 500 GeV

Table 6.9: Summary of the maximal flavor systematics for each signal region.

6.7.1 Background Fit

The background-only fit serves to normalize the tt̄ and W+jets background estimates

from MC simulation in the control regions. The template regions also rely on this

normalization, so for self-consistency the fit is conducted simultaneously on the two

CRs and one TR corresponding to each SR. HistFitter builds a likelihood function

from the product of Poisson probability functions, treating the various systematic

uncertainties as nuisance parameters. The likelihood function [128] is:

P(nc, ap|µs, αp) =
∏
c

Pois(nc|vc)×G(L0|λ,∆L)×
∏
p

fp(ap|αp) (6.1)

where the third term fp(ap|αp) describes the way an auxiliary measurement ap con-

strains the nuisance parameter (in this case the systematic uncertainty) αp. The

middle term G(L0|λ,∆L) describes the available luminosity λ via a Gaussian prob-

ability distribution centered at the measured luminosity L0 with uncertainty ∆L.

The luminosity at the time of writing was measured at 18.2± 0.7 fb-1, derived using

methods similar to Ref. [76]. If a channel c (in this case the signal or control region)

expects to see vc events, the observed events nc form a Poisson distribution:
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SR 8ij-MJ340 9ij-MJ340 10ij-MJ340 8ij-MJ500 9ij-MJ500 10ij-MJ500
µtt̄ 0.91± 0.05 0.87± 0.08 0.92± 0.15 0.79± 0.10 0.85± 0.14 0.83± 0.23
µW+jets 0.54± 0.15 0.54± 0.24 0.66± 0.51 0.48± 0.21 0.30± 0.30 0.16± 0.65

Table 6.10: Scale factors obtained from the background-only fit for each signal region

Pois(nc|vc) =
vnc
c

nc!
e−vc (6.2)

Here, the total expected number of events vc comes from summing over multiple

backgrounds b:

vc =
∑
b

ληb,c(α)yb,cµb (6.3)

The yield yb,c is the number of events in channel c from background b per unit inte-

grated luminosity expected before scaling. The normalization ηb,c(α) is the pre-factor

governing the change in yield due to a systematic uncertainty α. That is, η(0) = 1

because no systematic is applied. At the other extreme, η(1) and η(−1) are given by

the full uncertainty values above and below, as determined in Section 6.5.1. As the

weighting of α varies, so does this normalization.

The scale factors for each background µb (for b ∈ (tt̄,W + jets)) are the object of

the background fit. Backgrounds not included in the fit—the subdominant leptonic

processes—are given scale factors of exactly 1. Running the fit amounts to mini-

mizing the likelihood function P and reading out µb, shown in Table 6.10. These

are combined with the predictions from MC simulation and the multijet template to

obtain the prediction of the total background in each signal region.

Tables 6.11, 6.12, and 6.13 are the end results of the background fit for each signal

region and the corresponding control regions, comparing the predicted background

count to the observed yield. As expected, the dominant sources of background are

the multijet (for the SRs), tt̄, and W+jets channels. Figure 6.18 shows the agreement

of SM prediction and data in all control regions after the background fit.
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Region SR-8ij-MJ340 CR-7ej-0eb-MJ340 CR-7ej-1ib-MJ340

Observed events 424 173 604

Fitted bkg events 467.14± 39.74 172.76± 13.15 604.07± 24.62

Fitted ttH events 1.68± 0.50 0.71± 0.21 6.72± 2.01
Fitted ttX events 8.88± 2.65 3.10± 0.93 22.71± 6.78
Fitted diboson events 4.95± 2.46 17.04± 8.48 4.98± 2.48
Fitted st events 9.65± 4.27 6.73± 2.38 32.80± 11.18
Fitted Z events 9.49± 3.77 3.30± 1.31 1.16± 0.46
Fitted Wjets events 12.41± 5.15 61.10± 25.03 23.49± 9.92
Fitted ttbar events 107.99± 28.79 80.78± 18.63 512.21± 31.05
Fitted multijet events 312.10± 28.71 0.00± 0.00 0.00± 0.00

Region SR-8ij-MJ500 CR-7ej-0eb-MJ500 CR-7ej-1ib-MJ500

Observed events 141 40 107

Fitted bkg events 153.28± 16.99 39.99± 6.32 107.07± 10.35

Fitted ttH events 0.42± 0.12 0.08± 0.02 0.94± 0.28
Fitted ttX events 3.14± 0.94 0.73± 0.22 5.27± 1.57
Fitted diboson events 1.27± 0.63 4.74± 2.37 2.09± 1.04
Fitted st events 3.48± 1.48 1.26± 0.70 7.98± 3.16
Fitted Z events 3.44± 1.37 0.74± 0.30 0.24± 0.09
Fitted Wjets events 4.95± 3.12 17.41± 10.48 4.60± 2.83
Fitted ttbar events 29.21± 15.74 15.04± 7.73 85.94± 11.79
Fitted multijet events 107.38± 8.69 0.00± 0.00 0.00± 0.00

Table 6.11: Predicted yield in each background channel after applying the
background-only fit for the 8-jet signal regions and corresponding control regions.

