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Abstract. A broad description of the equilibrium statistical 

mechanics of classical one-dimensional lattice systems with 

exponentially decreasing interactions is given. We indicate 

unsolved problems~ and mention applications to differentiable 

dynamical systems. 
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I. Introduction. 

One-dimensional systems with short range interactions are not highly consi- 

dered in statistical mechanics, because they have no phase transitions. This applies 

particularly to classical lattice spin systems. These are nevertheless the systems 

which I would like to discuss here. A reason for the renewed interest in them is that 

they occur naturally in connection with differentiable dynamical systems, and in par, 

ticular in the study of the asymptotic behaviour of solutions of some types of diffe- 

rential equations. The spin systems which occur in this way have exponetially decrea- 

sing interactions. The basic facts about such systems were discovered by Araki [i] 

incidentally in his study of one-dlmensional quantum systems. In what follows I shall 

give a broad description of the equilibrium statistical mechanics of classical lattice 

systems with exponentially decreasing interactions, indicate unsolved problems, and 

mention applications to differentiable dynamical systems. 

2. Confisuration space. 

At each point x of the lattice ~ a finite number of "spin values" are 

allowed, forming a set % . A matrix t indexed by ~oX % and with entries 0 or 

1 is also given. An allowed spin configuration on the interval [k,~] c~ is an 

element ~ = (~k'%+l ..... ~%) of (%)[k,~] such that 

= . . = = 

t F~k~+l . t~%_l ~ 1 

We denote by ~k,~] 

rations on the whole lattice ~ is 

the set of these allowed configurations. The space of configu- 

~x x+l 

Using on ~ the discrete topology, and on (Q 
o o 

that ~ i s  c o m p a c t .  I f  we d e f i n e  ~ : Q 4 ~ b y  

I for all x 6~] • 

the product topology, we find 

then T is a homeomorphism of ~ ; (I) also defines a homeomorphism 

(~)x = ~x+l (1) 
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: ~[k,£]" ~k-l,~-l] for any finite interval [k,~] , or similarly for a seml-in- 

finite interval [k,+ =) . 

It will be convenient to assume from now on that there exists N > O such 

that all entries of t n are > 0 for n m N . This amounts to requiring that the 

topological dynamical system (~,T) is topologically mixing. 

3. Problem. 

The system (~,T) is called a subshift of finite type, or a topological Mar- 

kov chain, It is entirely determined by the number I~oI of elements of % and by 

the I~oI × l~ol matrix t . Let the system (~',T') be similarly constructed from 

~'o't' . We say that (~,T) and (~',T') are isomorphic if there exists a homeomor- 

phism h of ~ on ~ such that hr' = rh . When do two square matrices t,t' (in 

general of different orders) define isomorphic subshifts? This problem has been in- 

vestigated by Williams [16], unfortunately his work is inconclusive [17], and the 

question remains open. 

4. Thermodynamic limits. 

An interaction ~ is a real function on the (allowed) configurations in fi- 

nite intervals. We assume that it is invariant by the translation T . Given an in- 

teraction ~ , an energy function 

U~a,b] : ~[a,b]" ~ 

is defined for each finite interval [a,b] by 

One writes then 

U~a, b.](g) = Zk, ~: a~k~b ~(gI[k' ~]) " 

Z~a,b] = ~ exp[- U~a~b](~)] 

= I log Zla,b ] P~a,b ] D-a 
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U~a, b ][~ ] = ~ -1 (Z[a,b 3) exp[- U~a,b](~)] 

In particular UFa, b~L d is a measure o n  f~Fa, b7 " L J Suppose that 

li!il = z~=o(~÷l> sup~[o,~]l!~> I < +~ • 

Then the following limit exists 

p# 
= lim P~ a 

b-a~= - 

(thermodynamic limit for the pressure - this would hold also without the factor (£+I) 

in the definition of I!~II). 

[k, ~] , 

There is also a unique measure ~ on Q such that for every finite interval 

lim = (2) 
a~-=,b-~q-~ ~[k,~],[a,b] ~[a,b] ~[k,L], ~ o 

where ~[k,~],[a,b] : ~[a,b] ~ ~[k,g] gives the restriction to [k,~] of a confi- 

guration in [a,h] when [k,L] c [a,b] , and similarly for ~[k,~], = ' The probabi- 

lity measure U is the unique Gibbs state for the interaction ~ (Dobrushin [5], 

Ruelle [ 7 ] )  . 

5. Exponentially decreasin$ interactions. 

We say that ~ is exponentially decreasing if there exists 

that 

II~lle = Lk._l~uP- e - < ~ - k )  Sup. I~(~) l< +*0 

For fixed 8 these interactions form a Banach space 

ding complex Banach space, then one can show that 

~ p~ 

extends to a n analytic function on a neishborhood of 

8 E (O,1) such  

This can be proved by the transfer matrix method (Ruelle [7], Araki [i]). 

88 . Let 82 be the correspon- 
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We sketch the proof. For a continuous complex function A on ~[i,+~) " let 

vat A = sup{IA(~)-A(~')l:~x: ~x for i ~ x ~ n] 
n 

: vaT n • IIAUo ~up <0 -n A) 
n~o 

Those functions for which [~tl@ iS finite form a Banach space 

on ~2> is defined by 

~2> . An operator 

( f .A) (~)  = Y~ A ( T - I ( ~ o , ~ ) )  
Co 

(~ is the "transfer matrix"). 

