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Abstract

It is of great importance to identify new sources of discrete symmetry violations

because it can explain the baryon number asymmetry of our universe and also test

the validity of various models beyond the standard model. Neutron Electric Dipole

Moment (nEDM) and short-range force are such candidates for the new sources of

P&T violations. A new generation nEDM experiment was proposed in USA in 2002,

aiming at improving the current nEDM upperlimit by two orders of magnitude. Po-

larized 3He is crucial in this experiment and Duke is responsible for the 3He injection,

measurements of 3He nuclear magnetic resonance (NMR) signal and some physics

properties related to polarized 3He.

A Monte-Carlo simulation is used to simulate the entire 3He injection process

in order to study whether polarized 3He can be successfully delivered to the mea-

surement cell. Our simulation result shows that it is achievable to maintain more

than 95% polarization after 3He atoms travel through very complicated paths in the

presence of non-uniform magnetic fiels.

We also built an apparatus to demonstrate that the 3He precession signal can

be measured under the nEDM experimental conditions using the Superconducting

Quantum Interference Device (SQUID). Based on the measurement result in our lab,

we project that the signal-to-noise ratio in the nEDM experiment will be at least 10.

During this SQUID test, two interesting phenomena were discovered. One is the

pressure dependence of the T1 of the polarized 3He which has never been reported
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before. The other is the discrepancy between the theoretically predicted T2 and the

experimentally measured T2 of the 3He precession signal. To investigate these two

interesting phenomena, two dedicated experiments were built, and two papers have

been published in Physical Review A.

In addition to the nEDM experiment, polarized 3He is also used in the search

for the exotic short-range force. The high pressure 3He cell used in this experiment

has a very thin window (� 250 µm) to maximize the effect from the force. We

demonstrate that our new method could improve the current best experimental limit

by two orders of magnitude. A rapid communication demonstrating the technique

and the result was published in Physical Review D.
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1

Introduction

1.1 Discrete Symmetries in Physics and Their Violation

There are three important discrete symmetry transformations in physics, charge con-

jugation (C), parity (P), and time reversal (T). Charge conjugation changes a particle

into its anti-particle; P reverses the space coordinates; T reverses the direction of

time. It was believed for some time that interactions between particles are preserved

under these transformations so that the form of the equation describing the physical

process is unchanged. In 1956, Lee and Yang proposed the possibility that P may

not be conserved in weak interactions and suggested some experiments to test their

hypothesis [89].

In 1957, Wu and her collaborators carried out an experiment to measure the

emitting electron angular distribution from the polarized 60Co β decay [140]. In

this experiment, the 60Co was polarized by a strong external magnetic field at low

temperature. The polarized 60Co β emits electron via β decay. If P is preserved, the

angular distribution of the emitting electron with respect to the spin direction of the

60Co should be symmetric. However, their observation proves that this distribution
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is not symmetric and one always has more electrons on one side than the other,

which is a direct evidence of P violation. Later in the same year, Garwin et al. [52]

and Friedman et al. [48] also discovered C violation in the meson decay. Though, P

and C symmetries were violated in weak interactions, the combined transformation

CP has been found to be a good symmetry until 1964.

In 1964, Christenson et al. found that CP is violated in the neutral Kaon decays

[36]. The neutral Kaon has two CP eigenstates, K1 and K2 with CP=1 and CP=-1,

respectively. Kaon can decay through the weak interaction, by which K1 only decays

to two pions (π0π0 and π�π�), and K2 only decays to three pions (π0π0π0 and

π�π�π0). The lifetime of the neutral Kaon has two distinct values, τL � 5.17� 10�8

s and τS � 8.93 � 10�11 s [142]. Before the discovery of the Christenson et al,

people believe that KL � K2 and KS � K1. In their experiment, they found that

occasionally, KL can decay to two pions with a branching ratio of 2 � 10�3, which

violates CP because of different CP values prior and after the decay. In other words,

KL and KS are not equivalent to K2 and K1 and they are actually a mixture of the

two CP eigenstates, K2 and K1.

KS � 1?
1� ε2

pK1 � εK2q (1.1)

KL � 1?
1� ε2

pK2 � εK1q, (1.2)

where ε � 2 � 10�3, the mixing parameter. The CP violation due to the mixture

of CP eigenstates is also known as indirect CP violation. Later, CP violation was

also discovered in neutral B Meson decays. Direct CP violation has also been seen in

the neutral Kaon decay and more details can be found in [107]. These observed CP

violations can be fully explained by the complex phase in the Cabibbo-Kobayashi-

Maskawa (CKM) matrix in the standard model (SM) (more details can be found in

the next section). Two dedicated precision experiments on neutral B Meson decay
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(Belle at KEK Japan [2] and BaBar at SLAC USA) [7] were carried out to provide

precise determination of some of the matrix elements in the CKM matrix.

Although P and CP symmetries are violated, the combined CPT transformation

is still believed to be a good symmetry because of the CPT theorem [127, 128].

The theorem states that the CPT is always conserved if assuming the validity of

the more fundamental physics principle, such as Lorentz invariance, hermiticity of

the Hamiltonian and Bose/Fermi statistics. Hence, CPT violation would imply a

breakdown of one or several of these fundamental principles, which is very unlikely.

As a result, the conservation of CPT [20, 88, 127] also implies that the violation of

CP definitely leads to the violation of T symmetry and vice versa.

1.2 Possible Sources of CP and T Violations in the Standard Model

The Standard Model (SM) is the most successful framework to describe the strong,

electromagnetic and weak interactions [24]. Many predictions from SM agree with

the experimental observations. There are two possible CP violation sources in SM.

One is the CKM matrix in the weak interaction and the other is the θ term from the

strong interaction. The weak interaction allows the quark to change its flavor and

the interaction only happens among the quarks that have different electron charges.

Therefore, the charge-raising weak current describing the interaction can be written

as [63]

Jµ � pū c̄ t̄qγµp1� γ5q
2

Upd s bqT , U �
�
�Uud Uus Uub
Ucd Ucs Ucb
Utd Uts Utb

�
 (1.3)

where γµ is the gamma matrices, γ5 � iγ0γ1γ2γ3, and U is a 3 � 3 matrix that

couples the u,c,t quarks with d,s,b quarks, also known as the CKM matrix. Because

of the unitarity of the matrix and the physical insignificance of the phase associated

with each quark field, there are only 4 independent variables charactering the matrix.
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One way to parametrize the CKM matrix is to specify three mixing angles (θ1, θ2, θ3)

and one complex phase (δ) [84]. If we use ci and si to denote cospθiq and sinpθiq,
respectively, the CKM matrix can be written as

�
� c1c2 s1c2 s2e

�iδ

�s1c3 � c1s2s3e
iδ c1c3 � s1s2s3e

iδ c2s3

s1s3 � c1c3s2e
iδ �c1s3 � s1s2c3e

iδ c2c3

�
, (1.4)

where θ1 � 13.05 � 0.05, θ2 � 0.0201 � 0.011, θ3 � 2.38 � 0.06, and δ � 1.20 � 0.08

[4]. It can be shown that a nonzero complex phase δ will violate the CP symmetry

by applying the CP transformation to the weak interaction Hamiltonian [63]. The

CP asymmetry due to this complex phase can fully describe the CP violation in the

neutral Kaon and B meson decay.

The strong interaction in the SM is described by Quantum Chromo-Dynamics

(QCD). The generalized QCD Lagrangian has two terms, L � LQCD � Lθ [138].

LQCD describes the interaction among quarks and gluons which preserves the CP

symmetry. The Lθ term violates CP symmetry, and it is written as [28, 19, 134, 72]

Lθ � θ
g2

32π2
GαµνG̃α

µν , (1.5)

where Gαµν is the gluon field strength tensor, G̃α
µν � 1

2
εµνρσG

αµν , g is the strong

coupling constant and θ is a constant. The magnitude of the θ is unknown and it

is an input to the SM, and can be only determined from the experiment. Naturally,

one expects that θ should be close to the order of one.

Theoretical calculations have shown that the neutron electric dipole moment

(nEDM) is proportional to θ and a rough estimation is nEDM � θ10�16 e � cm

[13, 42, 110]. The current experimentally upperlimit of the nEDM is 3� 10�26 e � cm

[11], indicating θ   10�10 instead of close to 1. This is also known as the strong CP

problem [34].
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Some attempts have been made to explain why θ is so small, and among them,

the most attractive approach is proposed by Peccei and Quinn in 1977 [104, 105].

They assume that the QCD Lagrangian has a global Up1q chiral symmetry and θ

is actually a field instead of a constant. Once this global symmetry is broken by

the instanton effect, it results a new particle, called an axion. Meanwhile, the θ

parameter is fixed to zero. Once the axion was proposed, extensive searches have

been conducted but without success till date. Though the axion can elegantly solve

the strong CP problem and make the CP violation term Lθ vanish, its existence

may also generate some other CP violation sources. One of these possible examples

is the short-range spin-dependent macroscopic interaction, proposed by Moody and

Wilczek [97]. This spin-dependent interaction happens between polarized spins and

unpolarized masses. If this exotic force exists, it is mediated by an axion-like particle

which is also a pseudoscalar boson. The new force will also violate both P and T

symmetries and therefore CP symmetry. Hence, this could be a new source of CP

violation in addition to the CKM matrix. It will be explained in the next paragraph

that additional CP violation mechanism is crucial to explain the so-called baryon

number asymmetry of our universe (BAU) [54].

Baryon number asymmetry is also known as matter/anti-matter asymmetry. We

know that our universe is predominated by matters or baryons. By observation of

the cosmic ray, we also know that the cosmic ray from far away of the universe is

consistent with the interactions between ordinary matters, which indicates that the

asymmetry holds throughout the entire universe [85]. Moreover, the observation of

gamma ray backgrounds can be well explained by cosmic ray and normal matters

[131]. Therefore, we do not need to resort to antimatter to explain them. All these

evidences indicate that our universe is consisted of matter. However, since all the

mass generating processes we know to date produce equal amount of matter and

anti-matter, it is a mystery that why only matter is left in our universe. There must
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be some unknown mechanisms that generates this asymmetry at the very early stage

of the evolution of the universe. It is shown by Sakharov that one of the necessary

conditions for the BAU to happen is the C symmetry and CP symmetry violation

[124]. If one use η to represent the baryon number asymmetry, it can be calculated

as

η � nB � nB̄
nB � nB̄

, (1.6)

where nB and nB̄ are the baryon and anti-baryon number density in the universe,

respectively. Since baryon and anti-baryon will annihilate and generate photons γ,

one can replace the total number of nB and nB̄ with nB � nB̄ � σ, where σ is the

number density of γ and can be estimated from the cosmic microwave background

radiation. In the above equation, nB � nB̄ can be approximated by nB as nB̄ � 0

today. Therefore, one can estimate η � 10�10 [137, 85], which is 10 to 12 orders

of magnitude bigger than the prediction from the SM assuming CKM matrix is the

only source of CP violation [47]. This strongly suggests that there must be more CP

violation sources we do not know, in order to be consistent with the BAU.

1.3 The Organization of this Thesis

My thesis research focuses on the search for the new sources of CP violations. We

explore two possible sources: the experimental search of the neutron electric dipole

moment (nEDM) and the axion-like particle mediating the spin-dependent exotic

short-range force. The nEDM is a model-independent quantity, which provides an

excellent way to examine existing models, including the SM and those that explore

physics beyond it. It could also provide insights into the new sources of CP violation,

which may help people understand the BAU. Several experiments have attempted to

measure the nEDM for the past 6 years [11, 46, 65, 114, 118]. In 2002, a new nEDM

experiment was proposed in the USA [100]. The goal of the new nEDM experiment
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is to improve the sensitivity of the measurement by two orders of magnitude. A

country-wide collaboration is formed to carry out the project and Duke University

is part of the collaboration. I will discuss the nEDM in general in Chapter 2. It

includes a brief discussion of the previous nEDM experiments and their techniques,

and the introduction of the novel techniques used in the newly proposed nEDM ex-

periment. In Chapter 3, I will discuss about the 3He injection simulation and the

SQUID implementation for the nEDM experiment. In Chapter 4, two independent

studies of the longitudinal (T1) and transverse relaxation time (T2) of the polarized

3He are presented. T1 and T2 are the two most important parameters associated

with polarized 3He. They characterize how fast the polarized 3He depolarized longi-

tudinally and transversely. Therefore, these studies are closely related to the nEDM

experiment, as they have a great influence on the sensitivity and the measurement

time.

The other approach to probe possible new CP violation sources is the search

of short-range and spin-dependent force. This will be presented in Chapter 5. As

discussed previously, the existence of the axion can solve the strong CP problem

naturally. If the short-range and spin-dependent force exists, this force will violate

both P and T symmetries and the interaction will be mediated by an axion-like

particle. It is of great importance to look for this axion-like particle, as the interaction

is different from the four fundamental forces in physics. It also provides additional

CP violation sources in addition to the strong and weak interactions. During this

study, we use a high pressure spin-polarized 3He target cell. Because of the extremely

thin glass window of the cell and the technique we have developed, the sensitivity

of our experiment can be potentially two orders of magnitude better than that of

existing experiments. Chapter 6 concludes my thesis and a future outlook on the

short-range force experiment is also presented.
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2

The nEDM Experiment

2.1 Neutron Electric Dipole Moment and the Previous nEDM Exper-
iments

In this section, I will first show how is nEDM related to the CP violation. Then, I will

discuss previous nEDM experiments which utilized various experimental techniques.

The limits of those experiment will also be discussed. The next section will be

dedicated to the new nEDM experiment proposed in the USA. This covers the novelty

and working principles of the new experiment as well as a comparison of the new

experiment with previous ones.

2.1.1 What is nEDM and What Is It Predicted from the Theory?

The electric dipole moment characterizes a charge distribution, and it is mathemat-

ically defined as

~d �
»
~xqp~xqd3x, (2.1)

where ~x is the position vector and qp~xq is the charge distribution. Though neutron is

a charge neutral particle, it can acquire a dipole moment if the positive charge and
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negative charge distribution do not overlap with each other perfectly. Theoretically,

it can be shown that a nonzero θ term in Eq. (1.5) will lead to a nonzero nEDM

[87, 146, 115].

Here I present a simple physics interpretation to illustrate how a nonzero nEDM

can violate CP and T symmetry. Given a non-degenerate system in its ground state,

such as a neutron, the only vector that denotes the energy levels of the system is

the spin ~S. If the neutron is placed in a magnetic field ~B, the ground state will

split into two states, E� � E0 � µB and E� � E0 � µB, where E0 is the energy of

the ground state. The two states become non-degenerate. If the neutron also has a

EDM ~d, it will possess a second vector to denote its state. Consequently, for either

energy state E� or E�, we have another degree of freedom ~d other than the spin ~S to

characterize the system. With different angles between ~d and ~S, the system always

has the same energy. This means the ground state is degenerate, contradictory to

the assumption that the ground state of the neutron is non-degenerate. To eliminate

the contradiction, ~d must be in the same direction as the ~S, i.e. ~d � d
~S
S

[82].

Under P transformation, ~d will change sign, whereas ~S is unchanged. Similarly,

under T transformation, ~d is unchanged, whereas ~S changes sign. Hence, under P

and T transformation, the left hand side and right hand side of ~d � d
~S
S

change in

different ways. In order for this equation to be valid, we are left with two possibilities.

They are either d is zero or P and T symmetries are violated.

The SM prediction of the nEDM is extremely small (in the range from 10�32 to 10�30 e�
cm [83, 93, 53]). The small value of the nEDM arises from three loop Feynman dia-

grams given the CKM matrix is the only source of the CP violation. Beside the CP

violating complex angle in the CKM matrix, other CP violation sources or mech-

anisms can also contribute to the nonzero nEDM. Various models, such as super-

symmetry model(SUSY) [16, 14, 45, 81], left and right symmetry model [22, 96] and
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Figure 2.1: The world data on the upperlimit of the experimental value of the
nEDM. The theoretical prediction from different models are plotted on the right of
the figure. The proposed upperlimit of the new experiment is plotted as the blue
downward triangle.

multi Higgs model [18, 80, 23, 15, 62] all have their own predictions of the nEDM

which are much larger than the SM’s prediction, Figure 2.1 [106]. Since the very first

measurement on nEDM obtained in 1950 [113], the upperlimit of the nEDM has been

reduced by eight orders of magnitude. The current best upperlimit is 2.9�10�26 e�cm

[11], which is still several orders of magnitude larger than the SM’s prediction. A new

nEDM experiment was proposed in 2002 which is aimed at improving the sensitivity

by two orders of magnitude [100]. With this improved sensitivity, the experiment

will have a major impact on distinguishing different theoretical models, shown on

the right panel in Figure 2.1.
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2.1.2 Previous nEDM Experiments and Their Measurement Techniques

Three different techniques have been used in the past to measure the nEDM. They

are neutron scattering [113, 65], nuclear magnetic resonance (NMR) using neutron

beams [114, 46] and NMR on ultra-cold neutrons [11]. In neutron scattering, neutrons

in a beam are scattered by the electrons in a solid lead target. The dipole moment

is extracted assuming that the neutron-electron interaction is due to the nEDM. A

better approach, in terms of sensitivity, involves a magnetic resonance technique. In

this approach, a magnetic field together with a very strong electric field is applied to

the neutron. Since the nEDM and the spin are in the same direction, the magnetic

field and the electric field are applied either parallel or anti-parallel to each other.

In this way, the Hamiltonian for the interaction can be written as

H � µnŜ � ~B � dnŜ � ~E, (2.2)

where µn is the magnetic dipole and dn is the electric dipole of the neutron. The “+”

sign means the ~E field is parallel to the ~B field and the “-” sign means the ~E field

is anti-parallel to the ~B field. As the neutron spin can only be aligned parallel or

anti-parallel to the magnetic field, the system has two energy levels and consequently,

the resonance frequency is determined by the spacing between the two levels

fn � p2µnB � 2dnEq{h, (2.3)

where h is the plank constant. As the resonance frequency shifts when the ~E field

is flipped, the nEDM dn can be extracted from the frequency difference dn � ∆fnh
4E

.

When using a neutron beam, neutrons will pass two parallel plates. Between the

two plates, the magnetic field and electric field are applied, so that the velocity of

the neutron and the direction of the fields are perpendicular to each other. The best

upperlimit obtained from this method is dn   3�10�24 e �cm [46]. One of the biggest

systematic uncertainties that limits the sensitivity is the mis-alignment between the
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beam and the field. In the neutron rest frame, neutron will see an additional magnetic

field ~B � 1
c
~v � ~E if the electric field ~E and the magnetic field ~B are not perfectly

parallel to each other. This additional field shifts the resonance frequency as well

and therefore gives a false nEDM. As a thermal or cold neutron beam usually has

a velocity around 103 m/s, this ~v � ~E effect can be greatly reduced if the neutron

velocity can be decreased. This observation leads to the next technique, NMR on

ultra-cold neutrons (UCN).

The UCNs have much smaller velocities, less than 10 m/s, which greatly suppress

the ~v� ~E effect. More interestingly, the energy of the neutron is so low that they can

no longer penetrate many materials. They can be therefore safely stored in a bottle

similar to the storage of a regular gas. This provides two additional advantages

for the NMR measurement. The first advantage is that the velocity of the bottled

UCNs is random in direction. The randomness of the velocity can further suppress

the ~v � ~E effect. Another advantage is that bottled UNCs can have a much longer

interaction time (¡ 500 seconds) with the ~B and ~E field than the neutrons in a beam

(  1 second). Therefore, it greatly increases the sensitivity by accumulating more

phase changes from flipping the ~E field. The nEDM measured from UCNs provides

the most stringent limit to date. The latest result using UCNs was done at Institute

Laue-Langevin (ILL) with an upperlimit 4� 10�26 e � cm [11].

