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spin-independent couplings, and include the first calculation of phonon excitation through
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nuclear recoils, and clarify the role of Umklapp processes, which can dominate the single

phonon production rate for dark matter heavier than an MeV. Our results highlight the

complementarity between various search channels in probing different kinematic regimes of

dark matter scattering, and provide a common reference to connect dark matter theories

with ongoing and future direct detection experiments.
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1 Introduction

Direct detection has been playing a central role in the quest for the particle nature of

dark matter (DM). Over the past few decades, tremendous progress has been made at a

range of experiments focused on nuclear recoil signals, including ANAIS [1], CRESST [2–4],

DAMA/LIBRA [5], DAMIC [6, 7], DarkSide-50 [8], DM-Ice [9], KIMS [10], LUX [11–13],

SABRE [14], SuperCDMS [15–20], and XENON1T [21, 22]. While these experiments have

excluded much of the parameter space for DM heavier than roughly a GeV, much less

is known about lighter DM. For sub-GeV DM, conventional nuclear recoil searches lose

sensitivity due to kinematic mismatch, as only a small fraction of DM’s kinetic energy can

be deposited on the heavier nuclei. Even with next generation detectors sensitive to sub-eV

energy depositions, nuclear recoils can at best probe DM masses down to O(100 MeV).

To cover a broader mass range, electrons have been considered as an alternate pathway

to detecting light DM. A variety of targets have been studied, including noble gas atoms

which can be ionized with O(10 eV) energy deposition, semiconductors where electron

transitions can happen across O(eV) band gaps [23–32], as well as systems with O(meV)

gaps like superconductors [33–35] and Dirac materials [36–38]. Electron transitions can

potentially extract all of DM’s kinetic energy, and thus constitute a more efficient search
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channel than nuclear recoils. For example, semiconductor targets can probe DM masses

down to O(MeV).

When the energy deposition is below the band gap, electron transitions are kinemat-

ically forbidden. However, there are condensed matter systems with collective excita-

tions that can couple to the DM. For example, collective excitations in superfluid helium

(phonons and rotons) are sensitive to O(meV) energy depositions, especially via phonon

pair production [39–42]. In a crystal target, the active degrees of freedom below the elec-

tronic band gap are acoustic and optical phonons — quanta of collective oscillations of

atoms/ions. Direct excitation of single phonons in crystals has been recently proposed

as a new search channel for light DM [43, 44]. Optical phonons typically have energies of

O(10-100 meV), and can be excited by DM as light as O(10 keV). Acoustic phonons are gap-

less and, assuming an O(meV) detector threshold, can also probe DM down to O(10 keV).

All these detection channels do not exist in isolation. Depending on the DM mass

and couplings to Standard Model (SM) particles, it may either cause nuclear recoils, or

induce electron transitions, or excite phonons in the same target material. Thus, when

designing direct detection experiments, an important consideration should be to search for

DM across multiple channels in parallel. The kinematic interplay between several channels

that we will discuss in detail is illustrated in figure 1.

On the theory side, most of the basic ingredients for the rate calculation are known.

However, they have been developed in separate contexts, and at first sight look very differ-

ent for different detection channels. In our opinion, it would be much more convenient to

have a common theoretical framework for all these calculations. This will not only facilitate

the comparison of target materials across various existing and proposed search channels,

but also provide the necessary calculation tools when new search channels are considered

in the future.

It is the purpose of this paper to lay out such a formalism, focusing on spin-independent

(SI) DM interactions.1 As we will see, for each detection channel, the calculation is fac-

torized into a particle physics model-specific part and a target response-specific part. The

latter is encoded in a dynamic structure factor, to be computed by quantizing the particle

number density operators in the Hilbert space of the excitations under study. We show

how this is done in three cases — nuclear recoils, electron transitions and single phonon

excitations. While the first two are relatively simple, and our calculation is mostly a formal

rederivation of known results, the phonon calculation presented here contains new aspects.

Our general framework allows us to derive single phonon excitation rates for arbitrary SI

couplings from first principles, such as phonon excitation by coupling to electrons.

In addition to deriving general rate formulae in this unified framework, we also aim to

clarify various conceptual and technical issues in direct detection calculations, and present

new results that highlight some previously overlooked experimental prospects. For nu-

clear recoils, we clarify the range of validity of the standard calculation. For electron

transitions, we go beyond the commonly made isotropic approximation. In fact, there

1The idea of treating various detection channels in a common framework was previously advocated in

ref. [45], where the focus was on DM nuggets. Here we follow the same spirit and develop a formalism for

calculating direct detection rates for general DM models, assuming a point-like DM particle.
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Figure 1. Illustration of kinematic regimes probed via the three detection channels considered

in this paper. For an incoming DM particle with velocity v = 10−3, the momentum transfer q and

energy deposition ω are bounded by ω ≤ qv − q2/2mχ, shown by the shaded regions for three DM

masses. Nuclear recoils require ω = q2/2mN for a given type of nucleus, shown by the solid lines for

helium and several elements in existing or proposed crystal targets. Standard calculations assuming

scattering off individual nuclei break down below a few meV (a few hundred meV) for superfluid He

(crystal targets), where we truncate the lines. Electron transitions can be triggered for ω above the

band gap, which is O(eV) for typical semiconductors, as shown by the dashed line. The end point

at q ∼ 10 keV corresponds to a few times αme, above which valence electron wavefunctions are

suppressed, and only (semi-)core electrons can contribute (which requires ω to be much higher than

the band gap). Single phonon excitations are relevant for ω . O(100 meV) in typical crystals, as

shown by the dotted line. The momentum transfer can be up to q ∼ √mNωph ∼ O(100 keV) with

ωph the phonon energies, above which the rate is suppressed by the Debye-Waller factor. We see that

a GeV-mass DM can be probed by all three channels; a 10 MeV DM is out of reach in conventional

nuclear recoil searches, but can be searched for via electron transitions in semiconductors and single

phonon excitations in crystals; a sub-MeV DM cannot even trigger electron transitions in eV-gap

materials, but can still be detected via single phonon excitations.

exist simple materials with large anisotropies. As an example, we consider boron nitride

(BN) with a hexagonal crystal structure, and O(eV) band gap, and show that the ex-

pected rate can vary by ±(10 - 40) % during a day as the DM wind enters from different

directions. Such daily modulation signals have been pointed out previously for electron

transitions in graphene [46], carbon nanotubes [47] and Dirac materials such as ZrTe5 and

BNQ-TTF [37, 38], and for single phonon excitations in sapphire [44] where they help

distinguish signal from background. Here we show that also O(eV) band gap three dimen-
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sional semiconductors, like BN, can exhibit daily modulation.2 Finally, for single phonon

excitations, we extend the rate calculation to DM heavier than an MeV, where the DM’s

de Broglie wavelength is shorter than the typical lattice spacing, and Umklapp processes

can contribute significantly. We point out an interesting interplay with nuclear recoils, and

demonstrate the complementarity between the two channels. We also compute the phonon

production rate for generic couplings to the proton, neutron and electron, extending pre-

vious results for dark photon mediated interactions.

We focus on the theoretical framework in the present work; in a companion paper [51],

we apply the results presented here to carry out a comparative study of many candidate

target materials, and discuss strategies to optimize the search across multiple channels.

We also note that there are additional detection channels beyond those we discuss in detail

here (e.g. excitation of molecular states [52–54], multi-excitation production in superfluid

helium [39–42]), which have been pursued and can be studied in the same framework.

2 General framework for spin-independent dark matter scattering

In a direct detection event, a non-relativistic DM particle, χ, deposits a certain amount

of energy, and triggers a transition |i〉 → |f〉 in the target system. We assume the target

system is initially prepared in an energy eigenstate |i〉 (usually the ground state) and, as

usual, treat the incoming and outgoing DM particles as momentum eigenstates |p〉, |p′〉,
with p = mχv, p′ = p− q. For a given incoming velocity v and momentum transfer (from

the DM to the target) q, the energy deposition is

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ
= q · v − q2

2mχ
. (2.1)

Here and in what follows, we denote q ≡ |q|, where q is the momentum 3-vector. Note

that for given DM mass mχ, the energy deposition is bounded by the parabola, ωq ≤
qvmax − q2/2mχ, as shown in figure 1. Applying Fermi’s Golden Rule and summing over

the final states, we obtain the rate:

Γ(v) =

∫
d3q

(2π)3

∑
f

∣∣〈p′, f | δĤ |p, i〉∣∣2 2πδ
(
Ef − Ei − ωq

)
, (2.2)

where δĤ is the interaction Hamiltonian, |p, i〉 = |p〉⊗ |i〉, |p′, f〉 = |p′〉⊗ |f〉. We take the

quantum states to be unit normalized unless specified otherwise, e.g. 〈p|p〉 = 〈i|i〉 = 1.

The DM part of the matrix element can be evaluated universally at the Born level:

〈p′| δĤ |p〉 =
1

V

∫
d3x eiq·x V(x) =

1

V
Ṽ(−q) , (2.3)

where V is the total spatial volume, V(x) is the effective scattering potential felt by the

DM, and Ṽ is its Fourier transform. We focus on SI couplings in the present work, in which

2See also refs. [48–50] for proposals that take advantage of direction-dependent threshold effects.
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case the scattering potential takes the form3

V(x) =

∫
d3x′

[
np(x

′)Vp(x− x′) + nn(x′)Vn(x− x′) + ne(x
′)Ve(x− x′)

]
. (2.4)

Here np, nn, ne are the proton, neutron and electron number densities in the target, and

Vp,Vn,Ve are the respective scattering potentials from a single particle located at the origin.

