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Abstract

In this thesis the analysis of a measurement of the ~pp → pK+Λ reaction with the
COSY-TOF detector at the research facility Jülich is presented. In the measurement
a polarized proton beam of 2.7 GeV/c momentum from the proton accelerator COSY
is used to study features of the associated strangeness production close to the reaction
threshold. The main goal of the presented analysis is the determination of the spin
triplet pΛ scattering length from the data with a new theoretical method based on
a dispersion integral approach. The scattering length is an important parameter for
the study of the hyperon-nucleon interactions, which suffer yet from the scarce data.
In the determination procedure a decisive role is played by the kaon analyzing power,
which can be measured due to the use of a polarized beam. The results for the other
polarization observables e.g. Λ polarization and Λ analyzing power and unpolarized
observables, such as the Dalitz plot and the angular distributions, are also shown in
the thesis. The polarization observables, which are more sensitive to the properties of
the associated strangeness production than the unpolarized observables, are studied in
detail in this thesis, and they are analyzed using associated Legendre polynomials.

A data sample with high statistics and low background is obtained by a modification
of the read out process of the detector components and the high-resolution and precise
straw tube tracker (STT), which is the main sub detector in the upgraded COSY-TOF.
The final pKΛ data sample consists of 207,219 kinematically fitted events, extracted
by optimized selection criteria. From Monte Carlo simulations it is obtained that the
contribution of the most prominent background channel ~pp → pK+Σ0 in the data
sample is only (0.73 ± 0.11) %. The beam polarization is determined by pp elastic
scattered events to be (79.0 ± 1.1) %.

The obtained result for the Λ polarization is surprising. The Λ polarization as a
function of cos(θCMS

Λ ) is opposite to the result from a previous COSY-TOF measurement
at 2.95 GeV/c beam momentum. The detailed study of the polarization results from all
available COSY-TOF data shows that the contribution of the P 1

2 associated Legendre
polynomial to the Λ polarization changes smoothly from −0.030 to 0.188 with increasing
beam momentum.

For the determination of the spin triplet pΛ scattering length, the kaon analyzing
power is analyzed in terms of associated Legendre polynomials and pΛ invariant mass
constraints in order to get the contribution of the symmetric P 1

1 polynomial as a function
of the invariant mass. This contribution show nonzero values for low invariant masses
(opposite to the previous measurement at 2.95 GeV/c), and therefore the spin triplet
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pΛ scattering length could be extracted within this thesis. The obtained result is
at = (−1.31+0.32

−0.49stat. ±0.3theo. ±0.16syst.) fm, which is compatible with recent theoretical
predictions. In addition, an effective scattering length of ã = (−1.233 ± 0.014stat. ±
0.3theo. ± 0.12syst.) fm is obtained, which is also used to study systematic errors and the
influence of N∗ resonances on the extracted scattering lengths.
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Zusammenfassung

In dieser Arbeit werden Analyse und Ergebnisse einer Messung der ~pp → pK+Λ Reak-
tion mit dem COSY-TOF Detektor am Forschungszentrum Jülich präsentiert. Die
Messung zur Untersuchung von Eigenschaften der assoziierten Strangenessproduktion
nahe der Reaktionsschwelle erfolgte mit einem polarisierten Protonstrahl des Beschleu-
nigers COSY bei einem Strahlimpuls von 2, 7 GeV/c. Das wichtigste Ziel dieser Arbeit
ist die Bestimmung der spin triplet pΛ-Streulänge unter Verwendung eines neuen theore-
tischen Verfahrens, welches auf einem Dispersionsintegralansatz basiert. Die Streulänge
ist ein wichtiger Parameter für Untersuchungen der Hyperon-Nukleon Wechselwirkun-
gen, wofür noch immer keine ausreichende Menge an Daten zur Verfügung stehen. Für
die Bestimmung der spin triplet Streulänge ist die Kaonanalysierstärke entscheidend,
welche mit Hilfe des polarisierten Strahls gemessen werden kann. Die Ergebnisse für
die anderen Polarisationsgrößen, wie z.B. die Λ-Polarisation oder die Λ-Analysierstärke,
und unpolarisierte Messgrößen, wie der Dalitz plot oder die Winkelverteilungen, wer-
den ebenfalls in dieser Arbeit gezeigt. Die Polarisationsgrößen sind sensitiver auf Eigen-
schaften der assoziierten Strangenessproduktion als die unpolarisierten Messgrößen und
werden deshalb in dieser Arbeit im Detail untersucht, indem assozierte Legendre Poly-
nome an die Ergebnisse gefittet werden.

Das Datensample für die weitere Analyse besitzt eine hohe statistische Genauigkeit
und einen geringen Anteil an Untergrundreaktionen, welche durch eine Modifikation
des Datenauslesesystems und dem hochauflösenden und präzisen Straw-Tube-Tracker,
der im COSY-TOF Detektor eine zentrale Rolle spielt, erreicht werden. Letztlich bein-
haltet das Datensample 207.219 kinematisch gefittete pKΛ Ereignisse, die durch op-
timierte Schnitte bestimmt wurden. Der Anteil der wichtigsten Untergrundreaktion,
~pp → pK+Σ0, wurde mittels Monte Carlo Simulationen bestimmt und beträgt nur
(0.73±0.11) %. Die Strahlpolarisation ist mit Hilfe von pp elastisch gestreuten Ereignis-
sen bestimmt worden und beträgt (79.0 ± 1.1) %.

Das Ergebnis für die Λ-Polarisation ist überraschend. Im Vergleich zu einer früheren
COSY-TOF Messung bei einem Strahlimpuls von 2, 95 GeV/c ist das Verhalten der Po-
larisation als Funktion von cos(θCMS

Λ ) genau umgekehrt. Die detaillierte Untersuchung
aller Ergebnisse zur Λ-Polarization von früheren COSY-TOF Messungen ergibt eine
kontinuierliche Änderung des Beitrags des Polynoms P 1

2 zur Λ-Polarisation von −0.030
zu 0.188 bei Erhöhung des Strahlimpulses.

Ebenfalls wurde die Kaonanalysierstärke in Abhängigkeit der pΛ invarianten Masse
mittels assozierter Legendre Polynome gefittet. Dadurch erhält man den Beitrag des
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symmetrischen Polynoms P 1
1 zur Analysierstärke als Funktion der invarianten Masse für

die Bestimmung der spin triplet pΛ-Streulänge. Im Vergleich zu einer früheren Messung
bei 2, 95 GeV/c ist dieser Beitrag für geringe Werte der invarianten Masse ungleich Null.
Damit ist eine Bestimmung der spin triplet pΛ-Streulänge in dieser Arbeit möglich. Das
Ergebnis ist at = (−1.31+0.32

−0.49stat. ±0.3theo. ±0.16syst.) fm. Dieses Ergebnis ist verträglich
mit neueren theoretischen Vorhersagen. Die effektive pΛ-Streulänge ã = (−1.233 ±
0.014stat. ± 0.3theo. ± 0.12syst.) fm wurde ebenfalls bestimmt und für die Untersuchung
von systematischen Fehlern und den Einflüßen von N∗ Resonanzen auf den Wert der
extrahierten Streulänge herangezogen.
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1. Introduction

The COSY-TOF experiment at the COSY accelerator facility at the research center
Jülich is mainly dedicated to the measurement of strangeness production in proton-
proton or deuteron-proton interactions close to the reaction threshold for NKY final
states covering the full phase space of the reaction products. The detector was updated
with the straw tube tracker, which improves the reconstruction efficiency and mass
resolution significantly in comparison to the former setup as it was shown first in [Roe11].
These improvements are the basis of the proposed physics program for the associated
strangeness production close to threshold with a polarized proton beam [CTOF07].
One part of this program is the study of the production mechanism and the influence
of N∗ resonances. The other goal is the measurement of the pΛ spin resolved scattering
length, which is an important parameter of the hyperon-nucleon interaction. This can
be investigated by measuring the final state interaction in the reaction ~pp → pK+Λ and
polarization observables like the analyzing power using the polarized proton beam.

This thesis presents the analysis of the reaction ~pp → pK+Λ measured in 2011 with
a polarized proton beam at 2.7 GeV/c beam momentum. This measurement is the first
one at COSY-TOF using a polarized proton beam with about 200,000 analyzed pKΛ
events, which is so far the largest data sample for this momentum. The high amount of
collected data allows to extract the pΛ spin triplet scattering length for the first time.
Additionally, a high-resolution Dalitz plot, as well as angular and mass distributions,
have been obtained. The polarization observables, and especially the Λ polarization,
could be investigated in more detail compared to former COSY-TOF measurements.

The theoretical background is described in Chapter 2, including details about theo-
retical models, the Λ polarization and the hyperon-nucleon interaction. The detector
and its components are shown in Chapter 3, paying special emphasis on the straw tube
tracker and the modified experimental trigger.

Chapter 4 illustrates in the first part the reconstruction algorithm for the pp → pK+Λ
events, with the various steps from track finding up to the kinematic fit. The other
part of the chapter focuses on the calibration of the straw tube tracker and the achieved
spatial resolutions in the experiment.

Properties of the beam and the target size are derived from ~pp → pp elastic events.
Especially, the beam polarization is determined by these events. This is shown in
Chapter 5 together with the elastic event selection.

In Chapter 6 the selection criteria for ~pp → pK+Λ events are described, together with
the obtained data quality and statistics. The reconstruction efficiency and acceptance
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1. Introduction

correction, as well as the resolution determined by Monte Carlo studies, are shown.
Furthermore, the relative background contamination of the reaction pp → pK+Σ0 is
given.

The results for the various observables are shown in Chapter 7. This includes the
Dalitz plot and invariant mass spectra, the angular distributions in various rest frames
and the polarization observables. Special emphasis is given to the kaon analyzing
power, since it is important for the determination of the pΛ spin triplet scattering
length. The results for the effective and the spin triplet scattering lengths, as well as
the determination method, are shown in Chapter 8.

Chapter 9 gives a comparison of the results with measurements at other beam mo-
menta and a discussion of the similarities and differences. Especially the striking dif-
ferences of the Λ polarization from the measurements at different beam momenta are
investigated in detail.

Finally, a summary and outlook is given in Chapter 10.
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Your theory is crazy, but it’s not crazy enough to

be true.

(Niels Bohr)

2. Theoretical Background

2.1. Standard Model and SU(3) Symmetry

The “Standard Model of Particle Physics” is the actual theory of the constituents of
matter and their interaction neglecting gravity. It is a relativistic quantum field theory
with gauge invariance of different symmetry groups. It describes the electromagnetic,
weak and strong interaction as an exchange of corresponding gauge bosons (photons,
W- and Z-Bosons and gluons). The basic particles are six different quarks (up, down,
strange, charm, top and bottom) and six leptons (electron, muon and tau and the
corresponding neutrinos) grouped in three families. In addition, each of these particles
has a corresponding anti particle with the opposite sign for all charge like quantum
numbers and opposite intrinsic parity. In Figure 2.1 the particles and gauge bosons of
the Standard model are shown with their mass, charge and spin. The electromagnetic
and weak force interacts with all of these particles, while the strong force affects only
the quarks. From an interaction with the recently observed Higgs-Boson [ATLAS12,
CMS12] the particles acquire their masses.

The quarks carry color charge and can apparently not exist as free particles in nature
(confinement of the strong interaction), so they are bound to colorless systems called
hadrons. The easiest ways to achieve color neutralness are: Combining a quark and
antiquark or three quarks together. The first kind of hadrons are called mesons and
the second one baryons. In addition, there are theories which predict other systems
with four or more quarks, but none of them has been observed in experiments without
any doubts. The quarks which define the hadrons are named ’valence quarks’. From
scattering experiments it was found that the hadrons are not only consisting of these
valence quarks, but also of gluons and ’sea quarks’ (virtual quark-antiquark pairs from
the vacuum). This sea of quarks and gluons can be assigned to the valence quarks,
which gain in this way an effective mass (constituent mass), and thus they are called
constituent quarks. The theory of the strong interaction is called quantum chromody-
namics (QCD).

The hadrons consisting of the three lightest quarks (up, down, strange) obey an addi-
tional SU(3) flavor symmetry. The quantum numbers for this symmetry are strangeness
S 1, isospin I and the third component of the isospin I3

2. The ground state baryons

1Hadrons with a strange quark have S = −1 while hadrons with an antistrange quark have S = 1
2Only the up and down quark have isospin I = 1/2 while all other quarks have I = 0. The third

component is I3 = +1/2 for the up quarks and I3 = −1/2 for the down quarks.

3



2. Theoretical Background

Figure 2.1.: Elementary particles and gauge bosons of the Standard Model together
with their mass, charge and spin. The quarks are in shown purple, the leptons in
green and the gauge bosons in red. Picture taken from [Wiki13].

from this symmetry can be grouped into an octet with spin and parity JP = 1
2

+
(Fig.

2.2 left), and the ground state mesons form a nonet with JP = 0− (Fig. 2.2 right). Due
to the mass differences of the hadrons the SU(3) is not a perfect symmetry, and it is
broken in nature.

All baryons with at least one strange quark are called hyperons. Since the strong
interaction conserves strangeness, the production of hyperons via the strong interaction
requires an additional particle with an anti-strange quark (anti-hyperon or meson).
This mechanism is called ”associated strangeness production”. In contrast to the fast
production of hyperons (≈ 10−23 s) in nucleon-nucleon interactions, they decay mostly
via the weak interaction. Therefore, they have a quite long lifetime, and their decay
vertex is separated from the production point in the order of centimeters. This gives
a clear signature of the reaction in a particle detector like the COSY-TOF detector.
Additionally, the weak decay of the hyperons breaks parity conservation. This can be
used to determine their polarization (see Section 2.3).

A calculation of the hyperon production with perturbative QCD is not possible for the
energy regime presented in this thesis. The coupling constant of the strong interaction is
in the order of one, and thus the hadronic degrees of freedom become more relevant than
the quark-gluon degrees of freedom. The appropriate theoretical models are described
in the next section.

4



2.2. Associated Strangeness Production: Theoretical Models and Data

Figure 2.2.: Illustration of the ground state SU(3) symmetry ensembles for baryons
and mesons sorted according to strangeness S and the isospin component I3. Left:
Baryon octet (JP = 1

2

+
). Right: Meson nonet (JP = 0−) [Fri02].

2.2. Associated Strangeness Production: Theoretical Models
and Data

The mechanism of associated strangeness production is mostly described by theoretical
models using meson exchange diagrams. These can be split into two groups: One group
of the models use a simple pion and/or kaon type exchange, and the other group takes
explicitly resonance contributions into account. Nevertheless, there exist some quark
models, which use the quark-gluon degrees of freedom in a phenomenological approach.

Since the results of a measurement of the reaction pp → pKΛ are shown in this thesis,
the theoretical predictions presented here focus on this channel. However, most of the
models consider the general reaction pp → NKY . For further details of the commonly
used models see also [Fri02, Schr03, Piz07].

2.2.1. Meson Exchange Models

In the meson exchange model the simplest processes are t-channel pion or kaon exchange.
Their diagrams are shown in Figure 2.3. For both cases the total cross section of the
reaction can be calculated by integrating the differential cross section over the available
phase space [Sib98b, Sib98c],

σ =
∫

dtds1
d2σ

dtds1
=

1

29π3q2s

∫
dtds1

qK√
s1

|M(t, s1)|2 . (2.1)

Here, s is the square of the CMS energy, q is the incident proton momentum in the
CMS, t is the squared four-momentum transfer carried by the exchanged meson, s1 is

5



2. Theoretical Background

Figure 2.3.: Diagrams for pion exchange (left) and kaon exchange (right) for meson
exchange models [Sib00].

the squared invariant mass of the KΛ system for pion exchange or the Kp system for
kaon exchange. qK is the kaon momentum in the corresponding mass frame (KΛ or
Kp). M(t, s1) is the amplitude of the reaction.

The amplitude M(t, s1) is in general given for the meson X by

|M(t, s1)|2 = g2
pX1F 2(t)tD2(t) |ApX→23(s1)|2 (2.2)

defining the 2 → 2 vertex in the diagram as pX → 23. gpX1 = gppπ or gpΛK is the
coupling constant at the ppπ or pΛK vertex. To take into account the off-shell nature
of the exchanged mesons, the monopole form factors F (t) are used, which are described
by a cutoff mass. D(t) is the meson propagator defined usually as D(t) = 1/(t − m2

X).
The amplitude ApX→23(s1) is deduced from the total cross section of the elementary
pX → 23 reaction, and thus it gives

∣∣Apπ→KΛ(s1)
∣∣2 = 4πs1

qπ

qK
σpπ→KΛ(s1) (2.3)

|ApK→pK(s1)|2 = 4πs1σpK→pK(s1). (2.4)

qπ and qK are the momenta of the exchanged pion and produced kaon in the KΛ frame.
The corresponding values cancel out for ApK→pK . The total cross sections are given by
the experimental data for the reactions (on-shell). In this way resonance contributions
for the pion exchange enter implicitly into the model. In case of resonance models this
contributions are calculated explicitly.

For the pion exchange the coupling constant gppπ and the cutoff mass for the form
factor are determined well by different models (for example from the Bonn model
[Mac87, Mac89]) from the high amount of available data of pion production in pp
interactions. In contrast, the experimental data for the determination of ApK→pK is
poor. Therefore, some models are depending on the cutoff value for the kaon monopole
form factor, or the gpΛK coupling constant is fitted. Nevertheless, the ratio gppπ/gpΛK
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is given by SU(3) symmetry (see [Sib05]) or SU(6) symmetry (see [Sib98c]). In addi-
tion, the relative phase of the pion and kaon exchange amplitudes is not fixed. Thus,
interference effects between the exchange mechanism could influence the cross sections,
and some models take this into account.

From previous measurements of the pp → pKΛ reaction it turned out that the im-
plementation of pΛ final state interaction (FSI) is necessary to describe the data close
to threshold. This is done usually by multiplying the reaction amplitude M(t, s1) with
the FSI amplitude. Therefore, the final state interaction is treated independently from
the other amplitudes. A detailed introduction to FSI and its parametrization is given
in Section 2.4.

The first description of the pp → pKΛ reaction with an pion-kaon exchange model is
from Ferrari [Fer60]. This model adds up the pion and kaon exchange incoherently. In
contrast, the models from Laget [Lag91] and Sibirtsev et al. [Sib95, Sib98c, Sib00] add
the exchanges coherently. The difference in this models is the treatment of the Apπ→KΛ

and ApK→pK amplitudes. Laget takes them off-shell while Sibirtsev uses on-shell am-
plitudes. The parameters of both models are fit to bubble chamber measurements from
[Fla84]. Both models describe the data well in the energy region of the bubble chamber
data, and the pp → pKΛ reaction is dominated by kaon exchange. However, the total
cross section data close to threshold [C1196, C1198a, CTOF98a] is underestimated sub-
stantially by the models. Therefore, Sibirtsev includes pΛ-FSI and the improved model
describe the data well as it is seen in Figure 2.4 by the solid line. The data shown is
from [C1196, C1198a, CTOF98a] (circles) and [Fla84] (squares) with the calculations
presented in [Sib00].

Figure 2.4.: Total cross section of the pp → pKΛ reaction versus the excess energy ǫ
with the model calculations from Sibirtsev et al. (see [Sib00] and references therein)
with pΛ-FSI (solid line) and without pΛ-FSI (dashed line). The data shown is from
experiments at the COSY accelerator (circles [C1196, C1198a, CTOF98a]) and bubble
chambers (squares [Fla84]). Picture taken from [Sib00].
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Another model is from the Juelich theory group [Gas00, Gas01] which exploits the
interference of pion and kaon exchange further. An additional feature of this model is
the implementation of the ΣN → ΛN conversion due to the strong ΣN final state in-
teraction. This conversion leads to an enhancement of the pΛ invariant mass spectrum
at the ΣN threshold (cusp effect). This is observed in inclusive pp → KX reactions
[Sie94] as well as in exclusive reactions as K−d → pΛπ− [Tan69] and pp → pKΛ
[CTOF10b, CTOF13a]. The calculations of this model predicts for the total cross
section a dominant kaon exchange in the Λ production, regardless of assumed inter-
ferences, and therefore the reaction pp → pKΛ is insensitive to determine interference
terms. This result coincides with the model calculations from Sibirtsev [Sib00] and
Laget [Lag91].

2.2.2. Resonance Models

Figure 2.5.: Diagrams for a resonance model with π, η and ρ meson exchange and N∗

resonances. Picture taken from [Sib00].

As already mentioned, the resonance models take the amplitudes of N∗ resonances
explicitly into account. For the model of Tshushima et al. [Tsu97, Tsu99] the corre-
sponding diagrams are shown in Figure 2.5. The exchange mesons are in this model
not only pions, but also η and ρ mesons. Mesons with strangeness are not used. The
considered N∗ resonances are N∗(1650), N∗(1710) and N∗(1720), because they have a
significant coupling to the KΛ channel, and they are reasonable for the energy range
of the data fitted. The reaction amplitude is expressed by [Tsu97]

M(pp → pK+Λ) = M(π, N(1650)) + M(π, N(1710)) + M(π, N(1720)) +

+ M(η, N(1710)) + M(η, N(1720)) +

+ M(ρ, N(1710)) + M(ρ, N(1720)) + exchange (2.5)

neglecting interference terms. The coupling constants and cutoff masses for the reso-
nance contributions are determined from measured πp → KΛ data and the branching
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2.2. Associated Strangeness Production: Theoretical Models and Data

Figure 2.6.: Total cross section of the pp → pKΛ reaction versus the excess energy
ǫ within the resonance model calculations from Tsushima et al. (see [Sib00] and
references therein) with pΛ-FSI (solid line) and without pΛ-FSI (dashed line). The
data shown is from experiments at the COSY accelerator (circles [C1196, C1198a,
CTOF98a]) and bubble chambers (squares [Fla84]). Picture taken from [Sib00].

ratios of the resonances. The results of the model for the total cross section dependent
on the excess energy ǫ is shown as the dashed line in Figure 2.6, together with the
measured data from [C1196, C1198a, CTOF98a] (circles) and [Fla84] (squares).

Fitting the model to the bubble chamber data shows that the data close to threshold is
underestimated by the resonance model. When including the pΛ final state interaction
into the model, the description is much better (solid line in Figure 2.6). Therefore,
the implementation of the pΛ final state interaction is necessary for the data close to
threshold. The same result was obtained by the meson exchange models. Another result
from the resonance model is the description of the pp → pKΛ reaction close to threshold
with a domimant pion exchange including the excitation of the N∗(1650) resonance. For
high excess energies the exchange of the ρ meson dominates [Tsu99, Sib99].