2.2 The New nEDM Experiment at SNS

The newly proposed nEDM experiment in USA also utilizes the UCNs. However,

the UCNs are produced in the superfluid 4He, which is different from the previous

UCN generating method. The precession frequency measurement of the neutron is

also different from the previous techniques. These will be discussed in detail in the

following sub-sections.
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2.2.1 Experimental Techniques

The new nEDM experiment will be carried out using the Spallation Neutron Source

(SNS) at the Oak Ridge National Lab (ORNL). The new experiment also relies on

the NMR technique and UCNs. The biggest difference from the previous experi-

ments is that polarized UCNs, polarized 3He atoms and superfluid 4He form a three-

component fluid stored in the measurement cell where the NMR measurements take

place. The presence of 3He and 4He are crucial and indispensable to the experiment.

Figure 2.2: Dispersion curves of superfluid 4He and the free neutron. The x axis
is the momentum and y axis is the energy. The neutron curve is a parabola and the
4He dispersion curve is linear at low energy.

The superfluid 4He serves three purposes. Firstly, the superfluid 4He will down-

scatter the cold neutrons to the UCNs in the measurement cell [59, 58]. Polarized

cold neutrons are produced from the SNS at ORNL. Cold neutrons can easily enter

the measurement cell made of acrylic because of their relatively large kinetic energy.

Once they enter the cell, they will collide with superfluid 4He atom through the

so called down-scattering process. This down-scattering is best explained by the

dispersion curves of the neutron and superfluid 4He, see Figure 2.2 [139]. When
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a collision takes place between neutron and 4He, the conservation of energy and

momentum must be satisfied. This requires that the collisions can only happen

when the energies of the two particles are at the two points, where the two dispersion

curves intersect with each other. One point of the intersections is at the origin and

the other is at 2π{k� � 8.9 Å, which is equivalent to the neutron energy E� � 11 K

and velocity v � 440 m{s. Hence, only cold neutrons with this energy can be slowed

down by 4He atoms with energy close to zero. As a result, the energies of neutron

and 4He are switched, and the neutron energy becomes close to zero (E   0.13 µeV

and v   10 m{s). This UCN production process is also called superthermal process.

Note that the reverse process can also happen, i.e. the UCN can be up-scattered to

cold neutrons by absorbing energy from 4He. However, the rate of this process is

much smaller because the number of 4He at high energy is much smaller than the

number of 4He at low energy due to the Boltzmann distribution, e�E4He{kT when

the temperature of 4He is below 1 K [82]. As the up-scattering can be ignored,

the production rate of the UCNs inside the superfluid 4He is approximately 0.3

UCN/cm3 � sec. After 500 seconds of UCN production, the UCN density will be 150

UCNs/cm3.

The second purpose of the superfluid 4He is to produce scintillation light when

3He and neutron react in the 4He bath. I will defer the explanation of this process to

the next two paragraphs where I discuss the application of 3He. The third purpose

of the superfluid 4He is to work as dielectric material so that a very high electric

field (� 50 kV/cm) can be applied to the neutrons [56]. In the proposed experiment,

there are actually two measurement cells, see Figure 2.3. A high voltage electrode is

sandwiched by the two measurement cells and the two cells sit between two ground

electrodes [100]. If a fixed ~B field is applied, the ~E field in one cell is parallel

to the ~B field; and in the other cell, the ~E field is anti-parallel to the ~B field.
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Figure 2.3: Two measurement cells containing the polarized UCNs, 3He and su-
perfluid 4He. The magnetic field direction is fixed and the electric fields in the two
cells have opposite directions.

In this configuration, the frequency differences in the two cells can be measured

simultaneously. If we use fp and fa to denote the frequency difference in the parallel

and anti-parallel cases, respectively, the nEDM can be calculated as dn � hpfp �
faq{4E. In this way, the systematic uncertainty from the flipping of the ~E field is

reduced and the overall measurement time is shortened as well.

More than 95% polarized 3He is used as a co-magnetometer to monitor the mag-

netic field fluctuation in situ [116]. Any frequency shift of the neutron due to the

magnetic field fluctuation can be removed from the frequency measurement of 3He,

given the knowledge of their respective gyromagnetic ratios. One may think that the

~E field will also shift the 3He frequency because 3He also has an EDM. This is not

the case here because of the Schiff effect [51, 125] that the electron cloud around the

3He nucleus can shield the nuclues from the influence of the external electric field.

The shielding factor is about 2�107 [125], therefore the effect of the external electric

field on 3He can be ignored.

Polarized 3He also has another important task in this experiment. Neutrons and
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polarized 3He atoms have a spin-dependent reaction,

~n� ~3HeÑ p� t� 764 keV (2.4)

The cross-sections of this reaction with spins in parallel or anti-parallel are σp � 59 b

and σa � 11 kb, respectively [79, 117, 150]. If we let the polarized neutron and 3He

precess in a magnetic field, they will precess at different speeds due to their different

gyromagnetic ratios. The angle between the two spins varies as a function of time.

As a result, the cross-section or equivalently the reaction rate also varies as a function

of time. As this reaction happens in the measurement cell filled with superfluid 4He

at � 400 mK, the recoiled proton and triton can generate scintillation light in the

superfluid 4He [94]. As the cross-section of the reaction changes sinusoidally, the

amplitude of the scintillation light is modulated by a sinusoidal function with the

frequency equal to the frequency difference between the two species ∆f � fn� f3He.

More specifically, the amplitude of the scintillation light can be expressed as [100, 82]

Aptq � Abg �N exp�
t
τn

"
1

τβ
� 1

τ3He
r1� P3HeptqPnptq cosp2π∆ft� φqs

*
, (2.5)

where Abg is the background, N is proportional to the number of UCNs in the cell,

1{τn is the total loss rate of UCNs, including β decay with a decay constant 1{τβ, wall

loss and the average absorption by the 3He with a decay constant 1{τ3He, and P3Heptq
and Pnptq represent the depolarization of the 3He atoms and neutrons, respectively.

In the equation, φ is an arbitrary angle between 3He and neutron, which depends

on the initial position of the 3He spin and neutron spin. By detecting the frequency

of the light amplitude ∆f and the precession frequency of 3He f3He, the precession

frequency of the neutron can be extracted fn � ∆f � f3He.

However, the generated scintillation light has a very short wavelength (� 80 nm),

it cannot be detected directly by the photo multiplier tube (PMT). To overcome this
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difficulty, the inside of the cell wall is coated with deuterated TetraPhenyl Butadiene-

doped deuterated PolyStyrene (dTPB-dPS) which can shift the wavelength of the

scintillation light to � 430 nm [25]. At this ultraviolet (UV) region, the light can be

easily detected by the PMT.

In practice, two different techniques are proposed to measure the neutron pre-

cession frequency. The first method involves the measurement of the 3He precession

frequency and the frequency of the scintillation light so that the neutron precession

frequency is extracted from fn � ∆f � f3He as described. An alternative technique

is called “dressed spin”. The idea is that we can artificially change the magnetic

moment of spins by applying a transverse ac field, also called dressing field. By care-

fully choosing the amplitude and frequency of this dressing field, 3He and neutron

can have the same magnetic moment so that they will precess at the same frequency.

This is also known as “critical dressing”, in which the amplitude of the dressing field

Bac and frequency of the dressing field ωac satisfy the relationship γn
Bac
ωac

� 1.19 [82],

where γn is the neutron gyromagnetic ratio. In the “critical dressing”, the fluctu-

ation of the magnetic holding field is theoretically irrelevant, and one only needs

to measure the frequency of the scintillation light to extract nEDM. More detailed

discussion of the dressed spin technique can be found in [37]. The sensitivity of these

two methods are still under study, and both of them will be implemented in the final

nEDM experiment to extract nEDM.

The polarized 3He atoms are produced from the atomic beam source (ABS) which

has already been built at Los Alamos National Lab. The description of the ABS will

be presented in Chapter 3. The entire nEDM apparatus consists of two parts, the

upper cryostat and the lower cryostat, see Figure 2.4. The ABS is attached to the

upper cryostat at a 45 degree angle. 3He atoms are injected into the upper cryostat

and collected in a collection volume sitting in the upper cryostat. Once enough

polarized 3He atoms are collected, they will be transfered as a whole into the lower
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cryostat where the two measurement cells are located. The polarized cold neutron

beam is directly incident onto the two measurement cells filled with 4He. Once the

three component fluid is formed, the magnetic resonance measurement will start. The

NMR measurement takes about five hundred seconds [100]. Once a measurement is

done, the 3He in the two measurement cells are flushed completely so that newly

polarized 3He can enter the cells. Then, another measurement cycle begins and

these procedures are repeated for many times to obtain enough statistics. Because

of the novel techniques adopted in this nEDM experiment, the UCN density is 50

times higher, the electric field is 5 times higher and the measurement time is 4 times

longer. These differences lead to an improvement of the sensitivity on the upperlimit

of the nEDM by two orders of magnitude, or 2.2� 10�28 e � cm.

Figure 2.4: Schematic view of the nEDM experimental apparatus. Polarized 3He
atoms are injected into the upper cryostat from the ABS at a 45 degree angle. The
two measurement cells are located in the lower cryostat. The lower cryostat also has
a magnetic package, including electro-magnet and several layers of magnetic and su-
perconducting shielding to improve the magnetic field uniformity in the measurement
cells.

18



2.2.2 Our Role in the New nEDM Experiment

The Medium Energy Group at Duke, is in charge of the polarized 3He injection

for the nEDM experiment. As the polarized 3He needs to travel along a rather

complicated path in order to reach the measurement cell, the apparatus needs to be

designed very carefully to ensure that the polarization of the 3He is not lost during

this process. We calculate the polarization of 3He throughout the entire injection

process using Monte-Carlo simulation. Given different apparatus designs, including

geometries and magnets, the simulation yields different 3He polarizations. The goal

of the simulation is to assist the design so that when 3He reaches the measurement

cell, more than 95% of 3He is still polarized. This study is presented in Chatper 3.

The other project taken on at Duke related to the 3He injection is the SQUID

implementation for the 3He polarization measurement. SQUID stands for super-

conducting quantum interference device, which is a sensitive device to measure a

magnetic flux. In the nEDM experiment, we need to measure the polarization of

3He every time 3He atoms are injected into the system. Since the 3He density is

extremely low (� 1014 atoms/cc) [100], only SQUID is sensitive enough to measure

the magnetic flux. At Duke, we built an apparatus to test the SQUID sensor and

demonstrate that the SQUID indeed has the sensitivity to measure the 3He signal at

such a low density. This work is presented in the second part of Chapter 3.

2.3 Two Spin-off Results from the nEDM Projects

During the experiment of SQUID implementation, we found two interesting phe-

nomena. One is that the longitudinal relaxation rate 1{T1 of the polarized 3He has

a pressure dependence, which has never been observed before. The other is that

the transverse relaxation rate 1{T2 of the 3He is much longer than the theoretical

prediction. To clarify the first mysterious observation, we built a dedicated exper-
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iment to test the T1 pressure dependence and also proposed a diffusion model to

explain the observation. This work was published on Physical Review A as a rapid

communication [Phys. Rev. A, Vol 83, 061401(R) (2011)].

Regarding to the second finding, I dug into the relaxation theories and discovered

that the measured T2 relaxation rate falls into the slow diffusion regime, which can-

not be described by the usual 3He relaxation result since it only applies to the fast

diffusion regime. I developed a new approach to calculate both transverse and longi-

tudinal relaxation rates of 3He. This approach gives a general solution applicable to

both diffusion limits. Moreover, it is also suitable for the intermediate regime, which

greatly extends the scope of its application. This theoretical derivation together with

experimental justification is published in Physical Review A [Phys. Rev. A, Vol 84,

053411 (2011)]. I will discuss these two works in detail in Chapter 4.
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3

3He Injection Simulation for the nEDM Experiment
and the SQUID implementation for the Injection

Test

Polarized 3He atoms serve two purposes in the nEDM experiment. Firstly, polarized

3He has a spin-dependent reaction with polarized neutrons, as shown in Eq. (2.4).

This spin dependent reaction produces ultra-violet (UV) scintillation light in super-

fluid 4He [94]. Since the light amplitude is modulated by the frequency difference

between the neutron and 3He, Eq. (2.5), one can determine the precession frequency

of the neutron by measuring the oscillation frequency ∆f of the scintillation light

and the 3He precession frequency f3He.

Secondly, polarized 3He works as a in situ co-magnetometer to monitor the overall

magnetic field fluctuations. The precession frequency of 3He is proportional to the

magnetic holding field. Any field fluctuation will cause the 3He precession frequency

to fluctuate as well. By continuously monitoring the 3He precession frequency, one of

the biggest systematic uncertainties in the nEDM experiment can be compensated

for.
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Both of these two goals require a precise measurement of 3He precession frequency.

A traditional way to measure the precession frequency is nuclear magnetic resonance

(NMR) technique. However, the number density of 3He atoms in the nEDM ex-

periment is extremely low (only 5 � 1014 atoms/cc or 1 million times smaller than

the number density of 1 atm 3He gas at 300 K), and the magnetic holding field in

the nEDM experiment is also extremely small (� 50 mG). These two factors make

the traditional NMR technique impossible to detect the magnetic resonance signal.

Therefore, superconducting quantum interference device (SQUID) will be used to

measure the resonance signal because of its ultra-high sensitivity (10�15 T), espe-

cially at low fields.

In the proposed nEDM experiment [100], nearly 100% polarized 3He atoms are

generated from an Atomic Beam Source (ABS). The ABS is incorported with a series

of quadruple magnets which work as a spin filter so that only 3He atoms with one spin

state can pass through them, and atoms with the other spin state will be deflected

by the quadruple magnet. The deflected atoms will be pumped out of the system.

After the magnets, polarized 3He atoms are injected into the collection volume in

the upper cryostat of the nEDM apparatus, see Figure 3.1.

The collection volume is used to collect enough 3He atoms and check their polar-

ization. Once enough polarized atoms are collected, they will be transfered to the

measurement cell in the lower cryostat of the nEDM apparatus, where the actual

measurements take place. As the polarized 3He atoms have to travel through rather

long paths in order to arrive at the measurement cell, the changing magnetic fields

experienced by the 3He along its path may depolarize the spin. Hence, one must

make sure that polarization loss is negligible during the injection process.

The first section of this chapter is devoted to the study of the 3He injection

simulation. This simulation is used to guide the magnetic field design, so as to achieve

negligible polarization loss during the injection process. The second section of this
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Figure 3.1: The schematic of the 3He transport. All magnets and magnetic shield-
ings are not shown.
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chapter will be devoted to the SQUID implementation in the collection volume. The

SQUID sensor is planted in the collection volume to monitor the polarization of 3He

during the injection. The goal of this study is to demonstrate that the SQUID sensor

is sensitive enough to measure the 3He signal under the actual nEDM experimental

conditions.

3.1 3He Injection Simulation for the neutron Electric Dipole Moment
Experiment

The ABS exit is connected to a transport tube covered by three layers of µ metal

shieldings (µ metal is an alloy which has very high magnetic permeability). The

other end of the tube is connected to the injection volume in the upper cryostat.

The inside of the transport tube is pumped to a high vacuum of approximately 10�8

torr. This high vacuum is to ensure that the scattering of the 3He atoms from the

4He molecules is negligible. Three sets of solenoid coils are installed around the

transport tube to provide a magnetic holding field to maintain the polarization of

the 3He spins. The stray fields from these solenoids are confined in the transport

tube by the µ metal shielding so that they have minimum effects on other parts of

the apparatus.

The entire ABS and the transport tube is tilted by 45 degree with respect to the

ground and the magnetic field at the exit of the ABS is along the axis of the transport

tube. At the other end of the transport tube, the collection volume is connected,

and it sits in a 24 turns cosθ coils [12] which provide a very uniform magnetic field

along the horizontal direction (x̂ direction). A schematic diagram showing all the

coils are presented in Figure 3.2.

The field at the ABS exit is approximately 700 Gauss; whereas the field inside

the 24 cosθ coils is approximately 50 mG. Hence, the transport field at the ABS end

needs to match the 700 G field from the ABS quadruple magnet and when getting

24



Figure 3.2: Three sets of spin transport coils, TR1a, TR2a and TR3a. Each set of
these coils has its compensating coils, TR1b, TR2b and TR3b, to actively shield the
field. The vertical lines are the 24 turns cos θ coils at the collection volume. This is
still an ongoing project and the coil design has not been finalized yet.

close to the collection volume, this field needs to be tapered down to 50 mG to match

the field of the cosθ coil. Moreover, because of the 45 degree angle between the field

at ABS exit and the field in the collection volume, the polarized 3He spins have to

rotate by 45 degree during their injections. This task must be accomplished by the

transport field as well. There are totally three sets of transport coils, TR1, TR2

and TR3, and each set has two coils, denoted by “a” and “b”. For example, the

TR1 set has TR1a and TR1b, see Figure 3.2. The current in each set of the coils

can be adjusted independently so that the field can be tapered down to the desired

level. The compensating coils, TR1b, TR2b and TR3b, are added to the outside
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of the primary coils, TR1a, TR2a and TR3a. The current in those compensating

coils runs in the opposite direction to the current in the inner coils. This current

configuration is called active shielding [78]. It ensures that the stray field outside the

magnet rolls off quickly enough so that it will not saturate the magnetic shielding

outside the transport tube. The rotation of the field is realized by changing the

winding direction of the coil TR1a and TR1b, which can be easily seen in Figure

3.2. In principle, this is how the transport coils are designed. To check whether

the designed field was able to maintain at least 95% polarization of 3He during the

injection, I carried out a Monte Carlo simulation to compute the average polarization

of 3He at the collection volume given any particular transport magnetic field.

The Monte Carlo simulation consisted of three parts. The first part simulated

how the 100% polarized 3He atoms were produced at the ABS. This part of the code

generated a velocity and position distribution of 3He atoms at the exit interface of the

ABS. The second part of the code took the velocity and position distribution from the

first part as an input and simulated how many of those generated atoms from ABS

could finally pass through the transport tube and arrive at the collection volume.

The atoms that can successfully arrive at the collection volume was recorded and

this piece of information was used in the third part of the simulation. The third part

simulated the precession of individual 3He spin in the magnetic field along its path

to the collection volume. Once the atom entered the collection volume, the angle

between the spin and the magnetic field was recorded. After simulation of enough

samples, the average polarization of 3He was extracted. A detailed description of

each part of the simulation is presented in the following subsections.

3.1.1 Generating Polarized 3He Atoms from ABS

Nearly 100% polarized 3He atoms are produced by letting 3He atoms pass through

magnetic field gradients. Due to the relatively small force which can be applied to
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the 3He through its nuclear magnetic moment, the 3He source is operated at 1 K to

decrease its kinetic energy and an interaction region of approximately 1 m long is

also chosen so that the total time for 3He spins in the interaction region is increased.

As a result, the atoms with the right spin state can be correctly selected by the field

gradients [100]. The simulation assumes that the velocity of the emitting 3He follows

Boltzmann distribution

Ipvq � I0
2

α4
v3e�v

2{α2

, (3.1)

where α2 � 2kBT {m, kB is the Boltzmann constant, m is the mass of 3He. The

angular distribution of the emitting atoms I0 has the form dI0{dΩ � nv̄A cospθq{4π,

where n and A are the source density and the aperture area, v̄ is the average velocity

of 3He at temperature T , and θ is the azimuthal angle measured from the normal of

the aperture. The emitted 3He atoms will pass through a nozzle and enter the 1 m

quadruple magnetic field region where the right spin state is selected. A schematic

view of the ABS, including 3He source, nozzle and quadruple magnets, is shown in

Figure 3.3.