We thus have

Ṽ(−q) = ñp(−q) Ṽp(q) + ñn(−q) Ṽn(q) + ñe(−q) Ṽe(q) . (2.5)

Note that for SI interactions, Ṽψ(−q) = Ṽψ(q) (ψ = p, n, e) are functions of only the

magnitude of q. In vacuum, they simply coincide with 2 → 2 scattering matrix elements

Mχψ(q) familiar from standard quantum field theory calculations. In the target medium,

however, they may receive corrections due to screening effects (see section 2.2). We can de-

fine (momentum-dependent) effective in-medium couplings fp, fn, fe to account for screen-

ing effects, while the corresponding couplings in the vacuum Lagrangian are denoted by

f0
p , f

0
n, f

0
e . We can write

Ṽψ(−q) =
fψ(q)

f0
ψ

Mχψ(q) ≡ fψ(q)M0(q) , (2.6)

where M0 =Mχp/f
0
p =Mχn/f

0
n =Mχe/f

0
e is the vacuum matrix element for DM scat-

tering off any of the constituent particles (proton, neutron or electron) with unit coupling.

The total scattering potential is then

Ṽ(−q) = [fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)]M0(q) . (2.7)

Let us rewrite this equation as follows:

Ṽ(−q) = Mχn(q)

[
fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)

f0
n

]
(2.8)

= Mχe(q)

[
fp(q) ñp(−q) + fn(q) ñn(−q) + fe(q) ñe(−q)

f0
e

]
. (2.9)

Depending on the DM model and the process under consideration, we will factor out either

Mχn or Mχe, and define a target form factor, FT (q), composed of contributions from

protons, neutrons and electrons, as the quantity in brackets. In other words, we have

Ṽ(−q) =M(q)FT (q) , (2.10)

3More generally, DM interactions can be classified by nonrelativistic effective operators [55–58]. The

SI interaction we focus on here is the leading operator if generated without velocity suppression. Other

operators result in spin and/or velocity dependence of the scattering potential V(x), and may be probed

via additional detection channels beyond those considered in this work. For example, DM coupling to

the electron spin can excite magnons in solid state systems with magnetic order [59]. We leave a general

effective field theory study of light DM direct detection to future work.
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where M stands for Mχn or Mχe. We can further factor out the q dependence of M,

which can only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (2.11)

Fmed(q) =

{
1 (heavy mediator),

(q0/q)
2 (light mediator).

(2.12)

The reference momentum transfer is conventionally chosen to be q0 = mχv0 (with v0

the DM’s velocity dispersion) for DM-neutron scattering, and q0 = αme for DM-electron

scattering.

The factorization in eq. (2.10) is a key component of the formalism. From the target-

independent particle-level matrix element M, we define the reference cross sections:

σn ≡
µ2
χn

π
|Mχn(q0)|2q0=mχv0

, σe ≡
µ2
χe

π
|Mχe(q0)|2q0=αme

, (2.13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-

neutron and DM-electron scattering in the heavy mediator case. On the other hand, FT
is target specific, from which we define the dynamic structure factor :4

S(q, ω) ≡ 1

V

∑
f

∣∣〈f |FT (q)|i〉
∣∣2 2πδ

(
Ef − Ei − ω

)
, (2.14)

which encapsulates response of the target to DM couplings to the proton, neutron and

electron. Combining the two parts, we have

Γ(v) =
πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
, (2.15)

where σ̄, µ, again, denote either σ̄n, µχn or σ̄e, µχe.

Let us highlight the following regarding the dynamic structure factor S(q, ω).

• S(q, ω) captures the target’s response to an energy-momentum deposition (q, ω).

• S(q, ω) depends on the distribution of constituent particles p, n, e in the target system

via ñp, ñn, ñe, which in turn depends on the nucleus types and electron wavefunctions.

It is therefore target material specific.

• S(q, ω) also depends on the active degrees of freedom in the target system via the

choice of |f〉, which in turn determines how FT (q) should be quantized. It is therefore

excitation (detection channel) specific.

• If only one of the constituent particles p, n, e is responsible for the transitions |i〉 →
|f〉, S(q, ω) is DM model independent. Otherwise it depends on ratios (but not the

overall strength) of the couplings f0
p , f

0
n, f

0
e .

4Here we adopt a slightly different normalization convention compared to ref. [45]. The right hand side

of eq. (2.14) here is identified with 2π
Ω
S(q, ω) in ref. [45], where Ω is the primitive cell volume.
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• For any given DM mass mχ and incoming velocity v, only a slice in the (q, ω) space,

ω = ωq, is probed in the scattering process. The parabolic boundary of kinematic

region for each mχ in figure 1 is the envelope of these slices for all v directions for

fixed magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial

velocity, multiply by the number of DM particles in the detector, and divide by the detector

mass, giving

R =
1

ρT

ρχ
mχ

∫
d3v fχ(v) Γ(v) , (2.16)

where ρT is the target mass density, ρχ is the local DM energy density, and fχ is the

DM’s velocity distribution in the target rest frame. A common choice for fχ is a truncated

Maxwell-Boltzmann (MB) distribution boosted by the Earth’s velocity with respect to the

galactic rest frame,

fMB
χ (v) =

1

N0
e−(v+ve)2/v2

0 Θ
(
vesc − |v + ve|

)
, (2.17)

N0 = π3/2v2
0

[
v0 erf

(
vesc/v0

)
− 2 vesc√

π
exp
(
−v2

esc/v
2
0

)]
. (2.18)

In the calculations presented in this paper, we take ρχ = 0.4 GeV/cm3, v0 = 230 km/s,

vesc = 600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the differential rate with respect

to the energy deposition onto the target ω. This simply requires inserting delta functions

into the integrals to pick out the contributions with ω = ωq:

dΓ

dω
=
πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
δ
(
ω − ωq

)
, (2.19)

dR

dω
=

1

ρT

ρχ
mχ

∫
d3v fχ(v)

dΓ

dω
. (2.20)

To summarize, we have the following algorithm for computing the rate for a given

detection channel.

• First, identify the initial and final states |i〉, |f〉 according to the type of excitation.

• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on

the target Hilbert space to induce the transitions |i〉 → |f〉.

• Then, compute the transition matrix element 〈f |FT (q)|i〉, and thus the dynamic

structure factor S(q, ω) via eq. (2.14).

• Finally, obtain the (differential) rate via eqs. (2.15)–(2.20).

We will carry out this procedure for each detection channel in the next three sections.

Before doing so, let us discuss some technical details regarding the phase space integration

and in-medium effects.
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2.1 Phase space integration

We see from eqs. (2.15)–(2.20) that once the dynamic structure factor S(q, ω) is known,

we need to perform a six-dimensional integral over v and q to obtain the event rate R.

The integration gives familiar results in the special case of isotropic target response, but is

more complicated in the general anisotropic case. We now discuss the two cases in turn.

a) Special case: isotropic target response. If
∣∣〈f |FT (q)|i〉

∣∣2 =
∣∣〈f |FT (q)|i〉

∣∣2, as is

the case for nuclear recoils, the only dependence on the direction of q is from the δ-function,

δ
(
Ef − Ei − ωq

)
=

1

qv
δ

(
cos θqv −

q

2mχv
−
Ef − Ei
qv

)
, (2.21)

where θqv is the angle between q and v. Integrating over the angular variables, we have

Γ(v) =
σ

2µ2v

∫
qdqF2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉
∣∣2 Θ

(
v − vmin(q, Ef − Ei)

)
, (2.22)

where

vmin(q, ω) =
q

2mχ
+
ω

q
. (2.23)

The velocity integral then gives

R =
1

ρT

ρχ
mχ

σ

2µ2

∫
qdqF2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉
∣∣2 η(vmin(q, Ef − Ei)

)
, (2.24)

where

η(vmin) =

∫
d3v

fχ(v)

v
Θ(v − vmin) . (2.25)

These results are familiar from the standard nuclear recoil calculation [60], and have

also been used in previous electron transition calculations, where the target response has

been assumed to be isotropic. Note that they hold for any DM velocity distribution fχ(v).

In the case of the MB distribution in eq. (2.17), the η function can be evaluated analytically,

giving

ηMB(vmin) =



πv2
0

2N0

{√
π v0
ve

[
erf
(
vmin+ve

v0

)
− erf

(
vmin−ve

v0

)]
− 4 exp

(
−v2

esc

v2
0

)}
if vmin < vesc − ve ,

πv2
0

2N0

{√
π v0
ve

[
erf
(
vesc
v0

)
− erf

(
vmin−ve

v0

)]
− 2

(
vesc−vmin+ve

ve

)
exp
(
−v2

esc

v2
0

)}
if vesc − ve < vmin < vesc − ve ,

0 if vmin > vesc + ve .

(2.26)

We see that five of the six integrals have been done analytically, and we are left only with a

one-dimensional integral over q (which can also be done analytically in the case of nuclear

recoils).
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b) General case: anisotropic target response. Generally, crystal targets are not

fully isotropic, as the crystal structures break rotation symmetries. This implies that, for

a terrestrial detector, since the DM wind comes in from different directions at different

times of the day, there can be daily modulation in the detection rate. While the existence

of this effect is well-known [23, 27, 43], it has been calculated only recently in the contexts

of single phonon excitations [44] and electron transitions in Dirac materials [37, 38], where

the energy deposition is O(meV). In section 4.1, we calculate this effect for the first time

in electron transitions in an O(eV) gap target.