The signal region results are summarized in the conclusive table for this study,

Table 6.14, which compares each fitted background yield to the observed data. This

information is presented graphically in Figure 6.19. No signal region displays any

significant excess over the SM expectations; all observed event counts are consistent

with the predicted background. There is no SUSY to be found here.

6.7.2 Discovery Fit

Using only the background fit, no excess above the SM prediction was seen. A

discovery fit serves to quantify what new physical processes are feasible or can be
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Figure 6.18: Summary plot comparing the SM prediction to data for the control
regions.
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gions. No significant excess is observed
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Region SR-9ij-MJ340 CR-8ej-0eb-MJ340 CR-8ej-1ib-MJ340

Observed events 99 57 210

Fitted bkg events 110.33± 16.11 57.05± 7.55 209.94± 14.51

Fitted ttH events 0.46± 0.14 0.21± 0.06 2.61± 0.78
Fitted ttX events 2.95± 0.88 1.21± 0.36 10.25± 3.06
Fitted diboson events 0.50± 0.25 7.23± 3.60 2.22± 1.10
Fitted st events 1.35± 1.15 1.87± 0.72 11.40± 4.06
Fitted Z events 1.75± 0.69 1.15± 0.46 0.21± 0.08

Fitted Wjets events 1.91+2.50
−1.91 19.45± 18.29 4.73± 4.60

Fitted ttbar events 28.67± 13.21 25.93± 15.99 178.53± 16.41
Fitted multijet events 72.75± 10.20 0.00± 0.00 0.00± 0.00

Region SR-9ij-MJ500 CR-8ej-0eb-MJ500 CR-8ej-1ib-MJ500

Observed events 48 16 56

Fitted bkg events 47.89± 11.17 15.98± 3.42 55.92± 7.52

Fitted ttH events 0.14± 0.04 0.04± 0.01 0.49± 0.15
Fitted ttX events 1.33± 0.40 0.39± 0.12 3.10± 0.93
Fitted diboson events 0.07± 0.04 2.73± 1.38 1.65± 0.82

Fitted st events 0.49+0.61
−0.49 0.66± 0.24 2.57± 1.43

Fitted Z events 0.69± 0.27 0.35± 0.14 0.04± 0.01

Fitted Wjets events 0.65+1.22
−0.65 4.57+5.47

−4.57 1.07+1.39
−1.07

Fitted ttbar events 11.11± 10.04 7.24± 4.83 47.00± 8.18
Fitted multijet events 33.41± 5.57 0.00± 0.00 0.00± 0.00

Table 6.12: Predicted yield in each background channel after applying the
background-only fit for the 9-jet signal regions and corresponding control regions.

ruled out, aiming to be as generic as possible. In this case, the lack of discovery

makes it a misnomer, so ‘model-independent exclusion fit’ is perhaps a more suitable

term.

Again each signal region is considered separately, and the same backgrounds and

uncertainties from the background-only fit are used. On top of this, however, the fit

conducts a scan of signal strengths to set an upper limit on the cross section of new

physics allowed given the results observed in data. Control regions are assumed to

be uncontaminated by signal. The outputs are the 95% confidence level (CL) upper

limits on the visible cross section 〈εσ〉95
obs and number of signal events S95

obs, shown in
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Region SR-10ij-MJ340 CR-9ej-0eb-MJ340 CR-9ej-1ib-MJ340

Observed events 22 15 64

Fitted bkg events 23.44± 6.06 14.99± 3.76 63.99± 8.01

Fitted ttH events 0.08± 0.02 0.04± 0.01 0.69± 0.21
Fitted ttX events 0.74± 0.22 0.32± 0.10 3.60± 1.08
Fitted diboson events 0.00± 0.00 1.85± 0.93 0.86± 0.43
Fitted st events 0.41± 0.30 0.27± 0.20 3.17± 1.07
Fitted Z events 0.26± 0.10 0.20± 0.08 0.03± 0.01

