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Abstract. We review the current methods and results of lattice simulations of quantum chromodynamics at
nonzero temperatures and densities. The review is intended to introduce the subject to interested nonspe-
cialists and beginners. It includes a brief overview of lattice gauge theory, a discussion of the determination
of the crossover temperature, the QCD phase diagram at zero and nonzero densities, the equation of state,
some in-medium properties of hadrons including charmonium, and some plasma transport coefficients.
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1 Introduction

Quantum chromodynamics is the well-established theory
of interacting quarks and gluons. Although its Lagrangian
is simple and elegant, except for high-energy processes
where perturbation theory is applicable, it is very difficult
to solve. Over the past three decades ab initio numerical
and computational methods have been devised for obtain-
ing nonperturbative solutions. They have become refined
to the point that a few dozen calculated quantities (decay
constants, mass splittings, etc.) agree with known experi-
mental values to a precision of a couple percent [1]. These
successes provide the opportunity to push the calculations
with some confidence into new regimes that have not been
thoroughly explored experimentally. In this review we will
be interested in numerical simulations of strongly interact-
ing matter under the extreme conditions of high temper-
atures and/or high baryon number densities.

Shortly after the big bang the Universe was very likely
dominated by a high-temperature plasma of quarks, anti-
quarks, and gluons. As the Universe expanded and cooled,
hadrons emerged that make up today’s Universe. Know-
ing the characteristics of the plasma and the nature of the
transition to hadrons is clearly important for understand-
ing these stages in the development of the Universe. In the
cores of some dense stars it is conceivable that the baryon
number density is sufficiently high that hadrons lose their
identities and merge into a plasma of quarks and gluons.
The equation of state of such a dense plasma, for exam-
ple, is important for understanding conditions leading to
a collapse to a black hole. In heavy-ion collisions at RHIC,
FAIR, and soon at the LHC we seek to produce a quark-
gluon plasma and study its properties. Since so little is
known about the plasma, we turn to numerical simula-
tion of high-temperature and moderate-density QCD to
predict its properties and to guide the experimental in-
vestigation. Apart from the phenomenological interest in
such simulations, there is also intrinsic theoretical interest
in understanding the behavior of confining field theories
under extreme conditions. In particular, there are tanta-
lizing predictions of still new states of matter at very high
densities [2]. Lattice QCD thermodynamics is understand-
ably a popular and vigorous field of research.

Certainly, present-day lattice simulations cannot an-
swer all of our questions. The current standard methodol-
ogy assumes thermal equilibrium. Moreover, simulations
at nonzero densities are still in their infancy, so much of
what we know is restricted to zero or very small baryon
number densities. To apply lattice results to the phe-
nomenology of heavy-ion collisions requires an interme-
diate model, such as hydrodynamics, which takes input
from lattice simulations, adds model assumptions, and
makes predictions about the rapidly evolving, emerging
matter. For this purpose the most important quantities
obtained from lattice simulations are the phase diagram
as a function of temperature and baryon number density,
the equation of state, speed of sound, and transport prop-
erties, such as the viscosities and thermal conductivity.

In this review, intended for nonspecialists and begin-
ners, we give a brief overview of the lattice methodol-

ogy and discuss a variety of numerical results. We discuss
challenges and potential sources of systematic error. In
sect. 2 we give a brief introduction to lattice gauge theory
and discuss the advantages and disadvantages of various
fermion formulations. We discuss a variety of observables
used to determine the transition temperature Tc in sect. 3
and comment on some disparate results. In sect. 4 we re-
view our current understanding of the phase diagram at
zero baryon density, and in sect. 5 we do the same for
nonzero baryon number densities. We discuss the vari-
ety of methods in current use for simulating at nonzero
densities. We review the equation of state in sect. 6. In
sect. 7 we discuss some properties of hadrons in the high-
temperature medium, and in sect. 8 some results for trans-
port coefficients. Finally, in sect. 9 we summarize briefly
the current state of the field, list outstanding problems,
and list some prospects for resolving them.

2 Thermodynamics in lattice gauge theory

2.1 Quantum partition function

Quantum thermodynamics at a fixed, large volume is
based on the partition function in the quantum canoni-
cal ensemble

Z = Tr[exp(−H/T )], (1)

where H is the quantum Hamiltonian operator, T is the
temperature, and the trace is taken over the physical
Hilbert space. At nonzero densities the grand canonical
ensemble is appropriate:

Z = Tr

[
exp

(
−H/T +

∑
i

μiNi/T

)]
, (2)

where μi is the chemical potential for the i-th species and
Ni is the corresponding conserved flavor number. For ex-
ample, in QCD we may introduce a separate chemical po-
tential for each quark flavor. Zero chemical potential for
a given flavor implies equal numbers of quarks and anti-
quarks of that flavor, so zero baryon number density, zero
strangeness, etc.

The expectation value of an observable O at tempera-
ture T is computed with respect to this ensemble through

〈O〉 = Tr

[
O exp

(
−H/T +

∑
i

μiNi/T

)]/
Z. (3)

2.2 Feynman path integral partition function

The Feynman path integral formalism provides a practical
basis for the computation of thermodynamic quantities,
especially in quantum field theory, where there are many
degrees of freedom. It converts the trace over quantum
states into a multidimensional integration over classical
variables [3]. It is beyond the scope of this review to give
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a detailed derivation of the path integral formulation, par-
ticularly for a gauge theory with fermion fields. There are
standard references [4–6].

The classical variables in the Feynman path integral
are the path “histories” of the fundamental fields in Eu-
clidean (imaginary) time τ . (Imaginary, because the Boltz-
mann weight factor exp(−H/T ) is, in effect, a time evo-
lution operator exp(−iHt) for an imaginary time −i/T .)
For computational purposes the histories are discretized
in τ . The quantum fields at any given time are also dis-
cretized in three-dimensional coordinate space x. The re-
sulting path integral is then a multidimensional integral
over variables defined on a four-dimensional space-time
lattice (x = x, τ). The discretization of space and time
introduces an error, but the error vanishes as the lattice
spacing is taken to zero (continuum limit).

2.3 Scalar field example

For a concrete example, consider a scalar field theory de-
scribed by the Lagrange density

L(φ) =
1
2

∑
μ

[
∂

dxμ
φ(x)

]2

+ V [φ(x)], (4)

where V describes the mass and self-interaction. On a hy-
percubic lattice with point separation a and a central-
difference discretization of the derivatives, we can write a
lattice approximation

L[φ(x)] =
1

8a2

∑
μ

[φ(x + aμ̂) − φ(x − aμ̂)]2 + V [φ(x)].

(5)
where μ̂ is a unit coordinate vector in the μ direction.
A Euclidean time history is then specified simply by giv-
ing the values of the field φ(x, τ) on all the lattice points
(x, τ). Each such history corresponds to a classical Eu-
clidean action S(φ), which is computed by summing its
Lagrange density over the lattice points

S(φ) =
∑
x,τ

L[φ(x, τ)]. (6)

The partition function then becomes a multidimen-
sional integral over the values of the field φ(x, τ) at each
point, weighted by the exponential of the classical Eu-
clidean action:

Z =
∫ ∏

x,τ

dφ(x, τ) exp[−S(φ)]. (7)

Two important conditions on the Euclidean time his-
tory are inherited from the definition (eq. (1)) of the parti-
tion function: First, the time history τ ranges over a finite
interval from 0 to a(Nτ − 1) where

1/T = aNτ , (8)

which establishes the relation between the temperature
and the Euclidean time extent of the lattice. Second, to

reproduce the trace over quantum states, the bosonic field
φ must be periodic under τ → τ + aNτ .

Similarly, the expectation value of an operator O(φ),
which depends on the field φ, is given by

〈O〉 =
∫ ∏

x,τ

dφ(x, τ)O(φ) exp[−S(φ)]/Z, (9)

where we replace the field operator φ with its classical
value when we insert O(φ) in the integrand.

2.4 QCD on the lattice

For a renormalizable, asymptotically free theory, such as
QCD, the lattice formulation takes on a larger significance
than just a convenient computational device. The lattice
regulates ultraviolet divergences. The lattice constant a
provides an upper bound or “cutoff” scale π/a for mo-
menta. From this point of view the lattice formulation of
the theory is every bit as respectable as other regulariza-
tion schemes. Of course, as usual, we define the theory
in the limit in which the cutoff is removed, i.e., a → 0.
Before this is done all quantities we calculate have cutoff
errors that vanish in the continuum limit.

With the lattice regulator we apply the usual renor-
malization process: we select a few experimental values
and use them to fix the bare parameters of the theory
(quark masses and gauge coupling). In this way the bare
parameters depend on the cutoff (lattice spacing), but the
physical predictions should approach a cutoff-independent
value in the limit of zero lattice spacing. In principle all
regularization schemes should agree in the limit that their
cutoffs are taken away.

For QCD the fields are fermions and gluons. The
groundwork for the lattice formulation of QCD with
fermions was laid down by Wilson [7] in 1974, although
there was other seminal work on lattice theories with local
gauge invariance by Wegner [8], Smit, and Polyakov [9]. To
preserve gauge invariance, gluon variables are introduced
as SU(3) matrices on the links between nearest neigh-
bors of the lattice. There are four forward links per site,
corresponding to the four components of the color vector
potential Ac

μ(x). The matrix for the link joining the site
x with the site x + aμ̂ is then

Uμ(x) = exp[igaAc
μ(x)λc/2], (10)

where λc are the Gell-Mann generators of SU(3).
For the pure Yang-Mills theory of gluons a simple lat-

tice form of the classical action is constructed from the
plaquettes UP,μν(x), i.e., the product of the link matrices
surrounding the unit square in the forward μν direction
at site x. The single-plaquette Wilson action is simply the
sum over all such plaquettes:

SG(U) =
∑
x,μ,ν

β

6
ReTr[1 − UP,μν(x)], (11)

The gauge coupling αs = g2/4π appears in the coefficient

β = 6/g2. (12)
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In the continuum limit the plaquette reduces to the famil-
iar square of the field strength tensor summed over eight
colors c:

ReTr[1 − UP,μν(x)] → g2a4

4

∑
c

(F c
μν)2 + O(a6). (13)

In fact any closed planar loop, normalized by the area in
lattice units, has the same continuum limit, but with a
different O(a6) cutoff error. For example a 2 × 1 rectan-
gular version of the plaquette could also be used. If the
two components are combined with the proper choice of
coefficients, one can construct an improved gluon action
that eliminates the leading cutoff correction, leaving errors
at the next order O(a8). Relative to the leading contin-
uum contribution, which carries the volume factor a4, such
actions are called “tree level O(a2)” improved. Further
improvements can even eliminate quantum cutoff correc-
tions of the type O(a2αs). The “tadpole Lüscher-Weisz”
actions [10,11] are in this category. Improving actions in
this way is desirable, since it brings a calculation closer to
the continuum limit at a given lattice spacing [12].

The quark fields ψ(x), one for each flavor, have values
on each lattice site. Since they are fermions, they require
special treatment in the functional integration: their clas-
sical values are anticommuting Grassmann numbers. The
fermion contribution to the action for each flavor can be
written generally as

SF (U,ψ) =
∑
x,y

ψ̄(x)M(U, x, y)ψ(y), (14)

where M(U, x, y) is the Dirac matrix —essentially a lat-
tice rendering of the familiar Dirac operator D/ + m. The
functional integral for the partition function then becomes

Z =
∫

[dU ][dψ][dψ̄] exp[−SG(U) − SF (U,ψ)]. (15)

Since the dependence on the quark fields is simply bilinear,
and computing numerically with anticommuting numbers
is nontrivial, it is standard to integrate out the quark fields
immediately, following the rules of Grassmann integration,
leaving only an integration over the gauge fields, weighted
by the determinant of the Dirac matrix:

Z =
∫

[dU ] exp[−SG(U)] det[M(U)]. (16)

There are many ways to formulate a lattice fermion ac-
tion, each with its advantages and disadvantages. A great
deal of effort over the past couple of decades has been de-
voted to improving the lattice treatment of fermions. We
sketch the formulations here. For more detail, see [4–6].

2.4.1 Wilson fermions

The original Wilson rendering of the Dirac operator
Dνγν + m starts from a simple central-difference approx-
imation to the derivative:

∇νψ(x) =
1
2a

[Uν(x)ψ(x + ν̂a) − U†
ν (x − ν̂a)ψ(x − ν̂a)],

(17)

where the link matrices Uν(x) provide the gauge covari-
ance. The action constructed from this operator is

SF,naive =
∑
x,ν

ψ̄(x)(∇νγν + m)ψ(x). (18)

It describes sixteen degenerate particles where only one is
desired. Wilson remedied this undesirable “fermion dou-
bling” problem by adding an irrelevant term to the action

SF,W = SF,naive −
ar

2

∑
x,ν

ψ̄(x)Δνψ(x), (19)

where r is usually set to 1 and Δνψ(x) is the covariant
Laplacian,

Δνψ(x)=
1
a2

[Uν(x)ψ(x+ν̂a)+U†
ν (x−ν̂a)ψ(x−ν̂a)−2ψ(x)].

(20)
The added term gives fifteen of the doublers masses of
order of the cutoff scale 1/a, leaving only one light state.
The unwanted doublers thus become inaccessibly heavy in
the continuum limit.

It is customary to rearrange the terms in the Wilson
action and multiply the field ψ(x) by a constant to give

SF,W = ψ̄(x)ψ(x)+κ
∑
x,ν

ψ̄(x) [(1+γν)Uν(x)ψ(x + ν̂a)

+(1 − γν)U†
ν (x − ν̂a)ψ(x − ν̂a)

]
, (21)

where the “hopping parameter” κ = 1/(8+2ma) controls
the quark mass. Improvements to the Wilson formalism
include removing tree level O(a) errors by introducing a
“clover” term in the action [13] and, for two flavors, intro-
ducing a “twisted mass” [14,15].