When
∣∣〈f |FT (q)|i〉

∣∣2 depends on the direction of q, the six-dimensional integral gener-

ally does not admit a simple analytical solution. To proceed, we first evaluate the velocity

integral and define [44, 61]

g(q, ω) ≡
∫
d3v fχ(v) 2πδ(ω − ωq) . (2.27)

The rate can then be written in terms of this g(q, ω) function as

R =
1

ρT

ρχ
mχ

πσ

µ2

∫
d3q

(2π)3
F2

med(q)
1

V

∑
f

∣∣〈f |FT (q)|i〉
∣∣2 g(q, Ef − Ei) . (2.28)

For general velocity distributions fχ, we still have to evaluate a six-dimensional in-

tegral, which is a numerically intensive task. However, for the commonly assumed MB

distribution, eq. (2.17), the g(q, ω) function can be evaluated analytically, giving

g(q, ω) =
2π2v2

0

N0q

[
exp
(
−v2
−/v

2
0

)
− exp

(
−v2

esc/v
2
0

)]
, (2.29)

where

v− = min

{
1

q

∣∣∣∣q · ve +
q2

2mχ
+ ω

∣∣∣∣ , vesc

}
. (2.30)

Thus, only the three-dimensional integral over q needs to be done numerically (in addition

to other integrals that may be encountered in the evaluation of the dynamic structure

factor).

2.2 In-medium effects

In the case of a vector mediator, in-medium effects can cause screening and affect direct

detection rates. They must be taken into account when deriving the target response FT (q)

(and hence the dynamical structure factor S(q, ω)) when present. While the treatment of

in-medium effects has been discussed in various contexts [34, 36, 37, 62], we review it here

for completeness. In particular, we derive the screening factors fψ(q)/f0
ψ (ψ = p, n, e) in

this subsection.

For nonrelativistic systems relevant for direct detection that we focus on here, only

electrons can contribute significantly to screening when the energy deposition is above

phonon frequencies (ω & O(100 meV), corresponding to mχ & O(100 keV)), as nuclei

are too heavy to respond. At lower frequencies that match energy depositions in phonon

excitation processes, there is additional screening in an ionic (polar) crystal due to relative
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motion of ions. However, as we will see in section 5.2, the ions’ response should be included

in the source term in Maxwell’s equations in order to be quantized in terms of phonon

modes. Thus, also in this case, we consider only electron contributions to in-medium

effects.5

Consider a vector mediator A′, and suppose the vacuum Lagrangian takes the form

L = −1

4
FµνF

µν + eJµpAµ − eJµe Aµ

−1

4
F
′
µνF

′µν +
1

2
m2
A′A

′
µA
′µ + gχJ

µ
χA
′
µ

+
(
f0
pJ

µ
p + f0

nJ
µ
n + f0

e J
µ
e

)
A′µ , (2.31)

where Jµψ = ψ̄γµψ (ψ = p, n, e). Here the first line is standard electromagnetism, the

second line is the dark sector Lagrangian, and the third line contains A′ couplings to SM

particles. We assume |f0
ψ| � 1, and consistently keep terms only at linear order in these

couplings. Because the electron current Jµe couples to the linear combination Aµ + κA′µ,

with κ = −f0
e /e, as opposed to just Aµ, the in-medium photon self-energy Πµν(q) implies

the following terms in the momentum space quantum effective action,

1

2
Πµν(Aµ + κA′µ)(Aν + κA′ν) =

1

2
ΠµνAµAν + κΠµνAµA

′
ν +O(κ2) . (2.32)

As in ref. [37], we can project Πµν onto the three polarizations,

εµL =
1√
qαqα

(
q, ωq̂

)
, εµ± =

1√
2

(
0, ê⊥ ± i(q̂ × ê⊥)

)
, (2.33)

(where q̂ = q/|q|, and ê⊥ is a unit vector perpendicular to q), and diagonalize the 3 × 3

matrix

Kλλ′ ≡ −εµ∗λ Πµνε
ν
λ′ , (2.34)

to find the canonical modes. It is worth noting that the polarization vectors satisfy

gµνε
∗µ
λ ε

ν
λ′ = −δλλ′ ,

∑
λ

εµλε
ν∗
λ = −

(
gµν − qµqν

qαqα

)
. (2.35)

As a result, in the vacuum limit where Πµν =
(
gµν − qµqν/(q

αqα)
)
Π and the photon

propagator is proportional to 1
qαqα−Π , we have Kλλ′ = Π δλλ′ . In an isotropic medium,

Πµν = −ΠT

∑
λ=±

εµλε
ν∗
λ −ΠLε

µ
Lε
ν∗
L , K = diag(ΠT , ΠT , ΠL) , (2.36)

and the photon propagators are proportional to 1
qαqα−ΠT,L

. Generically, for an anisotropic

medium, we need to simultaneously rotate A and A′ into a polarization basis where K is

diagonal. In this basis, the quadratic part of the effective action can be diagonalized for

each polarization by

Aµ = Ãµ + κ
Π

m2
A′ −Π

Ã′µ , A′µ = Ã′µ − κ
Π

m2
A′ −Π

Ãµ , (2.37)

5In-medium effects are also important when deriving astrophysical and cosmological constraints on vector

mediators [62–64], where other SM particles may be relevant.
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where Π is an eigenvalue of K. In the Ã, Ã′ basis, the propagators are proportional to
1

qαqα−Π and 1
qαqα−m2

A′
, respectively, and the interactions in eq. (2.31) read

[
e(Jµp − Jµe )− Π

m2
A′ −Π

κgχJ
µ
χ

]
Ãµ

+

[
gχJ

µ
χ +

(
f0
p −

Π

m2
A′ −Π

f0
e

)
Jµp + f0

nJ
µ
n +

m2
A′

m2
A′ −Π

f0
e J

µ
e

]
Ã′µ . (2.38)

Dark matter scattering is mediated by both Ã and Ã′. Taking both into account, we obtain

the following effective interaction:

gχJχµ

{
− 1

qαqα −Π

Π

m2
A′ −Π

κe(Jµp − Jµe )

+
1

qαqα −m2
A′

[(
f0
p −

Π

m2
A′ −Π

f0
e

)
Jµp + f0

nJ
µ
n +

m2
A′

m2
A′ −Π

f0
e J

µ
e

]}
=

1

qαqα −m2
A′
gχJχµ

{[
f0
p +

(
1− qαqα

qαqα −Π

)
f0
e

]
Jµp + f0

nJ
µ
n +

qαqα
qαqα −Π

f0
e J

µ
e

}
(2.39)

=
1

qαqα −m2
A′
gχJχµ

[
qαqα

qαqα −Π
f0
e (Jµe − Jµp ) + (f0

p + f0
e )Jµp + f0

nJ
µ
n

]
(2.40)

From the last equation, it is clear that the current A′ couples to contains a screened

component and an unscreened component: f0
pJ

µ
p + f0

nJ
µ
n + f0

e J
µ
e = f0

e (Jµe − Jµp ) +
[
(f0
p +

f0
e )Jµp + f0

nJ
µ
n

]
. The first term, which is proportional to the electromagnetic current, gets

screened by a factor of qαqα
qαqα−Π , whereas the second term is unaffected.

In the special case of a dark photon that kinetically mixes with the SM photon,

eq. (2.31) follows from diagonalizing the kinetic terms, and κ is equal to the kinetic mixing

parameter. In this case, f0
p = −f0

e = κe, f0
n = 0, and the DM interaction is maximally

screened. In contrast, a U(1)B−L gauge boson has f0
p = f0

n = −f0
e , and the coupling to

neutrons is not screened. As a final example, a hadrophobic A′ has f0
p = f0

n = 0, resulting

in an unscreened DM coupling to protons (which originates from the A-A′ mixing).

The screening factor qαqα
qαqα−Π can be expressed in terms of the dielectric matrix ε(q, ω)

by solving the following set of equations for Πµν [34, 37]:

Jµ = −ΠµνAν , (2.41)

J i = σijE
j = σij(iωA

j − iqjA0) , (2.42)

σ = σT = iω(1− ε) . (2.43)

Note that the three-dimensional quantities are defined by σ = σij , 1 = δij , ε = εij . We

obtain the following solution:

Πµν =

(
Π00 Π0

Π0 −Π

)
, (2.44)

Π00 =
i

ω
q · σ · q , Π0 ≡ Π0

i = iσ · q , Π ≡ Πi
j = −iωσ . (2.45)
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Projecting Πµν onto polarization components, we obtain:

KLL = qαqα(1− q̂ · ε · q̂) , KL± = KL∓ = −ω
√
qαqα q̂ · ε · ε± , (2.46)

K±± = ω2
(
1− ε∓ · ε · ε±

)
, K∓± = −ω2 ε± · ε · ε± . (2.47)

We can see explicitly that in the isotropic limit, ε ∝ 1, so KL± = K∓± = 0, and KLL,

K±± are identified as ΠL, ΠT , respectively. In this case, K = diag(ΠL, ΠT , ΠT ), and the

familiar relations

ΠL = qαqα(1− ε), ΠT = ω2(1− ε) (2.48)

are reproduced. Beyond the isotropic limit, in general one has to diagonalize the K matrix

as discussed above. However, assuming anisotropies are not large, the calculation is sim-

plified in the case of nonrelativistic scattering. Here, the currents involved (Jµχ , Jµe , etc.)

have velocity suppressed spatial components, so the dominant contribution comes from the

polarization that is almost longitudinal, for which Π ' KLL up to small corrections. As a

result, the screening factor in eq. (2.40) becomes

qαqα
qαqα −Π

' q2

q · ε · q
. (2.49)

Now it is straightforward to read off the screening of DM couplings from eq. (2.39):

fp(q) = f0
p +

(
1− q2

q · ε · q

)
f0
e , fn(q) = f0

n , fe(q) =
q2

q · ε · q
f0
e . (2.50)

In what follows, we will often drop the argument q and just write fp, fn, fe for simplicity.

