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1. Introduction

String theory on non-compact Calabi-Yau geometries is relevant for the construction of 4d

supersymmetric theories decoupled from gravity and provides simple examples for impor-

tant concepts of string theory in nontrivial geometrical backgrounds, as e.g. the behavior of

the amplitudes under topology change of the background geometry. Exploring the topologi-

cal sector has been especially fruitful in providing examples of large N -dualities connecting

topological string theory on these backgrounds to 3d Chern-Simons theory and matrix

models. If the geometric background has a non-trivial space time duality symmetry group,

which is the case if the local mirror geometry involves a Riemann surface of at least genus

one, the situation is as follows. Large N -dualities or localization principles apply to cer-

tain holomorphic limits of the topological string amplitudes and lead to local holomorphic

expansion of the latter at special points in the moduli space of the theory. Typically at

large radius these come in closed formulas involving infinite sums or products over parti-

tions coming from joining topological vertices or from Nekrasov localization formulas. The

expressions lead to formal, i.e. non-convergent expansions, in the string coupling whose

coefficients have finite radius of convergence in the moduli parameter. However, since

these limits break the invariance of the amplitudes under the space duality group this

fundamental symmetry property of the theory is obscured.

In this article we show that a simple bootstrap approach using extensively the full

space time modular invariance, the holomorphic anomaly equation and a local analysis

of the gap condition at the nodes is highly efficient in reconstructing modular invariant,

non-holomorphic string amplitudes for local Calabi-Yau spaces to all genus. They are

polynomials in generators of the modular groups, which are globally defined in the moduli

space of the theory. As a consequence the amplitudes are globally defined and holomorphic

limits can be easily obtained everywhere in the moduli space. The approach extends to

N = 2 gauge theories and matrix models.

The paper is organized as follows. In section 2 we recall the local Calabi-Yau A-model

geometries and how local mirror symmetry leads to a B-model geometry that is governed

by a family of Riemann surfaces Σg with a canonical meromorphic differential. We derive

the Picard-Fuchs equations for the periods and their solutions and thereby solve the genus

zero sector.

In section 3 we discuss the formalism of direct integration for local Calabi-Yau spaces.

The space-time modular group of Σg is a finite index subgroup Γ of Sp(2g,Z). The invari-

ance of the closed topological string amplitudes Fg under Γ and the holomorphic anomaly

equation implies that the Fg are elements in the ring of almost holomorphic modular func-

tions of Γ. The latter is generated by a finite number of holomorphic and non-holomorphic

generators. The relevant ones are constructed from the genus zero and genus one sector,

i.e. ultimatively from the solutions of the Picard-Fuchs equations. The covariant derivative

closes on these generators by (rigid) special geometry. The holomorphic anomaly equa-

tion can then be algebraically integrated w.r.t. the non-holomorphic modular generators.

This leaves a holomorphic modular ambiguity, which is fixed by the gap conditions at the

conifold discriminant.
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In section 4 we exemplify the formalism and show that the topological string on a local

Calabi-Yau geometry, which is the canonical line bundle over P2, is completely and very

efficiently solved by our bootstrap approach. We also show how the generators, which we

can construct in all cases from the solutions of the Picard-Fuchs equations relate in this

case to classical modular functions on the Γ0(3) ⊂ SL(2,Z) curve. We solve the theory to

genus 105 and present some of the holomorphic data at conifold, large structure point and

orbifold point.

In sections 5 and 6 we extend this formalism to multi moduli examples. We show for

the canonical bundle over F0 and F1, which have two parameters, how the gap condition at

the conifold is again sufficient to fix all boundary conditions. In these cases the unknowns

in the holomorphic ambiguity grow in leading order with (cg)2 much faster then in the

one moduli case. However, this is compensated by the fact that gap condition holds for all

normal directions to the conifold discriminant in the complex two dimensional moduli space.

In section 7 we discuss relations of the results to N = 2 Seiberg-Witten theory and

general matrix models for which the spectral curve is a family of Riemann surfaces with

g > 0 and to open string amplitudes.

The appendix A reviews the necessary facts from the theory of modular functions. We

try to give well known mathematical concepts a physical interpretation, which might shed

some light on the relation between the holomorphic and the modular anomaly.

2. Local mirror symmetry

The term local mirror symmetry refers to mirror symmetry for non-compact Calabi-Yau

manifolds. Examples for the A-model geometry are the canonical line bundle KS =

O(−KS) → S over a Fano surface1 S. The compact part of B-model geometry is in this case

given by a family of elliptic curves and a meromorphic differential. Using toric geometry as

below an infinite set of examples of non-compact three-folds can be constructed. They have

a partial overlap with the KS cases namely S = P1 × P1 or S = P2 and blow-ups thereof

S = BP2
1,BP2

2,BP2
3. The mirror geometry are Riemann surfaces with a meromorphic dif-

ferential, whose genus is given by the number of closed meshes in the degeneration locus

in the base of symplectic fibration, where two S1’s degenerate. For early applications of

local mirror symmetry to BPS state counting and geometric engineering of gauge theories

see [35] and [31] respectively. For a systematic formulation see [12, 24, 25]. Below we give

a very short review of the techniques.

2.1 The local A-model

The A-model geometry of a non-compact toric variety is given by a quotient

M = (Ck+3 − Z)/G, (2.1)

1Simpler examples involve line bundles over a complex curve such as O(2(g− 2)+ k)⊕O(−k) → Cg [10]

or manifolds M , which are given by a toric tree diagrams of the degeneration locus that correspond to genus

0 mirror curves.
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where G = (C∗)k [14]. On the homogeneous coordinates xi ∈ C the group G acts like

xi → µ
Qα

i
α xi, α = 1, . . . , k with µα ∈ C∗, Qαi ∈ Z. Here Z is the Stanley-Reisner ideal,

which has to be chosen so that the above quotient M exists as a variety.2 The standard

example is Pn = (Cn+1 − {0})/(C∗), with Q1
i = 1, i = 1, . . . , n. We denote generically by

S the compact part of M .

As explained in [44] M can also be viewed as the vacuum field configuration of a 2d

gauged linear (2, 2) supersymmetric σ model. The coordinates xi ∈ C, i = 1, . . . , k + 3 are

the vacuum expectation values of chiral superfields transforming as xi → eiQ
α
i ǫαxi, Q

α
i ∈ Z,

ǫα ∈ R, α = 1, . . . , k under the gauge group U(1)k. The vacuum field configuration are the

equivalence classes under the gauge group, which fulfill in addition the D-term constraints

Dα =
k+3
∑

i=1

Qαi |xi|2 = rα, α = 1, . . . , k . (2.2)

The rα are the Kähler parameters rα =
∫

Cα
ω, where ω is the Kähler form and Cα are

curves spanning the Mori cone, which is dual to the Kähler cone. rα ∈ R+ defines the

Kähler cone. For M to be well defined, field configurations for which the dimensionality of

the gauge orbits drop have to be excluded. This corresponds to the choice of Z. In string

theory rα is complexified to Tα = rα + iθα with θα =
∫

Cα
B, where B is the NS B-field,

while in the gauged linear σ-model the θα are the θ-angles of the U(1)k gauge group.

One can always describe M by a completely triangulated fan. In this case the Qαi
are linear relations between the points spanning the fan. A basis of such relations, which

corresponds to a Mori cone can be constructed from a complete triangulation of the fan.

Z likewise follows combinatorially from the triangulation, see the examples.3

The Calabi-Yau condition c1(TM) = 0 holds if and only if4

k+3
∑

i=1

Qαi = 0, α = 1, . . . , k. (2.3)

Note from (2.2) that negative Qi lead to non-compact directions in M , so that by (2.3)

all toric Calabi-Yau manifolds M are necessarily non-compact. To summarize, toric non-

compact A-model geometries will be defined by suitably chosen charge vectors Qαi ∈ Z.

We now come to invariants calculated by the A-model amplitudes. We consider maps

f : Cg →M from a genus g curve Cg, whose image curve is in the class β ∈ H2(S,Z). Now

let as in [34]

rgβ =

∫

M(β,S)
cvir(Uβ) , (2.4)

2We assume that M is simplicial, or that a simplicial subdivision in coordinate patches exists.
3Often there are many possible triangulation, which correspond to different phases of the model [44, 5],

e.g. Kähler cones connected by flopping a P
1. The union of the cones define by all triangulations is called

the secondary fan.
4Physically these are the conditions that the chiral U(1)A anomaly cancels in the gauged linear σ-

model [44].
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with Uβ the bundle whose fiber over (C, f) ∈ M(β,S) is H1(Cg, f∗M), be the Gromov-

Witten invariant. The classical task in the closed topological A-model is to calculate the

generating function

F = log(Z) =

∞
∑

g=0

λ2g−2Fg(Q) =
c(T )

λ2
+ l(T ) +

∞
∑

g=0

∑

β

λ2g−2rgβQ
β , (2.5)

with Qβ = exp(2πi
∑b2(S)

i=1 βiTi), βi ∈ Z+, involving all closed string Gromov-Witten invari-

ants as well as classical intersection numbers of the harmonic (1, 1)-forms 1
3!T

αT βT γ
∫

M ωα∧
ωβ ∧ ωγ in the cubic c(T ) and 1

24T
α
∫

M c2 ∧ ωα in the linear l(T ) term. The generating

function F can be reexpressed as one

F =
c(T )

λ2
+ l(T ) +

∞
∑

g=0

∑

β∈H2(S,Z)

∞
∑

m=1

ngβ
1

m

(

2 sin
mλ

2

)2g−2

Qβm (2.6)

for the BPS or Gopakumar-Vafa invariants ngβ ∈ Z or with qλ = eiλ the holomorphic

partition function

Z=
∑

β,k∈Z
ñkβ(−qλ)kQβ=

∏

β





(∞
∏

r=1

(1−qrλqβ)rn
0
β

) ∞
∏

g=1

2g−2
∏

l=0

(1−qg−l−1
λ Qβ)(−1)g+r( 2g−2

l )ng
β





(2.7)

becomes the generating function for the Donaldson-Thomas invariants5 ñkβ ∈ Z.

2.2 The local B-model

In the following we will describe the non-compact mirror W following [24, 31, 6]. Let

w+, w− ∈ C and xi =: eyi ∈ C∗, i = 1, . . . , k + 3 are homogeneous coordinates,6 i.e.

equivalence classes subject to the C∗ action

xi 7→ λxi, i = 1, . . . , k + 3, λ ∈ C
∗ . (2.8)

The mirror W is defined from the charge vectors Qαi by the exponentiated D-term con-

straints

(−1)Q
α
0

k+3
∏

i=1

x
Qα

i
i = zα, α = 1, . . . , k . (2.9)

and the general equation

w+w− = H =

k+3
∑

i=1

xi . (2.10)

The Calabi-Yau condition (2.3) ensures the compatibility of (2.9) with (2.8). Using the lat-

ter two equations to eliminate variables xi in (2.10)H can be parameterized by two variables

x = exp(u), y = exp(v) ∈ C∗ and the defining equations of the mirror geometry W becomes

w+w− = H(x, y; zα), (2.11)

5Here we dropped the classical terms.
6The xi here should not be identified with the xi, which describe the A model in the previous section.
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which is a conic bundle over C∗ × C∗, where the conic fiber degenerates to two lines over

the family of Riemann surfaces with punctures

Σ(z) := {H(x, y; zα) = 0} ⊂ C
∗ × C

∗ , (2.12)

parameterized by the complex parameters zα. To establish that W is a non-compact

Calabi-Yau manifold note that

Ω =
dHdxdy

Hxy
(2.13)

is a regularizable no-where vanishing holomorphic volume form on W . Its periods are regu-

larizable in the sense that H, y can be integrated out to yield a meromorphic one-form on Σ

λ =
log(y)dx

x
, (2.14)

whose periods clearly exist. They are annihilated by the linear differential operators

Dα =
∏

Qα
i >0

∂
Qα

i
xi −

∏

Qα
i <0

∂
−Qα

i
xi . (2.15)

The redundancy in the parameterization of the complex structure is removed using the

relations (2.9) and the scaling relation (2.8). To do that it is convenient to write the dif-

ferential operator (2.15) in terms of logarithmic derivatives θi := xi∂xi and transform to

logarithmic derivatives Θα := zα∂zα using θi = Qαi Θα.

As it is well known the solutions to (2.15) are constructed by the Frobenius method [12],

i.e. defining

w0(z, ρ) =
∑

nα

1
∏

i Γ[Qαi (n
α + ρα) + 1]

((−1)Q
α
0 zα)n

α
, (2.16)

then

X0 = w0(z, 0) = 1, Tα =
∂

2πi∂ρα
w0(z, ρ)|ρ=0 (2.17)

are solutions. Note that the flat coordinates Tα approximate Tα ∼ log(zα) in the limit

zα → 0. Higher derivatives

X(αi1
...αin ) =

1

(2πi)n
∂

∂ραi1
. . .

∂

∂ραin
w0(z, ρ)|ρ=0 (2.18)

also obey the recursion imposed by (2.15), i.e. they fulfill (2.15) up to finitely many terms.

However, a unique, up to addition of previous solutions, linear combinations of theXαi1
...αi2

is actually the last solution of the Picard-Fuchs system. This solution encodes the genus

zero Gromov-Witten invariants. It is a derivative of the holomorphic prepotential F0 and

the triple intersection Cijk = ∂Ti∂Tj∂Tk
F0 can be constructed from it, see the examples for

more details. We will turn to generating functions for the higher genus amplitudes in the

next section.
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3. Integrability of the holomorphic anomaly equation

This section is to review the recent results of [22, 4] on the polynomial recursive solution of

the holomorphic anomaly equation of [8] and to set our conventions. This recursive solution

is a generalization of the pioneering work of Yamaguchi and Yau [41] who observed that

the non-holomorphic dependence of the topological free energy function of the quintic can

be expressed by a finite number of generators. Our main focus is the local geometry, hence

we will mainly explain how the formalism simplifies in the non-compact case.

