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Abstract. This is a brief review of the status of glueball mass calculations from Supergravity.
After reviewing the basic concepts, we summarize results of glueball spectrum for different
models and compare their assets as well as their shortcomings. We focus on AdS black-hole,
Klebanov-Strassler and Maldacena-Nunñez backgrounds.

1. Introduction
String Theory was born as a theory of hadronic interactions. After the discovery of Quantum
Chromodynamics (QCD), which is the currently accepted theory of strong interactions, String
Theory was abandoned as a possible explanation of hadronic interactions and was hailed as a
theory of Quantum Gravity. After thirty years, string theorists have come back to the study
of problems related to the hadronic world. Guided by the Maldacena conjecture [1] and their
refinements [2],[3] there have been many interesting achievements in the area. Indeed, the
gravity duals of field theories with different amount of Supersymmetry and ”similar” to Quantum
Chromodynamics (QCD) are known. The important point is that many characteristic features
of QCD, like confinement, chiral symmetry breaking, etc; have been understood based on dual
String Theory backgrounds. In this review we study glueballs in the context of gauge/gravity
duality. Even though the models reviewed here are dual to confining theories, it is not completely
clear if they are in the same universality class of QCD. Nevertheless, they represent the best
candidates we currently have for a study of a QCD dual.

From a modern QCD perspective, it is known that glueballs are composites made out of
constituent glue, with no quark content. Of course, since we live in a world with quarks, one
might think that the proposal of pure glue objects is impossible to study. When investigation
higher order corrections to glueball operators, there will be quarks running around the loops
rendering the object not-pure glue. But lattice theorist working in the quenched approximation
overcame this limitation and have taught us many things about glueballs.

Results of lattice calculations show that there is a discrete spectrum of glueballs, the lightest
glueball is a scalar, the next is a tensor, 1.6 times heavier and the mass of the lightest glueball
should be around 1630 MeV . See [4] for a nice and clear review of these results.

With the discovery of the gauge/gravity duality we have a new tool to calculate glueball
masses. This duality relates a strongly coupled gauge theory with a weakly coupled Supergravity.
This allows us to calculate gauge theory observables like glueball masses directly form
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Supergravity. The purpose of this article is to review the techniques to calculate glueball masses
from Supergravity, collect the results obtained for different backgrounds and compare their
virtues and shortcomings.

2. Glueballs from Supergravity, the Basics.
The glueball mass spectrum in a guage theory can be obtained by computing correlation
functions of gauge invariant glueball operators and looking for particle poles.That is, we compute
a two-point correlation function of two glueball operators that should behave in a Wilson
expansion as

< O(x)O(y) >=
∑
j

cje
Mj |x−y|

where Mj are the glueball masses
From the String Theory view point, using the Gauge/Gravity duality, correlation functions of

local operators are related to tree level amplitudes in the dual Supergravity description. Thus,
the study of glueballs proceeds by finding bound states for the fluctuations of the supergravity
fields. Basically, the idea is to fluctuate all the fields in a given solution dual to a confining
field theory and study the equations of motion to first order in the fluctuations. The system is
usually reduced to a Schröedinger problem. The eigenfunctions are identified with the glueballs
and the eigenvalues are identified with their masses. The quantum numbers of the glueballs JPC

are determined form the quantum numbers of the dual string theory field. We should point out
that this procedure is not totally clear in many of the available confining-models and it should
be important to understand it better.

This machinery has been applied to some confining models. Let us add that, since many of
the existing Supergravity models are duals to confining field theories with only adjoint matter
content, the objects under study are only glueballs (no hybrids) and since we work in the large
Nc regime, the glueballs are stable.

There are four landmarks for backgrounds dual to confining theories in four dimensions:
Black-Hole -or finite temperature- backgrounds [5], Klebanov-Strassler -or the deformed conifold
-background [6], Maldacena-Nunez -or wrapped branes backgrounds [7] and Polchinski Strassler
[8] . We will review the first three where much work on the glueball spectrum has been done.

3. Black-Hole Backgrounds
The first calculation of glueball masses from supergravity were done in Black-Hole backgrounds.
This study was pioneered by [9] and afterwards the spectrum was completed in [10]-[13]. As
mentioned in the previous section, the computation of correlation functions amounts - using
the gauge/gravity duality- to solving field equations for the corresponding fluctuation in the
AdS background. For a given glueball one has to identify the corresponding glueball operator
and compute its two point function. In order to do that we need to identify the supergravity
field that couples to it at infinity. For example, the quantum numbers of the 0++ lead us to
identify Tr(F 2) as the glueball operator. And the string field that couples to it at infinity is
the dilaton, Φ. Therefore the 0++ masses are obtained by solving equations of motion for the
dilaton fluctuations,

δµ(
√

ggµνδνδΦ) = 0. (1)

Where the metric of a black-hole background is

dS2 = r2dxidxi + (r2 − 1
r4

)dτ2 + (r2 − 1
r4

)−1dr2 +
1
4
dΩ2

4 (2)

with worldvolume coordinates xi, ( i = 1, 2, 3, 4), τ is a compact direction, r the AdS radial
direction and dΩ4 is the metric of a four-sphere. To find the lowest mass modes we consider
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Table 1. Mass (squared) of the spin 0 glueball from a black-hole background.

