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In this paper, we investigate the thermodynamic properties of the Schwarzschild black hole and modified 
Unruh effect by using the simplest form of the extended uncertainty principle (EUP). We obtain the 
mass-temperature relation and find that there should exist the lower bound for the EUP black hole 
temperature. Besides, we discuss the modified Unruh effect for EUP. We find that the modified Unruh 
temperature is larger than the Unruh temperature.
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1. Introduction

Quantization of gravity is one of the oldest problems in physics. 
However, up to now, there does not exist a satisfactory solution. 
In this quantization, the concept of minimum measurable length 
is shown to be needed when considering the discreteness of the 
space-time which occurs beyond the Planck energy scale.

The ordinary Heisenberg uncertainty principle �x�p ≥ h̄/2
does not explain the existence of a minimum measurable length 
because �x goes to zero in the high momentum limit. Thus, to 
incorporate the concept of minimum measurable length into quan-
tum mechanics, one should deform the ordinary Heisenberg uncer-
tainty principle which is called Generalized Uncertainty Principle 
(GUP). In the last decade, many papers have been appeared in the 
literature to address the effects of GUP on the quantum mechan-
ical systems especially in high energy regime [1–26]. It should be 
noted that we have used this idea that from the discreteness of 
space-time, i.e. from the existence of a minimum length, then a 
modification of the ordinary Heisenberg principle is required lead-
ing to the generalized uncertainty principle (GUP). On the other 
hand, there is another point of view that a re-examination of the 
quantum measurement process leads to a modification of the un-
certainty relation, and from there the existence of a minimum 
measurable length is inferred. This kind of a point of view can be 
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found in these references [5,11,14,15]. The commutation relation 
of GUP is given by

[X, P ] = ih̄(1 + β2 P 2). (1)

This gives the uncertainty relation

�X�P ≥ h̄

2

[
1 + β2(�P )2

]
(2)

which suggests the existence of the fundamental minimal length 
(�X)0 = h̄β Here, β2 = β2

0 /(mpc)2 where mp is the Planck mass 
with mpc2 ∼ 1019GeV and β0 is of order the unity. Thus we have

β2

c2
∼ 10−38GeV−2 (3)

Another possibility is to study the effects of gravity on quantum 
mechanical systems by using the assumption of minimal uncer-
tainty in momentum. It is known that for large distances, where 
the curvature of space-time becomes important, there is no no-
tion of a plane wave on a generally curved space-time [27,28]. 
This means that there appears a limit to the precision with which 
the corresponding momentum can be described. In order to in-
corporate the concept of minimum measurable momentum into 
quantum mechanics, one should deform the ordinary Heisenberg 
uncertainty principle which is called Extended Uncertainty Princi-
ple (EUP) [29–32]. The commutation relation of EUP is given by

[X, P ] = ih̄(1 + α2 X2), (4)
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where we know that this gives the minimal momentum (�P )0 =
h̄α. Recently, it has been shown by Mignemi [31] that the 
eq. (4) can also be derived from the definition of quantum me-
chanics on an anti-de Sitter background, with a suitably chosen 
parametrization. He found that the relation (4) could be derived 
from the geometric properties of anti-de Sitter space-time. The 
one-dimensional quantum mechanics was discussed by Chung and 
Hassanabadi [32]. The Eq. (4) is also obtained when we con-
sider quantum mechanics in an anti-de Sitter background where 
in which the expansion of the universe during a measurement is 
taken into account [30]. It is well known that in an anti-de Sitter 
background the Heisenberg uncertainty principle should be mod-
ified by introducing corrections proportional to the cosmological 
constant � = −3/l2H with lH the anti-de Sitter radius [29], where 
l2H > 0:

�X�P ≥ h̄

2

[
1 + (�X)2

l2H

]
, (5)

where we know

α2 = 1

l2H
= −�

3
= |�|

3
> 0 (6)

The magnitude of the cosmological constant was known as

|�| ∼ 10−52m−2 (7)

In this paper, we shall study the thermodynamic properties of the 
Schwarzschild black hole and Unruh effect by using the simplest 
form of the EUP. This paper is organized as follows: In section 2
we discuss the mass-temperature relation for EUP black hole and 
minimal temperature of a black hole. In section 3 we discuss the 
EUP black hole entropy. In section 4 we discuss the modified Un-
ruh effect for the EUP.

