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Introduction

The methods of miero-local calculus areto characterize a function
by the system of differential equations which 1t satlisfies and to analyze
the micro-local structure of the system. We are mostly concerned with
holonomic systems, because they are the systems whose solutions form a
vector space of finite dimension. Almost all functions which we encounter
in Physics or Mathematies are solutions of holonomic systems.

In this paper an outline of the theory of holonomic systems 1is
given and the micro-local propertles of Feynman integrals are discussed
as its application.

In section 1 we explain some basic notlons concerning holonomic
systems such as holonomy diagram, geometrlc and analytle interaction,
order and principal symbol.*) In sectlion 2 we glve explicit forms of
functions determined by holonomlc systems. Then In the last sectilon
we apply our theory to the Feynman integrals.

1. Holonomic systems and holonomy diagram.
First we review a micro-local calculus of holonomic systems.

Consider a system of differential (or micro-differential) equations
on a manifold X with an unknown function u(x);

T 2 G, Dulx) = +e = Pyx, Diulx)

Pj(x, DY (J = 1,.«+,N) are differential (resp. mlcro-differential)
operators. Denoting by,Z)(resp é;) the sheaf of differential {resp.
micro-differential) operators, we write by the ideal offD (resp. (S
generated by Pl(x, D),**», P (x D), so tha’n@u jﬁ/g {resp. Eu -5 KS)

¥) As for detalls of holonomic systems, see S-K-K [1], [43, [5], where
we have used "maximally overdetermined system" and '"Lagrangean manifold"
in place of "holonomic system" and "holonomic manifold', respectively.
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We analyze 1ts structure micro-locally, that 1s, locally on the cotangent
bundle T¥X of X,

The symbol ideal J 1is the ideal of the sheaf THY of holomor-
phic functions on the cotangent vector bundle T¥X of X, whilch 1s
generéted by principal symbols of operators in . The common zeros

A of all functlons in the symbol ideal J 1is said to be the character-
istic variety of the systemiyz. It is known that the codimension of
the characteristic variety does not exceed the dimension of X, say n.
A holonomie system is, by definition, a system whose characteristic
variety has codimension n. In this case, 1ts characteristic variety

A 1is holonomiec, that is, the fundamental 1-form o = EEJdXJ of T#*X
vanishes on 1t. Let A = UAj be a decomposition of A into irredu-
cible components. Aj is called a holonomic component. Aj is the
conormal bundle of its image Yj by the projection to X.

If the symbol ideal J 18 reduced, in other words, if J coln-
cides with the ideal of functions which vanish on A, then we sayjnz,is
very good. If J 15 reduced at generic points of Aj's, then ]1 is
said to be simple.

When there exists an irreducible analytic set 8 of dimension
(n-1) contained in AJ and Ak (] # k), we say I\j and A, have a
geometric interaction at S. If, moreover,jUZ is not a direct sum of
two E;—Modules whose characteristic varleties are Aj and Ak respec-
tively in a neighborhood of a generlec point of S, then we say that

AJ and Ak have an analytie interaction.

A geometric interaction 1s important because no other interaction
between irreducible components ocecurs by virtue of the following fact;
if two holonomic systemsgy?l and (2 are lsomorphic outside of (n+2)
co-dimensional analytic set, then they are globally iscmorphlc. By
these data, we wrlte a holonomy diagram, which consists of dots and
segments Joinlng them. Dots represent the holonomie components AJ of

characteristic variety and segments represent the analytic interactions
between the holonomic components.

We explain the order of a generator of a simple holonomic system
on each lrreducible component A,. There 1s a micro-differential coperator
P{x, D) = Pm(x, D) + Pm_l(x, D) + »++ of order m belonging to

such that de(x, £) =@uw mod J for some function <'/> on Aj. Here
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w = Zijdxj is the fundamental l1-form. It is shown that

“Irp 13 2 Py R I R 1 tant function on A, indepen-—
QP m-1 5 o 13X Bgi 2 s a constan unction o i ndepen
dent of the choice of P and called the order of u on Aj. The
holonomy diagram with orders on each component glves us a fundamental

information on the holonomlc system.

A microfunction solution u(x) of a given holonomlc system on
each Aj can be written u(x) = P(x, D)S(xl,~~*, Xr) by a suitable
elliptic micro-differential cperator P, if we take a local coordinate
system (xl,--°, Xn) so that Aj is a conormal bundle of a submanifold

= e+ = = ~-r/2 .o “ue
defined by x; = =x,=0. (2m) G(P)|A.(d51 g%, dx /

dxl"'dxn)1/2 is said to be the principal symbol of u(x). Here, dx,

'“dxn and dEl--'dgrdxr+l"-dxn
X and Aj’ respectively. It was shown that this is invariant by a

are regarded as volume elements on

coordinate transformation. The order of a generator u c¢oincides with
the homogeneous degree of the principal symbol with respect to the fiber
coordinate £. The principal symbol o{u) satisfies the followlng
sysﬁem of differential eguations of order 1 on Aj so that it can be

characterized as its solutlon up to constant multiple: (HP +
2 m

1 P 1/2
(Pp1 -5 %33 ag ))o(u)(dxy++dx )7"] = 0 for any P = P (x, D)
3P 4 8P,
+ P (x, D} + ¢+« in } Here H = I(ppo o - —2 2
m=-1'"? 4 Pm agi Bxi 9x Bgi