When 3He spins are in the interaction region (quadruple magnetic field), the force

on the spin can be expressed as [100]

~FBp~rq � �µB0

Ra

1a
1� pBz{B0q2pRa{rq2

r̂, (3.2)

where r is the distance from the axis of the polarizer to the atom, Ra is the polarizer

aperture, B0 is the magnitude of the field near the surface of one of the magnets and

� refers to the two spin states anti-parallel and parallel to ~B, respectively. When

spins are anti-parallel to the field, the force is pointing outward in the radial direction.

In this case, the atom will move away from the center of the polarizer and fail to

pass. In the other case when spins are anti-parallel to the field, the force is always

pointing towards the center. This restoring force tries to keep the atoms at the center
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Figure 3.3: Cutaway view of the polarized 3He source. The quadruple magnets are
in the 1 m long green tube, and the exit of the ABS is at the end of the tube on the
right.

of the polarizer and the pass rate will be much higher than the anti-parallel case.

The effects of gravity and of bending of the polarizer bore can be expressed as

~Fg � �mpg � v2
z

Rp

qpsinpφqr̂ � cospφqφ̂q, (3.3)

where g is the acceleration due to gravity, vz is the axial velocity of the atom, φ

is the azimuthal angle, and Rp is the radius of curvature of the “bent” polarizer.

Combining Eq. (3.2) and Eq. (3.3), one can obtain the equation of motion in

cylindrical coordinates as

~Ft � ~FB � ~Fg � m:~r

� mpp:r � 9r 9φ2qr̂ � pr:φ� 2 9r 9φqφ̂� :zẑq. (3.4)

The relevant dimensions and parameters used in the simulation are:

• source aperture radius Rs � 6 mm
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• separation between source aperture and polarizer entrance aperture s � 22 cm

• polarizer aperture (or bore radius) Ra � 7.5 mm

• polarizer length L � 1.25 m

• the source temperature T � 1 K

• the magnetic fields B0 � 0.75 T and Bz � 0.03 T

The simulation result is shown in Figure 3.4. This calculation suggests that the

probability of a 3He atom with the right spin state to pass the polarizer is P� � 0.519.

The probability for an atom with wrong spin state to successfully pass the polarizer

is P� � 0.00005. The polarization can be therefore calculated as

P � P� � P�
P� � P�

. (3.5)

For P� � 0.519 and P� � 0.0005, the above equation gives P ¡ 0.998. In addition

to the output polarization, the simulation also generates the velocity distribution of

3He atoms at the exit of the ABS. This distribution is used to calculate how many

atoms can travel through the transport tube and reach the collection volume, which

is shown in the next section.

3.1.2 Spin Transport in the Transport Tube

The exit interface of the ABS is connected to the transport tube with a length

ranging from 1.3 to 1.9 m, as shown in Figure 3.5. Since the transport magnetic field

design is not finalized, the length of the transport tube is not a fixed parameter. As

the 3He beam from the ABS exit has a divergence, a longer transport tube tends to

block more atoms from entering the collection volume. The transport tube cannot

be too short because the ABS quadruple magnet will be too close to the collection

volume such that the strong field can interfere with the polarization measurement at
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Figure 3.4: Results of a simulation with a straight polarizer and no obstructions
for atoms with spin in the right state. The light gray bars in (a) represent the
velocity distribution of atoms which enter the aperture of the polarizer and the dark
gray represents the subset that successfully passes the polarizer. Panel (b) shows the
same results as (a) with a different vertical scale. Panels (c), (d), (e) and (f) show
the exit distributions with respect to radial position, angle, radial speed and polar
speed, respectively, for atoms which successfully pass the polarizer. Totally 160000
atoms are simulated to generate this histogram.
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the collection volume, and a short tube can also increase the heat radiation into the

collection volume coming from the ABS exit which is at room temperature.

This part of the simulation keeps track of the atoms that can reach the collection

volume. The transport tube is simplified to a cylindrical tube for the purpose of

simulation. Position and velocity distribution of 3He atoms calculated from the

first part of the simulation is used to reproduce how 3He atoms enter the transport

tube. As the transport tube is pumped to a high vacuum, the collisions between

3He and 4He molecules are ignored. The collisions among 3He atoms themselves

are also ignored because the flux of the beam is low at 1014 atoms/s. By ignoring

all the collisions, the atoms travel ballistically inside the tube. If an atom hits the

wall of the tube, it will have a high probability to stick onto the wall and never

enter the collection volume. With 10000 trials, the statistical uncertainly is 1% and

the simulation result shows that 89.1% of the 99.8% polarized atoms can enter the

collection volume if the length and diameter of the transport tube are 1.9 m and 54

mm, respectively.

The program also keeps a record of all the atoms that succeessfully enter the

collection volume. Only these atoms are used to compute the polarization of 3He in

the collection volume, and the details of the polarization calculation are shown in

the next section.

3.1.3 Spin Precession Simulation

The polarization of 3He atoms in the collection volume is estimated by simulating the

3He spin precession during the injection process. The dynamics of the spin precession

under magnetic fields is described by the Bloch equation

d ~Mptq
dt

� γ ~Mptq � ~Bp~rq, (3.6)
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Figure 3.5: ABS (green) connected to the transport tube (silver) at a 45 degree
angle. The transport tube and the collection volume are cooled by the dilution
refrigerator which is the huge cylinder on the left. The transport magnets and µ
metal shielding are not shown in this diagram.

where ~M is the magnetization of each 3He spin, γ is the 3He gyromagnetic ratio, and

~r is the position vector of the 3He atom inside the transport tube. As the field from

the ABS to the collection volume is not uniform, 3He spin will see changing fields

when it travels through the transport tube. The transport field was designed and

calculated by Septimiu Balascuta from Arizona State University using finite element

analysis (FEA). FEA discretize the space into 3 dimensional grids. It computes the

magnetic field at each grid point given the current distribution. When 3He atoms

travel through the tube, it can be imagined as moving inside the 3D grid. The

magnetic field must be known continuously at all positions so that Eq. (3.6) can

be used to simulate the spin precession. In order to overcome the drawback of the

discrete field generated by FEA, the actual field used in Eq. (3.6) is obtained from

3D linear interpolation of the field on the grid. This 3D linear interpolation method
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requires that the step size of the grid in each direction be fixed. Any position in

space is therefore enclosed by a rectangular box. Each vertex of the box is uniquely

Figure 3.6: A diagram showing how the 3D interpolation is done. Field values
are known at each of the eight vertices. Every vertex is labeled uniquely for the
convenience of showing how the interpolation is done. C0, C1, C00, C01, ..., and
C11 are intermediate points used in the 3D interpolation.

labeled, as shown in Figure 3.6. We only know the field at these vertices. For the

field at position (x,y,z) other than those vertices, one can interpolate the field as

following

C11 � z1 � z

z1 � z0

C111 � z � z0

z1 � z0

C110 (3.7)

C01 � z1 � z

z1 � z0

C011 � z � z0

z1 � z0

C010 (3.8)

C10 � z1 � z

z1 � z0

C101 � z � z0

z1 � z0

C100 (3.9)

C00 � z1 � z

z1 � z0

C001 � z � z0

z1 � z0

C000 (3.10)

where Cijk is the magnetic field value at the vertex labeled in Figure 3.6, z0 and z1

are the corresponding z coordinates for these vertices. C11, C01, C10 and C00 are the

values of the fields at these points shown in Figure 3.6. Once they are obtained, one
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can proceed to calculate C1 and C0 as following

C1 � x1 � x

x1 � x0

C11 � x� x0

x1 � x0

C01 (3.11)

C0 � x1 � x

x1 � x0

C10 � x� x0

x1 � x0

C00 (3.12)

where x0 and x1 are the corresponding x coordinates of these vertices. Finally, one

obtains the field value at position px, y, zq through

Bpx, y, zq � y1 � y

y1 � y0

C1 � y � y0

y1 � y0

C0, (3.13)

where y0 and y1 are the corresponding y coordinates of these 8 vertices. If the atom

moves out of the box, the program will automatically locate the next nearest box

containing the atom, and the field values and coordinates of the new vertices will be

updated.

Given the field at any position, the next step is to numerically compute ~M for

each 3He atom along its path from the ABS to the collection volume. To ensure a

high precision of the calculation, the 4th order Runge-Kutta method is used [111].

The general recipe of the Runge-Kutta method is expressed as

y1 � fpt, yq (3.14)

yn�1 � yn � 1

6
hpk1 � 2k2 � 2k3 � k4q (3.15)

tn�1 � tn �∆t (3.16)

where y change as a function of time t, and k1, k2, k3 and k4 are respectively equal
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to

k1 � fptn, ynq (3.17)

k2 � fptn � 1

2
∆t, yn � 1

2
∆tk1q (3.18)

k3 � fptn � 1

2
∆t, yn � 1

2
∆tk2q (3.19)

k4 � fptn � 1

2
∆t, yn � 1

2
∆tk3q (3.20)

To use this recipe, we let y � ~Mptq and f � γ ~M � ~B, and calculate ~Mptq in

the vector form. As the length of ~M will not change during the precession, ~M is

normalized to 1 at each integration step to reduce rounding error. In order to control

the accumulated error under 1%, it is found that the time step size needs to be at

least

∆t � 10�8

B
rs{Gs, (3.21)

where B is the magnitude of the magnetic field strength in Gauss. As the magnetic

field is changing from one place to another, the step size ∆t is also changing dur-

ing the integration. In this way, the precision of the integration is guaranteed and

unnecessarily small step sizes are avoided at locations with small field values.

The polarization of spins is defined as the average of ~B � ~M{pBMq. With the

latest transport magnetic field design, the simulation yields a polarization of 76% for

the positive current and 79% for the negative current, as shown in Figure 3.7. The

positive and negative current represent the field generated by the 24 turns cosθ coil

is in the positive and negative x̂ direction, respectively.

In order to identify the regions where 3He loses the polarization during the injec-

tion, we plot the polarization as a function of position as shown in Figure 3.8. As

seen in this plot, two regions with major polarization loss are identified. One is close

to 180 cm where the ABS is located and the other is the big slope where the atoms
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Figure 3.7: Angle distribution of 3He spins in the collection volume. The left panel
is for the positive current and the right panel is for the negative current. The mean
at the top right corner gives the average of the cos θ where θ is the angle between
~B and ~M , which is essentially the polarization. Totally 9699 atoms are simulated to
generate these two histograms.

start to enter the collection volume. The reason for the first polarization drop is due

to the irregular stray fields from the quadruple magnets in the ABS. The second drop

is due to the 45 degree rotation of the field from the axial direction to the horizontal

direction. The first drop can be eliminated by increasing the transport magnetic field

strength at the ABS exit. We artificially double the transport field strength at the

ABS exit and the polarization loss is reduced from 10% to 3%. The second drop can

be minimized if we let the spin rotation happen at the high field region, i.e. close to

the ABS end, since it is easier for spin to follow a high field than a low field.

In order to achieve the 95% polarization at the collection volume required by the

nEDM experiment, the transport magnetic field needs to be redesigned. Currently,

the field design and calculation are transferred from Septimiu Balascuta to Christo-

pher Crawford at University of Kentucky. Collaboration work with Chris Crawford

in doing the spin transport simulation will help finalize the transport coil design.
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Figure 3.8: The polarization as a function of distance measured from the collection
volume. 3He atoms travel from right to the left with an initial polarization of � 100%,
so 180 cm is the exit of the ABS and 0 cm is the center of the collection volume.

3.2 SQUID Implementation for the Monitoring of 3He Polarization in
the Collection Volume

SQUID is one of the most sensitive devices available to measure a magnetic flux.

The typical noise level of a SQUID magnetometer is 1 fT{?Hz. This extremely low

noise figure makes SQUID suitable to many applications that are impossible using

traditional NMR methods (usually a factor of 104 to 106 difference). One example is

to measure a magnetic field generated from organs inside human bodies such as the

heart (10�10 T) or the brain (10�13 T). In our experiment, the magnetic field from

3He atoms is extremely small because of the small number density (1014 atoms/cc)

of 3He. In addition, the resonance frequency is only a few hundred Hz which makes

the traditional magnetic resonance technique completely unpractical.

The key part of a SQUID sensor consists of a superconducting ring with one or two

Josephson junctions [77]. The Josephson junction is made of two superconductors

separated by one thin insulation layer (SIS). The insulation layer is thin enough

so that the cooper pairs in the superconductor have enough probability to tunnel

through the insulator and reach the superconductor on the other side. Hence, it

combines two quantum mechanical phenomena. One is the quantization of magnetic
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flux in the superconducting ring; the other is the tunneling effect. In the next section,

an introduction to the working principle of the SQUID sensor will be presented.

3.2.1 Basic Concepts of a SQUID Magnetometer

In a superconductor, the supercurrent is carried by cooper pairs. A cooper pair is

made of two electrons. These two electrons always move together with double mass

and double charge of a single electron, so they can be treated as a single particle.

Since the cooper pair does not have lattice scattering in the superconductor, it has

a very long coherence length, which can be represented by a wave function [120]

φp � φ0 exppi~p � ~r{~q, (3.22)

where ~p is the momentum of the cooper pair, ~r is the distance and ~ is the Planck’s

constant. Because the cooper pair is coherent over a long distance, there is a definite

phase difference between any two positions Xa and Xb if they are on the path of the

supercurrent flow. This difference can be expressed as

p∆φqXY � φY � φX � 2π

» Y

X

x̂

λ
� d~l, (3.23)

where x̂ is the unit wave vector denoting the direction of the wave and λ is the wave

length of the cooper pair. If an external magnetic field is applied to the system, the

momentum ~p is modified to ~p � m~v � q ~A, where ~A is the vector potential of the

applied magnetic field and q is 2e, the charge of cooper pairs. Due to this additional

term in ~p, the wavelength is changed by

∆λ � h

q
��� ~A��� �

h

2e
��� ~A��� . (3.24)

Therefore, an additional phase difference due to the ~B field is added to the two

positions

rp∆φqXY sB � 4πe

h

» Y

X

~A � d~l. (3.25)
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The long coherence of the cooper pair allows one to choose a closed path in the su-

perconductor and integrate Eq. (3.25) over this closed loop. Since the wave function

is a single-valued function, every point along the loop must have a definite amplitude

and phase. This requires that the integral Eq. (3.25) over a closed loop must be

equal to a multiple of 2π. As a result, the wave function exactly repeats itself when

the integration comes back to its starting point. This condition is also known as

magnetic flux quantization in the superconductor, since the integral

¾
~A � d~l �

» »
~B � d~S, (3.26)

which is the flux passing through the closed path. Substitute this into Eq. (3.25),

one obtains

∆φB � 4πe

h

» »
~B � d~S � 2nπ, (3.27)

where n is a positive integer. If we use ϕ to represent the magnetic flux, then Eq.

(3.27) can be rewritten as ϕ � nϕ0, where ϕ0 � h
2e
� 2.07 � 1015 Wb is one flux

quanta. Strictly speaking, it is not necessary to have a complete superconducting

ring. As long as some non-superconducting area is enclosed by a superconducting

material, the magnetic flux trapped in the superconducting material will be quan-

tized. If the insulation barrier (I) sandwiched between two superconducting materials

(S) is thin enough, the cooper pair can easily tunnel through the barrier. In this

case, the two superconductors are weakly coupled and this junction (SIS) is called

Josephson junction. Like the normal superconductor, the Josephson junction also

has its critical current Ic [77], above which its superconductivity will be destroyed.

However, the difference is that the critical current in the Josephson junction is usu-

ally much smaller than that of a pure superconductor. If there is a phase difference

φI between the weakly coupled superconductors, the intensity of the current flowing
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across the insulator Is is related to the critical current Ic by

Is � Ic sinpφIq. (3.28)

A dc SQUID consists of a superconducting ring with two Josephson junctions.

When a magnetic field is applied to the superconducting ring, an induced current Is

will be generated in the ring to partially compensate for the applied flux. If ϕa is the

flux from the applied magnetic field, the phase change from the applied magnetic

field is φB � 2πϕa
ϕ0

. The quantization condition can still be satisfied by developing a

phase difference across the weak link. If we denote this phase difference as φI , and

assume that the two Josephson junctions are identical to each other in the dc SQUID,

the total phase change can be expressed as ∆φ � φB � 2φI � 2nπ. Substituting φI

into Eq. (3.28), the induced current is therefore obtained

Is � Ic sinpπϕa
ϕ0

q (3.29)

Theoretically, by detecting this induced current Is, one can deduce how much flux is

applied to the SQUID sensor. As current can be determined to a high precision, the

dc SQUID sensor further improves the sensitivity by measuring the flux down to a

fractional number of one flux quanta.

3.2.2 The Practical Way to Measure Magnetic Field Using dc SQUID

Eq. (3.29) is a periodic function with a period of 2ϕ0. This makes it difficult to

measure a magnetic flux bigger than 2ϕ0, because different magnetic flux can have

the same induced current. To overcome this drawback, a dc SQUID usually works

in a flux-locked mode to linearize the SQUID response to a flux change [40]. In this

configuration, a solenoid coil, connected to the feedback circuit, is coupled to the

SQUID loop. When a flux change presents to the SQUID loop, the induced current

will be amplified and lock-in detected. This signal is then fed back to the the SQUID
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loop via the solenoid coil. The flux generated from the solenoid coil is applied to

the SQUID loop in such a way that it perfectly cancels out the flux presented to

the SQUID loop from outside. Hence, the net flux inside the SQUID loop is always

a constant and the magnitude of the external flux is proportional to the current or

voltage in the feedback circuit, Figure 3.9.

Figure 3.9: The SQUID loop (the two Josephson junctions are shown as two
crosses) is coupled to the solenoid coil that connects to the feedback circuit. The
induced current in the SQUID loop is amplified and lock-in detected. It is then
fed back to the solenoid to cancel the flux from the applied magnetic field. The
magnitude of the measured flux is therefore proportional to the voltage Vi on the
resistor.

In practice, the SQUID loop is not used directly to measure the magnetic flux

because of the inconvenience and delicacy of the SQUID loop. Instead, the most

common way is to have a dedicated superconducting pickup coil to measure the

magnetic flux. The pickup coil can vary in size and in configurations, such as a

gradiometer. In this way, people have more freedom in terms of coil design so that

it fits into their applications better. The pickup coil is coupled to the SQUID loop

through a solenoid coil, similar to the feedback circuit. If one measures flux Φ at the

pickup coil, the induced current I in the pickup coil can be expressed as

Φ � B � A � pLi � Lpq � I, (3.30)

where B is the magnetic field at the pickup coil, A is the area of the pickup coil,
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Li is the inductance of the input solenoid coil coupled to the SQUID loop and Lp

is the inductance of the pickup coil, including the inductance from the wire itself.

The induced current will generate a flux at the SQUID loop through the coupling

solenoid. The flux seen by the SQUID coil is

ΦSQUID �M � I, (3.31)

where M is the mutual inductance between the SQUID loop and the solenoid. From

Eq. (3.30) and Eq. (3.31), one can obtain the efficiency of flux transfer between the

pickup coil and SQUID loop,

ΦSQUID

B
� M � A

Lp � Li
. (3.32)

It can be seen from Eq. (3.32) that a larger area A of the pickup coil and a better

coupling (M) between SQUID loop and pickup coil will generate more flux at the

SQUID loop given the same magnetic field. The inductance of the pickup coil can

be calculated from an empirical function [40]

LppNq � F �Drcms �N2rnHs, (3.33)

where N is the number of turns, D is the diameter of the pickup coil, and F �
5.87 � 14.25Logpl{Dq. In this formula, l is the width of the coil winding. It can

be computed as l � pN � 1qp � d, where p is the pitch of the winding and d is the

thickness of the wire. For the estimation of the inductance of the wire, a typical

value to use is 0.5 nH/mm [40].

