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Introduction 

The methods of micro-local calculus areto characterize a function 

by the system of differential equations which it satisfies and to analyze 

the micro-local structure of the system. We are mostly concerned with 

holonomic systems, because they are the systems whose solutions form a 

vector space of finite dimension. Almost all functions which we encounter 

in Physics or Mathematics are solutions of holonomie systems. 

In th~s paper an outline of the theory of holonomic systems is 

given and the micro-local properties of Feynman integrals are discussed 

as its application. 

In section 1 we explain some basic notions concerning holonomic 

systems such as holonomy diagram, geometric and analytic interaction, 

order and principal symbol. *) In section 2 we give explicit forms of 

functions determined by holonomic systems. Then in the last section 

we apply our theory to the Feynman integrals. 

i. Holonomic systems and holonomy diagram. 

First we review a micro-local calculus of holonomic systems. 

Consider a system of differential (or mlcro-differential) equations 

on a manifold X with an unknown function u(x); 

~ : Pl(X, D)u(x) ..... PN(X, D)u(x) = 0 

Pj(x, D) (j = I,..*,N) are differential (resp. mlcro-differential) 

operators. Denoting byD(resp. ~) the sheaf of differential (resp. 

micro-differential) operators, we write by ~ the ideal of~ (resp.~) 

generated by Pi(x, O),..-, PN(X, O), so tha~Du =D/~ (resp.~u =~/~). 

*) As for details of ho!onomic systems, see S-K-K [i], [4], [5], where 

we have used '~maxlmally overdetermined system" and "Lagrangean manifold" 

in place of "holonomic system" and "holonomic manifold", respectively. 
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We analyze its structure micro-locally, that is, locally on the cotangent 

bundle T*X of X. 

The symbol ideal J is the ideal of the sheaf Q biT, X of holomor- 

phic functions on the cotangent vector bundle T*X of X, which is 

generated by principal symbols of operators in~. The common zeros 

A of all functions in the symbol ideal J is said to be the character- 

istic variety of the system~. It is known that the codimension of 

the characteristic variety does not exceed the dimension of X, say n. 

A holonomic system is, by definition, a system whose characteristic 

variety has codimension n. In this case, its characteristic variety 

A is holonomic, that Is, the fundamental 1-form ~ : Z~jdxj of T*X 

vanishes on it. Let A = UAA be a decomposition of A into irredu- 

cible components. Aj is called a holonomic component. Aj is the 

conormal bundle of its image Yj by the projection to X. 

If the symbol ideal J is reduced, in other words, if J coin- 

cides with the ideal of functions which vanish on A, then we say~is 

very good. If J is reduced at generic points of Aj's, then J3 ~ is 

said to be simple. 

When there exists an irreducible analytic set S of dimension 

(n-l) contained in Aj and A k (J # k), we say Aj and A k have a 

geometric interaction at S. If, moreover,~ is not a direct sum of 

two~-Modules whose characteristic varieties are Aj and A k respec- 

tively in a neighborhood of a generic point of S, then we say that 

Aj and A k have an analytic interaction. 

A geometric interaction Is important because no other interaction 

between irreducible components occurs by virtue of the following fact; 

systems~ 1 and~fL 2 are isomorphic outside of (n+2) if two holonomic 

co-dimensional analytic set, then they are globally isomorphic. By 

these data, we write a holonomy diagram, which consists of dots and 

segments Joining them. Dots represent the holonomic components Aj of 

characteristic variety and segments represent the analytic interactions 

between the holonomic components. 

We explain the order of a generator of a simple holonomic system 

on each irreducible component Aj. There is a micro-differentlal operator 

P(x, D) ~ Pm(X, D) + Pm_l(X, D) + ... of order m belonging to 

such that dPm(X, ~) ~ mod J for some function ~ on Aj. Here 
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= Z~jdxj is the fundamental 1-form. It is shown that 

I n ~2P m 
~-l[Pm-I - g i~lBXiB~-----i ] m-12 is a constant function on Aj indepen- 

dent of the choice of P and called the order of u on A.. The 
0 

holonomy diagram with orders on each component gives us a fundamental 

information on the holonomic system. 

A microfunction solution u(x) of a given holonomic system on 

each Aj can be written u(x) -- P(x, D)6(Xl,'--, x r) by a suitable 

elliptic micro-differential operator P, if we take a local coordinate 

system (Xl,'-', x n) so that Aj is a conormal bundle of a submanifold 

defined by x I ..... x r = 0. (2~)-r/2q(P)IA.(d~l'''d~rdXr+!'''dXn/ 
3 

dXl'''dXn)i/2 is said to be the principal symbol of u(x). Here, dx 1 

• ".dx n and d~!..-d~rdXr+ l..-dx n are regarded as volume elements on 

X and Aj, respectively. It was shown that this is invariant by a 

coordinate transformation. The order of a generator u coincides with 

the homogeneous degree of the principal symbol with respect to the fiber 

coordinate ~. The principal symbol ~(u) satisfies the following 

system of differential equations of order 1 on Aj so that it can be 

characterized as its solution up to constant multiple: (HPm + 

1 ~2Pm 
--))[~(u)(dXl'''dXn)i/2] -- 0 for any P = Pm(X, D) 

(Pm-i - ~ Z 3xi~i 

3P ~P 

+ Pm_l(X, D) + .-- in . Here, HPm = ~ ~i ~xi ~x~m " 

Microfunction solutions of a simple holonomic system at a generic 

point of holonomic components form a vector space of one dimension, 

and the principal symbol characterizes them. 