Microfunction solutions of a simple holonomic system at a generic
point of holonomic components form a vector space of one dimension,
and the principal symbol characterlzes them,

At a generlc point of Aj’ a simple holonomic system is determlined
by its order. That 1s, if two systems of equationsﬁ?v =€uv (v=1,2)
with the same order are glven, then there exlsts locally an elliptic
operator Q{x, D) of order 0 such that uy, = Qu2 gives an isomorphism

between jle and 3722.

ir Aj and Ak intersect regularly at an {(n-1)-dimensional ana-
lytic set S (that is, in a nelghborhood of generic polnt of 5, Aj
and Ak are non singular and the tangent space of S 1s the inter-
section of those of AJ and Ak) and jj? is very good, we call it the
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regular interaction. Then,th is determined by the orders ej, e, on
Aj and Ak' If ej -8 - % # 0, 1, 2,**+, then the support of any
non zero microfunction solution is not contained in A,. That is, the

solution propagates from Ak to AJ. On the contrary, 1f two systems lfzv

=£:/ v (v= 1,2) are given with the same orders e'j and ey ;=
j2 on Aj implies jl =4, on A;] U !\k, under the same condition
ej - ek - % # 0, 1,*+ . That is, the system itself propagates from

Aj to Ak’ Therefore, 1f the difference is not a half integer, they
propagate in both directions. In the real domain, S divides A,
(fesp. Ak) into two components. Microfunction solutlons at a generic
point of S form a vector space of two dimentions, and two relations
among the four principal symbols of a microfunction solution can be
written down. This leads us to the global determination of principal
symbols of microfunction solutions by means of analytic interactions.
(See [5].)

Example

(0) o

(1) @M (1n1/2

(2) 1
(a) (v)

The number enclosed with a circle signifies the codimension of the image
of holonomlc components to the base manifold. The number beside a circle
is the order on the corresponding holonomic manifold. Example (a)

X = C2, (xDX - a)u = (yDy - Blu = 0, @ @@, @ are the conormal bund-
les of X, x =0,y =0, x =y = 0, resp. Example (b) : X = Cz,

(DX - D )xy({x + ylu = (DX - Dy)Dxxu = (DX - Dy)Dyyu = (Dxx + Dyy)u = 0,
G Q. » @, @ are the conormal bundles of X, x =0, y = 0, xty = 0,
X =y = 0, resp. ; In this case,() and C) have a geometric interaction
but no analytic one.

2. Explicit forms of functions with simple singular speetrum.

When a function u(x) satisfies a simple holonomic system and
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the characteristic variety 1s not complicated, we can give an explicilt
form of functions. (In this sectlion, the conormal of the total manifold
is omitted.)

a) In the case the characteristic variety is the conormal bundle of a
hypersurface f{x) = 0, u(x) can be written as u(x) =99(x)f{x)a + P(x)
where P (x) and ¢(x) are functions analytic near the hypersurface.

The order 1is —a-%, When ¢ 1s a non negative integer, f(x)a mist

be replaced by f(x)alog f(x). If u(x) 1s considered as hyperfunction,
£(x)* 1s interpreted as (£(x)£10)%.

b) In the case the characteristic variety is the unilon of the conormal
bundle of hypersurface f(x) = 0 and the conormal bundle of f(x) =
g(x) = 0, u(x) can be written as ?’(x)g(x)aﬁ(m)(f(x)) + P (x).

¢) In the case the characteristic variety is the union of conormal
bundles of two hypersurfaces f(x) = 0 and g(x) = 0 which have a contact
of order 2, by modifying f©(x) and g(x), we can set g(x) = f{x) -

h(x}2 with some function h{x). Thus, we can take a local coordinate
system (xl,"',xn) such that f(x) = X, and hi{x) = X5 Then, u(x)
satisfles micro~locally the following system of equations; (xlnl +

Ix,D, - a)v = 0, ((D, + 2x,D;)D, = 4BD )V = 0, Dyv = +s+ =DV =0
by setting u{x) = R(x, D)v(x) for a micro-differential operator R.
If we denote by egs €4 the orders of u(x) at the conormal bundles
of f(x)=0 and g(x)=0, we can say u(x) is of the following form
u(x) =@ (x)vi(x) + w(x)DEDilv(x) + ¢(x) for some analytic functions

®(x), v(x) and ¢(x). Solving the above equation, v(x) and D2D11V(X)
i1s given by
e. +1 e
- 02 -2 ‘llr e +1/2
vix) = £(x) g(x) Qg (h(x)AEGY)
0
and
e e
. T TR
D2D1 v(x) = £(x) g(x) Qe -1 (h(x)/YF(x)).
0

Here, @ 1is the assoclated Legendre function. Especially, if eq =0
and e = —%,

1/2
5 + ¥v(x)log g(x) + ¢(x).

u(x) =(P(X)f(x)"l/2logh(x) - f(x)l
h(x) + £(x)

In the case ey = -1 and e, = -3
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1/2
u(x) =P Prog BEL = L0 oy r(0) 22 4 o(x).
nix) + £(x)

The preceding discussion on holonomic system 1s applied to a
microlocal study of Feynman integrals.