In contrast to the resonance model from Tsushima, the model from Shyam [Shy99,
Shy01] takes the interference between the resonance amplitudes into account. Beside
the exchange of π, η and ρ mesons, the model includes additionally the exchange of
the σ meson. The considered N∗ resonances are the same as in the Tsushima model.
Shyam implements the final state interaction of all particles in his model (KΛ, pK
and pΛ FSI). Although the meson-baryon FSI is very weak compared to the pΛ final
state interaction, it can have a strong influence via interference effects. The parameters
for the meson-baryon FSI are taken from an effective Lagrangian model analysis by
Feuster and Mosel [Feu98], and the pΛ FSI parameters are taken from the Bonn-Jülich
group [Reu94]. Within the model, the pp → pKΛ reaction close to threshold can be
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2. Theoretical Background

mainly described by a pion exchange with the excitation of the N∗(1650) resonance. For
higher beam momenta (pbeam > 3.3 GeV/c) the contribution of the N∗(1710) resonance
is larger than the one from the N∗(1650) resonance.

A similar behavior is seen in the Dalitz plot analysis of the COSY-TOF measure-
ments at different beam momenta [CTOF10b]. The obtained Dalitz plots for the beam
momenta 2.95 GeV/c, 3.2 GeV/c and 3.3 GeV/c are shown in Figure 2.7 (upper row).
The contributions of N∗ resonances are extracted by a fit of the Dalitz plots with a
resonance model from Sibirtsev [Sib02]. These fits are shown in the middle row of Fig-
ure 2.7. The contribution of the N∗(1650) resonance and the sum of the N∗(1710) and
N∗(1720) resonance contributions as a function of the beam momentum are shown in
the lower plot of Figure 2.7. The strength of the contributions varies strongly with the
beam momentum. As in the model calculations from Shyam, the contribution of the
N∗(1650) resonance decreases for higher beam momenta, whereas the contribution of
the N∗(1710) and N∗(1720) are increasing.

10
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Figure 2.7.: Upper: Dalitz plots of the reaction pp → pKΛ measured with the
COSY-TOF detector at the beam momenta 2.95 GeV/c (left), 3.2 GeV/c (middle)
and 3.3 GeV/c (right). The Breit-Wigner masses of the considered N∗ resonances
are indicated by the arrows. Middle: Model fits of the measured Dalitz plots with
a resonance model from Sibirtsev [Sib02]. Lower: Contributions of the N∗(1650)
resonance and the sum of the N∗(1710) and N∗(1720) resonances, obtained by a fit
of the Dalitz plots, as a function of the beam momentum. For comparison the val-
ues at pbeam = 2.85 GeV/c are added from [CTOF06a]. All pictures are taken from
[CTOF10b].
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2. Theoretical Background

2.2.3. Quark Model

Beside the various meson exchange and resonance models, Dillig and Kleefeld intro-
duce a quark-gluon model for the pp → pKY reaction close to threshold [Kle96]. In
this model the large momentum transfer of the incoming protons is shared by a two-
gluon exchange between the interacting constituent quarks (see Figure 2.8 left). The
interchanged quark lines guarantee colorless particles in the final state with the right
flavor content.

The results of the model calculation for the total cross section is shown in Figure
2.8 (right) together with data from bubble chamber measurements [Fla84]. The data
can be described qualitatively by the model but the result is strongly dependent on
the scaling parameter Λ. Furthermore, N∗ resonances are not implemented in the
model. They could be described by a three-gluon exchange (see [Fri02] on page 27: “...
Drei-Gluon-Austausch ..., mit dem auch die Resonanzen berücksichtigt werden können.
[Dil02]3.”)

When comparing all theoretical models the examination of the total cross section
data alone can not clearly distinguish between the different models. To obtain a better
picture of the reaction mechanism differential and polarization observables have to be
taken into account. The Dalitz plot and the differential cross sections measured with
the COSY-TOF detector indicate a strong influence of N∗ resonances and pΛ final
state interaction [CTOF10b] with less contribution from strange meson exchange. Up
to now the measured polarization observables have not been studied within these model
approaches.

3Dillig, Private communication, Erlangen, 2002.
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Figure 2.8.: Left: Quark-gluon interaction diagram of the pp → pKY reaction in the
quark-gluon model from Dillig and Kleefeld [Kle96]. Right: The energy dependence
of the total cross section for the pp → pKΛ reaction calculated with the quark-gluon
model from Dillig and Kleefeld [Kle96] for different values of the scale parameter Λ.
The data shown is from [Fla84]. Pictures are taken from [Kle96].

2.3. Λ Polarization

Λ polarization produced with an unpolarized proton beam was first seen in high energy
proton-beryllium interactions [Bun76]. It was found that the Λ is polarized along the
axis

~n = ~pbeam × ~pΛ (2.6)

and that the polarization is negative with respect to this axis. The surprising result
of this measurement was later confirmed by many other experiments with unpolarized
beams and/or targets. The parity violating Λ decay allows to measure the polarization
through the angular distribution of one of the decay particles. The angular distribution
is given by

dσ

d cos θ∗∗
p

= σ0(1 + αPΛ cos θ∗∗
p ) (2.7)

with the angle θ∗∗
p between the decay proton and the ~n axis in the Λ reference frame

and the weak asymmetry parameter α = 0.642 ± 0.013 [PDG2012]. The asymmetry
parameter is correlated with the interference term of the S-wave and P-wave amplitudes
of the Λ decay. Due to the parity violation of the decay α is not zero and the polarization
can be measured. Therefore, the Λ decay is self-analyzing.

The Λ polarization is studied by the kinematic variables xF (scaling or Feynman
variable), pT (Λ) (transverse momentum) and cos(θCMS

Λ ) (cosine of the scattering angle
in CMS). The scaling variable is the longitudinal momentum of the Λ expressed as a
fraction of the maximum kinematical allowed value. If xF is positive the Λ is more
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correlated with the beam proton while if xF is negative it is more correlated with the
target proton. Many inclusive measurements were performed with xF > 0 and the
results can be summarized as follows (for details and references see [Sof99] and Section
1.1.2 in [Piz07]):

• The polarization is almost independent of beam momenta from 6 GeV/c to 2 TeV/c

• The polarization is almost independent of the target type

• For pT (Λ) below 1 GeV/c the magnitude of the polarization increases linearly with
pT (Λ) and the slope increases with xF

• For pT (Λ) above 1 GeV/c the magnitude of the polarization is independent of
pT (Λ) and increases linearly with xF

An exclusive measurement of the polarization in the region xF < 0 was performed
at 27.5 GeV/c beam momentum in the pp → pK+Λ(π+π−)n reaction with n = 1 − 4
by Felix et al. [Fel96, Fel99]. The authors pointed out that the Λ polarization in pp
collisions is antisymmetric in xF due to the rotational invariance. Because their detector
has uniform acceptance in xF they combined the data sets from xF < 0 and xF > 0
by multiplying the cos(θ∗∗

p ) distribution by the sign of xF . They concluded from their
results, that the mechanism for the creation of the polarization is independent of the Λ
production mechanism, since the measured behavior of the Λ polarization is the same
for the studied reactions.

The study of the Λ polarization in the pp → pKΛ reaction has been done with
the COSY-TOF detector at the beam momenta 2.75 GeV/c [Met98, Piz07], 2.85 GeV/c
[Fri02], 2.95 GeV/c [Schr03, Piz07, Roe11] and 3.2 GeV/c [Schr03]. The obtained values
for the polarization are consistent within the error bars with the measurements at much
higher energies.

However, the theoretical explanation of the observed polarization and its dependence
on the Λ transverse momentum pT (Λ) and the scaling variable xF is rather unclear
[Sof99]. One simple explanation can be given with the Lund semi-classical fragmenta-
tion model [And79]. It uses semi-classical arguments for the creation of the Λ polariza-
tion. The incident proton is treated as an ud diquark singlet system with an additional
single u quark. After the collision, the diquark continues forward with unchanged flavor
and spin and a one-dimensional color field or string is stretched between the diquark
and the remnants of the collision. From this field the ss̄ pair is created and the ud
system picks up the s quark to form the Λ. Therefore, the spin of the Λ hyperon is
determined purely by the s quark. Since part of the transverse momentum of the Λ is
provided by the s quark and the quarks have a non zero mass, the ss̄ pair has orbital
momentum. This is compensated by the spin of the ss̄ pair. Thus, the s quark has
a non zero spin and that is transferred to the Λ. As an result of this consideration
the Λ polarization has to be negative and increases with transverse momentum pT (Λ).
Although, most of the data fits to this explanation nevertheless the dependence on xF

can not be explained [Piz07].
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The meson exchange model from Laget is the only exchange model so far which make
a prediction for the dependence of the Λ polarization on the transverse momentum.
This prediction is shown in Figure 2.9. For a coupled pion and kaon exchange the
polarization should exhibit an enhancement at pT (Λ) = 0.1 GeV/c and drop down to
increased negative values for higher transverse momenta. For a pure kaon exchange
the polarization dependence is quite flat and positive. Unfortunately, none of these
predictions could be confirmed by measurements due to the lack of data precision in
this momentum region.

Figure 2.9.: Calculation from Laget [Lag91] for the dependence of the Λ polarization
on the transverse momentum pT (Λ) for a pure kaon exchange (dashed line) and a
combined kaon and pion exchange (solid line) in a meson exchange model.

2.4. Scattering Length and pΛ Final State Interaction

2.4.1. Partial Wave Expansion and Scattering Length

The theoretical models show the necessity to implement pΛ final state interaction into
the description of the pp → pKΛ reaction to match the measured data. This interaction
is an elastic scattering process of the two baryons after their creation. Since the mo-
mentum transfer between these baryons is small, the scattering can not be calculated
by perturbative QCD4. The usual formalism to describe the scattering is a partial wave
expansion of the outgoing spherical wave produced by the scattering of an incoming
plane wave at a short range potential with radius r (see for instance [Mes67, Mah09]).

4Within the framework of Lattice QCD direct calculations are performed [Bea12, Bea13a, Bea13b].
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Assuming spinless particles and the direction of the incoming plane wave is the z-axis,
the outgoing wave Ψs(r) is far away from the scattering region a superposition of the
incoming wave and the scattered one, thus

Ψs(r) ≃ eikz + f(θ)
eikr

r
. (2.8)

k is the wave number and f(θ) is the scattering amplitude dependent on the scattering
angle θ. Ψs(r) is a solution of the Schroedinger equation. In the partial wave expansion
the scattering amplitude is a sum of the partial waves amplitudes fl(k)

f(θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ). (2.9)

Pl(cos θ) are the Legendre polynomials. The partial wave amplitudes fl(k) are defined
through the phase shifts δl(k) of the scattering via

fl(k) =
e2iδl(k) − 1

2ik
=

eiδl(k)

k
sin δl(k) =

1

k cot δl(k) − ik
. (2.10)

From the scattering amplitude the differential cross section can be calculated

dσ

dΩ
= |f(θ)|2 =

∞∑

l=0

(2l + 1) |fl(k)|2 =
∞∑

l=0

(2l + 1)
sin2 δl(k)

k2
. (2.11)

The total cross section can be obtained by integrating Equation 2.11 over the solid
angle. Due to angular momentum conservation each angular momentum component
scatters independently. Therefore, the total cross section can be written as a sum of
“partial wave cross sections”

σtot =
∞∑

l=0

σl(k) =
∞∑

l=0

4π(2l + 1)
sin2 δl(k)

k2
. (2.12)

For low momentum transfer or low energy scattering (kr ≪ 1) only the first partial
wave amplitudes are nonzero. In the limit k → 0 the scattering is purely defined by the
S-wave amplitude (l = 0) and this limit is defined as

lim
k→0

f0(k) = −a ⇐⇒ lim
k→0

1

k cot δl(k)
= −a. (2.13)

The parameter a is called the scattering length. It parametrizes all zero energy scat-
tering completely. Therefore, every potential with the same scattering length has the
same zero energy scattering properties. The total cross section in the low energy limit
is

lim
k→0

σtot = lim
k→0

4π

k2
sin2 δ0(k) = 4πa2. (2.14)
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If the two scattered particles have spin like the pΛ system, each spin configuration
has its own scattering potential and thus a different scattering length. The pΛ system
can be either in spin singlet or spin triplet configuration with the corresponding spin
singlet scattering length as and spin triplet scattering length at. The extraction of the
spin triplet scattering length is possible from the pΛ FSI in the pp → pKΛ reaction.
The theoretical method used here is described in Section 2.4.3.

2.4.2. pΛ Scattering: Data and Models

Through SU(3) flavor symmetry the pΛ interaction can be connected to the NN scat-
tering. The NN scattering is precisely known because of the large amount of available
data. Unfortunately, the available data for pΛ scattering is scarce due to the technical
difficulties in providing a high quality Λ beam. Direct Λp → Λp elastic scattering ex-
periments at low energies were done at CERN [Sec68, Ale68, Kad71]. The scattering
parameters are deduced from the measured energy dependence of the total cross section
with the effective range approximation of the S-wave phase shifts:

k cot δs,t ≃ − 1

as,t
+

1

2
kr2

s,t . (2.15)

δs,t are the S-wave phase shifts for spin singlet and triplet scattering and as,t are the
corresponding scattering lengths. rs,t are the effective ranges for the spin states. The
total cross section from this approximation is [Gol64]

σΛp→Λp ≃ 1

4
σs +

3

4
σt =

π

k2 +
(

−1
as

+ 1
2kr2

s

)2 +
3π

k2 +
(

−1
at

+ 1
2kr2

t

)2 (2.16)

with the separated terms for singlet and triplet scattering. k is the center of mass
momentum of the Λp system. With a likelihood fit Alexander et al. [Ale68] determine
the value s for the scattering length to be as = −1.8+2.3

−4.2 fm and at = −1.6+1.1
−0.8 fm with

highly correlated errors5. Obviously, this result suffers from the large errors.
Within the theoretical models a scattering potential is constructed, and the cor-

responding scattering amplitude is fitted to the total and differential cross sections6.
From the potentials the values for scattering length and effective range are obtained.
Examples for such models are quark based models (see [Fuj07]), meson exchange models
and chiral effective field theory ChEFT. The later two are explained in more detail in
the next paragraphs.

In the meson exchange model the interaction is produced by the exchange of different
mesons between the Λ and the proton. Due to the scarce scattering data the coupling
constants are mostly obtained by assuming SU(3) symmetry. The SU(3) breaking is
included through the mass splitting of the particles. Examples of such models are the
Nijmegen Model NSC97f [Rij99] or the Jülich Model Jülich 04 [Hai05].

5The error of the values has been taken from [Gas04].
6The modelling and fitting is usually done for all hyperon-nucleon channels.
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The chiral effective field theory approach for hadron-hadron interactions is based on
an idea from Weinberg [Wei90, Wei91]7. The important feature is the underlying power
counting which orders the Feynman graphs in leading order (LO), next to leading order
(NLO) and so on. This allows one to improve the calculations systematically when going
to higher orders. The Jülich theory group applied this method for Y N interactions
and the results are published for LO in [Pol06] and for NLO in [Hai13]. Besides the
exchange parameters, the potentials in ChEFT contain so-called low-energy constants
(LECs) which parameterize short distance properties and must be determined by a fit
to the data. Since the amount of data is limited, some relations between the constants
are used exploiting SU(3) symmetry. Nevertheless, the number of free parameters is
increased.

Figure 2.10.: Data and different model predictions for the pΛ elastic scattering. The
green and red band show the result from chiral effective theory calculations in leading
order and next to leading order, respectively. The dashed blue line is the result from
meson exchange model calculations of [Hai05]. Picture taken from [Hai13].

7For recent reviews of the application of chiral effective theory on nuclear forces and NN interactions
see [Epe09, Mac11].
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Model as [fm] at [fm]
LO [Pol06] -1.91 -1.23

NLO [Hai13] -2.91 -1.54
Jülich 04 [Hai05] -2.56 -1.67
NSC97f [Rij99] -2.60 -1.72

Table 2.1.: Predictions for pΛ singlet and triplet scattering length from different the-
oretical calculations. All values are taken from [Hai13].

In Figure 2.10 the results of the LO and NLO calculations for the total cross section
are shown together with the experimental data and the result from [Hai05]. As expected
the NLO calculation (red band) delivers a better description of the data than the LO
calculation (green band). The dashed blue line stems from the calculation in a meson
exchange approach [Hai05]. Table 2.1 summarizes the results of the calculations for
the spin singlet and triplet scattering length from the different models. In all cases the
singlet scattering length is larger than the triplet one. The constraint of all models is
the reproduction of the hypertriton binding energy. The hypertriton is a bound state
of two nucleons and the Λ. Therefore, the strength of the S-wave scattering lengths are
correlated to the Λ separation energy. All models shown in Table 2.1 predict a bound
hypertriton with a binding energy in agreement with the measured value [Jur73].

Another, very promising way, is the extraction of the scattering length from final state
interactions in strangeness transfer and associated strangeness production reactions.
This is explained in the next section for the pp → pKΛ reaction.

2.4.3. Extraction of the pΛ Scattering Length from pΛ FSI

Two different methods are proposed for the extraction of the pΛ scattering length from
exclusive measurements of the pp → pKΛ reaction. One uses the parametrization of
the differential cross section by an inverse Jost function [Hin04] while the other method
derives an integral representation of the scattering length from the differential cross
section with a dispersion integral approach [Gas04, Gas05].

2.4.3.1. Inverse Jost Function Approach

Due to the large momentum transfer between the initial and final baryons in the pp →
pKΛ reaction, the range of the production mechanism is much smaller than the range
of the final state interaction. Thus, the energy dependence of the reaction amplitude is
given dominantly by the FSI amplitude and the production amplitude is nearly constant.
This approximation was proposed by Watson and Migdal [Wat52, Mig55, Gol64, Gil64].
The reaction amplitude is

M ≃ M × AFSI(k). (2.17)
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k is the center of mass momentum of the pΛ system. Taking the inverse Jost function
[Jos47, Jos52] the FSI amplitude AFSI is approximated by

AFSI(k) =
k − iβ

k + iα
. (2.18)

The parameters α and β are related to the scattering length a and the effective range
r of the S-wave scattering by

α =
1

r

(
1 −

√
1 − 2r

a

)
, β =

1

r

(
1 +

√
1 − 2r

a

)
. (2.19)

For the double differential cross section the contributions of spin singlet and triplet
states of the pΛ system can be added incoherently since close to the production threshold
a transition from singlet to triplet is not allowed. With the spin statistical weights the
double differential cross section can be written as [Hin04]

d2σ

dΩKdmpΛ
= Φ3 · |M̃ |2|ÃFSI|2 =

= Φ3

[
1

4
|Ms|2 k2 + β2

s

k2 + α2
s

+
3

4
|Mt|2

k2 + β2
t

k2 + α2
t

]
. (2.20)

Φ3 is the three-body phase space distribution function. |Ms| and |Mt| are the singlet
and triplet production matrix elements, respectively. The parameters αs, βs, αt and βt

are the potential parameters for the singlet and triplet scattering which are correlated
to the singlet and triplet scattering lengths through Equation 2.19. This method was
used by the COSY-11 collaboration [C1198b] and the HIRES collaboration [HIR10] in
the analysis of their measurements, but only the later one obtained values for the spin
resolved scattering lengths, namely as = −2.43+0.16

−0.25 fm and at = −1.56+0.19
−0.22 fm.

For a further description of the implementation of the FSI with the Jost function
approach into meson exchange models and its predictions see [Sib05].

2.4.3.2. Dispersion Integral Approach

The other method through a dispersion integral is used in the analysis of the COSY-
TOF data [Roe11, CTOF13b]. The great advantages of the method described in
[Gas04, Gas05] are the known theoretical uncertainty of 0.3 fm for the extraction of
the scattering length, and the possibility to extract the spin resolved scattering length
using the information of the kaon analyzing power. The dispersion integral approach
relates the scattering length to the integral over the double differential cross section,
hence its shape, by

as,t = lim
m2→m2

0

1

2π

(
mΛ + mp√

mΛmp

)
P

∫ m2
max

m2
0

dm′2

√
m2

max − m2

m2
max − m′2

× 1√
m′2 − m2

0 · (m′2 − m2)
log

{
1

p′

(
d2σs,t

dm′2dt

)}
(2.21)
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with m0 = mΛ + mp. P denotes that the Cauchy principal integral has to be applied.
p′ is the two-body phase space factor of the pΛ system, thus the internal center of mass
momentum of the pΛ system. In [Gas04] it is shown that it is sufficient to use invariant
masses up to mmax = m0 + 40 MeV/c2 to achieve the theoretical uncertainty of 0.3 fm
for the determination of the scattering length.

As it is described in Section 2.3 in [Roe11] the absolute normalization of the mea-
sured cross section is irrelevant for the determination of the scattering length. If the
differential cross section is multiplied by an arbitrary number N , the logarithmic terms
in Equation 2.21 becomes

log

{
N · 1

p′

(
d2σ

dm′2dt

)}
= log {N} + log

{
s

1

p′

(
d2σ

dm′2dt

)}
. (2.22)

In [Gas04] it is shown that the integral of Equation 2.21 is zero for a constant in the
integrand, thus the term log {N} vanishes. This feature is used in the analysis in the
way that the absolute normalization of the spectrum is irrelevant (see Chapter 8).

The extraction of the spin triplet scattering length utilizes the kaon analyzing power
together with the allowed partial wave combinations. In the basis system, used here,
the proton and Λ are composed to the system {pΛ} with internal momentum (L′

pΛ)
and corresponding spin. The kaon is described by the relative angular momentum
(l′K) to the {pΛ} system. Thus, the reaction can be expressed by pp → {pΛ} K. The
initial proton-proton state is described by the total angular momentum J , the angular
momentum L and the spin S. In the reaction the total angular momentum and parity
is conserved. Taking partial waves up to L′

pΛ = 1 and l′K = 2 with the limit of J = 2,
the combinations in Table 2.2 are allowed for the pp → {pΛ} K reaction. The partial
wave combinations are given in the Rosenfeld notation [Ros54] and are sorted according
to the final state angular momenta. If the pΛ system is in S-wave (L′

pΛ = 0), it must
have spin triplet configuration for kaons in P-wave.