For thermodynamics applications the chief drawback
of Wilson fermions has been 1) an explicit breaking of
chiral symmetry at nonzero lattice spacing, 2) a difficulty
reaching low quark masses, and 3) a relatively poor repre-
sentation of the quark dispersion relation. None of these
difficulties is insurmountable. Chiral symmetry is restored
in the continuum limit.

It is necessary to search for the value κ = κc where
the pion mass vanishes. Since this value depends on the
inverse gauge coupling β, one gets a curve κc(β) in the
bare parameter κ-β space as shown in fig. 1. Lines of con-
stant pion mass form a family of such curves (not shown)
with the pion mass increasing as κ decreases. Also shown
is a high-temperature crossover line κt(β). Its location de-
pends on Nτ . Where it intersects the κc line, we expect a
true chiral phase transition. Pushing to stronger coupling
(smaller β) or negative quark masses (higher κ) from there
takes us into the realm of lattice artifacts: the theory has
a parity-broken phase at unphysical values of the bare pa-
rameters, as indicated.

2.4.2 Staggered fermions

The staggered fermion approach starts from the naive ac-
tion in eq. (18). Through a field transformation, the Dirac
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Fig. 1. The bare parameter phase diagram for two flavors of
clover-improved Wilson fermions and an improved gauge action
for zero and nonzero temperatures, illustrating the mapping
necessary for thermodynamics studies with Wilson fermions.
In this plot the hopping parameter κ is denoted by K. The line
of chiral critical hopping parameters κc(T = 0) was determined
from the vanishing of the pion mass. The line κt indicates the
high-temperature crossover at Nτ = 4. It was determined from
the Polyakov line (see sect. 3.1). The region “chiral phase tran-
sition” shows where the thermal crossover happens for small
pion masses. The parity-broken phases come from lattice ar-
tifacts of Wilson fermions. The data are from the CP-PACS
Collaboration [16], as shown in [17].

matrices can be diagonalized exactly giving four identi-
cal actions, each of them with one spin per site. If we
keep only one of the actions, we reduce the lattice fermion
degrees of freedom by a factor of four, which still leaves
us with four fermion doublers. These residual degrees of
freedom are called “tastes.” Without further intervention,
they would overcount the sea quark effects by a factor of
four. To get approximately the correct counting, we re-
place the fermion determinant by its fourth root for each
of the desired flavors:

Zstagg =
∫

[dU ] exp[−SG(U)]
∏

i

det[Mi(U)]1/4. (22)

In the continuum limit at nonzero quark masses, the eigen-
values of the determinant cluster in increasingly tighter
quartets as expected from fermion doubling [18]. Then
we have an SU(4) taste symmetry, so taking the fourth
root is equivalent to using only one of them as a sea quark
species. This procedure has generated considerable contro-
versy. Although there is no rigorous proof that the method
is valid, all indications so far are that the approximation
is under control as long as we take the continuum limit
before we take the quark masses to zero or fit data to a
chiral model with taste symmetry breaking properly in-
cluded [19], in which case the limits are completely under
control.

At nonzero lattice spacing the taste symmetry is
broken, which introduces lattice artifacts. For example,

Fig. 2. Plot showing that the lattice artifact taste splitting
of pion masses vanishes as α2

sa
2 in the continuum limit. The

splitting is measured as the difference of the squared masses of
the multiplet member and the Goldstone pion member. It is
given in units of r1 ≈ 0.318 fm. The plot symbols distinguish
the members of the multiplet. (The subscripts in the legend
denote the Dirac-gamma-matrix-style classification of the pion
tastes, ranging from singlet (s) and γ0 to γ0γ5.) The line is
drawn with unit log-log slope to test proportionality to α2

sa
2.

mesons composed of a valence quark and antiquark come
in nondegenerate taste multiplets of sixteen tastes. In the
continuum limit they are degenerate.

The asqtad [20–28] and p4fat3 [29,30] improvements
of the staggered fermion formalism eliminate errors of
O(a2) in the quark dispersion relation and suppress taste
splitting significantly. The asqtad suppression is some-
what better, presumably because it eliminates all tree level
O(a2) errors. The recently proposed HISQ action does
still better [31]. In fig. 2 we compare the predicted and
measured scaling of the splitting in the asqtad pion taste
multiplet.

Taste splitting can also be reduced simply by replacing
the gauge-link matrices in the action by smoothed gauge
links —for example the Dublin “stout links” [32]. Un-
like the asqtad approach, this method does not eliminate
O(a2) errors systematically. Thus the free quark disper-
sion relation is still unimproved.

Is taste symmetry breaking really a problem for ther-
modynamics? It is believed to be most dramatic for the
pion and less noticeable for more massive states [33]. One
could argue that close to the crossover temperature and
away from the critical point, so many excited states par-
ticipate, as in the hadron resonance gas model, that pi-
ons do not matter much. But if we approach the critical
point at fixed lattice spacing, taste splitting is likely to
have a strong effect on the critical behavior: we may even
get a chiral-symmetry restoring transition in the wrong
universality class. And certainly at quite low temperatures
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where pions dominate the statistical ensemble, taste split-
ting makes a difference.

Taste symmetry breaking also complicates the defini-
tion of the “physical” quark mass in a thermodynamics
simulation. At zero temperature it is traditional to adjust
the up and down quark masses so that the Goldstone pion
(the lightest one in the taste multiplet) has the physical
pion mass. This is legitimate, because we may restrict our
attention to Green’s functions whose external legs are the
Goldstone pion. In a thermodynamics simulation, how-
ever, all members of the taste multiplet participate in the
thermal ensemble. Thus it is more appropriate to tune
the average multiplet mass, e.g., the rms pion mass to the
physical pion mass. At a nonzero lattice spacing, the mul-
tiplet splitting may be so large, that goal is unreachable.
In that case the physical point is reached only by reducing
the lattice spacing together with the light quark mass. It
is simply incorrect to claim a thermodynamics calculation
is done at a physical pion mass when the rms mass is still
much higher.

2.4.3 Domain-wall fermions

Neither the Wilson fermion formulation, including the
clover-improved and twisted-mass version, nor the stag-
gered fermion formulation are entirely satisfactory dis-
cretizations of fermions. Wilson fermions explicitly break
chiral symmetry and its recovery requires a fine tuning.
Staggered fermions, while preserving a remnant of chiral
symmetry, have a remaining doubling problem, requiring
the fourth-root trick, which is still somewhat controversial.

A more sophisticated, somewhat indirect and more
costly discretization of fermions goes under the name of
“domain-wall fermions” and was developed by Kaplan [34]
and by Furman and Shamir [35]. Furman and Shamir’s
construction has become standard. An additional, fifth
dimension of length Ls is introduced and one considers
5d Wilson fermions with no gauge links in the fifth di-
rection, and the 4d gauge links independent of the fifth
coordinate, s,

SDW =
Ls−1∑
s=0

∑
x

ψ̄(x, s)

{∑
μ

(
γμ∇μ − 1

2
Δμ

)
ψ(x, s)

−Mψ(x, s)−P−ψ(x, s + 1)−P+ψ(x, s−1)

}
, (23)

where P± = 1
2 (1±γ5) are chiral projectors and we have set

r = a = 1. The parameter M , often referred to as domain-
wall height, is introduced here with a sign opposite that
of the usual mass term for Wilson fermions (eq. (19)). It
needs to be chosen in the interval 0 < M < 2. For free
fermions the optimal choice is M = 1, while in the inter-
acting case M should be somewhat larger. The fermion
fields satisfy the boundary condition in the fifth direction,

P−ψ(x,Ls) = −mfP−ψ(x, 0),
P+ψ(x,−1) = −mfP+ψ(x,Ls − 1) , (24)

where mf is a bare quark mass.

1 2 Ls/2 Ls... ...

mf

q(L) q(R)

J5(q)

Fig. 3. Sketch, courtesy of Taku Izubuchi, of the domain-wall
fermion setup. Left- and right-handed modes are exponentially
bound to the left and right domain walls. The residual mass
mres is determined from an axial Ward identity applied in the
center slice.

The domain-wall fermion action, eq. (23), has 5d chiral
zero modes Ψ bound exponentially to the boundaries at
s = 0 and s = Ls − 1, which are identified with the chiral
modes of 4d fermions as

qR(x) = P+ψ(x,Ls − 1), qL(x) = P−ψ(x, 0),

q̄R(x) = ψ̄(x,Ls − 1)P− , q̄L(x) = ψ̄(x, 0)P+ . (25)

The left- and right-handed modes qL and qR do not inter-
act for mf = 0 when Ls → ∞ and the domain-wall action
has a chiral symmetry. At finite Ls the chiral symmetry is
slightly broken. A popular measure of the chiral symmetry
breaking is called “residual mass”, mres. It is determined
from the axial Ward identity applied at the midpoint be-
tween the two domain walls, as sketched in fig. 3. This
residual mass was expected to fall off exponentially in Ls.
But, due to lattice artifacts of Wilson fermions with large
negative mass, there is a contribution to mres that de-
creases only like 1/Ls [36,37]. An example from a recent
dynamical domain-wall fermion simulation [38] is shown in
fig. 4. Nevertheless, often Ls = O(10–20) is large enough
to keep the chiral symmetry breaking negligibly small, es-
pecially at smaller lattice spacing (weaker coupling).

Domain-wall fermions, therefore, solve, or at least
substantially alleviate, explicit chiral symmetry breaking
without a doubling problem. The price is a computational
cost roughly a factor of Ls larger than that for Wilson-
type fermions.

Early, Nτ = 4 nonzero-temperature domain-wall
fermion simulations suffered from large residual mass,
since the lattice spacing in the transition/crossover region
is large, leading to much heavier quarks than desired [39].
More recent simulations with Nτ = 8, still using Ls = 32
and even 96 are described in [40]. Even for the Ls = 32
simulations with Nt = 8 the residual mass is uncomfort-
ably large in the transition region, and getting worse at
lower temperatures, corresponding to smaller β as shown
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Fig. 5. Residual mass mres for the recent nonzero-temperature
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corresponding to lower temperatures, mres increases rapidly,
and is larger than the input light quark mass already in the
transition region.

in fig. 5, since one would like mres to be small compared
with the input light quark masses.

2.4.4 Overlap fermions

Related to the domain-wall fermions of the previous sub-
section are the so-called overlap fermions developed by
Narayanan and Neuberger [41,42]. They retain a com-
plete chiral symmetry without the doubling problem, al-
beit again at substantial additional computational cost.

The overlap Dirac operator for massless fermions can
be written as [42],

aDov = M [1 + γ5ε (γ5DW (−M))] , (26)

where DW (−M) is the usual Wilson-Dirac operator with
negative mass m = −M . As with domain-wall fermions

0 < M < 2 should be used. For a Hermitian matrix X,
ε(X) is the matrix sign function, that can be defined as

ε(X) =
X√
X2

. (27)

Using the fact that ε2(X) = 1 it is easy to see that the
Neuberger-Dirac operator satisfies the so-called Ginsparg-
Wilson relation [43],

{γ5,Dov} = aDovγ5RDov , (28)

with R = 1/M . Equivalently, when the inverse of Dov is
well defined, it satisfies{

γ5,D
−1
ov

}
= aγ5R . (29)

Chiral symmetry, in the continuum, implies that the mass-
less fermion propagator anticommutes with γ5. As seen
above, the massless overlap propagator violates this only
by a local term that vanishes in the continuum limit. Ac-
cording to Ginsparg and Wilson this is the mildest vio-
lation of the continuum chiral symmetry on the lattice
possible. Lüscher [44] has shown that any Dirac operator
satisfying the Ginsparg-Wilson (G-W) relation (28) has a
modified chiral symmetry at finite lattice spacing,

δψ = iεγ5

(
1 − a

2M
D
)

ψ , δψ̄ = iεψ̄
(
1 − a

2M
D
)

γ5 .

(30)
or

δψ = iεγ5

(
1 − a

M
D
)

ψ = iεγ̂5ψ , δψ̄ = iεψ̄γ5 , (31)

with γ̂5 = γ5(1 − a
M D) satisfying γ̂†

5 = γ̂5 and, using the
G-W relation, eq. (28), γ̂2

5 = 1.
So far only one exploratory study, on a 63×4 lattice, of

nonzero-temperature overlap fermions has been done [45].
The main difficulty and computational cost for overlap
fermions comes from the numerical implementation of the
matrix sign function, eq. (27).

2.5 Cutoff effects

In selecting a fermion formalism for a thermodynamics
study, it is important to be aware of possible lattice arti-
facts (cutoff effects). There are two important categories
of artifacts. One comes from an imperfect rendering of chi-
ral symmetry. The other, from the free quark dispersion
relation.

It is obviously important to get the chiral symmetry
right if we are simulating close to a chiral phase transi-
tion. Each action has its problems with chiral symmetry.
For staggered fermions the taste splitting interferes. For
Wilson fermions, the chiral symmetry is explicitly broken
at nonzero lattice spacing. For these actions the obvious
remedy is to reduce the lattice spacing. For domain-wall
fermions, chiral symmetry is broken to the extent the fifth
dimension is not infinite, and, for overlap fermions, chiral
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Table 1. Continuum limit scaling behavior of free massless
quarks in various lattice formulations, based on an expan-
sion (eq. (32)) of the pressure in powers of 1/N2

τ from [46].
Shown are ratios of the expansion coefficients to the ideal,
leading Stefan-Boltzmann coefficient. A small ratio indicates
good scaling.

Action A2/A0 A4/A0 A6/A0

Standard staggered 248/147 635/147 3796/189

Naik 0 −1143/980 −365/77

p4 0 −1143/980 73/2079

Standard Wilson 248/147 635/147 13351/8316

Hypercube −0.242381 0.114366 −0.0436614

Overlap/ 248/147 635/147 3796/189

domain wall

symmetry is broken to the extent the matrix sign function
is only approximated in numerical simulations. For the lat-
ter two chiral actions, this type of error can be reduced
without also reducing the lattice spacing.