State (Mass)2 Field

0++ 7.38 hα
α

0++∗ 22.07 δΦ
0++∗∗ 46.98 hα

α

0++∗∗∗ 55.84 δΦ
0++∗∗∗∗ 94.48 hα

α

0++∗∗∗∗∗ 102.46 δΦ

Table 2. Mass (squared) of the spin 1 glueball from a black-hole background.

State (Mass)2

1−− 83.04
1−−∗ 143.58
1−−∗∗ 217.39
1−−∗∗∗ 304.54

solutions of the form δΦ = f(u)eikx. Equation (1) becomes,

∂r[r(r6 − r6
0)∂rf(r)] + M2rf(r) = 0, −M2 = k2

The values of M2 for which there are normalizable solutions are the glueball masses. The
spectrum is found to be discrete and exhibits a mass gap. In [9],[10] the authors found that the
mass of the 0++ and its excited states is given by,

M2 ∼ 0.74n(n + 2)
R2

0

, n = 1, 2, 3...

Following a similar procedure Brower, Mathur and Tan in [11]-[13] carried out a detailed study of
the complete spectrum in black-hole backgrounds. The 1−− and 2++ glueball masses are found
by studying fluctuations of the one form Aµ and the metric gµν(x) respectively. Parts of their
results are shown in Tables 1 and 2 . Note that the dilaton fluctuation δΦ and the trace of the
internal part of the metric hα

α have the same quantum numbers as the scalar glueball and thus
this two fluctuations will give the complete 0++ spectrum. Brower, Mathur and Tan showed
that the scalars coming form the dilaton fluctuation are degenerate with the 2++ glueball and
that the lightest scalar comes not from the dilaton but from the hα

α fluctuation.

4. The deformed Conifold Background
The deformed conifold background [6] involves M D5 branes wrapped on an S2 and N D3 branes.
The solution is dual to a four dimensional SU(N)×SU(N+M) in the ultraviolet. The theory has
N = 1 supersymmetry. Going to lower energies, the theory cascades through chiral symmetry
breaking SU(N)×SU(N +M) → SU(N −M)×SU(N) → SU(N − 2M)×SU(N −M) → .....
Originally it was thought that, if N = kM with k and integer, deep in the infrared the gauge
group was SU(M), and that it was in the same universality class of Super Yang Mills. Later on
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Table 3. Mass (squared) of the spin 2 glueball from a black-hole background.

State (Mass)2

2++ 22.09
2++∗ 55.58
2++∗∗ 102.46

[18] it was showed that the cascade stops before getting to SU(M) and the theory at the bottom
of the cascade is SU(2M) × SU(M) . Furthermore, there is a massless scalar corresponding
to a U(1) Goldstone boson. Thus, there is no mass gap and the deformed conifold theory is
not in the same class as Super Yang Mills. More precisely, the theory is in a baryonic branch
where certain baryon operators acquire vacuum expectation value. Nevertheless, the fact that
the theory exhibits chiral symmetry breaking and confinement makes it intersting in its own
right. The Klebanov-Strassler metric is,

ds2
10 = h−1/2(τ)dxndxn + h1/2(τ)ds2

6, (3)

with ds2
6 the metric of the deformed conifold. There is a basis, {τ, gi=1,...,5(ψ, θ1, θ2, φ1, φ2)}

where this metric becomes diagonal,

ds2
6 =

1
2
ε4/3K(τ)

[ 1
3K3(τ)

[dτ2 + (g5)2] + cosh2
(

τ

2

)
[(g3)2 + (g4)2] (4)

+ sinh2
(

τ

2

)
[(g1)2 + (g2)2]

]
, (5)

where

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh(τ)
. (6)

The harmonic function in (3) is given by the integral expression

h(τ) = α
22/3

4

∫ ∞

τ
dx

x coth x − 1
sinh2 x

(sinh(2x) − 2x)1/3, (7)

which cannot be evaluated in terms of elementary or special functions. The constant α is
α ∼ (gsM)2.

The solution contains also a self-dual five-form and a three-form flux. F5 = F5 + 	F5,
G3 = F3 + iH3. The explicit forms of these function can be found in [6]. For our purposes
suffices to note that they only depend on the radial variable τ . the procedure for finding he
0++ and 1−− masses is very similar to the one outlined in the previous section. The 2++ case
involves fluctuations of the metric and is therefore, more technically involved. The calculation
of the spectrum in this background can be found in [14]-[16]. we summarize the results in the
following table.