At a generic point of Aj, a simple holonomic system is determined 

by its order. That is, if two systems of equations~ v :~u v (v--l,2) 

with the same order are given, then there exists locally an elliptic 

operator Q(x, D) of order 0 such that u I -- Qu 2 gives an isomorphism 

between J~l and ~ 2" 

If Aj and A k intersect regularly at an (n-l)-dimensional ana- 

lytic set S (that is, in a neighborhood of generic point of S, Aj 

and A k are non singular and the tangent space of S is the inter- 

section of those of Aj and A k) and JJ~ is very good, we call it the 
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regular interaction. Then, /~ is determined by the orders ej, e k on 
1 

Aj and A k. If ej - e k - ~ ~ 0, l, 2,''', then the support of any 

non zero mlcrofunction solution is not contained in A~. That is, the 

solution propagates from A k to Aj. On the contrary, if two systems ~v 

~62/~onV (V= 1,2) areTive~with the same orders e~ and ek, 7 j 1 = 
A implies = on A U A , under the same condition 
Jl i 2 J k 

ej - e k - ~ ~ 0, i,'-" . That is, the system itself propagates from 

Aj to A k. Therefore, if the difference is not a half integer, they 

propagate in both directions. In the real domain, S divides A. 
J 

(resp. A k) into two components. Microfunction solutions at a generic 

point of S form a vector space of two dimentions, and two relations 

among the four principal symbols of a microfunction solution can be 

written down. This leads us to the global determination of principal 

symbols of microfunction solutions by means of analytic interactions. 

(See [5]. ) 

Example 

O~_B_i/2 
2~ -a-B-1 

0 

1/2 

(a) (b) 

The number enclosed with a circle signifies the codimension of the image 

of holonomlc components to the base manifold. The number beside a circle 

is the order on the corresponding holonomic manifold. Example (a) : 

X = ¢2 (xD x - a)u = (yDy - B)u = 0, ~ GG, Q are the conormal bund- 

les of X, x = 0, y = 0, x = y = 0, resp. Example (b) : X = ¢2, 

~),xyD x y x x - Dy)DyyU Y (D x - (x + y)u = (D - D )D xu = (D = (DxX + D y)u = 0, 

Q' O' Q are the conormal bundles of X, x 0, y = 0, x+y = 0, 

x = y = 0, resp. ; In this case, Q and Q have ageometric interaction 

but no analytic one. 

2. Explicit forms of functions with simple singular spectrum. 

When a function u(x) satisfies a simple holonomic system and 



34 

the characteristic variety is not complicated, we can give an explicit 

form of functions. (In this section, the eonormal of the total manifold 

is omitted.) 

a) In the case the characteristic variety is the conormal bundle of a 

hypersurface f(x) = 0, u(x) can be written as u(x) ~(x)f(x) m + ¢(x) 

where ~ (x) and ¢(x) are functions analytic near the hypersurface. 
I The order is -a-~. When ~ is a non negative integer, f(x) ~ m~st 

be replaced by f(x)~log f(x). If u(x) is considered as hyperfunetion, 

f(x) ~ is interpreted as (f(x)±i0) ~ 

b) In the case the characteristic variety is the union of the conormal 

bundle of hypersurface f(x) : 0 and the conormal bundle of f(x) = 

g(x) = 0, u(x) can be written as ~ (x)g(x)ag(m)(f(x)) + @(x). 

c) In the case the characteristic variety is the union of conormal 

bundles of two hypersurfaces f(x) = 0 and g(x) = 0 which have a contact 

of order 2, by modifying f(x) and g(x), we can set g(x) = f(x) - 

h(x) 2 with some function h(x). Thus, we can take a local coordinate 

system (Xl,---,x n) such that f(x) = x I and h(x) = x 2. Then, u(x) 

satisfies micro-locally the following system of equations; (XlD I + 

I - ~)v = 0, ((D 2 + 2x2DI)D 2 - 4~Dl)V = 0, D3v ..... D v = 0 2x2D2 n 
by setting u(x) = R(x, D)v(x) for a micro-differential operator R. 

If we denote by e0, el, the orders of u(x) at the conormal bundles 

of f(x)=0 and g(x)=0, we can say u(x) is of the following form 

u(x) =~(x)v(x) + @(x)D2Dllv!x) + ¢(x) for some analytic functions 

(x), ~(x) and ¢(x). Solving the above equation, v(x) and D2D~iv(x) 

is given by 

e0+l el i 

v(x) f(x) 2 g(x)--2- -~ el+I/2 
= Qe0 (h(x)/~) 

and 

eo el I 

D2D~Iv(x) ~ f(x)-7-g(x)-7- -~ 
el+i/2 

Qe0_l h(x)/~). 

