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Abstract. The high energy scattering in QCD and gravity can be described in terms of
reggeized gluons and gravitons, respectively. At N = 4 SUSY the BFKL Pomeron is dual
to the reggeized graviton living in the 10-dimensional anti-de-Sitter space. We discuss
the corresponding effective actions for reggeized gluon and graviton interactions. The
Euler-Lagrange equations for these effective theories are constructed with a variational
approach and by using an invariance under the gauge and general coordinate transforma-
tions. We discuss their solutions and applications to the calculation of effective Reggeon
vertices and trajectories.

1 Introduction

The hadron scattering amplitudes A(s, £) at high energies /s and fixed momentum transfers g = v~
can be presented as sums of the amplitudes A” with definite signatures p = +1

(l+iood . ) )
AP(s,1) = f . 2—; ((—s)f +psf)fjp(t). (1

The t-channel partial waves f]f’ (#) have the poles with their positions depending on ¢

P
()~ — . (2)
/; J=J@
They lead to the Regge behavior of the amplitudes
AP(s,1) ~ (_S)j(t) + psj(t) ) (3)

Pomeron is a special Regge pole with p = 1 and j(0) ~ 1, which is responsible for a slowly
growing behavior of total cross sections o7 at large energies and for the fulfilment of the Pomeranchuk
theorem for the particle-particle and particle-anti-particle cross sections.

The exchange of two or more reggeons generates more complicated Mandelstam singularities
of fi(#) in the j-plane [1]. To take into account all possible Pomeron contributions V.N. Gribov
constructed the Reggeon calculus based on the 2+1 field theory of a complex scalar field [2].
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In the Quantum Chromodynamics (QCD) the scattering amplitudes with the gluon quantum
numbers in the 7-channel have the Regge form in the so-called leading logarithmic approximation
(LLA) [3]. Pomeron is a colorless composite state of the reggeized gluons. Its wave function in QCD
and in other field models with the gauge group S U(N,) satisfies the BFKL equation [3]. It is remark-
able, that the equations for the composite states of several reggeized gluons with the color singlet and
octet quantum numbers are integrable at large N, [4, 5]. Thus, it looks natural to reformulate QCD and
other gauge models in terms of the effective degrees of freedom corresponding to the reggeized glu-
ons. The gluon Regge trajectory and various reggeon couplings in upper orders of perturbation theory
can be calculated from the effective action presented in Ref. [6, 7]. In the N = 4 SUSY the Pomeron is
dual to the reggeized graviton in the anti-de-Sitter space due to AdS/CFT correspondence [8—10]. The
effective action for the high energy scattering in gravity was derived in ref. [11]. Below we consider
the Euler-Lagrange equations for the effective actions describing interactions of reggeized gluons and
gravitons.

2 Effective action for high energy processes in QCD

The effective action in QCD is written for a cluster of usual quarks, gluons and reggeized gluons
having their rapidities y in the interval n around its central value y.

Apart from the anti-hermitian matrix N, X N, for the gluon field v, we introduce also the fields
A: = Ay = Az describing the production and annihilation of the reggeized gluons

vu(x) = =iTV(x), As(x) = —iTAL(x), [T T"] = if*"T.. 4)

The operators T are generators of the gauge group S U(N,) in the fundamental representation.
The fields A™ = A, are invariant under local gauge transformations of the gluon fields v,

1
ov, = 5 Dy, x(0)], Dy =0, +gv,, 6AL =0 (®)]

with the parameters y(x) vanishing at x — oco. For the case of the global S U,, rotations with constant
x the Reggeon fields A* are transformed as usual gluon fields v,. They satisfy also the kinematical
constraints

0 0

0_A =6+A+=O,6i=@i@ ©6)

corresponding to the fact, that the Sudakov components «;, §; of the cluster momenta k; are strongly
ordered B; > Biy1, @; < a;41 in the multi-Regge kinematics.

The effective action for a cluster of real and virtual particles with their rapidities belonging to the

small rapidity interval 7 has the form [6]
Seff = f d*x(Locp + Tr0,A"0,A™) + Sina» Sina = Tr f d'x (VAT + V. 82AT), (D)

where Locp is the usual QCD lagrangian

>

a1 1
Locp = iy + ETrG2 Gy = ; (D, D,]. (8)

The anti-hermitian operators V. in the induced action S;,; are expressed in terms of eikonal am-
plitudes for a massless particle scattered off the external gluon field v. By chousing an appropriate

normalization of the fields A* we can present V. in the form [6]

vi%vi +ol 9)
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H
where by definition the derivative 0 acts on functions situated to the left from it. The contribution
—0. /g is negligible in S ;,;, because the fields A* do not depend on x*. It is natural to define the action
of the integral operator 1/, in the symmetric form

1 (1 _1 (e o
e T P )y - d/t rEN d/: /+ . 10
5 f0) 2(60+63)f(x) 4(L X f) f Xl )) (10)
The invariance of the action under gauge transformations is a consequence of the relation

, 1 o 1 —
Vi:;(’)ie D—iexai—)‘/i (11)
valid after its integration over x* due to the vanishing of the gauge parameter y(x) at x — co.