The analyzing power of the kaon is given in terms of the differential cross section
and associated Legendre polynomials P m

l of degree l and order m by (adapted from
[Bla85, Han04])

AN (cos θ∗
K)

dσ

d cos θ∗
K

= αP 1
1 (cos θ∗

K) + βP 1
2 (cos θ∗

K). (2.23)

θ∗
K is the kaon scattering angle in the center of mass frame. From the analysis of data

collected at 2.95 GeV/c [Roe11, CTOF13b], it turned out that high order terms of the
Legendre polynomials are negligible for the further analysis8. Therefore, the parameter
α is related to the interference of the S-wave and P-wave amplitudes of the kaon, and
β results from the interference of the S-wave and D-wave amplitudes. As it is shown
above, kaons in P-wave leads to the spin triplet configuration of the pΛ system if it is in

8High order terms correspond to partial waves of the kaon higher than l > 2. They are strongly
suppressed since the maximum momentum of the kaon in the CMS is pCMS

K,max ≈ 323 MeV/c at
2.7 GeV/c beam momentum.
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Class (L′
pΛl′K) Initial State 2S+1LJ Final State pΛ spin state

Ss 3P0
1S0s0 singlet

3P1
3S1s1 triplet

Sp 1S0
3S1p0 triplet

1D2
3S1p2 triplet

Sd 3P1
3S1d1 triplet

3P2
1S0d2 singlet

3F2
1S0d2 singlet

Ps 1S0
3P0s0 triplet

1D2
3P2s2 triplet

Pp 3P0,1,2
1P1p0,1,2 singlet

3F2
1P1p2 singlet

3P0,1
3P0p0,1 triplet

3P0,1,2
3P1p0,1,2 triplet

3F2
3P1p2 triplet

3P1,2
3P2p1,2 triplet

3F2
3P2p2 triplet

Pd 1S0
3P2d0 triplet

1D2
3P0,1,2d2 triplet

1D2
1P1d2 singlet

Table 2.2.: Partial wave composition of the initial and final states in the process pp →
{pΛ} K up to an angular momentum of L′

pΛ = 1 for the pΛ system and l′K = 2 for
the kaon. Additionally, the total angular momentum is limited to J = 2. The spin
state of the pΛ system is also given. The Rosenfeld notation is used [Ros54].
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2.4. Scattering Length and pΛ Final State Interaction

S-wave. Then the parameter α is only sensitive to spin triplet amplitudes. This feature
is used to determine the pΛ spin triplet scattering length. In addition, β vanishes
when Equation 2.23 is integrated over the full angular range (see [CTOF13b]). The
parameters α and β are determined in bins of pΛ invariant masses by the fit of the
Legendre polynomials to the data as it is shown in Section 7.5.3. Specifically, Equation
2.23 becomes (see Equation 5 in [CTOF13b])

AN (cos θ∗
K , mpΛ) = α(mpΛ)P 1

1 (cos θ∗
K) + β(mpΛ)P 1

2 (cos θ∗
K). (2.24)

The obtained value α(mpΛ) is multiplied to the final state amplitude in order to get the
spin triplet amplitude behaviour. The absolute normalization might be wrong but as it
was shown by Equation 2.22 this does not matter for the scattering length extraction
by the method from [Gas04].

Therefore, the following equation holds for the limit mpΛ < m0 + 40 MeV/c2 when
the pΛ system is in S-wave:

|AFSI,t(mpΛ)|2 = α(mpΛ) · |ÃFSI(mpΛ)|2. (2.25)

|ÃFSI(mpΛ)|2 and |AFSI,t(mpΛ)|2 are the spin averaged and spin triplet amplitudes, re-
spectively. The amplitudes are fit with an exponential function as it is described in
the Appendix A in [Gas04] in general. The fit procedure has been slightly modified
in this thesis in order to improve the fit convergence and stability. The complete pro-
cedure is in detail explained in the Section 8.1. The effective scattering length ã is
determined by the fit of |ÃFSI(mpΛ)|2 and the spin triplet scattering length at by the
fit of |AFSI,t(mpΛ)|2, respectively.

In [CTOF13b] ã and α(mpΛ) are determined for the COSY-TOF measurement of
pp → pKΛ at 2.95 GeV/c beam momentum. For the effective scattering length the
value ã = (−1.25 ± 0.08stat. ± 0.3theo.) fm is obtained with the statistical and theoretical
uncertainty. Additionally, influences of N∗ resonances to the extraction method are
checked by applying the method to two separated regions of the Dalitz plot. It turned
out that the resonances have a significant effect on the value for the scattering length.
The induced variation is in the order of 1.20 fm [CTOF13b]. Thus, this is also checked in
the analysis of the data presented here (see Section 8.3). Unfortunately, the parameter
α(mpΛ) is compatible with zero for the mass range mpΛ < m0 + 40 MeV/c2 within the
given statistics of the measurement at 2.95 GeV/c beam momentum. Therefore, an
extraction of the spin triplet scattering length was not possible for this measurement.
Possible explanations for α ≈ 0 can be [Roe11]:

• Dominant spin singlet scattering for which P-wave kaons are forbidden.9

• The individual amplitudes which contribute to P-wave kaons are small.

9This is the explanation from the HIRES collaboration for their results of the spin resolved scattering
lengths and production matrix elements presented in [HIR10].
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• The individual amplitudes which contribute to P-wave kaons interfere destruc-
tively.

• ...

Through the analysis of measurements at different beam momenta the explanations can
be distinguished, since the amplitudes are energy dependent. Thus, if a nonzero value
for α is obtained at a different beam momentum, the first explanation is most likely
excluded.

In Section 7.5.3 the results of the kaon analyzing power for the measurement presented
in this thesis are shown. As it turns out, α is not zero and an extraction of the pΛ spin
triplet scattering length from the invariant mpΛ spectrum is possible. The result is
given in Section 8.4 together with a discussion of systematical errors.
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Research is so unpredictable. There are periods

when nothing works and all your experiments are

a disaster and all your hypotheses are wrong.

(Francis Collins)

3. Experimental Setup

In this chapter the COSY-TOF experiment is described which is located at one of
the external beam lines of the COSY (Cooler Synchroton) accelerator at the research
centre Juelich.

Special attention is giving to the Straw Tube Tracker (STT) as the most important
sub-detector in COSY-TOF for the event reconstruction presented here. In addition,
the experimental trigger and data aquisition conditions are described.

3.1. COSY Accelerator

Figure 3.1.: Schematic view of the COSY accelerator facility with the JULIC cyclotron
as injector and the external beam lines. The path of protons from the cyclotron to the
COSY-TOF detector is highlighted in red (original from [Pau96], modified version
from [Dzh12]).
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3. Experimental Setup

The layout of the COSY facility is shown in Fig. 3.1. The highlighted red path
marks the path of accelerated particles from the preaccelerator JULIC cyclotron via
the COSY synchroton and storage ring to the COSY-TOF detector. It is possible to
reach proton momenta up to 3.7 GeV/c inside the synchroton and up to 3.3 GeV/c at
the external beam lines1.

The source delivers unpolarized H− ions with a current of about 100 µA or trans-
versely polarized ions with a current of around 5 µA [Pra14] to the JULIC cyclotron
which accelerates them to an energy of 40 MeV. After stripping of the electrons, the
protons are injected into the COSY accelerator. This is an oval synchroton and stor-
age ring with 184 m circumference where the protons can be accelerated to a beam
momentum between 270 MeV/c and 3.7 GeV/c.

The beam is cooled with stochastic and electron cooling which leads to a momentum
resolution of ∆p/p < 10−4 and a beam divergence < 2 mrad. After the cooling typically
5 × 1010 unpolarized or 3 × 109 polarized protons are stored in COSY [Pra14]. Via the
ultra slow stochastic extraction method these are directed to the external beam lines
and thus to the COSY-TOF experiment.

During the beam time in October 2011, COSY was operating with polarized protons
(P = (79.0 ± 1.1)% see Chapter 5.5) at a beam momentum of 2.7 GeV/c. The very high
polarization compared to previous measurements was achieved through an additional
stop in the acceleration process while crossing depolarization resonances [Lor13]. One
extraction spill was 60 s long and the averaged extraction rate was around 6×106 protons
per second. After each spill the spin of the beam was flipped to reduce systematic
uncertainties in the determination of the polarization observables.

3.2. The COSY-TOF Detector

The COSY-TOF detector was developed in order to investigate associated strangeness
production of hyperons close to the production threshold. The requirements are:

• Full geometrical reconstruction of all charged particles of the reaction,

• Reconstruction of the primary and secondary vertices,

• Reconstruction of the momenta through Time Of Flight (TOF) for additional
kinematic information,

• High background rejection.

To fulfill all these requirements the COSY-TOF detector is built in a modular way. It
is possible to change the detector length and the position of different sub-detectors. For

1It is also possible to accelerate deuterons but they are not used for hyperon production at the COSY-
TOF experiment. Results from a measurement of dp → ppπ− with COSY-TOF can be found in
[CTOF06b].
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Figure 3.2.: Schematic drawing of the COSY-TOF detector including the different
detector subsystems used during the 2011 measurement. The detected charged tracks
of an example event of the pp → pK+Λ → pK+(pπ−) reaction are drawn in green,
and the decay vertex of the Λ is marked with a green point.

the measurement in 2011, the setup for hyperon production2 was used. It is sketched in
Figure 3.2 together with an example event of the pp → pK+Λ → pK+(pπ−) reaction.
In this setup the detector is a barrel-like vacuum tank with a length of about 3 m and
a diameter of 3 m. The tank is evacuated to a residual pressure of ≤ 7 × 10−4 mbar
to minimize the rate of secondary interactions and multiple scattering. After passing a
veto system the beam hits a liquid hydrogen target. The produced particles are then
registered in different detector subsystems. These can be grouped into three different
regions: start detector region, central straw tube tracker region and end detector region.
The first one consists of the so called ’Starttorte’, which is a set of plastic scintillators
providing the start signal for the TOF measurement and trigger, and a silicon quirl
detector (SQT) for precise track information near the primary vertex. The most impor-
tant tracking system is the Straw Tube Tracker (STT), situated ≈ 25 cm downstream
from the target. The end detector region consists of scintillators covering the full cyclin-
drical inner surface of the vacuum tank (Barrel detector) and the end cap (Quirl and
Ring detector) and a calorimeter, both on the downstream end of the vacuum chamber.

2This setup has full phase space coverage for the pp → pKΛ reaction in the measured beam momentum
range, but not necessarily for the production of Σ hyperons.
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The scintillators provide the stop signal of the TOF measurement and also are used to
generate a trigger signal.

In total, all these sub-detectors cover the full azimuthal range and a polar angular
range from 2 ◦ to 60 ◦. That yields full phase space coverage in the center of mass
reference frame. In addition, the tracking capabilities are excellent and allow for a
separation of the Λ decay vertex from the primary one.

In the following sections the different detector components are explained in more
detail.

3.2.1. The Veto System

To exclude reactions which occur in front of and outside of the target material, the
beam must pass a veto system before hitting the target. The first part of the veto
is two plates with apertures of 8 mm and 5 mm located 1 m and 0.5 m upstream of
the target, respectively. The second part is a movable scintillator with five holes of
different diameters (1.5 mm - 3.5 mm see also [Schr98]), located around 5 cm upstream
of the target and the scintillator is also used to assist the beam focussing.

3.2.2. The Target

A hollow copper cylinder of 4 mm length and 6 mm diameter filled with liquid hydro-
gen is used as the target [Nak93, Jae94]. The entrance and exit window consists of
about 1.5 µm thick heptan foil to have a minimum amount of beam-foil interactions
and multiple scattering. Filled with liquid hydrogen, the pressure inside is 200 mbar
and the proton areal density is 1.8 × 1022 protons/cm2. The target is surrounded by
high vacuum thus the foils are partly stretched and the effective target length is about
1 mm longer than the copper cylinder (see also Section 5.3).

3.2.3. Start Detector Region

The start detector region consists of the start counter so-called ‘Starttorte‘ and the
Silicon Quirl Telescope (SQT).

The start counter consists of two 1 mm thick scintillator discs which are segmented
in 12 wedge shaped pieces, each covers 30◦ azimuthal angle. The outer radius of each
disc is 7.6 cm with a hole of 2 mm in the middle for the beam to pass the detector
without interaction. The second disc is rotated by 15◦ around the beam axis with
respect to the first one to get 24 coincidence regions with an azimuthal angular size of
15◦. Positioned 2.2 cm behind the target, this counter provides the start signal for the
time of flight measurement, and also measures the number of charged primary particles
for the trigger.

The silicon quirl telescope3 is a segmented silicon detector with a thickness of

3Technically it is not a telescope, because the detector consists only of one silicon disc. Originally, it
was planned to install several identical discs, thus forming a telescope.
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3.2. The COSY-TOF Detector

300 µm and an outer radius of 3.5 cm. Like in the start counter a beam hole of 3 mm
radius is in the center of the detector. It is positioned ≈ 2.5 cm downstream of the target.
The silicon strip detector is segmented into 128 Archimedian spirals like the Quirl and
Ring detector (see Figure 3.3) on each side of the detector. Each of the spirals covers
an azimuthal angular range of π and has an identical amount of solid angle across
an identical polar angle range. The rotational direction is counterclockwise for the
upstream side and clockwise for the downstream side. This results in only one crossing
point of a spiral of one side with any spiral of the other side. Each pixel produced by
the overlap of a spiral on the front with one one the back subtends the same solid angle.
Due to the high segmentation (1282 pixels) the corresponding pixels have a high spatial
resolution.

3.2.4. End Detector Region

The end detector region consists of the scintillating detectors Barrel, Ring and Quirl,
which produce the stop signal of the TOF measurement and the charge multiplicity
criterium for the trigger. A calorimeter is located behind them with a polar angle
coverage from 1◦ to 10◦. The calorimeter is only used for measurements with the short
setup of the COSY-TOF detector and thus it will not explained in detail here.

The Barrel detector covers the complete cylindrical part of the inner surface of
the vaccuum tank and consists of 96 scintillator bars, 15 mm thick and 2.853 m long.
To avoid holes in the acceptance, the width of the bars reduces from 10.0 cm close to
the target to 9.6 cm at the end cap while the radial distance decreases from 1.55 m to
1.48 m, respectively. The bars are read out from both ends to measure the polar angle
from the time difference of the signals at opposite ends. It covers a polar angle range
from 25◦ to 70◦. The polar angle resolution is roughly 0.4◦ and the azimuthal angle
resolution is σφ = 3.75◦/

√
12.

The Quirl detector consists of three layers of scintillators each 5 mm thick with
different segmentation which are positioned at the inner part of the end cap, roughly
3 m downstream of the target. The outer radius of the active area is 58 cm with an
inner hole for the beam of 4.2 cm radius, thus covering a polar angle range from 1◦ to
10◦. The polar angle resolution is better than 0.24◦. The first layer is structured in
48 wedge shaped slices like the start counter, resulting in an azimuthal resolution of
σφ = 7.5◦/

√
12. The other two layers are structured in 24 Archimedian spirals each

with one layer rotated in the clockwise direction and the other in the counterclockwise
direction [Dah94]. The structure in the inner part can be seen in Figure 3.3.

The outer part of Figure 3.3 shows the Ring detector. The structure is similar to
the Quirl detector with twice the number of elements per layer, hence the first one has 96
wedge-shaped pieces and the other two layers have 48 clockwise and 48 counterclockwise
orientated spirals. Therefore, every slice of the Quirl detector is continued by two slices
of the Ring detector. The inner radius of the Ring detector is 56.75 cm to have a small
overlap area with the Quirl detector, which is positioned 10 cm behind the Quirl in
beam direction. The outer radius is 154 cm giving a polar angle coverage of 10◦ to
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58 cm

Figure 3.3.: Pixel structure of the Quirl and Ring detectors in the COSY-TOF end
cap [Kra06].

26◦. The polar angle resolution is better than 0.20◦, and the azimuthal resolution is
σφ = 3.75◦/

√
12.

3.3. The Straw Tube Tracker

The Straw Tube Tracker (STT) [Roe11, Dzh12, CTOF08] is the central tracking system
of the COSY-TOF experiment, and gives the most precise information for track and
vertex reconstruction. The achieved resolution for momentum and invariant mass of
the pKΛ final state is significantly better than from the time of flight measurement
[Roe11]. Therefore, only the data from the STT were used in the analysis presented
here.

The detector consists of 2704 straw tubes. Each straw tube is a cyclindrical mini-
drift chamber with a single anode wire. A voltage is applied between the wire and
the wall of the drift chamber. If a charged particle crosses the chamber it creates
ionized clusters in the gas along its path. The resulting electrons and ions drift in the
electric field between the wall and the wire. Close to the wire the electrons cause a
cascade of ionization (avalanche region), because the high electric field is sufficiently
strong there. The amplification of about 104 − 105 is large enough to be read out.
Through measurement of the time information of the signal the drift time of the electron
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3.3. The Straw Tube Tracker

Figure 3.4.: The straw tube tracker during mounting in the COSY-TOF experiment.

from the closest cluster to the wire can be determined. This drift time corresponds to
the minimum distance of the particle track to the wire (= isochrone radius). For
that purpose a calibration is necessary relating the drift time to the isochrone radius
(for details see Chapter 4). Precise track reconstruction is obtained by combining the
distance information from all straw tubes in the STT.

The straw tubes of the STT are 105 cm long and their diameter is 1 cm. The walls
are made of aluminized Mylar foil of 32 µm thickness. The anode is a 20 µm thick gold
plated tungsten wire with a tension of 400 mN provided by the gas overpressure of 1.2
bar. Each wire is fixed by crimp pins at each end cap of the tube. The gas is a mixture
of Ar and CO2 with a ratio of 8:2. The high voltage between the anode and the wall is
1820 V with the wall at ground potential.

The straw tube tracker is shown in Figure 3.4 during the mounting process into the
experiment. The straw tubes are organized in 13 double layers, which are rotated by
an azimuthal angle of 60◦ counterclockwise with respect to the previous one. This is
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used to reconstruct the three dimensional tracks and to resolve ambiguities for hits from
multiple tracks. The first double layer is arranged with the straws parallel to the x-axis
of the global coordinate system of the analysis (see Chapter 4) and their electronics
are in the positive x-direction. Three orientations of double layers exist, namely 0◦,
60◦, 120◦, since each third double layer has the same straw tube orientation. The only
difference is the position of the read out of the electronics. This alternation is important
to average out different signal propagation time through the wire along the tubes of a
track.

Each double layer consists of two layers, seperated by a distance of 8.8 mm along
the beam direction. One layer is shifted by 5.05 mm normal to the beam direction to
the other one to almost reach closely packed double layers. Additionally, it eliminates
acceptance holes if one particle passes the tubes very close to the wall or in between
two tubes. If this happens the track passes the tubes in the other layer close to the
wire and any variation in efficiency and resolution is averaged out.

A beam hole is located with a diameter of 15 mm in the middle of each layer. For
that purpose the 2 central straw tubes in each layer were replaced by 4 shorter straws
with 51 cm length.

The full detector volume is around 230 l with a self stabilizing mechanical setup
due to the overpressure in the straws. The total radiation length of the STT for all
layers is on average X/X0 ∼ 1% [Roe11]. Thus, the material of the STT has only
significant influence on the track reconstruction behind the STT, and therefore is of
little importance for the current analysis.

3.4. Trigger and Data Aquisition

Compared to the previous measurements at COSY-TOF, the trigger conditions and
data aquisition were modified for the 2011 beam time in order to enhance the rate of
data taken and to partly circumvent a new problem with gaps in the start counter,
which were observed for the first time in a measurement with the STT in 2010 (see
Section 6.3.3 in [Roe11]). In general, the change in charge multiplity from 2 to 4 in
the pp → pKΛ reaction is taken into account for the trigger, therefore the standard
trigger (t11pkl) demands two hits in the ’Starttorte‘ from the primary proton and kaon
and four or more hits in the whole end detector (Quirl, Ring and Barrel). Upper limits
for the multiplicities are not applied in order to avoid losing events because of noisy
detector channels or pile up or event mixing. For the measurement at 2.7 GeV/c the
trigger condition was changed to at least 1 hit in the start counter in coincidence with
4 or more in the end detector. This improves the triggering of pKΛ events, when
one primary particle goes through the gaps in the inner part of the start counter, and
therefore generates no signal for the trigger.

For the determination of the beam polarization, pp → pp elastic scattering events
were triggered in addition to the pKΛ events. This trigger was modified to require at
least one hit in the start counter and 2 hits in the end detector. Since the cross section of
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elastic scattering is about four orders of magnitudes higher than for hyperon production,
the elastic trigger (t10pp) is scaled down by a ratio of 1:100. That means that one of
hundred elastic triggered events is read out by the DAQ system. For dedicated runs with
pure elastic events without the t11pkl trigger the ratio was 1:1. Table 3.1 summarizes
the trigger conditions and ratios.

name reaction hit conditions ratio
t11pkl pp → pKΛ ≥ 1 start & ≥ 4 stop 1:1
t10pp pp → pp elastic ≥ 1 start & ≥ 2 stop 1:100

Table 3.1.: Summary of trigger conditions and trigger ratios.

The data rate is limited by the dead time of the electronics in the read out system,
which varies for different digitizing modules. The signals of all scintillators are digitized
with ADC and TDC modules located in FastBus Crates [FB]. The read out of a FastBus
crate has a total dead time of around 300 µs. The corresponding VME crate [VME] for
the SQT read out has a similar dead time. Dedicated TDC electronics4 were developed
for the straw tube tracker with a much lower dead time of the full system of about
10 − 20 µs. The dead time of the FastBus crate determines the dead time of the whole
DAQ system since all crates are read out in parallel. Therefore, taking only the data of
the STT reduces the dead time by a factor of about 20 and accordingly increases the
recorded event rate5. Due to the fact that the beam current is not randomly distributed
but has a time structure in the millisecond range the effective event rate increases by
about a factor of 3.

For roughly 90% of the data presented here the DAQ system was set in the mode of
only collecting data from the STT. During the rest of the beam time all information
was saved for checks and calibration purposes. An analysis of the data taken with and
without the read out of the FastBus and VME modules shows no significant deviation
in the observables.

4for a description of the electronics see Chapter 4 in [Uca06].
5The typical trigger rate is 3000 per second with a fractional deadtime of 75 % for the read out with

the FastBus crates and a fractional deadtime of 25 % for the read out of the STT alone [Rod14].
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An algorithm must be seen to be believed.