The pickup coil used in our experiment is a one-turn gradiometer, Figure 3.10(c).

The gradiometer has two identical loops connected in series but with opposite wind-

ing directions. The spatial separation between two loops in our gradiometer is 1.25

cm. The diameter of the coil is 1.25 cm and the thickness of the wire is 0.29 mm.

Using Eq. (3.33) and 10 cm as the length of the wire, Lp � 36 � 50 � 85 nH. The
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SQUID package we used is manufactured by StarCryo Electronics and the type of

the SQUID is called SQ680. The inductance Li of the input solenoid coil is 683 nH

and the mutual inductance M is 10 nH. Using these numbers and Eq. (3.32), the

efficiency of the SQUID is 1.3 nT{ϕ0. Given the typical value of the SQUID intrinsic

noise 5 µϕ0{
?

Hz, the sensitivity of our SQUID sensor is 6.5 fT{?Hz. In practice,

besides the intrinsic noise, there are other types of noise, such as magnetic noise,

RF noise, vibrational noise, etc. The sensitivity of the SQUID could be worse than

the ideal value. However, with a complicated shielding and vibration reduction, it is

possible to reduce the noise to the intrinsic level and reach the ideal sensitivity.

Figure 3.10: Panel (a) shows the entire SQUID assembly with the Niobium shield-
ing (gray cylinder). Panel (b) shows the inside of the SQUID with the Niobium
shielding removed. The SQUID loop is under the white square plastic. The braided
wires under two brass screws connect the pickup coil and the input solenoid coil.
They come out of the SQUID package through a needle-like feedthrough. Panel (c)
shows the gradiometer used in the experiment. The Brown color is the glue used to
fix the wires into the grove of the ceramic holder.

SQUID gives absolute flux measurement. A parameter, called transfer function,
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allows one to convert the measured voltage to the flux experienced by the SQUID

loop. As the transfer function only depends on the feedback circuits and the cou-

pling between the SQUID loop and the feedback loop, it is nearly a constant over

the lifetime of a SQUID. In the SQUID operation manual, there is a standard pro-

cedure to measure the transfer function. A typical value is about � 1 V{ϕ0. From

the transfer function and Eq. (3.32), one can establish a relationship between the

measured voltage and the magnetic field received by the pickup coil.

3.2.3 Experimental Apparatus and Procedures

The SQUID experiment is carried out at 4.2 K using a dewar filled with liquid 4He.

This temperature is different from the temperature of the actual nEDM experiment;

however the comparison between the two is still valid for two reasons. Firstly, the

signal size of the 3He seen by SQUID is independent of the temperature. Secondly,

in our experimental conditions, the major noise source in the SQUID is the environ-

mental noise and this noise is independent of temperature. A key advantage is that

the turn-around time at 4.2 K is much shorter than at a lower temperature using a

dilution refrigerator. This expedites the experiment tremendously.

Polarized 3He is prepared using spin exchange optical pumping (SEOP) technique.

The 3He gas is mixed with Rb vapor and stored in a pyrex glass cell, Figure 3.11b.

The unpaired electron in the outermost shell of the Rb is polarized by absorbing the

angular momentum from the circularly polarized laser. The polarized Rb atom then

exchanges its spin with the nucleus of the 3He atom through the hyperfine interaction.

As a result, 3He atoms are polarized by the optically polarized Rb vapor. Using this

technique, we obtain approximately 30% polarization of 3He in the pyrex cell.

Once the 3He cell is polarized, it is mounted on a glass manifold that connects to

the measurement cell inside the dewar at 4.2 K, Figure 3.11(a). The measurement

cell is of cylindrical shape with an inner diameter of 8 mm and a length of 25 mm.
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The inner surface of the measurement cell is coated with Cesium metal to increase

the relaxation time (T1) of polarized 3He. The glass manifold is also connected to a

turbo pump so that everything inside the manifold, including the measurement cell,

is under vacuum. Everytime the 3He cell is mounted on the glass manifold, a part

of the glass manifold will be exposed to air. Hence, we pump the glass manifold

for at least 15 minutes until the vacuum of the glass manifold and the measurement

cell is below 3 � 10�8 Torr. Once the vacuum is ready, we open the valve on the

manifold and let 3He diffuse into the measurement cell. This process usually takes

about 5 seconds. After the measurement cell and 3He cell reach equilibrium, we start

the polarization measurement on the measurement cell. After the measurement, we

pump out the 3He gas inside the measurement cell and restart the measurement

procedure.

We use the pulsed nuclear magnetic resonance (pNMR) technique, also known

as free induction decay (FID), to measure the polarization of polarized 3He in the

measurement cell. A radio frequency (RF) pulse was applied to the 3He sample

through a RF coil. If the frequency of the pulse equals the 3He precession frequency

f � γ3HeB0, where γ3He is the gyromagnetic ratio of 3He spin and B0 is the mag-

netic holding field, it can tip the 3He spin away from the holding field direction.

Consequently, the 3He spin starts to precess around the magnetic holding field. The

magnetic flux generated from the precessing spin is received by the pickup coil of the

SQUID mounted on the side of the measurement cell. With the same polarization

and number density of the 3He spins, the magnitude of the flux generated at the

pickup coil is proportional to sinα, where α is the tipping angle between the spin

and the holding field. The angle is controlled by the duration and amplitude of the

RF pulse. It is usually chosen between 5 and 15 degrees since pNMR is a destructive

measurement and the polarization loss is proportional to 1� cosα.

The timing of the pNMR measurement is crucial. In our experiment, this is
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Figure 3.11: Schematic of the experiment (SQUID sensor is not shown) (a). The
3He cell is on the top of the glass manifold and a photo of the cell is shown in panel
(b). Panel (c) shows the blue dewar, pumping lines (on the back), glass manifold on
top of the dewar and part of the red Helmholtz coils.

controlled by a pulse delay generator which has a time accuracy of 1 ns. The pulse

generator will first send a TTL signal to trigger the function generator to send a RF

pulse to the 3He sample. During the meantime, it sends a blank signal to reset the

SQUID so that the SQUID stops functioning during the RF pulse. After the RF

pulse, the SQUID blank signal is off and a third signal is sent to computer to start

data acquisition (DAQ). A diagram that demonstrates the connection and timing is

shown in Figure 3.12.

As the SQUID is extremely sensitive, the noise reduction is crucial for the SQUID

to work properly. Many techniques have been developed to reduce the noise. In

a typical SQUID application, one layer of RF noise shielding and three layers of
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Figure 3.12: pNMR technique using the SQUID sensor (top). The signal output
from the pulse delay generator used to control and synchronize the function genera-
tor, SQUID and the DAQ system (bottom).

magnetic shielding are required to reduce the environmental noise below the SQUID

intrinsic noise level. People also use a superconducting can to shield the noise. As

the field inside the superconducting can decays exponentially, one or two layers of

the shielding are more than enough. However, the drawback of the superconducting

shielding and magnetic shielding is that any external magnetic field applied to the

system must be inside the shielding. In our experiment, the Helmholtz coil is outside

the dewar, so any of these shielding cannot be used.

Alternatively, the shielding technique we use is the dewar itself because it has

four heat insulation layers made of aluminum. When all the layers are grounded to

the same reference point, it can effectively shield the noise above 10 kHz. As the

skin depth of the low frequency noise becomes too large, the Al shielding does not
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shield low frequency noise effectively. In order to shield the low frequency noise,

an open-ended superconducting tube is placed around the SQUID pickup coil and

the measurement cell, Figure 3.13. In contrary to the superconducting can, the

superconducting tube only shields the flux in the transverse direction, but not the flux

in the axial direction. This allows the vertical magnetic holding field to penetrate into

the shielding but reject noise from other directions. The long superconducting tube

also increases the uniformity of the holding field, which improves T2 and acquisition

time of the 3He signal.

Figure 3.13: A lead superconducting tube (gray tube on the right) around the
measurement cell. The measurement cell and the SQUID are hidden inside the tube
and mounted on the yellow G-10 support.

Besides shielding, the pickup coil of the SQUID is also in a gradiometer config-

uration so that the uniform background noise is rejected. Moreover, we wrap two
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layers of gold foil around the pickup coil to further suppress the noise. The vibration

induced noise, such as 4He boiling off, is suppressed by mounting everything onto

the sturdy G-10 support (yellow part in Figure 3.13). The lead tube shielding also

adds stability to the system because of its weight.

3.2.4 Experimental Results

We measure the transfer function of the StarCryo Model 680 SQUID every time

we cool down the SQUID sensor. The measurements consistently give a value of

0.73 Vpp{ϕ0. The background noise spectrum of the SQUID is measured by the

SR760 FFT spectrum analyzer manufactured by Stanford Research System. Using

the transfer function, we can convert the noise into the unit of flux quanta ϕ0. The

result is shown in Figure 3.14. The pNMR measurement is carried out at 1 kHz,

corresponding to a field of 300 mG. The noise level at 1 kHz from the spectrum

reads 10 µϕ0{
?

Hz, which is twice as large as the intrinsic noise level. With limited

shielding in our experiment, this noise level is considered to be very low.

A typical pNMR measurement is shown in Figure 3.15. In the fast diffusion limit,

the signal V ptq decays exponentially according to the equation V ptq � V0 expp�t{T2q,
where 1{T2 is the transverse relaxation rate. At 4.2 K, 3He atoms move very slowly,

therefore the fast diffusion result is not applicable. In the slow diffusion limit, every

atom can be treated as stationary in space, and the decay envelop of the signal is

more complicated. One can refer to Chapter 4 for a complete treatment of this

relaxation problem.

We also perform a T1 measurement on the measurement cell. T1 characterizes

how fast the polarization of 3He decays. Many factors contribute to the T1 relaxation.

In our SQUID experiment, T1 is dominated by the wall relaxation. With the bare

pyrex glass, the measured T1 is around 70 seconds. With Cs coated pyrex glass,

T1 increases to more than 2000 seconds, Figure 3.17. This two orders of magnitude
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Figure 3.14: Noise spectrum of the SQUID from 1 to 104 Hz. The vertical axis is
the power spectrum density. The pNMR measurement is carried out at 1 kHz.

improvement agrees with the observation in [67]. Since we want to demonstrate that

3He signal with a number density of 5�1014 atoms/cc is measurable, we need to dilute

the 3He sample. Surprisingly, after the dilution, T1 is also reduced proportional to

the number density of the gas. The extremely short T1 (less than a few seconds) at

diluted number density makes it impossible to perform the pNMR measurement. As

a result, instead of actually trying to reach the low number density, we have to deduce

the signal size at the density of 5� 1014 atoms/cc from the current measurement. In

addition, we have also carried out a dedicated project to study the pressure/number

density dependence on T1. This is discussed in Chapter 4.

Each data point in Figure 3.17 is determined by the resonance peak height in
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Figure 3.15: Typical time domain signal of the pNMR measurement. The acqui-
sition time is 0.15 s. The red curve is the T2 exponential fit, which does not match
well because the signal does not decay exponentially.

the frequency domain, obtained from the Fourier transformation of the time domain

signal, Figure 3.16. For the particular T1 measurement shown in Figure 3.17, the 3He

pressure inside the measurement cell is 59 Torr. Using T � 4.2 K and assuming 3He

gas is an ideal gas, one can obtain the number density of 3He inside the measurement

cell to be 1.3 � 1020 atoms/cc. If we use the first data point in the figure as the

biggest signal we can measure from 1.3� 1020 atoms/cc 3He with 30% polarization,

and use 4 � 10�5 as the noise background, one obtains the signal to noise ratio

SNR � 0.4
4�10�5 � 104. If the 3He number density is reduced to 5 � 1014 atoms/cc

with 95% polarization, the SNR will be 0.12.

There are several avenues to further improve the SNR. The acquisition time in

the pNMR measurement is only 0.15 s, because the relatively large field gradient

decreases the T2 of the 3He signal. However, the actual nEDM experiment has sev-
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Figure 3.16: The fast Fourier transform (FFT) of the time domain signal. The
resonance frequency is approximately 1.2 kHz.

eral layers of magnetic shielding and one layer of superconducting shielding. The

cos θ coil produces a very uniform field at the collection volume. This uniform field

helps maintain 3He precession signal for a much longer time. Based on a theoretical

calculation, the measurement time in the nEDM experiment should be at least 200

seconds. The basics of the Fourier transform show that the SNR of a measurement

is proportional to the square root of the measurement time given that all other pa-

rameters remain the same [6]. If taking into account the longer measurement time in

the actual nEDM experiment, the projected SNR will be 4.4 rather than 0.12. The

better shielding in the nEDM experiment will also reduce the noise background, it is

reasonable to assume that the noise in the nEDM experiment will be at the intrinsic

noise level 5µϕ0{
?

Hz which is half the value of our current background noise. Addi-
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Figure 3.17: Longitudinal relaxation time T1 measurement of 3He in the Cs coated
measurement cell. The pressure in the measurement cell is 59 torr, corresponding to
1.3� 1020 atoms/cc. The exponential fit yields T1 � 2113� 0.3 s.

tionally, the pulse used in our experiment has a tipping angle of 8 degree, resulting

in a loss about 1%. However, a 15 degree pulse can be used, which can double the

signal size with only 5% polarization loss. In conclusion, taking all these improve-

ments into account, the SNR of the SQUID measurement in the nEDM experiment

will be at least 10, which is more than enough to measure the 3He polarization in

the collection volume.
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4

Relaxation Study of Optically Polarized 3He

In nEDM experiment, 3He is polarized by the quadruple magnet, which achieves

99% polarization. In our laboratary, 3He is polarized by the spin-exchange optical

pumping (SEOP see Appendix A), which can achieve a polarization more than 30%.

Both of these values far exceed the the polarization in the equilibrium state when

placing the 3He in a moderate magnetic field. The polarization of 3He will inevitably

drops to the equilibrium value once the the polarizing process is finished. This

depolarizing process is characterized by the longitudinal relaxation rate 1{T1, which

represents how fast the polarization will decress. There are many factors that can

contribute to the T1 depolarization. Among all of them, the most important ones

for 3He are the dipole-dipole interaction induced relaxation, wall relaxation, and

field-gradient induced relaxation. Dipole-dipole interaction induced relaxation is 744

hours for 1 atm 3He cell,

1

T1 dd

� r3Hes
744

hrs�1, (4.1)

where r3Hes is the number density of 3He in amagats. Since this is extremely long,

it can be safely ignored in most cases.
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Wall relaxation is due to the collision of 3He atoms with the inner surface of the

3He cell. As the surface may contain some magnetic impurities. The spin of 3He may

get flipped when the atom has contact with the magnetic site. There are two kinds

of magnetic impurities, paramagnetic impurities and ferromagnetic impurities. The

relaxation behaviors are totally different for different impurities. It was believed for

a long time that the paramagnetic wall relaxation is independent of gas pressure.

It was discovered recently, that the ferromagnetic relaxation time has an inverse

pressure dependence. However, in our SQUID measurement we surprisingly found

that the T1 is linearly dependent on the pressure of the 3He gas. Therefore, we built

a dedicated experiment to study this pressure dependence at room temperature.

The study suggests that the relaxation we observed is due to the paramagnetic wall

relaxation and the pressure dependence comes from the diffusion of 3He inside the cell

because the diffusion speed depends on the pressure. Our study of the T1 pressure

dependence is summarized and presented in the next section.

As the name suggests, the field-gradient induced T1 relaxation is due to the

3He moving in a non-uniform magnetic field. This problem is further divided into

two regimes, the slow diffusion limit and the fast diffusion limit. This problem

has been extensively studied in the context of the T2 relaxation. T2 is also called

transverse relaxation characterizing how fast the spins dephase during the pulsed

nuclear magnetic resonance (pNMR) measurement. In the pNRM measurement, a rf

pulse is sent to the sample which tips the spins away from their initial position. When

the spins are not aligned with the holding field, they will precess around the holding

field. At the very beginning, all spins have the same phase. The dephasing happens

because the field is not uniform so that different spin will precess at different speeds.

In the slow diffusion limit, the time scale of the dephasing is much shorter than the

time scale of the diffusion of spins in the cell. In this case, diffusion makes T2 shorter.

In the contrary, when the diffusion is much faster than the dephasing (fast diffusion
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limit), diffusion tends to average out the field non-uniformity. Therefore, diffusion

actually helps increase the T2. Most of the study of the slow diffusion is related to the

water or liquid sample due to their relatively small diffusion constant. Fast diffusion

is usually associated with gas samples such as polarized 3He and different techniques

are developed to solve this problem. In our SQUID experiment, we found that the

diffusion of 3He at 4.2 K falls into the slow diffusion limit and the measured T2 is

much longer than the prediction using the fast diffusion result. Hence, we developed

a new approach to solve this gradient-induced relaxation, applicable to both slow

and fast diffusion limits at the same time. It also can be used in the intermediate

regime which is frequently encountered in the gas pNMR. More interestingly, our

approach also solves T1 in both limits and it turns out that T1 has different forms

in these two limits, which has never been discussed in the literatures. The detailed

discussion of the gradient-induced T1 and T2 relaxations are presented in the second

section of this chapter.

4.1 Pressure Dependence of Wall Relaxation in the Polarized 3He
Gaseous Cells

Spin polarized 3He gas has been widely used in polarized nuclear targets for lepton

scattering experiments [141] and as a signal source in Magnetic Resonance Imaging

(MRI) of lung air space [95]. Recently, it has also been used in searches of ex-

otic spin-dependent interactions [108]. These experiments take advantage of large

non-equilibrium polarizations of 3He obtained through spin-exchange with optically

polarized Rb or Rb/K vapor mixture. The production and storage of polarized 3He

gas crucially depend upon longitudinal relaxation times (T1). Among many factors

contributing to the T1 relaxation, the most important ones are the 3He dipole-dipole

interaction [102], magnetic field gradient induced relaxation [29] and wall relaxation.

The least understood and hardest to control among these three effects is the relax-
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ation due to the wall.

Although a thorough understanding of the nature of the wall relaxation is lacking,

it is widely believed that relaxation rates due to paramagnetic sites in the wall do

not depend upon the density of the gas. This is understood in the following way: the

wall collision rate per unit area is known as nv̄{4, where n is the number density of

the gas and v̄ is the mean velocity; assuming α is the depolarization probability per

collision due to paramagnetic impurities, the relaxation rate 1{T1 can be expressed

as [51]

1

T1

�
1
4

³
αnv̄dS³
ndV

� αv̄S

4V
, (4.2)

where S is the total surface area of the cell, V is the volume of the cell, and n

is uniform across the cell. As long as α has no dependence on the gas density or

pressure, T1 is also independent of gas pressure.

In this paper, we present our recent T1 measurements on polarized 3He cells which

show a linear pressure dependence of T1, different from what has been discussed

above. In our experiment, the measured T1 is significantly reduced from tens of

hours to tens of minutes by just decreasing the pressure of 3He gas one hundred

times. After excluding dipole-dipole and gradient induced T1 relaxation, the observed

pressure dependence can only be explained by the wall relaxation, which is, however,

completely opposite to the pressure dependence observed in the ferromagnetic wall

relaxation under the weak collision limit [75]. As the cells tested have never been

exposed to high fields, ferromagnetic relaxation cannot be the dominant relaxation

mechanism, and paramagnetic relaxation is the last candidate to account for the

observed T1 relaxation. These T1 measurements have been carried out on cells with

surfaces of Cs/Rb-coated pyrex and bare pyrex, and at temperatures 4.2 K and 295K,

suggesting that the observed linear pressure dependence is likely a general property

of the paramagnetic wall relaxation regardless of the surface and temperature. We
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also present a model to explain the observed linear pressure dependence by taking

into account the diffusion of the spins. This new model also resolves the discrepancies

between theories and experiments found in [31, 91] and explains a recent finding that

polarization and T1 are enhanced by adding 4He into the cell [32].