3. Feynman Integrals.

Consider a Feynman dilagram D which consists of n external
lines, n' 1internal lines joining n" vertices (parametrized by r,
£ and J, resp.). Internal lines have directilons. ji(z) signifies
the end and the source of an internal line 7r. The incidence number
[j, 2] =1, -1, 0 according to whether Jj = j (1), 3 (&) or else.
The set of (;ﬁ,'--, pn; Ugsees un) in the cotangent bundle T#(RV)1
of momentum space satisfying the following Landau equation is called
positive Landau holonomice manifold and denoted by A+ s The relations

rijpr + i[j : ljkg = 0 and u, = VJ, where j = 1l,++*n" and r runs

external lines ending at Jj, hold for some v-vectors kl’ Vj and

scalars a, (2= 1,+++, n'; J = L,*++, n") which satisfy

vj+(£) - VJ'(Q) = dpky, oy 0.

A set of (pl,---, P o5 Upstee, un) which satisfies the same equation
replacing the last positivity condition oy > 0 with oy £ 0 1is denoted
by AD and called Landau holonomie manifold for D. The projection of
Landau holonomic manifold on the momentum space (R\))n 1s called Landau
manifold and denoted by LD'

The Feynman integral FD(pl,v-o, pn) is given by

\j;n(m2~k§~io))"l nsV( ¢ p.tLlJ ;zjkg)nd”kz.
3 3 r+] 3 2

This Integral satisfles a holonomic system. It is shown that the singular
spectrum of a Feynman integral FD(pl""’ pn) is the union of the
positlve Landau holonomic manifolds of graphs obtalned by contractions

of internal lines of D.

For a diagram D, set ¢d(D) = # internsl lines +Vv{(# vertices
- # internal lines).
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Thecrem. Let D' be a dlagram obtained by contracting internal
lines of D. 1If, for (p, u) in A+,, we can solve uniquely (possibly
finite) kz and oy from the Landau equation for D'. Then, the order
of FD on AD' is a half of ¢d(D'). Especially, 1f all vertices are

external, the above condition holds and this formula is true.

This theorem 1s obtained by the formula concerning the order of
an Integral : the order of an integral is the order of the integrand minus
a half of the number of the integration variables.

Theorem. If D' 1s a dlagram obtalned by contractions of internal
lines of D and D" 1is obtained by contraction of one internal line,

say io, from D', and if the Landau equation for D! in which ki =

0

2 and k2 from

(Pys***s Pps upstre, u ), then Ay, and Ap, have a regular interaction.
The above condition is again satisfied when all vertices are external.

me is replaced by o (k2 - m2 Yy = 0 gives a
g o7 A

In this case, the difference of the orders on AD’ and AD" is

one half. Therefore, there exists a non trivial microfunction solution

whose support is contained in AD' > but no solutions wlth support

in KD" in a neighborhood of A, n Wb". That 1s, any solution on

AD‘ can be uniquely continued to some solution on Kb".

In the sequel, we assume all vertices are external. We say D
1s a large diagram if c¢d(D') 2 (\)+l)bO for any subgraph D' of D.
Here b is the number of connected components of D'. The codimension
Vg) of the Landau manifold LD of a large diagram D coincides
with ¢d(D). For example, the holonomy diagram for the Feynman integ-
ragl of one loop wlth n-vertices 1s as follows.

Each circle denotes the Landau
holonomic manifold, and the number beside
a circle indicates the order. Just one
route from the full dilagram is shown here.
The full diagram contains many routes
corresponding to the way of contracting
Internal lines successively. In the
neighborhood of the intersections between
Landau surfaces, the situation in 2 ¢)
oceurs.
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On the Landau holonomic manifold of a large diagram D' obtained
by contraction of D, the Feynman integral FD is micro-locally equal
to a §-function on the Landau manifold LD' multiplied by an analytic
function. This amplitude can be obtained by solving only an algebraie
equation. In fact, the amplitude of the Feynman integral is determined
by its principal symbol,and the principal symbol of F
given by

on A is

D D!

I da,,nd"p, T d"v. 1 d'k, 1 'k
const. 2! g 9y 3y "

2 2 2 2 v .. v .
]g"(ml"_kl") \/E'd(mgv‘"kp‘v );Id (PJ+Z[J -R‘sz)g'd (a2’1k£v-z[j -l]VJ)

ZV 2"

where &', J' are internal lines and vertices on D' and 4" are
contracted internal lines.
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