(Donald Knuth)

4. Event Reconstruction and STT
Calibration

This chapter consists of two parts. First the event reconstruction is described with the
individual tasks of track finding and fitting, vertex finding and fitting, pKΛ geometrical
reconstruction and finally kinematic fitting. The reconstruction software was already
developed for former COSY-TOF measurements and is described in more detail in
[Roe11]. Hence, only the important steps and features and some small modifications
for the STT calibration are explained here. The second part of the chapter explains
the different steps in the calibration procedure of the straw tube tracker. It starts from
corrections of the raw TDC spectra and the relation of drift times to isochrone radius
to the geometrical alignment and resolution of the straws.

4.1. Analysis Procedure

The analysis software for the reconstruction of the pKΛ events from the isochrone radii
informations of the STT was developed by R. Castelijns [Cas06] and improved by M.
Röder [Roe11]. Therefore, only small modifications were needed here mainly for the
calibration steps. The analysis routine is based on the programming language C++
combined with the package MINUIT [MINUIT] for least square fitting and the analysis
framework ROOT [ROOT] for storing results from the different analysis steps. The com-
plete package is linked as a library (tofStrawlib) to the main software tof++ [CTOF06c],
which steers the input of the data and the setup of the geometrical information of the
detectors. In addition, it converts TDC information to the corresponding times and
isochrone radii with calibration files. However, the reconstruction of the pp → pKΛ
reaction is only done with the straw tube tracker since the data from the other sub
detectors was not available in 90% of the data at 2.7 GeV/c due to the modifications in
the DAQ system to enhance the read out speed (see Section 3.4).

Without time of flight information, the pKΛ event is kinematically determined by
the event geometry. TOF measurements can in principle reduce further physical back-
ground, in particular from the pp → pKΣ0 reaction, which can not be separated purely
by geometry. Nevertheless, the contribution of this background channel is neglibly small
at 2.7 GeV/c, as shown in Section 6.3.3. In addition, as shown in [Roe11], the momen-
tum resolution of the primary particles from the reconstruction with the STT alone is
better than from TOF. Therefore, disregarding the time of flight information does not
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worsen the resolution but gives a much larger event sample. This was confirmed by
comparing data taken with and without TOF information.

In the following, the different steps of the analysis routine are described.

4.1.1. Global Coordinate System

The global coordinate system for the event reconstruction is defined as an right-handed
system with the origin in the target center. The beam direction correspond to the
z-axis while the y-axis points upwards. Consequently, the x-axis points to the left when
looking in beam direction. The spin of the beam protons is aligned parallel to the
y-axis.

4.1.2. Track Finder and Fitter

The first step of the analysis routine is finding tracks from the isochrone radius infor-
mation of the straw hits. This is done individually for each of the three rotational
directions (u with rotation angles 0◦ and 180◦, v with 60◦ and 240◦ and w with 120◦

and 300◦) of the STT double layers producing two-dimensional tracks each. These are
then combined to form three-dimensional tracks. In Figure 4.1 (top) the straw hits of
a pKΛ event candidate from data are shown for each of the three orientations. The
axis u′ v′ and w′ are perpendicular to the beam axis (z-axis) and the straw axis in each
orientation (u, v and w). By blue lines possible tracks of charged particles are marked.
The plots below show a zoom into the red marked areas of the top plots. Here the straw
radii (large circles) and the isochrone radii (smaller circles) are visible for each hit. As
seen in Figure 4.1, the two-dimensional tracks for a given orientation are obtained as
a common tangent to the isochrones of their assigned hits. Therefore, tracks and their
hits can be determined by the Hough Transformation method [Hou62, Dud72]. In this
method tangents to all straw hits are determined and parametrized by an angle φ and
the distance D to the origin, which is taken as the geometrical center of the STT. In
Figure 4.2 the connection between the tangents (shown by the dashed lines) and the
parameters is shown. It can be calculated as follows

D = a sin(φ) − z′ cos(φ) (4.1)

with a beeing u′, v′ or w′ depending on the orientation and z′ as the difference between z
and the center of the STT. Parameter D is limited to the range −40 cm to 40 cm by the
straw geometry while φ is restricted to an interval of π to have an unique transformation
from a − z to D − φ coordinates. To avoid a reconstruction of tracks of δ electrons or
from noise hits φ is further restricted in the intervall [0.3,2.8] radians, since such tracks
are nearly parallel to the u′, v′ or w′ axis, thus resulting in an angle of φ close to 0◦ or
180◦.

In the Hough space, each hit emerges as a sinusoidal curve. After transforming
all hits the curves intersect in a common point. Figure 4.3 shows the Hough space
histograms for each of the three orientations for the hits in Fig. 4.1. The common
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Figure 4.1.: Upper row: All straw hits with the corresponding isochrone radii for one
pKΛ event candidate. The axis u′ v′ and w′ are perpendicular to the straw axis in
each orientation (u, v, w) and the z-axis (beam direction). The dashed blue lines
mark possible tracks to guide the eye. The regions marked in red are shown enlarged
in the lower plots.

intersection points emerge as local maxima in the plots. They are marked with a red
point in Fig. 4.3. In the left plot two red points are nearly on top of each other since
two two-dimensional tracks are close together in this orientation. From the intersection
points the track parameters and assigned hits are deduced in a loop from the highest
maximum to the smaller one. In this iterative procedure, assigned hits are removed
from the histogram to find the next highest maximum. A lower threshold for the
height of a maximum is applied to reduce ghost tracks. After finding all possible tracks
their parameters are optimized by a least square minimization of the track to isochrone
distance with MINUIT [MINUIT]. If tracks share hits, the tracks with the poorer
reduced χ2 are removed from the next analysis steps. This also resolves ambiguities
when several maxima have the same height, otherwise forming several possible tracks.
Since the Hough space is a binned two-dimensional accumulator, the number of bins
for D and φ are free parameters which need to be optimized for the track finding and
event reconstruction (see Section 4.1.6).

After finding and fitting the two-dimensional tracks, they are combined to three-
dimensional tracks. Since each two-dimensional track defines a plane, the intersection
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4. Event Reconstruction and STT Calibration

Figure 4.2.: Illustration of the correlation between the Hough space parameters D
and φ to the isochrone radius. Taken from ([Dzh12]).

of two tracks from different orientations gives a three-dimensional track candidate if
the planes are not parallel. The combined information of all three orientations is used
to find out which tracks belong to the same particle track. For that purpose the two-
dimensional tracks are combined to triplets. A triplet consists of a two-dimensional
track of each rotational orientation. If nu, nv and nw are the number of two-dimensional
tracks in one rotational orientation, the number of triplets is nu ·nv ·nw. For each triplet
the three-dimensional track is calculated by averaging over all pairwise intersections of
the two-dimensional tracks. Afterwards, the χ2 values are determined for each triplet
or rather its three-dimensional track by

χ2
T =

N∑

i=1

(|d3(~p,~g, ~wi, ~oi)| − ri)2

σ2
i

(4.2)

with the track to wire distance d3 calculated by

d3(~p,~g, ~wi, ~oi) =
~g × ~oi

|~g × ~oi|
· (~p − ~wi). (4.3)

~wi is the wire position of the ith straw hit and ~oi is the corresponding orientation. The
values for ri, isochrone radius for hit i, and σi, the spatial resolution, are given by the
calibration (see Section 4.2). The tracks are parametrized by a space point ~p and a
direction ~g.

The three-dimensional track with the best reduced χ2 value is taken, and all other
triplets are removed if they include one of the two-dimensional tracks. This is repeated
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Figure 4.3.: Hough space for the three rotational orientations (left: u′=̂0◦, center:
v′=̂60◦, right: w′=̂120◦) with the hits from Fig. 4.1. The red points mark regions
with the four local maxima, corresponding to the four tracks. In the left plot two
marks are nearly on top of each other, since two tracks are close together.

iteratively with the other tracks until no three-dimensional track with χ2/NDF < 5
remains.

If some tracks could not be grouped into a triplet because one two-dimensional track
in one of the three orientations is undetected, the remaining two-dimensional tracks
are combined into a three-dimensional track and the third orientation is scanned for
not assigned hits which fulfill the track parameters. The number of such hits is taken
as a criterion for additional three-dimensional tracks as a combination of only two
two-dimensional tracks (for details see Section 4.1.1 in [Roe11]).

After finding the three-dimensional tracks, the value of Equation 4.2 is minimized
for each tracks with MINUIT [MINUIT]. Two additional corrections are performed
afterwards. The first one accounts for hits which are assigned to the tracks accidentally
because of the binning of the Hough space, e.g. hits from δ-electrons. To remove these
hits an outlier test is conducted. For each track the mean value of the residuals is
calculated. The hit is discarded from the track, and the track is refitted if the residual
from a hit deviates by more than five times the resolution from the mean value. This
is done iteratively for all hits starting from the one with the biggest deviation. The
second correction removes hits which are assigned to two or more tracks. This can
happen if two tracks are close together in one orientation like the blue and green track
in orientation u′ in Figure 4.4. For the following analysis shared hits are not allowed.

In Figure 4.4 the fitted three-dimensional tracks are shown in each orientation (u′, v′

and w′) for the same event shown in Figure 4.1 and 4.3. The marked areas from the
first row are shown enlarged in the second row, respectively. The color code indicates
different tracks with the assigned hits in the same color. Black hits are not used for the
fitting because of shared hits or outliers or noise.
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Figure 4.4.: Upper row: Three dimensional tracks with their assigned hits shown in
each orientation u′, v′ and w′. Black colored hits are not used for the fitting (i.e.
shared hits or outliers). The black marked regions are shown enlarged in the plots in
the lower row.

4.1.3. Vertex Finder and Fitter

In the next step of the analysis pairs of tracks are combined to find vertices (for details
see Section 4.2 in [Roe11]). This is done independently from the reactions, therefore the
pp → pp reaction gives one vertex and the pp → pKΛ reaction two separated vertices
(a primary and a secondary vertex). For all pairs of tracks the vertex is calculated as
the point of closest approach from one track to the other. The determined vertices
are sorted by the minimum distance from the corresponding tracks. Starting at the
vertex with the smallest minimum distance, all other vertices with the same tracks are
removed. This is done iteratively until all vertices have unique assigned tracks.

Afterwards the tracks are fitted again by calculating a combined χ2 for both tracks
taking the constraint of the common vertex into account.

4.1.4. pKΛ Finder and Geometrical Fit

If two separate vertices are found, the pp → pKΛ reaction is fitted purely by geometry
before a kinematic fit is performed. An addtional constraint for the geometrical fit exists
without the kinematics because the Λ decay plane must contain the primary vertex. In
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total 13 parameters are necessary to describe the event: three parameters each for the
location of the primary and secondary vertices. The two tracks from the primary vertex
each have two parameters describing the direction of the tracks. The same holds for
the tracks of the secondary vertex but with the Λ track calculated by the difference
of the primary to secondary vertex ~Λ = (~s − ~p)/(|~s − ~p|) and the angle φ between the
decay products the directions of one secondary track can be calculated directly. This
reflects the constraint of the Λ decay plane. If the directions of the secondary particles
are ~gs1 and ~gs2 then ~gs2 is calculated by the rotation of ~gs1 by φ around the normal of
the decay plane: ~gs2 = R(φ, ~nΛ) · ~gs1.

Therefore, the 13 parameters are: px, py, pz, ~gp1, ~gp2, sx, sy, sz, ~gs1, φ. The event is
fitted with MINUIT by minimizing the sum of the χ2 values of the four tracks

χ2
G = χ2

T(~p,~gp1, w1, o1, r1, σ1) + χ2
T(~p,~gp2, w2, o2, r2, σ2)

+ χ2
T(~s,~gs1, w3, o3, r3, σ3) + χ2

T(~s, R(φ, ~nΛ) · ~gs1, w4, o4, r4, σ4). (4.4)

The wi and oi values are the wire positions and orientations of each hit for the individual
tracks and the ri and σi the isochrone radius and resolution values, respectively.

If the geometrical fit does not converge, χ2
G is set to −1 and the kinematic fit is

not applied. In the other case the fit values are taken as the start parameters for the
kinematic fit described in the next section.

4.1.5. pKΛ Kinematic Fitter

The last step of the event reconstruction is the application of a kinematic fit to the
events after the geometric fit. For that purpose momentum and energy conservation
is imposed and the masses of all particles are used as input parameters. The masses
of the decay particles can be assigned directly because the decay proton has a higher
mass than the pion thus it always has the lower angle relative to the Λ particle. For
the primary particles the masses can not be deduced purely by geometry because it
is unclear which prompt track is the proton or kaon. Therefore, both possibilities are
used in the kinematic fit and the only one with the better χ2 value is considered for the
further analysis.

The pp → pKΛ reaction is divided into three 1 → 2 particle reactions to simply the
calculation and parametrization of the event. The three sub-reactions are

• pp → [pΛ]K is parametrized with the primary vertex ~p, the pΛ invariant mass
mpΛ and the direction of the kaon in the CM frame given by the angles cos(θ∗

K)
and φ∗

K (six parameters in total)

• [pΛ] → pΛ is parametrized by the direction of the proton in the pΛ rest frame
given by the angles cos(θ∗∗

p ) and φ∗∗
p (two parameters in total)

• Λ → pπ is parametrized by the Λ flight length sΛ and the direction of the decay
pion in the Λ rest frame given by the angles cos(θ∗∗∗

π ) and φ∗∗∗
π (three parameters

in total)
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The secondary vertex can be calculated by ~s = ~p+sΛ· ~pΛ/| ~pΛ|. Given the total energy
√

s
and the masses of all particles and mass subsystems the magnitudes of the momentum
vector of every particle can be determined in the corresponding rest frame by

|~p1| = |~p2| =

√
(M2 − (m1 + m2)2) · (M2 − (m1 − m2)2)

2M
(4.5)

taking the relevant values for M , m1 and m2. Finally, the four-vectors of all particles can
be calculated by Lorentz transformations. Therefore, the event kinematics can be de-
scribed solely by the 11 parameters: ~p, cos(θ∗

K), φ∗
K , mpΛ, cos(θ∗∗

p ), φ∗∗
p , sΛ, cos(θ∗∗∗

π ), φ∗∗∗
π .

There are two fewer parameters then for the geometric fit because of the constraints
imposed by momentum conservation at the vertices.

The minimization uses different sets of start values which are determined by leaving
out different measured values for the particles in order to obtain energy and momentum
conservation. They would be violated by using only the values from the geometrical fit
(for details see Section 4.4.2 in [Roe11]). The value for the invariant mass is limited to
the allowed physical region from mp + mΛ ≤ mpΛ ≤ mpΛ,max in the fitting procedure
to circumvent problems in the calculation with Equation 4.5.

The fit is done by minimizing the target function

χ2
K = χ2

T(~p,~gp, wp, op, rp, σp) + χ2
T(~p,~gK , wK , oK , rK , σK)

+ χ2
T(~s,~gp(Λ), wp(Λ), op(Λ), rp(Λ), σp(Λ)) + χ2

T(~s,~gπ, wπ, oπ, rπ, σπ) (4.6)

with the χ2 values of the tracks assigned to the measured particles (primary proton p
and kaon K and Λ decay particles p(Λ) and π).

Figure 4.5 shows the event after the kinematic fit from the previous figures in each
of the rotational orientations u′, v′ and w′ . The yellow points marks the primary and
secondary vertex positions. Therefore, the red and blue lines show the tracks of the
primary particles while the violet and green lines the tracks of the decay particles. The
black dotted line shows the Λ track. From this one can deduce that the violet line
corresponds to the decay proton and the green line to the pion since the pion must have
a higher angle relative to the Λ particle. The lower plots show an expanded region from
the primary to the secondary vertex.

4.1.6. Hough Binning

As mentioned in Section 4.1.2, the event reconstruction is sensitive to both the bin
size of the Hough space and the threshold to find a peak. If the binning is too coarse,
tracks close to each other can not be reconstructed and thus the overall reconstruction
efficiency drops. On the other hand if the binning is too high the computational time
for the analysis increases and the hits of a track are distributed in more than one bin
reducing the height of the peak, and thus the efficiency to find it. Additionally, the
threshold value to find the peaks in the Hough space must be adjusted accordingly to
the binning.
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Figure 4.5.: Tracks of a pKΛ event after the kinematic fit shown in each orientation
u′, v′ and w′. The yellow points mark the primary and secondary vertices. The black
dotted line shows the track of the Λ. The green and violet tracks correspond to the
decay particles while the red and blue lines show the primary particles proton and
kaon. The black marked regions are shown enlarged in the plots in the lower row.

Therefore, the dependence of the reconstruction efficiency on the computational time
was performed with a dedicated data run. Since the software package does not allow
to dynamically change the binning, only some values for the binning were studied. The
reference value for the binning is (D, φ) = (200, 160) with a threshold of 4. This was
used in the previous COSY-TOF pp → pKΛ analysis with the STT [Roe12], and it was
determined to be a good “working point” for the pp → pKsΣ+ analysis (Section 5.2.2
in [Dzh12]). Thus, the values for efficiency and computational time are given relative
to the values for the working point. For the pKΛ events the selection criteria described
in Chapter 6 are used and one full run was analyzed. The computational time was
determined with the first 2000 events of the same run to avoid systematic errors from
additional usage of the analysis computer. The results from this study are shown in
Table 4.1.

The table shows an increase of the efficiency for a finer Hough binning. The relative
efficiency is relatively constant for a binning finer than (500, 400). However, the com-
putational time grows rapidly. When comparing the settings 1. and 4. with 5. and 6.,
it follows that the threshold value should be set accordingly to the binning. Otherwise
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Setting D bins φ bins threshold relative relative computational
efficiency time

1. 200 160 4 1 1
2. 100 80 4 0.71 0.63
3. 200 160 6 0.59 0.60
4. 200 160 3 1.10 1.14
5. 300 200 4 0.98 1.45
6. 300 200 3 1.19 1.59
7. 400 300 3 1.24 2.48
8. 500 400 3 1.28 3.45
9. 600 500 3 1.28 4.74

Table 4.1.: Relative efficiency and computational time for different binning of the
Hough space and the threshold condition for a maximum therein.

it overcompensates the positive effect of the finer binning. The settings for the values
should be chosen such, that the relative efficiency is high and the relative computational
time as low as possible. Therefore, the parameters from setting 7 (400, 300, 3) are taken
for the analysis of the data presented in this thesis. This results in a improvement of
the reconstruction efficiency by roughly 25% compared to the previous settings.

4.2. Calibration of STT

The main aim of the calibration is to find the correlation between the measured TDC
(Time to Digital Converter) time and the minimum distance of the particle track to
the wire (= isochrone radius). Afterwards the mean resolution for each double layer is
determined. The resolution is directly used as the weight of a hit in the reconstruction
procedure. An improved resolution allows for better track separation in the Hough
space because finer binning can be used. Several effects reduce the overall resolution and
most of these are corrected in the calibration. This includes corrections to the raw TDC
spectra such as a selection on the first hit and TDC offset corrections of the individual
electronic modules. Additionally, the limited precision of the geometrical alignment of
the STT reduces the resolution. The alignment is determined and corrected from data
after the isochrone calibration.

In the next sections first the corrections on the raw TDC spectra are shown and
explained. Second the track to wire calibration is shown followed by the geometrical
alignment. Finally, the spatial resolution of each double layer is determined. Further
details of the procedures are given in [Roe11, Dzh12, Jow12, Jow13a, Jow13b, Jow14].
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4.2.1. Basic Corrections

When a charged particle crossing a straw it ionizes the gas inside. The ionization signal
is recorded and its leading and tailing edges are stored as a TDC value. The start
time of the time measurement is given by the start detector of COSY-TOF. The TDC
value is related to the real time by t = TDC × 0.09259 ns where TDC corresponds to
the channel and the conversion factor is given by the electronics. Before the time to
isochrone radius correlation is determined some corrections are applied.

A charged track generally creates several clusters along its path through a straw,
which all can be recorded but the main information is contained in the first cluster
closest to the wire. Therefore, the TDC values related to the leading and trailing edges
of a signal are sorted and the highest value in a given interval (corresponding to the
allowed time region where a ionization can be) is taken. This value is equivalent to the
smallest drift time hence to the closest cluster to the wire. Thus, all other values are
neglected in the calibration and analysis later. Furthermore, the width is limited to
> 5 ns to suppress noise from the electronics (for details see [Jow14]).

The last correction of the time spectra is the correction of time offsets from the
electronics. This is done individually for each straw by fitting the falling edge of the
time spectrum with the convolution of the error function and a constant, taking noise
into account (see also Chapter 6.2 in [Voigt09] and [Jow13b]). The fit determines the
turning point of the spectrum and the width. Then the spectrum is corrected in such
a way that the turning point is shifted to a common arbitrary time value of 780 ns.
Applying the offset corrections1 to all straws, the overall spread of the turning points
reduces from σ ≈ 2 ns to σ ≈ 0.2 ns [Jow14].

In Figure 4.6 (left) the resulting time spectrum for double layer 7 is shown including
all described corrections for the raw spectrum. Because the time signal is measured in a
common stop mode large time values correspond to a short drift time (ionization close
to the wire) and small time values to long drift times (ionization close to the wall of
the straw). The width of the right slope of the spectrum is about 2.5 ns. Therefore, the
right side cut off is chosen to be 785 ns (turning point + 2 × width). Therefore, a drift
time of 0 ns corresponds to a time value of 785 ns. The resulting drift time spectrum
from the time spectrum is shown in the right plot in Figure 4.6. The tail part on the left
side of the time spectrum in Figure 4.6 stems from improper recognition of the closest
cluster to the wire and event mixing. Since only ∼ 1% of the hits are in this region,
they are neglected in the analysis. Therefore, the time values of a hit should be in the
range of 645 ns to 785 ns and other time values are cut away giving a drift time interval
of 0 ns to 140 ns. In the next section the determination of the correlation between drift
time and isochrone radius is described.

1The values to correct straws with a very small number of entries are determined by a linear interpo-
lation between the surrounding straws.
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Figure 4.6.: Stop time spectrum for the STT double layer 7 after applying the basic
corrections (left). Drift time spectrum for the same double layer (right).

4.2.2. Track to Wire Calibration

The determination of the correlation between the drift time and the isochrone radius
is done in two steps each using a different method. The first method is called the “self
calibrating” method and it calculates the general shape of the drift time to isochrone
radius curve. Its result is improved afterwards with the “distance to track” method by
taking into account reconstructed tracks.