Fitted Wjets events 0.65+0.66
−0.65 5.60± 5.49 1.57+1.58

−1.57

Fitted ttbar events 7.21± 5.84 6.72± 3.81 54.07± 8.57
Fitted multijet events 14.09± 2.06 0.00± 0.00 0.00± 0.00

Region SR-10ij-MJ500 CR-9ej-0eb-MJ500 CR-9ej-1ib-MJ500

Observed events 15 5 22

Fitted bkg events 12.52± 4.19 5.00± 2.08 22.01± 4.70

Fitted ttH events 0.01± 0.00 0.01± 0.00 0.16± 0.05
Fitted ttX events 0.47± 0.14 0.16± 0.05 1.40± 0.42
Fitted diboson events 0.00± 0.00 1.33± 0.68 0.81± 0.40
Fitted st events 0.00± 0.00 0.14± 0.12 1.54± 0.52
Fitted Z events 0.14± 0.05 0.11± 0.05 0.02± 0.01

Fitted Wjets events 0.09+0.56
−0.09 0.61+3.89

−0.61 0.17+1.09
−0.17

Fitted ttbar events 3.24+4.03
−3.24 2.63+3.39

−2.63 17.91± 5.07
Fitted multijet events 8.57± 1.59 0.00± 0.00 0.00± 0.00

Table 6.13: Predicted yield in each background channel after applying the
background-only fit for the 10-jet signal regions and corresponding control regions.

Signal region
Fitted background

Observed events
Multijet Leptonic Total

SR-8j50-MJ340 312± 29 155± 30 467± 40 424
SR-9j50-MJ340 73± 10 38± 14 110± 16 99
SR-10j50-MJ340 14.1± 2.1 9.3± 5.9 23.4± 6.1 22
SR-8j50-MJ500 107.4± 8.7 46± 16 153± 17 141
SR-9j50-MJ500 33.4± 5.6 14± 10 48± 11 48
SR-10j50-MJ500 8.6± 1.6 4.0± 4.1 12.5± 4.2 15

Table 6.14: The expected post-fit SM background separated into multijet and leptonic
contributions and the observed number of events from data. No significant excess is
observed.
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Signal Region 〈εσ〉95
obs[fb] S95

obs S95
exp

SR 8j50 MJ340 3.5 64 82+20
−20

SR 9j50 MJ340 1.7 32 35+14
−4

SR 10j50 MJ340 1.1 19 19+1
−0

SR 8j50 MJ500 1.9 34 41+13
−8

SR 9j50 MJ500 1.6 29 27+8
−6

SR 10j50 MJ500 0.83 15 12+4
−2

Table 6.15: Left to right: 95% confidence level upper limits on the visible cross
section 〈εσ〉95

obs and on the true number of signal events S95
obs. Finally, S95

exp) is the 95%
confidence level upper limit on the total number of signal events, given the expected
number of background events.

Table 6.15.

6.7.3 Exclusion Fit

The final step of the analysis is to address the results in the context of the theoretical

models that prompted the search in the first place. Because there was no new physics

discovery, this amounts to setting exclusion limits on the parameters of each model.

To accomplish this, the signal region is added to the background fit, creating a new

scale factor µs and signal yield ns. Each signal point on each grid becomes a new

part of the sum vc from Equation 6.3 with µs = 1. Then the fit asks if that point can

be excluded.

To make that judgment, the CLs convention [129] is followed, which determines

the exclusion power of the hypothesis by examining how consistent the data is with

the background. The p-value7 assigned to the signal plus background case, p1, is

normalized by the background-only p-value p0. For each signal point in each model,

the significance Z = erf−1(1− p1) is determined, and the point is excluded at a 95%

confidence level if Z > 1.64 [129].

7The p-value is the probability of obtaining a more extreme result than that observed. It is used
to express the significance of a result
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The resultant exclusion contours are shown in Figure 6.20. At each point, the

signal region with the best expected limit is chosen—different signal regions contribute

to different parts of the parameter space, with the looser signal regions tending to

contribute more at low gluino mass whereas the tighter regions contributed most to

setting the high gluon mass limit. For the 2-step model gluino masses are excluded

below 1600 GeV, and for the pMSSM slice gluino masses are excluded below 1500

GeV, improving upon the 2015 multijet analysis’ gluino mass limits of 1400 GeV

for each model [63]. Both of these results significantly extend the limits set by all

previous studies, contributing to the narrowing of available SUSY parameter space.
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Figure 6.20: The 95% confidence level exclusion contours for the 2-step (top) and
pMSSM (bottom) models. Everything below and to the left of the lines is excluded.
The dotted red lines bracketing the observed exclusion represent the result of shifting
the signal cross section by ±1σ. The yellow band bracketing the expected exclusion
represents the ±1σ variation of the expected limit. The shaded grey region shows
the exclusion observed by the previous multijet analysis [63].
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6.8 Summary