All the masses are measured in units related to ε2/3 which is a parameter that controls the
deformation of the conifold. It is interesting to note that if we plot the lowest lying 0++, 1−−

and 2++ in a Spin vs. Mass2 plot, these states lie on a straight line. Strictly speaking this
cannot be called a Regge trajectory since this calculation is done in an infinite tension regime.
Nevertheless, the fact that the states align themselves in a line in a J vs. M2 plot is definitely
reminiscent of a Regge trajectory and is quite remarkable.
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Table 4. Mass (squared) of the spin 0,1 and 2 glueballs from supergravity in the Klebanov-
Strassler background.The masses are measured in units of ε2/3/gsMα′

.

State M2

0++ 9.78
0++∗ 33.17
1−− 14.05
1−−∗ 42.90
2++ 18.33

5. Wrapped Branes or the Maldacena-Nunez Background
The Maldacena-Nuñez background [7] involves D5 branes wrapped in an S2. This model exhibits
some very distinctive features. It is dual to four dimensional Super-Yang-Mills in the infrared
but the ultraviolet completion is a five dimensional theory. Thus, as we go to high energies one
dimension opens up and the model stops being dual to SYM. This fact alone suggests that some
kind of regularization will be needed. Another distinctive feature is the presence of a varying
dilaton. In Black-Hole backgrounds as well as in the Klebanov-Strassler models reviewed in the
previous section the background dilaton was constant. The procedure for calculating glueball
masses is essentially the same as the one outlined in the previous sections but the existence of a
varying dilaton in the Maldacena-Nuñez background makes it technically much more involved.
We will not present all the equations here, for details see [7] . The background has the topology of
R1,3×R×S2×S3 and there is a fibration between the two spheres that allows the supersymmetry
preservation. The topology of the metric, near r = 0 is R1,6 ×S3. The metric in Einstein frame
reads,

ds2
10 = α′gsNe

φ
2

[ 1
α′gsN

dx2
1,3 + e2h ( dθ2 + sin2 θdϕ2 ) + dr2 +

1
4

(wi − Ai)2
]

, (8)

where φ is the dilaton. The angles θ ∈ [0, π] and ϕ ∈ [0, 2π) parametrize a two-sphere. This
sphere is fibered in the ten dimensional metric by the one-forms Ai (i = 1, 2, 3). The Ai’s can
be written as a function of r and the angles (θ, ϕ), for explicit expresions see (ccc). The dilaton
is given by,

e−2φ =
2e−2φ0

sinh 2r

√
coth 2r − r2

sinh2 2r
− 1

4
(9)

The glueball spectrum of this model was investigated in [19], [20] and the meson spectrum in
[21]. The authors of [20] found that unlike the backgrounds previously studied, in Maldacena-
Nuñez background not even the simplest scalar mode decouples from the rest of the fluctuations.
Indeed, assuming only fluctuations of the dilaton leads to inconsistent equations. Therefore, the
glueball 0++ in the Maldacena-Nuñez background is not dual to the dilaton, but to a mixture
of dilaton and trace of the internal part of the metric. This mixing might persist for higher
spin modes. The presence of a non-constant dilaton background seems to be the reason for the
mixing of the fluctuations.

The Maldacena-Nuñez background produces a discrete spectrum. Due to the particular
nature of the potential, the eigenvalues are bounded from above and below. The spectrum
is not normalizable. In [20] the authors proposed a regularization procedure that amounts to
subtracting the unphysical region where the theory is no longer dual to a four dimensional gauge
theory.
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Table 5. Mass (squared) of the spin 0 glueball, measured in units of 1
Ngsα′ , in the Maldacena-

Nuñez background

State (Mass)2

0++ 18.41

6. Comparison and Conclusions
The three backgrounds reviewed here present very distinctive characteristics. The black-hole
backgrounds exhibit a degeneracy of the 2++ and 0++ glueballs. Also, the lightest 0++ glueball
does not come from the dilaton but from the trace of the internal part of the metric. The
Klebanov-Strassler background does not present these degeneracy; the lowest states lie on a line
in a Spin vs Masss2 plot. This linear trajectory is not, strictly speaking, a Regge trajectory
since the supergravity calculation is done in an infinite coupling regime. Nevertheless, it is quite
suggestive. The Klebanov-Strassler spectrum does not exhibit a mass gap, there is a massless
scalar state. The Maldacena-Nuñez solution, which, unlike the other solutions presented here,
involves a varying dilaton in the background, presents also some new features. The spectrum
is discrete but the modes are non-normalizable and a regularization procedure is needed. The
scalar glueball is in this case a mixture of the dilaton and the trace of the internal part of the
metric.

The interest of studying glueballs goes beyond the simple fact of getting a discrete spectrum-
that is by itself of enough interest. Indeed, glueballs play an important role in some advances that
happened recently regarding the study of Deep Inelastis Scattering using AdS/CFT techniques
[22]. The knowledge of glueballs masses and profiles in different models might help to extend
the results in papers like [22] to other ‘more realistic’ models.
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