At high temperatures where quarks are effectively de-
confined, it would seem important to have a good quark
dispersion relation, so, for example, we get an accurate
value for the energy density and pressure. This artifact can
be studied analytically for free fermions. Recently, Hegde
et al. [46] looked at deviations from the expected free-
fermion Stefan-Boltzmann relation for the pressure p as
a function of 1/N2

τ (equivalently a2) and chemical poten-
tial μ/T :

p

T 4
=

∞∑
k=0

A2kP2k(μ/πT )
(

π

Nτ

)2k

, (32)

where P2k(μ/πT ) is a polynomial normalized so that
P2k(0) = 1. The leading term A0 is the Stefan-Boltzmann
term. The ratios of higher coefficients A2k/A0 measure the
strength of the cutoff effects. These terms determine the
ability of the action to approximate the continuum free
fermion dispersion relation, and they are useful in com-
paring actions to the extent free quarks are relevant in an
interacting plasma. Table 1 reproduces their results for a
variety of actions. We see that the hypercube action [47]
has pleasingly small coefficients. The Naik (asqtad) and
p4 (p4fat3) actions remove the second-order term as de-
signed, but the p4 action is better at sixth order. The stan-
dard (unimproved) staggered action (regardless of gauge-
link smearing) does as poorly as does the standard (and
clover-improved) Wilson actions. The overlap and domain-
wall actions constructed from the standard Wilson ker-
nel unfortunately inherit its poor behavior. Improving the
kernel fermion action would help to reduce these cutoff
effects.

3 Determining the transition temperature

We want to know the temperature of the transition from
confined hadronic matter to a quark-gluon plasma for two
obvious reasons: to interpret experimental data and to un-
derstand QCD as a field theory. If the transition is only a
crossover, a likely possibility for QCD at the physical value
of the quark masses as discussed below, and a true phase
transition occurs only at unphysical values of the quark
masses, then these two purposes diverge. A crossover tem-
perature is imprecise, so its meaning could vary with the
observable, but one can at least speak of a range of temper-
atures over which phenomenologically interesting changes
take place, or one could choose one observable to identify a
temperature. A true phase transition has a precise temper-
ature defined by the singularity of the partition function,
and all observables capable of producing a signal should
agree about the temperature.

In this section we discuss a variety of observables com-
monly used to detect the transition. In the following sec-
tions we discuss what we have learned from them about
the phase structure of QCD.

Two observables are traditionally used to determine
the temperature of the transition: the Polyakov loop and
the chiral condensate. The Polyakov loop is a natural in-
dicator of deconfinement. The chiral condensate is an in-
dicator of chiral symmetry restoration.

3.1 Polyakov loop and the free energy of color
screening

The Polyakov loop is an order parameter for a high-
temperature, deconfining phase transition in QCD in the
limit of infinite quark masses. At finite quark masses it
is no longer an order parameter, but it is still used to lo-
cate the transition. It is built from the product of timelike
gauge-link matrices. It is the expectation value of the color
trace of that product:

L(x, a, T ) =

〈
Tr

Nτ−1∏
τ=0

U0(x, τ)

〉
. (33)

This quantity is gauge invariant because the combined
boundary conditions for gluon and fermion fields require
that gauge transformations be periodic under t → t +
Nτ . Translational invariance insures that it is independent
of x. It can be shown that the Polyakov loop measures
the change in the free energy of the ensemble under the
introduction of a static quark (excluding its mass).

L(a, T ) = exp[−FL(a, T )/T ]. (34)

In that sense the Polyakov loop is a useful phenomeno-
logical quantity as we now explain. When a static quark
is introduced it must be screened so that the ensemble
remains a color singlet. At low temperatures, screening is
achieved by binding to it the lightest antiquark, forming



C.E. DeTar and U.M. Heller: QCD thermodynamics from the lattice 413

a static-light meson. The free energy cost then consists
of the self-energy of the static charge, the binding en-
ergy, and the self-energy of the light quark. In the quark
plasma, color neutrality is achieved through a collective
shift of the plasma charges, as in Debye screening in an
ordinary electrical plasma. Aside from the self-energy of
the static quark, which is the same at all temperatures, the
additional free energy cost is small. So we expect Fq(a, T )
to decrease abruptly in the transition from the confining
regime to the plasma regime.

The static-quark self-energy diverges as 1/a in the
limit of small lattice spacing, so it is convenient to re-
move it from the definitions of the free energy and the
Polyakov loop:

FL(a, T ) = Fstatic(a) + Fq(T ),

Lrenorm(T ) = exp[−Fq(T )/T ].
(35)

Figure 6 illustrates the free energy from a recent lattice
simulation. (Here and elsewhere, the temperature scale is
given in MeV and in units of the Sommer parameter [48],
r0 ≈ 0.467 fm. The latter is defined in terms of the po-
tential V (r) between a heavy quark and antiquark. It is
the distance where r2dV (r)/dr = 1.65.) The renormalized
free energy behaves as expected.

If we take the masses of all the quarks to infinity, we
arrive at the pure SU(3) Yang-Mills ensemble, which has a
first-order deconfining phase transition with zero L(a, T )
at low temperatures and nonzero at high temperatures.
The free energy is correspondingly infinite for T < Tc and
finite above. In this limit the Polyakov loop is a true order
parameter for the transition.
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Fig. 6. Renormalized screening free energy of a static quark
(from the renormalized Polyakov loop) vs. temperature in MeV
units (bottom scale) and r0 units (top scale) for Nτ = 6 and 8
from a HotQCD study comparing p4fat3 and asqtad staggered
fermion formulations [49–51]. Measurements are taken along
a line of constant physics with mud = 0.1ms. The vertical
bands here and in HotQCD figures below indicate a tempera-
ture range 185–195 MeV and serve to facilitate comparison.

Fig. 7. Chiral condensate vs. temperature in MeV units (r0

scale) for Nτ = 8 from [52] using the asqtad fermion formula-
tion. Measurements were taken along lines of constant physics
with a range of light, degenerate up- and down-quark masses
mud specified in the legend as a fraction of the strange quark
mass ms. An extrapolation to zero quark mass is also shown.

3.2 Chiral condensate

3.2.1 Chiral symmetry restoration

The second traditional observable is the chiral condensate.
It is the order parameter for a high-temperature, chiral-
symmetry restoring phase transition at zero up- and down-
quark masses. At nonzero quark masses, it is no longer an
order parameter, but, like the Polyakov loop, it is used as
an indicator of the transition. It is defined for each quark
flavor i as the derivative of the thermodynamic potential
ln Z with respect to the quark mass,

〈
ψ̄i(x)ψi(x)

〉
=

T

V

∂ ln Z

∂mi
=

T

V

〈
Tr M−1

i

〉
, (36)

or the expectation value of the trace of the inverse of the
fermion matrix. When the u- and d-quark masses both
vanish, QCD has a U(1) × SU(2) × SU(2) chiral symme-
try, which is spontaneously broken at low temperatures to
U(1)×SU(2), i.e., the familiar baryon number and isospin
symmetries. At high temperatures the full chiral symme-
try is restored. The chiral condensate 〈ψ̄ψ〉 is the order
parameter of the broken symmetry. It is nonzero at low
temperatures and zero at high temperatures. With only
two flavors, the phase transition is expected to be second
order, so the chiral condensate is continuous at the tran-
sition. When the quark masses are small, but nonzero, as
they are in nature, the symmetry is explicitly broken and
the chiral condensate does not vanish at high tempera-
tures, but it is small.

Figure 7 illustrates the behavior of the chiral conden-
sate from a recent lattice simulation with two light quark
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flavors and one massive strange quark. Measurements were
taken along “lines of constant physics”, i.e., curves in the
space of the bare parameters (gauge coupling and quark
masses) along which the pion and kaon masses are approx-
imately constant, whether or not they have their correct
experimental values. The extrapolation to zero light quark
mass appears to be consistent with the expected behavior
of this chiral order parameter.

3.2.2 Chiral multiplets

The restoration of chiral symmetry leads to symmetry
multiplets in the hadronic spectrum. At low temperatures,
where the symmetry is spontaneously broken, the spec-
trum consists of the familiar hadrons. At high temper-
atures, where the symmetry is restored, they may have
analogs as resonant plasma excitations, at least not too
far above the crossover temperature. They also control
screening in the plasma in analogy with the Yukawa in-
teraction. (See sect. 7.2.)

When the light quarks are massless, spontaneous sym-
metry breaking requires that the pion be massless. If the
symmetry is restored at high temperatures, the pion, suit-
ably defined as a state, acquires a mass. Of course, in na-
ture, the light quarks are not massless, so the symmetry
is only approximate, and the pion has a small mass at low
temperatures.

Another consequence of restoring the chiral symmetry
with massless u and d quarks is that all hadronic states
involving those quarks would fall into larger symmetry
multiplets. Thus, for example, the three pions become de-
generate with the f0, the three a0’s become degenerate
with the η, and nucleons become degenerate with parity
partner nucleons.

The classical QCD Lagrangian suggests a further U(1)
chiral symmetry, which would conserve a flavor-singlet ax-
ial charge. This symmetry is broken at the quantum level.
This quantum phenomenon is called the Adler-Bell-Jackiw
axial anomaly [53]. Whether the strength of the anomaly
decreases in conjunction with the high-temperature tran-
sition is an open question.

If the anomaly also vanishes, the eight meson states
listed above fall into a single degenerate supermultiplet.
Again, if the light quarks are not precisely massless or the
anomaly does not completely vanish, these statements are
only approximate.

Whether or not hadron-like resonances are observ-
able in experiments, the multiplets appear, nonetheless,
in calculations, most notably in simulations of hadronic
screening.

3.2.3 Singularities of the chiral condensate

Although we require a numerical simulation to determine
the chiral condensate, from general considerations we can
predict some of its singularities at small quark mass m

and small lattice spacing a:〈
ψ̄ψ(a,m, T )

〉
∼⎧⎨

⎩
c1/2(a, T )

√
m + c1m/a2 + reg., T < Tc,

c1m/a2 + cδm
1/δ + reg., T = Tc,

c1m/a2 + reg., T > Tc.
(37)

Knowing the behavior of the condensate, and in particular
its singularities, is important for locating the phase tran-
sition. The m/a2 singularity is easily derived in perturba-
tion theory from a one-quark-loop diagram. The

√
m sin-

gularity at low temperatures arises in chiral perturbation
theory at one-loop order. In this case the pion makes the
loop. It is an infrared singularity caused by the vanishing
of the pion mass at zero quark mass [54]. Thus it appears
only in the confined phase where the pion is massless. If
we take T → 0 before m → 0 the square root singularity is
replaced by the usual chiral log(m). The term m1/δ is the
expected critical behavior at the transition temperature.
(For the expected 3d O(4) universality class, δ = 0.56.)
The RBC-Bielefeld group discusses evidence for the ex-
pected mass dependence [54].

In a calculation with three quarks with masses mu =
md = m� and ms, it is convenient for comparing results
of different calculations to eliminate the ultraviolet diver-
gence by taking a linear combination of the light quark
and strange quark chiral condensates

D�,s(T ) = 〈ψ̄ψ〉|� −
m�

ms
〈ψψ〉|s,

Δ�,s(T ) = D�,s(T )/D�,s(T = 0). (38)

The ratio Δ�,s of the high-temperature and zero-
temperature value also eliminates a common scalar-
density renormalization factor ZS . This is the quantity
plotted in fig. 8 from a recent simulation. It shows the
expected dramatic fall-off at the crossover.

3.3 Other observables

Susceptibilities are often used as indicators of a phase
transition. They measure fluctuations in the related ob-
servables. Since a transition or crossover is usually accom-
panied by fluctuations in an order parameter, the related
susceptibilities tend to peak there.

3.3.1 Quark number susceptibility

In the low-temperature phase, fluctuations in quark num-
ber are suppressed by confinement for the same reason
that the free energy of screening of a static quark is large
there. At high temperatures, fluctuations are common.
There can also be cross correlations. The relevant observ-
able for a quark of flavor i is the expectation 〈N2

i /V 〉
for spatial volume V and total quark number Ni. This is
the quark number susceptibility. It controls event-by-event
fluctuations in the associated flavor in heavy-ion collisions.
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Fig. 8. To give an indication of its variation with lattice spac-
ing, we plot the chiral condensate difference ratio vs. temper-
ature in MeV units (bottom scale) and r0 units (top scale)
for Nτ = 6 and 8 from a HotQCD study. Results are given
for both the p4fat3 and asqtad staggered fermion formula-
tions [51]. Measurements are taken along a line of constant
physics with mud = 0.1ms.

For flavors i and j the generalized susceptibility (including
cross correlations) is

χij = 〈NiNj/V 〉 =
T

V

∂2 ln Z

∂μi∂μj
. (39)

We discuss the Taylor expansion of this observable in μi

in sect. 6.5.
Figure 9 illustrates the behavior of the strange quark

number susceptibility χss. It shows an abrupt rise at the
crossover. Because it has a relatively high signal to noise
ratio, this quantity is often used to define the crossover
temperature.

We can transform the generalized quark number sus-
ceptibility χij from the flavor basis to the basis in which
the isospin I, hypercharge Y , and baryon number B are
diagonal. The resulting quantities are shown in fig. 10. The
diagonal susceptibilities all show the expected abrupt rise
at the crossover temperature. The offdiagonal susceptibil-
ity χY,B shows a small nonzero value above the crossover.
The positive correlation between hypercharge and baryon
number at these temperatures can either be understood in
terms of fluctuations in light quark degrees of freedom or
in terms of persistent three-quark baryon states: light up
and down quarks have positive baryon number (1/3) and
hypercharge (1/3) and their antiquarks have the opposite
values. In both cases their fluctuations lead to a positive
correlation. Strange quarks have positive baryon number
(1/3) but negative hypercharge (−2/3). They would lead
to a negative correlation, but because of their higher mass,
they are less prevalent. So we are left with a net positive
correlation. At higher temperatures the mass difference is
irrelevant and the correlations cancel. Similar arguments
can be made for three-quark baryonic states, where non-
strange baryons are more prevalent than strange baryons.
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Fig. 9. Strange quark number susceptibility divided by the
square of the temperature vs. temperature in MeV units (bot-
tom scale) and r0 units (top scale) for Nτ = 6 and 8. Mea-
surements are taken along a line of constant physics with
mud = 0.1ms. Results are from a HotQCD study comparing
p4fat3 and asqtad staggered fermion formulations [51].