3.1 Direct integration in local Calabi-Yau geometries

One of the main tasks in topological string theory is to compute the free energies Fg
appearing in the topological string partition function Z = exp(

∑

λ2g−2Fg). We will assume

that the genus zero sector has been determined from the solutions to the Picard-Fuchs

equations discussed in section 2.2. The genus one amplitude is associated to the Ray-Singer

torsion of the Calabi-Yau space [8]. It fulfills a special holomorphic anomaly equation,

which is integrated to [7]7

F1 =
1

2
log
[

exp
[

K
(

3 + h1,1 − χ

12

)]

detG−1
i̄ |f1|2

]

. (3.1)

While the exponential of the real Kähler potential exp(K) ∼ X0 → 1 in the holomorphic

limit in the non-compact models [34], the F1 is non-holomorphic due to the Kähler met-

ric Gi̄ on the complex structure moduli space. f1 is the holomorphic ambiguity in this

integration and it can be argued to be a power of the discriminant loci of Σ [7, 21], i.e.

f =
∏

i∆
ai
i

∏h2,1

i=1 z
bi
i . The parameters, ai, bi, can be solved from the limiting behavior of

F1 near singularities, limzi→0 F1 = − 1
24

∑h2,1

i=1 ti
∫

M c2Ji as well as the universal behavior at

conifold singularities acon = − 1
12 .

As was shown in [8] Fg is for g > 1 a non-holomorphic section of a line bundle L2−2g

which fulfills a recursive differential equation

∂ ı̄Fg =
1

2
C̄jkı̄

(

DjDkFg−1 +

g−1
∑

r=1

DjFg−rDkFr

)

, (g > 1) (3.2)

called the holomorphic anomaly equation. The covariant derivatives contain the connection

∂iK = Ki of L and the Christoffel symbols Γijk of the Kähler metric. The recursive nature

is due to the fact that Riemann surfaces with marked points split at the boundary of moduli

space, M, into either pairs of lower genus surfaces or surfaces with fewer marked points.

The key input for the direct integration procedure is the special geometry integration

condition

∂̄ı̄Γ
k
ij = δki Gjı̄ + δkjGīı − CijlC̄

kl
ı̄ . (3.3)

Here Cijl are the holomorphic Yukawa couplings which transform as Sym3(TM) ⊗ L−2

and C̄klı̄ = e2KGkk̄Gll̄C̄ı̄k̄l̄. (3.3) implies that the propagator Sij, which is defined by

7In the following we denote the non-holomorphic quantities by straight characters Fg and the holomorphic

limits by calligraphic characters Ff
1 , with a label f of the patch, where the limit is taken.
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∂̄k̄S
ij = C̄ij

k̄
, can be solved from the integrated version of (3.3) [8]

Γkij = δki ∂jK + δkj ∂iK − CijlS
kl + f̃kij , (3.4)

up to the holomorphic ambiguity f̃kij. Taking the anti holomorphic derivative, using (3.3)

and ∂̄S
k = Sk̄ it follows that

∂̄k̄(DiS
kl) = ∂̄k̄(δ

k
i S

l + δliS
k − CinmS

kmSln) , (3.5)

and so

DiS
kl = δki S

l + δliS
k − CinmS

kmSln + fkli . (3.6)

In the local case one has the following simplifications.8 The Kähler connection in

Di becomes trivial, and the Sl, (as well as the S, see [8]) vanish, i.e. the above equation

becomes simply

DiS
kl = −CinmSkmSln + fkli . (3.7)

Also, the Kähler connection ∂jK in (3.4) drops out, so the Sij are solved from

Γkij = −CijlSkl + f̃kij . (3.8)

Note that this is an over-determined system in the multi moduli case which requires a

suitable choice of the ambiguity f̃kij. This choice is simplified by the fact [1] that ∂iF1 can

be expressed through the propagator as

∂iF1 =
1

2
CijkS

jk +Ai, (3.9)

with an ambiguity Ai, which can be determined by the ansatz Ai = ∂i(ãj log ∆j+ b̃j log zj).

Once the Sij are obtained and the ambiguities in (3.7), (3.8) have been fixed, the direct

integration of (3.2) is quite simple. Everything on the right hand side of the holomorphic

anomaly equation (3.2) can be rewritten in terms of the generators Sij and holomorphic

functions. If we further express the anti-holomorphic derivative of Fg as

∂ ı̄Fg = C̄jkı̄
∂Fg
∂Sjk

, (3.10)

and assume linear independence of C̄jkı̄ , (3.2) can be written as

∂Fg
∂Sjk

=
1

2

(

Dj∂kFg−1 +

g−1
∑

r=1

∂jFg−r∂kFr

)

. (3.11)

This equation can easily be integrated w.r.t. Sij and it can be shown that Fg is a polynomial

in Sjk of degree 3g − 3.

8In the global case on needs further the closing of covariant derivatives of Si and S with ∂ı̄S = Gı̄jS
j .

This has been discussed in [41, 22] and particular nicely in [4].
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3.2 Fixing the ambiguity

Due to the equation (3.11) the iteration in the genus is in principle quite easy on the

B-model side and the topological invariants of the A-model geometry can be extracted

without effort. However, the issue is fixing the holomorphic ambiguity fg arising after each

integration step w.r.t. the Sij. Modularity, regularity at the orbifold point and at the large

radius point, as well as the leading behavior at the conifold singularities [21] imply the

following ansatz for fg

fg =
∑

i

Aig

∆2g−2
i

, (3.12)

where Aig is a polynomial in z of degree (2g−2)·deg ∆i and the sum runs over all irreducible

components of the discriminant locus. Note that the moduli space M(Σ) allows a com-

pactification, which includes only the ordinary double point discriminants or conifolds at

complex codimension one loci in the moduli space. Aig are polynomials in the monodromy

invariant variables zi, i = 1, . . . , n of the model. Their degree is bounded by regularity of

the Fg in the limit that these variables tend to infinity by the degree of the ∆i. In general

this implies a growth of the unknowns roughly with (cig)
n, where ci depends on the degrees

of ∆i. However, if we approach a conifold singularity we also find in the multi parameter

case a gap. It is of the form

Fc
g =

cg−1B2g

2g(2g − 2)t2g−2
c

+ O(t0c) . (3.13)

where we approach a conifold in the limit tc → 0, with tc a flat coordinate normal to

the singularity9 (see figure 3). The coefficients of the sub-leading powers of tc depend

generically on the further n− 1 directions, which are tangential to the discriminant locus.

For a generic choice of coordinates these coefficients are (infinite) series in the tangential n−
1 variables. However, demanding the vanishing of these coefficients is an over-determined

system and it is not easy to count the independent conditions. But in local models where

the geometry of the B-model is completely encoded in a Riemann surface of genus g > 0 we

find that the gap condition is sufficient to determine all parameters in the ambiguity except

for the one, which corresponds to the constant term in Fg. The latter can be determined

by the known constant map contribution to Fg at the point of large radius in moduli space

Fg =
χB2g−2B2g

4g(2g − 2)(2g − 2)!
+ O(Q). (3.14)

Therefore we find that the holomorphic anomaly equations are completely integrable for

local Calabi-Yau spaces. Our claim that this is true in general is motivated by the fact

that the only type of degeneration of a Riemann surface in complex codimension one is the

nodal degeneration and the leading local behavior of the Fg at this singularity is always

governed by the gap structure and in particular the argument for the existence of the

gap [30] does not depend on the direction nor on the particular point at which the conifold

locus is approached.

9c is an undetermined constant, which can be absorbed by rescaling the variable tc.
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4. KP2 = O(−3) → P
2

The toric data of KP2 is summarized in the following matrix

(V |Q) =











0 0 1 −3

1 0 1 1

0 1 1 1

−1 −1 1 1











(4.1)

The A-model is described from these data as follows. The generators of the toric fan F

vi, i = 0, . . . , 3 are the rows of V , while the columns of Q are the charge vectors, which

are the coefficients of linear relations among the vi. To each vi we associate homogeneous

coordinates xi. There is an unique complete triangulation of F into simplexes given by

T = {{v0, v1, v2}, {v0, v1, v3}, {v0, v2, v3}}. The Stanley-Reisner ideal Z is generated by

intersection of divisors Di = {xi = 0}, whose associated points are not on a common

simplex in T , i.e. by Z = {x1 = x2 = x3 = 0}. The (x1 : x2 : x3) are hence the homogeneous

coordinates of P2. The three C3 patches that cover the 3-fold KP2 are specified by the

scaling in (2.1) as (l1 = x0x
3
1;u1 = x2/x1, v1 = x3/x1), (l2 = x0x

3
2;u2 = x1/x2, v2 = x3/x2)

and (l3 = x0x
3
3;u3 = x1/x3, v3 = x2/x3) with the obvious transition functions.

The B-model geometry is defined by the one parameter family of Riemann surfaces

Σ(z)

H(x, y; z) = x+ 1 − z
x3

y
+ y = 0 . (4.2)

Here we set x1 = 1 in (2.10) by the scaling relation (2.8) and eliminated x2 using (2.9) in

favor of x := x0 and y := x3.

4.1 Global properties of the moduli space of Σ(z)

After writing (4.2) in Weierstrass form in P2 we find the j-function of the elliptic family

Σ(z)

j = − (1 + 24 z)3

z3 (1 + 27 z)
. (4.3)

Its moduli space for the complex structure parameter z is M(Σ(z)) = P1 \ {z = 0, z =

− 1
27 ,

1
z = 0}. The critical points of j are referred to as large radius point, conifold points

and orbifold point,10 respectively.

Following the description after (2.15) we find

D = Θ3 + 3z(3Θ − 2)(3Θ − 1)Θ = LΘ, (4.4)

here L is the Picard-Fuchs equation for the periods over the holomorphic differential ω = dx
y .

From this follows that

z
d

dz
λ = ω + exact, (4.5)

10By using a multi covering variable ψ = − 1

3z
1

3

one gets three symmetric conifold points at ψ3 = 1 and

no orbifold point.
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1/z=0z=−1/27 z=0

conifold large radius orbifold

IP1

Figure 1: Definition of the monodromies in M(Σ(z)) = P1 \ {z = 0, z = − 1

27
, 1

z
= 0}.

where λ is the meromorphic differential. This meromorphic differential λ has a pole with

non-vanishing residue and we denote the cycle around this pole γ, while a, b ∈ H1(Σ,Z)

are a basis for the integral cycles on Σ. On Π̂ = (
∫

b λ,
∫

a λ,
∫

γ λ)T the monodromy acts by

Mz=0 =







1 3 0

0 1 1

1 0 1






, Mz=− 1

27
=







1 0 3

−1 1 1

0 0 1






, M 1

z
=0 = M−1

z=− 1
27

M−1
z=0 , (4.6)

as can be seen explicitly by analytic continuation of the periods into the three patches near

the singular points (4.8), (4.17) as well as (4.23), (4.24). It follows from the monodromy

invariance of z and (4.5), that the upper left (2× 2) block in the above matrices acting on

Π̂ represents also the monodromy action on the Π = (
∫

b ω,
∫

a ω)T . The later generates

Γ0(3) =

{(

a b

c d

)

∈ SL(2,Z)

∣

∣

∣

∣

∣

b ≡ 0 mod 3

}

. (4.7)

4.2 Periods and genus zero and one amplitudes in all patches

We review now the construction of the holomorphic prepotential encoding the genus zero

amplitude and the an-holomorphic Ray-Singer torsion encoding the genus one amplitude

in the patches near the three singular points described above. In each patch we introduce

appropriate flat coordinates, distinguished by the monodromies around the critical points.

Once the flat coordinate is chosen one can consider a holomorphic limit of the amplitudes

for g > 0. This yields holomorphic generating functions for certain topological invariants,

depending on the point in moduli space. Notably the Gromov-Witten invariants near z = 0

and the orbifold Gromov-Witten invariants near 1
z = 0. The most useful structure for the

integrability comes from the gap in the expansion at the conifold.

4.2.1 Expansion near the large radius point

The solutions near z = 0 are according to (2.17), (2.18) given11 by ω0(z, 0) = 1, X(1) =
1

2πi (log(z) + σ1(z)) and X(1,1) = 1
(2πi)2

(log(z)2 + 2σ1 log(z) + σ2(z)), where the first orders

11We also note that the system (4.4) is related to the Meijer G-functions and T =

− 1

2πiΓ( 1

3
)Γ( 2

3
)
G3 3

2 2

„

1

3

2

3
1

0 0 0

˛

˛

˛

˛

27z

«

.
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are σ1 = −6 z + 45 z2 + O(z3) and σ2 = −18 z + 423 z2

2 + O(z̃3). The actual integral basis

of periods is given by the linear combinations

Π̂ =







TD
T

1






=







−9∂TF0

T

1






=







3
2X

(1,1) − 3
2T + 3

4

X(1)

1






(4.8)

In order to express F0 in terms of the flat coordinate T , we introduce the monodromy

invariant quantity Q = e2πiT and invert. This yields the large radius mirror map

z(Q) = Q+ 6Q2 + 9Q3 + 56Q4 − 300Q5 + · · · (4.9)

The normalization TD = −9∂TF0 is such that F0 is the generating function for the

genus zero Gromov-Witten invariants of O(−3) → P2 in the normalization that reproduces

the A-model results obtained first by localization [34], see table B.1 for the BPS invariants

F0 = −T
3

18
+
T 2

12
− T

12
+ 3Q− 45Q2

8
+

244Q3

9
− 12333Q4

64
+

211878Q5

125
+ · · · (4.10)

The normalization of the Yukawa coupling, with which we get this expansion is

Czzz = −1

3

1

z3(1 + 27z)
. (4.11)

The Yukawa coupling transforms as Sym3(TM) ⊗ L−2, where the Kähler connection, i.e.

the line bundle L is trivial in the local case. From the special Kähler relations in flat

coordinates we get
(

∂

∂T

)3

F0 = CTTT =

(

∂z

∂T

)3

Czzz . (4.12)

Note that (4.11) is modular invariant and valid in all M(Σ). The expression (4.12) on the

other hand requires a choice of the flat coordinate T , which is only canonical near z = 0.

One can view T as the coordinate and PT = ∂TF0 as the dual momentum and show that

Z = exp(F ) transforms as a wavefunction under a change of polarization, i.e. when a differ-

ent choice (related by a linear transformation) for coordinates and momenta is made [43, 3].

Using the standard definition of the modular parameter of the family of elliptic curves

τ =
R

b ω
R

a
ω
, (4.5) and (4.8) we find

τ =
∂TD
∂z
∂T
∂z

= −9
∂3F0

∂3T
. (4.13)

The resulting relation z(q), with q = exp(2πiτ) has to be compatible with (4.3). Indeed

inserting z(q) into (4.3) yields the standard expansion of the elliptic j-function (A.11).