Here, Q is the associated Legendre function. Especially, if e 0 = 0 
i 

and e I = -~, 

u(x) ~(x)f(x)-l/21og h~(x) - f(x)i/2 
h(x) + f(x) I/~ + ~(x)log g(x) + ¢(x). 

i 
In the case e 0 = -i and e I = -5' 
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u(x) =~(x)f(x)I/21og h(x) - f(x) 1/2 + ¢(x)f(x)l/2 + ¢(x) 
~(x) + f(x) I/2 

The preceding discussion on holonomic system is applied to a 

microlocal study of Feyr~an integrals. 

3. Feynman Integrals. 

Consider a Feynman diagram D which consists of n external 

lines, n' internal lines Joining n" vertices (parametrized by r, 

A and J, resp.). Internal lines have directions. J±(A) signifies 

the end and the source of an internal line r. The incidence number 

[j, A] = I, -i, 0 according to whether j = j+(A), j-(A) or else. 

The set of (~''''' Pn; Ul''''' Un) in the cotangent bundle T*(RV) n 

of momentum space satisfying the following Landau equation is called 
+ 

positive Landau holonomic manifold and denoted by A D ; The relations 

Z Pr + Z[J : A]kA = 0 and u r = vj, where j = l,.-.n" and r runs 
r÷j A 
external lines ending at J, hold for some v-vectors k~, vj and 

scalars aA (~= l, °.., n'; J = 1,..., n") which satisfy 

2 2 
kA = mA, v +( - v = aAk£, ~A > 0. 

J A) J-(A) 

A set of (PI''''' Pn ; Ul''''' Un) which satisfies the same equation 

replacing the last posltivity condition a£ > 0 with a£ ~ 0 is denoted 

by A D and called Landau holonomic manifold for D. The projection of 

Landau holonomic manifold on the momentum space (RV) n is called Landau 

manifold and denoted by L D. 

The Feynman integral FD(Pl,... , pn ) is given by 

f~<m 2-k~-i0)) -I n~( z pr 4 z[j : ~3k )~d~k 
£ J r÷J A A ~ £" 

This integral satisfies a holonomic system. It is shown that the singular 

spectrum of a Feynman integral FD(Pl,..-, pn ) is the union of the 

positive Landau holonomic manifolds of graphs obtained by contractions 

of internal lines of D. 

For a diagram D, set cd(D) = # internal lines +v(# vertices 

- # internal lines). 
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Theorem. Let D' be a diagram obtained by contracting internal 
+ 

lines of D. If, for (p, u) in AD,, we can solve uniquely (possibly 

finite) k~ and ~ from the Landau equation for D' Then, the order 

of F D on AD, is a half of cd(D'). Especially, if all vertices are 

external, the above condition holds and this formula is true. 

This theorem is obtained by the formula concerning the order of 

an integral : the order of an integral is the order of the integrand minus 

a half of the number of the integration variables. 

Theorem. If D' is a diagram obtained by contractions of internal 

lines of D and D" is obtained by contraction of one internal line, 

say ~0' from D', and if the Landau equation for D' in which k 2 = 
2 ~0 2 2 

m~0 is replaced by ~0(k~0 - m~0) : 0 gives aZ and kz from 

(PI'*''" Pn' Ul''''' Un)' then AD, and AD,, have a regular interaction. 

The above condition is again satisfied when all vertices are external. 

In this case, the difference of the orders on AD, and AD, , is 

one half. Therefore, there exists a non trivial microfunction solution 

whose support is contained in [D' , but no solutions with support 

in AD" in a neighborhood of ~D' N AD"" That is, any solution on 

AD' can be uniquely continued to some solution on TD,,. 

In the sequel, we assume all vertices are external. We say D 

is a large diagram if cd(D') ~ (v+l)b 0 for any subgraph D' of D. 

Here b is the number of connected components of D'. The codimension n 
(in R vn) of the Landau manifold L D of a large diagram D coincides 

with cd(D). For example, the holonomy diagram for the Feynman integ- 

ral of one loop wlth n-vertlces is as follows. 

~ ~  Each circle denotes the Landau 

holonomic manifold, and the number beside 

t~O~ 3/2~ J a circle indicates the order. Just one 

£/ 

i 

route from the full diagram is shown here. 

The full diagram contains many routes 

corresponding to the way of contracting 

internal lines successively. In the 

neighborhood of the intersections between 

Landau surfaces, the situation in 2 c) 

Occurs. 



On the Landau holonomic manifold of a large diagram D' obtained 

by contraction of D, the Feynman integral F D is micro-locally equal 

to a ~-function on the Landau manifold LD, multiplied by an analytic 

function. This amplitude can be obtained by solving only an algebraic 

equation. In fact, the amplitude of the Feynman integral is determined 

by its principal symbol,and the principal symbol of F D on AD, is 

given by : 

H d~£,HdVp_H dVv.,H dVk~,E dVk£,, 
const. ~' j JJ' J ~' ~" 

~,, (m£,,-k~,,) E d(m£,-k£, J ~ £' 

where ~', J' are internal lines and vertices on D' 

contracted internal lines. 

and £" are 
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