2. Mass-temperature relation for EUP black hole and minimal 
temperature of black hole

Now let us consider the one spatial dimensional case. The EUP 
(5) is related to the deformed Heisenberg algebra (4). Let us con-
sider a Schwarzschild black hole of mass M . For any quantum 
particle (massless) near the horizon of a black hole, the momen-
tum uncertainty characterizing its temperature can be written as 
[33,34]

T = c�P

k
(8)

where k is the Boltzmann constant and c is the speed of light. 
Using this equation and the Eq. (5), we know that there exists the 
lower bound for the black hole temperature, indeed we get

T ≥ Tmin = h̄cα

k
∼ 1.3221 × 10−29K (9)

For thermodynamic equilibrium, the temperature of the quantum 
particle is the same as the temperature of the black hole. In order 
to find the relation of this temperature with the black hole mass, 
we reconsider the EUP (5) in terms of T and M where EUP is 
saturated,

�X�P = h̄

2

[
1 + α2(�X)2

]
(10)

Near the horizon of the Schwarzschild black hole, the position un-
certainty of a particle will be of the order of the Schwarzschild 
radius of the black hole [33,35,36],
�X = ηrs, rs = 2GM

c2
(11)

where η is a scale factor, rs is the Schwarzschild radius and G is 
the Newton’s universal gravitational constant. Inserting the Eq. (8)
and the Eq. (11) into the Eq. (10) we get

2ηGMkT

c3
= h̄

2

(
1 + 4α2η2G2M2

c4

)
(12)

This is the quadratic for M , whose solution is

M = (mpc)2kT

2η(αh̄c)2

⎡
⎣1 −

√
1 − (αh̄c)2

(kT )2

⎤
⎦ (13)

where mp is the Planck mass obeying (mpc)2 = h̄c3

G . In the absence 
of correction due to EUP, Eq. (13) reduces to

M = (mpc)2

4ηkT
(14)

Comparing this with the Hawking temperature T H = (mp c)2

8πkM , we 
have η = 2π . This finally fixes the form of the mass-temperature 
relation (13) to be

M = (mpc)2kT

4π(αh̄c)2

⎡
⎣1 −

√
1 − (αh̄c)2

(kT )2

⎤
⎦ (15)

where

T ≥ Tmin = h̄cα

k
(16)

For a small value of α we have

M = h̄c3

8πGk

(
1

T
+ (αh̄c)2

4k2T 3
+ (αh̄c)4

8k4T 5
+ · · ·

)
(17)

Now the heat capacity of the EUP black hole can be defined as

C = c2 dM

dT
= (mpc)2k

4π(αh̄)2

⎡
⎢⎣1 − 1√

1 − (αh̄c)2

(kT )2

⎤
⎥⎦ (18)

For a small value of α we have

C = h̄c5

8πGk

(
− 1

T 2
− 3(αh̄c)2

2k2T 4
− 5(αh̄c)4

8k4T 6
− · · ·

)
(19)

2.1. Comparison with the GUP black hole

In the GUP black hole [33–43] we know the mass-temperature 
relation as

M = h̄c3

8πGk

(
1

T
+ k2β2

c2
T

)
(20)

which has the minimum of mass coming from the minimal length,

M ≥ M0 = h̄c2β

4πG
(21)

Besides, the GUP black hole does not give the lower bound on 
the temperature while EUP black hole does. For quite massive BHs 
and small temperatures, we have Hawking mass-temperature for-
mula that GUP can express it well but EUP cannot reproduce the 
well known and accepted semi-classical Hawking behavior for BH 
with large masses and low temperatures. We face with unphysi-
cal predictions for the Hawking temperature in the semi-classical 
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Fig. 1. Plot of the mass-temperature relation for the ordinary black hole (Brown) 
and the GUP black hole with β = 0.5 (Pink) where we set h̄ = c = k = 1, 8πG = 1.

