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Abstract. The high energy scattering in QCD and gravity can be described in terms of

reggeized gluons and gravitons, respectively. At N = 4 SUSY the BFKL Pomeron is dual

to the reggeized graviton living in the 10-dimensional anti-de-Sitter space. We discuss

the corresponding effective actions for reggeized gluon and graviton interactions. The

Euler-Lagrange equations for these effective theories are constructed with a variational

approach and by using an invariance under the gauge and general coordinate transforma-

tions. We discuss their solutions and applications to the calculation of effective Reggeon

vertices and trajectories.

1 Introduction

The hadron scattering amplitudes A(s, t) at high energies
√

s and fixed momentum transfers q =
√−t

can be presented as sums of the amplitudes Ap with definite signatures p = ±1

Ap(s, t) =
∫ a+i∞

a−i∞
d j
2π

(
(−s) j + p s j

)
f p

j (t) . (1)

The t-channel partial waves f p
j (t) have the poles with their positions depending on t

f p
j (t) ∼ 1

j − j(t)
. (2)

They lead to the Regge behavior of the amplitudes

Ap(s, t) ∼ (−s) j(t) + ps j(t) . (3)

Pomeron is a special Regge pole with p = 1 and j(0) ≈ 1, which is responsible for a slowly

growing behavior of total cross sections σt at large energies and for the fulfilment of the Pomeranchuk

theorem for the particle-particle and particle-anti-particle cross sections.

The exchange of two or more reggeons generates more complicated Mandelstam singularities

of f j(t) in the j-plane [1]. To take into account all possible Pomeron contributions V.N. Gribov

constructed the Reggeon calculus based on the 2+1 field theory of a complex scalar field [2].
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In the Quantum Chromodynamics (QCD) the scattering amplitudes with the gluon quantum

numbers in the t-channel have the Regge form in the so-called leading logarithmic approximation

(LLA) [3]. Pomeron is a colorless composite state of the reggeized gluons. Its wave function in QCD

and in other field models with the gauge group S U(Nc) satisfies the BFKL equation [3]. It is remark-

able, that the equations for the composite states of several reggeized gluons with the color singlet and

octet quantum numbers are integrable at large Nc [4, 5]. Thus, it looks natural to reformulate QCD and

other gauge models in terms of the effective degrees of freedom corresponding to the reggeized glu-

ons. The gluon Regge trajectory and various reggeon couplings in upper orders of perturbation theory

can be calculated from the effective action presented in Ref. [6, 7]. In the N = 4 SUSY the Pomeron is

dual to the reggeized graviton in the anti-de-Sitter space due to AdS/CFT correspondence [8–10]. The

effective action for the high energy scattering in gravity was derived in ref. [11]. Below we consider

the Euler-Lagrange equations for the effective actions describing interactions of reggeized gluons and

gravitons.

2 Effective action for high energy processes in QCD

The effective action in QCD is written for a cluster of usual quarks, gluons and reggeized gluons

having their rapidities y in the interval η around its central value y0.

Apart from the anti-hermitian matrix Nc × Nc for the gluon field vμ we introduce also the fields

A± = A0 ± A3 describing the production and annihilation of the reggeized gluons

vμ(x) = −iT ava
μ(x) , A±(x) = −iT aAa

±(x) , [T a,T b] = i f abcTc . (4)

The operators T a are generators of the gauge group S U(Nc) in the fundamental representation.

The fields A∓ = A± are invariant under local gauge transformations of the gluon fields vμ

δvμ =
1

g
[Dμ, χ(x)] , Dμ = ∂μ + gvμ , δA± = 0 (5)

with the parameters χ(x) vanishing at x → ∞. For the case of the global S Un rotations with constant

χ the Reggeon fields A± are transformed as usual gluon fields vμ. They satisfy also the kinematical

constraints

∂−A− = ∂+A+ = 0 , ∂± =
∂

∂x0
± ∂

∂x3
(6)

corresponding to the fact, that the Sudakov components αi, βi of the cluster momenta ki are strongly

ordered βi � βi+1, αi 	 αi+1 in the multi-Regge kinematics.