The T1 measurements at 295 K and 4.2 K were carried out using the Free In-

duction Decay (FID) technique. 3He was filled and refilled in 48 mm OD spherical

detachable cells to 1 or 2 atm, using a 3He/N2 gas handling system. The detachable

cell was made of Rb-coated pyrex and had an O-ring valve connected to it through

a capillary pyrex tubing with an i.d. of 1.5 mm and a length of 18 cm to restrict gas

exchange between the valve and the cell, so that the depolarization from the valve

was minimized. The detachable cells were always polarized at either 1 or 2 atm,

and then diluted to different pressures (0.025 to 0.43 atm) using different dilution

volumes. The pressure in the detachable cell was monitored by a pressure gauge

connected between the volume and the cell.

In the 4.2 K experiment, we measured T1 of 3He in cylindrical pyrex cells immersed

in liquid 4He stored in a dewar. The cylindrical cell had an i.d. of 8 mm and a length

of 25 mm. The top of the cell was attached to a thin pyrex tube with an i.d. of

3 mm and a length of 68 cm. The other side of the tube was connected to an

O-ring valve outside the dewar, where the detachable cell is mounted. A gas flow

restriction (0.8 mm i.d. and 3 mm long) was added to the connection point between

the tube and the cell to minimize the gas exchange between them. A dilution volume

was also connected for diluted T1 measurements, similar to the 295 K measurement.

After dilution, the remaining polarized 3He gas in the detachable cell was allowed

to diffuse into the cylindrical cell. The pressure in the cylindrical cell can be varied

from 6.4�10�4 atm to 0.19 atm. Four cylindrical cells with identical dimensions but

different surfaces (two bare pyrex and two Cs-coated pyrex) were used.

The 295 K T1 measurements were carried out at 39.5 kHz using a homemade FID

58



Figure 4.1: (Color online) T1 of 3He in four cylindrical cells at 4.2 K. Two cells are
made of bare pyrex (up-triangle and down-triangle) and the other two are made of
Cs-coated pyrex (square and circle).

polarimetry and also at 24 kHz using a commercial polarimetry made by Amersham

Health; whereas the 4.2 K measurements were performed at 12 kHz, using Supercon-

ducting QUantum Interference Device (SQUID) manufactured by StarCryo. While

the 39.5 kHz FID polarimetry has a higher signal-to-noise ratio than the 24 kHz po-

larimetry, the RF noises from its pre-amplifier are bigger. In all FID measurements,

a small tipping angle, resulting in about 1% polarization loss, was applied. This loss

was subtracted when extracting T1 from the data. Two different Helmholtz coil pairs

were used and the field gradients were measured to be   2.3 mG/cm for the 295 K

measurement and   2.2 mG/cm for the 4.2 K measurement. The gradient induced

T1 was more than one thousand hours [29], and was negligible compared to the mea-

sured T1. The dipole-dipole induced T1 was calculated [98, 102], and subtracted from

the measured T1 values. Hence, all T1s shown below are due to wall relaxation only.
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Figure 4.2: T1 of 3He in the Rb-coated detachable cell at 295 K. The dashed line
is the linear fit to the first four data points below 0.43 atm. The dotted line is the
fit using Eq. (4.3) to the four square points below 0.43 atm and the two triangles
points. The solid line is the fit using Eq. (4.3) to all the squares.

At 4.2 K, when the pressure of the gas is reduced, T1 decreases proportionally

(Figure 4.1). From a linear fit of the data (dashed lines), it clearly shows that all the

fitted lines pass through the origin, which suggests T19p. For bare pyrex cells, the

minimum T1 we measured is 10.1�0.3 s at 3.6� 10�2 atm. If the pressure is further

reduced, T1 becomes so short that a complete T1 measurement becomes difficult. Cs

coating helps increase T1 by more than two orders of magnitude. This allows the

pressure to be further reduced to 6.4�10�4 atm. However, even with Cs coating, T1 at

this pressure is only 10.4�0.6 s (the first solid circle in Figure 4.1). Therefore, at low

pressure, the pressure dependent T1 relaxation at 4.2 K is the dominant relaxation

mechanism.

At 295 K, the Rb-coated detachable cells have T1 on the order of tens of hours.

This makes the low pressure T1 measurement easier and also enables us to access
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the T1-pressure relationship for a different surface and temperature in addition to

the 4.2 K data. The detachable cells have never been exposed to fields higher than

30 G. Measurements of T1 have been done to cells before and after degaussing using

a commercial demagnetizer, and no changes have been seen within experimental

uncertainties. The first detachable cell has T1 � 690 � 21 min at 1 atm using

the 39.5 kHz polarimetry. When the 3He pressure is reduced to below 0.43 atm,

the measured T1 exhibits a linear pressure dependence (Figure 4.2). By fitting the

first four points linearly (dashed line), ranging from 0.042 to 0.43 atm, it yields

T1 � 1188 � p min. This linear dependence does not hold when the pressure is

above 0.43 atm, and T1 at 2 atm does not change too much from T1 at 1 atm. This

clearly indicates that some other relaxation mechanisms, which are negligible at

low pressure, become important at high pressure since the paramagnetic relaxation

becomes less pronounced with increasing pressures. In a different experiment, we

observed that the continuous RF noise broadcasted by the RF amplifier rendered

polarization loss during the T1 measurement [143]. In this experiment, a mechanical

pump and a turbo pump were used to maintain the vacuum of the dilution volume

throughout the experiment. We indeed observed that the background noise level

in the pickup coil increased with the pumps running. Therefore, we repeated the

non-diluted 1 atm and 2 atm T1 measurements with all pumps off. The less noisy

24 kHz polarimetry was used in these measurements. The repeated measurements

showed an increase of T1 by roughly 200 min and 300 min at 1 atm and 2 atm,

respectively. However, in the repeated measurements, T1 still flattens out at 2 atm.

As shown in [74], all their non-magnetized/demagnetized Rb-coated cells exhibit

weak ferromagnetic relaxation behavior. This leads us to believe that our cells are

also subject to ferromagnetic relaxation to some extent. As ferromagnetic relaxation

has an inverse pressure dependence T191{p [75], it is negligible at low pressures;

whereas, at high pressures, it becomes more prominent and therefore comparable
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to the paramagnetic relaxation. This could explain the flattening behavior of T1.

Hence, the measured T1 relaxation can be attributed to three mechanisms, expressed

as

1

T1

� 1

c1p
� 1

c2

� p

c3

. (4.3)

The first term is the paramagnetic wall relaxation, which depends on pressure linearly

(T1 � c1p); the second term is RF noise-induced relaxation, which has no pressure

dependence (T1 � c2); the last term is the ferromagnetic relaxation, which inversely

depends on pressure (T1 � c3{p) [75, 126]. Using Eq. (4.3) to fit the 39.5 kHz data

in Figure 4.2 (solid line), one obtains c1 � 1288 � 110 min/atm, c2 � 2754 � 251

min and c3 � 5082�1641 min�atm. If the two repeated measurements together with

the four data points below 0.43 atm were used for the fit (dotted line), c2 changes to

c2 ¥ 10086 min, indicating 1{c2 is zero within fitting errors. This suggests that the

RF noise in the repeated measurements is negligible.

We also tested another Rb-coated detachable cell, which has a longer T1 at 1 atm

(T1 � 1001�11 min), measured by the 39.5 kHz polarimetry. This cell also shows the

linear pressure dependence with pressure below 0.25 atm (Figure 4.3); and beyond

this pressure, T1 starts to flatten out as well. Fitting the data to Eq. (4.3) yields

c1 � 1757�71 min/atm, c2 � 2959�362 min and c3 ¥ 10113 min�atm. c2 of this cell

is comparable to c2 of the first one as expected, since the RF noise-induced T1 should

be independent of which cell is used. Both c1 and c3 are larger than those of the

first cell, which suggests that both paramagnetic and ferromagnetic wall relaxations

of the second cell are weaker than those of the first one. The 1 atm T1 was also

measured using 24 kHz polarimetry with all pumps off. T1 in this case increases by

roughly 236 min.

Once ferromagnetic wall relaxation and RF noise-induced relaxation are excluded,

the T1 relaxation measurements at both 295 K and 4.2 K clearly show the linear
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Figure 4.3: T1 of 3He in the second detachable cell which has longer T1 at 1 atm.
The dashed line is the linear fit to the four data points with pressure below 0.25 atm.
The solid line is a fit using Eq. (4.3) to all 39.5 kHz data labeled as squares.

pressure dependence, which is contradictory to Eq. (4.2). The derivation of Eq.

(4.2) implicitly assumes ballistic collisions between spins and the wall, which is only

true when spins are in the vicinity of the wall. When far away from it, spins move in

a diffusive manner. Hence, the effective speed, at which it moves to the wall, is much

slower than its thermal velocity. As majority of the spins are not close to the wall, a

more appropriate model to describe the wall relaxation should take into account the

diffusion process. In [39], Chupp et al. used the diffusion equation to calculate the

spatial distribution of 3He polarization inside a high pressure double cell system. We

will also use the diffusion equation, together with depolarizing boundaries, to describe

the surface relaxation of 3He. It should be noted that ferromagnetic relaxation does

not fit into this surface relaxation model because it happens not only on the surface

but also in the vicinity of the surface. Since ferromagnetic impurities produce much
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stronger dipole field than paramagnetic impurities, spin can be depolarized even it

does not have a contact with the surface. In other words, ferromagnetic relaxation

actually occurs in a region adjacent to the surface impurities. In the strong collision

limit of the ferromagnetic relaxation, the dipole field is so strong that the adjacent

relaxation region extends to the entire cell. In this case, the relaxation rate converges

to the gradient-induced relaxation [75, 126].

Let ρpr, tq represent the polarization of 3He gas inside a spherical cell as a function

of position r measured from the center of the cell and time t. The diffusion equation

of the polarization ρ is written as

D∇2ρ � Bρ
Bt , (4.4)

where D is the diffusion constant of 3He gas. Since spins lose their polarization only

at the surface with probability α, the boundary condition is written as

Bρpr, tq
Br |r�0 � 8 (4.5)

Bρpr, tq
Br |r�R � �αρpR, tq, (4.6)

where R is the radius of the cell. The solution is

ρpr, tq �
8̧

k�1

Akj0pxkr
R
q expp�x

2
kDt

R2
q, (4.7)

where j0 is the zeroth order spherical Bessel function, xk is the kth root of Eq. (4.6),

which can be re-written as

xkj
1
0pxkq � αRj0pxkq � 0, (4.8)

and Ak is determined by

Ak �
³R
0
ρpr, 0qj0pxkrR qr2dr³R

0
j2

0pxkrR qr2dr
. (4.9)
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Since terms other than k � 1 vanish quickly, only k � 1 term contribute to the

polarization and T1 is written as

1{T1 � x2
1D

R2
9 x2

1

nR2
9 x2

1

pR2
. (4.10)

The second and third proportionalities use the fact that D91{n91{p. Therefore, the

paramagnetic wall relaxation rate 1{T1 does not only depend upon the depolarization

probability α (implicitly through x1) but also on the diffusion constant D. Chen et

al.[32] found that T1 of their 3He cells are increased by filling 4He into the cell. This

can be explained by the decrease of 3He diffusion constant due to the presence of

4He in the cell. It should be noted that Eq. (4.4) can also be used in situations

other than pure 3He gas, for instance 3He in superfluid 4He. In this case, D is the

diffusion constant of 3He in superfluid 4He [99, 86], so Eq. (4.4) and the following

arguments are still valid. Another observation on Eq. (4.10) is that 1{T1 has a

quadratic dependence on the surface-to-volume ratio, 1{T191{R29pS{V q2 (spherical

cell). This quadratic dependence, instead of the linear dependence in Eq. (4.2),

suggests that surface to volume ratio has bigger influence on paramagnetic relaxation

T1 than it is previously believed.

Low pressure cells (a few torr) used in Metastability Exchange Optical Pumping

(MEOP) have been reported to have long T1 from several hours to tens of hours

[41, 67, 35, 1]. These include both valved cells and permanently sealed cells; and

they are usually made of aluminosilicate glass or Cs-coated pyrex with much better

glass cleaning process than what we did to our detachable cells. No apparent pres-

sure dependence was observed in the valved MEOP cells, except that, at low enough

pressures, the gradient-induced relaxation dominates. This seems to be inconsistent

with the pressure dependence we observed. However, these cells usually have hun-

dreds or even thousands of hours of T1 at 1 atm, considerably longer than our cells

(less than 20 hours). Rather than the paramagnetic relaxation, T1 of those MEOP

65



cells are likely dominated by other relaxation mechanisms, such as the ferromagnetic

relaxation and the dipole-dipole relaxation.

T1 of ferromagnetic wall relaxation has an inverse linear pressure dependence

in the weak collision limit, defined as ω0τ    1, where ω0 is the spin precession

frequency and τ is the interaction time of spin with a magnetic site on the surface

[75, 126]. In the strong collision limit (ω0τ ¡¡ 1), T1 becomes linearly dependent on

pressure, which in fact can be understood by the gradient-induced relaxation [75]. As

the experimental conditions of both 4.2 K and 295 K measurements are clearly not in

the strong collision limit which requires large ferromagnetic site on the surface, and

our cells have never been exposed to high fields, the observed pressure dependence

cannot be explained by the ferromagnetic relaxation in the strong collision limit.

Chapman and Richards [31] also observed the linear pressure dependence of T1

in 3He at 4.2 K. They use Eq. (4.2) to describe their findings and the pressure

dependence was ascribed to the pressure dependence of α using a two-phase model

with 3He in the absorbed phase with a shorter T1 when a complete monolayer was

formed on the surface, and 3He in the bulk phase which has much longer T1. However,

this two-phase picture cannot explain the pressure dependence seen in the experiment

by Lusher et. al. [91], in which only a partial monolayer was formed. The binding

energies W between 3He spin and a specific surface determines when a complete

monolayer will be formed. For bare pyrex glass, the binding energy is around 100 K

[91]. For Cs and Rb-coated cells, the binding energy are 2.3 K and 2.8 K [44, 33],

respectively. In our 4.2 K measurement, for sure a complete monolayer of 3He is

formed on the bare pyrex; whereas, in the Cs-coated cell, it is certain that only a

partial monolayer is formed. As the pressure dependence is observed in both cases,

it further demonstrates that Eq. (4.2) and the two-phase picture are inadequate

to describe the experimental data, and the diffusion process is essential to the wall

relaxation.
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In summary, we conclude that the linear pressure dependence observed in our T1

measurements is associated with the paramagnetic wall relaxation. This pressure de-

pendence originates from the diffusion process of 3He spins and can be well described

by the diffusion equation. It also suggests that it is vital to control the paramagnetic

wall relaxation when the diffusions are fast.

This work is mainly based on the paper of Zheng et al [149]. The boundary con-

dition Eq. (4.6) used in this work is questioned by Saam et al [122]. They proposed

a different formula for the relaxing boundary condition in their comment. With

certain assumption, they gave an alternative explanation to the observed pressure

dependence. We did a finite element analysis to simulate the experiment using their

boundary condition and assumptions. However, the simulation result does not agree

with the experimental data. We wrote a reply to their comment, demonstrating our

FEA result. The reply to their comment is shown in Appendix C. To summarize,

the interpretation of the pressure dependence is still under debate and it is an open

question that needs to be addressed in the future.
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4.2 General Solution to Gradient Induced Transverse and Longitudi-
nal Relaxation of Spins Undergoing Restricted Diffusion

4.2.1 Introduction

Longitudinal relaxation (T1 relaxation) and transverse relaxation (T2 relaxation) are

the most important parameters in Nuclear Magnetic Resonance (NMR), Magnetic

Resonance Spectroscopy and Magnetic Resonance Imaging (MRI). Many factors can

contribute to T1 and T2 relaxations. It is well known that, for liquid or gaseous

samples, such as spin polarized 3He, diffusion in a non-uniform magnetic field can

cause both T1 and T2 relaxations. In this manuscript, 1{TG1 and 1{TG2 represent the

relaxation rates solely due to diffusion in a magnetic field gradient. The transverse

relaxation due to diffusion in free space was first solved by Torrey [135]. He gener-

alized the Bloch equation by adding a diffusion term and unveiled that the envelope

of the transverse component of the magnetization decays as

Aptq � expp�1

3
Dγ2G2t3q, (4.11)

where D is the diffusion constant, γ is the gyromagnetic ratio of the spin and G is

a constant gradient. In practice, most diffusion happens in confined spaces, and the

stochastic diffusion process is restricted, which makes the problem more complicated.

Robertson [119] solved the Bloch-Torrey equation [135] in restricted geometries, by

imposing boundary conditions to the equation. His approximate analytical solution

showed that the envelop decays exponentially with a constant relaxation rate. This

result is valid when 4Dt ¡¡ L2, where L is the distance between the boundaries.

This limit is also known as fast diffusion limit or motional averaging regime, where

spins have moved across the geometry many times in a time period t and therefore

any fluctuation in the magnetic field averages out and a faster diffusion actually

reduces the relaxation. Neuman [101] solved the same problem by calculating the

accumulated phases of spins with the assumption that the relative phase distribution
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of spins is Gaussian in both the slow diffusion and fast diffusion limits. His slow

diffusion result reproduces the free diffusion result, Eq. (4.11), and the fast diffusion

result is the same as that of Robertson. In the intermediate regime, the Gaussian

Phase Approximation (GPA) fails. However, it is crucial to quantitatively understand

the intermediate regime because many experiments have shown edge enhancement

phenomena in the slow diffusion and intermediate regime, which was recognized

later as a localization regime [66]. People have observed that, when water diffuses

in microscopic structures, the MRI signal is enhanced at the edge of the structure

[112, 70, 17, 27, 69]. Saam et al. have also showed a similar edge enhancement

effect, using hyperpolarized 3He gas in cells with dimensions of about 1 cm [121].

This effect is ascribed to the more restricted diffusion at the boundary, which lessens

the relaxation, and was first described quantitatively by De Swiet [133], using Airy

functions. Airy functions have been shown to be the eigenfunction of the Bloch-

Torrey equation in the intermediate regime [132]. Axelrod also showed that although

GPA fails in the intermediate regime, it can be used to interpolate the result in this

regime, which turns out to be close to the exact solution [8]. More detailed discussion

on the restricted diffusion in various limits can be found in a review article [61] and

references therein.

Despite of the widely used GPA method, Cates et al. used the second order time-

dependent perturbation theory and carried out an expansion of spin density matrix

to obtain both longitudinal and transverse relaxation rates for a spherical cell [29].

Their results works only in the fast diffusion regime, and they further divided the

fast diffusion regime into two limits: the high pressure limit ω0R
2{8πD ¡¡ 1 and

the low pressure limit ω0R
2{8πD    1, where ω0 is the Larmor precession frequency

and R is the radius of the spherical cell. These two limits can be thought of as the

characteristic spin precession time τl � 2π{ω0 being much shorter or longer than

the characteristic diffusion time in the cell τd � R2{4D, respectively. McGregor [92]
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used Redfield theory discussed in [130] to solve the same problem also in the fast

diffusion regime. Redfield theory is a generalized treatment of the second-order time-

dependent perturbation theory. It establishes a set of differential equations obeyed

by the spin density matrix. Therefore, it is closely related to the treatment of Cates

et al. [60]. By calculating autocorrelation function of spin under different geometries,

McGregor was able to obtain transverse relaxation rates in the fast diffusion limit

for different geometries, including slabs, cylinders and spheres.