Fig. 2. Plot of the mass-temperature relation for the ordinary black hole (Brown) 
and the EUP black hole with α = 0.5 (Purple) where we set h̄ = c = k = 1, 8πG = 1.

region of parameters. We state and emphasize that the results 
are suitable for as an analytic comparison between the predic-
tion of GUP and those of EUP. But it should be noted that in 
EUP we have a minimum value for the temperature as we de-
rived in Eq. (16) while the minimum temperature in GUP is zero. 
Fig. 1 shows the plot of the mass-temperature relation for the or-
dinary black hole (Brown) and the GUP black hole with β = 0.5
(Pink) where we set h̄ = c = k = 1, 8πG = 1. Fig. 2 shows the 
plot of the mass-temperature relation for the ordinary black hole 
(Brown) and the EUP black hole with α = 0.5 (Purple) where we 
set h̄ = c = k = 1, 8πG = 1.

In the GUP black hole, the specific heat is

C = h̄c5

8πGk

(
− 1

T 2
+ k2β2

c2

)
(22)

Comparing this with the eq. (18), we know that the heat capacity 
in EUP black hole is always negative, so the radiation process leads 
to a decrease in the mass of the EUP black hole which in turn leads 
to an increase in temperature. Thus, in EUP black hole, as the tem-
perature increases, the heat capacity also increases, hence there 
is no point at which the heat capacity vanishes. On the contrary, 
for the GUP black hole, at T = c/(kβ) the specific heat vanishes. 
Fig. 3 shows the plot of specific heat versus temperature for the 
ordinary black hole (Brown) and the GUP black hole with β = 0.5
(Pink) where we set h̄ = c = k = 1, 8πG = 1. Fig. 4 shows the plot 
of specific heat versus temperature for the ordinary black hole 
(Brown) and the EUP black hole with α = 0.5 (Purple) where we 
set h̄ = c = k = 1, 8πG = 1.
Fig. 3. Plot of specific heat versus temperature for the ordinary black hole (Brown) 
and the GUP black hole with β = 0.5 (Pink) where we set h̄ = c = k = 1, 8πG = 1.

Fig. 4. Plot of specific heat versus temperature for the ordinary black hole (Brown) 
and the EUP black hole with α = 0.5 (Purple) where we set h̄ = c = k = 1, 8πG = 1.

3. EUP black hole entropy

One can also determine the EUP black hole entropy from the 
first law of black hole thermodynamics given by

S = c2

T∫
Tmin

dM

T
=

T∫
Tmin

C(T )
dT

T
(23)

Performing the above integration leads to

S = − (mpc)2k

4π(αh̄)2
ln

⎡
⎣1 +

√
1 − (αh̄c)2

(kT )2

⎤
⎦ + K (24)

where K is the integration constant. Expanding the above expres-
sion for small α, we get

S = K − (mpc)2k

4π(αh̄)2
ln 2 + k(mpc2)2

16π(kT )2
+ 3k(αh̄c)2(mpc2)2

128π(kT )4
+ · · ·

(25)

which fixes the value of K as

K = (mpc)2k

4π(αh̄)2
ln 2 (26)

Thus, we have

S = − (mpc)2k

4π(αh̄)2
ln

⎡
⎣1 +

√
1 − (αh̄c)2

(kT )2

⎤
⎦ + (mpc)2k

4π(αh̄)2
ln 2 (27)
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Now let us rewrite the eq. (15) as

M = m0T

⎡
⎣1 −

√
1 −

(
T0

T

)2
⎤
⎦ (28)

where we set

m0 = (mpc)2k

4π(αh̄c)2
, T0 = Tmin = h̄cα

k
(29)

The inverse relation of the eq. (28) is

T = M

2m0
+ m0T 2

0

2M
(30)

Thus, we always have the real temperature for all possible values 
of M , which differs from the case of GUP black hole where there 
exists the critical mass below which the temperature becomes a 
complex quantity.