In the “self calibrating” method it is assumed that the straws are homogeneously
illuminated by the tracks and the detection efficiency is constant over the whole straw
diameter [Roe11, Dzh12]. Thus, the following relation for the density of hits as a
function of radius can be constructed:

dN

dr
=

Ntot

R
, (4.7)

with the straw radius R = 5 mm and the total number of entries Ntot in the time
spectrum. This can be related to the drift time as follows:

dN

dt
=

dN

dr

dr

dt
=

Ntot

R
vdrift(t). (4.8)

Integration of Equation 4.8 gives:

r(ti) =
∫ ti

t0

dtvdrift(t) = R

∑
i Ni

Ntot
, (4.9)

with Ni being the number of events in the time interval between t0 and ti. t0 corresponds
to the shortest drift time. To take into account inefficiencies in the straw tube in the
avalanche region near the anode wire Equation 4.9 was modified to

r(ti) = (R − Rwire)

∑
i Ni

Ntot
+ Ravalanche, (4.10)
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Figure 4.7.: Drift time to isochrone radius curve determined by the self calibrating
method for double layer 7.

with Rwire = 0.01 mm and Ravalanche = 0.02 mm. For the calculation of r(ti) the drift
time spectrum is divided into 140 bins, each with width of 1 ns. Then Equation 4.10
is evaluated for each double layer, and ti is the center value of a bin. The resulting
drift time to radius curve is shown in Figure 4.7. Since all straws in the double layers
have the same structure, the resulting r(t) curve should be the same for all double
layers. Unfortunately, they differ slightly from each other due to differences in the
electronics (amplification and sensitivity). But the curves can be arranged into three
groups (1,2,3,4), (5,11,12,13) and (6,7,8,9,10). For each group the same r(t) curve will
be used for the further analysis (for details see [Jow14]).

Tracks with at least 18 hits are reconstructed and fitted using the r(t) curves. From
these tracks the track to wire distances for the hits are calculated. The correlation of the
calculated distance with the known drift time is shown in Figure 4.8. The two branches
of the plot result from the ambiguity of a track being on the left or right side of the wire.
This is the basis of the “distance to track” method. This is an iterative procedure
where the most probable correlation of drift time to isochrone radius is calculated from
Figure 4.8 (for details see [Jow14]), and the resulting r(t) curve is then used in the
track reconstruction. Afterwards the correlation is calculated again and the tracks are
reconstructed. The procedure is stopped when the distribution of the track residual
mean values is close to zero within the errors for all double layers. The track residuals
are the difference of the track to wire distance from a fitted track and the isochrone
radius predicted by the used r(t) curve. On the left side of Figure 4.9 the track residual
distribution versus drift times is shown for double layer 7 after five iteration steps. On
the right side the same distribution is plotted versus the isochrone radius calculated
from the r(t) curve.
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Figure 4.8.: Correlation of the drift time versus the track to wire distance for double
layer 7.

To determine the mean and sigma value of the distribution each x-bin is projected on
the y-axis and fitted with a Gaussian function. The deviation of the mean value reflects
the quality of the calibration step of the distance to track method while the sigma value
of the Gaussian fit determines the spatial resolution of the double layer. It turned out
that after 5 steps of the distance to track method the mean values of all double layers
are distributed around zero. The r(t) curve for double layer 7 is shown in Figure 4.10.
To improve the calibration further, the correct geometrical position of all double layers
has to be taken into account. Therefore, the geometry calibration is explained next.

4.2.3. Geometry Calibration of the Double Layers

The positions of each straw tube in a double layer is known very precisely due to the
compact setup in a double layer and the self supporting structure. Therefore, only
errors in the alignment of the double layers is taken into account. In general this can
be translations and rotations around all three axis. Since the layers are close together
along the beam direction, rotation corrections around the x- and y-axis as well as shifts
in beam direction and along the wire are neglected. Therefore, the resulting corrections
applied are a shift perpendicular to the beam direction and the wire (y′ direction) and a
rotation around the beam axis. The details of the geometrical corrections can be found
in [Roe11, Jow13b, Jow14], thus only the important feature are described here. “Unbi-
ased” tracks are reconstructed to determine the corrections. In this context unbiased
means that the corresponding hits of a track in a double layer under consideration are
removed and the track is refitted. The track to wire distances for the corresponding
double layer are then calculated from the refitted tracks.

Any shift in the y′ direction emerges as a difference between the mean values of the
track to wire distances for the two wings in the distance to drift time plot (see Figure
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Figure 4.9.: Left: Track residuals plotted versus the drift time for double layer 7
after five iterations of the distance to track method. Right: Track residuals plotted
versus isochrone radius calculated from the r(t) curve for double layer 7 for the same
iteration step. The area of the upper plots from −0.05 cm to 0.05 cm of the y-axis is
shown enlarged in the lower plots.

4.8) because a systematic misalignment gives higher distance values on one side of the
wire and lower values on the other side. In an iterative procedure the differences of the
mean values are determined and the double layer with highest shift is corrected for the
next iteration until the shifts of all double layers are below 50 µm.

For the rotation correction the residuals of the “unbiased” tracks are plotted as a
function of the position along the wire. Now rotation misalignments emerge as a rotation
of the mean residual values around the straw middle point. The mean values are
determined by the residual distribution fitted with a Gaussian function for narrow bins
of the length along the wire. The rotation correction angle is given by the slope of the
resulting linear dependence between the mean value and the position along the wire.
The rotation corrections are applied iteratively starting from the double layer with the
largest angle until the deviations are smaller than 0.5 mrad.

After applying all geometry corrections the track to wire calibration has been repeated
and the final r(t) curves and resolutions are determined for each double layer.
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Figure 4.10.: Drift time to isochrone radius curve for double layer 7 determined by the
distance to track method after 5 iterations. The range from 0 to 10 ns is extrapolated
by a Gaussian function.

4.2.4. Spatial Resolution of the STT Double Layers

The spatial resolution of each double layer is determined using the track residual to drift
time spectrum (see Figure 4.9 left). In the range from 15 ns to 140 ns the y-projections
of each x-bin is fitted with a Gaussian function. Its width (σ) corresponds to the spatial
resolution for the drift time value of the x-bin. With the r(t) curve the isochrone radius
is calculated for each drift time. Figure 4.11 shows the resulting resolution to isochrone
radius distribution for double layer 7. As expected the resolution improves from the wire
to the wall. The deviations close to the wire arise from the asymmetric distributions in
the projections of the residuals where the Gaussian function does not describe the data
properly anymore. Therefore, the resolution distribution is fitted with a second order
polynomial from 0.1 cm to 0.5 cm. This is shown as the red function in Figure 4.11. For
each double layer the function is determined, and it is used to calculate the weight of
a straw tube hit with the corresponding isochrone radius for the χ2 fits in the analysis
procedure. No significant difference in the shapes of the curves for each double layer is
observed. Therefore, the corrections to the time spectra and geometry are done with a
similar quality for each double layer.

For a more quantative comparison, the σ values at a radius of 0.25 cm are summarized
in Table 4.2 for all double layers. In addition, the values from the previous calibration
in [Dzh12] are also given.

With the new calibration the resolution is improved for most of the double layers by
about 10 µm. The averaged value over all double layers is 137 µm (compare with 146 µm
from [Dzh12]). The fluctuations of the resolution of each double layer around this mean
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Figure 4.11.: Resolution of double layer 7 as a function of the isochrone radius. The
dashed red lines mark the range of the fit with a polynomial function of second order
shown in red.

double layer 1 2 3 4 5 6 7 8 9 19 11 12 13
σ0.25 cm[µm] 136 143 125 136 136 145 152 151 135 137 134 118 132
σ [Dzh12] 140 142 136 146 160 146 164 161 146 141 144 135 139

Table 4.2.: Spatial resolution for each double layer at an isochrone radius of 0.25 cm.
The results from [Dzh12] are shown for comparison.

value is similar for both calibrations, hence the new calibration should not include new
systematic errors compared to the last one. Furthermore, there is no indication for
a systematic change of the resolution of the first and last group of double layers in
comparison with the middle double layers. This could happen if the quality of the track
parameters is different between an interpolation from outer double layers to the inner
ones compared to an extrapolation from the inner double layers to the outer ones.

In contrast to previous Monte Carlo simulations the position resolution is imple-
mented separately for each double layer taking into account the corresponding resolution
curves. This gives an adequate description of the data. The results of the simulations
can be found in Chapter 6.
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Ein Merkmal eines guten Detektors ist die

Möglichkeit der Rekonstruktion des einlaufenden

Strahls.

(Kurt Kilian)

5. ~pp → pp Analysis and Beam Properties

The analysis of the elastic scattering process ~pp → pp is applied to determine the beam
polarization with the known analyzing power from the partial wave analysis SAID
[SAID]. In addition, the reaction is used to determine properties of the incoming beam
beside its polarization and the target position relative to the straw tube tracker through
the distribution of the elastic vertices.

5.1. pp → pp Selection and Reconstruction

The first step in selecting elastic scattered events is the condition imposed by the elastic
trigger (see Section 3.4). Furthermore, the reconstructed event must have two tracks and
one vertex. If this is fulfilled the kinematics of the elastic scattering can be calculated
from the geometrical information after the vertex fit (see Section 4.1.3).

Momentum conservation at the pp elastic scattering vertex is ~pbeam = ~p1 +~p2 because
the target is at rest. |~pbeam| = 2700 MeV/c is the beam momentum for the measurement
presented in this thesis, and ~p1 and ~p2 are the momenta of the two outgoing protons.
The polar angle to the beam direction of each outgoing proton is known from the
geometry, and it is

θ1,2 = arccos

(
~pbeam

|~pbeam| · ~p1,2

|~p1,2|

)
. (5.1)

The momenta of the outgoing protons are chosen in the way that θ1 < θ2 is valid for
all events. With the polar angles the longitudinal and transversal momenta can be
calculated by

p⊥ = |~pbeam| · tan(θ1) · tan(θ2)

tan(θ1) + tan(θ2)
(5.2)

p‖ 1,2 =
p⊥

tan(θ1,2)
. (5.3)

The absolute value of the proton momenta is

|~p1,2| =
√

p2
⊥ + p2

‖ 1,2 . (5.4)

Figure 5.1 shows the p⊥ versus p‖ distribution for the elastic triggered events recon-
structed with two tracks and one vertex. The distribution has to be symmetric around
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Figure 5.1.: p⊥ versus p‖ distribution for the elastic triggered two track events. The
momenta are calculated by Equation 5.2 and 5.3. The pp → pp elastic events appear
in the enhanced ellipse over a large background. The dotted yellow line marks the
symmetry axis of the event topology. Right of the line are the protons with the smaller
scattering angle θ1 and left of the line are the protons with the larger scattering angle
θ2.

the yellow dotted line at pbeam/2 because the momentum information of both protons
is plotted. Thus, right of the line are all protons with the smaller scattering angle θ1

and right of the line the protons with the scattering angle θ2. An enhanced ellipse is
visible above a large smooth background. The pp → pp elastic events lay inside this
ellipse. Enhancements due to other types of two tracks events such as pp → dπ+ are
not visible. The background stems mostly from pion production reactions with three
particles in the final state with one neutral particle1 i.e. pp → ppπ0. Therefore, two
additional constraints are applied for the event selection (see also Section 6.2 in [Roe11]
and Section 6.1 in [Dzh12]).

Assuming the proton mass, the four vectors of the two final state particles are ob-
tained. Thus, the missing four vector Pmiss is defined by

Pmiss ≡ Pbeam + Ptarget − P1 − P2. (5.5)

Since the momentum conservation is used in the determination of the final state vectors,
the missing four vector is Pmiss = (Emiss, 0, 0, 0)T . The missing energy Emiss could
deviate from zero because the tracks could be reconstructed imprecisely or the event

1Neutral particles can not be seen directly by the straw tube tracker.
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Figure 5.2.: Missing energy distribution for the elastic triggered two track events. The
peak around zero stems from pp → pp elastic events.

does not stem from the pp → pp reaction. Therefore, Emiss is used as one additional
constraint for the event selection. Its distribution is shown in Figure 5.2 for all events
already plotted in Figure 5.1. The peak can be fitted with a Gaussian with a standard
deviation of σmiss ≈ 3.2 MeV.

The other constraint is the coplanarity of the events. For a 2 → 2 process in a
fixed target experiment the vectors ~p1 and ~p2 span a plane that must contain the beam
direction. Thus, the normal vector of the plane is orthogonal to the beam direction and
the cosine of the angle α between the normal vector and the beam momentum is zero.
The cosine C is calculated by

C ≡ cos(α) =
(

~p1

|~p1| × ~p2

|~p2|

)
· ~pbeam

|~pbeam| . (5.6)

Here C is a quality criterium of the coplanarity of the events. Its distribution is shown
in Figure 5.3. The two track events which are coplanar appear as a peak around zero.
The width of the peak reflects the measurement precision. The correction of the beam
direction is included (see Section 5.2). The width of the peak is determined to be
σC ≈ 0.002 from a Gaussian fit.

In Figure 5.4 the events from Figure 5.1 are shown with the constraint on the copla-
narity |C| ≤ 0.005. The background is highly suppressed compared to the previous
figure. Besides the pp elastic elliptical band (marked with the dashed white line in the
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Figure 5.3.: Coplanarity C distribution for the elastic triggered two track events. The
peak around zero stems from coplanar two track events.

lower plot) two additional bands are visible. These bands correspond to the pp → dπ+

reaction, which fulfills the coplanarity condition, too. Since the deuteron and the pion
have different mass, the particles lie on two separated kinematical ellipses. The one
with higher longitudinal momentum belongs to the deuteron and the other one to the
pion. The expected curve is shown with the dashed red lines in the lower plot of Figure
5.4 for the pion and the deuteron, respectively.

The coplanarity and missing energy constraints are correlated. This is visible in
Figure 5.5 where the distribution of coplanarity versus missing energy is shown as a
two-dimensional plot (upper part) and a three-dimensional plot (lower part). The pp
elastic events are distributed in the peak around zero. Analog to [Roe11], an elliptical
constraint around the peak is used for the selection of the elastic events. The constraint
is given by √(

C

0.005

)2

+
(

Emiss

8 MeV

)2

≤ 1 (5.7)

which is indicated through the white dashed line in the upper part of Figure 5.5. The
individual constraints for the coplanarity and missing energy are 2.5 σ of the peaks in
the individual distributions (Figure 5.2 and 5.3). In the three-dimensional plot of the
coplanarity versus missing energy distribution the number of bins has been decreased
for both axis by a factor of two for better visibility. In addition, the color code is
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changed. The obtained sample consists of about 2.8 million ~pp → pp elastic scattered
events, which are used for the further analysis.

To estimate the fraction of background events, the number of events in the peak
is compared with the number of events in a wider area assuming a constant back-
ground contribution (see Section 6.2 in [Roe11]). The wider area is spaned from
|C| ∈ [0.01, 0.02] and |Emiss| ∈ [16 MeV, 38 MeV] with 5 σ as the lower value and 10 σ
as the upper value. The number of events in the wider area is corrected for the sur-
face area ratio to the peak area to obtain the number of background events Nbg. The
background fraction is

Nbg

Npeak
= (3.75 ± 0.0099) × 10−3. (5.8)

This background fraction is considered to be sufficiently small, so that it is neglected
in the further analysis of the elastic events.
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Figure 5.4.: p⊥ versus p‖ distribution for the elastic triggered two track events with
a restriction on coplanarity |C| ≤ 0.005 as a scatter plot (upper) and a colored plot
with logarithmic z-axis (lower). The momenta are calculated by Equation 5.2 and
5.3. The pp elastic events lie in the symmetric elliptical band marked with the white
dashed line in the lower plot. The dπ+ events emerge as two elliptical bands since
the particles have different masses marked with the red dashed lines.
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Figure 5.5.: Coplanarity versus missing energy distribution as a two-dimensional plot
(upper) and a three-dimensional plot (lower). The dashed white line elllipse in the
upper part marks the constraint from Equation 5.7 for the pp elastic selection. In
the lower part the binning and the color scheme is changed for better visibility. The
peak contains the pp elastic events.
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5.2. Beam Direction and Correction

The beam direction ~pbeam is an important information for the kinematic fit of the pKΛ
events as well as for the calculation of the coplanarity constraint. In the analysis the
beam direction defines the z-axis of the global coordinate system, which corresponds
to the z-axis of the straw tube tracker in the ideal case. The ideal beam direction is
~pbeam,id = (0, 0, 1)T , as it is implemented in the Monte Carlo simulations. This direction
corresponds to the horizontal axis from the target to the beam dump. Since the beam
is perpendicular to the normal vector of the pp elastic scattering plane n̂ = p̂1 × p̂2, the
scalar product of the beam direction and the normal vector should be equally distributed
around zero for all azimuthal angles of the normal vector φn̂

2. In the previous analyses
[Roe11, Dzh12] it is demonstrated that this is not the case for these measurements.

For the data presented in this thesis a similar behavior is observed. Figure 5.6 shows
the deviation of the normal directions in a cyclindrical coordinate system defined by
the azimuthal angle φn̂. The top of the cylinder corresponds to φn̂ = 0. The ideal
beam direction (z-axis) coincides with the horizontal cyclinder axis. It is visible that
the normal distributions are not perpendicular to the z-axis for all azimuthal angles3.
The reasons could be a misalignment of the STT relative to the ideal beam direction,
or a tilt of the real beam direction during the measurement to the ideal one, which is
assumed in the analysis first, or a combination of both effects.

Assuming the STT has no misalignment, the real beam direction during the measure-
ment can be obtained by the same distribution as in Figure 5.6 in a two-dimensional
illustration. This is shown in the upper plot in Figure 5.7. The mean value for each
azimuthal angle bin is given by the black marks, which are fitted with a cosine function
according to

f(φn̂) = − sin(θbeam) · cos(φn̂ − φbeam) (5.9)

to obtain the real beam direction parametrized with the polar angle θbeam and azimuthal
angle φbeam. The angle θbeam corresponds to the tilt angle between the real beam and
the assumed ideal beam direction. From the fit the values θbeam = (4.03 ± 0.02) mrad
and φbeam = (2.234 ± 0.003) rad are obtained.

From the necessity that the beam hits the beam dump, which is ≈ 13 m behind the
target, it is concluded in [Roe11] that the tilt angle of the beam to the ideal beam
direction has to be less than 1 mrad. Thus, the observed deviation includes a tilt of
the straw tube tracker compared to the horizontal axis from the target to the beam
dump. In [Roe11] the value for the polar angle θbeam was determined to be 3.69 mrad.
Therefore, the value θbeam = (4.03 ± 0.02) mrad is composed of the STT tilt angle and
the beam tilt angle. Assuming the obtained value from [Roe11] stems merely from the
straw tube tracker misalignment, the tilt angle for the beam is (0.34±0.02) mrad which
is well below the maximum allowed value. Since the analysis is purely done by the STT

2This corresponds to the azimuthal angle of the pp elastic scattering plane.
3The non uniform distribution around φn̂ of the maxima is due to the asymmetric azimuthal angular

distributions in the acceptance limit for the pp elastic scattering. This is explained in Section 5.4.
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Figure 5.6.: Distribution of the scalar product of the normal vector on the pp elastic
scattering plane and the ideal beam direction for the azimuthal angle of the normal
vector in a cylindrical coordinate system. The cylinder axis corresponds to the z-axis
(ideal beam direction). The top of the cylinder is in the direction of φ = 0.

the corrections from the fit can be either applied to the beam direction or the STT or
both. For simplification a correction of the STT tilt is omitted and the correction is
applied only on the beam direction in the further analysis, hence defining a new z-axis
of the global coordinate system .

Figure 5.7 (lower plot) shows the scalar product of the normal vector and the corrected
beam direction dependent on the azimuthal angles φn̂. It is visible that all deviations
observed in the upper plot have been vanished. The corrected behavior is used in the
pp elastic event selection shown in Section 5.1 since the projection of the spectrum to
the y-axis yields the coplanarity spectrum from Figure 5.3.
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Figure 5.7.: Distribution of the scalar product of the normal vector on the pp elastic
scattering plane and the beam vector versus the azimuthal angle of the normal vector
φn̂ for the uncorrected beam direction (upper) and the corrected beam direction
(lower). The black marks correspond to the mean value for each azimuthal angle,
and the red line shows the fit of the beam direction according to Equation 5.9.
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5.3. Vertex Distribution

The vertex distributions of the pp elastic scattered events are a tool to study the preci-
sion of the vertex reconstruction under the experimental conditions and the positioning
of the target relative to the detector geometry. The width of the vertex distributions
in x- and y-direction are a convolution of the beam size and the vertex reconstruction
precision. In the z-direction the width of the vertex distribution is a convolution of the
target length and the reconstruction precision.

In Figure 5.8 (left) the vertex distribution is shown projected on the x-y plane. The
distribution is slightly shifted in the x-direction due to a misalignment from the tar-
get position relative to the straw tube tracker, which is not corrected for the analysis
presented in this thesis. This has no influence on the results since the vertex is inde-
pendently determined in the analysis, and a constraint on the primary vertex is not
applied. Comparing the dimension of the interaction region (circle with approximately
0.1 cm radius) with the size of the target cell (r = 0.3 cm), the beam-target interaction
takes place completely inside the target without touching the cell walls. The width of
the distributions is wider for the x-axis than for the y-axis. To determine the widths,
the distribution is projected on both axis and fitted with a Gaussian function. This
is shown in Figure 5.9 for the x-axis (left) and the y-axis (right). The mean values of
the fit define the center of the beam to be (−0.0194 cm, −0.0034 cm). The widths are
σx = 736 µm for the x-axis and σy = 468 µm for the y-axis, respectively. This results
have a large difference for x and y and deviate significantly from the values from [Roe11]:
558 µm for the x-axis and 559 µm for the y-axis. The reason is most likely a different
focus of the beam at the target compared to the measurement from [Roe11].

The vertex distribution projected on the z-x plane is shown in Figure 5.8 in the right
plot. The interaction takes place in the whole target cell in z-direction. The z-position
is shifted due to misalignment of the distance between the target and the straw tube
tracker. The distribution projected on the z-axis is shown in Figure 5.10. It can be
described by a convolution of a box function, representing the target cell dimensions
in the z-direction, and a Gaussian, representing the smearing of the edges due to the
finite vertex resolution neglecting the curvature of the target foils. The fit is shown
as the red line in Figure 5.10. It is parametrized by the height (p0), the width of the
Gaussian (p1), the center of the target in z-direction (p2) and the target length (p3).
The fit range is limited to the range [−0.6 cm, −0.1 cm] to exclude the outside tails,
which might stem from multiple scattering.