Using z(q) we can express the non-holomorphic genus one potential as

F1 = − log (
√
τ2η(q)η̄(q̄)) −

1

24
log

(

1 +
1

27z

)

. (4.14)
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Both the Dedekind η function as well as 1 + 1
27z are powers of the discriminant of Σ. The

former transforms with weight 1
2 that is canceled by that of τ2 (A.2). We note that both

forms of F1 (3.1) and (4.14) are manifestly modular invariant.

Using detG−1
i̄ → C det ∂zi

∂Tj
in the holomorphic limit T̄ → ∞ or equivalently τ → i∞

one gets up to irrelevant constants the holomorphic expression

F1 =
1

2
log

(

∂z

∂T

)

− 1

12
log

(

z7

(

1 +
1

27z

))

. (4.15)

This expression is not modular invariant and depends on the choice of our special coordi-

nate. It does give however the generating function for GW invariants at genus one

F1 =
T

12
+
Q

4
− 3Q2

8
− 23Q3

3
+

3437Q4

16
− 43107Q5

10
+ · · · (4.16)

in accordance with [34], see table B.1 for the BPS invariants.

4.2.2 Expansion near the conifold

To obtain the closed variables at the conifold we solve the Picard-Fuchs equation after

the variable transformation z = ∆−1
27 . The basis of periods at large radius (4.8) has the

following expansion at the conifold point

Π =







a tc
3 a tcD

1






=







a tc
3 a ∂tc Fc

0

1







=







a(∆ + 11 ∆2

18 + 109 ∆3

243 + O(∆4))

a
(

a0 + a1tc − 1
2πi(tc log(∆) + 7∆2

12 + 877∆3

1458 + O(∆4))
)

1






, (4.17)

where a = −
√

3
2π , a0 = −π

3 − 1.678699904i = 1
i
√

3Γ( 1
3)Γ( 2

3)
G3 3

2 2

(

1
3

2
3

1
0 0 0

∣

∣

∣

∣

− 1

)

and a1 =

3 log(3)+1
2πi .

The natural local flat coordinate at the conifold is tc and with the conifold mirror map

∆ = tc −
11t2c
18

+
145t3c
486

− 6733t4c
52488

+ O
(

t5c
)

(4.18)

the genus zero prepotential becomes

Fc
0 =c0+

a0

3
tc+

(

a1

6
− 1

12

)

t2c+t
2
c

log(tc)

6
− t3c

324
+

t4c
69984

+
7 t5c

2361960
− 529 t6c

1700611200
+O(t7c) . (4.19)

Note that we rescaled tc by a in order to avoid non rational numbers in this expansion

and the extra factor 3 in (4.17) is so that ∂3
tcFc

0 =
(

∂z
∂tc

)3
Czzz(tc) We can also find the

holomorphic limit of the genus one prepotential as

Fc
1 =

1

2
log

(

∂z

∂tc

)

− 1

12
log

(

z7

(

1 +
1

27z

))

(4.20)

and expand it as

Fc
1 =c′0−

log(tc)

12
+

5 tc
216

− t2c
23328

− 5 t3c
157464

+
283 t4c

75582720
− 43 t5c

153055008
+

4517 t6c
385698620160

+O(t7c) . (4.21)
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4.2.3 Coordinates and amplitudes at the orbifold

At the orbifold point, the model admits an exact field theory description as an orbifold of

three complex bosons C3/Z3. After transforming the Picard-Fuchs equation to the ψ =

− 1

3z
1
3

coordinate we find the following local expansion of a basis of solutions (1, B1, B2) with

Bk = (−1)
k
3
+k+1 (3ψ)k

k

∑

n=0

[

k
3

]3

n
∏3
i=1

[

k+i
3

]

n

ψ3n , (4.22)

where [a]n = a(a+1) . . . (a+n+1) is the Pochhammer symbol. We define orbifold periods,

which diagonalize the Z3 orbifold monodromy action

Πorb =







σD
σ

1






=







−3∂σForb
0

σ

1






=







B2

B1

1






, (4.23)

i.e. (B2, B1, 1) 7→ (exp
(

4πi
3

)

B2, exp
(

2πi
3

)

B2, 1) under ψ 7→ exp
(

2πi
3

)

ψ. Note, that this is

not the basis at large radius, but rather connected to it by the transformation Π = MΠorb

with

M =







− 3
1−αA

3α
1−αB 1

A B 0

0 0 1






. (4.24)

Here we introduced

A :=
iΓ
(

2
3

)

2πΓ2
(

1
3

) , B :=
iΓ
(

1
3

)

2πΓ2
(

2
3

) , α := exp

(

2πi

3

)

. (4.25)

We normalize the flat coordinate σ and Forb
0 to match the orbifold Gromov-Witten

invariants of [13] in the orbifold prepotential

Forb
0 =

σ3

18
− σ6

19440
+

σ9

3265920
− 38497σ12

2571324134400
+ · · · (4.26)

and the special geometry relation ∂3
σForb

0 =
(

∂z
∂σ

)3
Czzz(σ), which implies the orbifold

mirror map
ψ

α2
=
σ

3
+

σ4

1944
− 29σ7

11022480
+ O(σ10) . (4.27)

The expansion for the holomorphic limit of the Ray-Singer Torsion reads

Forb
1 =

1

2
log

(

∂z

∂σ

)

− 1

12
log

(

z7

(

1+
1

27z

))

=c0+
σ6

174960
− σ9

6298560
+

13007σ12

3142729497600
+· · · .
(4.28)

4.3 Direct integration for KP2

Let us now discuss the direct integration for the non-compact KP2 geometry. Here we have

only one propagator, which we denote in the z variables by Szz. The propagator has a

holomorphic ambiguity, which we may choose by imposing in (3.9) the vanishing of Az

Szz =
2

Czzz
∂zF1 . (4.29)
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This implies the following ambiguity factors in (3.4)

Γzzz = −CzzzSzz −
7 + 216z

6z∆
(4.30)

and in (3.7)

DzS
zz = −CzzzSzzSzz −

z

12∆
. (4.31)

The right hand side of equation (3.11) is easily evaluated using the connection Γzzz and

yields e.g. for g = 2 using (4.29), (4.30) and (4.31)

∂SzzF2 = C2
zzz

(

5(Szz)2

8
− 3z2Szz

8
+
z4

16

)

, (4.32)

which integrates to

F2 = C2
zzz

(

5(Szz)3

24
− 3z2(Szz)2

16
+
z4Szz

16
+
z6(729z2 + 162z − 11)

1920

)

. (4.33)

The integration constant fg of the Szz integration (f2 = 729z2+162z−11
1920(1+27z)2

in (4.33)) can be

fixed from the boundary behavior of Fg. Since z is a global parameter, we only need to

know the holomorphic limit of Szz in terms of the flat coordinates tf ∈ {T, tc, σ} near large

radius, conifold and orbifold point

Szzf =
2

Czzz
∂zFf

1 =
2

Czzz
∂z

(

1

2
log

(

∂z

∂tf

)

− 1

12
log

(

z7

(

1 +
1

27z

)))

(4.34)

in order to evaluate Fg in the local coordinates in all patches.

The conditions on the local expansion are similar as in the compact case in [30], namely

the gap condition at the conifold, regularity at orbifold and the constant map contribution

at infinity. The difference is that in the non-compact case these conditions are sufficient to

fix the kernel of (3.11) completely. The argument is as follows. The maximal pole at the

conifold is 1
∆2g−2(z)

and there is no pole at the orbifold nor at infinity. Modularity implies

that the possible numerator of the ambiguity is a polynomial in the modular invariant z.

Since Fg is finite at the orbifold at 1
z = 0 the denominator degree of z cannot exceed 2g−2,

i.e. the ambiguity has to be of the form
p2g−2(z)
∆2g−2 . 2g−2 of the 2g−1 coefficients of p2g−2(z)

follow from the gap condition

Fg =
3g−1B2g

2g(2g − 2)t2g−2
c

+ O(t0c), (4.35)

here tc is the unique vanishing period at the conifold given in (4.17). One additional

condition follows from constant map contribution at infinity

Fg =
3B2g−2B2g

4g(2g − 2)(2g − 2)!
+ O(Q) . (4.36)

With this boundary information the model is completely integrable. The integra-

tion step can be further simplified. As all Fg are of the form Fg = C2g−2
zzz Pg =
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C2g−2
zzz

∑3g−3
i=0 (Szz)if ig(z), it is natural to rewrite (3.11) for the Pg. To do this denote

δz = 1
Czzz

∂z, so that e.g. δzS
zz = (Szz)2 − z2(7 + 216z)Szz + z4

4 , and define the derivative

δ on a weight k function gk as δgk = (δz + 3kz2(1 + 36z))gk . The weights are [Pg] = 6g− 6

and [δPg ] = 6g − 3 and (3.11) reads

∂SzzPg =
1

2

(

(

δ − Γzzz
Czzz

)

δPg−1 +

g−1
∑

r=1

δPg−rδPr

)

. (4.37)

In this form the equation is most easily integrated to very high genus (up to genus 80 in a

few hours on a modern PC).

4.4 Modular expressions for the Fg on KP2

The aim of this section is to relate the expression for Fg obtained in the previous section

to classical modular forms. Some results in this direction have been obtained in [3] for a

related family of elliptic curves Σ̃(z̃)

3
∑

i=1

x3
i + z̃−

1
3

3
∏

i=1

xi = 0 , (4.38)

which comes from the Landau-Ginzburg model, whose infrared limit is the exact field

theory C3/Z3 mentioned in the section 4.2.3.

In order to understand the relation between the curves let us calculate the j-function

of (4.38)

̃ =
(216z̃ − 1)3

z̃(1 + 27z̃)3
. (4.39)

̃ is transformed into (4.3) when we identify

z̃ = − 1

27
(1 + 27z) (4.40)

which exchanges the large radius point and the conifold point of Σ̃(z̃) and Σ(z). Such

reparametrization symmetries are ubiquitous in N = 2 supersymmetric theories, e.g. in

Seiberg-Witten theory [33], and the associated curves Σ and Σ̃ are called isogenous. It can

be checked that periods of Σ̃(z̃) fulfill the same Picard-Fuchs equation (4.4) as the ones of

Σ(z) with the argument z replaced by z̃. In fact the periods of the curves are related by

a rescaling so that their modular parameter is rescaled by a factor 3

τ = 3τ̃ , (4.41)

as can be seen by comparing the z̃(q̃) and z(q) expansions that follow from (4.39) and (4.3).

In [3] quantities in the parameterization of the curve (4.38) have been related to θ-

constants that generate modular forms of Γ0(3)
12

a := θ3

[

1
6
1
6

]

, b := θ3

[

1
6
1
2

]

, c := θ3

[

1
6
5
6

]

, d := θ3

[

1
2
1
6

]

, (4.42)

12Because [3] worked with (4.38) all modular quantities below are understood to have the argument τ̃ .
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which all have weight 3/2 and satisfy with α = exp
(

2πi
3

)

the relations [20]

c = b− a, d = a+ αb, η12 =
i

33/2
abcd . (4.43)

Following the observation in [3] ψ̃ = − 1
z̃1/3 = α2

(

a−c−d
d

)

and (4.43) we get

z̃ = − 1

33

d4 + η12

d4
(4.44)

and
∂T

∂ψ̃
= −α

√
3
d

η
, (4.45)

For this curve one finds the genus one amplitude

F1 = − log(
√

τ̃2η(τ̃ )η̄(¯̃τ)) +
1

24
log

(

1 +
1

27z̃

)

= −1

2
log

(

τ̃2θ
1
2

[

1
2
1
6

]

η
1
2 η̄

)

(4.46)

Note that (4.46) can be transformed into (4.14) by applying (4.40) and (4.41). A small

calculation using (4.46), (A.13) and (4.45) gives the propagator in terms of standard

modular expressions

Sψ̃ψ̃ =

(

∂ψ̃

∂z̃

)2
(

Szz − z̃2

4

)

=
1

12

(η

d

)2
Ê2(τ̃) . (4.47)

This and (4.44) allows to rewrite all Fg in terms of theta functions and Ê2. With

Fg = Xg−1P̂g, where X = d2

2936η18
is a weight −3 form, we get e.g.

P̂2 =5Ê3
2 +

α

η2

(

d4+27η12

d

)
2
3

Ê2
2−

α2

3η4

(

d4+27η12

d

)
4
3

Ê2−
(d4−27η12)(d4+33η12)

15d2η2
. (4.48)

Since Ê2, d, η close under derivatives dτ̃d = E2d
8 + d3

108η2(−z̃)
2
3

(dτ̃ z̃ = −33 η10

d2
(−z̃) 4

3 ), it is

obviously possible to set up the direct integration in terms of the modular expression. We

leave this to the reader.

4.5 The higher genus results for KP2

At the large radius point we recorded some Gopakumar-Vafa invariants in appendix B.

The results agree with the literature as far as they are known. Both w.r.t. to the genus

as well as to the degree the method outlined here is the most effective one to get these

generating functions. An excellent check on this data is provided already by the formulas

n
g(d)
d = (−1)

d(d+3)
2

(d+1)(d+2)
2 and n

g(d)−1
d = −(−1)

d(d+3)
2

(

d
2

)

(d2 + d − 3) for the highest

genus g(d) = (d−1)(d−2)
2 and the next to highest genus BPS invariant in each degree d,

which were derived in [32]. In fact we checked that the spaces in [32], which model the

moduli space of the D2-D0 brane system with D2 brane charge d are smooth for D2 branes

wrapping holomorphic curves of genus g(d)−δ with up to δ = d−1 nodes. As a consequence

the formula (4.15) of [32] applies for n
g(d)−δ
d , with e(C(p)) = e(P(d(d+3)/2−p)e(HilbpP2) for
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g\d 0 1 2 3 4

0 1

3

−1

33

1

32

−1093

36

1 0 1

35

−14

35

13007

38

2 1

27335

1

24355

−13

2436

20693

24385

−12803923

243105

3 −1

29355·7

−31

25375·7

11569

25395·7

−2429003

253105·7

871749323

253115·7

4 −311

21138527

313

273952

−1889

2839

115647179

2631352

−29321809247

2831252

5 24559

21439527·11

−519961

29311527·11

196898123

29312527·11

−339157983781

29314527·11

78658947782147

29316527

6 −49922143

214311537211·13

14609730607

212313537211·13

−258703053013

2103155·7211·13

2453678654644313

212314537211·13

−4001577419369601803

211318537211·13

7 1341390269

216313537211·13

−1122101011

213314537·11

2196793414201

211317537·11

−2127526097369539

213318527·11

26373375124439869913

212320537·11

8 −1701146456533

219315537211·13·17

1424424798274897

215317547211·13·17

−80699319730594681

215319537211·17

3471527490671857976969

216320537211·13·17

−114258620434929543630324227

216322547211·13·17

Table 1: Low genus orbifold Gromov-Witten invariants Ng,d

δ = 0, . . . , d − 1, yielding 120 non-trivial checks for the BPS numbers in appendix B. We

also expect that the relatively simple recursive nature of the procedure described here will

allow to study high genus asymptotics of BPS states.