The specific heat is given by

C = m0c2

⎡
⎢⎢⎣1 − 1√

1 −
(

T0
T

)2

⎤
⎥⎥⎦

= m0c2

⎡
⎣1 −

(
1 −

(
M

2m0T0
+ m0T0

2M

)−2
)−1/2

⎤
⎦ (31)

The entropy is given by

S = − (mpc)2k

4π(αh̄)2
ln

⎡
⎢⎢⎢⎢⎣1 +

√√√√√√1 − (αh̄c)2

k2

(
M

2m0
+ m0 T 2

0
2M

)2

⎤
⎥⎥⎥⎥⎦

+ (mpc)2k

4π(αh̄)2
ln 2 (32)

For a small α, we have

S

k
≈ S B H

k
− 2π(h̄α)2

(kmpc)2
S2

B H (33)

where the semi-classical Bekenstein-Hawking entropy for the 
Schwarzschild black hole is

S B H = 4π

(
M

mp

)2

(34)

In terms of the area of the horizon A = 4πr2
s = 4L2

p

(
S B H

k

)
where 

Lp is the Planck length, the eq. (33) can be written as

S

k
≈ A

4L2
p

− π(h̄α)2 A2

4(mpc)2L4
p

(35)

3.1. Comparison with GUP black hole

Now let us compare the EUP black hole and GUP black hole. 
For EUP, the Eq. (32) gives the relation between the EUP black hole 
entropy and the area as

S EU P

k
= A

4L2
p

+
∞∑

cEU P
n

(
A

4L2
p

)n

(36)

n=1
For the GUP black hole we have [33–43]

SGU P

k
= A

4L2
p

+ cGU P
0 ln

(
A

4L2
p

)
+

∞∑
n=1

cGU P
n

(
A

4L2
p

)−n

(37)

where the coefficients cGU P
n can be regarded as model dependent 

parameters. Many researchers have expressed a vested interest in 
fixing cGU P

0 (the coefficient of the subleading logarithmic term). 
Recent rigorous calculations of loop quantum gravity predicts the 
value of cGU P

0 to be −1/2 [44]. But, for the EUP black hole, we do 
not have the logarithmic term and we have the correction terms 

with the positive power for 
(

A
4L2

p

)
while for the GUP black hole 

we have negative power as well as the logarithmic term.
We can’t compare EUP and GUP in a figure, because they do 

not have the same or close value or the same numerical order, but 
just we can compare them checking at the critical temperature. 
From the Eq. (17), we only consider the first two terms for the 
mass-temperature relation for EUP black hole

MEU P = h̄c3

8πGk
(

1

T
+ (αh̄c)2

4k2T 3
) (38)

Then, the mass-temperature relation for GUP black hole from the 
Eq. (20) is

MGU P = h̄c3

8πGk
(

1

T
+ k2β2

c2
T ) (39)

and for the ordinary mass-temperature from the Eq. (14) we have

Mord = h̄c3

8πGkT
(40)

Now, we calculate �MEU P and �MGU P

�MEU P = MEU P − Mord = h̄3c5α2

32πGk3

1

T 3
(41)

�MGU P = MGU P − Mord = h̄ckβ2

8πG
T (42)

Eqs. (41) and (42) show the difference between and having differ-
ent numerical order such that they cannot be plotted in the same 
figure. If we calculate the numerical value of temperature coeffi-
cient in the Eqs. (41) and (42) we have

h̄3c5α2

32πGk3
� 1.6113 × 10−87 (43)

h̄ckβ2

8πG
� 2.34133 × 10−83 (44)

It is seen that �MGU P � �MEU P about thousands times.
To obtain the critical temperature, we should equal the mass 

difference together then we have

�MEU P = �MGU P (45)

Tc = c

k

√
h̄α

2β
(46)

Now, in the SI system we have

Tc = 3.94176 × 1011 K (47)

Now, inserting Tc in the Eq. (1) and Eq. (2) we have

MEU P (Tc) = MGU P (Tc) ∝ h̄c2

8πG

√
2β

h̄α
(1 + βαh̄

2
) (48)
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We see that at the critical temperature for EUP and GUP we 
have the same mass. Also, we obtain this relation for the heat ca-
pacity by inserting Tc in the heat capacity equation

C EU P = CGU P ∝ 1

8πG
(h̄kβ2c3 − βkc3

α
) (49)

4. Unruh effect

In this section, we derive the Unruh temperature [45] starting 
directly from the EUP. Let us consider some elementary particles 
kept at rest in a uniformly accelerated frame. The kinetic energy 
acquired by each of these particles while the accelerated frame 
moves a distance �X will be given by [46]

