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Abstract. State of the art photoassociative measurements of bound state energies in the
ground state Yb2 molecule are used to establish limits on non-Newtonian gravity at Yukawa
ranges of nanometers.

1. Introduction
Several cosmological theories [1–3] predict deviations from the usual 1/R behavior of the
gravitational interaction. Those supposed corrections to the gravitational interaction between
masses m1 and m2 at a distance R are usually expressed in terms of a Yukawa-type potential
Vcorr(R):

VNewton(R) + Vcorr = −Gm1m2

R
(1 + α exp(−R/λ)) . (1)

Since so far no experimental evidence of such deviations has been found, experimental efforts
have concentrated on giving limits on the magnitude α of this ‘correction’ as a function of
the Yukawa range λ. In this work we place similar limits in the range of λ = 0.1 nm to
λ = 1000 nm by measuring bound state energies of Yb2 and modelling the interactions between
Yb atoms using mass-independent Born-Oppenheimer potentials. This way we can place limits
on the mass-dependent part of the interaction and, by proxy, an upper bound on non-Newtonian
gravity.

2. Measurements
Several bound state energies of the ground state Yb2 have been measured using two-color
photoassociation spectroscopy [4–6] in the Raman configuration, with 1S0+

3P1 0+u intermediate
states. To avoid thermal broadening [7], the measurements were performed in Bose-Einstein
condenstates of ytterbium atoms. Techniques for forming such samples have already been
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Figure 1. Compensation of
systematic errors present in the
experiment as shown for the 170Yb
ν = 2, J = 2 line position.
(a) an example photoassociation
spectrum fitted with a Lorentzian
lineshape of an FWHM of about
1 kHz, (b) shift due to both
photoassociation lasers (molecular
optical shift), (c) optical shift
due to the far-off-resonant trap
(FORT), and (d) the density shift
due to the presence of other atoms
in the BEC sample.

described elsewhere [8–10]. The photoassociation lines had a Lorentzian FWHM of about 1 kHz,
as seen in Figure 1(a). The following systematic shifts were taken into account: shift due to the
photoassociation lasers, the trapping laser and the density of atoms. The systematic shifts were
eliminated by linear extrapolation, as seen in figs. 1(b)-(d). A total of 13 bound rovibrational
state energies with rotational quantum numbers J = 0 or 2 has been measured with error bars
≈ 500 Hz: two for 168Yb, six for 170Yb and five for 174Yb and will be published elsewhere [11].

3. Interactions
Thanks to the single spinless 1S0 ground state of the Yb atom, the interactions in the ytterbium
dimer are described by a single Born-Oppenheimer potential. We have developed four such
potential curves. The short range part of the potential could either be a Lennard-Jones type
model potential [5], or an ab initio based curve [14]. Our short range curves are shown in
the upper panel of Figure 2. The long range part could be the standard R−6 van der Waals
interaction or one that accounted for the Casimir-Polder effect, as tabulated for Yb2 in [15].

The potentials were fitted to experimental data using the least-squares method which
minimized the difference between experimentally obtained bound state energies and theoretical
energies calculated through solving the usual radial Schrödinger equation. Details of the
procedure of finding a mass scaled model can be found elsewhere [5, 12, 13]. We find that
we are able to reproduce the bound state energies to within a few tens of kHz on average (at
χ2 = 307242 for the best model – ab initio short range with a van der Waals long range). While
the fact that the ab initio short range gives better results than a simple model potential is hardly
surprising, it is interesting to note that the Casimir-Polder long range always yielded worse fit
evidenced by a larger χ2.

4. Limits
The final stage of the data analysis was to augment the interaction potentials with the
gravitational interaction as shown in the lower panel of Figure 2. The potentials were fitted
repeatedly as α was ramped to make it possible for other potential parameters to compensate
for the obvious shift in the quantum defect caused by the added interaction. This is important,
because we are interested in the change in the mass scaling behavior rather than a simple shift.
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Figure 2. Upper panel: a comparison
between the Lennard-Jones (black
line) and ab initio (red) short range
potentials. Despite the different
shapes and depths both potentials
support the same number of bound
states, have similar long range C6

coefficients and can be used as a basis
for a mass-scaled potential model [12,
13]. Lower panel: the impact of
the Yukawa potential on the shape
of the interaction potential, with
the Lennard-Jones potential as an
example. For a short λ = 0.1 nm
only the short range part is affected,
but for larger λ, the long range part
is also changed. For even larger
λ no further change at internuclear
distances is seen.
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Otherwise αmax would be underestimated, because uncompensated shift from the additional
interaction would cause χ2 to grow too quickly. As shown in Figure 3 the behavior was for
χ2 to experience a minimum first, and then quickly grow to infinity. This counter-intuitive
phenomenon can be explained by the fact that our models take no account of any (real) mass-
dependent effects in the molecule, like the beyond-Born-Oppenheimer effects [16] and the R-
dependent isotopic shift [17]. For small α the non-Newtonian interaction may artificially improve
the mass scaling of theoretical bound state energies and therefore decrease χ2. With this in mind,
in order to avoid accidental underestimation of the limits on non-Newtonian gravity we pick the
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Figure 3. Evolution of the
quality of the fit χ2 as the
Yukawa coupling α is ramped.
At first the fit is ‘improved’, due
to the compensation of mass-
dependent effects not included in
the theoretical models, but after
a certain point χ2 quickly rises
to infinity. We choose the limit
αmax so that χ2(αmax) = χ2(α =
0), as at this point the non-
Newtonian contribution clearly
starts to make the fit worse.
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Figure 4. Limits on non-
Newtonian Yukawa interaction
derived from our interaction
models (black and red lines
depending on the short range,
and dashed or solid for the long
range part). The ab initio + van
der Waals combination provides
the most stringent limits. Limits
obtained using other methods –
neutron scattering (Kamiya et
al.[18]), Casimir forces between
plates (Klimchitskaya et al. [20])
and classical spectroscopy of
HD+ (Salumbides et al. [21]).
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point αmax where χ2(αmax) becomes larger than χ2(α = 0), that is, where the theoretical
description of the atomic interactions clearly becomes worse.