Fig. 10. Chiral susceptibility matrix in the I, Y , B basis. di-
vided by the square of the temperature vs. temperature in units
of the crossover temperature Tc for Nτ = 6. Measurements
are taken along a line of constant physics with mud = 0.2ms

from [52].

In fig. 11 we show a computation of baryon (χq) and
isospin (χI) quark number susceptibilities from a recent
computation with two flavors of clover-improved Wilson
fermions on 163 × 4 lattices [55], using a different normal-
ization from that of fig. 10. The cutoff effects for this Wil-
son fermion simulation are seen to be significantly larger
than with improved staggered fermions, as expected from
table 1.
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Fig. 11. Quark number susceptibilities with Wilson fermions
on Nτ = 4 lattices along a line of constant physics with pseu-
doscalar to vector meson mass ratio mPS/mV = 0.8 from [55].

3.3.2 Chiral susceptibility

The various chiral susceptibilities are based on the second
derivative of the thermodynamic potential with respect to
the quark masses

χij =
T

V

∂2 ln Z

∂mi∂mj
. (40)

For two equal-mass light quarks u and d, the derivatives
can be converted to expectation values of products of the
inverse of the fermion Dirac matrix M for those species.
The commonly reported susceptibilities are the “discon-
nected” chiral susceptibility

χdisc =
T

V

[〈
(Tr M−1)2

〉
−
〈
Tr M−1

〉2]
, (41)

the connected chiral susceptibility

χconn =
T

V

〈
Tr M−2

〉
, (42)

the isosinglet susceptibility

χsing = χconn + 2χdisc, (43)

and the isotriplet susceptibility

χtrip = 2χconn. (44)

Figure 12 gives an example of the peak in the discon-
nected chiral susceptibility at the crossover.

Since the chiral susceptibility is the derivative of the
chiral condensate with respect to quark mass, one can
immediately derive its singularities from the expressions
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Fig. 12. Upper panel: disconnected light quark susceptibil-
ity vs. temperature in MeV (r0) units (bottom scale). Lower
panel: closeup of the peak region. Lines merely connect the
points. Red circles and downward-pointing triangles, asqtad
fermions. Blue squares and upward-pointing triangles, p4fat3.
Squares and circles are along a line of constant physics with
mud = 0.1ms, and triangles, with mud = 0.05ms. All results
are HotQCD preliminary [49,56,50].

for the condensate in eq. (37):

χsing(a,m, T ) ∼⎧⎨
⎩

c1/2(a, T )/(2
√

m) + c1/a2 + reg., T < Tc,

c1/a2 + (cδ/δ)m1/δ−1 + reg., T = Tc,

c1/a2 + reg., T > Tc.

(45)

The RBC-Bielefeld group discusses numerical evidence
for the expected mass dependence [54]. Trends in fig. 12
are consistent with these expectations. In the limit of
zero quark mass, this quantity is infinite below the tran-
sition and finite above. In the continuum limit it has
a temperature-independent ultraviolet divergence. Thus
the Budapest/Wuppertal group proposes subtracting the
zero-temperature value, multiplying by the square of the
bare quark mass, and dividing by the fourth power of the
temperature [32]:

m2Δχdisc(a,m, T )/T 4. (46)
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Fig. 13. Left panel: renormalized chiral susceptibility vs. temperature (fK scale) from [57]. Right panel: interaction measure
vs. temperature (r0 scale) from [51]. (See the definition of this quantity in sect. 6.2.) Note that the interaction measure peaks
at about 20 MeV above the crossover.

where Δχdisc(a,m, T ) = χ(a,m, T ) − χ(a,m, 0). The
m2 cancels the scalar-density renormalization factor. Of
course, this quantity vanishes in the zero-mass limit.

3.4 Setting the temperature scale

In order to quote dimensionful lattice results in physical
units, it is necessary to determine the lattice spacing in
physical units. The calibration must be based on a quan-
tity that is reliably determined in zero-temperature lattice
simulations. Recent favorites are the splitting of Υ levels,
the mass of the Ω− baryon, and the light meson decay
constants, such as fπ or fK . These scale determinations
are not guaranteed to agree at nonzero lattice spacing and
at unphysical values of the quark masses. Indeed, there
can be substantial differences. For example, for the asq-
tad action with a nearly physical strange quark mass, a
light quark mass one tenth as heavy, and a lattice spacing
of approximately 0.12 fm, the fK scale gives a 15% lower
temperature than the Υ splitting scale. For the same quark
masses, at approximately 0.09 fm the discrepancy has de-
creased to 8%, consistent with an approximately O(a2)
scaling error. Of course, for any quantity of interest, ther-
modynamic or not, if possible, we would like to choose a
scale according to which that quantity has only a small
variation as the lattice spacing approaches zero.

Recent results from Aoki et al. [57] give a rather dif-
ferent temperature Tc for the crossover than the HotQCD
Collaboration [51]. Aoki et al. locate the peak in their
renormalized chiral susceptibility at around 150MeV (fK)
for Nτ = 8, 10, and 12. The HotQCD Collaboration puts
the crossover closer to 190MeV (r0) for Nτ = 8 and
mud/ms = 0.1. Here are possible reasons for the discrep-
ancy:

– Much of the difference comes from the different choice
of scale. The Budapest-Wuppertal Collaboration uses
fK to set the scale, and the HotQCD Collaboration
uses the Sommer parameter r0, calibrated ultimately
from Υ splittings [58]. The scale discrepancy alone
could explain about 30MeV of the difference.

– Some of the discrepancy also comes from differences in
lattice parameters. The Budapest-Wuppertal Collabo-
ration uses a smaller lattice spacing and lighter light
quark mass. The HotQCD Collaboration estimates an
approximately 10MeV (r0 scale) downward shift in
curves related to the equation of state in the contin-
uum limit with physical quark masses. Some of that
shift is visible in the right panel of fig. 13.

– Some may also come from differences in the fermion
formulations. The Budapest-Wuppertal group use
standard staggered fermions with stout gauge links.
This approach reduces effects of taste splitting, but
does not improve the quark dispersion relation as do
the actions used by the HotQCD Collaboration. We
do not know whether such differences would result in
a shift in a peak position, however.

Whatever the differences, no matter how one sets the
scale, one expects all methods to give the same results
for the same observable in the continuum limit at phys-
ical quark masses. So for now we are left guessing the
result of taking that limit. Since most of the present dif-
ference apparently comes from a choice of scale, it would
help our guessing to know which scale is more suitable for
thermodynamic quantities. We have seen that the chiral
susceptibility suffers from peculiar singularities that may
make it less suitable for locating the crossover tempera-
ture. Still, the left panel of fig. 13 suggests that it scales
reasonably well in fK units. For the phenomenology of
heavy-ion collisions, quantities related more directly to de-
confinement, such as the interaction measure (equation of
state) and quark number susceptibility are important. As
we can see from the right panel of fig. 13 the interaction
measure seems to show better (but still imperfect) scaling
in the r0 scale. (Preliminary HotQCD results for the chiral
susceptibility are shown in the r0 scale in fig. 12.)

4 QCD phase diagram at zero density

4.1 General outline of the phase diagram

At infinite quark mass QCD becomes a pure Yang-
Mills theory, which has a well-studied, weak, first-order
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deconfining phase transition [59]. As the quark masses are
decreased, the first-order transition weakens further and
devolves into a crossover, as indicated in fig. 14, which
summarizes in qualitative terms the generally accepted
phase structure at zero chemical potential in the flavors
u, d, and s.

Close to zero quark mass, chiral perturbation theory
applies, and quite general arguments can be made about
the qualitative nature of the phase transition [60], depend-
ing on the number of quark flavors with zero mass and
depending on what happens to the anomaly at the tran-
sition. With a nonzero anomaly and only two quark fla-
vors the transition certainly occurs at zero u- and d-quark
masses, and it is in the 3d O(4) universality class, because
of the O(4) two-flavor chiral symmetry. If the strange
quark is also massless, the chiral transition is first order,
and, since first-order transitions are not usually removed
by small symmetry-breaking perturbations, it persists as
the quark masses are increased. Eventually, at sufficiently
large u-, d-, and s-quark masses the system is too far from
chiral and the first-order transition gives way to a second-
order phase transition in the Ising or Z(2) universality
class: Ising, since at nonzero quark masses, there is no re-
maining chiral symmetry. In the mu = md vs. ms plane a
curve of such second-order transitions separates the first-
order regime from the crossover regime as sketched in the
upper panel of fig. 14.

The quantitative determination of the phase bound-
aries requires numerical simulation. What has emerged
is that the second-order critical line occurs at quite small
quark masses, where simulations are particularly challeng-
ing and especially sensitive to cutoff effects [61,62]. The
lower panel of fig. 14 shows recent results from de Forcrand
and Philipsen based on a calculation using unimproved
staggered fermions with Nτ = 4.

4.2 Order of the phase transition for physical quark
masses

A key phenomenological question is whether there is a
first-order phase transition at the physical value of the
u-, d-, and s-quark masses or there is merely a crossover.
All present evidence points to a crossover at zero chemi-
cal potential for these species. A recent, thorough inves-
tigation has been carried out by the Budapest-Wuppertal
group [63]. They examine the conventional signal of the
peak height in the chiral susceptibility, which they renor-
malize using eq. (46). If there is no phase transition (i.e.,
only a crossover), the peak height should be asymptoti-
cally constant in the thermodynamic limit of an infinite
lattice volume. If there is a first-order phase transition,
the height is infinite, but it is limited in a finite volume
by finite-size effects. Asymptotically, it scales linearly with
the lattice volume L3. If the transition is second order,
the volume dependence is weaker, but the result is still in-
finite. The Budapest-Wuppertal group ran a simulation
with conventional staggered fermions on stout links at
Nτ = 4, 6, 8, and 10. They analyzed their data in two
steps. First, they extrapolated the inverse peak height to
zero lattice spacing at fixed lattice aspect ratio LT , as

phys.
point

0
0

N  = 2

N  = 2+1

N  = 3

N  = 1

f

f

f
f

m 

m 

s

s
phy

s
m

Gauge

m   , mu

1st

2nd order
O(4) ?

2nd order
Z(2)

2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞
Pure

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.01  0.02  0.03  0.04

am
s

amu,d

Nf=2+1

physical point

ms
tric - C mud

2/5

Fig. 14. Upper panel: sketch of the phase diagram for QCD at
zero baryon density in (2 + 1)-flavor QCD as a function of the
light quark masses showing regions where a high-temperature
phase transition or crossover is expected. For a second-order
phase transition, the universality class is shown. The physical
point is plotted as a dot in the crossover region. Whether the
expected tricritical strange quark mass mtric

s is higher or lower
than the physical strange quark mass mphys

s is not yet firmly
established. (Similar versions of this figure have appeared in
the literature, including [64].) Lower panel: result of an actual
measurement of a portion of the 2nd-order Z(2) phase bound-
ary at Nτ = 4 from ref. [65]. The axes give bare quark masses
in lattice units and the blue cross marks the physical point.

shown in the upper panels of fig. 15. Then they extrapo-
lated the continuum values to infinite aspect ratio (ther-
modynamic limit). The result is compared in the lower
panel of fig. 15 with predictions for a first-order phase
transition and a phase transition in the 3d O(4) univer-
sality class. The disagreement is a strong indication that
there is no phase transition.

4.3 Order of the phase transition for two massless
flavors

There is a related question of significant theoretical inter-
est. When all quarks but the u and d are infinitely mas-
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Fig. 15. Results from [63]. Upper panels: inverse of the peak
height in the renormalized disconnected chiral susceptibility
vs. squared lattice spacing showing the extrapolation to zero
lattice spacing. The lattice aspect ratio is varied from left to
right. Lower panel: inverse of the peak height in the renormal-
ized disconnected chiral susceptibility vs. inverse aspect ratio
cubed showing the extrapolation to the thermodynamic limit.
Also shown are predictions for a first-order phase transition
and a second-order transition in the 3d O(4) universality class.

sive, we have a two-flavor theory, and, as we have observed
above, as long as the chiral anomaly is not involved, we ex-
pect a critical point only at zero quark mass. Furthermore,
since the two-flavor chiral symmetry SU(2) × SU(2) 

O(4), we expect the high-temperature deconfining critical
point to be in the 3d O(4) universality class.

This question has been investigated by several groups
with somewhat contradictory results. Simulations with
standard staggered quarks using Nτ =4 lattices, with large
lattice spacing in the transition region, and hence poten-
tially large lattice artifacts, as collected by T. Mendez [66],
show some deviations from O(4) scaling as shown in
fig. 16. For O(4) scaling, all data points should collapse to
the curve in the figure. Two-flavor clover-improved Wilson
fermion simulations [16], on the other hand, indicate good
O(4) scaling as seen in fig. 17.

Since staggered fermions, at the large lattice spacings
in the transition region on high-temperature lattices with
small Nτ , have quite large taste symmetry breaking, one
might expect the transition to be in the U(1) × U(1) 

O(2) universality class, rather than the O(4) one. More
importantly, Kogut and Sinclair [67] argue that finite vol-
ume effects on the fairly small (spatial) lattices used are
quite large. Indeed they found good agreement with O(2)
scaling, when taking the finite-volume effects into account
as illustrated in fig. 18.