X exp[-  ~ ~(~o,~i . . . . .  ~ ) ]  

For ~ E 8 @ , one can show that the number exp P~ is a simple eigenvalue 

of ~ , and the rest of the spectrum of ~ is contained in a cercle with radius 

< exp P~ centered at the origin of ~ . Since one can also show that ~ ~ ~ is an 

entire analytic function on ~ , it follows that ~ ~ p~ is analytic in a neigh- 

bourhood of 8@ as announced. 

6. Problem. 

Surprisingly, Dobrushln [6] has obtained analytlcity properties of the map 

~ P~ without assuming exponential decrease of the interaction. His proof does not 

use the transfer matrix method, is not very transparent, and makes assumptions which 

are not very natural. Can one give a natural proof of Dobrushln~s results ? 

7. Exponentlal decay of cor relatlons. 

For a continuous real function A on f~ ~ let 

i vaT A = sup{ IA(~)-A(:') l: ~x = ~x for Ixl < n} 
n 

IIAII@ = sup (@-2n-lvarnA) . 

n~-I 

Those functions for which I~II@ is finite form a Banach space ~@ 

IIAII@ + I~II • If A 6 ~@ there is ~ 6 ~@ such that ~I~[k,~] = O 

odd, and 

for the norm 

when ~-k is 
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One writes then 

A(:) = Z ~(~I[-~,+%]) . 

~ o  

P(A) = P# 

and it can be checked that this definition does not depend on the particular choice 

of ~ . Also A ~ P(A) extends to an analytic function in a neighbourhood of $@ in 

~$ (the complex Banach space corresponding to ). 

Let ~A be the unique Gibbs state for the interaction ~ (it does not de- 

pend on the particular choice of ~ ). Sinai [15] has shown that if A,A'E $@, then 

UA = OA' if and only if there exist c 6~ and C C 3 @ such that 

A'- A = c + CoT - C . 

Let A 6 3 @ then there exist a,b > 0 such that, if B I B26 3 @ 

[~A(BI'(B2 °Tx)) - ~A(BI)~A<B 2) I ~ ea-b IxIIIBIII@IIB 2118 

(exponential decay of correlations). One can compute the derivatives of P in terms 

of ~A " If BI, .... B~E 3 @ , let 

d ~ 
DA%(B I ..... B%) = ds l...ds~ P(A + Ei siBi) ISl='''=s% = 0 

Then 

(a) D~(B I) = ~A(BI) 

(b) 

(c) 

D~(BI,B 2) = E [o(BI'(B2°~x))-o(BI)O(B2 )] 
xE 

B I ~ D~(BI,B I) is a positive semi-deflnite quadratic form on 3 B. 

Its kernel is {c+CoT-C : c E~, C E ~9] and is thus independent 

of A . There is RA> 0 such that [D2(BI,BI )]1/2 g RIIBI[I@ 

(d) For all p E]R (mod 2~) , 

e-ipx[OA(BI'(B2°~x))-OA(BI)OA(B2) ] _ ~ 0 . E 
xE 
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These results are of course not unexpected, and some of them should hold un- 

der much more general conditions. The proofs however are not as easy as one would 

imagine (see [i0]). 

8. E-function. 

Write g(m) = {~ E ~ : Tm~ = ~} and let A E ~e . The power series 

o~ m-i 
z TM Z exp Z A(Tk~) 

m=l m ~E~(m) k=0 

converges for I zl < e -P(A). One can show that there exists K > e -P(A) such that 

oo m-l 
m E A(Tk~) z ~ exp ] dA(Z) = exp[- ~ __ 

m=l m ~(m) k=0 

extends to an analytic function in {z: Izl < R} with only one zero, this zero is 

simple and located at e -P(A) 

It would be very interesting to increase the domain of analytieity (or mero- 

morphy ?) of dA(Z) because I/d A can be interpreted as a E-function (see Bowen 

[3], section 5). In the case of a lattice gas with strictly exponential pair inter- 

action one can show that d A is meromorphic in the entire complex plane. 

9. Applications to differentlable dynamical systems. 

In a remarkable paper, Sinai [15] has shown how to handle measure theoreti- 

cal problems for a class of differentiable dynamical systems in terms of statistical 

mechanics of a one-dimenslonal lattice systems. Sinai treated Anosov diffeomorphisms 

and flows, using Markov partitions [13], [14]. As shown by Bowen, Markov partitions 

exist for the more general Axiom A diffeomorphisms [2] and flows [3]. This permits 

the extension of Sinai's ideas to these Axiom A diffeomorphisms (Ruelle [8] and 

flows (Bowen and Ruelle [4]). We cannot go here into all the necessary definitions, 

but mention a typical result (see [8]). 

T_~. Let A be a C2-Axiom A attractor for a diffeomorphism f . Then for al- 

most every x in a neighbourhood of % (in the sense of smooth, or "Lebesgue" mea- 
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sure) the following limit exists and is independent of x 

n 

weak lim ! Z 6 
n-~O n k=O fnx 

Here ~ is the unit mass at x . If flA is mixing and A,B are C 1 functions in 
X 

a neighbourhood of A , 

~(A.(B°fn)) - ~(A) ~(B) 

tends exponentially fast to zero when n ~ =. (This last result is obtained from the 

exponential decay of correlations for Gibbs states). 

A similar result holds for flows [4] (i.e. solutions of differential equa- 

tions), but the exponential decrease of correlations has not been proved. Does it 

hold in general? The question is of some interest in relation to the problem of tur- 

bulence (see Ruelle and Takens [12], Ruelle [9]). 

Let us also mention that the problem of ~functions for flows would benefit 

from a better understanding of the question in Section 8.(See Bowen [3] Section 5). 

Finally, methods of statistical mechanics are also useful in the discussion of homo- 

logy problems (see Ruelle and Sullivan [ ii] ). 
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