The matrix V. can be written in one of two factorized forms

p) .
Vi=-—=0(%)=0"(x") —=, (12)
g g
where the operators O(x*) and O* (x*) are defined below
+ l . 1
O(x™) = _D_i 0., OY(x*) =0, D_t (13)

The poles 1/D.. in V.. appear from propagators of massless particles with other rapidities emitting
gluons inside the given kinematical interval . These particle virtualities ~ k. are large. Hence it
looks natural to define the action of the operators 1/d. as it was done above

1 1
6—f(xi)= I fdfctE(xi—}i)f(}t), (14)

but for all terms of the perturbative expansion of 1/D.. Such definition of V. is compatible with its
anti-hermicity property and leads to the principal value prescription for corresponding poles 1/k.. in
the momentum space.

Integrating S ;,4 over x* we can present it in terms of asymptotic values of functions O,(x*)

xt=—co x~=—00 0

T e . - ~
S ina = —;r d*x, (f dx” O[22, 0hA" +f dx*OLZ% (92A‘). (15)

o 00

The induced action is real due to the anti-hermicity relation for O Iﬁ}m. It can be written also in the
four-dimensional form

Sia =Tr f d*x (v, () O(") AT +v_(x) O(x) GA7). (16)

The product of the operators O"(x*) and O(x*) does not depend on x*, but generally O(x*) are
not unitary operators. The absence of unitarity is related to our use of the principal value prescription
0(k*| — €)/k* for particle propagators. The infrared cut-off € can be chosen to be proportional to e~
where 77 is a low limit for the relative rapidity of neigbouring clusters described by the effective action.

We can use the representation of 1/D.. in terms of a modified P-exponents

1 I R AN
—=P—— — P — 17
p. " ol A (4
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It allows to write O(x*) in the form
_9 f"i d7tv, . .
oy =p "1 (Pe%ﬁmmt +Pe*%ﬁmﬁivi). (18)
e_% j';t dxv. 2

The first factor here is an unitary matrix and second one is an hermitian operator. We obtain a simple
representation for the difference of O(x*) at x* = o0

oL, = % (Pe’% Fodwos _ pet [ d?”*)(Pe% [od®os 4 pe=i ff;d?”*), (19)

which leads to an explicit expression for S ;,; having the reality property.
Note, that effective vertices for the reggeized gluon with the indices +1, color index ¢ and momen-

tum ¢, annihilated to  + 1 gluons with the polarization indices wo, 41, ..., iy, color indices ag, ai, ..., a,
and momenta ko, k1, ..., k-, can be written in the form [6, 7]
r r
et 2 i
Nt = = | ] 04 Aagar ek K oK) s Aage = Bager D KE =" = 0. (20)
i=0 i=0

Here A,, 4, has the Bose symmetry and satisfies the recurrent relation (the Ward identity) [6]

r—1

+ g+ + 1 . + 7+ + + + g+ +
Aaoal...a,(k_’ kl_’ kr_) = k_i Z lﬁlu,ar Aag...a,_laam.“a,(k_’ kl_, kt_—l ) kt_ + k;9 kt_+1 s kr_) )

T =0
where f,. is the structure constant of the gauge group. Thus, these vertices for the principal value
prescription do not depend on the color representations of the matrices v.(x) in S ;,4. In particular, one
can use the adjoint representation for these matrices.

3 Classical equation for the effective action in QCD

The variation of the induced action S ;,,; over v, can be written as follows

1 1 « 1 1 « _
88 ina = —Trfd4x(c')+D—+ Sv, oo 0, 0A" + B‘K Sv_ s 0_0,A ) 1)
Using the relation
1 1
0u 5= G0 = 0 = 0 () 0. O,
we obtain for the variation of S ;,,4
6Sima = ~Tr f d*x (60, O(™) AT O (x*) + 6v_ O(x") A" 0" (x7)) . (22)

Therefore the Euler-Lagrange equations for S, ss in a pure glue-dynamics have the form
[DM’G}IV]l = 07 [D;l’ Gﬂi] = j?;ld5 (23)

with the anti-hermitian currents
JEy = O(X*)(B2A%)0" (x*) . (24)
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They are conserved
[Ds, jingl = 0 (25)

due to the relations D, O(x*) = 0.
In the quasi-elastic kinematics, where, for example, A* = 0, after the gauge transformation, lead-
ing to the constraint v’ = 0, one obtains

1 g = = g (™ -~
Joa = ARA A= 3 (Pezﬁmdf"— + et ) _ 1. (26)
In this light cone gauge there is an explicit solution of the Euler-Lagrange equations
7 =067A". 27

Thus, the reggeon field A~ has the physical interpretation of a classical solution of the Euler-Lagrange
equations for A" = 0 in the light-cone gauge v = 0. This solution is a superposition of the shock
waves proportional to 6(x™ — x7) In[x* — lez.