In this manuscript, we make an extension to the McGregor’s approach, which

yields an analytical solution to the transverse magnetization suitable for all diffusion

regimes. When 4Dt    L2, this solution reproduces Torrey’s free diffusion result;

when time 4Dt � L2, it is in the intermediate regime. In these two regimes, edge en-

hancement effect is also observed. Eventually, when 4Dt ¡¡ L2, it is in the motional

averaging regime and a peak located at the center of the frequency spectrum is ob-

served. We also performed Free Induction Decay (FID) measurements on polarized

3He gas to verify the theoretical results. By changing the number density of the gas,

the observed transverse relaxation happens in different diffusion regimes. When the

decay envelopes are compared to the theoretical predictions, they are found to be

in good agreements, especially in the intermediate regime. In addition to the trans-

verse relaxation, our approach can also be used to calculate longitudinal relaxation

in different regimes. We found that the longitudinal relaxation rate 1{TG1 in the slow

diffusion limit is twice as fast as that in the fast diffusion limit. As diffusion in the

fast diffusion regime is more restricted, it could explain this factor of two difference.

In this manuscript, we solve the problem in 1D for clarification purpose. However,

it can be easily extended to 3D with complex geometries since one only needs to

calculate the corresponding probability density function. Once the density function

is known, the relaxation rate can be calculated readily, which makes this approach

suitable for numerical simulations of complex geometries.
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4.2.2 Redfield theory for magnetic field gradient-induced relaxations

For simplicity, let spins diffuse in a cubic cell with length L. A non-uniform magnetic

field is applied along the ẑ direction. At time t � 0, we track a spin starting at ~x1c.

As time evolves, the expected position of the spin will change due to the diffusion

process. Therefore, we use x~x1ptqy to represent the expected position of spin at some

later time t and has the property that x~x1p0qy � ~x1c. Since the field is non-uniform

over the box, the spins also see fluctuating magnetic fields during diffusion. The

fluctuating field ~B1 can be treated as a perturbation to the zeroth order mean field

~Bpx~x1yq by taking Taylor expansion around ~x � x~x1y,

~B1 � ~Bp~xptqq � ~Bpx~x1ptqyq � ~∇ ~B � p~xptq � x~x1ptqyq. (4.12)

As described in [130], Redfield theory gives solutions to the problem with fluctuating

magnetic fields. In our case, the applied field is constant in time; however the time

dependence appears because of the diffusion process. The equation of motion for the

transverse and longitudinal components of the spin can be written as [130]

d

dt
xST y � d

dt
pxSxy � i xSyyq � γpxST y �Bq�

γ2

"
1

2

�
JB1

x
pωq � JB1

y
pωq�� JB1

z
p0q
*
xST y (4.13)

d

dt
xSzy � �γ2

�
JB1

x
pωq � JB1

y
pωq� xSzy , (4.14)

where ST is the transverse component of spins, B � Bzpx~x1yqẑ, ω � γBzpx~x1yq, the

Larmor precession frequency of spins at field strength Bzpx~x1yq, and JB1
x

is defined

as [130]

JB1
x
pωq �

» t

0

B1
xpt� τqB1

xptqe�iωτdτ. (4.15)
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The bar denotes an ensemble average of the autocorrelation of the perturbed mag-

netic field. JB1
z
p0q has the similar definition with B1

x replaced by B1
z and ω � 0. The

first term in Eq. (4.13) describes the precession of the spin under the field Bzpx~x1yq,
and the second term gives the transverse relaxation rate 1{TG2 ; whereas Eq. (4.14)

describes the longitudinal relaxation.

It should be noted that Eq. (4.15) was originally written in [130] as an integral

from 0 to infinity. It was argued that the autocorrelation of the magnetic field would

vanish quickly after a critical time τc, and consequently, integration from 0 to infinity

introduces negligible errors as long as t ¡¡ τc. For the case considered here, τc can

be defined as τc � pL{2q2{4D. When the diffusion is slow, the above approximation

is invalid, and Eq. (4.15) must be used. By utilizing Eq. (4.12) and realizing the

fact that diffusions in x̂, ŷ and ẑ directions are independent of each other, JB1
x
pωq

can be re-written as

JB1
x
pωq � pBB

1
x

Bx q2Jxpωq � pBB
1
x

By q2Jypωq � pBB
1
x

Bz q
2Jzpωq, (4.16)

where Jxpωq is expressed as

Jxpωq �
» t

0

pxpt� τq � xx1ptqyqpxptq � xx1ptqyqe�iωτdτ, (4.17)

and similar for Jypωq and Jzpωq. In general, Jxpωq is time-dependent and the re-

laxation rates are also time-dependent. However, it will be shown that, in the fast

diffusion limit, Jxpωq approaches some constant values and Jxpωq � Jypωq � Jzpωq.
Hence, one can define the longitudinal relaxation rate 1{TG1 as

1

TG1
� γ2p|∇Bx|2 � |∇By|2q< rJxpωqs , (4.18)

where < r�s indicates taking the real part. Hence, in the fast diffusion limit, the
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transverse relaxation rate 1{TG2 can also be defined as

1

TG2
� 1

2TG1
� γ2 |∇Bz|2 Jxp0q. (4.19)

Magnetic Field Gradient-induced Transverse Relaxation Rate 1{TG2

The expected position of spin xx1ptqy at time t can be computed as

xx1ptqy �
» L{2

�L{2

xρpx, t|x1c, 0qdx, (4.20)

where ρpx, t|x0, t0q is the conditional probability density function of spin at position

x at time t, if the spin is at x0 at time t0 (t0 � t � τ). It is apparently that Eq.

(4.20) satisfies the condition xx1p0qy � x1c.

In order to compute Jxp0q, one needs to calculate position autocorrelation func-

tion, which, by definition, can be expressed as

pxpt� τq � xx1yqpxptq � xx1yq �
» L{2

�L{2

» L{2

�L{2

px0 � xx1yqpx� xx1yqρpx, t|x0, t0qρpx0, t0| xx1y , 0qdxdx0. (4.21)

Due to the symmetry of the cubic cell, ρpx, t|x0, t0q can be found by decomposing

the 3D diffusion equation into 1D problem, subject to the boundary condition

B
Bxρpx, t|x0, t0q|x��L{2 � 0,

and the initial condition

ρpx, t0|x0, t0q � δpx� x0q.

The solution is found to be
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ρpx, t|x0, t0q � 1

L
� 2

L

8̧

n�1,3

e�
n2π2Dτ
L2 sinpnπx

L
q sinpnπx0

L
q

� 2

L

8̧

n�2,4

e�
n2π2Dτ
L2 cospnπx

L
q cospnπx0

L
q. (4.22)

By substituting Eq. (4.22) into Eq. (4.21), one obtains

pxpt� τq � xx1yqpxptq � xx1yq � 8L2

π4

8̧

n�1,3

1

n4
expp�n

2π2Dτ

L2
q � xx1y2

� 4 xx1yL
π2

8̧

n�1,3

1

n2
expp�n

2π2Dt

L2
q sinpnπ xx

1y
L

q sinpnπ
2
q

� 4 xx1yL
π2

8̧

k�2,4

1

k2
expp�k

2π2Dt0
L2

q sinpkπ xx
1y

L
q sinpkπ

2
q

� 16L2

π4

8̧

n�1,3

8̧

k�2,4

k2 � n2

n2pk2 � n2q2 expp�n
2π2Dτ

L2
q expp�k

2π2Dt0
L2

q

� cospkπ xx
1y

L
q cospkπ

2
q. (4.23)

Instead of substituting Eq. (4.23) into Jx directly, one can first take the slow

diffusion or fast diffusion limits on it. It can be shown (see Appendix B) that, in the

slow diffusion limit 4Dt    pL{2q2, Eq. (4.23) is simplified to

pxpt� τq � xx1yqpxptq � xx1yq � 2Dpt� τq. (4.24)

Jxp0q is then calculated as

Jxp0q �
» t

0

2Dpt� τqdτ � Dt2. (4.25)

This is also true for Jyp0q and Jzp0q. As Jx,y,zp0q is time-dependent, the relaxation

rate is also time-dependent. One has to substitute Jx,y,zp0q into Eq. (4.13) directly
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to compute ST ,

d

dt
xST y � γpxST y �Bpx~x1yqq � p 1

2T1

� γ2|∇Bz|2Dt2q xST y . (4.26)

If one assumes that the gradient in one direction BBz{Bx � G dominates, then

|∇Bz| � G and Bz � Bzp0q � G xx1y � Bzp0q � Gx1c. xx1y � x1c because spins are

localized in the slow diffusion limit and the expected position at time t will not

change significantly from their initial positions. Integrating upon time, Eq. (4.26)

becomes

xST y � S0 expriγpBzp0q �Gx1cqts expp�γ
2G2Dt3

3
� t

2TG1
q. (4.27)

This coincides with 1D diffusion result derived by Torrey [135]. Torrey’s derivation

assumes free diffusion without boundaries, which is equivalent to the slow diffusion

in a confined volume, as boundaries are not present to spins when diffusion is slow.

In the fast diffusion limit, 4Dt ¡¡ pL{2q2, all the exponential terms containing

t in Eq. (4.23) vanish, so does xx1y2 term, which can be proved easily by taking the

limit 4Dt{L2 Ñ 8 in Eq. (4.20). Therefore, the only surviving term is the first one,

pxpt� τq � xx1yqpxptq � xx1yq �
8̧

n�1,3

8L2

n4π4
e�

n2π2Dτ
L2 . (4.28)

Jxp0q in this case becomes

Jxp0q �
» t

0

¸
n�1,3

8L2

n4π4
e�

n2π2Dτ
L2 dτ � L4

120D
, (4.29)

where the fact that 4Dt ¡¡ pL{2q2 is used again after the integration. Jyp0q and

Jzp0q are the same as Jxp0q in this limit. Substituting them back into Eq. (4.13),

one obtains

xST y � S0 expriω0t� p 1

2T1

� γ2L4 |∇Bz|2
120D

qts. (4.30)
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As xx1ptqy approaches zero in the fast diffusion limit, all the spins precess at the

same central frequency ω0 � γBzp0q, no matter where the spin is initially. This is

also known as motional averaging regime. If gradient in one direction dominates the

other two (|∇Bz| � G), the transverse component decays with a constant relaxation

rate 1{TG2 given by

1

TG2
� 1

2TG1
� γ2L4G2

120D
. (4.31)

This result is also derived by McGregor [92] and Robertson [119] using GPA method.

However, it will be shown in the discussion section that, by numerically calculating

Jxp0q using Eq. (4.23) without any approximation, one can obtain the frequency

spectrum of the precession signal in various limits, which cannot be obtained from

McGregor and Robertson’s methods. As a constant gradient is applied, the frequency

spectrum is actually a frequency encoded 1D image. In the slow diffusion limit, peaks

are observed at the edge of the geometry, known as edge enhancement; whereas in

the fast diffusion limit, a resonance peak is observed at the center of the spectrum.

In the intermediate region 4Dt � pL{2q2, one has to substitute Eq. (4.23) directly

into Jxp0q and then calculate Eq. (4.13). Unfortunately, no concise analytical form of

ST pxx1yq can be obtained in this regime. Hence, a numerical calculation of ST pxx1yq is

performed and compared with Free Induction Decay (FID) measurements on gaseous

3He cells, and a good agreement in the intermediate regime is shown, see Sec. III.

Magnetic Field Gradient-induced Longitudinal Relaxation Rate 1{TG1

In order to compute Eq. (4.14), one needs to obtain Jxpωq first. In the slow diffusion

limit (4Dt    pL{2q2), Eq. (4.24) should be used,

Jxpωq �
» t

0

2Dpt� τqe�iωτdτ

� 2Dp1� e�iωt � iωtq
ω2

. (4.32)

76



Since, in most cases, ω ¡¡ 1, <p1 � e�iωtq � 1 � cosωt is a fast oscillating func-

tion, which averages to 1. Consequently, substituting <rJxpωqs into Eq. (4.18), the

longitudinal relaxation has an averaged decay rate as

1

TG1
� γ2p|∇Bx|2 � |∇By|2q2D

ω2
� 2D

|∇Bx|2 � |∇By|2
B2

0

, (4.33)

where ω � γBzpx~x1yq � γBzp0q � γB0.

In the fast diffusion limit (4Dt ¡¡ pL{2q2), Eq. (4.28) should be used to calculate

Jxpωq,

Jxpωq � 8L2

π4

» 8

0

8̧

n�1,3

1

n4
e�

n2π2Dτ
L2 e�iωτdτ

� 8L2

π4

8̧

n�1,3

1

n4

1
n2π2D
L2 � iω

. (4.34)

Hence, the real part of Jxpωq is written as

<rJxpωqs � 8L4D

π2

8̧

n�1,3

1

n2

1

n4π4D2 � ω2L4
. (4.35)

In the fast diffusion limit with high pressure (τd{τl � ωL2{32πD ¡¡ 1), the sum

in Eq. (4.35) is simplified to

8̧

n�1,3

1

n2

1

ω2L4
� π2

8ω2L4
, (4.36)

and 1{TG1 in this limit becomes

1

TG1
� D

|∇Bx|2 � |∇By|2
B2

0

, (4.37)

It is interesting to see that there is a factor of 2 difference between the slow diffusion

1{TG1 and the high pressure fast diffusion 1{TG1 . More discussion on this topic is

presented in Sec. IV.
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In the fast diffusion with low pressure (τd{τl � ωL2{32πD    1), the sum in Eq.

(4.35) becomes

8̧

n�1,3

1

n6

1

π4D2
� π2

960D2
, (4.38)

and the resultant 1{TG1 in the low pressure limit is

1

TG1
� γ2L4

120D
p|∇Bx|2 � |∇By|2q. (4.39)

This result is an analogy to the low pressure 1{TG1 derived by Cates et al. for a

spherical cell geometry [29]. For geometries other than sphere and box, one only

needs to recalculate Eq. (4.23) and the corresponding 1{TG1 can be obtained readily

through steps illustrated above. This also applies to the transverse relaxation rate

1{TG2 when other geometries are considered.

Magnetic Field Gradient-induced Resonance Frequency Shift

In Eq. (4.13), the imaginary part of the complex function JB1
x

and JB1
y

gives rise to

the shift of precession frequency δω,

δω � �γ2

2

�|∇Bx|2 � |∇By|2
�
= rJxpωqs , (4.40)

where = r�s means taking the imaginary part. In the slow diffusion limit, substituting

Eq. (4.32) into Eq. (4.40) yields

δω � γDt

B0

p|∇Bx|2 � |∇By|2q. (4.41)

It is interesting to note that, in the slow diffusion limit, the frequency shift increases

linearly as a function of time, different from the t3 dependence in the transverse

relaxation rate. In addition, Eq. (4.41) does not depend on L as expected because
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Figure 4.4: The apparatus for measuring the transverse relaxation of 3He in the
cylindrical measurement cell. 3He in the detachable cell has been polarized by SEOP
before it is transferred to the measurement cell.

the slow diffusion limit is equivalent to the free diffusion, in which spins do not see

boundaries.

In the fast diffusion limit with high pressures, substituting Eq. (4.34) into Eq.

(4.40) and taking the corresponding limit yields

δω � γ2L2

12ω0

p|∇Bx|2 � |∇By|2q (4.42)

In the fast diffusion limit with low pressures, it yields

δω � 17ω0γ
2L8

20160D2
p|∇Bx|2 � |∇By|2q (4.43)

These two results are analogies to the frequency shifts derived in [29] for a spherical

cell.

4.2.3 Experiments and Results

FID measurements have been performed to measure transverse relaxation of polar-

ized 3He gas at 34.5 kHz. The 3He gas is polarized in a 2 inch diameter spherical
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detachable cell via Spin-Exchange Optical Pumping (SEOP) technique. The cell is

routinely filled with 760 torr 3He and 100 torr N2. After 3He is polarized, the detach-

able cell is connected to a measurement cell sitting at the center of the Helmholtz

coils through a 2 mm inner diameter glass tube. The measurement cell is made of

bare pyrex glass in a cylindrical shape with 2 inch for both the diameter and the

length. Three intermediate volumes made of pyrex and a turbo pumping line are

connected to the glass transfer tube between the detachable cell and the measure-

ment cell. The schematics of the experimental apparatus is shown in Figure 4.4.

Before the measurement, polarized 3He atoms are allowed to diffuse into intermedi-

ate volumes first so that the number density of 3He in the detachable cell is diluted.

The intermediate volumes are then isolated and the valve between the detachable cell

and the measurement cell is opened. Consequently, the rest of 3He in the detachable

cell can diffuse freely into the measurement cell. When the pressure in the two cells

reaches equilibrium, the valve is closed and FID measurements are carried out.

A pair of 6 inch diameter pickup coils in Helmholtz coil configuration is used, so

that the coil has a rather uniform sensitivity over the entire cylindrical cell. Each

coil has 2000 turns of 30 AWG wires to maximize the signal. The precession signal

at 34.5 kHz is lock-in detected and the envelop of the signal is extracted. The RF

coil is a pair of saddle coils with a length of 3.5 inch, a diameter of 3 inch and

the opening angle is 120 degrees. Each coil has 10 turns of AWG 22 wires. The

axis of the pickup coil, the RF field direction and the magnetic holding field are

perpendicular to each other. A RF pulse with a tipping angle � 20 degrees is sent

to the measurement cell. A pair of gradient coils in Maxwell coil settings [50] is

also added to provide a uniform field gradient of 2.3 mG/cm in the holding field or

~z direction. The background gradients are measured to be much smaller than this

value and therefore ignored in the calculation shown below.

In Figure (4.5), we show the transverse relaxation measurements of 3He with
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Figure 4.5: (Color online)Transverse relaxation measurements with different diffu-
sion constants. (a) is in the slow diffusion regime and the sinc like shape of the decay
profile is due to the spin defocus, (b) is in the intermediate regime and (c) is in the
fast diffusion regime. Simulation results are shown as dashed lines and compared to
the measured decay envelops.
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pressures of 327 torr, 2.94 torr and 1.59 torr. The corresponding diffusion constants

are 3.5, 388 and 717 cm2/s, respectively (scaled from 1.5 cm2/sec for 760 torr 3He,

which is measured using Carr-Purcell-Meiboom-Gill method [26]). When using the

ratio pL{2q2{4Dt to characterize the diffusion regime, it is clear that 3.5 cm2/s is

in the slow diffusion regime; whereas 717 cm2/s is in the fast diffusion regime and

388 cm2/s is in the intermediate regime close to fast diffusion limit. When diffusion

is slow, the decay of signal is mainly due to the dephasing of the spin precessing

at different frequencies. This can be understood by taking D as zero, so that the

exponential term in Eq. (4.27) is identical to one and a rough estimate of the overall

signal Sall is simply integrating ST over the entire cell,

Sall �
» �L{2

L{2

eipω0�γGx1qdx19eiω0tsincpγGLt
2

q (4.44)

where sinc(x) is defined as sinpxq{x and the first zero of sinc function is at γGLt � 2π.

Using the real values of G and L, one can determine t � 26 ms. This value is the

same as the experimentally measured signal vanishing time t � 26 ms for the case

D=3.5 cm2/s, see Figure (4.5).

When diffusion is fast, spins will more or less precess at the same frequency

(motional averaging) and the diffusion term dedicates the signal decay. As no simple

form of ST can be obtained in the intermediate regime, we numerically calculate

ST pxx1yq using the general form of autocorrelation function, Eq. (4.23). To evaluate

Eq. (4.23), we compute one hundred terms in each of the first three sums and

four hundred terms in the last double sum. We also evaluate xx1y up to 100 terms.

Once ST pxx1yq is known, it is weighted by Bpxx1yq, the sensitivity of the Helmholtz

pickup coil at position xx1y, and then integrated over the entire cylindrical cell to

mimic the measured FID signal. The simulation results, shown as red dashed curves,

are compared with measured decay envelops. The background noise of the FID
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measurement is around 150 arb. units. The simulation curves are shifted up by this

amount to account for the background. Good agreements between measurements

and simulations are found for the intermediate regime and the fast diffusion regime.