The Fc
g near the conifold are expected to correspond to a perturbation of the c = 1

string at selfdual radius, which has been established as a dual description of the topological

string at the conifold [21], but the details of the identification of the perturbation param-

eters are not completely clarified [16]. The most notable structure is the gap in the Fc
g

expansion at higher genus. We display a few low genus Fc
g

Fc
2 = 1

80 t2c
− 1

51840 − tc
19440 + 3187t2c

377913600 − 239 t3c
255091680 + O(t4c)

Fc
3 = 1

112 t4c
− 1

117573120 − tc
1469664 + 23855 t2c

179992689408 − 557 t3c
24794911296 + O(t4c)

Fc
4 = 3

160 t6c
− 1

63489484800 − 7 tc
377913600 + 6830569 t2c

1190155742208000 − 1561279 t3c
1205032688985600 + O(t4c)

Fc
5 = 27

352 t8c
− 1

16761223987200 − 809 tc
942818849280 + 118418785 t2c

326612060022657024 − 113975899 t3c
1002105184160424960 + O(t4c)

Fc
6 = 18657

36400 t10c
− 691

1853204730144768000 − 1276277 tc
21059144660736000 + 279842720162009 t2c

9052836032762704465920000 + O(t3c)

Fc
7 = 81

16 t12c
− 691

200146110855634944000 − 7943 tc
1309171316428800 + 27776712091 t2c

7792369912031464488960 + O(t3c)

Fc
8 = 2636793

38080 t14c
− 3617

81659613229099057152000 − 25034924437 tc
30622354960912146432000 + O(t2c)

(4.49)

If we denote as in [3] the generating function

Forb
g =

1

(3k)!
Ng,kσ

3k , (4.50)

we can read of the orbifold Gromov-Witten invariants, see [3, 9], from our results, as in

the table below.13 Some of the results beyond g = 0 have been confirmed in [9].

5. KP1×P1 = O(−2, −2) → P
1

× P
1

We are considering the non-compact Calabi-Yau geometry O(−2,−2) → P1 × P1, i.e. the

canonical line bundle over the Hirzebruch surface F0 = P1 × P1. This local model can be

obtained from the compact elliptic fibration over F0 with fiber X6(1, 2, 3). The three com-

plexified Kähler volumes have the corresponding Mori cone generators (−6; 3, 2, 1, 0, 0, 0, 0),

13It corrects some misprints in [3, 9].
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(0; 0, 0,−2, 1, 0, 1, 0), (0; 0, 0,−2, 0, 1, 0, 1). Roughly, in the local limit the volume of the el-

liptic fiber is send to infinity. The B-model mirror description of the local geometry is

encoded in a Riemann surface with a meromorphic differential as pointed out before.

According to [27] and using the above mentioned charge vectors, one can derive a

Picard-Fuchs system governing the periods of the global mirror geometry. They are given by

D1 = Θ1(Θ1 − 2Θ2 − 2Θ3) − 18z1(1 + 6Θ1)(5 + 6Θ1)

D2 = Θ2
2 + z2(1 − Θ1 + 2Θ2 + 2Θ3)(Θ1 − 2Θ2 − 2Θ3)

D3 = Θ2
3 + z3(1 − Θ1 + 2Θ2 + 2Θ3)(Θ1 − 2Θ2 − 2Θ3),

(5.1)

where we denote the logarithmic derivative by Θi = zi
∂
∂zi

. z1 is the complex structure

parameter dual to the Kähler parameter of the elliptic fiber tF. The local limit is obtained

by sending this parameter to zero, z1 → 0.

Now let us turn to the non-compact geometry. The toric data of local F0 is summarized

in the following matrix, V denoting the vectors which span the fan and Q denoting the

charge vectors.

(V |Q) =















0 0 1 −2 −2

1 0 1 1 0

0 −1 1 0 1

−1 0 1 1 0

0 1 1 0 1















(5.2)

From there we conclude the following quantities as was explained in section 2.2. C
(0)
ijk

denote the classical triple intersection numbers. They, as well as
∫

M c2Ji, were computed

using toric geometry.

a) Q1 = (−2, 1, 0, 1, 0), Q2 = (−2, 0, 1, 0, 1)

b) Z = {x1 = x3 = 0} ∪ {x2 = x4 = 0}
c) M = (C5[x0, . . . , x4] \ Z)/(C∗)2

d) H(x, y) = y2 − x3 − (1 − 4z1 − 4z2)x
2 − 16z1z2x

e) D1 = Θ2
1 − 2z1(Θ1 + Θ2)(1 + 2Θ1 + 2Θ2) (5.3)

D2 = Θ2
2 − 2z2(Θ1 + Θ2)(1 + 2Θ1 + 2Θ2)

∆ = 1 − 8(z1 + z2) + 16(z1 − z2)
2

f) C
(0)
111 =

1

4
, C

(0)
112 = −1

4
, C

(0)
122 = −1

4
, C

(0)
222 =

1

4

g)

∫

M

c2J1 =

∫

M

c2J2 = −1.

H(x, y) = 0 defines a family of elliptic curves Σ(z1, z2) whose j-function is given by

j(z1, z2) =
((1 − 4z1 − 4z2)

2 − 48z1z2)
3

z2
1z

2
2(1 − 8(z1 + z2) + 16(z1 − z2)2)

. (5.4)
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E1

L1 = {z1 = 0}

L2 = {z2 = 0}

I = { 1
z1+z2

= 0}

F1

F2

F

E
C

E2

Figure 2: Resolved Moduli Space of F0

5.1 Review of the moduli space M

The moduli space, M, of the local Calabi-Yau O(−2,−2) → P1 × P1 is spanned by two

Kähler moduli controlling the sizes of the two P1’s. The B-model mirror description of

this geometry can be expressed through a Riemann surface together with a meromorphic

differential. The meromorphic differential is the reduction of the holomorphic three-form of

the mirror geometry to a one-form living on a Riemann surface as described in section 2.2.

In our particular case we get a genus one Riemann surface with two non-trivial cycles.

Apart from these the meromorphic differential has a residue arising from integration over

a certain trivial cycle. Together these periods parameterize the two complex structure

moduli which are mirror to the two Kähler moduli of the original model. The period

integrals satisfy two linear differential equations of order two, given by the Picard-Fuchs

operators. It is well known that these periods can at worse have logarithmic singularities.

The singular locus in the moduli space can be obtained by calculating the discriminant of

the Picard-Fuchs system (5.3). This yields

z1z2
(

1 − 8(z1 + z2) + 16(z1 − z2)
2
)

=: z1z2∆ = 0. (5.5)

One sees that the singular locus splits into three irreducible components given by the

divisors z1 = 0, z2 = 0 and ∆ = 0. The moduli z1, z2 are compactified to P2.

At the large complex structure point L1 ∩ L2, two of the periods, t1 = log(z1) + O(z)

and t2 = log(z2)+O(z), give the classical large Kähler volumes of the two P1. As C touches

L1 at z2 = 1
4 , L2 at z1 = 1

4 and I at u = z1
z1+z2

= 1
2 and all intersections are with contact

order two, the Picard-Fuchs system cannot be solved around these points in moduli space.

Therefore, the moduli space has to be blown up around these points so that all divisors

have normal crossings. This is done by introducing two new divisors at each of these points

which is depicted in figure 2. More details about this moduli space can be found in [1].
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For us the most relevant points are I ∩ F which is a Z2 orbifold point admitting a matrix

model expansion, and the conifold locus C, relevant for fixing the holomorphic ambiguity

of the free energy functions.

5.2 Solving the topological string on local F0 at large radius

By the method of Frobenius one can calculate the periods eliminated by the Picard-Fuchs

system. As the charge vectors are chosen such that they span the Mori cone, the periods

are calculated at the large radius point of the moduli space M(M). It is well known that

the regular solution for this local model is simply ω0(z, 0) = 1. Therefore the mirror map

is equal to the single logarithmic solution and given by

2πiT1(z1, z2) = log z1+2(z1+z2)+3(z2
1 +4z1z2+z2

2)+
20

3
(z3

1 +9z2
1z2+9z1z

2
2 +z3

2)+O(z4)

2πiT2(z1, z2) = log z2+2(z1+z2)+3(z2
1 +4z1z2+z2

2)+
20

3
(z3

1 +9z2
1z2+9z1z

2
2 +z3

2)+O(z4).

(5.6)

By inverting the above series we arrive at (Qi = e2πiTi)

z1(Q1, Q2) = Q1−2(Q2
1+Q1Q2)+3(Q3

1+Q1Q
2
2)−4(Q4

1+Q3
1Q2+Q2

1Q
2
2+Q1Q

3
2)+O(Q5)

z2(Q1, Q2) = Q2−2(Q1Q2+Q2
2)+3(Q2

1Q2+Q3
2)−4(Q3

1Q2+Q2
1Q

2
2+Q1Q

3
2+Q4

2)+O(Q5).

(5.7)

We observe that the following combination does not receive any instanton corrections which

can be easily derived from the Picard-Fuchs system

z1
z2

=
Q1

Q2
= e2πi(T1−T2) =: Qx1 , (5.8)

or in other words, the mirror map can be brought in trigonal form by means of the coor-

dinate choice, x1 = z1
z2

and x2 = z2, as well as Qx2 = Q2. We have

x1(Q
x
1 , Q

x
2) = Qx1 ,

x2(Q
x
1 , Q

x
2) = Qx2 − 2Qx2

2 +Qx1Q
x
2
2 + 3Qx2

3 + O(Q4). (5.9)

The next step is to determine the Yukawa couplings. Four independent combinations are

C111 =
(1 − 4z2)

2 − 16z1(1 + z1)

4z3
1∆

, C112 =
16z2

1 − (1 − 4z1)
2

4z2
1z2∆

,

C122 =
16z2

2 − (1 − 4z2)
2

4z1z2
2∆

, C222 =
(1 − 4z1)

2 − 16z1(1 + z2)

4z3
2∆

. (5.10)

The numerator is fixed by the help of the known classical triple intersection numbers as

well as the genus zero GV invariants, whereas the denominator is fixed by the Picard-Fuchs

system. Note, that the Yukawa couplings are of the well-known structure, i.e. a rational

function in the zi’s multiplied by the inverse of the discriminant. Here we note, that in local

models the choice of the classical data is crucial for the success of direct integration. This
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is due to the fact, that one can obtain the right GV invariants for different choices of C(0)

and
∫

c2J . However, if one does not use consistent data, higher genus calculations become

wrong or even impossible. In contrast, the dependence on some Euler number drops out

completely, as it does not effect the GV invariants. In this work we simply set χ to zero.

Using the ansatz (3.1) for the free energy function of genus one and the classical data
∫

c2Ji as well as the known genus one GV invariants we are able to fix the holomorphic

ambiguity at genus one, f1. The result as well as the expansion at large radius in the

holomorphic limit T → 0 reads as follows

F1 = log
(

∆− 1
12 (z1z2)

− 13
24 (det(Gi̄))

− 1
2

)

,

F1(T1, T2) = − 1

24
log(Q1Q2) −

1

6
(Q1 +Q2) −

1

12
(Q2

1 + 4Q1Q2 +Q2
2) + O(Q3).

(5.11)

In order to perform the method of direct integration, we have to calculate the propagator

and express all quantities which carry non-holomorphic information through our propaga-

tors. As a first step the holomorphic ambiguity, f̃ , in (3.8) can be fixed by the choice

f̃1
11 = − 1

z1
, f̃1

12 = − 1

4z2
, f̃1

22 = 0,

f̃2
11 = 0, f̃2

12 = − 1

4z1
, f̃2

22 = − 1

z2
, (5.12)

where all other combinations follow by symmetry. We note that the propagator has only

one independent component for we can write

Sij =







S(z1, z2)
z2
z1
S(z1, z2)

z2
z1
S(z1, z2)

z2
2

z2
1

S(z1, z2)






(5.13)

where S(z1, z2) = 1
2z

2
1 − 2z3

1 − 2z2
1z2 − 8z3

1z2 − 32z4
1z2 + O(z6). This is due to the fact,

that the mirror geometry is solely determined by the elliptic curve Σ(z1, z2), which has

only one relevant elliptic parameter τ . The dependence on a second parameter is due to a

non-vanishing residue of the meromorphic differential on Σ(z1, z2).

Often it is convenient and also more natural to perform the calculations in the coordi-

nates x1, x2, in which some Christoffel symbols are rational

Γ1
11 =

1

x1
, Γ1

12 = 0, Γ1
22 = 0.