To close this subsection, we comment that in-medium screening affects different chan-

nels differently. Nuclear recoils happen at high enough momentum transfer where ε can

be approximated as unity, so fψ ' f0
ψ. For electron transitions, the situation depends

on the band gap. For atoms, insulators and semiconductors with O(eV) or larger band

gaps, ε approaches unity when q & 2π/a ∼ O(keV) [65], which is the range for DM

scattering kinematics. For smaller q, the full ε(q) can be fitted to experimental measure-

ments or calculated using advanced electronic structure techniques. For small-gap systems

such as superconductors and Dirac semi-metals, it is important to keep the full energy-

momentum dependence in ε(q, ω). For example, in a (super)conductor, ε ∼ λ2
TF/q

2 at low

q, where λTF ∼ O(keV) is the Thomas-Fermi screening parameter, resulting in significant

screening [34]. In contrast, in a Dirac semi-metal, ε approaches a constant at low q, so

sensitivity to dark photon mediated scattering (and also dark photon absorption) is much

stronger [36, 37]. For phonon excitations, screening from electrons should also be accounted

for, as we discuss in section 5.2.
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3 Nuclear recoils

We now apply the general framework of the previous section to the case of nuclear recoils

and reproduce familiar results. For simplicity we shall first assume only one type of nucleus

is present, with proton number Z and atomic mass number A, and later generalize to the

case of multiple nucleus types with non-degenerate {ZN}, {AN}.
To begin, we assume the nuclei do not interact with each other, so the Hilbert space

of the target system, which contains ρTV/mN nuclei, is a direct product of ρTV/mN

single nucleus Hilbert spaces. We will discuss the validity of this standard assumption in

section 3.1. The target system is prepared in the initial state

|i〉 =

ρTV/mN∏
J=1

|ki〉J = |ki〉1 ⊗ |ki〉2 ⊗ . . . (3.1)

with ki = 0. In the final state |f〉, one of the |ki〉J ’s is replaced by |kf 〉J with kf 6= 0. We

can write these states in terms of nucleus creation operators:

|ki〉J = V −1/2 b̂†ki |0〉J , |kf 〉J = V −1/2 b̂†kf |0〉J . (3.2)

As usual, we have the canonical commutation relations [b̂k, b̂
†
k′

] = (2π)3δ3(k − k′) or

{b̂k, b̂†k′} = (2π)3δ3(k − k′), etc.

Now we need to quantize

FT (q) =
1

fn

[
fpñp(−q) + fnñn(−q) + feñe(−q)

]
(3.3)

in terms of nucleus creation and annihilation operators b̂†, b̂. Obviously, the electron cou-

pling does not contribute, so we drop the last term. The proton and neutron number

densities, on the other hand, can be related to the nucleus number density nN , if we

assume elastic scattering (no transition between nuclear states):

np,n(x′) =

∫
d3x′′ nN (x′′)n0

p,n(x′ − x′′) , (3.4)

where n0
p,n are the proton and neutron number densities around a single nucleus at the

origin. Therefore,

FT (q) =
fpñ

0
p(−q) + fnñ

0
n(−q)

fn
ñN (−q) ≡ fN

fn
FN (q) ñN (−q) , (3.5)

where fN ≡ fpZ + fn(A − Z), the DM-nucleus coupling in the q → 0 limit (where DM

interacts with all nucleons coherently). FN (q) is a nuclear form factor that deviates from

unity only for q above the inverse nucleus radius. A commonly used form factor is the

Helm form factor [66],

FN (q) =
3 j1(qrn)

qrn
e−(qs)2/2 = 1− (qrn)2

10
− (qs)2

2
+O(q4) , (3.6)
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where rn ' 1.14A1/3 fm, s ' 0.9 fm. We can thus write FT (q) in terms of b̂†, b̂ via

ñN (−q) =

∫
d3x eiq·x b̂†xb̂x =

∫
d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q) b̂†

k′
b̂k . (3.7)

To obtain the dynamic structure factor, we evaluate the matrix element,

J〈kf |ñN (−q)|ki〉J =
1

V

∫
d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q) 〈0| b̂kf b̂

†
k′
b̂kb̂
†
ki
|0〉

=
(2π)3

V
δ3(kf − ki − q) , (3.8)

and sum over final states, which amounts to summing over the scattered nucleus J (sim-

ply multiplying by ρTV/mN ) and integrating over the final momentum V
∫
d3kf/(2π)3.

Therefore,

S(q, ω) = 2π
ρT
mN

f2
N

f2
n

F 2
N (q) · V

∫
d3kf
(2π)3

[
(2π)3

V
δ3(kf − ki − q)

]2

δ

(
ω − q2

2mN

)
= 2π

ρT
mN

f2
N

f2
n

F 2
N (q) δ

(
ω − q2

2mN

)
, (3.9)

where we have regulated the delta function by (2π)3

V δ3(0) = 1
V

∫
d3x ei0·x = 1.

We can now reproduce the familiar results for the differential rate. Assuming the

nuclear form factor is isotropic, FN (q) = FN (q), as is the case for the Helm form factor in

eq. (3.6), we can apply eq. (2.24) and obtain

dR

dω
=

ρχ
mχ

σn
2µ2

χn

f2
N

f2
n

∫
dq F 2

N F2
med η(vmin)

q

mN
δ

(
ω − q2

2mN

)
(3.10)

=
ρχ
mχ

σn
2µ2

χn

f2
N

f2
n

F 2
N F2

med η(vmin)
∣∣∣
q2=2mNω

, (3.11)

where η(vmin) is given by eq. (2.25) and vmin = q
2µχN

in the present case. It is now easy to

generalize these results to the case of more than one nucleus type:

dR

dω
=

ρχ
mχ

σn
2µ2

χn

1∑
N AN

[∑
N

AN
f2
N

f2
n

F 2
N F2

med η(vmin)

]
q2=2mNω

, (3.12)

where N runs over the inequivalent nuclei in the target (e.g. N = Ga, As for GaAs).

3.1 Validity of the nuclear recoil calculation in crystal targets

A key assumption we have made in the derivation above is that the nuclei in the target

do not interact with each other (hence the factorization of the Hilbert space). In a crystal

target, however, the nuclei are not free, but interact with the neighboring nuclei in the

crystal structure. The justification of treating the nuclei as free particles initially at rest

lies in the fact that in the classical limit, the hard scattering process is instantaneous and

local. In this case, the nuclei interactions affect only the subsequent secondary processes.
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For example, secondary phonons can be produced, which allows the energy deposition to

be shared by many nuclei.

On the other hand, as detector thresholds are pushed to lower energies, at some point

we would get into the quantum regime, where the finite duration and spatial extent of the

scattering invalidate the free nuclei assumption. We can make a quick estimate on when this

happens from the uncertainty principle. The time scale for the hard scattering to happen

is ∼ 1/ω. This should be compared to the intrinsic time scale for atomic vibrations in a

crystal, 1/ωph, with ωph the phonon energy. The instantaneous interaction approximation

in the standard nuclear recoil calculation is valid when the energy deposition is much higher

than the energies of all phonon modes, i.e.

ω � ωmax
ph (validity condition for nuclear recoils in crystals) . (3.13)

An alternative way to reach the same conclusion is the following. Within the length

scale 1/q, the DM should see the nucleus as a plane wave for the nuclear recoil calculation

to hold. Since the spatial extent of the nucleus wavefunction in a harmonic potential is

∼ (mNωph)−1/2, we need q � (mNω
max
ph )1/2. Using the kinematic relation ω = q2

2mN
, we

arrive at the same condition as eq. (3.13).

To summarize, in crystal targets, the nuclear recoil calculation is valid for energy

depositions much higher than the phonon energies, which are typically O(10 − 100) meV.

This explains the truncation of the C, Si, Ge, Cs nuclear recoil lines at low ω in figure 1. At

lower energy depositions, the target Hilbert space does not factorize into individual nuclei,

but instead contains single phonon and multi-phonon states as energy eigenstates, and the

direct detection rate calculation proceeds differently. We discuss single phonon excitations

in section 5, which will be the relevant processes when detector thresholds reach the 10–

100 meV regime in the future. In the intermediate energy regime — above the single phonon

energies yet below the validity range of nuclear recoils — direct multi-phonon production

should be considered, which we plan to investigate in future work.

4 Electron transitions

We next consider electron transitions. The initial state can be written as

|i〉 =
∏

I∈ occupied

ĉ†I |0〉 , (4.1)

where ĉ†I are electron creation operators, with I running over all occupied electron states

(energy eigenstates). Our normalization convention is such that {ĉI , ĉ†I′} = δII′ , so the

electron states are unit-normalized. The final states are labeled by I1, I2, where one of the

electrons has transitioned from I1 to an unoccupied state I2:

|f〉 = ĉ†I2 ĉI1 |i〉 . (4.2)

The relevant piece in FT (q) is simply

FT (q) =
fe
f0
e

ñe(−q) =
fe
f0
e

∫
d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q) ĉ†

k′
ĉk , (4.3)
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where the creation and annihilation operators are for momentum eigenstates, and satisfy

{ĉk, ĉ†k′} = (2π)3δ3(k − k′), etc. As discussed in section 2.2, the screening factor is

fe
f0
e

=

{
1 (scalar mediator),

q2/(q · ε · q) (vector mediator).
(4.4)

The dynamic structure factor is therefore

S
(
q, ω

)
=

2π

V

(
fe
f0
e

)2 ∑
I1,I2

δ
(
EI2 − EI1 − ω

)
×

∣∣∣∣∫ d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q)〈i|ĉ†I1 ĉI2 ĉ

†
k′
ĉk|i〉

∣∣∣∣2
=

2π

V

(
fe
f0
e

)2 ∑
I1,I2

δ
(
EI2 − EI1 − ω

)
×

∣∣∣∣∫ d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q) {ĉk, ĉ†I1}{ĉI2 , ĉ

†
k′
}
∣∣∣∣2, (4.5)

where we have used ĉ†I1 |i〉 = ĉI2 |i〉 = 0, and that the anticommutators are just numbers. To

evaluate the anticommutators, we expand the energy eigenstates in terms of momentum

eigenstates:

ĉ†I |0〉 =

∫
d3k

(2π)3
ψ̃I(k) ĉ†k|0〉 , (4.6)

where ψ̃I(k) is the momentum space wavefunction, which satisfies the orthonormality con-

dition
∫

d3k
(2π)3 ψ̃

∗
I′(k)ψ̃I(k) = δII′ . We then obtain

S
(
q, ω

)
=

2π

V

(
fe
f0
e

)2 ∑
I1,I2

δ
(
EI2 − EI1 − ω

)
·

∣∣∣∣∫ d3k′

(2π)3

d3k

(2π)3
(2π)3δ3(k′ − k − q) ψ̃∗I2(k′)ψ̃I1(k)

∣∣∣∣2. (4.7)

The dynamic structure factor in eq. (4.7) applies for any target system where DM scat-

tering can trigger electron transitions — atoms, crystals, superconductors, Dirac materials,

etc. — once the energy levels and wavefunctions are known. In what follows, we examine

the case of periodic crystals in more detail. Here, the energy eigenstates of an electron

are Bloch waves labeled by a band index and a wavevector within the first Brillouin zone

(1BZ), e.g.