One can also use Eq. (4.31) to predict T2 in Figure (4.5c) as it is in the fast diffusion

regime. The prediction yields T2 � 0.0589 s and an exponential fit of the data yields

T2 � 0.0557 s, which is very close to the prediction. However, if Eq. (4.31) is used

to predict T2 in Figure (4.5b), it overestimates T2 by 39% and the profile of the

measured relaxation is somewhere between the sinc and exponential. This shows

that Eq. (4.31) is inadequete to use in the intermediate regime, and one has to use

the non-approximated form of ST pxx1yq to do the calculation.

In the slow diffusion regime, the numerical calculation correctly captures the time

when signal vanishes, and it also exhibits a small bump at 0.04 s, due to the partial

refocus of spin. However, this bump is not observed in the experiment. It is probably

due to the fact that in the simulation, we only take into account the gradient in the

longitudinal direction. In reality, although gradients in other directions are smaller

than the longitudinal one, they still affect the precession frequency of each individual

spin. Consequently, spin refocus is disturbed and the small bump is smeared out.

4.2.4 Discussion

In Sec. III, we numerically calculate ST pxx1yq without any approximation. The time

evolution of integrated ST pxx1yq is compared to the FID signal of polarized 3He gas

and a good agreement is found, especially in the intermediate regime. It is also in-

teresting to see how ST changes as a function of position xx1y when different diffusion

regimes are considered. In Figure 4.6, we show ST as a function of xx1y, which is

also equivalent to a frequency spectrum due to the linear relationship between ω

and xx1y, known as frequency encoding. The two curves shown in Figure 4.6 are

calculated at the time instant t � 0.02 s, with γG � 1000 rad/s�cm, L � 1 cm and

83



Figure 4.6: Frequency spectrum of ST as a function of xx1y {L at t � 0.02 s. The
length L of the cell is 1 cm. The solid line corresponds to D � 1000 cm2/s, which is
in the motional averaging regime, and the dashed line corresponds to D � 1 cm2/s,
which is in the slow diffusion limit.

D � 1 and 1000 cm2/s, respectively. The D � 1 cm2/s case is in the slow diffusion

limit, and two peaks close to the edges are observed. As diffusion is more restricted

at the boundary, the diffusion induced relaxation is suppressed, compared with the

relaxation at the center. In contrast, the D � 1000 cm2/s case is in the fast diffusion

limit and only one peak centered at the mean frequency presents, which means most

of spins precess at the same frequency and relax at the same rate, i.e. Eq. (4.31).

These results show that the approach developed in this manuscript is able to capture

all distinct behaviors of the transverse magnetization in different diffusion regimes.

In Sec. II B, it is shown that the longitudinal relaxation rate 1{TG1 differs by

a factor of 2 between the slow diffusion limit and the fast diffusion high pressure

limit. A possible explanation is that when t is small, i.e. in the slow diffusion limit

(4Dt    pL{2q2), most of the spins do not see walls so spins diffuse freely; when

t gets larger, it gets into the fast diffusion limit (4Dt ¡¡ pL{2q2), where spins see

the wall frequently. As diffusion is more restricted in the fast diffusion limit, the

84



effective diffusion speed is smaller than that in the free diffusion. As a result, the

relaxation rate in the fast diffusion limit is smaller, similar to the explanation of the

edge enhancement effect.

We numerically evaluate <rJxpω0qs as a function of time to reveal how 1{TG1
changes from the slow diffusion limit to the fast diffusion limit (Figure 4.7). Values

of the parameters used in the evaluation are assigned as xx1y � 0, D � 1 cm2/s,

L � 1 cm and ω0 � 1 to 1000 rad/s. In the figure, the quantity ω2
0<rJxpω0qs

is actually plotted for the purpose of comparison. Therefore, in the slow diffu-

sion limit, ω2
0<rJxpω0qs � 2D; whereas, in the fast diffusion high pressure limit,

ω2
0<rJxpω0qs � D. As shown in the figure, when t is small, i.e. in the slow diffusion

limit, the relaxation rate oscillates around 2D. When t becomes larger, the oscillating

amplitude of the relaxation rate decreases and the mean of the oscillation converges

to the fast diffusion results. The final value of the fast diffusion result depends on

the ratio of τd{τl, see Sec. II B. When ω0 � 1000, it is in the high pressure limit and

ω2
0Jxpω0q converges to D, which is 1 cm2/s in our case; and when ω0 � 1 rad/s, it is

in the low pressure limit and ω2
0Jxpω0q � ω2

0L
4{120D � 1{120 cm2/s, see Eq. (4.39).

The characteristic time to distinguish the slow diffusion limit from the fast diffusion

limit is also τc � pL{2q2{4D � 0.0625 s. As τc is usually small in practice, TG1 s mea-

sured by experiments are usually in the fast diffusion limit. Nevertheless, When D

is small enough or alternatively the cell dimension is large enough, the characteristic

time τc can be rather large and it is possible to measure the longitudinal relaxation

rate in the slow diffusion regime.

4.2.5 Conclusions

A new approach based on Redfield theory is developed to calculate magnetic field

gradient-induced longitudinal and transverse relaxations of 3He gas. As an extension

to the method developed by McGregor, the newly developed approach works in all
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Figure 4.7: (Color online)The curve with ω0 � 1000 rad/s is definitely in the high
pressure limit, the normalized relaxation rate evolves into D (D � 1 cm2/sec) as
expected. The inset figure shows the relaxation rate when ω0 � 1 rad/s, which is
in the low pressure limit. It evolves into ω2

0L
4{120D, which is 1/120 cm2/s, when t

becomes large. The other two curves are in the intermediate region.

diffusion regimes, including the intermediate regime. It can also explain the edge

enhancement effect in the slow and intermediate diffusion regime, which shows the

ability to capture all the relaxation related behaviors in one single unified model. It

also has an advantage in terms of numerical simulations, because one only needs to

re-compute the probability density function for new geometries. Since the density

function is easy to obtain, the relaxation rates can be computed readily as described

in this manuscript.

This work is based on the paper of Zheng et al [148].
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5

Search for Spin-Dependent Short-Range Force
Using Optically Polarized 3He Gas

5.1 Introduction

The possible existence of new forces with weak couplings and macroscopic ranges have

been proposed by several authors [90, 68, 9, 76]. A P - and T - violating macroscopic

force with an interaction range from cm to µm first proposed in [97] has the form

V pzq � gsgp~2σ̂ � r̂
8πmn

p 1

rλ
� 1

r2
q expp�r{λq, (5.1)

where gs and gp are the scalar and pseudoscalar coupling constants, ~ is the Plank’s

constant, σ̂ is the spin of the polarized nucleon, r̂ � ~r{r is the unit vector from the

unpolarized nucleon to the polarized nucleon, mn is the nucleon mass, and λ is the

range of the force. This short-range force is mediated by exchanging an axion-like

particle between unpolarized nucleons and polarized nucleons. A similar interac-

tion may also exist between nucleon and electron. Many experimental efforts have

been devoted to search for this interaction between either nucleons or nucleon and

electron, and various techniques have been used, such as sensitive torsion pendula
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[118, 64], clock comparisons between two different polarized species [145, 136, 57],

and measurements of neutron bound states on a flat surface in the gravitational field

[10]. Very recently, measurements of the longitudinal relaxation rate Γ1 and trans-

verse relaxation rate Γ2 of polarized 3He gas were used to search for this short-range

interaction between nucleons [109, 129, 49, 108]. As the relaxation time of polarized

3He can be as long as tens of hours, any new interaction with the polarized 3He nuclei

can lead to a visible change in the relaxation time. These measurements provide to

our knowledge the most stringent direct laboratory constraint on the coupling con-

stant product gsgp for a monopole-dipole interaction between nucleons of the form

in Eq. (5.1) over distances from 10�6 to 10�2 m [108]. Note that this limit is still

more than 9 orders of magnitude larger than the standard Axion coupling originally

proposed to solve the strong CP problem [145, 103].

In this work, we present a new method to search for the spin-dependent macro-

scopic force between nucleons by measuring the frequency difference of optically

polarized 3He gas with and without a nearby unpolarized mass. The frequency dif-

ference due to the magnetic field gradient is a first order effect, as such it is more

sensitive than the relaxation measurement because the gradient-induced relaxation

is a second order effect [130, 29]. We also performed a pilot experiment to demon-

strate how this method works. With a modest stability of the magnetic field, the

sensitivity of this experiment already reaches the current best laboratory limit on

gsgp. With improved stability of the magnetic field, the proposed method could be

used to improve the current best limit by two to three orders of magnitude in the

force range from 10�4 to 10�2 m.

5.2 Experimental Technique

The spin-dependent short-range interaction changes the precession frequency of the

polarized nuclei through the interaction σ̂ � r̂ in Eq. (5.1), which is similar to the
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well-known µ̂ � ~B interaction of a magnetic dipole moment µ̂ in an external magnetic

field ~B. Consider a cylindrical cell containing polarized 3He gas with its polarization

pointing in the z direction along the axis of the cylinder and a block of unpolarized

mass is placed next to the end of the cell. The short-range interaction on each 3He

atom inside the cell can be obtained by integrating Eq. (5.1) over the unpolarized

source mass. In the limit case in which the transverse dimensions (x, y direction) of

the mass are much larger than the force range, the mass can be approximated as an

infinite plane source with its normal pointing in the z direction. In this limit the

frequency shift from the planar mass block is [49]

∆ω � gsgpN~λ
4mn

e�z{λp1� e�d0{λq, (5.2)

where z is the distance measured from the surface of the mass block to the polarized

3He, N is the nucleon number density of the mass, and d0 is the thickness of the

mass block. If the external magnetic field is uniform with a value of B0, then the

spin precession frequency in the presence of the mass has a spatial dependence which

can be written as

ω � ω0 � Ae�z{λ, (5.3)

where A � gsgpN~λ
4mn

p1 � e�d0{λq. As the precession signal received by the pickup coil

is a weighted sum from all the 3He inside the cell, the signal induced in the pickup

coil is

S9
» 8

d

cospω0t� Ae�z{λtqBpzqdz, (5.4)

where d is the window thickness of the cell, Bpzq is the field profile of the pickup

coil along the cell axis, and the reciprocity theorem is applied here to compute the

signal induced in the pickup coil [71]. When A is zero, Eq. (5.4) is a pure sinusoidal

function with a well-defined frequency. When A is nonzero Eq. (5.4) shifts the

mean frequency of the signal. The mean oscillation frequency determined from Nc
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observed periods during a time T is f � Nc{T . In the presence of the interaction for

the same number of periods the time duration changes to T 1 and the new frequency

is f 1 � Nc{T 1. The frequency difference is 1

∆f � Nc

T 1
� Nc

T
� �f∆T

T
, (5.5)

where ∆T � T 1�T . Eq. (5.5) establishes a relation between ∆f and ∆T . ∆T can be

calculated for different strengths gsgp and ranges λ of the spin-dependent interaction

by numerically integrating Eq. (5.4). For any given λ, the parameter A in Eq.

(5.4) is tuned in such a way that the calculated ∆T matches the experimentally

determined frequency shift ∆f . Hence, constraints on gsgp with different values of λ

are established given the sensitivity of the experiment.

In this pilot experiment we used a 7 amg 2 high pressure 3He cell originally

constructed as a 3He gas target for two- and three-body photo-disintegration exper-

iments [144]. The cell had two chambers, a spherically-shaped spin-exchange optical

pumping chamber and a 40 cm long cylindrical target chamber connected by a glass

tube, Figure 5.1. The target chamber had two thin glass windows on its ends. The

thickness of the window was about 250 µm. A Macor machinable ceramic mass

block was used as the unpolarized mass. It was repeatedly brought into contact with

and moved away from the cell window by a G-10 rod connected to a stepper motor.

The stepper motor moved the mass to a final position with better than 10 micron

repeatability, more than an order of magnitude smaller than the cell window thick-

ness. Two identical pickup coils were mounted right below each window. Pickup

coil A was used to measure the frequency of the polarized 3He nuclei influenced by

the mass; pickup coil B was used to monitor the magnetic holding field. The 40 cm

1 When S/N becomes the limiting factor of the measurement (not the case in the present work),
phase difference or frequency spectrum may provide a better measurement of the frequency shift
than the peak counting method.

2 1 amg is the number density of 1 atm gas molecules at 0 oC.
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long 3He cell was positioned at the center of a Helmholtz coil pair. Due to fairly

large gradients at the end of the cylindrical chamber, two identical two-axis gradient

coil pairs (dashed line in Figure 5.1) were added at both ends to compensate the

gradients from the Helmholtz coils and background fields. The measured transverse

relaxation time T2 of the 3He signal is greater than 1 s with this arrangement.

Figure 5.1: The diagram of the test experiment apparatus (not to scale). The
cylindrical cell axis is the z direction. The cell contains 7 amg 3He gas and is
optically pumped in the pumping chamber to about 40% polarization. The coils in
the dashed lines are gradient coils to actively compensate the gradients from the
Helmholtz coil and other background fields.

Free induction decay (FID) at 24 kHz was performed to measure the 3He pre-

cession signal. The RF pulse with small tipping angle was applied to make the

polarization loss negligible. The precession signal is digitized and recorded by the

computer. In order to determine the frequency unambiguously, the acquisition time

stopped at the instant when the signal-to-noise ratio is either below 10 or at 0.2 s,

whichever comes first. The frequency is computed by counting the periods during the
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acquisition time. In a 7 amg 3He gas cell, the diffusion constant is about 0.27 cm2/s

[123], and it is known that the effective diffusion rate is lowered at the cell boundary

[133]. Therefore effects from the diffusion of the 3He can be ignored during the FID

measurement and it is valid to use Eq. (5.4) to analyze the experimental data. Each

measurement cycle contains two measurements: first with the mass in contact with

the window (in position) and next with the mass moved far away from the window

(out position). Simultaneous measurements at pickup coil B were performed to mon-

itor the magnetic field fluctuations. The peak to peak variation of the field is about

5� 10�3%. Removing the field fluctuations measured by coil B reduced the peak to

peak variation of the field to 4 � 10�4%. After the field correction, the frequency

difference between the “in” and “out” positions is calculated as ∆f � fin � fout.

The magnetic susceptibility of the mass can change the field at the location of the

3He through its effect on the holding field and therefore lead to a systematic effect.

Although the magnetic susceptibility of Macor ceramic is known to be small enough

not to cause a systematic error in this test experiment, the real material can in princi-

ple contain paramagnetic or even ferromagnetic impurities. Paramagnetic impurities

would increase the local field strength (and therefore the 3He precession frequency)

independent of field direction. The spin-dependent interaction can increase or de-

crease the precession frequency depending on the magnetic holding field direction.

We therefore can isolate a possible spin-dependent interaction from paramagnetic

effects by flipping the magnetic field. However, a frozen-in field from possible ferro-

magnetic impurities has the same magnetic field dependence as the spin-dependent

interaction, which makes it difficult to separate them apart. The most likely fer-

romagnetic contamination of the mass block comes from machining process, during

which ferromagnetic tools are usually used to cut the material. To minimize this

effect, cutting tools with diamond tips are used to ensure that there is no physical

contact between the metallic part of the tools and the surface of the block. Addi-
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tionally, we also flip spin direction in order to cancel any spin-dependent systematic

effect in the system if there is any. Therefore, we took data in four different configu-

rations for B field and spin directions, ∆f��, ∆f��, ∆f��, and ∆f��, representing

B/S: ++, B/S: -+, B/S: –, and B/S: +-, respectively. If ∆fB represents the field-

dependent frequency shift, ∆fS represents spin-dependent frequency shift, and ∆f0

represents frequency shift without B or S dependence, then

∆f�� � �∆fB �∆fS �∆f0 (5.6)

∆f�� � �∆fB �∆fS �∆f0 (5.7)

∆f�� � �∆fB �∆fS �∆f0 (5.8)

∆f�� � �∆fB �∆fS �∆f0. (5.9)

In this notation, the short-range force induced ∆fB can be expressed as

∆fB � 1

4
p∆f�� �∆f�� �∆f�� �∆f��q. (5.10)

The uncertainty of ∆fB is given by

1

4

b
σ2
�� � σ2

�� � σ2
�� � σ2

��, (5.11)

where σ��, σ��, σ��, and σ�� are the uncertainties of ∆f��, ∆f��, ∆f��, and

∆f��, respectively. The noise in the measurement is mainly due to the magnetic

field fluctuation, which limits the uncertainties of the frequency measurements.

We performed 100 measurement cycles for each of the four configurations to

determine the average frequency difference between the two mass positions. The

frequency differences from the spin-dependent force for these runs are shown in Figure

5.2. The average frequency difference of 100 measurements was ∆fB � �0.003�0.005

Hz, consistent with zero.

Eq. (5.10) is then used to calculate the frequency difference from the spin-

dependent short-range force to place an upper limit on gsgp as a function of λ.
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Figure 5.2: The frequency difference correlated with the position of the ceramic
mass block. The error bars show the standard deviation of the magnetic holding
field after correction by coil B.

For f � 24 kHz and ∆f � 0.005 Hz, Eq. (5.5) yields ∆T � �2.1 � 10�7T s. With

a fixed frequency shift, ∆T should increase linearly with respect to the acquisition

time T . Theoretically, ∆T is obtained by comparing Eq. (5.4) with a sinusoidal

function in absence of the force. With a real pick-coil profile, Eq. (5.4) is obtained

by numerical integration, using the actual geometry of the experiment. The resultant

∆T as a function of T is shown in Figure 5.3 (the upper black curve). Surprisingly,

∆T increases linearly only for a short period of time. As time elapses, ∆T oscillates

around a constant value, indicating that the frequency shift due to this exponential

type of force is not fixed and diminishes at large T . This striking behavior suggests

that one will not gain more information from longer measurement time though the

frequency resolution is improved by doing so.

An closed-form solution of Eq. (5.4) can be obtained if one approximates the

real profile of Bpzq by a rectangular function with a cut-off position w mimicking
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the width of the profile. In this case, the upper limit of the integral is replaced by

w, and the integration yields

Sptq � λrcospω0tqpCipAe� d
λ tq � CipAe�w

λ tqq

� sinpω0tqpSipAe� d
λ tq � SipAe�w

λ tqqs, (5.12)

where Cipxq is Cosine Integral and defined as Cipxq � � ³8
x

cos t
t
dt; Sipxq is Sine

Integral and defined as Sipxq � ³x
0

sin t
t
dt [3]. One can use Eq. (5.12) to calculate the

∆T in Eq. (5.5). To the first order, ∆T can be expressed as

∆T � � SipAe� d
λT q � SipAe�w

λ T q
CipAe� d

λT q � CipAe�w
λ T q

. (5.13)

Using the value of d � 250 µm and w � 5.825 cm, Eq. (5.13) is plotted in Figure 5.3

(the lower red curve). It is surprising to find that ∆T does not increase linearly with

respect to T all the way up. At certain point, ∆T becomes more or less a constant,

which means the phase difference due to the short-range force stop accumulating after

certain time. A longer measurement time will not increase the phase difference due

to the short-range force. This behavior is the result of the inhomogeneous broadening

due to the varying distance between the 3He spin and the mass.

This simple approximation yields a satisfactory result in terms of the time at

which the linear relationship breaks down (The exact solution is plotted as a black

curve in Figure 5.3). In our experiment, the maximum measurement time is less

than 0.2 s to guarantee that the FID measurement is in the linear region, so that

the frequency comparison is valid even the measurement time for each configuration

is slightly different.