In contradiction with the theoretical expectations and
the above-summarized numerical findings, D’Elia, Di Gi-
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acomo, and Pica found indications of a first-order transi-
tion using an unimproved staggered fermion action and
Nτ = 4 [68]. It is important to check this conclusion
with a more refined action. One should conclude that at
present the order of the high-temperature transition with
two massless flavors is still an open question.

4.4 The phase transition with a physical strange quark

Suppose, instead, we hold the strange quark mass at
its physical value and then decrease the u- and d-quark
masses toward zero. According to the qualitative picture
in the upper panel of fig. 14, depending on where the tri-
critical point lies, we could 1) encounter a critical point
and enter a first-order regime, or 2) we may have to go to
zero quark mass to find a genuine phase transition. In the
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Fig. 18. O(2) scaling in a finite volume for two flavors of mass-
less staggered fermions with an irrelevant four-fermion inter-
action, from [67]. The curve comes from an O(2) spin model
simulation with “matched volume”.

lower panel we reproduce a result from de Forcrand and
Philipsen suggesting the first alternative, but their results
were obtained with an unimproved action at Nτ = 4 for
which we expect large cutoff effects.

As we have mentioned, cutoff effects complicate the
determination of the phase boundary at small quark mass.
This is especially likely to be true for simulations based on
unimproved staggered fermions (even improved staggered
fermions are not entirely immune), since for them it is
important to take the continuum limit before taking the
small quark mass limit. Otherwise, one risks being misled
by lattice artifacts.

5 QCD Phase diagram at nonzero densities

5.1 Phenomenology

As the baryon number density is increased (i.e., all the fla-
vor chemical potentials are increased from zero), accord-
ing to traditional arguments, there is a chiral-symmetry
restoring phase transition along a line in the (μ, T )-plane
when the u- and d-quark masses are zero, as sketched in
fig. 19 [69]. This tradition is founded on two notions. The
first argues that asymptotic freedom and consequently de-
confinement should reign at very high temperatures and
high chemical potential. The second argues that spon-
taneous chiral symmetry breaking occurs at zero chemi-
cal potential because, when fermions acquire a dynamical
mass through symmetry breaking, the negative energy lev-
els of the Dirac sea are lowered, lowering the vacuum en-
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ical crossover line (dashed) and first-order (solid) line of phase
transitions. A critical point is indicated by a black hexagon.
A nuclear matter phase transition occurs along a line extend-
ing from μ = μ0. At higher densities a color superconducting
phase is proposed.

ergy. With a nonzero chemical potential the filled positive
energy levels rise in energy, counteracting the advantage
of a dynamical chiral mass, and consequently inhibiting
spontaneous symmetry breaking [71].

At zero u- and d-quark mass chiral symmetry is exact.
If chiral symmetry is restored above a critical chemical
potential and it is spontaneously broken below, analyticity
requires a phase transition. There are no such guarantees,
however, when quark masses are not zero. Since we know
from numerical simulation that at physical quark masses
there is only a crossover at zero density, the critical line
separating the chirally broken from the chirally restored
phase must move away from the temperature axis as the
quark masses are increased. It then terminates in a critical
endpoint (TE , μE). A crossover line then fills the gap from
there to the temperature axis, as indicated by the dashed
line in fig. 19. A key phenomenological question is whether
the critical endpoint is experimentally accessible.

At still higher densities exotic phases have been pro-
posed, including diquark condensates and color-flavor
locked and superconducting phases [72,73]. These phases
are, thus far, completely beyond the reach of current lat-
tice simulations.

5.2 Lattice methods for nonzero densities

To confirm or refute these traditional arguments re-
quires numerical simulation. Unfortunately, simulations at
nonzero chemical potential are very difficult, since stan-
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dard lattice methodology requires that the Feynman path
integrand be treated as a positive probability measure. In
SU(3) gauge theory, the integrand becomes complex at a
nonzero (real) chemical potential. This creates a fermion
“sign problem” analogous to the fermion sign problem in
condensed matter physics in strongly coupled electron sys-
tems away from half-filling. A solution to either problem
would be beneficial to the other.

To see why the problem arises, consider the naive
fermion Dirac matrix M(U) = γν∇ν + m. The lattice
version of the gauge-covariant derivative ∇ν is given by
eq. (17). The terms in ∇ν in the action allow the quark
to hop to next neighbor sites in the positive and negative
ν direction. Normally, hopping in all directions must have
equal weight to preserve the discrete lattice symmetries
of axis interchange, parity, time reversal, and charge con-
jugation. The fermion determinant is then real because
taking its complex conjugate corresponds to reversing the
direction of hopping, which has the same weight. But a
positive nonzero chemical potential promotes quark hop-
ping in the positive (imaginary) time direction and sup-
presses it in the negative time direction. This is naturally
implemented by changing the covariant time derivative as
follows:

∇0ψ(x) → 1
2a

[U0(x)eaμψ(x + 0̂a)

−e−aμU†
0 (x − 0̂a)ψ(x − 0̂a)]. (47)

If a quark hops along a worldline that wraps completely
around the lattice in the imaginary time direction, it accu-
mulates Nτ factors of exp(aμ), and the partition function
receives a net enhancement exp(aμNτ ) = exp(μ/T ), the
appropriate statistical weight for the addition of one quark
to the grand canonical ensemble. A quark hopping back-
wards is interpreted as an antiquark, and its contribution
is correspondingly suppressed, as it should be. With this
imbalance the determinant is no longer guaranteed to be
real. Instead it acquires a complex phase φ ∝ μV , i.e.,
roughly proportional to the lattice volume and the chem-
ical potential.

A complex determinant creates additional problems
for staggered fermions. With 2 + 1 flavors of staggered
fermions at nonzero densities, one requires the square root
and fourth root of the fermion determinants. When the de-
terminant is real, there is no phase ambiguity in the root.
But when the determinant is complex, one has to choose
the correct Riemann sheet. The ambiguities and an ex-
pensive remedy are discussed in [74]. To be safe, one is
limited to small μ and volumes.

Over the years a number of methods have been pro-
posed for treating a complex determinant. We give a brief
account of the attempts. For recent reviews, see [75,76].

5.2.1 Reweighting the fermion determinant

As a standard lattice Monte Carlo method, reweighting
involves sampling the Feynman path integral according
to one measure and then making adjustments to achieve

the effect of simulating with a slightly different mea-
sure [77,78].

Let us see how this idea is applied to a simulation at
nonzero chemical potentials μi, one for each flavor i. (To
be precise, we are speaking of a quark number chemical
potential. The baryon number potential is three times as
large (μBi = 3μi). The expectation value of an operator
O is given by

〈O〉μ =
∫

[dU ]O(U) exp[−SG(U)]
∏

i

det[Mi(U, μi)]/Z(μ),

(48)
where μ = (μ1, μ2, . . . ) and

Z(μ) =
∫

[dU ] exp[−SG(U)]
∏

i

det[Mi(U, μi)]. (49)

Since we cannot do importance sampling with the unsuit-
ably complex determinant det[M(U, μ)] in the measure,
we can try to do it with the real determinant det[M(U, μ =
0)]. That is, we write

〈O〉μ = 〈OR(U, μ)〉0 / 〈R(U, μ)〉0 , (50)

where R(U, μ) is the ratio of determinants that reweights
the contributions to the integrand to compensate for the
incorrect sampling measure:

R(U, μ) = det[M(U, μ)]/det[M(U, 0)]. (51)

Similarly, we can reweight to imitate a change in any of
the parameters of the action including the quark masses
and gauge coupling. The reweighting factor R is simply
the ratio of the intended and actual measures.

This procedure, often called the Glasgow method, is
mathematically correct but numerically unstable. As the
chemical potential moves away from zero, one is no longer
doing importance sampling. In complex analysis this ap-
proach is similar to attempting to estimate a contour inte-
gral in the stationary phase approximation without going
through the saddle point. The variance in the sampled val-
ues of the numerator and denominator in eq. (50) grows
exponentially as the lattice volume increases, i.e., in the
thermodynamic limit. The inevitable breakdown is fore-
stalled by keeping the shift in parameters small, so by
working at small μ.

A variant of this method uses the absolute value of
the determinant for the sample weighting. The reweighting
factor is then the phase [79]. This method has been applied
only to small lattice volumes.

Fodor and Katz propose reweighting simultaneously
in the gauge coupling g2 and μ [80]. They argue that one
achieves a better overlap with this method. For example,
one might expect that if one moves along the crossover
line in the (μ, T )-plane, the important integration domain
might not change as rapidly as it would if one moves in
some other direction. To stay on this line requires changing
the gauge coupling along with the chemical potential. To
locate the critical line, they follow Lee-Yang zeros of the
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partition function. (These zeros lie in the complex temper-
ature or complex gauge-coupling plane. If there is a gen-
uine phase transition, as the lattice volume is increased,
they impinge on the real temperature axis and give rise to
a singularity. If there is only a crossover, they stay harm-
lessly away from the real axis.) From this method they
estimate the critical endpoint at T = 160(3.5)MeV and
μB = 3μ = 360(40)MeV at physical quark masses using
conventional staggered fermions [81]. This critical chem-
ical potential is nearly a factor of two smaller than an
earlier estimate at higher quark masses and smaller vol-
umes [82]. Such sensitivity to the simulation parameters
warrants further study.

5.2.2 Approximating the determinant with phase quenching

With degenerate up and down quarks, simulating with
the “phase-quenched” or absolute value of the determi-
nant and ignoring the phase completely is equivalent to
giving the up-quark a positive chemical potential and the
down-quark a negative chemical potential, so it is equiva-
lent to simulating with an isospin chemical potential [83].
This procedure is numerically tractable, but to draw con-
clusions regarding the phase diagram with the standard
chemical potential requires some justification. Kogut and
Sinclair present the case in [84]. See also [85].

5.2.3 Simulating in the canonical ensemble

Another approach is to simulate in the canonical ensemble
of fixed quark (baryon) number [86–89]. For simplicity,
consider a single quark species. The canonical ensemble
with quark number q is then obtained from the Fourier
transform

Zq =
∫ 2π

0

dφe−iqφ

∫
[dU ] exp[−SG(U)] det[M(U, μ)]|μ/T=iφ.

(52)
The sign problem arises in the Fourier transform. As the
quark number is increased for a given lattice volume and
configuration, the Fourier component decreases rapidly
and the sensitivity to oscillations worsens, so that any
discrete approximation to the Fourier transform develops
a severely large variance.

Meng et al. have recently proposed a new “wind-
ing number expansion” method that starts from the
Fourier transform of the logarithm of the determinant,
log(det[M(U, μ)]) = Tr log[M(U, μ)] and proceeds via a
Taylor expansion to generate the canonical partition func-
tion [90,91]. The method converges much better, but so
far results are reported only for fairly large quark masses.

5.2.4 Simulating with an imaginary chemical potential

If we make the chemical potential purely imaginary, the
fermion determinant becomes real, and a direct simula-
tion [92] is possible. To recover results at a physical, real
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cal potential approach of [93], the canonical ensemble approach
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A range of strong coupling values of the critical chemical po-
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chemical potential, we must do an analytic continuation.
The success of such a continuation depends on knowing
the analytic form of the observable as a function of chem-
ical potential. We do if the chemical potential is small
enough that a Taylor expansion is plausible. So in the end,
the imaginary potential method provides essentially the
same information as an explicit Taylor expansion about
zero chemical potential. Figure 20 from de Forcrand and
Kratochvila [88] compares three methods for determining
the critical line. Each result shown is based on the same
unimproved Nf = 4 staggered fermion action. The meth-
ods agree reasonably well for μ/T < 1. Note that this is a
four-flavor simulation with a first-order phase transition,
unlike the (2 + 1)-flavor case of fig. 19.

5.2.5 Taylor expansion method

For small chemical potential, we may carry out a Taylor
expansion of the required observables in terms of the fla-
vor chemical potentials at zero chemical potential [94,95].
Since all Taylor coefficients are evaluated at zero chemi-
cal potential, determining them is straightforward. How-
ever, the observables that give the coefficients are nontriv-
ial. They involve products of various traces of the inverse
fermion matrix. The traces are usually evaluated using
stochastic methods. Furthermore, as the order of the ex-
pansion grows, the number of required terms grows facto-
rially. Thus it is rare to find calculations as high as eighth
order [96,97].

5.2.6 Probability distribution function method

The “probability distribution function” or “density-of-
states” method is new and promising [98,99]. It is related
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to the reweighting method. A recent variant by Ejiri com-
bines reweighting with a Taylor expansion. To explain the
method we start with a simple case, defining the “den-
sity of states” or “probability distribution function” of the
plaquette P with the Wilson gauge action and arbitrary
fermion action:

w(P ′) =
∫

[dU ] δ(P ′ − P (U)) det[M(U, 0)] exp[−SG(U)],

(53)
where δ(P ′ − P ) is the Dirac delta function. It is defined
like the partition function, but at a fixed value of the pla-
quette. The expectation value for an observable O(P ) that
depends only on P is then

〈O〉 =
∫

dP ′ w(P ′)O(P ′)
/∫

dP ′ w(P ′). (54)

At nonzero μ we use reweighting to calculate the partition
function:

Z(μ) =
∫

dP R(P, μ)w(P ), (55)

where the plaquette-restricted reweighting function
R(P, μ) is

R(P, μ) =
∫

[dU ] δ(P ′ − P (U)) det[M(U, μ)]∫
[dU ] δ(P ′ − P (U)) det[M(U, 0)]

, (56)

i.e., the ratio at nonzero and zero μ. For the Wilson action,
the gauge weight exp[−SG(U)] depends only on P , so it
cancels between numerator and denominator in R(P, μ).
The distribution function w(P ) is still calculated at μ = 0
according to (53).