The effective action for a cluster of real and virtual particles with their rapidities belonging to the

small rapidity interval η has the form [6]

S e f f =

∫
d4x

(
LQCD + Tr ∂μA+∂μA−

)
+ S ind , S ind = Tr

∫
d4x (V+∂2

μA+ + V−∂2
μA−) , (7)

where LQCD is the usual QCD lagrangian

LQCD = iψ̄∂̂ψ +
1

2
Tr G2

μν , Gμν =
1

g
[Dμ,Dν] . (8)

The anti-hermitian operators V± in the induced action S ind are expressed in terms of eikonal am-

plitudes for a massless particle scattered off the external gluon field v. By chousing an appropriate

normalization of the fields A± we can present V± in the form [6]

V± =
1

g
∂±

1

D±
←−
∂ ± ≡ −∂±

g
+ v± − v± g

∂±
v± + v±

g

∂±
v±

g

∂±
v± + ... , (9)
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where by definition the derivative
←−
∂ acts on functions situated to the left from it. The contribution

−∂±/g is negligible in S int, because the fields A± do not depend on x±. It is natural to define the action

of the integral operator 1/∂± in the symmetric form

1

∂±
f (x±) =

1

2

(
1

∂0

∓ 1

∂3

)
f (x±) =

1

4

⎛⎜⎜⎜⎜⎝∫ x±

−∞
dx′± f (x′±) −

∫ ∞

x±
dx′± f (x′±)

⎞⎟⎟⎟⎟⎠ . (10)

The invariance of the action under gauge transformations is a consequence of the relation

V ′
± =

1

g
∂± e−χ

1

D±
eχ
←−
∂ ± → V± (11)

valid after its integration over x± due to the vanishing of the gauge parameter χ(x) at x → ∞.

The matrix V± can be written in one of two factorized forms

V± = −∂±
g

O(x±) = O+(x±)

←−
∂ ±
g
, (12)

where the operators O(x±) and O+(x±) are defined below

O(x±) ≡ − 1

D±
←−
∂ ± , O+(x±) = ∂±

1

D±
. (13)

The poles 1/D± in V± appear from propagators of massless particles with other rapidities emitting

gluons inside the given kinematical interval η. These particle virtualities ∼ k± are large. Hence it

looks natural to define the action of the operators 1/∂± as it was done above

1

∂±
f (x±) =

1

4

∫
dx̃± ε(x± − x̃±) f (x̃±) , (14)

but for all terms of the perturbative expansion of 1/D±. Such definition of V± is compatible with its

anti-hermicity property and leads to the principal value prescription for corresponding poles 1/k± in

the momentum space.

Integrating S ind over x± we can present it in terms of asymptotic values of functions Op(x±)

S ind = −Tr
g

∫
d2x⊥

(∫ ∞

−∞
dx− O |x+=∞x+=−∞ ∂

2
σA+ +

∫ ∞

−∞
dx+O |x−=∞x−=−∞∂

2
σA−

)
. (15)

The induced action is real due to the anti-hermicity relation for O |x±x±=−∞. It can be written also in the

four-dimensional form

S ind = Tr
∫

d4x
(
v+(x) O(x+) ∂2

σA+ + v−(x) O(x−) ∂2
σA−

)
. (16)

The product of the operators O+(x±) and O(x±) does not depend on x±, but generally O(x±) are

not unitary operators. The absence of unitarity is related to our use of the principal value prescription

θ(|k±| − ε)/k± for particle propagators. The infrared cut-off ε can be chosen to be proportional to e−η
where η is a low limit for the relative rapidity of neigbouring clusters described by the effective action.

We can use the representation of 1/D± in terms of a modified P-exponents

1

D±
= P

e−
g
4

∫ x±
−∞ dx̃±v±

e−
g
4

∫ ∞
x± dx̃±v±

1

∂±
P̄

e−
g
4

∫ ∞
x± dx̃±v±

e−
g
4

∫ x±
−∞ dx̃±v±

. (17)
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It allows to write O(x±) in the form

O(x±) = P
e−

g
4

∫ x±
−∞ dx̃±v±

e−
g
4

∫ ∞
x± dx̃±v±

1

2

(
Pe

g
4

∫ ∞
−∞ dx̃±v± + P̄e−

g
4

∫ ∞
−∞ dx̃±v±

)
. (18)

The first factor here is an unitary matrix and second one is an hermitian operator. We obtain a simple

representation for the difference of O(x±) at x± = ±∞

O |x±=∞x±=−∞ =
1

2

(
Pe−

g
4

∫ ∞
−∞ dx̃±v± − P̄e

g
4

∫ ∞
−∞ dx̃±v±

) (
Pe

g
4

∫ ∞
−∞ dx̃±v± + P̄e−

g
4

∫ ∞
−∞ dx̃±v±

)
, (19)

which leads to an explicit expression for S ind having the reality property.