5.3 Experimental Results

By choosing different values of λ, the constraints on the coupling constants gsgp are

found and plotted as a solid line in Figure 5.4. The 250 µm window thickness of the
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Figure 5.3: The upper curve shows the |∆T | as a function of T , using the real field
profile of the pickup coil. The lower curve shows the same curve but with the pickup
coil profile approximated by a rectangular function. The inset of the figure shows
the linear behavior of |∆T | at small T .

double chamber glass cell allows us to constrain interactions ranges λ down to 10�4

m. The dominant source of the uncertainty in our experiment came from magnetic

field fluctuations. The gradient compensation coils, needed to achieve an uniform

field in our apparatus, added uncorrelated magnetic field noise to the holding field

as the gradient coils were powered by independent power supplies.

5.4 Future Outlooks

There are many avenues for the improvement of the measurement sensitivity using

this technique. One can use a dedicated 3He cell with a shorter length and add mag-

netic shielding instead of gradient coils to improve the field uniformity and stability.

In [38], the authors conducted a precision frequency measurement using polarized

gases in an apparatus with three layers of cylindrical µ metal shielding for field uni-
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Figure 5.4: Constraints on the coupling constant product gsgp of the spin-
dependent force as a function of the range λ and the equivalent mass of the axion-like
particle mediating the short-range interaction. The dashed line is the result from
[145], the dash-dotted line is the re-analysis of the T2 measurements of [55] by [108],
the solid line is the analysis of our present experiment, and the dotted line is a pro-
jected sensitivity achievable using our method based on the stability of the magnetic
field demonstrated in [38]. The dark gray is the excluded region and the light gray
is the region that could be excluded with the improved field stability.

formity and a co-magnetometer technique to reduce the magnetic field noise by 3 to

4 orders of magnitude. They achieved a precision of 10�6 Hz out of 1000 Hz, two

orders of magnitude better than our pilot experiment. In Figure 5.4 we show the

limits on gsgp (dotted line) which could be achieved with this technique using the

sensitivity demonstrated in [38] assuming all other geometric parameters (window

thickness, pickup coil size, etc.) are unchanged. As shown in Fig 5.4, this projected

sensitivity would represent a significant improvement in the λ region of 10�2 to 10�4
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m, compared with the best existing laboratory limit derived by the authors of [108],

shown as the dotted-dashed line, based on the results of a T2 measurement from [55].

The sensitivity of the experiment below λ � 10�4 m is clearly limited as the

thickness of the window becomes much larger than the force range. The 7 amg 3He

cell has an internal pressure of more than 10 atm at 200 oC and the 250 µm window

thickness is needed for strength. However, the high pressure is not necessary for

this experiment. A 1 amg 3He cell with reduced window thickness could be used

to improve the sensitivity of the measurement, especially in the λ   10�4 m range.

Another order of magnitude improvement on the sensitivity could be achieved if

denser material was used as the unpolarized mass, such as pure copper or tungsten.

We conclude that our proposed method shows a promising sensitivity, with at least

one to two orders of magnitude improvement over the current best limit possible in a

dedicated experiment with better magnetic field stability. A even higher sensitivity

could be achieved if a thinner wall for the 3He cell and denser material is used.

This chapter is mainly based on the the work of Zheng et al [147].
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6

Conclusion and Future Outlook

The newly proposed nEDM experiment at Oak Ridge National Lab can improve

the sensitivity of the neutron EDM by two orders of magnitude. It utilizes the po-

larized 3He as a co-magnetometer to suppress the magnetic field fluctuation. The

spin-dependent reaction between polarized 3He and neutron is also used to obtain

the precession frequency of the neutron. To reach the proposed sensitivity, it requires

that the polarization of 3He in the measurement cell should be at least 95%. This

requires a very careful design of the apparatus and magnet so that the polarization

of 3He is maintained throughout the entire injection process. My Monte-Carlo sim-

ulation suggests that a 95% polarization of 3He is possible to achieve as long as the

transport field is well designed.

In addition to the polarization issue, the nEDM experiment also faces the chal-

lenge of measuring small 3He signals due to low number density 5 � 1014 atoms/cc.

The SQUID test setup was built to demonstrate the feasibility of measuring the small

3He precession signal with SQUID in the nEDM experiment. Our test result shows

that a signal to noise ratio of at least 10 could be achieved under the real nEDM

experimental conditions.
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During the SQUID test, I discovered a pressure dependence in the 3He wall re-

laxation. This pressure dependence was observed at both low temperature and room

temperature. After a dedicated study, I ascribe this pressure dependence to the

diffusion process of the gaseous 3He. A model was also proposed to quantitatively

describe this behavior, which agrees with the experimental data very well.

I also developed an approach to calculate the magnetic field gradient-induced T1

and T2 relaxations of 3He. This new approach yields a general solution which is

capable of giving correct solutions in different diffusion regimes. All these studies

are important to the nEDM experiment as well as to the polarized 3He community

because T1 and T2 are two of the most important parameters of polarized 3He. The

proposed measurement time of the nEDM experiment crucially depends on the values

of T1 and T2, which plays an important role in determining the sensitivity of the

nEDM experiment.

We use the high pressure 3He cell to search for the short-range spin-dependent

force. Thanks to the extremely thin window of the cell (250 µm) as well as the

experimental procedures to cancel out the systematic effect, the sensitivity in our

current setup is already in line with the current best limit. With further improvement

on the apparatus, we are able to increase the sensitivity by two orders of magnitude

over the current best limit.

The future work on the short-range force experiment involves manufacturing a

new 3He cell, a new liquid mass moving system, and installing a magnetic shielding.

The smaller 3He cell can improve the correlation between two measurement channels

so that the field compensation scheme works better. The new cell can be filled with

less 3He gas so that the window thickness can be reduced further. The liquid mass

instead of solid can maximize the interaction by minimizing the distance between

the polarized 3He and the mass. The magnetic field shielding can improve the field

uniformity and stability. This increases the coherent measurement time, which helps
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determine the precession frequency more accurately.

Currently, there is a debate on how to interpret the pressure dependence observed

in the 3He paramagnetic wall relaxation. More experimental work and theoretical

calculation are needed to clear up the confusion and end the debate.
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Appendix A

Spin Exchange Optical Pumping

We polarize 3He nuclei through spin-exchange optical pumping (SEOP). Firstly, the

Rubidium vapor is polarized by optical pumping. Then, the polarized Rb transfer

its polarization to 3He nuclei by spin-exchange. Rubidium atom has one unpaired

valence electron in its 5s shell. This electron can be excited to the 5P1{2 state from

its ground state 5S1{2, also known as D1 transition, by a photon. The wavelength of

the photon is tuned to 794.8 nm, which is the energy gap between this 5S1{2 Ñ 5P1{2

transition [43, 21]. Following the selection rule ∆m � �1, only the electrons in

5S1{2,mS � �1{2 state can jump into the 5P1{2,mS � 1{2 state if the photon is

circularly polarized in the positive direction. Once the electron is in the excited

state 5P1{2,ms � 1{2, some of the electrons can jump to the 5P1{2,mS � �1{2 state

due to collisions between Rb atoms. This process is also known as collisional mixing.

Then, electrons in these two excited states will spontaneously decay back to the two

ground states 5S1{2,mS � 1{2 and 5S1{2,mS � �1{2, see Figure A.1. Because of

the collision, the excited electron decays back to the two ground states with equal

probabilities. By optically pumping the Rb continuously, the net effect is that the
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electrons in the 5S1{2,mS � �1{2 state are pumped to the 5S1{2,mS � 1{2 state, and

the polarization of Rb is close to 100%. The spontaneous decay also emits photons.

These emitting photons are also polarized but in the opposite direction and can

therefore depolarized the already polarized Rb atoms. To avoid this, Nitrogen gas

is introduced to absorb the emitting photons, so that the angular momentum of the

emitting photon is transfered to the neutron as rotational and vibrational energies.

This technique is also known as non-radiative quenching [5].

Figure A.1: Optical pumping of the valence electron in Rb atom.

The Rb can also transfer the spin of its electron to the nucleus of 3He by binary

collisions. During the collision, the spin is exchanged because of the hyperfine inter-

action between the 3He nuclues and the electron in the Rb. Since Rb is polarized by

the optical pumping, the polarization of the Rb will be transferred to the polarization

of 3He. When reaching an equilibrium, 3He polarization is expressed as

P3He � PRb
γSE

γSE � Γ
, (A.1)

where PRb is the polarization of Rb electron which is usually 1. γSE is the spin

exchange rate between Rb and 3He, and Γ is the total 3He spin destruction rate.
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The spin exchange rate is about 3% for every binary collision between Rb and 3He

and it usually takes about 12 hours for the spherical detachable cells used in Chapter

4 to reach maximum polarization. A variation to the Rb-3He spin-exchange is the

Rb-K-3He spin-exchange. The Pottasium (K) atoms are introduced because the spin-

exchange rate between K and 3He is much bigger than the spin exchange rate between

Rb and 3He [144]. Therefore, by transfering the polarization from Rb to K and then

from K to 3He, a higher polarization of 3He as well as a shorter pumping time can be

achieved. For example, the pumping time in our high pressure 3He cells (7 amagat

3He) is reduced by roughly 50%. This cell has been used in the spin-dependent force

experiment in Chapter 5.

In practice, the 3He cell was filled with Rb/K metal. As the SEOP only takes

place with Rb/K vapor, the cell is heated up to 190 �C or above using hot air flow

to vaporize the Rb/K. The pressure of 3He inside the cell usually ranges from 1 atm

to 8 atm because spin exchange is efficient only at high pressures. The amount of N2

added to the system is typically around 0.1 atm or one order of magnitude less than

the 3He density. The polarization of the 3He in our lab can routinely reach more

than 60%.
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Appendix B

Simplification of the Position Autocorrelation
Function in the Slow Diffusion Limit

In the slow diffusion limit, 4Dt    pL{2q2, Eq. (4.23) is simplified by expanding all

exponential terms in terms of t, t0 and τ to the first order. Trigonometric functions,

such as sinpnπxx1y
L

q, can be expanded in terms of xx1y
L

to the first order. The first term

of Eq. (4.23) becomes

8L2

π4

8̧

n�1,3

1

n4
p1� n2π2Dτ

L2
q � L2

12
�Dτ. (B.1)

The second term xx1y2 is unchanged, and the third term becomes

4 xx1yL
π2

8̧

n�1,3

1

n2
sinpnπ

2
qnπ xx

1y
L

p1� n2π2Dt

L2
q

� 4 xx1y2

π

8̧

n�1,3

sinpnπ
2
q

n
�Op1{Lq � xx1y2

. (B.2)

The fourth term is the same as the third term, which is also xx1y2; and the last
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term becomes

16L2

π4

8̧

n�1,3

8̧

k�2,4

k2 � n2

n2pk2 � n2q2 cospkπ
2
q

� p1� n2π2Dτ

L2
� k2π2Dt0

L2
� k2π2 xx1y2

2L2
q. (B.3)

The first term in the bracket of Eq. (B.3) is evaluated to converge to �L2{12. The

evaluation of the second term yields Dτ . The third term and fourth term are the

same, except for different prefactors. They are evaluated to be 2Dt0 and xx1y2,

respectively. Collecting all these terms together, the autocorrelation function of x

becomes

pxpt� τq � xx1yqpxptq � xx1yq

� L2

12
�Dτlooomooon

1st term

�xx1y2loomoon
2nd term

�xx1y2 � xx1y2looooooomooooooon
3rd and 4th term

�L
2

12
�Dτ � 2Dt0 � xx1y2

loooooooooooooooomoooooooooooooooon
5th term

�Op1{Lq �Opt2q

� 2Dpt� τq. (B.4)

An alternative way to obtain Eq. (B.4) is to solve the diffusion equation in free

space as slow diffusion is equivalent to free diffusion. In this case, the conditional

probability function ρpx, t|x0, t0q is known to be

ρpx, t|x0, t0q � 1?
4πDτ

e�
px�x0q

2

4Dτ . (B.5)

In the free diffusion, the diffusion equation as well as the autocorrelation is transla-

tional invariant. Therefore, pxpt� τq � xx1yqpxptq � xx1yq � xpt� τqxptq and

xpt� τqxptq �
» 8

�8

dx0
x0e

�
x20

4Dt0?
4πDt0

» 8

�8

xe�
px�x0q

2

4Dτ?
4πDτ

dx � 2Dpt� τq, (B.6)

which is exactly the same as Eq. (B.4).
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Appendix C

Reply to the Comment By Saam et al on Pressure
Dependence of Wall Relaxation in Polarized 3He

Gaseous Cells

The comment by Saam et al [122] proposed an alternative way to specify the bound-

ary condition to describe the surface paramagnetic relaxation. In their formula, the

macroscopic magnetic flux due to the diffusion at the wall is set equal to the number

of collisions per second times the depolarization probability µ,

D
Bρpr, tq
Br |r�R � �v

4
µρpr, tq. (C.1)

Using this boundary condition, the paramagnetic wall relaxation becomes pres-

sure dependent only when the surface is sufficiently dirty so that 3He spins are

completely depolarized once they hit the wall. Based on their derivation, they argue

that the pressure dependence observed in the room temperature T1 measurement in

[149] can be solely ascribed to the o-ring valve used in the Rb-coated cells. As the

valve has a very large depolarization probability, the depolarization of 3He spins at

other parts of the cell can be ignored. Based on this assumption, i.e. µ � 1 on the
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valve, and using the geometry of the Rb-coated cell, they use a simplified formula in

[73] to estimate T1 � 1.2 h at D � 12 cm2/s, close to the measured value which is 2

h.

Their boundary condition is correct because it used the Fick’s law to relate the

macroscopic diffusion with the microscopic flux of the particles with average velocity

v̄. To further verify the interpretation using their boundary condition, we carry out a

finite element analysis (FEA) to calculate T1 at different pressures to check whether

their boundary condition and assumption can describe the experimental result. In

this study, we use the exact geometry of the Rb-coated cell in [149] and assume that

the depolarization only happens on the valve. Using the boundary condition Eq.

(C.1) proposed by Saam et al, we calculated T1 with 4 different values of vµ{4 from

1�10�3 m/s to 3�10�1 m/s. Since the mean velocity of 3He at room temperature is

about 1500 m/s, this corresponds to the depolarization probability µ from 2.7�10�6

to 8�10�4. The FEA calculations and the experimental data are shown in Fig. C.1.

Contrary to the claim of the comment by Saam et al, the calculation using their

boundary condition shows a linear pressure dependence at high pressure regardless of

the magnitude of the depolarization probability. When pressure is low, T1 with small

depolarization probabilities tends to be a constant independent of the pressure. This

is completely opposite to the observation in the experiment, where the linear pressure

dependence is observed at low pressures. With a larger depolarization probability on

the valve, the linear pressure dependence tends to extend more to the low pressure

region. However, the predicted T1 in this case will be too small, compared to the

experimental values.

In reality, it can be more complicated than the assumption that the depolariza-

tion takes place only at the valve. For example, it is possible to have some magnetic

impurities or a small area with very dirty surface in the capillary tube, which de-
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Figure C.1: The simulation uses the actual geometry of the Rb-coated cell and
assume that the depolarization only takes place at the valve. Four simulations with
different depolarization probabilities are plotted. None of them shows the behavior
observed in the experiment.

polarizes the gas. However, no matter what actually causes the depolarization in

the experiment, the relationship between T1 and the pressure demonstrated in the

FEA calculation should always hold, i.e. the T1 is more or less a constant at low

pressure and the linear pressure dependence is only evident at high pressures. This

is inconsistent with the experimental observation and needs to be resolved.

Regarding to the low temperature data, the comment by Saam et al also carried

out a FEA study with the assumption that the depolarization takes place in the

tube which has surface impurities. However, it is unreasonable to assume that the

tube has a much worse surface than the cell does since the tube and cell are actually

one complete glass piece and cleaning procedures were equally applied to both of

them. Therefore, the assumption that the depolarization is completely due to the

impurities on the surface of the tube is highly unlikely. Even it is indeed the magnetic

109



impurities in the tube that depolarize the 3He gas, it still cannot explain why the

pressure dependence is also observed after the cell and tube are coated with Cs, since

their boundary condition would predict no pressure dependence when the surface is

clean.

Another controversy between [149] and the comment by Saam et al is the expla-

nation of the flattening behavior at high pressures for the Rb-coated cells. In [149],

this behavior is explained by the ferromagnetic relaxation, whereas in the comment

by Saam et al, it is taken for granted that the wall relaxation with clean surface will

not exhibit any pressure dependence. To investigate this problem, we have measured

a third Rb-coated cell at room temperature. This cell has the same geometry and

was produced in the same batch with the other two Rb-coated cells, following the

same procedures. The only difference concerning the third cell is that it was acci-

dentally exposed to air for a very short period of time (  1 s) and the T1 of this

cell was reduced because of this exposure. Other than this, this cell is similar to the

other cells, including no previous exposures to high magnetic fields.

When T1 measurement is performed on this cell at low pressures, it shows a

pressure dependence similar to the pressure dependence observed in [149]. At high

pressures, in contrast, an inverse pressure dependence is observed, see Fig. C.2. Since

the inverse pressure dependence is unique to the ferromagnetic relaxation, this can be

surely explained by the ferromagnetic wall relaxations. This supports the argument

in the original paper that the flattening behavior at the high pressure is due to the

ferromagnetic relaxation even though none of the cells has been magnetized before.

Therefore, we may conclude that the absence of exposure to high fields does not

guarantee the non-existence of the ferromagnetic relaxation. It only means that the

ferromagnetic relaxation is weak and negligible at low pressures, and it can become

increasingly evident at higher pressures.

Other possible candidates from the comment by Saam et al, such as inhomoge-
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Figure C.2: A third Rb-coated cell. This cell has shorter T1 in general. T1 increases
with increasing pressure at low pressure region, and peaks around 0.4 atm. Beyond
0.4 atm, an inverse linear pressure dependence is observed. The red curve in the
figure is the fit using Eq. 2 in [149].

neous ac field, to explain the linear pressure dependence, can be safely ruled out.

To reach the relaxation rate measured in the experiment, the magnitude of this ac

field needs to be so strong that the SQUID sensor cannot survive in this environment

[30]. It is true that the pressure dependence of the paramagnetic wall relaxation has

neither been reported nor systematically studied before. The sealed cells can yield

very long T1 with either low pressures or high pressures. However, it is difficult to

be quantitative to compare one sealed cell with another at different pressures, since

different cells definitely have different surface conditions. The re-fillable cells used

in our study, instead, provide an excellent way to evaluate the relationship between

the wall relaxation and pressure, and the similar T1 has always been observed no

matter how many time the cell is re-filled. The linear pressure dependence has also

been consistently observed in our measurements with different geometries and ex-
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perimental conditions. We admit that the coefficient α used in Eq. (5) in [149] is

not the depolarization probability, but rather a coefficient characterizing the surface

condition which implicitly depends on the depolarization probability. The boundary

condition proposed by Saam et al should be the correct one to use.

On the other hand, we observed a strong linear pressure dependence of the para-

magnetic wall relaxation using the re-fillable cells at both room temperature and 4.2

K. Similar pressure dependence was also observed in references [31, 91, 32]. How-

ever, they either attribute the pressure dependence to the pressure dependence of the

depolarization probability [31] or just presented the result without any explanation

[91, 32]. Using the boundary condition proposed by Saam et al, we did a FEA simu-

lation of our room temperature experiment. The simulation does not agree with the

room temperature data in terms of the overall behavior of the T1-pressure relation-

ship. Their boundary condition cannot describe the low temperature data either,

unless some unrealistic assumptions were made.

All these evidences point to the fact that a gap exists between the theory and the

experimental observation. Though the boundary condition proposed by Saam et al is

correct, it still cannot describe the experimental data. Therefore, the observed pres-

sure dependent T1 remains an open question, and some unknown issues need to be

identified in order to solve the discrepancy. All in all, this linear pressure dependence

is interesting and apparently nontrivial. It is worthy of further investigation.
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