For the center of the target the value −2.55 mm is obtained, which is indicted by
the dashed green line in Figure 5.10. Thus, the distance from the target to the STT
is larger than assumed in the reconstructed data presented in this thesis. As for the
deviation in the x- and y-direction, the deviation in z does not influence the results, but
it can be corrected in a further analysis. The length of the target cell is determined
to be l = 4.84 mm. The calculated boarders of the target are shown with the blue
dashed lines in Figure 5.10. Compared to size of the target cell of about 4 mm this is
an enlargement of ≈ 0.84 mm. As it is shown in Figure 6.8 in [Roe11] the foils at the
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Figure 5.8.: Vertex distributions of the pp elastic scattered events projected in the x-y
plane (left) and z-x plane (right).
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Figure 5.9.: Vertex distributions of the pp elastic scattered events for the x-axis (left)
and the y-axis (right). Both distributions are fitted with a Gaussian function to
obtain the beam spot.

edges of the target cell are extended by the working pressure of 200 mbar inside. The
prolongation of the target through the foils at both ends is about 0.5 mm each. Thus,
the obtained target length is in agreement with the physical length of the target plus the
extensions of the foils from the overpressure. The width of the Gaussian, representing
the smearing of the edges, is σz = 795 µm.
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Figure 5.10.: Vertex distribution of the pp elastic scattered events projected on the
z-axis fitted with a convolution of a Gaussian and a box function in the range
[−0.6 cm, −0.1 cm]. The fit parameters p0, p1, p2 and p3 correspond to the height of
the convolution function, the width of the Gaussian, the center of the target and the
length of the target in z-direction. The green dashed line indicates the center of the
target in z-direction, and the blue dashed lines show the boarders of the target from
the fit.

5.4. pp Elastic Acceptance Limit

As it is already visible in the Figures 5.1 and 5.4, the pp elastic scattered events can
not be measured for the full polar angular range since for small scattered angles of one
proton, the other proton exceeds the angular range of the straw tube tracker. Therefore,
such an event can not be reconstructed and only a part of the polar angular range can
be used to determine the beam polarization (see next section). To illustrate the limits of
the acceptance, the distribution of the polar angle in the center of mass system (θCMS

p )
as a function of the azimuthal angle for the proton with the smaller scattering angle
(p1) is shown in Figure 5.11.

Below a polar angle of 52◦ (red line in Figure 5.11) a strong variation over φ is
observed. It is a reflection of the varying efficiency for the reconstruction of the second
proton, since it passes the straw tube tracker in the areas where only double layers of
two rotational directions overlap4. The STT geometry is sketched in Figure 5.12, and
the areas where double layers from two rotational directions overlap are shown in red.
In total, there are twelve of these areas, thus 12 peaks are expected in Figure 5.11 with

4The track reconstruction is not possible in the areas without an overlapping of straws with different
rotational orientation (yellow marked areas in Figure 5.12).
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Figure 5.11.: The distribution of the polar angle θCMS
p in the center of mass system as

a function of the azimuthal angle φ is shown for the elastic scattered proton with the
smaller scattering angle. Only events above the red line are used for the determination
of the beam polarization. The structures below the red line are acceptance holes due
to detector inefficiencies.

a repetition of 30◦ ≈ 0.53 rad. Some of the peaks can be seen in the figure for instance
at 1.1 rad, 2 rad and 2.6 rad. However, not all of them are visible due to additional
inefficiencies of the straws (see STT hit map in Figure 6.9) or insufficient triggering of
the pp elastic scattered events by the other sub-detectors in COSY-TOF. Nevertheless,
the structures have a π-symmetry in φ due to the coplanarity of the elastic events. For
the determination of the beam polarization (see next section) the constraint θCMS

p > 52◦

is applied on the data to avoid systematical errors from the areas with a nonuniform φ
distribution. A similar constraint was applied in the analysis from [Roe11].

Additionally, small substructures for higher polar angles are visible in Figure 5.11.
The arc like shapes stem probably from inefficient overlapping groups of straws, since
no other sub-detector in COSY-TOF has this shape. The thin sparsely populated areas
with constant φ for example at φ ∼ 0 rad and φ ∼ 1 rad originate from wedge-shaped
ring detector elements with lower efficiency.

In Figure 5.13 the azimuthal angular distribution of the proton with the smaller
scattering angle is shown with and without the constraint on the polar angle θCMS

p > 52◦

(red and black, respectively). For some φ values gaps can be seen due to some ring
elements with lower efficiency. The gaps have a π-symmetry due to the coplanarity
of the elastic scattered protons. After applying the constraint on the polar angle, the
distribution gets relatively flat (red).
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5.4. pp Elastic Acceptance Limit

Figure 5.12.: Sketch of the straw tube tracker geometry with the three rotational
directions of the double layers. The areas with an overlapping of three rotational
directions are marked in blue, with two rotational directions in red and without an
overlapping of different orientations in yellow.
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Figure 5.13.: Azimuthal angular distribution for the elastic scattered proton with
the smaller scattering angle. For the red distribution the constraint θCMS

p > 52◦

is applied.
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5. ~pp → pp Analysis and Beam Properties

5.5. Beam Polarization

The averaged polarization for both spin directions is determined utilizing the left-right
azimuthal asymmetry ǫLR(θCMS

p , φ) and the known analyzing power A(θCMS
p ) from the

partial wave analysis SAID [SAID]. It is defined by (see [Roe11, Dzh12])

pB =
ǫLR(θCMS

p , φ)

cos(φ) · A(θCMS
p )

. (5.10)

The asymmetry can be determined from the count rates according to (see [Ohl73])

ǫLR(θCMS
p , φ) =

L(θCMS
p , φ) − R(θCMS

p , φ)

L(θCMS
p , φ) + R(θCMS

p , φ)
for φ ∈

[
−π

2
,
π

2

]
(5.11)

with

L(θCMS
p , φ)) =

√
N+(φ) · N−(φ + π) (5.12)

and R(θCMS
p , φ) =

√
N+(φ + π) · N−(φ) . (5.13)

N±(φ) are the number of events for the azimuthal angle φ with a spin up (+) or spin
down (−) polarized beam, respectively. The usage of all four count rates in the determi-
nation of the asymmetry cancels out systematic effects from an azimuthal asymmetric
detector acceptance to first order.

For the beam polarization determination only data with a scattering angle of θCMS
p ≥

52◦ have been used, to avoid the range with lower acceptance and asymmetric azimuthal
angular distributions (see Section 5.4). For angles between 52◦ and 80◦ bins with a
width of 4◦ are used. The range from 80◦ to 90◦ is divided into two bins with 5◦ width,
because the analyzing power is approximately half the size compared to the other bins.
To obtain a measurable asymmetry the number of events per bin are increased by
broadening the bins.

For each scattering angle bin the asymmetry ǫLR(θCMS
p , φ) is divided into eight φ-bins

in the range [−π/2,π/2]. In Figure 5.14 the azimuthal asymmetry for the scattering
angle range θCMS

p ∈ [52◦, 56◦] is shown. Since for a fixed θ-bin the asymmetry becomes

ǫLR(θCMS
p , φ)

cos(φ)
= ǭ(θCMS

p ) = const., (5.14)

the obtained asymmetry is fitted with ǭ · cos(φ). For the scattering angle range shown
in Figure 5.14 the averaged asymmetry is ǭ = 0.102 ± 0.003. The beam polarization for
this bin is determined by dividing the asymmetry with the analyzing power taken from
SAID.

In Figure 5.15 the beam polarization is shown for each individual scattering angle
bin. The distribution is fitted with a constant function, giving the beam polarization
averaged over all asymmetry to be pB = (79.0±1.1) %. The polarization in the previous
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Figure 5.14.: The azimuthal asymmetry ǫLR(θCMS
p , φ) for the elastic scattered proton

in the range θCMS
p ∈ [52◦, 56◦] is shown. The blue line shows the fit with ǭ · cos(φ).

COSY-TOF measurement was pB = (61.0 ± 1.7) % [Roe11]. The improvement of the
polarization by 18 percentage points has two reasons: First the beam momentum was
higher in the previous measurement, hence more depolarization resonances have to
be crossed during the acceleration of the beam. Second, the acceleration process in
the actual measurement includes an additional stop while crossing the most important
depolarization resonances in contrast to the previous measurement [Lor13].

With the determined beam polarization the analyzing power can be calculated by
inverting Equation 5.10. The result is compared with the prediction from SAID. This
is shown in Figure 5.16. As expected the SAID prediction fits in the measured values,
since they are calculated from the prediction binwise.
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Figure 5.15.: Beam polarization pb as a function of the proton elastic scattering angle
in the center of mass system θCMS

p for the measurement presented in this thesis. From
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It is a capital mistake to theorize before one has

data.

(Arthur Conan Doyle)

6. Data Selection and Monte Carlo Studies

In this chapter the selection criteria for events of the pp → pKΛ reactions are described.
In addition, the results of Monte Carlo simulations for the pp → pKΛ and pp → pKΣ
reaction are shown. They are performed to study the resolution and efficiency of the
event reconstruction of the pKΛ events as well as the background fraction from the
pKΣ events.

6.1. pp → pKΛ Event Selection

As in previous analyses of COSY-TOF data, three criteria are used to select the pKΛ
events (see e.g. Chapter 7 in [Roe11]): A selection on the reduced χ2

K/NDF of the
kinematic fit, the Λ decay length (sΛ) and the angle between the Λ and its decay
proton.

The selection on χ2
K/NDF enforces that events fulfill the required kinematics. The

dominant background process stems from the reaction pp → pKΣ0 → pKΛγ which has
the same event topology. This reaction can not be suppressed by a further constraint on
the Λ decay length since the Σ0 has a lifetime of 10−20 s which is much shorter compared
to the Λ. Therefore, the Σ0 decay vertex can not be separated from the primary vertex,
and the pKΣ0 events are only separated through the χ2 constraint. In Figure 6.1 the
sΛ distribution is shown with a logarithmic scale for events with χ2

K/NDF < 50 (black)
and χ2

K/NDF < 5 (red). For both samples a large peak is visible at values sΛ < 0.1 cm.
The peak stems from processes with a misinterpreted decay vertex very close to the
target. This is probably due to reactions with four primary particles for which one or
two are imprecisely reconstructed, and thus they fake a secondary vertex close to the
target. In the region up to sΛ ∼ 3 cm a shoulder is visible for the red distribution. This
could be due to multiple scattering of particles in the start detector or the SQT, and
therefore the secondary vertex position is misidentified by pKΛ events or other four
track events. Additionally, hadronic interactions in these detector parts can generate
false secondary vertices (see also Figure 6.20 in [Dzh12]).

Because an independent distribution of the background processes is not available,
the optimal values for the decay length and χ2

K/NDF constraint can not be determined
straightforward. To determine a suitable value the method described in Section 7.2 in
[Roe11] is applied. For a given χ2

K/NDF constraint i, the decay length distribution is
fitted in the range from 0.5 cm to 20 cm with two exponential functions. The range
is limited to fit only the shoulder and the rest of the distribution. The upper limit is
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Figure 6.1.: Λ decay length sΛ distribution for two selections of χ2
K/NDF.

choosen to avoid the drop of reconstruction efficiency when the Λ decays inside the straw
tube tracker. The two exponential functions are expbg which models the background,
and expsignal corresponding to the expected distribution for sΛ. In the range sΛ > 5 cm
the background is negligible hence the distribution is characterized by expsignal. The
range from 0.5 cm to 1.5 cm on the other hand is dominated by background, and thus the
function expbg should describe the distribution well there. In Figure 6.2 the combined
fit (black) is shown together with the individual contributions from expsignal (red) and
expbg (blue) for the constraint χ2

K/NDF < 5. From the individual contributions of the
combined fit the number of signal events Si and background events Bi can be calculated
for a given χ2

K/NDF constraint i and sΛ-constraint ts by

Si(ts) =
∫ 20 cm

ts

dsΛexpsignal(sΛ) and Bi(ts) =
∫ 20 cm

ts

dsΛexpbg(sΛ). (6.1)

In general, the optimal value for ts for each value of i can be calculated by the sig-
nificance Si/

√
Bi. However, there is still a constant amount of pp → pKΣ0 → pKΛγ

background events in the distribution which can not be eliminated due to the nearly
identical decay length distribution of the Σ0. The fraction x of these events is known
to be less than 1% (see Section 6.3.3). Therefore, the figure of merit (FoM) for a given
value of i and ts is (see also Section 7.2 in [Roe11]):

FoM(i, ts) =
(1 − 0.01) · Si(ts)√
Bi(ts) + 0.01 · Si(ts)

(6.2)

In Figure 6.3 (left) the results of the figure of merit are shown for different values of
the constraints i (x-axis) and ts (y-axis). The maximum values of the FoM in the figure
are in the range of 5 < i < 7 and 3 cm < ts < 4.5 cm. However, the constraint on the
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Figure 6.2.: Λ decay length distribution for events with χ2
K/NDF < 5. The data are

fitted with the sum of two exponential functions (black with χ2/NDF = 1.15). The
exponential function for the signal is shown in red. The function in blue models the
background of events with faked secondary vertices in the range sΛ > 0.1 cm. The
dashed green line marks the value of the decay length constraint applied later and
the selection region is indicated with the green arrow. Note the logarithmic scale on
the y-axis.

decay length should be as low as possible to maximize the resulting statistics. Thus,
the constraint ts = 3 cm is used (indicated by the green line in Figure 6.2) since it is
the smallest value in the maximum area of the figure of merit. From the projection of
the two-dimensional FoM distribution for ts = 3 cm on the x-axis, the χ2 constraint is
determined from the maximum. The projection is shown in 6.3 (right) together with
the selected constraint χ2

K/NDF < 5 which is marked with the dashed green line in
Figure 6.3 (right). Thus, the first two selections

χ2
K/NDF < 5 (6.3)

sΛ > 3 cm. (6.4)

are applied for the pKΛ event selection. These are marked by the black lines in the
Figures 6.3 (left) and by the green line in 6.2 and 6.3 (right).

Finally, Figure 6.4 shows the two-dimensional distribution for both criteria χ2
K/NDF

and sΛ of the pKΛ event candidates after the kinematic fit. The dashed violet lines
and arrows indicate the region of events which are tagged as pKΛ events in the further
analysis taking the constraints from the Equations 6.3 and 6.4 into account.

The final criterium is a constraint on the angle between the Λ and its decay proton
in the laboratory reference frame. This also reduces background contributions from
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for the event selection. Right: Projection of the sΛ > ts = 3 cm bin from the left
plot with the choosen χ2

K/NDF < i constraint marked by the dashed green line.

events with four primary particles where one particle is not precisely reconstructed and
fakes a decay vertex with one other track. Such a track is then identified as the decay
proton but it has an angle close to zero relative to the Λ direction. Therefore, this
background should be visible as an enhancement at small relative angles in comparision
to Monte Carlo simulations. In Figure 6.5 the distribution of the angle is shown for
data (black) and Monte Carlo (red) scaled to the same height after applying the cuts
from Equations 6.3 and 6.4. As expected, the data at angles below around 1◦ exhibit
a small enhancement compared to the Monte Carlo distribution. Above an angle of
around 2◦ both distributions match, thus the selection criterium for the angle is

∠(Λ, p(Λ → pπ)) > 2◦. (6.5)

This is indicated with the blue line and arrow in Figure 6.5.
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Figure 6.5.: Distribution of the angle between the Λ and its decay proton for the data
(black) and Monte Carlo (red), scaled to the same height. The blue line and arrow
marks the accepted region to reduce additional background at small angles.
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6. Data Selection and Monte Carlo Studies

6.2. pp → pKΛ Data Quality and Statistics

The Λ lifetime distribution and the missing energy distribution at the primary vertex
from the geometrical fit1 are examined to check the selection criteria. The lifetime or
proper time cT can be calculated from the decay length via

cT = sΛ · mΛ

|~pΛ| = sΛ · 1

βγ
(6.6)

for each event. At 2.7 GeV/c beam momentum the minimum and maximum value for
βγ are βγmin = 0.58 and βγmax = 1.58. With the selection criterium for the decay
length sΛ > 3 cm the proper time distribution must drop for values of cT smaller
than 3 cm · 1

βγmin
= 5.16 cm, reflecting the constraint on the decay length. This is

indicated with the dashed green line in both plots in Figure 6.6. The left plot shows
the acceptance and reconstruction efficiency from MC simulations for the proper time.
Around cT = 18.4 cm the efficiency starts to drop. This corresponds to a decay length
of sΛ ≈ 29 cm = 18.4 cm · βγmax where the Λ already decays inside the straw tube
tracker resulting in a decreased number of available straws for the reconstruction of the
secondary tracks.
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Figure 6.6.: Left: Acceptance and reconstruction efficiency for the proper time dis-
tribution. The dashed green line marks the drop from the decay length cut modified
through βγ. The dashed red line marks the drop of the efficiency due to Λ decays
inside the straw tube tracker. Right: Data corrected for acceptance and reconstruc-
tion efficiency (black) and phase space distribution from Monte Carlo (green). The
red line is an exponential fit to the data. The dashed lines are the same as in the left
plot, and they show the range of the fit.

The right plot in Figure 6.6 shows the proper time distribution of the data corrected
for acceptance and reconstruction efficiency (black) together with the expectation from
a phase space distribution (green). The dashed lines are the same as in the left plot
and now show the limits of the fit by an exponential function (red). The mean lifetime

1The missing energy must be zero after the kinematic fit, thus the value before the fit is used.
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Figure 6.7.: Missing Energy distribution at the primary vertex before the kinematic
fit. All events with χ2

K/NDF < 50 are shown together with the events after all
selection criteria (blue).

of the Λ is obtained as the inverse of the slope parameter of the function. Therefore,
the measured mean liftime is cτ = (7.63 ± 0.06) cm, which is within 2σ in agreement
with the literature value of cτΛ = (7.89 ± 0.06) cm [PDG2012].

The other quantity to check the selection criteria for the pKΛ events is the missing
energy distribution at the primary vertex from the geometrical fit. This is shown in
Figure 6.7 for all events with a χ2

K/NDF < 50 (black) and for the events applying the
three selection constraints (blue). The events with the constraint χ2

K/NDF < 50 stems
from a preselection of the pKΛ events. The background is strongly reduced for the
blue curve in comparision to the black curve, and it becomes a symmetric distribution
around zero (dashed red line). The background reaction pp → pKΣ0 → pKΛγ can
not be observed directly in the plot as an extra peak. Therefore, the number of pKΣ0

events in the distribution has to be examined by Monte Carlo simulation as described
in Section 6.3.3.

Finally, the blue distribution contains 207,219 events which are used for the further
analysis. Figure 6.8 shows the number of pKΛ events for each individual “run”. A
“run” is a data file with constant experimental parameters and corresponds usually to
a measurement time of 20 - 30 minutes. The run number counts the data files from
the first measurement of the COSY-TOF experiment on. Thus, the run numbers for
the measurement presented here are in the range from 12720 to 14255. Runs without
any events are runs for calibration issues, with pp elastic trigger or they were stopped
during the measurement due to problems. The range around run number 14000 was
a different measurement, thus not considered in this analysis. The average number
of events per run is 170 with some outliers where the beam intensity changed. The
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Figure 6.8.: Number of pKΛ events as a function of the run number. The run number
counts the data files stored on hard disc from the first measurement of the COSY-
TOF experiment on. Only the runs of the measurement of the pp → pKΛ reaction
at 2.7 GeV/c beam momentum is shown. The dashed red line indicates the change
of the trigger setup as described in Section 3.4. Left of the line the data with the
improved t11pkl trigger without FB crates read out, and right of the line the control
sample with the former trigger with FB read out.

dashed red line marks the border of the data with the two different trigger setups. The
improved t11pkl trigger without the read out of the FastBus crates was used for the
data files left of the dashed red line as described in Section 3.4, and right of the line
the former trigger was used with a read out of the FastBus crates. The increase of the
number of events by a factor of up to two mentioned above is visible.

6.3. Monte Carlo Studies

Monte Carlo simulations were performed for the pp → pKΛ and pp → pKΣ0 reactions
in order to estimate the background contribution, to optimize the constraint on the re-
duced χ2 of the kinematic fit and to determine acceptance and reconstruction efficiency
corrections as well as momentum and mass resolutions for the pp → pKΛ reaction. The
simulation is based on the detector configuration including all relevant details, and the
performance was set to be as close as possible to the measurement conditions. The
software which is used for the simulations is based on the CERN package GEANT 3.2.1
[GEANT]. Since the analysis of the data is done here purely with the straw tube tracker
the Monte Carlo program was modified to include the different resolutions of the STT
double layers to obtain a more realistic detector response.
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Figure 6.9.: Hit map of the straw tube tracker for pKΛ events from data (left) and
from MC simulation (right).

6.3.1. Simulation Methods

In the first step of the simulation the parameters for the particles like momenta and
decay vertices are generated randomly. The process produces pure s-wave phase space.
The beam is assumed to have a radius of 0.3 mm and a divergence of 1.4 mrad. The
target is implemented as a cylinder of 4 mm length and 6 mm diameter. Afterwards the
particles are transported through the detector and their interaction with the detector
material is calculated. Multiple scattering and hadronic interactions are considered
for all particles. The energy loss of a particle in the detector volume is digitized into
signals (ADC and/or TDC) which are saved in files equivalent to the measured data.
These files are processed in the same way as the data with the analysis program tof++
[CTOF06c].

The geometry of the COSY-TOF detector is implemented with the same parameters
as for real data. Additionally, the efficiencies of the detector components are simulated
according to parameters extracted from data. As an example the hit map for the STT
is shown in Figure 6.9 for data (left) and from simulation (right). The horizontal axis
correspond to the straw number in each plane while the vertical axis shows the different
double layer planes. In a given double layer the straws from 104 to 207 are downstream
of the straws 0 to 103. The straws 50 − 53 and 154 − 157 are the central straws with
half length for the beam hole, thus they have roughly only half the number of counts
as the surrounding straws. The five large regions without any hits are groups of 16
straws each. These inefficiencies could be explained by problems in the electronic read
out, since the straws are grouped into 16-channel units there. Other inefficient regions
could be due to mechanical damage of the straw or electronical problems.

The generated isochrone radius from a particle interacting with the STT in the simu-
lation is randomly smeared with the resolution function determined by the calibration
procedure (see Section 4.2.4). To gain a realistic detector response this is done with
individual resolution curves per double layer.