Noting, that from the tensorial transformation law of the propagator and the rela-

tion (3.8) the ambiguity of the propagator f̃ has to transform as f̃ ijk(x) = ∂xi
∂zl

( ∂2zl
∂xj∂xk

) +
∂xi
∂zl

∂zm
∂xj

∂zn
∂xk

f̃ lmn(x(z)). We obtain

f̃1
11 = − 1

x1
, f̃2

12 = − 1

4x1
, f̃2

22 = − 3

2x2
, (5.14)

where all other combinations are either 0 or follow by symmetry. As Γ1
ij = −f̃1

ij we

observe that the propagator takes the following simple form S11 = S12 = S21 = 0 and

S22 =
x2
2
2 − 2x3

2 − 2x1x
3
2 + O(x5).
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In addition, we fix the holomorphic ambiguity of the covariant derivative of Sij, (3.7),

and obtain

f11
1 = −1

8z1(1 + 4z1 − 4z2), f
12
1 = −1

8z2(1 + 4z1 − 4z2), f
22
1 = − z22

8z1
(1 + 4z1 − 4z2),

f11
2 = − z21

8z2
(1 + 4z2 − 4z1), f

12
2 = −1

8z1(1 + 4z2 − 4z1), f
22
2 = −1

8z2(1 + 4z2 − 4z1),

(5.15)

where all other combinations follow by symmetry. Further we can express the covariant

derivative of F1 through the generator S (3.9) by

DiF1 =
1

2
CijkS

jk − 1

12
∆−1∂i∆ +

7

24zi
. (5.16)

Note, that in contrast to an one parameter model like in section 4 the holomorphic am-

biguity Ai = ∂i(ãj log ∆j + b̃j log zj) in (5.16) cannot be set to zero. More generally, in

the local models we are considering here the geometry of the B-model is encoded in a

Riemann surface of genus one whose moduli space admits only one quasimodular form of

weight 2, namely the second Eisenstein series. Therefore and from the discussions in the

case of local P2 in the previous section we expect there to be a coordinate system in which

the propagator is proportional to the second Eisenstein series. The relevant coordinate

system is given by the x-coordinates in which it is allowed to set all but one component

of the propagator to zero and subsequently one can use (3.9) and (3.1) to solve for this

non-zero component. Now, in the multi-parameter case this gives, for each direction of the

derivative of F1 w.r.t. zi, h
2,1 equations on ãj , b̃j . In this and the following example, we are

lucky as these constraints fix the parameters completely. In addition one arrives at a series

expansion for the non-vanishing component of Sij . This can be used to fix all ambiguities

in the model as rational functions of the zi with poles only at the singular divisors of the

Picard-Fuchs system.

Now, all input to perform direct integration is provided and applying this method we

are able to determine Fg for genus g up to four. Using that local F0 has a discriminant with

deg ∆ = 2 and we can further reduce the number of coefficients in Ag due to symmetry

in z1 and z2, one can easily calculate, that at genus g there are (2g − 1)2 unknowns in

the holomorphic ambiguity. Therefore genus four corresponds to fixing 49 coefficients in

the holomorphic ambiguity fg =
Ag

∆2g−2 . They are determined by the gap condition at the

conifold locus and the known constant map contributions. We will further comment on

this in the next section.

Let’s present at least the genus two results. The free energy is given by

F2 =
5

24z6
1∆2

S3 +
−13 + 48z2

1 + z1(40 − 96z2) + 40z2 + 48z2
2

48z4
1∆2

S2

+
384z3

1 +z2
1(80−384z2)+(1−4z2)

2(17+24z2)−16z1(7−46z2+24z2
2)

144z2
1∆2

S+f2,

(5.17)
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where the ambiguity f2 = A2
∆2 is fixed by the following choice

A2 = − 1

1440
(25−258z1+696z2

1 +416z3
1−2688z4

1−258z2+2768z1z2−6560z2
1z2−1536z3

1z2

+ 696z2
2 − 6560z1z

2
2 + 8448z2

1z
2
2 + 416z3

2 − 1536z1z
3
2 − 2688z4

2).

(5.18)

The solution around the conifold is described in the next section. The GV invariants can

be found in the appendix B. They are in accord with [2] as far as they have been computed.

5.3 Solving the topological string on local F0 at the conifold locus

Our next task is to solve the Picard-Fuchs equations around the conifold locus. In order to

do that we choose some convenient point on the locus and define variables which are good

coordinates around this point. In our case we choose the point to be z1 = 1
16 , z2 = 1

16 . As

one can easily check inserting these numbers into the discriminant yields zero. To find the

right variables we have to be careful as their gradients at the relevant point must not be

colinear. The following choice will do the job

zc,1 = 1 − z1
z2
, zc,2 = 1 − z2

1
8 − z1

. (5.19)

We transform the Picard-Fuchs system to the above coordinates and find the following

polynomial solutions

ωc0 = 1,

ωc1 = − log(1 − zc,1),

ωc2 = zc,2 +
1

16
(2z2

c,1 + 8zc,1zc,2 + 13z2
c,2) + O(z3

c ). (5.20)

As mirror coordinates we take tc,1 := ωc1 and tc,2 := ωc2. Inverting these series gives the

following mirror map

zc,1(tc,1, tc,2) = 1 − e−tc,1 ,

zc,2(tc,1, tc,2) = tc,2 −
1

16
(t2c,1 + 8tc,1tc,2 + 13t2c,2) + O(t5c). (5.21)

The divisor {zc,1 = 0} is normal to the conifold locus at (z1, z2) =
(

1
16 ,

1
16

)

= pcon whereas

{zc,2 = 0} is tangential (see figure 3). Therefore zc,1 parameterizes the tangential direction

to the conifold locus at pcon in moduli space and zc,2 the normal one. Hence we expect the

flat mirror coordinate tc,2 to be controlling the size of the shrinking cycle at pcon, thus tc,2
should appear in inverse powers in the expansion of the free energies.

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic

ambiguities f̃ to the conifold coordinates we obtain the propagator around this locus.

In the choice of our coordinates (5.19) the propagator takes the following simple form

S11 = S12 = S21 = 0 and

S22 =
1

2
tc,2 +

1

1536
(24t2c,1tc,2 + t3c,2) + O(t4c).
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{∆ = 0}

{zc,2 = 0}
{zc,1 = 0}

Figure 3: Conifold coordinates

Assuming the gap condition holds, we are able to fix all but one coefficients of the holomor-

phic ambiguity. Expanding the free energies at the large radius point in moduli space the

constant map contribution fixes the last unknown, i.e. we observe that the gap condition

yields at genus two 8 out of 9 unknowns, at genus three 24 out of 25 unknowns, etc. Our

results up to genus four are given below (rescaling: tc,2 → 2tc,2)

Fc
2 = − 1

240t2c,2
− 1

1152
+

53tc,2
122880

+
t2c,1

61440
−

2221t2c,2
14745600

+ O(t3c)

Fc
3 =

1

1008t4c,2
+

23

5806080
+

407tc,2
198180864

−
t2c,1

3096576
−

258485t2c,2
49941577728

+ O(t3c)

Fc
4 = − 1

1440t6c,2
− 19

278691840
+

114773tc,2
362387865600

+ O(t2c).

(5.22)

5.4 Solving the topological string on local F0 at the orbifold point

As we have noted already there exists an orbifold point in the moduli space M at which

we can compare our results with the known matrix model expansions.

At this point we expand the periods in the local variables

zo,1 = 1 − z1
z2
, zo,2 =

1
√
z2

(

1 − z1
z2

) . (5.23)

Transforming the Picard-Fuchs system to these coordinates and solving it, we obtain the

following set of periods

ωo0 = 1,

ωo1 = − log(1 − zo,1),

ωo2 = zo,1zo,2 +
1

4
z2
o,1zo,2 +

9

64
z3
o,1zo,2 + O(z5

o),

F
(0)
ωo

2
= ωo2 log(zo,1) +

1

2
z2
o,1zo,2 +

21

64
z3
o,1zo,2 + O(zo

5). (5.24)
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We define the mirror map to be given by the first two periods

to,1 := ωo1, to,2 := ωo2, (5.25)

and will express the B-model correlators in terms of these coordinates. In order to invert

the mirror map and find the function zo(to), we have to consider the two series t̃o,1 = to,1 =

zo,1 + 1 + O(zo
2) and t̃o,2 =

to,2

to,1
= zo,2 + O(z2

o). Inverting these we obtain

zo,1(t̃o,1) = 1 − e−t̃o,1 ,

zo,2(t̃o,1, t̃o,2) = t̃o,2 +
1

4
t̃o,1t̃o,2 +

1

192
t̃2o,1t̃o,2 −

1

256
t̃3o,1t̃o,2 + O(t̃o

5
), (5.26)

which together form the mirror map at the orbifold point in moduli space.

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic

ambiguities f̃ to the orbifold coordinates we obtain the propagator around this locus.

In the choice of our coordinates (5.23) the propagator takes the following simple form

S11 = S12 = S21 = 0 and

S22 =
1

16
(t2o,2 − t2o,1) +

1

6144
(t4o,1 − 6t2o,1t

2
o,2 + 5t4o,2) + O(t5o).

In order to match the matrix model expansion one has to choose appropriate coordinates.

As explained in [1] the right variables S1, S2 that match the ’t Hooft parameters on the

matrix model side are given by

S1 =
1

4
(to,1 + to,2), S2 =

1

4
(to,1 − to,2). (5.27)

In addition the overall normalization of the all genus partition function F =
∑

g g
2g−2
s Fg

has to be determined. By comparing to the matrix model one gets, that the string coupling

on the topological side, gtop
s , is related to the coupling on the matrix model side, ĝs, by the

identification gtop
s = 2iĝs. Using these expressions we find

Forb
2 = − 1

240

(

1

S2
1

+
1

S2
2

)

+
1

360
− 1

57600
(S2

1 + 60S1S2 + S2
2) + O(S4)

Forb
3 =

1

1008

(

1

S4
1

+
1

S4
2

)

+
1

22680
+

1

34836480
(S2

1 − 252S1S2 + S2
2) + O(S4)

Forb
4 = − 1

1440

(

1

S6
1

+
1

S6
2

)

+
1

340200
− 1

82944000
(S2

1 + 102S1S2 + S2
2) + O(S4).

(5.28)

The genus two results are in accord with [1], genus three corrects the misprints in this

article and genus four is a prediction on the matrix model.

5.5 Relation to the family of elliptic curves

At the beginning of this section we pointed out, that H(x, y) = 0 defines a family of elliptic

curves Σ(z1, z2) whose j-function is given by

j(z1, z2) =
((1 − 4z1 − 4z2)

2 − 48z1z2)
3

z2
1z

2
2(1 − 8(z1 + z2) + 16(z1 − z2)2)

. (5.29)
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Using the usual j-function description (A.11) one can establish a relation between the

elliptic parameter q = e2πiτ and the complex structure variables z1 and z2 which reads

q = z2
1z

2
2 + 16z3

1z
2
2 + 160z4

1z
2
2 + 16z2

1z
3
2 + 400z3

1z
3
2 + 160z2

1z
4
2 + O(z7). (5.30)

We observe that

τ = 4∂tx,2∂tx,2F0, ∂tx,2τ = −4Ctx,2tx,2tx,2 , (5.31)

where tx,i is obtained from Qxi = e2πitx,i , which hints at that the not instanton corrected

parameter x1 or Qx1 , respectively, is merely an auxiliary parameter. [3] work with an

isogenous description of Σ(z1, z2). They use the Segre embedding of P1 ×P1 into P3 given

by the map

([x0 : x1], [x
′
0 : x′1]) 7→ [X0 : X1 : X2 : X3] = [x0x

′
0, x1x

′
0, x0x

′
1, x1x

′
1], (5.32)

where [x0 : x1] and [x′0 : x′1] are homogeneous coordinates of the P1’s and X0, . . . ,X3 are

homogeneous coordinates of P3. Then Σ̃(z̃1, z̃2) is given by the complete intersection of

P1 × P1, defined by X0X3 − X1X2, with the hypersurface given by X2
0 + z̃1X

2
1 + X2

2 +

z̃2X
2
3 +X0X3. Its j-function reads

̃(z̃1, z̃2) =
((1 − 4z̃1 − 4z̃2)

2 + 192z̃1z̃2)
3

z̃1z̃2(1 − 8(z̃1 + z̃2) + 16(z̃1 − z̃2)2)2
. (5.33)

Defining q̃ = e2πiτ̃ we can calculate that τ̃ = ∂tx,2∂tx,2F0, i.e. their modular parameters are

related by a simple rescaling by a factor of 4

τ = 4τ̃ . (5.34)

This transfers to a rescaling of the periods of the elliptic curve, similar to the discussion

in section 4.4.

With this input it is possible to write the full non-holomorphic F1 as

F1 = − log
√

τ̃2η(τ̃ )η̄(¯̃τ) (5.35)

6. KF1
= O(−2, −3) → F1

We are considering the non-compact Calabi-Yau geometry O(−2,−3) → F1, i.e. the

canonical line bundle over the Hirzebruch surface F1 = BP2
1, where BP2

1 denotes

the first del Pezzo surface, i.e. P2 with one blow up. This local model can be

obtained again from the compact elliptic fibration over F1 with fiber X6(1, 2, 3).

The three complexified Kähler volumes have the corresponding Mori cone generators

(−6; 3, 2, 1, 0, 0, 0, 0), (0; 0, 0,−1, 1,−1, 1, 0), (0; 0, 0,−2, 0, 1, 0, 1).

A Picard-Fuchs system governing the periods of the global mirror geometry is given by

D1 = Θ1(Θ1 − 2Θ2 − Θ3) − 18z1(1 + 6Θ1)(5 + 6Θ1)

D2 = Θ2(Θ2 − Θ3) − z2(−1 + Θ1 − 2Θ2 − Θ3)(Θ1 − 2Θ2 − Θ3)

D3 = Θ2
3 − z3(Θ1 − 2Θ2 − Θ3)(Θ2 − Θ3).

(6.1)
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Now let us turn to the non-compact geometry. The toric data of local F1 is summarized

in the following matrix

(V |Q) =















0 0 1 −2 −1

1 0 1 1 0

−1 −1 1 0 1

−1 0 1 1 −1

0 1 1 0 1















. (6.2)

From there we conclude the following quantities14

a) Q1 = (−2, 1, 0, 1, 0), Q2 = (−1, 0, 1,−1, 1)

b) Z = {x1 = x3 = 0} ∪ {x2 = x4 = 0}
c) M = (C5[x0, . . . , x4] \ Z)/(C∗)2

d) H(x, y) = y2 − x3 − (1 − 4z1)x
2 + 8z1z2x− 16z2

1z
2
2

e) D1 = Θ1(Θ1 − Θ2) − z1(2Θ1 + Θ2)(1 + 2Θ1 + 2Θ2) (6.3)

D2 = Θ2
2 − z2(Θ2 − Θ1)(2Θ1 + Θ2)

∆ = (1 − 4z1)
2 − z2(1 − 36z1 + 27z1z2)

f) C
(0)
111 = −1

3
, C

(0)
112 = −1

3
, C

(0)
122 = −1

3
, C

(0)
222 =

2

3

g)

∫

M

c2J1 = −2,

∫

M

c2J2 = 0.