Note, that effective vertices for the reggeized gluon with the indices ±1, color index c and momen-

tum q, annihilated to r + 1 gluons with the polarization indices μ0, μ1, ..., μr, color indices a0, a1, ..., ar

and momenta k0, k1, ..., kr, can be written in the form [6, 7]

Δ
μ0μ1...μr±
a0a1...arc = −q2

r∏
i=0

δ
μi±Δa0a1...arc(k±0 , k

±
1 , ...k

±
r ) , Δa0c = δa0c ,

r∑
i=0

k±r = q± = 0 . (20)

Here Δa0...ar has the Bose symmetry and satisfies the recurrent relation (the Ward identity) [6]

Δa0a1...ar (k
±
0 , k

±
1 , ...k

±
r ) =

1

k±r

r−1∑
t=0

i faatar Δa0...at−1aat+1...ar (k
±
0 , k

±
1 , ...k

±
t−1, k

±
t + k±r , k

±
t+1, ...k

±
r ) ,

where fabc is the structure constant of the gauge group. Thus, these vertices for the principal value

prescription do not depend on the color representations of the matrices v±(x) in S ind. In particular, one

can use the adjoint representation for these matrices.

3 Classical equation for the effective action in QCD

The variation of the induced action S ind over v± can be written as follows

δS ind = −Tr
∫

d4x
(
∂+

1

D+
δv+

1

D+

←−
∂ + ∂

2
μA+ + ∂−

1

D−
δv−

1

D−
←−
∂ − ∂2

μA−
)
. (21)

Using the relation

∂±
1

D±
δv±

1

D±
←−
∂ ± = O+(x±) δv± O(x±) ,

we obtain for the variation of S ind

δS ind = −Tr
∫

d4x
(
δv+O(x+) ∂2

μA+O+(x+) + δv− O(x−) ∂2
μA−O+(x−)

)
. (22)

Therefore the Euler-Lagrange equations for S e f f in a pure glue-dynamics have the form

[Dμ,Gμν]⊥ = 0 , [Dμ,Gμ±] = j±ind , (23)

with the anti-hermitian currents

j±ind = O(x±)(∂2
σA±)O+(x±) . (24)
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They are conserved

[D±, j±ind] = 0 (25)

due to the relations D± O(x±) = 0.

In the quasi-elastic kinematics, where, for example, A+ = 0, after the gauge transformation, lead-

ing to the constraint v′− = 0, one obtains

j′ −ind = λ ∂
2
σA−λ+ , λ =

1

2

(
Pe

g
4

∫ ∞
−∞ dx̃−v′− + P̄e−

g
4

∫ ∞
−∞ dx̃−v′−

)
= 1 . (26)

In this light cone gauge there is an explicit solution of the Euler-Lagrange equations

ṽσ = δσ−A−. (27)

Thus, the reggeon field A− has the physical interpretation of a classical solution of the Euler-Lagrange

equations for A+ = 0 in the light-cone gauge v− = 0. This solution is a superposition of the shock

waves proportional to δ(x∓ − x∓0 ) ln |x⊥ − x⊥0 |2.

Inserting the solution of the Euler-Lagrange equation for a general kinematics in the effective ac-

tion, one obtains a generating function for the reggeized gluon vertices in the tree approximation [6, 7].

Note, that even for the quasi-elastic kinematics the Euler-Lagrange equations have other solutions cor-

responding to more complicated constraints at large times t → ±∞. The asymptotic behavior of these

contributions is fixed at t = −∞ and t = ∞ in terms of two arbitrary functions v1(�x) and v2(�x), re-

spectively. The effective action calculated on the general solution depending on A± and v1,2(�x) gives a

possibility to find a generating functional in a tree approximation for all possible scattering amplitudes

and an arbitrary number of reggeized gluons [6]. Furthermore, by calculating the functional integral

over the quantum fluctuations δvμ around classical solutions we can find various effective vertices with

loop corrections [12–14].

4 Effective action for the high energy gravity

According to J. Maldacena the N = 4 super-symmetric gauge theory is equivalent to the 10-

dimensional super-string model living on the 10-dimensional anti-de-Sitter space [8–10]. As a result,

here the BFKL Pomeron is dual to the reggeized graviton (see, for example, [15]) and the Gribov

calculus for Pomerons should be generally covariant. Note, that the graviton Regge trajectory and its

various couplings in a leading order were calculated many years ago [16].