ψI1(x) = ψi1k1(x) =
1√
V

∑
G1

ui1(k1 +G1) ei(k1+G1)·x , (4.8)

ψ̃i1k1(k) =

∫
d3xψi1k1(x) e−ik·x =

1√
V

∑
G1

ui1(k1 +G1) (2π)3δ3(k1 +G1 − k) , (4.9)
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where G1 runs over all reciprocal lattice vectors. Note that the state labeled by i1,k1 has

Fourier components of k1 plus any reciprocal lattice vector. The coefficients ui1(k1 +G1)

are normalized as
∑

G1
|ui1(k1 +G1)|2 = 1. The dynamic structure factor now becomes

S
(
q, ω

)
=

2

V

(
fe
f0
e

)2∑
i1,i2

∫
1BZ

d3k1

(2π)3

d3k2

(2π)3
2π δ

(
Ei2,k2 − Ei1,k1 − ω

)
×

∣∣∣∣ ∑
G1,G2

(2π)3δ3(k2 +G2 − k1 −G1 − q)u∗i2(k2 +G2)ui1(k1 +G1)

∣∣∣∣2, (4.10)

where the prefactor 2 comes from summing over contributions from degenerate spin states,

and the sums over the final state quantum numbers k1,2 have been replaced by integrals

in the continuum limit. As in ref. [27], we define a crystal form factor

f[i1k1,i2k2,G] ≡
∑

G1,G2

u∗i2
(
k2 +G2

)
ui1
(
k1 +G1

)
δG2−G1,G (4.11)

for the transition i1k1 → i2k2 with an Umklapp G. This simply encodes the wavefunction

overlap, summed over all Fourier components consistent with momentum conservation.

The dynamic structure factor can now be written more concisely as

S
(
q, ω

)
= 2

(
fe
f0
e

)2∑
i1,i2

∫
1BZ

d3k1

(2π)3

d3k2

(2π)3
2π δ

(
Ei2,k2 − Ei1,k1 − ω

)
×

∑
G

(2π)3δ3(k2 − k1 +G− q)
∣∣f[i1k1,i2k2,G]

∣∣2. (4.12)

Note that we have again used the identity (2π)3δ3(0) =
∫
d3x ei0·x = V . The material-

specific quantities appearing in S(q, ω) are the electron band structures (energy eigenvalues

Ei,k) and Bloch wavefunction coefficients ui(k + G). They can be computed by density

functional theory (DFT) methods which we discuss more in our companion paper [51].

Finally, performing the phase space integration, we obtain the total rate per target

mass:

R =
2

ρT

ρχ
mχ

πσe
µ2
χe

∑
i1,i2

∫
1BZ

d3k1

(2π)3

d3k2

(2π)3

∑
G

g(q, ω)F2
med(q)

(
fe
f0
e

)2∣∣f[i1k1,i2k2,G]

∣∣2 , (4.13)

where

q = k2 − k1 +G , ω = Ei2,k2 − Ei1,k1 . (4.14)

The g(q, ω) function, the mediator form factor Fmed, the screening factor fe/f
0
e and the

crystal form factor f[i1k1,i2k2,G] are given by eqs. (2.27), (2.12), (4.4) and (4.11), respectively.

This generalizes the formula derived in ref. [27] to account for possible anisotropies in the

target response.

4.1 Target anisotropies and daily modulation

The simplest crystal targets that have been considered for direct detection via electron

transitions, like silicon and germanium, are quite isotropic. As a result, the rate is essen-

tially independent of the direction of the incoming DM’s velocity. However, this is not the
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Figure 2. Crystal structure of hexagonal boron nitride (left), its corresponding first Brillouin

zone (middle) and DFT-calculated electronic band structure (right) with the Fermi level set to

zero. The letters shown in the Brillouin zone plot mark several of the high-symmetry points, and

the orange lines mark Brillouin zone paths along which electronic band structure is plotted. The

discontinuities in the band structure occur from taking a discontinuous path through the Brillouin

zone, indicated by “ | ” on the horizontal axis.

case for materials with large anisotropies in the electron band structures or wavefunctions.

For terrestrial experiments, as the target rotates with the Earth, the DM wind comes in

from different directions at different times of the day, resulting in a daily modulation of

the rate. This is on top of the annual modulation signal expected due to the variation of

the average DM velocity as the Earth orbits around the Sun [26, 27]. If observed, it would

be a smoking-gun signature of DM that is distinct from possible backgrounds. Our rate

formula eq. (4.13) incorporates directional information, and is well-suited for calculating

the daily modulation signal.

As an example target, we consider hexagonal boron nitride (BN), shown in figure 2.

The numerical calculation of electron band structures and wavefunction coefficients, as well

as direct detection rates, proceeds in the same way as in our companion paper [51]. We

include the calculation details specific for BN in appendix A. As a result of the layered

crystal structure, the rate is strongly dependent on the angle between the DM wind and

the layers. We note, however, that BN has a three-dimensional crystal structure with the

layers of BN repeating in the out-of-plane direction, in contrast to single-layer graphene

previously considered in ref. [46].

To show this directional dependence, we consider the same experimental setup as in

refs. [37, 44], where the crystal c-axis is aligned with the Earth’s velocity ve at time t = 0.

With this choice, daily modulation signal is independent of the location of the laboratory.

In figure 3, we pick three DM masses mχ = 5, 10, 100 MeV to show how the expected

detection rates — both total (left panel) and differential (right panel) — change during

a sidereal day, assuming a light mediator and negligible in-medium effects. For all three

masses, we see that the rate is maximized at t = 12 hours when the DM wind is roughly

aligned with the crystal a-b plane, and minimized at t = 0 when the DM wind is aligned

with the crystal c-axis. This can be understood from the fact that electron wavefunctions

are more localized in the c direction and thus have smaller low-momentum components,

whereas the DM scattering matrix element peaks at low q for a light mediator. We also

observe that modulation is stronger for lighter DM. Generically, with a smaller energy

– 18 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
6

10-2

10-1

1

10

102

103

104

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 3. Total rate of electron transitions R in hexagonal BN, normalized to its daily average 〈R〉
as a function of time (left), and differential rates at several times of the day assuming σe = 10−37 cm2

(right), for a 5, 10, 100 MeV DM scattering via a light mediator.

deposition, the rate is more strongly affected by band structure anisotropies near the band

gap; far from the band gap, the electron band structures and wavefunctions approach

those for individual, isotropic ions. For DM heavier than 100 MeV, we find roughly the

same amount of daily modulation as the mχ = 100 MeV case. This is again because the

momentum integral is dominated by small q, which corresponds to the same kinematic

region ωq ' q ·v in the large mχ limit. On the other hand, once we go below mχ = 5 MeV,

the total rate quickly approaches zero, as the DM does not carry sufficient kinetic energy

to trigger a transition across the band gap, which is ∼ 6 eV in BN.

5 Single phonon excitations

Finally, we derive single phonon production rates following the same procedure. Assuming

zero temperature, the initial state is the ground state with no phonons, and the final state

contains one phonon:

|i〉 = |0〉 , |f〉 = |ν,k〉 = â†ν,k|0〉 , (5.1)

where the canonical commutation relations read
[
âν,k, â

†
ν′,k′

]
= δνν′δkk′ , etc. Note that

phonons are labeled by a branch index ν = 1, . . . , 3n, where n is the number of atoms/ions

in each primitive cell, and a momentum vector k within the first Brillouin zone. For a

crystal with N primitive unit cells, k takes N discrete values. In the end we take the limit

N →∞, where k becomes continuous.

To see how FT (q) should be quantized in the phonon Hilbert space, we note that

phonons arise from atom/ion displacements:

ulj = xlj − x0
lj =

∑
ν

∑
k∈1BZ

1√
2Nmjων,k

(
âν,k εν,k,j e

ik·x0
lj + â†ν,k ε

∗
ν,k,j e

−ik·x0
lj

)
, (5.2)

where xlj is the position of the jth atom/ion in the lth primitive cell, x0
lj is the equilibrium

position, mj are the atom/ion masses, ων,k are the phonon energies, and εν,k,j are the
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phonon polarization vectors, normalized such that
∑

j |εν,k,j |2 = 1. The task is thus to

find how FT (q) depends on the atom/ion positions xlj and displacements ulj .