H(x, y) = 0 defines a family of elliptic curves Σ(z1, z2) whose j-function is given by

j(z1, z2) =
((1 − 4z1)

2 + 24z1z2)
3

z3
1z

2
2((1 − 4z1)2 − z2(1 − 36z1 + 27z1z2))

. (6.4)

6.1 Solving the topological string on local F1 at large radius

The mirror map at the point of large radius is given by

2πiT1(z1, z2) = log z1 + 2z1 + 3z2
1 − 4z1z2 +

20

3
z3
1 + 24z2

1z2 +O(z4)

2πiT2(z1, z2) = log z2 + z1 +
3

2
z2
1 − 2z1z2 +

10

3
z3
1 + −12z2

1z2 + O(z4). (6.5)

Inverting the series we obtain for Qi = e2πiTi

z1(Q1, Q2) = Q1 − 2Q2
1 + 3Q3

1 + 4Q2
1Q2 − 4(Q4

1 +Q3
1Q2) + O(Q5)

z2(Q1, Q2) = Q2 −Q1Q2 +Q2
1Q2 + 2Q1Q

2
2 −Q3

1Q2 + O(Q5). (6.6)

Now, one realizes again that there is a relation between the Q coordinates:

Q1

Q2
2

=
z1
z2
2

= e2πi(T1−2T2) =: Qx1 . (6.7)

14Using toric geometry it is only possible to determine an one-parameter family of classical intersection

numbers C
(0)
ijk, resulting in an one-parameter family for

R

M
c2Ji. Their correct values are fixed by a limiting

procedure of local F1 = BP
2
1 to local P2 which is described below.
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Defining further Qx2 := Q2 and x1 = z1
z22

as well as x2 = z2 one finds that

x1(Q
x
1 , Q

x
2) = Qx1 ,

x2(Q
x
1 , Q

x
2) = Qx2 −Qx1Q

x
2
3 + 2Qx1Q

x
2
4 + O(Q6). (6.8)

The Yukawa couplings can be fixed through the relation ∂Ti∂Tj∂Tk
F0 = CTiTjTk

and the

known genus zero GV invariants up to a dependence on one unfixed parameter. This unfixed

parameter can be determined by the fact that there exists a limit of local F1 to local P2, as

F1 = BP2
1. This blow-down limit can be seen by comparing the two j-functions (6.4), (4.3)

and turns out to be

z1 → 0, with z1z2 = z fixed.

We obtain the following Yukawa couplings

C111 =
−1 − 4z2

1 + z2 − z1(7 − 6z2)

3z3
1∆

, C112 =
−1 + 8z2

1 + z2 + z1(2 − 3z2)

3z2
1z2∆

,

C122 =
z2(1 − 12z1) − (1 − 4z1)

2

3z1z2
2∆

, C222 =
2(1 − 4z1)

2 + z2(1 − 60z1)

3z3
2∆

. (6.9)

The next step is to determine the propagators of local F1. This is best done in x

coordinates, where one finds again that some Christoffel symbols are either trivial or have

a rational form

Γ1
11 = − 1

x1
, Γ1

12 = 0, Γ1
22 = 0. (6.10)

Choosing f̃1
11 = − 1

x1
, f̃1

12 = 0, f̃1
21 = 0, f̃1

22 = 0, one finds from (3.8) that S11, S12 are

immediately zero. Demanding symmetry we are able to fix all ambiguities f̃ ijk by the choice

f̃1
11 = − 1

x1
, f̃2

11 = − x2

12x2
1∆x

(1−x2−12x1x
2
2+49x1x

3
2−36x1x

4
2+32x2

1x
4
2−12x2

1x
5
2),

f̃2
12 = − 1

12x1∆x
(3 − 3x2 − 32x1x

2
2 + 144x1x

3
2 − 108x1x

4
2 + 80x2

1x
4
2),

f̃2
22 = − 1

12x2∆x
(20 − 21x2 − 176x1x

2
2 + 828x1x

3
2 − 648x1x

4
2 + 384x2

1x
4
2),

(6.11)

where ∆x denotes the discriminant in x coordinates and all other combinations of f̃ ijk are

either zero or follow by symmetry. This singles out one non-vanishing propagator only,

given by S22(x1, x2) =
x2
2

12 − 1
3x1x

4
2 + x1x

5
2 + 4x2

1x
7
2 + O(x10). After tensor transforming to

z coordinates we obtain

Sij =







S(z1, z2)
z2
2z1

S(z1, z2)

z2
2z1

S(z1, z2)
z2
2

4z2
1

S(z1, z2)






, (6.12)

where S(z1, z2) =
z21
3 − 4z31

3 + 4z3
1z2 + 16z4

1z2 + O(z6). This again has a similar form as in

the case of local F0.
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In addition, we fix the holomorphic ambiguity of the covariant derivative of Sij, (3.7),

and obtain, that in x coordinates there are two non-zero contributions only, given by

f22
1 = − x2

2

144x1∆x
(3 − 3x2 + 4x1x

2
2)(1 − 8x1x

2
2 + 24x1x

3
2 + 16x2

1x
4
2),

f22
2 = − x2

144∆x
(8 − 9x2)(1 − 8x1x

2
2 + 24x1x

3
2 + 16x2

1x
4
2).

(6.13)

The f jki in z coordinates are again obtained after tensor transformation.

Further we can express the covariant derivative of F1 through the generator S by

DiF1 =
1

2
CijkS

jk +Ai. (6.14)

As the free energy function of genus one is given by

F1 = log

(

∆− 1
12 z

− 7
12

1 z
− 1

2
2 det(Gi̄))

− 1
2

)

,

F1(T1, T2) = − 1

12
log(Q1) −

1

12
(2Q1 +Q2) −

1

24
(2Q2

1 + 6Q1Q2 +Q2
2) + O(Q3),

(6.15)

we find that Ai = ∂iA and

A = − 1

24
log ∆ +

1

24
log z1 +

1

12
log z2. (6.16)

Now, we are prepared to perform the direct integration procedure. Demanding the gap at

the conifold and using further the known constant map contributions we are able to fix

the ambiguities up to genus three. In this more general two parameter model with one

discriminant component of degree three the number of coefficients in Ag is

(

(2g − 2) deg ∆ + 2

2

)

= 10 − 27g + 18g2, (6.17)

i.e. at genus three we have to fix 91 coefficients in the holomorphic ambiguity.

The invariants can be found in the appendix B. The solutions around the conifold

locus are described in the next section.

6.2 Solving the topological string on local F1 at the conifold locus

In order to apply the gap condition in this example, we have to transform and solve the

Picard-Fuchs system at a specific point on the conifold locus. We make the choice z1 = 2,

z2 = −1
2 . Again we define two variables which vanish at this point

zc,1 = 1 − z2

−1
4(z1 − 2) − 1

2

, zc,2 = 1 − z2

4(z1 − 2) − 1
2

. (6.18)

zc,1 is a coordinate normal to the conifold divisor and zc,2 describes a tangential direction.

Transforming the Picard-Fuchs system to these coordinates we find the following set of

periods:

ωc0 = 1,
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ωc1 = zc,1 +
6773z2

c,1

14450
− 58zc,1zc,2

7225
−

z2
c,2

1445
+ O(z3

c ),

ωc2 = zc,2 +
10858z2

c,1

7225
+

2871z2
c,2

2890
− 4886zc,1zc,2

7225
+ O(z3

c ). (6.19)

Next, we can express the zc,i through the mirror coordinates tc,1 := ωc1 and tc,2 := ωc2 by

inverting the above series

zc,1(tc,1, tc,2) = tc,1 −
6773t2c,1
14450

+
58tc,1tc,2

7225
+

t2c,2
1445

+ O(t3c),

zc,2(tc,1, tc,2) = tc,2 −
10858t2c,1

7225
+

4886tc,1tc,2
7225

−
2871t2c,2

2890
+ O(t3c). (6.20)

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic ambi-

guities f̃ to the conifold coordinates we obtain the propagator around this locus. In the

choice of our coordinates the propagator takes the following form

S11 =
5

12
− 2tc,1

25
−

337t2c,1
10625

− 4tc,1tc,2
2125

+ O(t3c),

S12 = −55

4
+

66tc,1
25

+
11121t2c,1

10625
+

132tc,1tc,2
2125

+ O(t3c),

S22 =
1815

4
− 2178tc,1

25
−

366993t2c,1
10625

− 4356tc,1tc,2
2125

+ O(t3c).

(6.21)

Again the gap condition in combination with the known leading behavior at the large

radius point suffices to fix all coefficients in the holomorphic ambiguity. From the conifold

alone we get at genus two 27 out of 28 unknowns and at genus three 90 out of 91 unknowns.

Our results read

Fc
2 =

1

48t2c,1
+

1567

9000000
+

98333

1593750000
tc,1 −

123

10625000
tc,2 + O(t2c)

Fc
3 =

25

1008t4c,1
+

480217

283500000000
+

106245283tc,1
17929687500000

+
69949tc,2

167343750000
+ O(t2c).

(6.22)

6.3 Relation to the family of elliptic curves

Starting point is again the j-function of Σ(z1, z2) which we will repeat here

j(z1, z2) =
((1 − 4z1)

2 + 24z1z2)
3

z3
1z

2
2((1 − 4z1)2 − z2(1 − 36z1 + 27z1z2))

. (6.23)

Using again the usual j-function description (A.11) one can establish a relation between

the elliptic parameter q = e2πiτ and the complex structure variables z1 and z2 which reads

q = z3
1z

2
2 + 16z4

1z
2
2 + 160z5

1z
2
2 − z3

1z
3
2 − 60z4

1z
3
2 + O(z8). (6.24)

We observe that

τ = ∂tx,2∂tx,2F0, ∂tx,2τ = −Ctx,2tx,2tx,2 , (6.25)
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where tx,i is obtained from Qxi = e2πitx,i , which hints at that the not instanton corrected

parameter x1 or Qx1 , respectively, is merely an auxiliary parameter. As in the previous

cases it is possible to write the full non-holomorphic F1 as

F1 = − log
√
τ2η(τ)η̄(τ̄) +A, (6.26)

where A is given by (6.16).

7. Summary and further directions

In this article we find convincing evidence that closed topological string theories on non-

compact Calabi-Yau spaces whose mirror can be reduced to Riemann surfaces is completely

integrable using the holomorphic anomaly equation and the gap at the divisors at which

a single cycle vanishes. The physical argument for the gap from the local form of the

effective action in the presence of a single black hole hypermultiplet state that becomes

massless at the nodal singularity [30] applies also after the decompactification limit. The

massless hypermultiplet is now a dyonic hypermultiplet of a rigid 4d theory. This extends

in particular to the geometric engineering limits, which leads to N = 2 supersymmetric

gauge theories in 4d. Indeed the gap was found in simple Seiberg-Witten theories [28] and

it made the holomorphic anomaly equations integrable in these cases.

Generally there are two sorts of parameters associated to the geometry (Σg, λ). There

are r parameters, which are given by periods over H1(Σg). The monodromy acts on them

and T duality requires that their occurrence in higher genus amplitudes is organized in

terms of almost holomorphic modular forms, which correspond to non-trivial components

of the propagators Sij. Further there might be m parameters encoding the non-vanishing

residua of the meromorphic form λ. The monodromy acts trivially on them. In mathe-

matics they are referred to as isomonodromic deformations. We find that they occur in

rational expressions in the amplitudes.

In Seiberg-Witten theory the r parameters correspond to the number of U(1) vector

multiplets in the Coulomb phase, while m parameters are the masses of perturbative hy-

permultiplets. Similar del Pezzo surfaces with 1 + m Kähler parameters have genus one

mirror curves and we could identify the one parameter that corresponds to an integral

over H1(Σ1) and the m residue parameters by choosing a parameterization in which we

have only one non-trivial propagator. In all cases we found by a local analysis of the

gap condition near the discriminant components with single vanishing cycle that there are

sufficiently many conditions to solve the theory. For Seiberg-Witten theories with matter

fields this has been established in [29].

In recent years strong relations between topological string theory on local Calabi-Yau

manifolds and matrix models and other integrable structures such as Chern-Simons theory

have been discovered. These developments have been excellently reviewed in [37, 40].

In particular [11, 15] show that rigid special geometry, which is essential in making

the ring of the propagators close under derivatives (section 3), is an intrinsic property

of the multi cut matrix model if the filling fractions are considered as parameters. Fur-

ther it was argued in [18] that the method of solving the recursive loop equation using
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the Bergman kernel and the kernel differentials of [17] can be made modular by adding a

non-holomorphic modular completion to the Bergmann kernel. It was further shown in [18]

that this completion makes the formalism of [17] compatible with the holomorphic anomaly

equation. The modular property has not yet been derived within the matrix model. In

fact the analysis of [18] is inspired by the way modularity is realized in the higher genus

expansion of topological string theory on non-compact Calabi-Yau and Seiberg-Witten the-

ory [3, 28], where T or S duality is an intrinsic property. In any case it is clear that the

matrix model correlation functions in the 1
N2 expansions fulfill the holomorphic anomaly

equations. Moreover [38] applies the formalism of [17] to local mirror curves and success-

fully checks expansions of closed and open low genus amplitudes large against A-model

calculations. This leads to the expectation that the Fg for many multi-cut matrix models

are solvable using the modular properties of the spectral curve and the gap condition.

To summarize we have good evidence that the holomorphic anomaly equation and the

gap conditions solve the closed amplitudes for the following cases: non-compact Calabi-Yau

with mirror curves, Seiberg-Witten theories and for many multi cut matrix models. What

makes the claim plausible in general is that the Riemann surfaces have in the co-dimension

one locus in the moduli space just one type of degeneration, the nodal degeneration, which

exhibits as local property the gap behavior. E.g. SU(N) theories can be degenerated to

SU(N1)× . . .×SU(Nk) theories, with
∑k

i=1Ni = N by stretching higher genus components

of the curve apart. Such operations can not affect the local leading behavior of Fg near

the pinching cycles and for Ni = 2 the gap is established [28].

Due to a more extensive use of the symmetry the method outlined here is more effi-

cient then any other to calculate the Fg for high g and provides global expressions instead

of local expansions. Combined with numerical analysis of asymptotic expansions this has

applications in investigations of non-perturbative completions of topological string the-

ory [39, 19]. Understanding the role of holomorphicity and modularity, which are the basis

of our approach, could give decisive hints for such completions.