The generally covariant effective action in gravity was constructed for a cluster of gravitons and

reggeized gravitons having their rapidities in an interval around their central value [11]. Apart from

the usual Einstein-Hilbert action and a kinetic term for the reggeon fields A±±

S = − 1

2κ2

∫
d4x

(√−gR + ∂σA++∂σA−−
)
+ S ind , (28)

it contains the induced term S ind

S ind = − 1

2κ2

∫
d4x

( j++
2
∂2
σA++ +

j−−
2
∂2
σA−−

)
(29)

with the currents j±± being functionals of the metric tensor gμν.
Fields A±± describing the production and annihilation of reggeized gravitons are invariant under

the general coordinate transformations which are reduced to the Poincare group at large distances.

They satisfy the kinematical constraints

∂+A++ = ∂−A−− = 0 , (30)
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corresponding to the strong ordering of the Sudakov components for momenta of produced clusters

in the multi-Regge kinematics.

The gravity fields hμν are introduced as fluctuations of gμν around the Minkowsky metric tensor

ημν having the diagonal structure (1,−1,−1,−1). One can expand the Hilbert-Einstein lagrangian in h
and obtain the solution of the effective Euler-Lagrange equation at small A±± in the form h̃±± ≈ A±±,

providing that the currents j±± can be expanded in h as follows

j±± = h±± + O(h2) . (31)

The functional form of the current j±± = ∂± j∓ is fixed by the general covariance of the action.

Due to this constraint the new current j∓ = 2x∓ −ω∓ satisfies the Hamilton-Jacobi (HJ) equation [11]

gρσ (∂ρω
∓)(∂σω

∓) = 0 . (32)

The function ω∓ describes the light-front shock wave moving in the gravitational field.

If we search the solution of the HJ equation in the form ω∓ = 2x∓ − 2x∓(x±, x⊥), the quantities

x′∓ = ω∓/2 can be considered as light-cone components of the coordinate transformation x′(x) to the

systems with the global light-cone times x∓. In these systems the light-cone component of gρσ is zero

g′∓∓ = gμν∂μx′∓ ∂νx′∓ = 0 . (33)

This HJ equation does not fix completely the global light-cone time systems. It is naturally to impose

on g′ρσ more restrictive constraints expressed in terms of the Minkowsky tensor

g′ρ∓ = ηρ∓ , η∓∓ = ηρ∓⊥ = 0 , η±∓ = 1 . (34)

They correspond to the global light-cone time inertial systems where we have in particular

g′ρ∓
∂

∂x′ρ
=

∂

∂x′±
. (35)

Note, that j∓ in the effective action may be substituted by −ω∓ because the term 2x∓ gives a

vanishing contribution. After its integration over x± the induced action can be expressed only in terms

of the Hamilton-Jacobi functions ω∓ at x± = ∞ where we have the Minkowsky metric

S ind =
1

2κ2

∫
d2x⊥

(∫ ∞

−∞
dx−

4
ω− ∂2

σ⊥A++ |x+=∞x+=−∞ +
∫ ∞

−∞
dx+

4
ω+ ∂2

σ⊥A−−|x−=∞x−=−∞

)
. (36)

5 Classical equations for the effective gravity

Variations δgμν and δω∓ along particle trajectories are not independent due to the HJ equation

∂μω
∓ ∂νω∓ δτgμν + 2 gρσ ∂ρω

∓ δτ∂σω∓ = 0 (37)

and expressed through the corresponding infinitesimal shifts in the proper time τ

δτg
μν = dτ (∂σg

μν)
d
dτ

xσ , δτ∂σω∓ = dτ
d
dτ

∂σω
∓ . (38)

They can be calculated with the help of the Hamilton equations

d
dτ

xσ = gσρ ∂ρω∓ ,
d
dτ

∂σω
∓ = −1

2
(∂σg

μν) ∂μω
∓∂νω∓ . (39)
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Because x′∓ = ω∓/2 are light-cone components of x′(x) in systems with g′∓∓ = 0 we have

2gρσ ∂ρω
∓ δτ∂σω∓ = −2dτ g′χ∓

∂gμν

∂x′χ
∂μω

∓∂νω∓ = −2dτ
∂gμν

∂x′±
∂μω

∓∂νω∓ = δτ
∂ω∓

∂x′±
, (40)

where the property g′χ∓ = ηχ∓ of the global light-cone time inertial systems was used. By integrating

these equalities over the invariant phase space it is possible to verify the relations∫
d4x

√−g 2gρσ ∂ρω
∓ δτ(∂σω∓) =

∫
d4x′

√−g′ δτ ∂ω∓
∂x′±

=

∫
d2x⊥

∫ ∞

−∞
dx∓

4
δτω

∓ |x±=∞x±=−∞ ,

where we took into account, that in the global light-cone inertial system g′ does not depend on x′±,

which allows to integrate over this coordinate and neglect the factor
√−g′ at x′ ± = ∞.