Figure 4 shows limits on non-Newtonian gravity derived from the four models. The general
behavior of αmax is to decrease up to about λ = 2 nm, where the limits become constant. This
is easily understandable, as the non-Newtonian part becomes Vcorr = −αGm1m2

R as λ becomes
much larger than the internuclear distances R in the molecule. The differences between models
are slight. For small λ the different long range parts have no impact on the limits while for
larger λ both the short range and long range parts of the potential matter, as expected.

Our limits can be compared to examples of recent works that derive similar limits using
other experimental methods. This is shown as green lines in Figure 4. Both limits from
neutron scattering by Kamiya et al. [18] and measurements of Casimir forces between plates
by Klimchitskaya et al. are currently more stringent than ours in their respective ranges of λ.
On the other hand, our work is on par with the results of classical molecular spectroscopy of
HD+ by Salumbides et al.. It is worth noting, that the probable weakest link in our approach
is the quality of the interaction potentials: while the experimental error bars are on the order
of 500 Hz, the theory matches experiment to about 50 kHz at best. On the other hand all four
models are pure Born-Oppenheimer potentials, with no account taken for known mass-dependent
effects, namely the R-dependent isotopic shift [17] and higher orders of the Born-Oppenheimer
approximation [16]. Calculation of these effects for heavy systems like Yb is prohibitively difficult
and was only recently undertaken [19]. The inclusion of these effects may pay off handsomely,
as the limits are rapidly becoming more stringent with decreasing model χ2. For instance, at
λ = 10 nm, the Lennard-Jones + van der Waals model yields logαmax = 23.2, as opposed to
logαmax = 22.7 for the ab initio + van der Waals model. The χ2 of the former is twice as large
as the latter. By extrapolation: if χ2 could be reduced by a factor of about 100 (which would
require the models to be ten times more accurate than now), logαmax could be reduced by about
3, putting photoassociation on par with the best current methods.

5. Conclusion
We have used state of the art photoassociation spectroscopy in a Bose-Einstein condensate of
ytterbium atoms to measure the binding energies of several isotopomers of the Yb2 molecule to
an accuracy of ≈ 500 Hz. Four interaction models were fitted to the experimental data in an
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attempt to reproduce them theoretically. Both ab initio and model short range potentials were
implemented, either with a standard van der Waals or the quantum-electrodynamic Casimir-
Polder long range interaction. The impact of non-Newtonian gravitylike interactions on the
mass scaling behavior of bound state energies was assessed to obtain the limits on the Yukawa
coupling constant α at distances λ ∼ 1 nm. Our best limits are only three orders of magnitude
worse than the current best from long standing experimental approaches: neutron scattering and
measurements of Casimir-Polder interactions. The presented methodology shows great promise
for future research as small improvements in the theoretical description of the atomic interactions
result in the rapid tightening of the limits on non-Newtonian gravity.
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National Laboratory FAMO in Toruń, Poland. Calculations took place in Wroclaw Centre for
Networking and Supercomputing grant no. 353.

References
[1] Adelberger E, Heckel B and Nelson A 2003 Annu. Rev. Nucl. Sci. 53 77–121

[2] Damour T 2003 Astrophys. Space. Sci. 283 445–456

[3] Su Y, Heckel B R, Adelberger E G, Gundlach J H, Harris M, Smith G L and Swanson H E 1994
Phys. Rev. D 50(6) 3614–3636

[4] Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414–425

[5] Kitagawa M, Enomoto K, Kasa K, Takahashi Y, Ciury lo R, Naidon P and Julienne P S 2008 Phys.
Rev. A 77 012719

[6] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483–535

[7] Jones K M, Lett P D, Tiesinga E and Julienne P S 2000 Phys. Rev. A 61 012501

[8] Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T and Takahashi Y
2003 Phys. Rev. Lett. 91 040404

[9] Fukuhara T, Sugawa S and Takahashi Y 2007 Phys. Rev. A 76 051604

[10] Sugawa S, Yamazaki R, Taie S and Takahashi Y 2011 Phys. Rev. A 84 011610

[11] Borkowski M, Buchachenko A A, Ciury lo R, Julienne P S, Yamada H, Yuu K, Takahashi K, Takasu
Y and Takahashi Y (to be published)

[12] Gribakin G F and Flambaum V V 1993 Phys. Rev. A 48 546–553
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