To do so, let us revisit the scattering potential in eq. (2.4). For a periodic crystal, it

can be written as a sum over contributions from individual atoms/ions:

V(x) =
∑
l,j

∫
Ωlj

d3x′
[
nljp (x′)Vp(x− x′) + nljn (x′)Vn(x− x′) + nlje (x′)Ve(x− x′)

]
(5.3)

=
∑
l,j

∫
Ωlj

d3r
[
nljp (r)Vp(x− xlj − r) + nljn (r)Vn(x− xlj − r) + nlje (r)Ve(x− xlj − r)

]
,

where Ωlj is a volume surrounding the lattice site l, j. Within each site volume, we have

changed the integration variable to r = x′ − xlj , the position relative to the center of the

site, and defined nljp (r) ≡ np(xlj + r), etc. For protons and neutrons, nljp,n here coincides

with n0
p,n introduced in section 3 for the nucleus at site l, j. Also, displacing an atom/ion

does not change the nucleon distributions inside of a nucleus. Thus, we can write

nljp,n(r) = njp,n(r) , (5.4)

which makes it clear that nucleon number densities are the same in all primitive cells, and

are not affected by atom/ion displacements in any particular primitive cell. For electrons,

on the other hand, this is generally not true, since electron wavefunctions are distorted

when displacing an atom/ion relative to the other atoms/ions in the crystal lattice. To

account for this effect, we write

nlje (r) = nje(r) +
∑
l′,j′

δnlje
δul′j′

· ul′j′ +O(u2) ' nje(r) +
δnlje (r)

δulj
· ulj , (5.5)

where the last expression assumes the effect of electron redistribution following an atom/ion

displacement is weak and local. This is usually a good approximation for ionic crystals such

as gallium arsenide (GaAs), where electrons are semi-localized, and displacing an ion tends

not to significantly affect the electron clouds of neighboring ions. For covalent crystals such

as silicon, valence electron wavefunctions are more disperse, so more terms in the l′j′ sum

should be included for an accurate calculation.

Assuming the approximation in eq. (5.5) is valid, we can Fourier transform eq. (5.4)

and obtain

Ṽ(−q) = M0(q)
∑
l,j

eiq·xlj
[
fpñ

j
p(−q) + fnñ

j
n(−q) + feñ

j
e(−q) + fe

δñlje (−q)

δulj
· ulj

]

= M0(q)
∑
l,j

eiq·xlj
[
fjFNj (q) + feñ

j
e(−q) + fe

δñlje (−q)

δulj
· ulj

]
, (5.6)

where fj = fpZj + fn(Aj − Zj), and FNj (q) is the nuclear form factor (introduced in

section 3) for the nucleus occupying site j in each primitive cell. We therefore obtain

FT (q) =
∑
l,j

[
F0
j (q) + ∆j(q) · ulj

]
eiq·xlj , (5.7)
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with

F0
j (q) ≡ 1

f0
ψ

[
fjFNj (q) + feñ

j
e(−q)

]
, ∆j(q) ≡ fe

f0
ψ

δñlje (−q)

δulj
, (5.8)

where f0
ψ = f0

n (f0
e ) if the rate is written in terms of σn (σe). Note that ∆j is independent

of l due to lattice translation symmetries. From eq. (5.7) we see that FT (q) depends on

ulj — which are quantized in terms of phonon modes as in eq. (5.2) — via both the phase

factor eiq·xlj = eiq·(x
0
lj+ulj) and the ∆j(q) · ulj term.

With FT (q) quantized in the phonon Hilbert space, we now move on to calculate

the matrix element 〈ν,k|FT (q)|0〉. We first apply the Baker-Campbell-Hausdorff (BCH)

formula to the phase factor eiq·xlj to move annihilation operators to the right:

eiq·xlj= eiq·x
0
lj

∏
ν,k

exp

[
i(q · ε∗ν,k,j) e

−ik·x0
lj√

2Nmjων,k
â†ν,k +

i(q · εν,k,j) eik·x
0
lj√

2Nmjων,k
âν,k

]

= eiq·x
0
lj

∏
ν,k

exp

[
i(q · ε∗ν,k,j) e

−ik·x0
lj√

2Nmjων,k
â†ν,k

]
· exp

[
i(q · εν,k,j) eik·x

0
lj√

2Nmjων,k
âν,k

]
×

exp

(
|q · εν,k,j |2

4Nmjων,k

[
â†ν,k, âν,k

])

= eiq·x
0
lj e−Wj(q) exp

[∑
ν,k

i(q · ε∗ν,k,j) e
−ik·x0

lj√
2Nmjων,k

â†ν,k

]
exp

[∑
ν,k

i(q · εν,k,j)eik·x
0
lj√

2Nmjων,k
âν,k

]
, (5.9)

where we have used the fact that the commutator between creation and annihilation oper-

ators is a classical number so the BCH series terminates. In the last equation,

Wj(q) =
1

4Nmj

∑
ν

∑
k∈1BZ

|q · εν,k,j |2

ων,k
→ Ω

4mj

∑
ν

∫
1BZ

d3k

(2π)3

|q · εν,k,j |2

ων,k
(5.10)

is the Debye-Waller factor (in the continuum limit
∑

k → V
∫

d3k
(2π)3 = NΩ

∫
d3k

(2π)3 with Ω

the volume of the primitive cell). The physical meaning of this factor is that a transition

|i〉 → |f〉 can be accompanied by additional phonons’ creation out of the vacuum followed

by their annihilation, and all these processes are resummed into the exponential. The

matrix element thus becomes

〈ν,k|FT (q)|0〉 =
∑
l,j

eiq·x
0
lj e−Wj(q) ×

〈ν,k|
[
F0
j (q) + ∆j(q) · ulj

]
exp

[∑
ν′,k′

i(q · ε∗
ν′,k′,j

) e−ik
′·x0

lj√
2Nmjων′,k′

â†
ν′,k′

]
|0〉

=
∑
l,j

ei(q−k)·x0
lj e−Wj(q) i√

2Nmjων,k
×

[
F0
j q − i∆j +

q

Nmj

∑
ν′,k′

(i∆j · εν′,k′,j)(q · ε∗ν′,k′,j)
2ων′,k′

]
· ε∗ν,k,j . (5.11)
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The l sum can be eliminated via the identity∑
l

ei(q−k)·xl = N
∑
G

δq−k,G , (5.12)

where x0
lj = xl + x0

j with xl being the position of the lth primitive cell and x0
j being

the equilibrium position of the jth atom/ion within the primitive cell, and G runs over

the reciprocal lattice vectors. In fact, at most one term in the G sum is picked out for

given q and k, since k ∈ 1BZ. We will thus drop the G sum in what follows. On each

phonon branch, as we sum over k, only the mode that satisfies q = k+G can give a nonzero

contribution to the dynamic structure factor, as a result of lattice momentum conservation.

It is worth emphasizing that the notion of momentum conservation here differs from the

one familiar in particle physics, due to the spontaneous breaking of continuous translation

symmetries. While each phonon can be thought of as carrying a momentum k within

the 1BZ, it can be excited even when the momentum transfer q is outside the 1BZ via

Umklapp scattering, in which case G 6= 0. For DM heavier than ∼MeV, the momentum

transfer can exceed ∼ keV, the typical size of the 1BZ. In this case, Umklapp processes can

contribute significantly if the matrix element has support at high q (which is the case for

a heavy mediator). We will see an example of this in section 5.1. Note that momentum

is still conserved at the fundamental level: the extra momentum G leads to a recoil of

the entire crystal, which becomes unobservable in the limit N → ∞. On the other hand,

the notion of energy conservation is the same, as continuous time translation symmetry

remains unbroken. As a result, the energy deposition has to match the phonon energy for

a phonon mode to be excited.

With the equations above, we obtain the dynamic structure factor:

S(q, ω) =
2π

V

∑
ν

∑
k∈1BZ

∣∣〈ν,k|FT (q)|0〉
∣∣2 δ(ω − ων,k)

=
π

Ω

∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x
0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 δ(ω − ων,k) , (5.13)

where

Y j ≡ F0
j q − i∆j +

Ω

mj
q
∑
ν′

∫
1BZ

d3k′

(2π)3

(i∆j · εν′,k′,j)(q · ε∗ν′,k′,j)
2ων′,k′

. (5.14)

We have made it implicit in the last line of eq. (5.13) that the k vector is the one inside

the first Brillouin zone that satisfies q = k +G.

Finally, integrating over the DM velocity distribution, we obtain the rate per target

mass:

R =
1

mcell

ρχ
mχ

πσ

2µ2

∫
d3q

(2π)3
F2

med(q)
∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x
0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 g(q, ων,k) ,

(5.15)

where mcell = ρTΩ is the mass contained in a primitive cell. The mediator form factor Fmed,

the Debye-Waller factor Wj(q) and the g(q, ω) function are given by eqs. (2.12), (5.10)
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and (2.27), respectively. The DM couplings are encoded in the Y j vectors given in

eq. (5.14), with F0
j ,∆j defined in eq. (5.8). Meanwhile, the material specific quantities

— phonon dispersions ων,k and polarization vectors εν,k,j — can be numerically computed

using DFT methods detailed in our companion paper [51].

In the following subsections, we discuss the phonon excitation calculation in more

detail. It is clear from the discussion above that Y j are the key quantities to compute for

any specific DM model. In section 5.1, we consider the simpler case where DM couples

only to nucleons but not electrons, and point out an interesting complementarity with

nuclear recoils. We also discuss the relevance of Umklapp processes for DM heavier than

an MeV, for both heavy and light mediators. Including DM-electron couplings introduces

complications, but we show in section 5.2 that Y j take a simple form in the low q limit for

general couplings fp,n,e. Note that the dark photon mediator benchmark (f0
p = f0

e , f
0
n = 0)

has been studied in refs. [43, 44] based on the Fröhlich Hamiltonian. Our calculation here

reproduces previous results, and helps clarify their range of validity.