One might further speculate that the approach extends to open strings. The open string

version of the holomorphic anomaly equation in the presence of open string moduli has yet

some problems [18].15 The open string variables are not subject to modular transformations

and in this sense similar to the m residue parameters. But in the open case we have so

far not understood how to provide enough boundary conditions to make the holomorphic

anomaly approach completely integrable. For the open string on compact Calabi-Yau

spaces without open string moduli no particular structure has been found at the boundary

of the closed string moduli space [42].

Extracting the full constraints from the local analysis of the multi parameter gap

condition is also relevant to multi parameter global Calabi-Yau spaces and could lead to

integrability of these systems. Different then in the one parameter cases where the situation

has been analyzed in [30, 26, 23] one can employ here further known limits such as the

large base limit in K3 fibrations, in which formulas for the all genus generating functions

of GW invariants have been mathematically rigorously established in [36].

15We thank Marcos Mariño for a discussion on the issue.
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A. Modular anomaly versus holomorphic anomaly

Physically the amplitudes Fg of the topological string are invariant under the space-time

modular group Γ of the target space. This is the most important restriction on these

functions. The nicest case is when the B-model geometry is a family of elliptic curves.

Then Γ is a subgroup of SL(2,Z) and the classical theory of modular forms applies. We

will recapitulate below the relevant aspects of SL(2,Z) almost holomorphic modular forms.

This gives some insight in the interplay between the breaking of the modularity and the

breaking of holomorphicity. The different modular forms that we need for the general

families of elliptic curves, i.e. general two cut matrix models, follow from the Picard-Fuchs

equations. The relation between the Picard-Fuchs equations and modular forms is again a

classical subject, which has been beautifully reviewed in [45].

A.1 PSL(2,Z) modular forms

We define q := e2πiτ , with τ ∈ H+ = {τ ∈ C | Im(τ) = 1
2i(τ − τ̄) > 0} and the projective

action PSL(2,Z) of Γ1 = SL(2,Z) =

{

γ =

(

a b

c d

)

| ad− bc = 1, a, b, c, d ∈ Z

}

on H+ by

τ 7→ τγ =
aτ + b

cτ + d
, (A.1)

for γ ∈ Γ1. It follows that

1

Im(τγ)
=

(cτ + d)2

Im(τ)
− 2ic(cτ + d) =

|cτ + d|2
Im(τ)

. (A.2)

Modular forms of Γ1 transform as

fk(τγ) = (cτ + d)kfk(τ) (A.3)

with weight k ∈ Z for all τ ∈ H+ and γ ∈ Γ1, are meromorphic for τ ∈ H+ and grow

like O(eCIm(τ)) for Im(τ) → ∞ and O(eC/Im(τ)) for Im(τ) → 0 with C > 0. A strategy to

build modular forms of weight k is to sum over orbits of Γ1

Gk =
1

2

∑

m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k
. (A.4)

It is easy to see that this expression transforms like (A.3), converges absolutely for k > 2

and vanishes for k odd. In the standard definition of the Eisenstein series Ek the sum
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runs over coprime (m,n), which yields a proportionality Gk(τ) = ζ(k)Ek(τ), where

ζ(k) =
∑

n≥1
1
nk . One shows ([45]) the central fact that E4, E6 (or G4,G6 of course)

generate freely the graded (by k) ring of modular forms M∗(Γ1).

Still one may spot two shortcomings. Firstly the ring M∗(Γ1) does not close under any

differentiation and secondly there should be a modular form for weight 2. These facts are

related as dτ = d
2πidτ has weight 2. The second is remedied by an ǫ regularization in the sum

G2,ǫ = 1
2

∑

m,n∈Z

(m,n) 6=(0,0)

1
(mτ+n)k |mτ+n|ǫ after which it is possible to define G2 = limǫ→0G2,ǫ.

Then all Gk, k ∈ 2Z, k ≥ 2 have a Fourier expansion16 in q = exp(2πiτ)

Gk(τ) =
(2πi)k

(k − 1)!

(

−Bk
2k

+

∞
∑

n=1

σk−1(n)qn

)

, (A.5)

with σk(n) =
∑

p|n p
k the sum of kth powers of positive divisors of n and

∑∞
k=0

Bkx
k

k! = x
ex−1

defining the Bernoulli numbers Bk, e.g. B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 ,

B12 = − 691
2730 , B14 = 7

6 etc.

Very much like in QFT the regularization introduces an anomaly in the symmetry

transformation so that E2 transforms

E2(τγ) = (cτ + d)2E2(τ) −
6ic

π
(cτ + d) (A.6)

with an inhomogeneous term.

At least (E2, E4, E6) form a ring, the ring of quasi modular holomorphic forms M!,

which closes under differentiation, i.e.

dτE2 =
1

12
(E2

2 − E4), dτE4 =
1

3
(E2E4 − E6), dτE6 =

1

2
(E2E6 − E2

4) . (A.7)

Using (A.2) and (A.6) we see that the inhomogeneous terms in (A.2), (A.6) cancel so that

Ê2(τ) = E2(τ) −
3

πIm(τ)
(A.8)

transforms like a modular form of weight 2, albeit not a holomorphic one. (Ê2, E4, E6)

form the ring of almost holomorphic modular forms of Γ1. The latter closes under the

Maass derivative, which acts on forms of weight k by

Dτfk =

(

dτ −
k

4πIm(τ)

)

fk (A.9)

and maps Dτ : M!
k → M!

k+2. Note that the equations (A.7) hold with dτ replaced by Dτ

and E2(τ) replaced by Ê2(τ). This Maass derivative corresponds to the covariant derivative

that appears in topological string theory (3.2).

From the physical point of view there seems the following story behind these well

known mathematical facts. The holomorphic propagator, which can be made proportional

to E2, see (4.47) needs some regularization, which breaks T duality. The latter is restored

16Note that the Eisenstein series start with coefficient 1.
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by adding the non-holomorphic term (A.8). The modular anomaly and the holomorphic

anomaly are in this sense counterparts, which cannot both be realized at least pertur-

batively. T -duality is physically better motivated. Attempts in the literature, e.g. in an

interesting paper [19], to define a holomorphic and modular non-perturbative completion

by summing over orbits seem to make sense only if absolute convergence in the moduli is

established, which is hard.

F1 is an index, which is finite for smooth compact spaces. It diverges therefore only

from singular configurations, that occur if e.g. the discriminant of the elliptic curve given

below for the Weierstrass form y2 = 4x3 − 3xE4 + E6

∆(τ) = η24(τ) = q
∞
∏

n=1

(1 − qn)24 =
1

1728
(E3

4(τ) − E2
6(τ)) , (A.10)

vanishes. Note that the j for this curve is

j = 1728
E2

4

E3
4 − E2

6

=
1

q
+ 744 + 196884q + 21493760q2 + O(q3) . (A.11)

It follows from (A.3) that η(τγ) = (cτ + d)
1
2 η(τ) transforms with weight 1

2 and

from (A.7) that

dτ log(η(τ)) =
1

24
E2(τ). (A.12)

Further from (A.2) we see that
√

Im(τ)|η(τ)|2 is an almost holomorphic modular invariant

and from (A.7), (A.8), (A.10) that

dτ log(
√

Im(τ)|η(τ)|2) =
1

24
Ê2(τ). (A.13)

We need also the theta functions of general characteristic

θ
[a

b

]

(z, τ) =
∑

n∈Z
exp

(

πi(n+ a)τ(n + a) + 2πi
∑

i

(z + b)n

)

. (A.14)

B. Gopakumar-Vafa invariants of local Calabi-Yau manifolds
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g\d 1 2 3 4 5 6 7 8 9 10 11 12 13

0 3 -6 27 -192 1695 -17064 188454 -2228160 27748899 -360012150 4827935937 -66537713520 938273463465
1 0 0 -10 231 -4452 80948 -1438086 25301295 -443384578 7760515332 -135854179422 2380305803719 -41756224045650
2 0 0 0 -102 5430 -194022 5784837 -155322234 3894455457 -93050366010 2145146041119 -48109281322212 1055620386953940
3 0 0 0 15 -3672 290853 -15363990 649358826 -23769907110 786400843911 -24130293606924 698473748830878 -19298221675559646
4 0 0 0 0 1386 -290400 29056614 -2003386626 109496290149 -5094944994204 210503102300868 -7935125096754762 278055282896359878
5 0 0 0 0 -270 196857 -40492272 4741754985 -396521732268 26383404443193 -1485630816648252 73613315148586317 -3295843339183602162
6 0 0 0 0 21 -90390 42297741 -8802201084 1156156082181 -111935744536416 8698748079113310 -572001241783007370 32970159716836634586
7 0 0 0 0 0 27538 -33388020 12991744968 -2756768768616 395499033672279 -42968546119317066 3786284014554551293 -283123099266200799858
8 0 0 0 0 0 -5310 19956294 -15382690248 5434042220973 -1177301126712306 181202644392392127 -21609631514881755756 2112545679539410950111
9 0 0 0 0 0 585 -9001908 14696175789 -8925467876838 2978210177817558 -658244675887405242 107311593188998164015 -13822514517126743782638
10 0 0 0 0 0 -28 3035271 -11368277886 12289618988434 -6445913624274390 2074294284130247058 -466990545532708577390 79879064190633923380059
11 0 0 0 0 0 0 -751218 7130565654 -14251504205448 12001782164043306 -5702866358492557440 1791208287019324701495 -410078597629344199822644
12 0 0 0 0 0 0 132201 -3624105918 13968129299517 -19310842755095748 13744538465609779287 -6085017394087513680618 1879279054884558476271255
13 0 0 0 0 0 0 -15636 1487970738 -11600960414160 26952467292328782 -29157942375100015002 18384612378910358924791 -7719669723503111567547498
14 0 0 0 0 0 0 1113 -490564242 8178041540439 -32736035592797946 54641056077839878893 -49578782776769125835658 28526676358086583457401470
15 0 0 0 0 0 0 -36 128595720 -4896802729542 34693175820656421 -90735478019244786786 119723947998685791289164 -95133281572651610511963924
16 0 0 0 0 0 0 0 -26398788 2489687953666 -32151370513161966 133885726253316075984 -259634731498425150837576 287135121651412378735811628
17 0 0 0 0 0 0 0 4146627 -1073258752968 26099440805196660 -175976406401479949154 506961721474582218552270 -786399027397491244523992902
18 0 0 0 0 0 0 0 -480636 391168899747 -18580932613650624 206477591201198965488 -893407075206205808615238 1959017333330728105822648251
19 0 0 0 0 0 0 0 38703 -120003463932 11609627766170547 -216671841840838260606 1424048002136300951108030 -4448639278908209789290494420
20 0 0 0 0 0 0 0 -1932 30788199027 -6367395873587820 203674311322868998065 -2057099617415644933602618 9227698060582367238347571297
21 0 0 0 0 0 0 0 45 -6546191256 3064262549419899 -171730940091766865658 2697839037217627321703085 -17516854338718408479048652494
22 0 0 0 0 0 0 0 0 1138978170 -1292593922494452 130015073789764141299 -3217397468483821476968358 30484235431876601864618838477
23 0 0 0 0 0 0 0 0 -159318126 477101143946277 -88451172530198637924 3494176460021369389735746 -48714141405866403558298334202
24 0 0 0 0 0 0 0 0 17465232 -153692555590206 54098277648908454123 -3460084190968494003073062 71589014392836043739746597686
25 0 0 0 0 0 0 0 0 -1444132 43057471189239 -29751302949160261398 3127576636374963802648718 -96883378729032302906983199856
26 0 0 0 0 0 0 0 0 84636 -10441089412308 14709694749741501501 -2582938330708242629937150 120896635270154811844637720853
27 0 0 0 0 0 0 0 0 -3132 2177999212647 -6535189635435373326 1950461493734929553600580 -139265452548367336541395204974
28 0 0 0 0 0 0 0 0 55 -387688567518 2606677300588276035 -1347524558332336039964082 148248962783129110225181956473
29 0 0 0 0 0 0 0 0 0 58269383541 -932238829973577348 852109374825775079556606 -145971211921687755538330192746
30 0 0 0 0 0 0 0 0 0 -7292193288 298408032566091294 -493309207337589509893062 133055268914412223044065820018
31 0 0 0 0 0 0 0 0 0 745600245 -85297647759486510 261477149328500781917776 -112357587854133668267639057304
32 0 0 0 0 0 0 0 0 0 -60650490 21708810999461607 -126876156355185161374314 87952573421916830793908406099
33 0 0 0 0 0 0 0 0 0 3773652 -4901354114590566 56339101711825399890960 -63854998146538947089287681014
34 0 0 0 0 0 0 0 0 0 -168606 977233475777499 -22881258328195868502320 43014954675567051362685843069
35 0 0 0 0 0 0 0 0 0 4815 -171090302865948 8492649924309368930964 -26893867445735937777389156538
36 0 0 0 0 0 0 0 0 0 -66 26117674453665 -2877665040430021956492 15609149489150170649459123934
37 0 0 0 0 0 0 0 0 0 0 -3445690553358 888968505074075552261 -8410678555930907126997555630
38 0 0 0 0 0 0 0 0 0 0 388460380746 -249952226921825722236 4207181054847947125893653841
39 0 0 0 0 0 0 0 0 0 0 -36878620320 63836429603183934921 -1953390408100284549295950018
40 0 0 0 0 0 0 0 0 0 0 2891025822 -14772524364719546808 841584918442722082197039960
41 0 0 0 0 0 0 0 0 0 0 -182125500 3088415413809592461 -336303963530686998053325696
42 0 0 0 0 0 0 0 0 0 0 8859513 -581271967556317272 124578181981904234839792755
43 0 0 0 0 0 0 0 0 0 0 -312270 98073062075574517 -42747487172239308320629266
44 0 0 0 0 0 0 0 0 0 0 7095 -14758388168491098 13575203399517277381780818
45 0 0 0 0 0 0 0 0 0 0 -78 1968679573589997 -3985442773959057781888308
46 0 0 0 0 0 0 0 0 0 0 0 -231043750764510 1080285938069626293744591
47 0 0 0 0 0 0 0 0 0 0 0 23635158339861 -269941588355351530486098
48 0 0 0 0 0 0 0 0 0 0 0 -2082988758060 62071685247348448583484
49 0 0 0 0 0 0 0 0 0 0 0 155790863415 -13107037881479259880974
50 0 0 0 0 0 0 0 0 0 0 0 -9693024822 2535413161347832616322
51 0 0 0 0 0 0 0 0 0 0 0 488072208 -448021340092704131004
52 0 0 0 0 0 0 0 0 0 0 0 -19105426 72081314665875044232
53 0 0 0 0 0 0 0 0 0 0 0 545391 -10518282775104442896
54 0 0 0 0 0 0 0 0 0 0 0 -10098 1385776784546520000
55 0 0 0 0 0 0 0 0 0 0 0 91 -163957628794736484
56 0 0 0 0 0 0 0 0 0 0 0 0 17308773135965754
57 0 0 0 0 0 0 0 0 0 0 0 0 -1617775223270352
58 0 0 0 0 0 0 0 0 0 0 0 0 132598956698970
59 0 0 0 0 0 0 0 0 0 0 0 0 -9417757882494
60 0 0 0 0 0 0 0 0 0 0 0 0 570827232216
61 0 0 0 0 0 0 0 0 0 0 0 0 -28937028858
62 0 0 0 0 0 0 0 0 0 0 0 0 1193305917
63 0 0 0 0 0 0 0 0 0 0 0 0 -38446296
64 0 0 0 0 0 0 0 0 0 0 0 0 907638
65 0 0 0 0 0 0 0 0 0 0 0 0 -13962
66 0 0 0 0 0 0 0 0 0 0 0 0 105