The sign problem appears in the numeric evaluation of
R(P, μ). Ejiri offers a way to overcome it [99]. His method
begins with a generalization of the distribution func-
tion, making it depend on three variables: the plaquette
P , the magnitude of the ratio of determinants F (μ) =
det M(μ)/det M(0), and the phase θ ≡ Im log det M(μ):

w(P ′, |F ′|, θ′) =
∫

[dU ] δ(P ′ − P (U))δ(|F ′| − |F |)

×δ(θ′ − θ) det[M(U, 0)] exp[−SG(U)], (57)

Note that the real, positive weight factor in the integrand
comes from the μ = 0 action. For any value of μ the
partition function is then

Z(μ) =
∫

dPd|F |dθ F (μ)w(P, |F |, θ), (58)

where in place of the reweighting function R we now have
simply F (μ) itself.

The next step relies on the key assumption that the
distribution function w(P ′, |F ′|, θ′) is Gaussian in θ. Ejiri
argues that this is plausible, at least for large volume. A
further assumption for rooted staggered fermions is that
the effect on the phase of taking the fourth root is sim-
ply to replace θ by θ/4 in the Gaussian distribution. With
these assumptions one can do the θ integration directly,

eliminating the sign problem. The result depends only on
the width of the Gaussian, which must be determined nu-
merically. Finally, to make the calculation of the ratio of
determinants tractable, Ejiri expands log[detM(μ)] in a
Taylor series in μ about μ = 0. The same Taylor coeffi-
cients appear in an intermediate step in the Taylor expan-
sion of the pressure or thermodynamic potential. Since one
is expanding the action instead of the thermodynamic po-
tential, the convergence properties are different —possibly
more favorable.

Applying this method to p4fat3 staggered fermions
with the Wilson gauge action, a rather coarse lattice with
Nτ = 4, and a rather large quark mass, Ejiri locates
the critical chemical potential at μ/T > 2.5, approxi-
mately. This is an interesting result, which awaits recon-
ciliation with the questions raised by Golterman, Shamir,
and Svetitsky concerning phase ambiguities of the fourth
root of the staggered fermion determinant [74].

Thus we see that all of the methods, save, perhaps,
the probability distribution function method, are limited
to quite small chemical potentials.

5.2.7 Stochastic quantization method

All of the above lattice methods for simulating at nonzero
chemical potential evaluate the Feynman path integral us-
ing Monte Carlo importance sampling, a technique that is
inherently unstable when the path integrand is not pos-
itive definite. At nonzero chemical potential, the SU(3)
fermion determinant is complex, and the wide variety
of methods outlined above deal with the complex phase
with limited success. Instead of quantizing via the Feyn-
man path integral method, Aarts and Stamatescu [100]
have recently proposed using the stochastic quantiza-
tion method [101]. In the early days of lattice calcula-
tions, stochastic quantization through the Langevin equa-
tion [102] was, in fact, one of the competing numerical
methods for nonperturbative calculations in quantum field
theory, and it met with mixed success [103].

For purposes of this review, we give just a brief sketch
of stochastic quantization. For a theory with a scalar field
φ(x) and action S, we generate an ensemble of fields
φ(x, τ) where τ is a fictitious Langevin time (analogous
to molecular-dynamics or Markov-chain time in the stan-
dard importance sampling approach). The ensemble sat-
isfies the stochastic equation

∂φ(x, τ)
∂τ

= − δS

δφ(x)
+ η(x, τ), (59)

where η(x, τ) is a Gaussian random field (source), uncor-
related in x. As long as S has a well-defined minimum
and we start with a solution near that minimum, without
the random source the field relaxes to the classical solu-
tion where the action is stationary, i.e., the variational
derivative δS/δφ(x) vanishes. The random source then in-
duces “quantum fluctuations” about the classical solution.
Quantum observables are estimated in the usual way as
expectation values on the equilibrium ensemble.
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Fig. 21. Two possible alignments of the chiral critical surface
at low chemical potential from [65]. Top: the scenario permit-
ting a first-order phase transition at high densities and tem-
peratures. Bottom: the scenario allowing only a crossover.

When the action S is complex, we get a complex solu-
tion and a complex stationary point, a region that is not
reached with conventional importance sampling. The hope
is that the solution is still attracted to the appropriate sta-
tionary point, i.e., the Langevin method is stable. Aarts
and Stamatescu have done some preliminary tests with
simplified models that imitate the characteristics of QCD
at nonzero chemical potential. Their results are promis-
ing [104,105].

5.3 Curvature of the critical surface

One question of considerable phenomenological impor-
tance can be addressed with simulations at small chemical
potential. That is whether the Z(2) critical line sketched
in fig. 14 moves closer to the physical quark masses as
the chemical potential is increased or it moves farther
away. If it moves closer, as shown in the upper panel of
fig. 21, one may expect a true phase transition in a suitably
baryon-rich environment, such as may occur in a moder-
ately low-energy heavy-ion collision. If it moves away, as
shown in the lower panel, there would be no such expec-
tation. De Forcrand and Philipsen set out to address this
question using the imaginary chemical potential method.
Their results at Nτ = 4 suggest that the critical line moves

away [65,106–108], at least when all three quark flavors are
close to having equal masses.

6 Equation of state

The equation of state gives the energy density, pressure,
and/or entropy of the thermal QCD ensemble as a func-
tion of temperature at constant volume. All quantities are
renormalized by subtracting their values at zero tempera-
ture. The subtraction eliminates an ultraviolet divergence,
but the cancellation of this divergence makes the com-
putation costly in the continuum limit, since one must
compute the O(a−4) divergent high-temperature and zero-
temperature quantities independently and subtract them
to get a finite result.

There are two traditional methods for computing the
equation of state and one recently introduced method.

6.1 Derivative method

The first method is based on the identity

ε =
T 2

V

∂ ln Z

∂T

∣∣∣∣
V

. (60)

On the lattice the derivative with respect to temperature
at fixed volume in the first identity translates to a deriva-
tive with respect to 1/(Nτat) at fixed as, where at is the
lattice spacing in the imaginary time direction and as is
the lattice spacing in the spatial direction. At fixed Nτ ,
we differentiate with respect to at itself.

For example, for the original Wilson plaquette gauge
action of eq. (11) the explicit dependence on at and as

goes as follows:

SG(as, at, g
2)=2/g2(as, at)

[
as

at

∑
x

Pt(x)+
at

as

∑
x

Ps(x)

]
,

(61)
where we have distinguished the timelike and spacelike
plaquettes

Pt(x) =
∑

i

Re Tr[1 − UP,i,0(x)],

Ps(x) =
∑
i<j

Re Tr[1 − UP,i,j(x)]. (62)

In the gauge action above, we have indicated the de-
pendence of the gauge coupling on the lattice constants
as and at. That dependence is defined through a standard
renormalization procedure for an anisotropic lattice: at a
fixed ratio at/as and gauge coupling g, we compute an
experimentally accessible, dimensionful quantity, such as
the splitting of a quarkonium system. From the experi-
mental value of the splitting, we can then determine the
lattice constants in physical units. We repeat the proce-
dure, varying g and at/as to get the full dependence of g
on the lattice constants.
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Fig. 22. Details of the dependence of the interaction measure on temperature in MeV units (bottom scale) and r0 units (top
scale) for three temperature ranges left to right: low, middle, and high, for Nτ = 6 and 8 from a HotQCD study comparing p4fat3
and asqtad staggered fermion formulations [51,109]. Measurements in most cases are taken along a line of constant physics with
mud = 0.1ms. In the low temperature range the dashed and dash-dotted curves are predictions of a hadron resonance gas model
with different high mass cutoffs. The other curves in that range are spline fits to the data. In the high-temperature range the
dashed lines are the leading-order perturbative prediction for μMS = 2πT and μMS = πT . The brown line (the line passing
through the points) is a fit to leading-order perturbation theory plus a bag constant, and the magenta line (the line passing
mostly below the points) is an O(g6) EQCD prediction from [110]. For a brief mention of EQCD, see sect. 7.1.

So from eq. (15) with only the gauge action in this
example, we have [111] (after setting at = as = a)

ε = −T
∂ ln g2

∂ ln at

∣∣∣∣
as

〈SG/V 〉 + (6/g2)T 〈Pt − Ps〉 . (63)

The partial derivative of the gauge coupling with respect
to at is called the Karsch coefficient. It is known up to
1-loop order in lattice perturbation theory, but a non-
perturbative calculation described above is necessary at
experimentally accessible temperatures. As we indicated
above, that calculation is rather involved.

6.2 Standard integral method

A second thermodynamic identity gives the pressure as
the volume derivative of the thermodynamic potential,

p = T
∂

∂V
ln Z

∣∣∣∣
T

. (64)

By itself, this identity leads to an expression similar to
the energy density above, but in this case we need the
derivative of the gauge coupling with respect to the spatial
lattice spacing as at fixed at. We have the same difficulty
as before in requiring a nonperturbative calculation of an
unconventional quantity.

But if we combine the two identities to form the inter-
action measure I,

I = ε − 3p, (65)

then we get a total derivative of the gauge coupling with
respect to a = as = at and the lattice thermodynamic
identity

I = −T

V

d lnZ

d ln a
. (66)

The isotropic derivative of the coupling with respect to
the cutoff is just the commonly computed renormaliza-
tion group beta function β = dg2/d ln a. For the Wilson
plaquette gauge action we get

I = −T/V (d ln g2/d ln a) 〈SG〉 . (67)

So the lattice derivative is readily calculated in terms of
the conventional plaquette observable and the beta func-
tion. With fermions present we require also the chiral con-
densate and the derivative of the quark masses with re-
spect to the lattice spacing. These are also easily accessible
in lattice calculations.

We must bear in mind that the physical quantities re-
quire subtracting the zero-temperature values, so in the
end we need the difference

ΔI = I(T ) − I(0). (68)

We will often drop the Δ in the following discussion and
figures.

Figure 22 shows the interaction measure difference ob-
tained in a recent Nτ = 8 calculation with equal-mass up
and down quarks and a strange quark. The mass of the
strange quark was held fixed at approximately its phys-
ical value, and the masses of the up and down quarks
were set to a fixed fraction of the strange quark mass.
Thus the temperature was varied roughly along param-
eter space lines of constant physics, meaning light pseu-
doscalar mesons (at zero temperature) had approximately
constant masses.

To complete the determination of the equation of state,
we need the energy density and pressure separately. The
pressure is easily computed in the thermodynamic limit,
in which lnZ is simply proportional to the volume:

ln Z = −pV/T, (69)
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the pressure curve indicate the size of the error. The black bar
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pressure integration.

So the expression (66) can also be written as

I =
T

V

d(pV/T )
d ln a

, (70)

or, if we fix V T 3 in the derivative, as

I/T 4 =
d(p/T 4)
d lnT

. (71)

We can then use the identity (70) at fixed Nτ to integrate
with respect to ln a (equivalently lnT ) to get the pressure:

p(a)a4 − p(a0)a4
0 = −

∫ ln a

ln a0

ΔI(a′)(a′)4 d ln a′. (72)

Here the lower endpoint of integration a0 is a large lattice
spacing, corresponding to a low temperature. If it is suf-
ficiently low, we may take p(a0) = 0 and the expression
then yields the pressure at temperature T = 1/(Nτa).

The integration is carried out numerically, since the
integrand is determined in a series of simulations done at
fixed lattice spacing. However, the spacing of the points
can be set arbitrarily close as needed. The energy density
is then obtained from ε = I + 3p and the entropy density
from s = ε + p.

This integral method was used to complete the con-
struction of the equation of state with improved staggered
quarks shown in fig. 23. The same method has also been
used in a study with two flavors of clover improved Wilson
fermions [112], as shown in fig. 24.
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Fig. 24. The pressure as function of T/Tpc, with Tpc the pseu-
docritical or crossover temperature for two flavors of clover-
improved Wilson fermions on 163 × 4 lattices (filled symbols)
and 163×6 lattices (open symbols), from [112]. The simulation
was done for a variety of rather heavy quark masses, indicated
by the vector to pseudoscalar mass ratios mPS/mV . The lat-
tice artifacts are larger than with improved staggered quarks,
as expected from table 1.

6.3 Temperature integral method

In the standard integral method above we fixed Nτ and
integrated eq. (66) with respect to lattice spacing to get
the pressure. The temperature integral method of [113]
instead fixes the lattice spacing and “integrates” eq. (71)
over Nτ at fixed Ns.

The advantage of working at a fixed lattice spacing
(so fixed gauge coupling, quark masses, and Hamiltonian)
is that the zero temperature subtraction is the same for
all Nτ , and we are assured of following lines of constant
physics [114]. With the standard integral method, to carry
out the necessary subtraction, we need a separate zero-
temperature simulation for each high-temperature point.
Thus one may hope for a savings in computational effort.

The disadvantage of the temperature integral method
is that the integrand is known only at the discrete tem-
peratures 1/(Nτat) for integer Nτ . To decrease the sam-
ple interval at a given temperature, one must start with
a smaller at, which increases the cost substantially. Simu-
lating on an anisotropic lattice helps.

So far, the method has been tested on a pure Yang-
Mills ensemble with the pleasing result shown in fig. 25.

6.4 Step scaling method

The standard integral method of eq. (72) has the disad-
vantage that it requires computing the difference between
the high- and zero-temperature values of the interaction
measure at each value of the gauge coupling (i.e., each
high-temperature point). At increasingly high tempera-
ture we get closer to the continuum limit and the match-
ing zero-temperature calculation becomes very expensive.
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ing the T integral method at fixed lattice spacing aσ = 0.097 fm
and aspect ratio aσ/aτ = 4 [115,113].