Inserting the solution of the Euler-Lagrange equation for a general kinematics in the effective ac-
tion, one obtains a generating function for the reggeized gluon vertices in the tree approximation [6, 7].
Note, that even for the quasi-elastic kinematics the Euler-Lagrange equations have other solutions cor-
responding to more complicated constraints at large times t — +oo. The asymptotic behavior of these
contributions is fixed at t = —oo and ¢ = oo in terms of two arbitrary functions v (¥) and v,(X), re-
spectively. The effective action calculated on the general solution depending on A* and v; 5(¥) gives a
possibility to find a generating functional in a tree approximation for all possible scattering amplitudes
and an arbitrary number of reggeized gluons [6]. Furthermore, by calculating the functional integral
over the quantum fluctuations ¢v,, around classical solutions we can find various effective vertices with
loop corrections [12—-14].

4 Effective action for the high energy gravity

According to J. Maldacena the N = 4 super-symmetric gauge theory is equivalent to the 10-
dimensional super-string model living on the 10-dimensional anti-de-Sitter space [8—10]. As a result,
here the BFKL Pomeron is dual to the reggeized graviton (see, for example, [15]) and the Gribov
calculus for Pomerons should be generally covariant. Note, that the graviton Regge trajectory and its
various couplings in a leading order were calculated many years ago [16].

The generally covariant effective action in gravity was constructed for a cluster of gravitons and
reggeized gravitons having their rapidities in an interval around their central value [11]. Apart from
the usual Einstein-Hilbert action and a kinetic term for the reggeon fields A**

1

S=-—
22

d*x (V=g R+ 0sA* 0,A™ )+ Sina» (28)
it contains the induced term S ;,,4

_ 4 ] t+ 22 44+ ] —= 24—
Sind = _2_1(2 d X(T 80_14 + T 80_14 ) 29)
with the currents j.. being functionals of the metric tensor g*”.

Fields A** describing the production and annihilation of reggeized gravitons are invariant under
the general coordinate transformations which are reduced to the Poincare group at large distances.

They satisfy the kinematical constraints

O, AT =9_A =0, (30)



EPJ Web of Conferences 125, 01010 (2016) DOI: 10.1051/epjcont/201612501010
QUARKS-2016

corresponding to the strong ordering of the Sudakov components for momenta of produced clusters
in the multi-Regge kinematics.

The gravity fields h,, are introduced as fluctuations of g, around the Minkowsky metric tensor
1w having the diagonal structure (1, —1, -1, —1). One can expand the Hilbert-Einstein lagrangian in &
and obtain the solution of the effective Euler-Lagrange equation at small A, in the form Zﬂ ~Aygg,
providing that the currents j.. can be expanded in % as follows

Jex = hes + O(H?). @31

The functional form of the current j.. = d.j% is fixed by the general covariance of the action.
Due to this constraint the new current j© = 2x* — w¥ satisfies the Hamilton-Jacobi (HJ) equation [11]

¢ (0w )(0sw™) = 0. (32)

The function w™ describes the light-front shock wave moving in the gravitational field.
If we search the solution of the HJ equation in the form w*™ = 2x™ — 2x7(x*, x1), the quantities

X'* = w¥ /2 can be considered as light-cone components of the coordinate transformation x’(x) to the
systems with the global light-cone times x™. In these systems the light-cone component of g*” is zero

g/¥$ — gyvaﬂxlx avx/q: =0. (33)

This HJ equation does not fix completely the global light-cone time systems. It is naturally to impose
on ¢g’?” more restrictive constraints expressed in terms of the Minkowsky tensor

g;pi — Tfi , rlii — Tff — 0’ nti =1. (34)
They correspond to the global light-cone time inertial systems where we have in particular
0 0
Gl = . 35
ox'? Ox'* (33)

Note, that ;¥ in the effective action may be substituted by —w* because the term 2x™ gives a
vanishing contribution. After its integration over x* the induced action can be expressed only in terms
of the Hamilton-Jacobi functions w* at x* = co where we have the Minkowsky metric