Table 2: BPS numbers ng
d of local KP2
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g\d 14 15 16
0 -13491638200194 197287568723655 -2927443754647296
1 733512068799924 -12903696488738656 227321059950010137
2 -22755110195405850 483361869975894765 -10141562289815822472
3 513289541565539286 -13226687073790872894 331823525571283260201
4 -9179532480730484952 288379973286696180135 -8687442794831017531164
5 135875843241729533613 -5230662528295888702200 190039036692844531945431
6 -1707886552705077581628 80979854504456065293006 -3563867463166417898028954
7 18542695412600660315361 -1088520963699453440916068 58282787779310795828265801
8 -176025683917043985316470 12859768243573241278178232 -841384783491737401244384802
9 1474526726447064266472180 -134757205470641562616231254 10821001300311246341021564538
10 -10977980889990531917192040 1261570911839587494149142842 -124874019649583355894388594860
11 73064685775641172550245287 -10612768147751995597000536768 1300522099010448259785204366045
12 -436819481534388188001943032 80609689831056406245089196399 -12282259406284392700728072598380
13 2355513273192090467243746317 -555076023119960500416799982130 105610021148696431180837019630313
14 -11497443929941810386360760836 3477350942096950595265747641307 -829670278849892181781849621379508
15 50957816625388139826624170478 -19879905201401719017710643014418 5973078056543810630750683669041915
16 -205652305240430396439317210640 104002483609117190050345885357888 -39514272034437878290981964700219558
17 757662182424151902292508060760 -499131780135424315237215856091700 240783170189880817347584410692217926
18 -2554172799784278307930353343650 2202490064957497348139065195375923 -1354480673392411243817417189322344568
19 7895754493218057420092021506113 -8954639504409724407149809525209876 7048138037612506058374426122985053006
20 -22427232411211780101200732425704 33609442420420363371558079371477897 -33989638359010910511829498976232173802
21 58641982305309178343956442671761 -116665374813978856919164270653965004 152177429687299045634195140398757281504
22 -141401208897408849912677957634426 375171975689925627795105702569276418 -633577305407951231393255913015258866196
23 314936293736322225639438406290906 -1119499786780134169488432381035973630 2456788969008030141112263866239290403350
24 -648914458538905816592788630323204 3104428455059919596365239612226837893 -8885705515250117005267140410756908248060
25 1238729525477721787558439282945913 -8011735505069380039747056004195148158 30017610322127336868268653017585124628509
26 -2193714849283185866296047977715732 19268553790789301424928605404355434727 -94840749609277896052768672110491634949896
27 3608707818428642570478628800173229 -43242261816789265741007295810748532346 280605057707017406909127007390466194394946
28 -5520883353409528317073211897355024 90663853802203137933306954643315253691 -778393014388590417238764984731393282887020
29 7863819793987212697365737198659608 -177798466610751232952320725159422435082 2026759853430165190102329620422860687585627
30 -10439407430615613012302526201362232 326485907378338211346720861587117970456 -4958833886852841391769716597979254624540758
31 12928610180341150034322836488952889 -561942547080213731914225348713239621740 11412550296076971807748473068781297451522425
32 -14950160344272093791582580675043770 907472899819981949341378110154809715179 -24731051682639273759928788064570383223587450
33 16155141195563338657676309047193424 -1376221833275547070832128586054735372508 50509111549196111473773779016577737498441600
34 -16325577147375427860973939656206328 1961693839492212348975823973760605178136 -97309453221413773043941215167796843939911898
35 15438699952211792461501868440272006 -2630351797529897275169582942504929641060 176998827962979419006632617735024028247509860
36 -13670950561519930299442634525960712 3320209617080744793536230682508683729616 -304207058486939035761632027745346701554392134
37 11341331254037410590805413778181826 -3948147707280064838262852891535570186660 494410094613580637022824637004569132261581337
38 -8818779760352979981093230774298768 4425711236123134040037125307810442778760 -760401137180328056132510682398249514096499842
39 6429899593697638377309898113128922 -4679494553303078534463778068219617270016 1107482602759799563288386448416485515421284059
40 -4397374036769751008463322908782910 4669652936832854394263463248975498878290 -1528462115056218114570979335500644097095534590
41 2821554211274109523679503985207847 -4400106254768736151728313032685539961182 2000160725563917132179905076326003637180892066
42 -1698912467948949129560869039953552 3916855379279461279221307993825696427649 -2483251708332362892319927253873288086259403006
43 960046155315203117418840808804773 -3295267219632260845527037781198777751564 2926577962952883339749137031574000966373245705
44 -509179555726352503519141063593888 2621111844486986451254604074365108363518 -3275713142668992052529309428415969231063023464
45 253451113819739835364074059798592 -1971812573451411885627749313392558182050 3483904701814212061038593283228132682075549932
46 -118389947168479890750632497410792 1403312933377004028862981565442973543528 -3522371316635229491247268462169458134757105464
47 51886065603954874404443957042232 -945053007338240357264153578599020565678 3386820173441323644547878165608589144769825167
48 -21329621619955768840911025552404 602357958352568601380177713664341213368 -3098153949612082982692311364945230932330343462
49 8221566820070900740353505791441 -363424394221025691054817552283652902222 2697240439767053396463974972685005158785053058
50 -2970069311765455481972622777384 207576540278226299713443515310430317627 -2235529915625030927303840038293674618900390568
51 1005025072505687381818254012408 -112245893221491292810656209179463439420 1764453889147386373603244995693702112542853817
52 -318343714588601446289902619514 57463599462589050262475996892474119014 -1326540709770816642857568011527748818110546378
53 94315841627219273729130903345 -27850048295787497770823375266491469404 950187625360653365442292542829662379272587472
54 -26112384771570368923969170006 12776978787594387340553429759603391024 -648576794650189013320411455658959525512117310
55 6748788027550952195964742023 -5547978740904665931141578010944949534 421937425133907991848569862888256746117511476
56 -1626294421921639428910251198 2279592049200707616750142850971442961 -261653904373506954462272350191930719663472024
57 364895789433184980319614999 -886097485370467196508941396264934954 154683254836945777002236036266996682330483757
58 -76112034189381985020175470 325737599996001371774781437345699514 -87182031774437129103221179319923458818515422
59 14732503609736930453484630 -113200548053500475981259876192593970 46848433642117480552518593768368041920562717
60 -2640916850239964173599120 37172879137830513571751814110923425 -24002155036758457181631085461714939355806198
61 437401366115589567105201 -11528486374505944039801174613228858 11724132067252252961121481996868612000842980
62 -66757682295093850108074 3374617424077804322055975007580667 -5459588433471115640268244139046059464312500
63 9360475152166271210124 -931717941771724520241451824642690 2423516939099795213736698102760577855684629
64 -1201572318798328545552 242445583199669177802171529887963 -1025372499957341193769521527796082730973324
65 140636199781905104400 -59406436347336103284960618838086 413421387850156758263534038143024966922470
66 -14937821508912805788 13693511614437447866182451591241 -158814139265015970443647097358315457975566
67 1431881996665071882 -2966056690095091215596316365650 58111480154269905095003702190283748687415
68 -123052419492491526 602964061459997826813897760425 -20248102099048586010853896930342213253380
69 9405610862204928 -114881804402322846237903518958 6715987562335571702895084161471595142398
70 -633262403070492 20482739123073799677521468811 -2119686272246933874479296048592102581734
71 37104943421451 -3411539050097625960596686398 636327301275593340564500756630892960888
72 -1863092101590 529779487751768057098206870 -181603685243514533206257308227728006336
73 78555244146 -76537521430219395497397970 49245538517730604027400707548844254645
74 -2704922562 10261688845601881130576166 -12680710012534023754662301107764099988
75 73042542 -1273262385518182537205076 3098576636136322332765443327522683569
76 -1450566 145745369442728219604564 -717958438984338052148208054892633914
77 18837 -15334685649693749837484 157614910429442975046611813101623345
78 -120 1476882153683304214572 -32753807023600751443254718262391294
79 0 -129570236001093540324 6436618186938177743660110084929618
80 0 10296551220074653518 -1194828125495051995774017119062608
81 0 -736193973365226018 209254854442982989200792104245359
82 0 46980006025877057 -34528964162911686764252717214276
83 0 -2649703493070342 5360226360838025518747643332527
84 0 130483368718983 -781552787017954063881049904586
85 0 -5523954774108 106835163248905121474925193965
86 0 196982534997 -13663623902520673876538375880
87 0 -5753758530 1631266628080478241806291013
88 0 132187057 -181335628942097862187587378
89 0 -2239776 18715106642693346773644794
90 0 24885 -1787472318324401713866702
91 0 -136 157403590327004713054215
92 0 0 -12725416274500452565074
93 0 0 939888468084608425683
94 0 0 -63057203296464493164
95 0 0 3816835413000842085
96 0 0 -206756601273744390
97 0 0 9924692846551290
98 0 0 -417022184399886
99 0 0 15101577327810

100 0 0 -461770564404
101 0 0 11593366485
102 0 0 -229464288
103 0 0 3357255
104 0 0 -32280
105 0 0 153

Table 3: BPS numbers ng
d of local KP2
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J
H
E
P
1
0
(
2
0
0
8
)
0
9
7

d1 0 1 2 3 4 5 6

d2

0 -2 0 0 0 0 0

1 -2 -4 -6 -8 -10 -12 -14

2 0 -6 -32 -110 -288 -644 -1280

3 0 -8 -110 -756 -3556 -13072 -40338

4 0 -10 -288 -3556 -27264 -153324 -690400

5 0 -12 -644 -13072 -153324 -1252040 -7877210

6 0 -14 -1280 -40338 -690400 -7877210 -67008672

Table 4: Instanton numbers ng=0

d1d2
of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 9 68 300 988 2698

3 0 0 68 1016 7792 41376 172124

4 0 0 300 7792 95313 760764 4552692

5 0 0 988 41376 760764 8695048 71859628

6 0 0 2698 172124 4552692 71859628 795165949

Table 5: Genus one GV invariants ng=1

d1d2
of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 -12 -116 -628 -2488

3 0 0 -12 -580 -8042 -64624 -371980

4 0 0 -116 -8042 -167936 -1964440 -15913228

5 0 0 -628 -64624 -1964440 -32242268 -355307838

6 0 0 -2488 -371980 -15913228 -355307838 -5182075136

Table 6: Genus two GV invariants ng=2

d1d2
of local KF0
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E
P
1
0
(
2
0
0
8
)
0
9
7

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 15 176 1130

3 0 0 0 156 4680 60840 501440

4 0 0 15 4680 184056 3288688 36882969

5 0 0 176 60840 3288688 80072160 1198255524

6 0 0 1130 501440 36882969 1198255524 23409326968

Table 7: Genus three GV invariants ng=3

d1d2
of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 -18 -248

3 0 0 0 -16 -1560 -36408 -450438

4 0 0 0 -1560 -133464 -3839632 -61250176

5 0 0 -18 -36408 -3839632 -144085372 -2989287812

6 0 0 -248 -450438 -61250176 -2989287812 -79635105296

Table 8: Genus four GV invariants ng=4

d1d2
of local KF0

d1 0 1 2 3 4 5 6 7

d2

0 -2 0 0 0 0 0 0

1 1 3 5 7 9 11 13 15

2 0 0 -6 -32 -110 -288 -644 - 1280

3 0 0 0 27 286 1651 6885 23188

4 0 0 0 0 -192 -3038 -25216 -146718

5 0 0 0 0 0 1695 35870 392084

6 0 0 0 0 0 0 -17064 -454880

7 0 0 0 0 0 0 0 188454

Table 9: Instanton numbers ng=0

d1d2
of local KF1

– 40 –



J
H
E
P
1
0
(
2
0
0
8
)
0
9
7

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 9 68 300 988 2698

3 0 0 0 -10 -288 -2938 -18470 -86156

4 0 0 0 0 231 6984 90131 736788

5 0 0 0 0 0 -4452 -152622 -2388864

6 0 0 0 0 0 0 80948 3164814

7 0 0 0 0 0 0 0 -1438086

Table 10: Genus one GV invariants ng=1

d1d2
of local KF1

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 -12 -116 -628 -2488

3 0 0 0 0 108 2353 23910 160055

4 0 0 0 0 -102 -7506 -161760 -1921520

5 0 0 0 0 0 5430 329544 7667739

6 0 0 0 0 0 0 -194022 -11643066

7 0 0 0 0 0 0 0 5784837

Table 11: Genus two GV invariants ng=2

d1d2
of local KF1

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 15 176 1130

3 0 0 0 0 -14 -992 -18118 -182546

4 0 0 0 0 15 4519 179995 3243067

5 0 0 0 0 0 -3672 -447502 -16230032

6 0 0 0 0 0 0 290853 28382022

7 0 0 0 0 0 0 0 -15363990

Table 12: Genus three GV invariants ng=3

d1d2
of local KF1
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