5.1 Dark matter coupling only to nucleons

Setting fe = 0 and f0
ψ = f0

n = fn in eq. (5.8), we have

F0
j (q) =

(
fj
fn

)
FNj (q) , ∆j(q) = 0 . (5.16)

In this case, Y j is simply F0
j q, and the rate eq. (5.15) becomes

R =
1

mcell

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
F2

med(q)×

∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

fj
fn
FNj (q) e

iG·x0
j
(
q · ε∗ν,k,j

)∣∣∣∣2 g(q, ων,k) . (5.17)

It is interesting to compare to the nuclear recoils case. If there is only one atom in the

primitive cell, we have mcell = mj = mN , and

R =
ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
e−2W f2

N

f2
n

F 2
NF2

med

∑
ν

∣∣q · ε∗ν,k∣∣2
m2
Nων,k

g(q, ων,k) . (5.18)

The differential rate reads

dR

dω
=

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3
e−2W f2

N

f2
n

F 2
NF2

med g(q, ω)
∑
ν

∣∣q · ε∗ν,k∣∣2
m2
Nω

δ(ω − ων,k) . (5.19)

On the other hand, we can rewrite eq. (3.10) for nuclear recoils in terms of the g(q, ω)

function via
∫
q dq η(vmin)→ 2

∫ d3q
(2π)3 g(q, ω), and multiply the integrand by 1 = q2

2mNω
:

dR

dω
=

ρχ
mχ

πσn
2µ2

χn

∫
d3q

(2π)3

f2
N

f2
n

F 2
NF2

med g(q, ω)
q2

m2
Nω

δ

(
ω − q2

2mN

)
(nuclear recoil) .

(5.20)
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One can clearly see the similarity between eqs. (5.19) and (5.20). However, a key difference

between nuclear recoils and phonon excitations is the way in which contributions from

different atoms add up in the case of more than one atoms in the primitive cell. Comparing

eq. (5.17) against eq. (3.12), we see that, in contrast to the nuclear recoils case where we add

up the rates from inequivalent nuclei, for phonon excitations the sum over j is taken at the

amplitude level. It is worth noting, however, that this apparent coherence does not result in

a more favorable scaling of the detection rate. In fact, the total rate per target mass scales

with neither the number of nuclei in the primitive cell, nor the total number of atoms/ions

in the crystal. The former can be seen from the fact that phonon polarization vectors

scale as εν,k,j ∼
√
mj/mcell, which, together with the prefactor, means the denominator

of eq. (5.17) scales as m2
cell. The latter is because of the 1/

√
N normalization factor when

expanding ulj in terms of phonon creation and annihilation operators (see eq. (5.2)). The

intuition here is that, despite the collective nature of phonon excitations, we have to project

the motion of each atom onto the phonon modes that match the energy-momentum transfer.

As a result, coherence between more atoms comes with a price of a smaller overlap with

phonon modes.

Another key difference between nuclear recoils and phonon excitations, alluded to in

figure 1 and section 3.1, is the kinematic regimes probed. In the phonon case, the Debye-

Waller factor e−Wj cuts off the momentum integral for q &
√
mNωph, the inverse spatial

extent of the nucleus wavefunction. The ωph here should be thought of as an average

phonon energy over the entire 1BZ, which is of the same order as ωmax
ph . As discussed in

section 3.1, this high q regime is exactly where the nuclear recoil calculation becomes valid.

In addition, nuclear recoils happen at much higher energy depositions ω = q2/2mN � ωmax
ph

than phonon excitations.

A multi-channel search can exploit this complementarity between nuclear recoils and

phonon excitations. Let us consider, as a benchmark model, a hadrophilic scalar mediator

coupling identically to protons and neutrons (fp = fn, fe = 0). In figure 4, we compare the

reach of the two channels, using GaAs as an example target material. For a heavy mediator

(left panel), we see that with sub-eV energy thresholds, nuclear recoils can probe DM masses

above ∼ 100 MeV — this is the mass regime where the single phonon excitation rate suffers

from Debye-Waller suppression. Below ∼ 100 MeV where nuclear recoils lose sensitivity,

single phonon excitations can probe a few more orders of magnitude of mχ, depending on

the energy threshold. For a light mediator (right panel), on the other hand, single phonon

excitations outperform nuclear recoils for all mχ. This is because the momentum integral is

dominated by the lowest q, which only depends on the energy threshold, qmin ' ωmin/vmax.

The mass scaling of the curves in figure 4 can be understood with a close examination of

phase space integrals; we reserve a detailed discussion, including how the various features

of the curves depend on material properties, for the companion paper [51].

It is also worth noting that while direct production of single phonons has been proposed

mainly as a channel to search for sub-MeV DM, we see from figure 4 that its sensitivity

extends well above MeV DM masses, which is important for covering the parameter space

out of reach in nuclear recoils. A DM particle heavier than ∼MeV carries a momentum

larger than the typical size of the 1BZ (or equivalently, the inverse lattice spacing). How-
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Figure 4. Projected reach for DM scattering via a heavy (left, mφ & 400 MeV) or light (right,

mφ = 1 eV) scalar mediator coupling to nucleons (fp = fn, fe = 0), assuming 1 kg-yr exposure with

a GaAs target, 3 signal events and no background. Both single phonon production (purple, assuming

energy thresholds ωmin = 1, 10, 30 meV) and nuclear recoils (red, assuming ωmin = 0.5, 1 eV) are

complementary in probing currently unconstrained parameter space. The heavy mediator case is

free from stellar constraints for mφ & 400 MeV [62], and the neutrino floor is taken from ref. [67].

Currently, the best experimental nuclear recoil constraints in this region of parameter space are from

DarkSide-50 [8] (assuming binomial fluctuations), and XENON1T (combined limits from [21, 22]).

We also show the constraint from CRESST-II [4], which is stronger than the DarkSide-50 constraint

at low masses assuming no fluctuation in energy quenching. A more complete collection of nuclear

recoil constraints can be found in refs. [8, 13, 22]. For a light mediator with mφ = 1 eV, fifth force

experiments provide the dominant constraint on mediator-nucleon couplings [62]. Meanwhile, the

mediator-χ coupling is constrained by DM self interactions (SIDM) if χ makes up all the DM [62],

or just by perturbativity (Pert.) if χ is a DM subcomponent (in which case the projected reach can

be easily rescaled).

ever, as explained below eq. (5.12), a crystal target is able to absorb a momentum transfer

beyond the 1BZ while still producing a phonon, provided the energy deposition matches

that of the phonon energy. Such Umklapp processes can contribute significantly to the

rate. In figure 5, we examine the role of Umklapp scattering by comparing the full rate

(solid) vs. contributions from q ∈ 1BZ (dashed), for three DM masses. We show the differ-

ential distribution up to 34 meV, the highest phonon energy in GaAs. For mχ = 0.1 MeV,

the maximum momentum transfer qmax ' 2mχvmax ' 0.56 keV is within the 1BZ, so the

solid and dashed histograms coincide. Also, only acoustic phonons with energies below

csqmax ' 9 meV (where cs is the speed of sound) and optical phonons are kinematically

accessible; contributions from optical phonons are suppressed at low q [68], so the total

rate is dominated by the low energy acoustic phonons. For mχ = 1 MeV and 10 MeV,

Umklapp processes dominate the rate in the heavy mediator case, since the momentum

integral is dominated by large q. In the light mediator case, the matrix element peaks at

small q, so the total rate is well approximated by the 1BZ contribution for sufficiently low

energy thresholds (e.g. 1 meV). However, Umklapp scattering can still contribute signifi-

cantly in the highest energy bins, and dominate the rate if the energy threshold is higher

(e.g. 30 meV).
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Figure 5. Differential rate of single phonon excitations in a GaAs target for mχ = 0.1, 1, 10 MeV,

assuming a heavy (left) or light (right) scalar mediator coupling to nucleons (fp = fn, fe = 0),

with σ̄n = 10−43 cm2 and ωmin = 1 meV. Contributions from momentum transfer within the first

Brillouin zone are shown in dash. Umklapp processes account for the differences between solid and

dashed histograms.

5.2 Dark matter with couplings to electrons

In the presence of electron couplings fe 6= 0, information about electron distributions is

needed for the rate calculation. We focus on ionic crystals in this subsection, for which

eq. (5.5) is a good approximation, and the rate formula eq. (5.15) directly applies. In this

case, we need ñje and δñlje /δulj as input. While ñje can be derived from the same electron

wavefunctions as those used in electron transition calculations in section 4, δñlje /δulj is

challenging to compute numerically for general q and ulj .