Endrödi et al. propose a step scaling method that allevi-
ates this problem to some degree [116]. Their idea is to
compute the pressure at a given temperature as a series
of differences:

p(T ) − p(0) = [p(T ) − p(T/2)] + [p(T/2) − p(T/4)] + . . . .
(73)

The increment

p̄(T ) = p(T ) − p(T/2) (74)

must be calculated at the same cutoff a to renormalize
properly the ultraviolet divergence. In practice, this means
matching a calculation at a given Nτ = N with a calcu-
lation at Nτ = 2N for the same bare action parameters.
(The step factor 1/2 can be replaced by any factor less
than 1.) The differences [p(T ) − p(T/2)]/T 4 are bounded
from above, so the series

[p(T ) − p(0)]/T 4 = p̄(T )/T 4 +
1
16

p̄(T )/T 4|T/2

+
1

256
p̄(T )/T 4|T/4 + . . . (75)

converges rapidly.
Endrödi et al. suggest two ways to calculate p̄(T ). One

uses a modified form of eq. (72):

p(a,Nτ = N)a4 − p(a,Nτ = 2N)a4 =

−
∫ ln a

ln a0

[I(a′, Nτ = N)−I(a′, Nτ = 2N)](a′)4 d ln a′. (76)

Here, we have shown the Nτ -dependence explicitly. We
assume that a0 is large enough that the integration con-
stants p(a0, Nτ ) are essentially zero.

The second method uses the identity eq. (69) to write

p̄(T = 1/(aN)) = p(a,Nτ = N) − p(a,Nτ = 2N) =
[lnZ(Nτ = 2N) − ln Z2(Nτ = N)]/(N3

s N). (77)

Fig. 26. Circles: pressure from [116] for pure Yang-Mills the-
ory at ultra-high temperatures compared with predictions of
EQCD perturbation theory (dotted line [117,118,110]). The
pressure is given in units of the Stefan-Boltzmann value and
the temperature in units of the temperature at the phase tran-
sition Tc. The square is computed using the standard integral
method [119].

The rhs is the difference between the partition functions
on two lattices of size N3

s × 2N in which one lattice is in-
tact and the other is split in half at the midpoint in imag-
inary time with periodic (or fermion-antiperiodic) bound-
ary conditions applied to the two halves. To compute this
difference, Endrödi et al. modify the action at the interface
by introducing an interpolating parameter α such that
α = 1 corresponds to the fully split lattice and α = 0,
to the fully intact lattice. The simulation measures the
derivative of lnZ(α) with respect to α, which involves
only fields at the interface. The increment (77) is then
computed from

p̄(T ) =
1

N3
s N

∫ 1

0

dα
d lnZ(α)

dα
. (78)

There is still a strong cancellation involved in the inte-
gration over α, but it is a bit milder than the cancella-
tion in the standard integral method. With their method
they are able to reach such high temperatures that contact
with perturbation theory is certainly expected, as shown
in fig. 26. For a lower temperature comparison of the O(g6)
EQCD prediction of Laine et al. [110] with the interaction
measure computed using standard methods, see fig. 22.
For a brief mention of EQCD, see sect. 7.1.

6.5 Equation of state at nonzero densities

Heavy-ion collisions involve interacting hadronic matter
at relatively low baryon densities and high temperatures.
At the other extreme, high baryon densities and low tem-
peratures may occur in the cores of dense stars. In both
cases we would like to know the equation of state. For the
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low-density environment of heavy-ion collisions the Tay-
lor series method is effective for lattice simulations. Un-
fortunately, thus far we have no reliable lattice method to
simulate the conditions of dense stars.

Consider the (2 + 1)-flavor case of equal nonzero up-
and down-quark chemical potentials μu = μd = μud and a
nonzero strange chemical potential μs. The pressure can
be expanded as follows:

p

T 4
=

∞∑
n,m=0

cnm(T )
(μud

T

)n (μs

T

)m

, (79)

The coefficients cnm are evaluated at zero chemical poten-
tial

cnm(T ) =
1
n!

1
m!

1
T 3V

∂n+m ln Z

∂(μud/T )n∂(μs/T )m

∣∣∣∣
μud,s=0

.

(80)
CP symmetry requires that the coefficients vanish for odd
n + m at zero chemical potential.

For increasing n and m the coefficients cnm are increas-
ingly complicated combinations of traces of the inverse of
the lattice Dirac matrix. For a simple example, the lowest-
order mixed coefficient is

c11 =
〈

Tr
(

M−1
ud

∂Mud

∂(μud/T )

)
Tr
(

M−1
s

∂Ms

∂(μs/T )

)〉
.

(81)
Such observables are technically difficult to compute be-
cause the trace is over all lattice sites as well as over colors.
Usually such traces are evaluated by stochastic sampling
methods. As the order n and m increase, not only are the
traces more complicated, the required number of stochas-
tic samples grows rapidly. In effect, the computational ef-
fort grows factorially in the expansion order.

The quark number densities 〈nud〉 and 〈ns〉 can be
found from first derivatives in the same expansion. For
〈nud〉 it is

〈nud〉 =
1
V

∂ ln Z

∂(μud/T )
=

T 3
∞∑

n=1,m=0

ncnm(T )
(μud

T

)n−1 (μs

T

)m

, (82)

and for 〈ns〉,

〈ns〉 =
1
V

∂ ln Z

∂(μs/T )
=

T 3
∞∑

n=0,m=1

mcnm(T )
(μud

T

)n (μs

T

)m−1

. (83)

The leading terms in the expansion are

〈ns〉
T 3

≈ c11(T )
(μud

T

)
+ c02(T )

(μs

T

)
. (84)

The mixed coefficient c11(T ) is nonzero (and negative) at
low temperatures, because when we add a strange quark

to the ensemble, it is screened by a light antiquark. This
tendency persists at temperatures close to, but above the
crossover. So for μud = 0, the strange quark number den-
sity is nonzero for μs = 0. In heavy-ion collisions the mean
strange quark number density is zero, so we need to “tune”
the strange quark chemical potential to obtain the exper-
imental conditions.

The quark number susceptibility matrix χab for a, b ∈
u, d, s is likewise found from second derivatives. For exam-
ple, for the diagonal elements and the equivalent mixed
light off-diagonal elements χuu = χdd = χud = χdu, we
have

χuu =
∂ 〈nud/T 〉
∂(μud/T )

=

T 2
∞∑

n=2,m=0

n(n − 1)cnm(T )
(μud

T

)n−2(μs

T

)m

. (85)

The (diagonal) strange quark number susceptibility χs =
χss is similarly obtained. The heavy-light mixed quark
number susceptibility χus = χsu is

χus =
∂ 〈nud/T 〉
∂(μs/T )

=

T 2
∞∑

n=1,m=1

nmcnm(T )
(μud

T

)n−1 (μs

T

)m−1

. (86)

The interaction measure can also be expanded in this
way [120]. Once we have both pressure and interaction
measure, we can determine the energy density and entropy
density for any small chemical potential. As an example,
we show the equation of state at constant entropy density
per baryon number in fig. 27. This is the equation of state
appropriate to an adiabatic expansion or compression of
hadronic matter, conditions that may obtain in a heavy-
ion collision.
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Fig. 27. Energy density vs. temperature for constant entropy
per baryon number, from [121].
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7 In-medium properties of hadrons

7.1 Spatial string tension

Despite its popular characterization as deconfined, high-
temperature hadronic matter retains vestiges of confine-
ment. Spacelike Wilson loops still exhibit the area law be-
havior associated with confinement. This is readily seen by
considering dimensional reduction, in which for T � Tc,
the short Euclidean time dimension (of extent 1/T ) is col-
lapsed, leaving three spatial dimensions [122,123]. Since
all dimensions are Euclidean, any one of them can be inter-
preted as Euclidean “time.” We do a 90◦ rotation to turn
one of the original spatial coordinates into the Euclidean
time coordinate of a (2 + 1)-dimensional field theory.

The reduction of 4d QCD to what is sometimes called
“EQCD” [117] has these characteristics:

– Quarks acquire a large 3d mass
√

(πT )2 + m2
q. This

happens because the antiperiodic boundary condition
in the small dimension requires a minimum momen-
tum component πT for that coordinate, which then
contributes to the energy-momentum relation as an
additional effective mass.

– The original fourth component of the color vector po-
tential A0 is reinterpreted as a scalar Higgs-like field.
The other three vector potential components become
the usual vector potential of the (2 + 1)-dimensional
theory. We get a confining gauge-Higgs theory.

– The 3d and 4d gauge couplings are related through
g3 = g4

√
T .

– The spatial Wilson loop of the original 4d theory is
now interpreted as the standard space-time–oriented
Wilson loop of the 3d theory. Because the theory is
still confining in 3d, we get a linearly rising potential
with a string tension.

In a recent calculation Cheng et al. compared the be-
havior of the spatial string tension of the full 4d theory
with predictions based on a perturbative connection be-
tween the four- and three-dimensional coupling and the
numerically measured proportionality between string ten-
sion and coupling in three-dimensional SU(3) Yang-Mills
theory [124]. The comparison is shown in fig. 28. The good
agreement at temperatures as low as 1.5Tc is unexpected.

7.2 Screening masses

The Yukawa potential can be thought of as a measure
of the spatial correlation of a pion source and sink (the
sources and sinks being static nucleons). The important
insight here is that the screening mass mπ is the mass of
a propagating particle. In the high-temperature plasma
we can consider similar correlations between interpolat-
ing operators of any type. These spatial correlators are
controlled by confined states, as we indicated in sect. 7.1.
Because we no longer have Lorentz invariance, the spatial
screening masses are not expected to be equal to frequen-
cies of real-time plasma excitations, but one can speculate
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Fig. 28. Temperature divided by the square root of the spatial
string tension σs vs. temperature in units of the crossover tem-
perature T0 (lower scale) and in r0 units (upper scale) for 2+1
flavors of p4fat3 quarks on lattices with Nτ = 4, 6 and 8. The
solid curve (with uncertainties indicated by the dashed lines)
is the prediction of the dimensionally reduced theory [124].

that there may be a connection [125]. In any case, they
provide information about the structure of the plasma,
they control the behavior of a variety of susceptibilities,
and their degeneracy patterns provide information about
the temperature dependence of symmetries.

Euclidean thermal hadron propagators (correlators)
are defined in the same way as they are at zero tempera-
ture:

CAB(x) = 〈OA(x)OB(0)〉 , (87)

where OA(x) and OB(x) are interpolating operators for
the desired hadronic state.

At zero temperature it is typical to project the corre-
lator to zero spatial momentum, resulting in a time-slice
correlator

CAB(t) =
∫

d3xCAB(t,x). (88)

At large Euclidean time such a correlator has the asymp-
totic behavior

CAB(t) ∼ ZAZB exp(−Mt), (89)

where M is the mass of the hadron and ZA and ZB are
overlap constants.

At nonzero temperatures one cannot explore the
asymptotic limit because of the bound on Euclidean time
0 ≤ t ≤ 1/T , but one can define a spatial correlator by
fixing one of the spatial coordinates and integrating over
the other three, as in

CAB(z) =
∫

dtdxdy CAB(t, x, y, z). (90)

(For fermions, it is necessary to include a Matsubara phase
factor exp[iπT t].) For large z the asymptotic behavior is

CAB(z) ∼ ZA(T )ZB(T ) exp[−μ(T )z], (91)
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Fig. 29. Screening masses for the pseudoscalar channel (up-
per panel) and scalar channel (lower panel) vs. temperature
in a dynamical (2 + 1)-flavor simulation with p4fat3 staggered
fermions [126]. Measurements were taken along lines of con-
stant physics with mπ ∼ 220 MeV, mK = 500 MeV and Nτ = 6
and 8 [127].

where μ(T ) is the hadronic screening mass. At zero tem-
perature μ(T = 0) = M .

Even though the high-temperature plasma exhibits de-
confining characteristics in its real time behavior, the spa-
tial correlations remain confined, so the spectrum of spa-
tial meson and baryon screening masses retains a gap
characteristic of confinement even in the high-temperature
plasma. However, since the screening mass for quarks
approach πT at high temperatures, the valence-quark-
antiquark meson screening masses approach 2πT and
the valence-three-quark baryon screening masses approach
3πT . Furthermore, as chiral symmetry is approximately
restored at high temperatures, they must exhibit the ap-
proximate degeneracies required by the chiral multiplets.

Armed with this background let us consider the tem-
perature behavior of the screening mass μπ(T ) of the pion.
At low temperatures the pion is a Goldstone boson, so the
screening mass is small. Above the transition chiral sym-
metry is restored. So the screening mass rises above the
transition temperature, approaching 2πT . The transition
temperature is marked by the change of slope. Figure 29
illustrates this behavior.

The isosinglet scalar f0 (σ) meson can be generated
using the isosinglet chiral condensate ψ̄ψsing = ψ̄ψu +
ψ̄ψd as the interpolating operator. It has a sizable mass at
low temperature, but it joins the pion chiral multiplet at
the transition temperature when the pion screening mass
is quite small. Thus its mass must dip at the transition
temperature and rise again, approaching 2πT . Thus a dip
in μf0 also marks the transition temperature.

The chiral susceptibilities are related to hadron propa-
gators in Euclidean space-time. For example, the isosinglet
chiral susceptibility is

χsing(T ) =
∫

d4x
〈
ψ̄ψsing(x)ψ̄ψsing(0)

〉
=∫

dz Csing(z, T ), (92)

where Csing(z) is the scalar-isosinglet screening correlator
generated by the isosinglet chiral condensate. In addition
to the f0, this correlator also contains a two-pion contin-
uum contribution. So its asymptotic behavior has terms in
exp(−μf0z) as well as exp(−2Eπz) for Eπ ≥ μπ. Integra-
tion over z of these asymptotic terms yields contributions
to the susceptibility that go as the inverse of the screen-
ing masses. At low temperatures the two-pion threshold
is below the f0, so the two-pion continuum dominates the
susceptibility. In the chiral limit this contribution is re-
sponsible for the 1/

√
m singularity in the susceptibility.