This chapter presented a search for supersymmetric particles in 18.2 fb−1 of 13 TeV

proton-proton collisions produced at the LHC and collected by ATLAS. The events

investigated featured many jets, with signal regions requiring ≥ 8, 9, and 10 jets. As

a result, the search is distinct from many other similar SUSY searches, which require

that events contain a large amount of missing energy to stand out from the back-

ground. To allow for relatively low thresholds on Emiss
T the QCD multijet background

is determined using a data-driven template method that takes advantage of the in-

variance of Emiss
T /
√
HT over changes in jet multiplicity. The multijet background is

characterized in events with fewer jets and then extrapolated to events with more

jets. Other backgrounds are accounted for using simulation, with the largest con-

tributors fitted to data. Results show no excess events over the Standard Model

prediction, and are analyzed in the context of two SUSY models, the 2-step and a

slice of the pMSSM. Limits are set on gluino production for each: the two-step model

excludes gluino masses below 1600 GeV and the pMSSM-inspired model excludes

gluino masses below 1500 GeV. The limit contours extend significantly beyond those

of previous analyses, demonstrating the power of this search.
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Chapter 7

Conclusion

We looked at each other for the last time; nothing is as eloquent as nothing.

—David Mitchell, Cloud Atlas

Collisions at the LHC are exploring fundamental particle dynamics at never-

before-reached energy scales. Years of data collection by ATLAS and other experi-

ments at CERN have made available a veritable trove of information. The power of

the Standard Model as a description of fundamental physics has been verified by the

discovery of the Higgs boson and refined by the subsequent program of study that

has measured particle properties and cross-sections to astounding precision. These

successes have demonstrated the efficacy of direct detection methods—the youthful

mind’s desire to break things apart to see what lies inside.

Unfortunately investigations into potential new phenomena beyond the Standard

Model have not yet yielded the anticipated bounty. This thesis presented a search for

supersymmetric particles in final states with a large number of jets. The uniqueness

of events with such high jet multiplicity allowed the analysis to reach regions of SUSY

parameter space untouched by other searches, which tend to require large missing en-

ergy. Like the searches that came before it, however, this one found no significant

deviation from the Standard Model predictions. The success of the combined SUSY

program at ATLAS has come not in the discovery of a new particle pantheon, but in
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the comprehensive limits set across a wide range of theoretical models. The search

presented here examined two different models, the 2-step and pMSSM slice, signifi-

cantly extending previous constraints on gluino, neutralino, and chargino masses.

Null results can feel discouraging, but looking forward there are still many searches

to be done and many places where SUSY might still be found. Collisions are ongoing

at the LHC at the time of writing, and will continue until a long shutdown for upgrades

begins in 2019. Further SUSY analyses will benefit from the library of limits set by

their predecessors and simply from more data. As the quantity of data available

for analysis increases, new searches for heavy particles with very small cross-sections

become viable. The signal of the Higgs boson itself proved difficult to discern above

all the noise, so perhaps the discovery of SUSY particles will require a similar brute-

force approach. Perhaps SUSY particles are not accessible to the LHC. Perhaps,

despite its aesthetic appeal and solutions to several outstanding problems, SUSY just

does not describe nature.

If I could return to the same classroom I visited in the introduction, after seeing

a particle search through from start to finish, I would have a clear answer for the

inquisitive rock-smasher. Picking apart the pieces of a particle collision is rewarding

because it occurs at the frontier of knowledge, and because every result is a part of

a much larger whole.
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Appendix A: The Particle Spectra of the pMSSM

Below are additional particle spectra for the phenomenological minimal supersym-

metric extension to the Standard Model (pMSSM), as in Figure 6.5. The purpose

of these spectra is to discern a pattern among potential pMSSM models in order to

create a ‘slice’ of pMSSM that is useful for interpretation of the results of the search.