In the next section the results for the simulations of the pp → pKΛ and pp → pKΣ0

are presented.
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Figure 6.10.: Reduced χ2 distribution for the different steps in the reconstruction
procedure: Track fit (black), vertex fit (green), geometry fit (blue) and kinematic fit
(red). The dashed violet line marks the expectation value of χ2/NDF = 1.

6.3.2. pp → pKΛ Simulation Results

Five million pp → pKΛ → pK {pπ−} events were simulated to determine the reconstruc-
tion efficiency and acceptance and to obtain the resolution for the vertices, momenta
and invariant masses. The Λ → nπ0 decay is not simulated because it can not be
measured by COSY-TOF. Therefore, all determined efficiencies are multiplied by the
branching ratio of the charged decay channel BR(Λ → pπ−) = 0.64 [PDG2012] for the
corrections applied to the data.

6.3.2.1. Efficiency and Acceptance Correction

From the simulation the reduced χ2 distributions are investigated for the different steps
of the reconstruction procedure. These are shown in Figure 6.10 with the resulting
histograms from the track fit (χ2

T, black), the vertex fit (χ2
V, green), the geometry fit

(χ2
G, blue) and the kinematic fit (χ2

K, red). The expectation value χ2/NDF = 1 is shown
as the dashed violet line. Only the χ2 distribution after the track fit is roughly centered
around this value. The other histograms increasingly deviate from the expectation value
due to the effect of multiple scattering of the particles. The planarity condition that
the Λ decay plane must contain the primary vertex in the geometry and kinematic fit
is strongly influenced by multiple scattering. Additionally, the finite beam divergence
effects the determination of the χ2

K value, thus the kinematic fit distribution deviates
more from the expectation value than the geometry distribution. Nevertheless, the χ2

distributions are similar to the ones determined at 2.95 GeV/c beam momentum (see
Figure 4.3 in [Roe11]), hence the quality of the analysis presented here is similar to the
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Figure 6.11.: Dalitz plot of the generated pKΛ events from Monte Carlo simulation
(left) and reconstructed events (right). The violet lines mark the kinematical limits.

previous one.
To demonstrate the full phase space coverage of the COSY-TOF detector the gener-

ated and reconstructed Dalitz plot of the pKΛ events is shown in Figure 6.11 on the left
and right plot, respectively. The reconstructed Dalitz plot covers the full phase space
and is nearly flat. Therefore, the combined reconstruction efficiency and acceptance
correction is almost constant over the available phase space.

After applying the three selection criteria for the pp → pKΛ reaction for the simulated
data the combined reconstruction efficiency (RE) and acceptance correction (AC) for
the pp → pKΛ → pK {pπ−} reaction is

(RE · AC)K =
Nreco

Ngen
= (24.0 ± 0.02) %. (6.7)

The quoted error is the statistical error. This value has to be multiplied with the
branching ratio 0.64 to obtain the combined reconstruction efficiency and acceptance
correction for the pp → pKΛ reaction of (RE · AC)K,tot = (15.4 ± 0.01) %.

6.3.2.2. Detector Resolution

To study the detector resolution the selection criteria used for the data analysis are ap-
plied to the reconstructed Monte Carlo events. The difference between the reconstructed
and the generated values gives the resolution. Figure 6.12 shows the resolution of the
primary vertex (left column) and the Λ decay vertex (right column) for each of the
three axes x (upper), y (middle) and z (lower). Each distribution has been fitted with a
Gaussian function (red) to describe the peak region since the tails, which might caused
by the multiple scattering, have a non Gaussian shape. The σ values of the fit is shown
for each distribution and summarized in Table 6.1.
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Vertex Type σx [µm] σy [µm] σz [µm]
Primary vertex 511 426 1650

Λ vertex 580 465 2380

Table 6.1.: Resolution for each spatial direction of the primary vertex and the Λ decay
vertex from Monte Carlo simulation.
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Figure 6.12.: Resolution of primary vertex (left column) and Λ decay vertex (right
column) for the three directions x (upper), y (middle) and z (lower). The red curves
show a Gaussian fit to describe the peak region. Note that the z-components have a
different scale compared to the others.
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Figure 6.13.: Momentum resolution |~preco| − |~ptruth| of the final state particles of the
pp → pKΛ reaction. These are proton (upper), kaon (lower left) and Λ (lower right).
The red lines show a Gaussian fit to describe the peak region properly. The σ values
from the fit are given.

In all cases the peaks are distributed around zero, thus the reconstruction of the
vertex has no systematic deviation in any direction. Because the reconstruction of the
secondary vertex is done with the primary vertex and the Λ decay length, its resolutions
can be not better than the resolution of the primary vertex. Since most of the tracks
have small polar angle, the resolution for the z-component is about a factor three to
four worse than the resolution of the orthogonal axis.

The momentum resolution is determined by |~preco|−|~ptruth| for the final state particles
of the reaction after the kinematic fit. The results are shown in Figure 6.13 for the
proton (upper), kaon (lower left) and Λ (lower right) together with a Gaussian fit
to describe the peak region. All distributions are peaked around zero but they have
non Gaussian tails from multiple scattering. The momentum resolution is similar for
all particles. This is expected after the kinematic fit since any inaccuracies in the
momentum reconstruction should be equally distributed for all particles.

For the determination of the pΛ scattering length (see Chapter 8) it is important to
know the pΛ invariant mass resolution because it is an input parameter for the fit of
the mpΛ spectrum. In the former analysis [Roe11] the mass resolution was determined
for the full data set. But the distribution of the mass difference mreco

pΛ − mtruth
pΛ over

the generated value mtruth
pΛ (Figure 6.14 left) shows that it has to be done for every

mass bin separatly. The eye-like structure in Figure 6.14 (left) is due to the kinematic
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Figure 6.14.: Left: Invariant mass difference mreco
pΛ −mtruth

pΛ versus mtruth
pΛ determined

by Monte Carlo simulations. The structure observed is a result of the kinematic fit.
Right: Projection of the y-bin indicated by the violet line in the left plot onto the
x-axis.
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Figure 6.15.: Left: Mass resolution σm over mtruth
pΛ determined by a Gaussian fit of

the projections shown in Fig. 6.14 right. Right: Mass resolution σm over mtruth
pΛ

determined by FWHM of the projections shown in Fig. 6.14 right. The dashed red
line marks the averaged value for both distributions.

fit which pushes the mass value at the kinematical boarders into the allowed range,
thus improving the resolution for mtruth

pΛ values close to 2054 MeV/c2 and 2175 MeV/c2.

Therefore, the resolution is determined as a function of mtruth
pΛ by taking the projection

on the x-axis for every y-bin. Figure 6.14 (right) shows as an example this projection
at the bin which is marked with the violet line in the left part of the figure. The
mass resolution σm is determined from the projections by a Gaussian fit and by the
FWHM value of the distribution. Both methods are used since the distribution has
non Gaussian tails. Therefore, a Gaussian fit of the whole range does not describe the
peak properly while the FWHM methods does not take into account the tails properly.
Nevertheless, the result of the Gaussian fit gives an upper limit of the mass resolution
while the FWHM method gives a lower limit.

The result for both methods is shown in Figure 6.15 (fit method on the left plot
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and the FWHM method on the right plot). The resolution distributions have a similar
shape for both methods. The resolution is improved at the borders of the spectrum
and is roughly constant for the middle values. The result from the FWHM yields a
better resolution than the fit method as expected. For the fit method the rise of the
resolution from the limits of the spectrum to the middle is faster than for the FWHM
method. The dashed red lines shows the averaged value for the mass resolutions. They
are σm = (1.26 ± 0.24) MeV/c2 for the fit method and σm = (0.79 ± 0.26) MeV/c2

for the FWHM method. Both values are below the required invariant mass resolution
σm = 5 MeV/c2 for the spin triplet extraction method [Gas04]. The averaged mass
resolution σm = 1.1 MeV/c2 determined in [Roe11] by the FWHM method is inside the
limits of the two methods. For the determination of the effective scattering length in
Chapter 8 the result from the fit method is used. Additionally, the mass resolution
is determined with the fit method for a 5 MeV/c2 bin width of mpΛ, and the result is
employed in the extraction of the spin triplet scattering length presented in Chapter 8.

6.3.3. pp → pKΣ
0 Background

As already mentioned the pp → pKΣ0 reaction is the dominant background channel,
since the Σ0 → Λγ decay is indistinguishable from the directly produced Λ2, and
therefore the decay length distributions are similar. Only the constraint on χ2

K/NDF of
the kinematic fit could suppress the Σ0 channel. A Monte Carlo sample of two million
pp → pKΣ0 → pKΛγ → pK {pπ−} γ was analyzed in order to calculate the surviving
percentage of the background channel in the data. All parameters are set to the same
values as for the pKΛ analysis.

To determine the surviving percentage of the pKΣ0 background in the data, the ratio
of total cross section and combined reconstruction efficiency and acceptance has to be
determined. Applying the three selection criteria (see Section 6.1) on the simulated
pp → pKΣ0 data, the combined reconstruction efficiency and acceptance is (5.8 ±
0.02) %. For the pKΛ reaction this is (24.0 ± 0.02) % (see Section 6.3.2.1).

The excess energy for the pp → pKΣ0 reaction at 2.7 GeV/c beam momentum is
ǫ ≈ 45 MeV. According to [C1104, CTOF10a] the excitation function of the total cross
section can be described by a pure phase space dependence with σΣ0(ǫ) = A · ǫ2 and
A = (0.150 ± 0.008) · 10−3µb/MeV2. Therefore, the total cross section at 2.7 GeV/c is
estimated to be σtot(pp → pKΣ0) = (0.3 ± 0.02) µb. With the interpolated total cross
section for pp → pKΛ (see Section 7.1) the ratio becomes

σtot(pp → pKΛ)

σtot(pp → pKΣ0)
= 33.3 ± 5.2. (6.8)

Taking into account the ratio of the combined reconstruction efficiency and acceptance
for both channels, the admixture of pKΣ0 background is (0.73 ± 0.11) %. The error is
dominated by the uncertainty of the cross section ratio. The background is lower than

2The photon leaves the detector undetected.
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K/NDF for the reactions pp → pKΛ (red)

and pp → pKΣ0 (blue) corrected with the total cross section ratio from Equation 6.8
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a conservative upper limit of 1%, and thus is neglected in the following. In addition,
this can be seen in Figure 6.16 where the χ2

K/NDF distributions of the reconstructed
pp → pKΛ and pp → pKΣ0 Monte Carlo events are shown in red and blue corrected for
the total cross section ratio and the different number of simulated events (five million
to two million). In both cases the distributions peak at χ2

K/NDF ≈ 1.5 but the peak
height for the pKΛ events is about a factor two hundred higher than for the pKΣ0

events which have a much wider χ2
K/NDF distribution.

The pKΣ0 background exhibits a surprising kaon angular distribution in the CMS.
The distribution is shown in Figure 6.17 and is strongly peaked in the range cos(θCMS

K ) ∈
[−1, −0.9]. In fact, roughly 30% of the reconstructed events lie in this range. Therefore,
the pKΣ0 background could be visible in the kaon angular distribution of the analyzed
data, if the determined upper limit is wrong. As it turns out, no peak at cos(θCMS

K ) = −1
is visible in data (see Section 7.3.1).
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Theories come and go, but fundamental data

always remain the same.

(Mary Leakey)

7. Results for the ~pp → pKΛ Reaction

In this chapter the results for the data collected at a beam momentum of 2.7 GeV/c
will be shown. This includes the Dalitz plot and its projections, the angular distribu-
tions, the Λ polarization and the analyzing power for the final state particles. For the
determination of the pΛ scattering length from the pΛ invariant mass see Chapter 8.

7.1. Interpolated Total Cross Section

In Figure 7.1 the total cross section for the pp → pKΛ reaction is shown as a function of
the excess energy. The green line marks the excess energy ǫ = 122 MeV corresponding
to 2.7 GeV/c beam momentum. For this analysis the total cross section is interpolated
between the data values at 2.68 GeV/c (σtot = (8.6 ± 0.6) µb) from [CTOF06a] and at
2.75 GeV/c (σtot = (12.0±0.4) µb) from [CTOF98a] with a pure phase space dependence,
hence σtot = A · ǫ2.

The result is σtot ∼ (10.0 ± 0.7) µb taking into account the error from the mea-
surement at 2.68 GeV/c and at 2.75 GeV/c. The determination method has a system-
atic uncertainty from the interpolation function because a realistic description of the
total cross section dependence on the excess energy must include pΛ final state in-
teraction (FSI). Such a function is shown as the black line in Figure 7.1 taking a
parametrization of Fäldt and Wilkin [Fae97] into account. It is estimated, that the
systematic error from the parametrization is of the same order as the statistical error
from the 2.68 GeV/c measurement. Therefore, the total cross section is interpolated to
be σtot ∼ (10.0 ± 0.7stat. ± 0.7sys.) µb.

For the normalisation of the differential distributions the total cross section is taken
to be σ = 10.0 µb.
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Figure 7.1.: Total cross section of the reaction pp → pKΛ for excess energies ǫ ≤
300 MeV taken from [CTOF10a]. The data shown are from COSY-TOF [CTOF10a,
CTOF06a] (red and blue triangles), COSY-11 [C1197, C1198a, C1199, C1104] (black
circles), ANKE [Val07] (black square) and Fickinger [Fic62] (black cross). The dashed
green line marks the excess energy for the measurement at 2.7 GeV/c presented in this
thesis. The black line corresponds to a parametrization of the total cross section by
phase space and pΛ final state interaction proposed by Fäldt and Wilkin in [Fae97].

7.2. Dalitz Plot and Invariant Mass Distributions

7.2.1. Dalitz Plot and Projections

The Dalitz plot [Dal53] is usually shown as a two dimensional plot of two invariant
mass squared subsystems. For a pure phase space distribution the Dalitz plot would
be uniformly filled. It is possible to draw three different Dalitz plots for the pp → pKΛ
reaction, each with a different combination of two invariant masses on the x and y-axes.
After the kinematic fit these Dalitz plots, corrected by acceptance and reconstruction
efficiency, are shown in Figure 7.2 in the left column. The combinations for the mass
systems are from upper to lower: m2

pΛ versus m2
KΛ, m2

pΛ versus m2
pK and m2

pΛ versus

m2
KΛ. The violet lines mark the allowed kinematical region.
The invariant mass squared distributions can be obtained by projecting the Dalitz

plot to the corresponding axis. The distributions are shown on the right column in
Figure 7.2 together with the acceptance and reconstruction efficiency correction from
Monte Carlo simulation below each plot.
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Figure 7.2.: Dalitz plot for different combinations of the invariant mass subsystems:
m2

pΛ versus m2
KΛ (upper), m2

pΛ versus m2
pK (middle) and m2

pΛ versus m2
KΛ (lower).

The violet lines mark the allowed kinematical region. On the right side the projections
on each mass subsystem is shown normalized to a total cross section of 10 µb with the
correction for acceptance and reconstruction efficiency from Monte Carlo simulation
below each plot: m2

pΛ invariant mass (upper), m2
KΛ invariant mass (middle) and m2

pK

invariant mass (lower).
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From previous measurements [CTOF98a, CTOF10a] the influences of the processes
in the production mechanism (N∗ resonances, pΛ final state interaction and NΣ cusp
effect) are directly visible in the Dalitz plot with the axes m2

pΛ and m2
KΛ. The other

illustrations exhibit only structures from kinematical reflections. Therefore, the accep-
tance and efficiency corrected Dalitz plot with the m2

pΛ mass subsystem on the x-axis

and the m2
KΛ mass subsystem on the y-axis is again plotted in Figure 7.3.

The Dalitz plot clearly deviates from uniformly distributed phase space for low pΛ
masses due to the pΛ final state interaction. The peak position (mass) of possible N∗

resonances are drawn as the dashed brown line (N∗-1650) and the dashed black line
(N∗-1720) but there is no obvious enhancement from them along the m2

KΛ mass. This
is explainable since these resonances are more than 100 MeV wide. Thus, they extend
over the whole Dalitz plot. But a partial wave analysis or a fit of amplitude models1

can be used to extract the resonance contributions. In addition, the red and violet
dashed lines show the pΣ0 and nΣ+ thresholds, respectively. This is the position of the
coupled channel effect enhancement observed in measurements at higher beam momenta
at COSY-TOF [CTOF10b, CTOF13a]. It is pratically not visible in the Dalitz plot for
the measurement at 2.7 GeV/c beam momentum.
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Figure 7.3.: Acceptance and reconstruction efficiency corrected Dalitz plot for the
kinematically fitted 2.7 GeV/c data. The brown and black dashed lines mark the
peak position (mass) of the resonances N∗(1650) and N∗(1720), respectively. The
red and violet dashed lines show the pΣ0 and nΣ+ threshold, respectively.

1for instance the ISOBAR model from A.Sibirtsev [Sib02], which was used in former COSY-TOF
publications and theses [CTOF10b, Fri02, Schr03].
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Figure 7.4.: Projections on the m2
pΛ axis (left) and m2

KΛ axis (right) of the Dalitz plot
shown in Figure 7.3. In both spectra the green line denotes a phase space distribution
scaled to fit the data at the end without the pΛ-FSI enhancement. The dashed lines
are the same as in Figure 7.3.

In Figure 7.4 the projections of the Dalitz plot on both axis is shown together with
the phase space distribution (green line), scaled in a way that it fits the data at the
region without the pΛ-FSI enhancement. The green line denotes the maximal allowed
phase space contribution in both spectra, assuming the cross section to be an incoherent
sum of phase space, resonance contributions, NΣ enhancement and pΛ-FSI.

In the projection to the m2
pΛ axis (Fig. 7.4 left) the enhancement at low invariant

masses results from the final state interaction. In contrast to the Dalitz plot, an ad-
ditional enhancement is visible at the NΣ thresholds marked by the red and violet
dashed lines. It is small compared to measurements at higher beam momenta (see
[Roe11, Jow14]). The projection on the m2

KΛ axis (Fig. 7.4 right) shows no separate
enhancement. The brown and black dashed lines mark the peak value of N∗ resonances
which are more than 100 MeV wide, and therefore are not visible as single peaks. The
kinematic reflection of the pΛ final state interaction enhances the m2

KΛ distribution in
the range from 2.8 GeV2/c4 to 2.98 GeV2/c4.

7.2.2. Dalitz Plot of different cos θpΛ

pK Ranges

For the determination of the pΛ scattering length and the influence of N∗ resonances
on this variable, the Dalitz plot is separated into different ranges of the helicity angle
cos θpΛ

pK (for an explanation of the angle see Section 7.3). The data is split into four

ranges which are shown in Figure 7.5: cos θpΛ
pK > 0.5 (upper left), 0 < cos θpΛ

pK < 0.5

(upper right), −0.5 < cos θpΛ
pK < 0 (lower left) and cos θpΛ

pK < −0.5 (lower right). This
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Figure 7.5.: Acceptance and reconstruction efficiency corrected Dalitz plot of the kine-
matical fitted data presented in this thesis for different cos θpΛ

pK ranges in order to de-
termine the influence of N∗ resonances on the pΛ final state interaction (see Section
8.3). The violet lines show the kinematical limits.

separation corresponds to splitting the total m2
KΛ range for a given m2

pΛ value into four
equal parts. Therefore, the phase space distribution of each part contains exactly 1/4 of
the total phase space and its functional description is the same [Kil13]. By comparing
the invariant mass distribution of the various parts, any influence of N∗ resonances on
the mpΛ spectrum is directly visible. In addition, a systematic error on the extraction of
the scattering length for the different data sets due to a different phase space behavior
is excluded (see Section 8.3). The corresponding invariant mass distributions are shown
in the next section.

7.2.3. mpΛ Invariant Mass Distributions

In Figure 7.6 the pΛ invariant mass distribution corrected for acceptance and recon-
struction efficiency is shown normalized to a total cross section of 10 µb. The large
enhancement at low invariant masses is due to the pΛ-FSI. It is fitted in Section 8.2 to
determine the pΛ effective scattering length. The small enhancement at an invariant
mass of about 2130 MeV/c2 stems from the NΣ coupled channel effect already seen in
the Dalitz plot projection in the left plot in Figure 7.4. The invariant mass distribution
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7.2. Dalitz Plot and Invariant Mass Distributions
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Figure 7.6.: Acceptance and reconstruction efficiency corrected mpΛ invariant mass
distribution normalized to a total cross section of 10 µb. The green line shows a fit of
the phase space distribution in the green shaded area (mpΛ > 2165 MeV/c2), where
the FSI and NΣ enhancements are taken to be negligible.

is fitted with the phase space distribution (green line) in the green shaded area where
the pΛ-FSI and NΣ enhancement are negligible. Thus, this phase space distribution
indicates the maximum expected phase space contribution to the total cross section,
assuming an incoherent sum of phase space, resonance contributions, NΣ enhancement
and pΛ final state interaction.

As explained in the previous section the data is separated into different ranges of
the helicity angle cos θpΛ

pK to study the influence of N∗ resonances on the invariant
mass spectrum. The results for the invariant mass distributions are shown in Figure
7.7: cos θpΛ

pK > 0.5 (upper left), 0 < cos θpΛ
pK < 0.5 (upper right), −0.5 < cos θpΛ

pK < 0

(lower left) and cos θpΛ
pK < −0.5 (lower right). The green line in each plot corresponds

to the phase space distribution of Figure 7.6 divided by four because the phase space
distribution for each helicity angle range is 1/4 of the total phase space. In all plots
the enhancement at the NΣ thresholds is not observed significantly.

From the number of events in each distribution the relative total cross section can be
calculated assuming a total cross section of 10 µb for the complete data. The numbers
are 43479 events for the upper left plot, 56194 events for the upper right plot, 57262
events for the lower left plot and 50284 for the lower right plot. This gives a total cross
section fraction of σ = (2.098±0.011) µb, σ = (2.712±0.013) µb, σ = (2.763±0.013) µb
and σ = (2.427±0.012) µb for the four helicity angle ranges, respectively. Thereby, only
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Figure 7.7.: Acceptance and reconstruction efficiency corrected mpΛ invariant mass

distributions for different cos θpΛ
pK ranges. The green line corresponds to the phase

space fit of the total invariant mass spectrum (see Figure 7.6) divided by four.

the statistical error from the number of events is computed and not the systematic error
from the total cross section normalization.