However, the calculation simplifies in the limit q � r−1
ion, the inverse ionic radii. As in

classical electromagnetism, we can make a multipole expansion,

ñje(−q) =

∫
Ωlj

d3r eiq·rnlje (r) = Ne,j − iq · P e,j +O(q2) , (5.21)

where Ne,j is the number of electrons associated with site l, j, and P e,j is the electron

contribution to the polarization in the volume Ωlj . Consider the response of the total

polarization of the volume to a lattice displacement ulj :

δP lj = Qj δulj + δP e,j , (5.22)

where Qj = Zj −Ne,j is the total charge. This defines the Born effective charge tensor:6

Z∗j ≡
δP lj

δulj
= Qj1 +

δP e,j

δulj
. (5.23)

6More precisely, the Born effective charge Z∗j is defined as the change in macroscopic polarization caused

by a uniform displacement of the entire sublattice j [69]. However, under the assumption we have made

in eq. (5.5) — that the electrons respond locally to the ionic displacements — the precise definition is

equivalent to eq. (5.23).
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Thus,

δñlje (−q)

δulj
= −iq · δP e,j

δulj
+O(q2) = −iq · (Z∗j −Qj1) +O(q2) . (5.24)

From eqs. (5.21) and (5.24), we obtain (choosing f0 = f0
e in the normalization):

F0
j (q) =

fp
f0
e

Zj +
fn
f0
e

(Aj − Zj) +
fe
f0
e

Ne,j +O(q) , (5.25)

∆j(q) = − fe
f0
e

iq · (Z∗j −Qj1) +O(q2) , (5.26)

where we have set FN,j(q) = 1 since q � r−1
ion is much smaller than the inverse nucleus

radius. We therefore obtain the following simple expression for Y j :

Y j = q ·
[
fp
f0
e

Zj 1 +
fn
f0
e

(Aj − Zj)1 +
fe
f0
e

(Zj1−Z∗j )
]

+O(q2) . (5.27)

In the case of a vector mediator, the coupling ratios appearing in eq. (5.27) should

incorporate in-medium screening effects according to eq. (2.50). As mentioned at the

beginning of section 2.2, while dielectric response of an ionic crystal comes from both

electrons and ions at phonon frequencies, only the electron contribution is included in

the derivation of eq. (2.50). That this is the correct treatment should be clear from the

calculation above. Polarization induced by lattice displacements has been treated as an

effective charge density ∇ · P , since it can induce the transition |0〉 → |ν,k〉. As such, it

enters the source term rather than the dielectric matrix ε in Maxwell’s equations. In the

low q limit, electron contributions to ε below the electronic band gap approach a constant

ε∞, referred to as the high-frequency dielectric constant.

In the special case of a dark photon mediator that kinetically mixes with the SM

photon, f0
p = −f0

e , f0
n = 0. Combining eqs. (5.27) and (2.50), and setting ε → ε∞, we

obtain

Y j = − q2

q · ε∞ · q
(q ·Z∗j ) . (5.28)

By eq. (5.15), the rate is therefore

R =
1

mcell

ρχ
mχ

πσe
2µ2

χe

∫
d3q

(2π)3
F2

med(q)
q4

(q · ε∞ · q)2
×

∑
ν

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x
0
j
(
q ·Z∗j · ε∗ν,k,j

)∣∣∣∣2 g(q, ων,k) . (5.29)

Note that since eq. (5.27) for Y j is derived in the limit q � r−1
ion ∼ O(keV), eq. (5.29) holds

only when the integral is dominated by this region. This is the case for a light dark photon

mediator for any DM mass, since the integrand peaks at small q. In this case, eq. (5.29) is

in agreement with the result obtain in ref. [44] based on the Fröhlich Hamiltonian. For a

heavy mediator, on the other hand, the integrand peaks at qmax = 2mχvmax, so eq. (5.29)

holds only for mχ � (2vmaxrion)−1 ∼ O(MeV).
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Figure 6. Projected reach for a 5% subcomponent of DM scattering via a light (1 eV) hadrophobic

scalar (left) or U(1)B−L vector (right) mediator, assuming 1 kg-yr exposure with a GaAs target,

3 signal events and no background. Single phonon excitation reach is shown in purple, assuming

energy thresholds ωmin = 1, 10, 30 meV. Pink regions are excluded when taking into account the

strongest constraint on the mediator-SM coupling — red giant (RG) stars and fifth force experiments

for the two models respectively [62] — together with perturbativity (Pert.) of the mediator-χ

coupling. In the U(1)B−L case, the gray region is excluded by stellar production of χ [70].

Beyond the previously studied dark photon mediator case, our first-principle rate

derivation here allows us to compute the reach for other DM models with couplings to

electrons. As examples, we consider two benchmark models from ref. [62] — a hadrophobic

light scalar mediator and a light U(1)B−L vector mediator. In both cases, astrophysical

constraints already rule out all of the parameter space within reach of proposed exper-

iments if χ composes all the DM. We find similar results here: for a hadrophobic light

scalar mediator, the astrophysical constraints extend past the reach of single phonon ex-

citations in a GaAs target; for a light U(1)B−L vector mediator, for mχ & 100 MeV and

ωmin = 1 meV, the reach extends slightly past the astrophysical constraints, but the rest of

the parameter space is constrained. Therefore, as in ref. [62], we consider the case where χ

is a 5% subcomponent of DM, in which case SIDM constraints are absent and single phonon

excitations can probe currently unconstrained parameter space. The projected reach for

both benchmark models is shown in figure 6, where a mediator mass of 1 eV is assumed

for definiteness.

6 Conclusions

Dark matter direct detection has entered an era in which not only the mass coverage is

extending beyond the classic WIMP window — especially into the sub-GeV regime — but

also multi-channel target response is becoming an important consideration when designing

new experiments. In this paper, we detailed a theoretical framework for calculating spin-

independent direct detection rates that can be applied across multiple search channels.

Starting from generic DM couplings to the proton, neutron and electron, we factored out

material and channel dependent target response into the dynamic structure factor, and

derived a procedure to compute this factor which involves quantizing number density op-
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erators in the appropriate Hilbert space. We focused on O(eV)-gap crystal targets where

existing and proposed search channels include nuclear recoils, electron transitions and sin-

gle phonon excitations, each probing a different kinematic regime (see figure 1). Despite

the apparently very different physics involved, the calculation proceeds analogously for all

three channels.

While part of this paper has been devoted to rederiving known results in this unified

framework, we also obtained several new results, which we summarize in the following:

• We have clarified the range of validity of the standard nuclear recoils calculation

(section 3.1). For energy depositions lower than O(100 meV) in a crystal target, the

picture of scattering off single nuclei breaks down. Collective motions of all nuclei

have to be considered, with phonons being the appropriate degrees of freedom. The

situation is analogous in fluids, though the energy cutoff can be lower (e.g. O(meV)

for superfluid helium).

• We have extended the electron transition calculation to account for anisotropic tar-

get response, and pointed out the resulting daily modulation can be significant (sec-

tion 4.1). As an example, we considered hexagonal boron nitride, a semiconductor

with a 6 eV gap and layered crystal structure, and showed that ±(10 - 40)% daily

modulation can be expected, depending on the DM mass (figure 3).

• As a major new result, we have presented a first-principle derivation of single phonon

excitation rates for generic SI couplings. The final result is eq. (5.15), where depen-

dence on the relative couplings to the proton, neutron, and electron is fully captured

by the quantities Y j . Computing Y j is straightforward for DM coupling only to

nucleons (section 5.1), but nontrivial in the presence of coupling to electrons (sec-

tion 5.2). In the latter case, we have shown that Y j are related to the Born effective

charges in an ionic crystal for a general light mediator (not necessarily a dark pho-

ton) — see eq. (5.27). As examples, we computed the reach for DM scattering via a

light hadrophobic scalar or U(1)B−L vector mediator (figure 6), where single phonon

excitations offer a complementary search channel with competitive sensitivities to

previous proposals [62].

• We have pointed out that sensitivity of the single phonon excitation channel is not

restricted to sub-MeV DM. For heavier DM, Umklapp contribution can be significant

(figure 5), and single phonon excitations and nuclear recoils play complementary roles

in probing the DM parameter space (figure 4).

In addition to shedding light on the connection and complementarity between various

existing and proposed direct detection channels, the theoretical framework presented here

also makes clear that there is a common algorithm one can follow to study yet unexplored

novel detection channels in the future. Some of them will require extending our present

formalism beyond SI interactions, a task we plan to take on in future work.

– 29 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
6

Acknowledgments

We thank Thomas Harrelson, Simon Knapen, and Matt Pyle for useful discussion. T.T. and

K.Z. are supported by the Quantum Information Science Enabled Discovery (QuantISED)

for High Energy Physics (KA2401032) at LBNL. Z.Z. is supported by the NSF Grant

PHY-1638509 and DoE Contract DE-AC02-05CH11231. Computational resources were

provided by the National Energy Research Scientific Computing Center and the Molecular

Foundry, DoE Office of Science User Facilities supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231. The work performed at

the Molecular Foundry was supported by the Office of Science, Office of Basic Energy

Sciences, of the U.S. Department of Energy under the same contract number. T.T. and

Z.Z. would like to thank the Walter Burke Institute for Theoretical Physics for hospitality

during the completion of this work.

A DFT calculation details for BN

We used the Vienna Ab initio Simulation Package (VASP) [71–74] for our density func-

tional theory calculations to obtain the electronic properties of BN. Projector augmented

wave (PAW) pseudopotentials [75, 76] with the Perdew-Becke-Ernzerhof (PBE) exchange-

correlation functional [77] were used. We included van der Waals interactions between

BN layers using the D3 correction method of Grimme et al. with Becke-Johnson damp-

ing [78, 79]. In the PAW scheme, we treated s and p electrons as valence for both B and N.

For structural optimization, we use an energy cutoff of 950 eV for our plane wave basis

set, with a Gamma-centered k-point grid of 12× 12× 12. The total energy and forces were

converged to 1 × 108 eV and 1 meV/Å respectively. Wavefunctions were evaluated on two

Gamma-centered k-point meshes, 10×10×3, and 14×14×4, converging the scattering rate

to ∼ 9% at 5 MeV, ∼ 8% at 10 MeV and ∼ 6% at 100 MeV. We extracted the all-electron

wavefunction coefficients from our PAW calculations using pawpyseed [80] with an energy

cutoff of 450 eV. 68 energy bands were included, incorporating energies up to 60 eV above

and below the valence band maximum.

Boron nitride (BN) adopts a hexagonal crystal structure with space group P63/mmc

(No. 194) as shown in figure 2. Our calculated lattice parameters are a = 2.507 Å and c =

7.093 Å which compare well to those from experiment [81] (a = 2.504 Å and c = 6.661 Å).

The PBE-level calculated band gap is 3.61 eV which was corrected to the experimental

value of 5.97 eV [82] using a scissors operator.
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