At high temperatures the pion screening mass rises, and
the f0 screening mass is approximately degenerate with it.
Thus the two-pion continuum is expected to have a higher
screening mass than the f0, and the susceptibility is finite
in the chiral limit. Thus this susceptibility should be large
at low temperatures and fall abruptly at the transition
temperature.

7.3 Charmonium

To the extent the transition to a quark-gluon plasma is a
crossover and not a genuine phase transition, one should
not expect low temperature properties to change abruptly
at the crossover temperature. Confined hadronic states
may persist as plasma excitations at least for tempera-
tures close to, but above the crossover temperature. One
of the most studied examples is the J/ψ, since it is readily
observed experimentally, and, because of their large mass,
charmed quarks are a good theoretical probe. Numerical
simulation suggests that the J/ψ persists to temperatures
as high as 1.5Tc [128,129]. (See sect. 7.3.3 below.) As the
temperature increases beyond Tc, it is thought that screen-
ing of the heavy-quark potential eventually prevents the
formation of a bound state and J/ψ production is sup-
pressed [130,129].

7.3.1 Static quark/antiquark free energy

There are two lattice methods for studying thermal effects
in quarkonium. The first, more model-dependent method,
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is based on a Born-Oppenheimer approximation [130].
One measures the free energy of a static quark-antiquark
pair as a function of separation r. The result is introduced
into the Schrödinger equation as a temperature-dependent
potential V (r, T ) for a given heavy quark mass. As the
temperature increases, screening effects weaken the po-
tential, and eventually it does not support a bound state
for quarks of the given mass. This approximation should
be good, provided the Born-Oppenheimer adiabatic ap-
proximation is good, i.e., as long as the plasma is able
to relax to its equilibrium state on the time scale of the
orbital motion of the quarks.

Gauge invariance presents a subtlety in fashionable
methods for extracting the free energy to be used as
a Born-Oppenheimer potential. It is popular to distin-
guish between color-singlet and color-octet states of the
static quark and antiquark. Since those states are sup-
posed to be defined in terms of the colors of only the spa-
tially separated quarks themselves, the separation is gauge
dependent and probably not phenomenologically signifi-
cant [131].

The potential method can be tested entirely in the
context of a lattice calculation. One starts from the lat-
tice static potential, derives the spectral function for the
thermal quarkonium propagator (see the next subsection),
and compares the result with a direct determination of the
lattice spectral function. If the static approximation is cor-
rect, the results should agree. Recent attempts to follow
this approach for Tc < T < 1.5Tc fail to reproduce any
charmonium states in the spectral function nor any but
the 1S state of bottomonium [132]. So is the determina-
tion of the lattice spectral function unreliable, or is the
static approximation unreliable for charmonium, or are
both unreliable?

Related attempts have been made to derive a heavy-
quark potential suitable for use in the Schrödinger equa-
tion in real time (as opposed to lattice imaginary time),
but so far the methodology is developed only in perturba-
tion theory [133–135].

7.3.2 Spectral density

The second method is model independent, but more dif-
ficult. One measures the spectral function of a ther-
mal Green’s function for the J/ψ [136]. The correlator
is defined for some suitable local interpolating operator
O(x0,x) as

C(x0,x, T ) = 〈O(x0,x)O(0, 0)〉 . (93)

The spectral density ρ(ω,q, T ) is then obtained by invert-
ing the Kubo formula for the partial Fourier transform
C(x0,q, T ) of the correlator:

C(x0,q, T ) =
1
2π

∫ ∞

0

dω ρ(ω,q, T )K(ω, x0, T ), (94)

where

K(ω, x0, T ) =
cosh ω(x0 − 1/2T )

sinh(ω/2T )
. (95)

Going from the Euclidean correlator C(x0,q, T ) to the
spectral density ρ(ω,q, T ) is a very difficult inverse prob-
lem. One would like to extract detailed information about
the spectral density from quite limited information. Be-
cause of time-reflection symmetry, a simulation at Nτ = 8
has only five, typically noisy, independent values.

Possible remedies include 1) assuming a functional
form for ρ and fitting its parameters (e.g., a delta function
for the J/ψ or a Breit-Wigner shape), 2) decreasing the
time interval at, allowing a larger Nτ , and 3) adding fur-
ther constraints on ρ, as in the maximum entropy method.
We outline the last remedy in the next subsection.

7.3.3 Maximum entropy method

The maximum entropy method has been used to deter-
mine spectral functions in condensed matter physics for
some time [137]. It was first applied to lattice QCD by
Asakawa, Hatsuda, and Nakamura [138,139]. It is essen-
tially a Bayesian method with a prior inspired by Occam’s
razor. One begins by defining an unremarkable default
prior spectral density ρ0(ω, T ). A typical choice would be
the spectral density of a noninteracting quark-antiquark
pair, or at least the density expected at asymptotically
high frequency. One then requires that the spectral den-
sity ρ, inferred from the correlator data, should deviate
only as much from ρ0 as the data seems to require.

The method is applied in the context of a maximum
likelihood fit to the correlator data. We give a simplified
description of the method. Starting from a parameteri-
zation of the spectral density ρ(ω, T ), one predicts the
correlator data and computes the usual chisquare χ2[ρ]
difference between prediction and data. One introduces a
Shannon-Jaynes entropy for this ρ as follows:

S[ρ] =
∫ ∞

0

dω [ρ(ω) − ρ0(ω) − ρ(ω) ln[ρ(ω)/ρ0(ω)]] .

(96)
The “entropy” vanishes when ρ = ρ0 and for small devia-
tions from ρ0, it is

S[ρ] ≈ −1
2

∫ ∞

0

dω [ρ(ω) − ρ0(ω)]2/ρ0(ω). (97)

So the default prior maximizes the entropy. One then max-
imizes the likelihood exp(Q[α, ρ]) or, equivalently, Q[α, ρ]
itself:

Q[α, ρ] = αS[ρ] − χ2[ρ]/2. (98)

The positive weight α controls the balance between max-
imum entropy and minimum chisquare. In the “state-of-
the-art” method, the mean of the best fits ρ̄ is then ob-
tained from the average:

ρ̄ =
∫

d[ρ]dα exp(Q[α, ρ]). (99)

This is our answer for the spectral density.
This method was used by Asakawa and Hatsuda to

study the fate of charmonium in the high-temperature
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Fig. 30. Spectral density ρ(ω) for the J/ψ for several temper-
atures shown in units of the crossover temperature Tc [128].
The ground-state peak is visible up to 1.62Tc. These results
are obtained in a quenched simulation.

medium [128]. See also [129] and, more recently, [140].
Their results for the J/ψ spectral density are shown in
fig. 30 and provided some of the first evidence that the
J/ψ exists as a discernible plasma resonance for temper-
atures at least as high as 1.62Tc before it “melts.”

When data are inadequate, results of the MEM method
can be quite sensitive to the choice of the default model.
For example, one may obtain artifact excited-state peaks.
For some examples, see [141].

8 Transport coefficients

8.1 Shear and bulk viscosities

Among the transport coefficients, the shear and bulk vis-
cosities are essential to the hydrodynamical modeling of
the expansion and cooling of the quark-gluon plasma in
the aftermath of a heavy-ion collision. They are obtained
from correlators of the energy momentum tensor at tem-
perature T

Cμν,ρσ(x0,x, T ) = 〈Tμν(x0,x)Tρσ(0)〉 . (100)

We need its spectral function ρ, which we obtain from its
partial Fourier transform Cμν,ρσ(x0,q, T ) and the Kubo

formula

Cμν,ρσ(x0,q, T ) =
∫ ∞

0

dω ρμν,ρσ(ω,q, T )K(ω, x0, T ),

(101)
where K(ω, x0, T ) is given by eq. (95). The shear (η) and
bulk (ζ) viscosities are obtained from the low-frequency
behavior of the spectral function ρ(ω,q, T ):

η(T ) = π lim
ω→0

ρ12,12(ω, 0, T )
ω

,

ζ(T ) =
π

9
lim
ω→0

ρii,jj(ω, 0, T )
ω

. (102)

Computing the viscosity has been a well-known challeng-
ing problem since it was first attempted by Karsch and
Wyld [142]. The correlator is noisy, requiring high statis-
tics. As with the J/ψ correlator, this is a difficult inverse
problem. A further complication is that the spectral func-
tion has a nasty T -independent, large ω, ultraviolet behav-
ior ρ ∼ ω4, which tends to overwhelm the low-frequency
contribution to C(x, τ) for low x0.

Possible remedies include 1) assuming a functional
form for ρ and fitting its parameters [142], 2) decreas-
ing the time interval at, allowing a larger Nτ [143], and
3) adding further constraints on ρ, such as maximum
entropy [144], and working at small nonzero momen-
tum [145].

Meyer [146–148] has done a new high-statistics calcu-
lation in pure Yang-Mills theory and uses a parameteri-
zation of the spectral function in terms of an optimized
basis set that folds in appropriate perturbative behavior
at large ω and then emphasizes deviations from this be-
havior. For the ratio of shear viscosity to entropy density,
he finds η/s = 0.134(33) at 1.65Tc where perturbation
theory gives 0.8, and for the ratio of bulk viscosity to en-
tropy density, ζ/s < 0.15 at 1.65Tc and ζ/s < 0.015 at
3.2Tc. These results support the notion that the plasma is
a nearly perfect fluid.

8.2 Dilepton emission and related quantities

The dilepton emission rate, the soft photon emissivity,
and the electrical conductivity of the plasma are other
important transport properties. They are obtained from
the thermal correlator of the electric current

GEM (x0,x, T ) = 〈Jμ(x0,x)Jμ(0)〉 , (103)

GEM (x0,q, T ) =
∫ ∞

0

dω

2π
K(ω, x0, T )ρEM (ω,q, T ). (104)

Again, this is a difficult inverse problem. The ultraviolet
divergence is milder here than with the spectral function
of the stress energy tensor. In this case ρ ∼ ω2. Otherwise,
the same methods have been applied.

The spectral density ρEM (ω, 0, T ) determines the dif-
ferential dilepton pair production rate [149]:

dW 4

dωd3p

∣∣∣∣
p=0

=
5α2

rmem

27π2

1
ω2(eω/T − 1)

ρEM (ω, 0, T ). (105)
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Fig. 31. Relationship between (a) the vector meson spectral
density ρEM (ω, 0, T ) (shown here as σV (ω, T )) and (b) the
dilepton differential production rate dW/dωd3p at zero three-
momentum, plotted as a function of energy ω in units of tem-
perature for two temperatures above the crossover temperature
Tc [150]. The solid lines represent a free quark-antiquark pair.
The dashed and dotted lines are lattice MEM results that show
a peak corresponding to a vector meson resonance. Results are
obtained in the quenched approximation.

An example of the relationship between the MEM deter-
mination of the spectral function and the resulting dilep-
ton rate is given by Karsch et al. [150] in fig. 31. These
results show a strong enhancement over the free quark-
antiquark pair contribution, at least up to three times
Tc resulting from a vector meson resonance. The hard
dilepton rate is obtained from the spectral function for
ω/T � 1, and there is rough agreement between pertur-
bation theory and lattice simulation.

As with the shear and bulk viscosity, the challenge is
getting to low frequency to obtain the soft photon emis-
sivity, and at zero frequency, the electrical conductivity:

σ(T ) =
1
16

∂

∂ω
ρEM (ω,0, T )

∣∣∣∣
ω=0

, (106)

Extracting the spectral function itself is challenging
enough. Extracting its derivative compounds the difficulty.
Gupta et al. [151] tried different Bayesian priors to con-
strain the spectral function.

9 Outlook

Numerical simulations have taught us much about the
properties of high-temperature strongly interacting mat-
ter. Here are highlights discussed in this article:

– We have a fair understanding of the QCD phase dia-
gram at nonzero temperature and zero or small baryon
densities and nearly physical quark masses.

– We have a phenomenologically useful determination of
the equation of state.

– We have a good understanding of the behavior of the
quark number susceptibility.

– We are beginning to understand the small mass limit
of the chiral condensate and its related susceptibilities.

– We know the plasma has persistent confining proper-
ties that are observable in screening masses and the
spatial string tension.

– We have some indications of the persistence of
hadronic states as resonances in the plasma phase at
temperatures close to and above Tc.

– We are starting to determine plasma transport coeffi-
cients.

– We are starting to make contact with perturbation the-
ory at high temperatures.

There are many outstanding questions. Here are par-
ticularly pressing ones:

– We need a more robust determination of transport co-
efficients.

– We do not have a good way to simulate at moderately
large or higher nonzero baryon number densities.

– We do not know, yet, whether the critical point in the
(μ/T, T )-plane is experimentally accessible.

– We do not know whether the tricritical point in the
(ms,mu,d)-plane lies above or below the physical ms.

– We would like to understand better the behavior of the
equation of state in the region where it overlaps with
hadron resonance gas models.

– It would be good to develop more confidence in our
understanding of the continuum limit of phenomeno-
logically important quantities.

– It would be good to have high precision results from
fermion formulations other than staggered for purposes
of corroboration.

– We would like to develop more confidence in our con-
tact with perturbation theory at high temperatures.

Work currently underway will help resolve some of
these issues. At zero or small baryon number densities we
expect progress with Wilson quark formulations, includ-
ing clover-improved and twisted-mass. Simulations with
domain-wall quarks will help test conclusions about chiral
properties. Forthcoming simulations with highly improved
staggered quarks (HISQ) will help reduce some of the lat-
tice artifacts of the staggered fermion formulation, espe-
cially at temperatures leading up to Tc, where we suspect
they are important.

For simulations at nonzero baryon number densities
we really need some new ideas. Perhaps stochastic quanti-
zation will help. For transport coefficients and the small-
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quark-mass region of the phase diagram, we may expect
progress simply by applying more computing power.

Lattice QCD thermodynamics is a very active field. We
expect continued strong progress in the years to come.

We thank Ludmila Levkova for a careful reading of the
manuscript. This work is supported by the National Science
Foundation under grants PHY04-56691 and PHY07-57333.
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