These points are characterized by a LSP bino near the Higgs or the Z pole mass, light

higgsinos, and a gluino around 1.2 TeV.
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Figure 1: Particle spectra for a sample of potential SUSY models which are excluded
by the multijet analysis and not excluded by any other analysis. Circled particles are
the gluino, Higgsinos, and the bino LSP.
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Appendix B: Control Region Variables

This appendix supplements the presentation of various kinetic variables for the six

control regions in Section 6.5.1. The purpose of these plots is to compare the dis-

tribution of each variable in Monte Carlo simulation and in data to ensure that the

control regions are suitably well-modeled for use in mitigating background. Good

agreement is seen between data and simulation for each variable. The plots shown

are as follows:

• Number of good jets, Figures 6.9 and 2

• MΣ
J , Figures 6.10 and 3

• Emiss
T /
√
HT , Figures 6.11 and 4

• Leading jet pT , Figures 5 and 6

• Lepton pT , Figures 7 and 8

• Emiss
T , Figures 9 and 10

• HT , Figures 11 and 12
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Figure 2: The number of jets for the tt̄ and W+jets control regions for 7 (top), 8
(center) and 9 (bottom), with MΣ

J > 500 GeV.
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Figure 3: The sum of large-R jet mass MΣ
J for the tt̄ and W+jets control regions for

7 (top), 8 (center) and 9 (bottom), with MΣ
J > 500 GeV.
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Figure 4: The distribution of Emiss
T /
√
HT for the tt̄ and W+jets control regions for

7 (top), 8 (center) and 9 (bottom), with MΣ
J > 500 GeV.
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Figure 5: The distribution of leading jet pT for the tt̄ and W+jets control regions for
7 (top), 8 (center) and 9 (bottom), with MΣ

J > 340 GeV.
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Figure 6: The distribution of leading jet pT for the tt̄ and W+jets control regions for
7 (top), 8 (center) and 9 (bottom), with MΣ

J > 500 GeV.
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Figure 7: The distribution of lepton pT for the tt̄ and W+jets control regions for 7
(top), 8 (center) and 9 (bottom), with MΣ

J > 340 GeV.

141



 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10

210

, 13 TeV1− = 18.2 fbintL
CR1l-7ij50-0eb-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(a)

 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10

210
, 13 TeV1− = 18.2 fbintL

CR1l-7ij50-1ib-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(b)

 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10

, 13 TeV1− = 18.2 fbintL
CR1l-8ij50-0eb-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(c)

 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10

210
, 13 TeV1− = 18.2 fbintL

CR1l-8ij50-1ib-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(d)

 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10
, 13 TeV1− = 18.2 fbintL

CR1l-9ij50-0eb-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(e)

 [GeV]l
t

p

N
um

be
r 

of
 E

ve
nt

s 
/ B

in

1−10

1

10

, 13 TeV1− = 18.2 fbintL
CR1l-9ij50-1ib-MJ500

InternalATLAS
Data Wsherpa
+Htt Zsherpa

Diboson  ql, ll→ tt
Single top Total Background
+Xtt

 [GeV]
T

Lepton p
0 100 200 300 400 500 600 700 800

D
at

a 
/ S

M

0
0.5

1

1.5
2

(f)

Figure 8: The distribution of lepton pT for the tt̄ and W+jets control regions for 7
(top), 8 (center) and 9 (bottom), with MΣ

J > 500 GeV.
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Figure 9: The distribution of Emiss
T for the tt̄ and W+jets control regions for 7 (top),

8 (center) and 9 (bottom), with MΣ
J > 340 GeV.
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Figure 10: The distribution of Emiss
T for the tt̄ and W+jets control regions for 7 (top),

8 (center) and 9 (bottom), with MΣ
J > 500 GeV.
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Figure 11: The distribution of HT for the tt̄ and W+jets control regions for 7 (top),
8 (center) and 9 (bottom), with MΣ

J > 340 GeV.
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Figure 12: The distribution of HT for the tt̄ and W+jets control regions for 7 (top),
8 (center) and 9 (bottom), with MΣ

J > 500 GeV.
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Appendix C: Signal Region Reach

The signal regions are split by the number of jets and by the cut on MΣ
J . The limit

contours (Figure 6.20) are constructed by considering each point on the signal grid

of each SUSY model and selecting the signal region that has the best-expected CLs

value [129]. The CLs value is the adjusted confidence level, taking into account how

well the data matches the only-background hypothesis. Figure 13 shows the best-

expected CLs value for each point in the 2-step and pMSSM grids. Once the proper

region is selected, the exclusion fit is run on each signal point to form the complete

exclusion contour.
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Figure 13: The signal region yielding the best-expected CLs value for each point on
the 2-step grid (top) and the pMSSM grid (bottom).
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