1 ® dx . ® dx* -
Smi=35 | ( f %w‘(ﬁlA” ne f %aﬁ R A=) 36

5 Classical equations for the effective gravity
Variations 6g"” and Sw* along particle trajectories are not independent due to the HJ equation
9w 0,w* 6:¢" + 29”7 0,0 6:0,w" =0 37
and expressed through the corresponding infinitesimal shifts in the proper time 7
d - d -
6:9" = dr(0,9") —x7, 6:0,w" =dr— d,w" . (38)
dr dr
They can be calculated with the help of the Hamilton equations

d 1
— Oyw” = ~3 (059" ™Iy " . (39)

Y o _ op F
x7 =g 6pw,dT

dr
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Because x'* = w¥/2 are light-cone components of x’(x) in systems with g’** = 0 we have

ng

Og
ox'x

B B g™ B B F
0w 0,w* = =2dt 6)gc_’i 0w 0,w"

2977 90" 60,07 = —2dT g** (40)

= O

where the property g’** = 1™ of the global light-cone time inertial systems was used. By integrating
these equalities over the invariant phase space it is possible to verify the relations

4 o ¥ ¥ 4 s 7 dw™ 2y [TdxT F [xf=co
d*x \=g2¢"7 0,0 6:(0,w) = | d'X —g 6Tc9x’“—' = | dx 2 0w [1esns s
where we took into account, that in the global light-cone inertial system ¢’ does not depend on x'*,
which allows to integrate over this coordinate and neglect the factor v/—g” at x'* = oo.
The last expression enters in the variation of the induced action

1 “ dx” e < dx* -
S = 55 [ ( [ G earize [ S 6§LA“|;;2°M). (41)

00

Therefore, taking into consideration also the HJ relation between 6.¢g*” and §.w™ on particle trajecto-
ries, one can present the variation of S ;,; over g*” in a simple 4-dimensional form

1
6Sini = =5 d*x V=g6¢" (0,0™ 00”05, A™ + Bu0* B, 0%, A7) . (42)
K

The integrand contains the factor /=g as a result of our transformation from the special coordinate
system with the global light-cone time x’* to a general system with coordinates x.

The above expression for 65,4 allows one to calculate easily the induced energy-momentum ten-
sor 6, in the Euler-Lagrange equations

1
Ry — EgWR = b, O = 0,X "0 X AT +9,X XA, (43)

where x'* = w* are coordinates in the corresponding light-cone global systems. This result can
be found independently from considerations related to the general covariance of the Euler-Lagrange
equations.

In a quasi-elastic kinematics, where A** = 0, it is convenient to work in the inertial system with
the metric tensor obeying the constraints g’** = n°* with the global light-cone time x’*, because here
the energy-momentum tensor is 7, ~ 0,0,. The classical equations in this system have the simple
solution

g7 =7 + L 6TAT. (44)

It is a superposition of the plane-wave solutions of Aichelburg and Sexl with the gravitation centers
situated at x* = z*, x* = z* and distributed with the weight function 82, A==(z*, z*). The coordinate
transformation x” = x’(x) to this global light-cone time inertial system satisfies the equations

,0x'P 0x™*
ox* dx”

g" =" (45)

and the tensors 6, and T, in these systems are related as follow

ox* ox”

W e oxe P

(46)
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Thus, the covariant energy-momentum tensor for the quasi-elastic kinematics is
O = 0, X 0, XTIRAT, 47)
where partial derivatives d,x"* are found from the solution of the Hamilton-Jacobi equation
g o x"o,x" =0. (48)
The covariant energy-momentum tensor for a general kinematics is conserved
D, ¢ =0 (49)

due to the kinematical constraints .A** = 0. As a consequence of the Hamilton-Jacobi equation for
x'* the tensor 6, is traceless

¢ 6 = 0. (50)

Thus, we constructed the generally covariant Euler-Lagrange equations for the effective action in
the high energy gravity. In a quasi-elastic kinematics with A** = 0 one of their solutions at an inertial
coordinate system with the global light-cone time x’* has a simple form g"~~ = A™". There are also
many solutions which are parameterized by their asymptotic behavior at # - —oco and t — oo, respec-
tively. The effective action calculated on these solutions allows to construct a generating functional for
the effective multi-graviton scattering amplitudes in a tree approximation and to reproduce indepen-
dently the known results [16]. The integration over fluctuations around the classical solutions gives
a possibility to calculate loop corrections to reggeized graviton interactions and to effective graviton
vertices. In particular, using the one-loop Regge trajectory obtained in Refs [11, 16], the graviton
scattering amplitude in the double-logarithmic approximation was found [17]. A possible generaliza-
tion of our approach to the super-gravity in the 10-dimensional AdS space will be interesting for the
construction of the Gribov Pomeron calculus in N=4 SUSY.
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