E = ma�X (50)

where m is the mass of the particle and a the acceleration of the 
frame. Now, suppose this energy is sufficient to create N pairs of 
the same kind of particles from the quantum vacuum. Namely, we 
set

E ≈ 2Nmc2 (51)

The distance along which each particle must be accelerated in or-
der to create N pairs is given by [46]

�X ≈ 2Nc2

a
(52)

First, consider the case of absence of EUP effect. The original parti-
cles and the pairs created in this way are localized inside a spatial 
region of width �X , therefore the fluctuation in energy of every 
single particle is given by

�E ≈ h̄c

2�X
≈ h̄a

4Nc
(53)

If we interpret this fluctuation as a classical thermal one, we can 
write

3

2
kT ≈ �E (54)

or

T = h̄a

6Nck
(55)

Comparing this with the Unruh temperature TU = h̄a
2πck , we know 

that N = π
3 ≈ 1.

Now let us repeat the same argument using the EUP. We have 
the Eq. (5) as position-momentum relation for extended uncer-
tainty principle. Now, we have time-energy relation for extended 
uncertainty principle:

�t�E ≥ h̄

2

[
1 + (�t)2

l2H

]
. (56)

On the other hand, �X = c�t and |�|
3 = 1

l2H
so, we obtain:

�X�E ≥ h̄c

2

[
1 + |�| (�X)2

3c2

]
. (57)

Then, solve the quadratic equation as follows:

h̄ |�| (�X)2

6c
− (�E) (�X) + h̄c

2
= 0 (58)

or
�X = 3c(�E)(1 −
√

(1 − |�| h̄2/3(�E)2)

|�| h̄
(59)

where we get T ≥ Tmin = 2h̄
3k

√
|�|
3 . Then, we expand the Eq. (59) as 

below:

�X = h̄c

2�E
(1 + h̄2 |�|

12(�E)2
) (60)

And we have the equations (52), (54), (55) with substituting them 
in Eq. (60) we obtain:

T = h̄a

2πkc
(1 + h̄2 |�|

27k2T 2 ) (61)

And we know that TU = h̄a
2πkc so, we obtain:

T = TU (1 + h̄2 |�|
27k2T 2

) (62)

Here we substituting the T formula in Eq. (62) Therefore, we have:

T = TU (1 + h̄2 |�|
27k2T 2

U (1 + h̄2|�|
27k2 T 2 )2

) (63)

Then

T = TU (1 + h̄2 |�|
27k2T 2

U

(1 + h̄2 |�|
27k2T 2

)−2) (64)

Now, we expand the second terms as below:

T = TU (1 + h̄2 |�|
27k2T 2

U

(1 − 2
h̄2 |�|

27k2T 2
)) (65)

We neglect from the term of order |�|2 so, we have:

T = TU (1 + h̄2 |�|
27k2T 2

U

) (66)

EUP correction to the Unruh temperature becomes larger than the 
ordinary Unruh effect. Since TU = h̄a/(2πkc), and |�| > 0, eq. (66)
predicts an unphysical divergent temperature T when the accelera-
tion a goes to zero. Namely, if a → 0, then TU → 0, finally T → ∞. 
Therefore eq. (66) satisfies a > 0.

5. Conclusion

In this paper, we investigated the thermodynamic properties 
of the Schwarzschild black hole and Unruh effect by using the 
simplest form of the EUP. From the EUP we obtained the mass-
temperature relation for EUP black hole. From the minimal mo-
mentum of EUP, we found that there should exist the lower bound 
for the EUP black hole temperature. Using the mass-temperature 
relation for EUP black hole, we computed the specific heat and 
entropy. We found that the specific heat is always negative and 
increasing with the temperature. We also reexpressed the specific 
heat and entropy of the EUP-corrected Schwarzschild black hole in 
terms of the temperature instead of the mass. We found the rela-
tionship between the entropy and the area of the horizon for the 
EUP-corrected Schwarzschild black hole. Here we found that the 
expansion of the entropy in α does not contain the ln A which ap-
pears in the GUP-corrected Schwarzschild black hole case.
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