The last expression enters in the variation of the induced action

δS ind =
1

2κ2

∫
d2x⊥

(∫ ∞

−∞
dx−

4
δω− ∂2

σ⊥A++|x+=∞x+=−∞ +
∫ ∞

−∞
dx+

4
δω+ ∂2

σ⊥A−−|x−=∞x−=−∞

)
. (41)

Therefore, taking into consideration also the HJ relation between δτg
μν and δτω

∓ on particle trajecto-

ries, one can present the variation of S ind over gμν in a simple 4-dimensional form

δS ind = − 1

2κ2

∫
d4x

√−g δgμν
(
∂μω

− ∂νω− ∂2
σ⊥A++ + ∂μω+ ∂νω+∂2

σ⊥ A−−
)
. (42)

The integrand contains the factor
√−g as a result of our transformation from the special coordinate

system with the global light-cone time x′∓ to a general system with coordinates x.

The above expression for δS ind allows one to calculate easily the induced energy-momentum ten-

sor θμν in the Euler-Lagrange equations

Rμν − 1

2
gμνR = −θμν , θμν = ∂μx′−∂νx′−∂2

σA++ + ∂μx′+∂νx′+∂2
σA−−, (43)

where x′± = ω± are coordinates in the corresponding light-cone global systems. This result can

be found independently from considerations related to the general covariance of the Euler-Lagrange

equations.

In a quasi-elastic kinematics, where A++ = 0, it is convenient to work in the inertial system with

the metric tensor obeying the constraints g′ρ+ = ηρ+ with the global light-cone time x′+, because here

the energy-momentum tensor is Tμν ∼ δ+μδ
+
ν . The classical equations in this system have the simple

solution

g′ρσ = ηρσ + δρ−δ
σ
−A−− . (44)

It is a superposition of the plane-wave solutions of Aichelburg and Sexl with the gravitation centers

situated at x+ = z+, x⊥ = z⊥ and distributed with the weight function ∂2
τ⊥A−−(z+, z⊥). The coordinate

transformation x′ = x′(x) to this global light-cone time inertial system satisfies the equations

gμν
∂x′ρ

∂xμ
∂x′+

∂xν
= ηρ+ (45)

and the tensors θμν and Tρσ in these systems are related as follow

θμν
∂xμ

∂x′ρ
∂xν

∂x′σ
= Tρσ . (46)
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Thus, the covariant energy-momentum tensor for the quasi-elastic kinematics is

θμν = ∂μx′+∂νx′+∂2
σA−− , (47)

where partial derivatives ∂μx′+ are found from the solution of the Hamilton-Jacobi equation

gμν ∂μx′+∂νx′+ = 0 . (48)

The covariant energy-momentum tensor for a general kinematics is conserved

Dμ θ
μν = 0 (49)

due to the kinematical constraints ∂±A±± = 0. As a consequence of the Hamilton-Jacobi equation for

x′± the tensor θμν is traceless

gμν θμν = 0 . (50)

Thus, we constructed the generally covariant Euler-Lagrange equations for the effective action in

the high energy gravity. In a quasi-elastic kinematics with A++ = 0 one of their solutions at an inertial

coordinate system with the global light-cone time x′+ has a simple form g′−− = A−−. There are also

many solutions which are parameterized by their asymptotic behavior at t → −∞ and t → ∞, respec-

tively. The effective action calculated on these solutions allows to construct a generating functional for

the effective multi-graviton scattering amplitudes in a tree approximation and to reproduce indepen-

dently the known results [16]. The integration over fluctuations around the classical solutions gives

a possibility to calculate loop corrections to reggeized graviton interactions and to effective graviton

vertices. In particular, using the one-loop Regge trajectory obtained in Refs [11, 16], the graviton

scattering amplitude in the double-logarithmic approximation was found [17]. A possible generaliza-

tion of our approach to the super-gravity in the 10-dimensional AdS space will be interesting for the

construction of the Gribov Pomeron calculus in N=4 SUSY.
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