The invariant mass distribution for cos θpΛ
pK > 0.5 follows the phase space expecta-

tion for invariant masses mpΛ > 2135 MeV/c2, whereas the distributions of the other
helicity ranges match only with the phase space distribution for mpΛ > 2165 MeV/c2

corresponding to the phase space fit range of Figure 7.6. This deviation is connected
to a larger influence of the kinematical reflection of the N∗-1650 MeV resonance in the
ranges cos θpΛ

pK < 0.5.
For comparison the invariant mass distributions of Figure 7.7 are divided by their

phase space distributions and plotted together in Figure 7.8. Again the deviation of the
distributions with cos θpΛ

pK < 0.5 from the distributions with cos θpΛ
pK > 0.5 in the range

mpΛ > 2135 MeV/c2 is visible. Furthermore, there is an indication of different shapes
of the pΛ-FSI enhancement for the helicity angle ranges. This results in different values
for the pΛ effective scattering length as shown in Section 8.3. The reason might be an
influence of the N∗-1720 MeV resonance. Nevertheless, the effect is significantly weaker
than in the pp → pKΛ measurement at 2.95 GeV/c beam momentum [CTOF13b].
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Figure 7.8.: The mpΛ invariant mass distributions for different cos θpΛ
pK ranges shown

in Figure 7.7 divided by their phase space distributions (green lines in Figure 7.7).

7.3. Angular Distributions

In the following section the angular distributions in different reference frames will be
shown. Beside the distributions of the final state particles in the overall center of mass
system, the angular distributions in the three different two particle mass subsystems
(pΛ, KΛ and pK) are shown.

The mass subsystem R12 is defined by the following condition (for further details see
[Byc00])

~p1 + ~p2 = ~pB + ~pT − ~p3 = 0.

The vectors ~pB, ~pT and ~p3 define the production plane. ~pB and ~pT are the beam and
target vector, respectively. To calculate the relative orientation of one of the subsystem
vectors (for instance ~p2) the selection of a polar axis can be either ~pB or ~p3.

The choice of ~pB defines the so called Gottfried-Jackson frame [Got64] and the cor-
responding angle is called (Gottfried)-Jackson angle. Analogously, the choice of ~p3 is
called the helicity frame and helicity angle. Especially the Gottfried-Jackson angles
describe kinematical observables, which are not directly accessible with the Dalitz plot,
whereas the helicity angles are special projections of the Dalitz plot and do not contain
further information.
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7. Results for the ~pp → pKΛ Reaction

7.3.1. Center of Mass System

In Figure 7.9 the acceptance corrected angular distributions in the CMS for the three
final state particles are shown: Kaon (upper), Λ (middle) and proton (lower). All
distributions are normalized to a total cross section of 10 µb. The acceptance and
reconstruction efficiency correction (AC · RE) from Monte Carlo simulation is depicted
below each distribution.

Since the entrance channel of the reaction consists of identical particles the distribu-
tions should be symmetric with respect to cos θCMS = 0. This is fulfilled for all spectra
in the range cos θCMS ∈ [−0.85, 0.85]. The deviations at the boarders of the distri-
butions arise possibly from an incorrect acceptance correction at these angles. Since
the scattering length is determined by the acceptance and reconstruction efficiency cor-
rected pΛ invariant mass distribution, it is necessary to check if the improper description
of the angular distributions in the simulation influence the correction for the invariant
mass.

For that purpose the acceptance and reconstruction efficiency corrected pΛ invari-
ant mass distributions are determined for the two constraints cos θCMS

K < 0.9 and
| cos θCMS

p | < 0.95. In Figure 7.10 (upper) these distributions are shown in red and
blue, respectively, within the limit of the fitting procedure for the extraction of the
scattering length. The distributions have a similar shape as the unconstrained invariant
mass distribution (black in Figure 7.10). For a better visualization the unconstrained
distribution is divided individually through the constrained distributions. The results
are shown in the lower plot in Figure 7.10 in red for cos θCMS

K < 0.9 (scaled for better
visibility) and blue for | cos θCMS

p | < 0.95. The black dashed lines show a fit with a
constant to both results. Comparing with this fit, there might be a small bias to higher
values for the lower part of the distributions and smaller values for the upper part in
both distributions. But all differences lie within the error bars. Therefore, it is assumed
that the improper acceptance correction in the angular distribution have no significant
effect on the pΛ scattering length from the invariant mass spectrum.

The angular distribution of the kaon exhibits no enhancement in the range cos(θCMS
K ) ≥

−0.9, where the background of the pp → pKΣ0 reaction is expected (see Section 6.3.3).
Thus, a higher amount of this background than expected can be excluded.
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Figure 7.9.: Angular distributions in the overall CMS for each of the final state parti-
cles kaon (upper), Λ (middle) and proton (lower). The distributions are normalized to
a total cross section of 10 µb. The acceptance and reconstruction efficiency correction
(AC · RE) from Monte Carlo simulation is shown below each distribution.
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Figure 7.10.: Upper: pΛ invariant mass distributions for the full data and the con-
straints cos(θCMS

K ) < 0.9 (red) and | cos(θCMS
p )| < 0.95 (blue) within the limits of

the fitting procedure for the extraction of the scattering length. Lower: Divided
invariant mass distributions for the same constraints. The red distributions is scaled
by 0.75 for better visibility. The black dashed lines show a fit with a constant to both
distributions.
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7.3.2. Gottfried-Jackson Frame

The angular distributions in the Gottfried-Jackson frame contain information about the
relative angular momenta in the two particle mass subsystems. This information is not
directly accessible through the Dalitz plot or the CMS distributions. If resonances are
contributing to the production of the two particles of the reference frame considered,
the distribution of the corresponding Jackson angles reflects the angular momenta of
the resonances. As it is pointed out in [Sib05] and [CTOF10a], an analysis of the
distributions allows the relative contributions of the resonances to be extracted.

In Figure 7.11 the acceptance corrected angular distributions in the three different
Gottfried-Jackson frames are shown. All distributions are normalized to a total cross
section of 10 µb. The acceptance and reconstruction efficiency correction (AC · RE)
from Monte Carlo simulation is depicted below each distribution. From the upper to
the lower plot the distribution of the proton in the pΛ system (θpΛ

p ), the kaon in the

KΛ system (θKΛ
K ) and the kaon in the Kp system (θKp

K ) are shown. All distributions
are nearly symmetric around cos(θ) = 0. This is surprising, since the distributions of
the Jackson angles are not in general symmetric, because the entrance channel in the
subsystems does not consists of identical particles.

The distribution in the pΛ Jackson frame looks similar to the proton and Λ CMS
distributions. This was already observed in measurements of the pp → pKΛ reaction
with COSY-TOF at higher beam momenta. The results, shown in [CTOF10a], are inter-
preted as a maximum angular momentum of L ≤ 2 in the pΛ system and a connection
with the CMS distributions of the proton and Λ through kinematics. Because the kaon
and the Λ have a large mass difference, the pΛ Jackson frame is a good representation
of the center of mass system, and thus giving similar distributions.

Since the N∗ resonances decay into kaon and Λ, the angular distribution in the
corresponding Jackson frame should exhibit contributions of the involved resonances.
The cos θKΛ

K distribution is rather flat with some deviations for forward and backward
directions. This hints to a dominant S-wave in the KΛ system, which can be explained
by a dominant contribution of the resonance S11(1650 MeV) with L = 0 or a weak
influence of resonances to the production mechanism. However, the result of the Dalitz
plot analysis [CTOF10b] from other COSY-TOF measurements show clear evidence for
the first explanation.
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Figure 7.11.: Angular distributions in the Jackson frames for each of the two particle
mass subsystems (upper: Proton in the pΛ system, middle: Kaon in the KΛ system,
lower: Kaon in the Kp system). The distributions are normalized to a total cross
section of 10 µb. The acceptance and reconstruction efficiency correction (AC · RE)
from Monte Carlo simulation is shown below each distribution.
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7.3. Angular Distributions

If the dominant production mechanism is a π exchange with intermediate N∗ reso-
nances, the distribution in the Kp Jackson frame should be isotropic, since the proton
and the kaon in the final state are not coming from the same vertex in the diagrams of
meson-exchange models (see Figure 2.3 in Chapter 2). Additionally, the Kp scattering
in the kaon exchange process is dominated by S-wave, which produces an isotropic dis-
tribution in the Jackson frame [Sib05]. Nevertheless, the obtained distribution in the
lower plot of Figure 7.11 shows some asymmetries connected with influences of higher
angular momenta. This can be interpreted as an important role of kaon exchange with
higher partial waves in the production mechanism or a similar kinematic correlation
with the CMS distributions as for the pΛ Jackson angle. However, the first explanation
is in contradiction to the results from [CTOF10b], and thus the second explanation is
more probable.

7.3.3. Helicity Frame

As mentioned above, the helicity angles are a special projection of the Dalitz plot. Thus,
structures in the helicity angles are correlated with the structures in the Dalitz plot.
The pΛ final state interaction enhancement should be visibile in the KΛ helicity frame
at angles close to cosKΛ

pΛ = 1 and in the pK helicity frame at angles close to cospK
KΛ = −1

[CTOF10a].
In Figure 7.11 the acceptance corrected angular distributions in the three different

helicity frames are shown. All distributions are normalized to a total cross section of
10 µb. The acceptance and reconstruction efficiency correction (AC · RE) from Monte
Carlo simulation is depicted below each distribution. From the upper to the lower plot
the pK helicity angle in the pΛ system (θpΛ

pK), the pΛ helicity angle in the KΛ system

(θKΛ
pΛ ) and the KΛ helicity angle in the pK system (θpK

KΛ) are shown.

As expected, the distributions show an enhancement near the angles cosKΛ
pΛ = 1 and

cospK
KΛ = −1 due to the pΛ-FSI. In addition, the remaining part of the distributions

deviates from isotropy. This hints to contributions of resonances in the production
of the final state particles, as it can be seen in the invariant mass distributions for
helicty angle constraints in Figure 7.8. However, to draw further conclusions a partial
wave analysis has to be performed e.g. in the framework of the Bonn-Gatchina group
[Ani07a], which was already applied to hyperon photoproduction data (see [Sar05] and
[Ani07b]).
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Figure 7.12.: Angular distributions in the helicity frames for each of the two particle
mass subsystems (upper: Proton to kaon angle in the pΛ system, middle: Proton
to Λ angle in the KΛ system, lower: Kaon to Λ angle in the pK system). The
distributions are normalized to a total cross section of 10 µb. The acceptance and
reconstruction efficiency correction (AC · RE) from Monte Carlo simulation is shown
below each distribution.
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7.4. Λ Polarization

7.4. Λ Polarization

The Λ polarization PΛ is determined by the distribution of the angle of the decay
proton with respect to the quantization axis ~n of the polarization. This is the axis
perpendicular to the beam and the Λ plane (see Section 2.3). If kn is the cosine of the
angle between the decay proton in the Λ rest frame and the ~n axis, the polarization can
be determined by the “Weighted Sum Method” according to [Kin02] and [Bes79] as

PΛ =
1

α

< kn >

< k2
n >

=
1

α

∑N
i=0 kn,i∑N
i=0 k2

n,i

(7.1)

for N events. α = 0.642 ± 0.013 [PDG2012] is the weak decay asymmetry parameter.
The necessary condition for the method is a 180◦ symmetric acceptance around ~n which
is given in the COSY-TOF experiment. The error is calculated via [Fri02]

∆PΛ =
1

α

1√∑N
i=0 k2

n,i

. (7.2)

It is possible to calculated the Λ polarization with other methods as the Up-Down-
Integral method. This will give similar results within the error bars as shown in [Roe11]
and [Piz07].
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Figure 7.13.: Λ polarization PΛ as a function of cos(θCMS
Λ ). The data are fitted with

the sum of the two associated Legendre polynomials P 1
1 (cos θ) and P 1

2 (cos θ) (red line
with χ2/NDF = 1.98). The individual contributions of the Legendre polynomials P 1

1

and P 1
2 are shown with the dashed green and blue lines, respectively.
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Figure 7.14.: Λ polarization PΛ as a function of the scaling variable xF =
pCMS

||

pCMS
||max

(Λ).

In Figure 7.13 the results for PΛ as a function of cos(θCMS
Λ ) is shown determined by

Equation 7.1. For cos(θCMS
Λ ) = ±1 the polarization has to be 0 because the normal

vector on the beam-Λ plane is not defined there, since the beam is parallel or anti
parallel to the Λ direction. Therefore, an angle with respect to the quantization axis
can not be obtained clearly. The polarization changes its sign from negative values for
the scattering in backward direction to positive values in forward direction with the
maximum absolute value being |PΛ| ≈ 0.2.

The polarization is fitted with the sum of associated Legendre polynomials with
the order m = 1 for vector polarization. The first two are P 1

1 (cos θ) = − sin θ and
P 1

2 (cos θ) = −3 cos θ sin θ, which are zero for cos(θCMS
Λ ) = ±1. The complete fit result

is shown by the red line in Figure 7.13, and the individual contributions of the poly-
nomials P 1

1 and P 1
2 are shown by the green dashed and blue dashed lines, respectively.

As it turned out, the behavior of the polarization can be described by P 1
2 , and the

contribution of P 1
1 is neglible small.

The same trend is observed in Figure 7.14, where the Λ polarization as a function of
the scaling variable xF = pCMS

|| /pCMS
||max(Λ) is shown. For values xF < 0 the polarization

is negative and for xF > 0 it is positive. The polarization is 0 for xF = ±1 because of
the same reasons as for cos(θCMS

Λ ) = ±1. In contrast to the distribution dependent on
the scattering angle, the polarization reaches maximum values of around ±0.3.

PΛ as a function of the transverse momentum in the center of mass system pT is shown
in Figure 7.15. The kinematical limit at 2.7 GeV/c is marked by the violet dashed line
in the figure. The polarization is compatible with zero in the whole momentum range.
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Figure 7.15.: Λ polarization PΛ as a function of the transverse momentum pT (Λ). The
horizontal violet line marks the kinematical limit of pT at 2.7 GeV/c beam momentum.

This is expected for a detector with an uniform acceptance in xF since the Λ polarization
is antisymmetric in xF [Fel96]. Therefore, the polarization is determined as a function
of pT for the two constraints xF > 0 and xF < 0, separately.

The results are shown in Figure 7.16 in red and blue. The same absolute values are
seen for both ranges of xF .
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Figure 7.16.: Λ polarization PΛ as a function of the transverse momentum pT (Λ) for
xF > 0 (red) and xF < 0 (blue). The horizontal violet line marks the kinematical
limit of pT at 2.7 GeV/c beam momentum.

7.5. Analyzing Power

The analyzing power for each primary particle is determined in an analog way as the
beam polarization, but now taken into account the left-right azimuthal asymmetry and
the determined beam polarization pB (see Chapter 5). Therefore, the analyzing power
can be calculated according to

AN (cos θCMS
X ) =

ǫLR(cos(θCMS
X ), φ)

cos(φ) · pB
(7.3)

with X = p, K, Λ being the particle of interest. ǫLR is the left-right azimuthal asymme-
try given by Equation 5.11 as for the pp elastic scattering. The results for the analyzing
power as a function of cos(θCMS

X ) are shown next. For cos(θCMS
X ) = ±1 the analyzing

power has to be zero since the φ angle is not defined there, thus the asymmetry ǫLR

is zero. The analyzing powers are fitted with the sum of the associated Legendre poly-
nomials P 1

1 (cos θ) = − sin θ and P 1
2 (cos θ) = −3 cos θ sin θ. These are the polynomials

with the order m = 1 for vector analyzing power and the lowest angular momentum.
The fit parameters α and β are the magnitudes of the individual P m

l contributions. In
case of the kaon analyzing power the parameter α is used for the extraction of the pΛ
spin triplet scattering length (see Section 8.4).

A comparison of these results with COSY-TOF measurements at different beam
momenta is given in Section 9.2.
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Figure 7.17.: Proton analyzing power as a function of cos(θCMS
p ). The red line shows

the fit with a sum of the two associated Legendre polynomials P 1
1 and P 1

2 . The
individual contributions of the polynomials are shown by the green dashed and blue
dashed lines, respectively.

7.5.1. Proton Analyzing Power

In Figure 7.17 the proton analyzing power as a function of cos(θCMS
p ) is shown for the

full event sample. For the region −1 < cos(θCMS
p ) < 0.5 the analyzing power is almost

constant with a value of about −0.05. For the forward scattered protons the analyzing
power reaches zero. The fit with the sum of the Legendre polynomials (red line) gives a
very good description of the data with a reduced χ2 of 1.01. The inclusion of Legendre
polynomials with higher l, such as P 1

3 or P 1
4 does not improve the reduced χ2. The

individual contributions of the corresponding polynomials P 1
1 and P 1

2 are shown by the
green dashed and blue dashed lines.

7.5.2. Λ Analyzing Power

In Figure 7.18 the Λ analyzing power as a function of cos(θCMS
Λ ) is shown for the full

event sample. In the whole range the analyzing power is negative. From negative cosine
of scattering angle to positive values the analyzing power decreases to a minimum of
≈ −0.1. The fit with the sum of the Legendre polynomials (red line) describes the
data with a reduced χ2 of 2.69. The individual contributions of the corresponding
polynomials P 1

1 and P 1
2 are shown by the green dashed and blue dashed line. Including
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Figure 7.18.: Λ analyzing power as a function of cos(θCMS
Λ ). The red line shows the fit

with a sum of the two associated Legendre polynomials P 1
1 and P 1

2 . The individual
contributions of the polynomials are shown by the green dashed and blue dashed
lines, respectively.

associated Legendre polynomials with higher angular momentum in the fit improves
the χ2 value slightly. The result of the fit including the associated Legendre polynomial
P 1

3 is shown in Section 9.2.2 where the comparison with the COSY-TOF measurement
at 2.95 GeV/c is shown. The Λ analyzing power as a function of xF and pT is shown in
Appendix A.

7.5.3. Kaon Analyzing Power

In Figure 7.19 the kaon analyzing power as a function of cos(θCMS
K ) for the full event

sample is shown. It is positive in the whole scattering range with a maximum value
of about 0.2. The fit with the sum of the Legendre polynomials (red line) describes
the data with a reduced χ2 of 2.14. Including associated Legendre polynomials with
higher l in the fit does not improve the χ2 value. The individual contributions of the
corresponding polynomials P 1

1 and P 1
2 are shown by the green dashed and blue dashed

line. From the measurements at 2.95 GeV/c beam momentum [Roe11, Jow14] the values
α and β has been determined by the same fitting procedure. The results from these
measurements and the data shown in Figure 7.19 are summarized in Table 7.1. The α
value coincides for the different measurements, while the β value deviates significantly
between the measurements at 2.7 GeV/c and 2.95 GeV/c. This can be explained by a
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Figure 7.19.: Kaon analyzing power as a function of cos(θCMS
K ) for the full event sam-

ple. The red line shows the fit with a sum of the two associated Legendre polynomials
P 1

1 and P 1
2 . The individual contributions of the polynomials are shown by the green

dashed and blue dashed lines, respectively.

reduced amount of kaons in D-wave for 2.7 GeV/c. Therefore, the magnitude of the
S+D wave interference term β is decreased, but the S+P wave interference term α is
not influenced.

To extract the pΛ spin triplet scattering length the dependence of the analyzing
power on the mpΛ invariant mass has to be determined, especially in a range of mpΛ ≤
mΛ + mp + 40 MeV/c2. This constraint enforces the internal orbital momentum of the
pΛ system to be l = 0, which is a necessary condition for applying the extraction
procedure of the scattering length (see Section 2.4 and Chapter 8). For this analysis
the pΛ invariant mass is binned in 5 MeV/c2 steps. For the first bin the obtained kaon

Beam momentum α β

2.7 GeV/c −0.139 ± 0.005 0.039 ± 0.004
2.95 GeV/c [Roe11] −0.145 ± 0.013 0.065 ± 0.010

2.95 GeV/c [Jow14] (preliminary) −0.137 ± 0.006 0.059 ± 0.004

Table 7.1.: Values for α and β from the fit of the kaon analyzing power for the mea-
surements at 2.95 GeV/c ([Roe11] and [Jow14]) and 2.7 GeV/c.
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Figure 7.20.: Kaon analyzing power as a function of cos(θCMS
K ) for the events with

the constraint mpΛ < mp + mΛ + 5 MeV/c2. The red line shows the fit with a sum of
the two associated Legendre polynomials P 1

1 and P 1
2 . The individual contributions of

the polynomials are shown by the green dashed and blue dashed lines, respectively.

analyzing power is shown in Figure 7.20 together with the fit of the associated Legendre
polynomials. The obtained values for α and β deviate from zero by more than 4 σ . This
is consistent with the expectation from [CTOF07], but opposite to the results obtained
from the data at 2.95 GeV/c [CTOF13b], where a value of α compatible with zero has
been obtained2 for the invariant mass range mpΛ ≤ mΛ + mp + 40 MeV/c2. Thus,
a change of α at low pΛ invariant mass with the beam momentum is observed. This
could be connected to energy dependent wave amplitudes. Unfortunately, no theoretical
model is available at the moment which describes this behavior.

The dependence of α and β on the pΛ invariant mass is shown in Figure 7.21. For
better visualization −α is shown in red. β is shown in blue. As expected, β vanishes
for higher invariant masses since the kaon momentum becomes too low for D-wave con-
tributions, and thus the S+D interference term becomes zero. This behavior is similar
to the measurement at 2.95 GeV/c beam momentum. The α value is roughly constant
at −0.14 for almost the whole invariant mass range. For high invariant masses it drops
down to zero because the kaon momentum is even too low for P-wave contributions. The

2The preliminary results from [Jow14] gives α ≈ −0.04 ± 0.015 for the first invariant mass bin. Thus,
α is 2.7 σ away from zero, but still ∼ 2 σ lower in absolute value than the result from the data at
2.7 GeV/c.
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Figure 7.21.: Contributions of the associated Legendre polynomials P 1
1 (α, red) and

P 1
2 (β, blue) to the kaon analyzing power as a function of the pΛ invariant mass. −α

is shown for better visualization. The kinematic limit at 2.7 GeV/c beam momentum
is indicated by the dashed violet line. The dash dotted green line indicates the fit
range for the determination of the pΛ spin triplet scattering length.

dashed violet line indicates the kinematical limit for a beam momentum of 2.7 GeV/c.
The important region for the determination of the pΛ spin triplet scattering length is
mpΛ ≤ mΛ + mp + 40 MeV/c2. This limit is marked by the dash dotted green line in
Figure 7.21. In this range α is clearly nonzero which allows the spin triplet scattering
length to be extracted. Furthermore, a dominant spin singlet scattering can be excluded
since spin singlet scattering forbids P-wave kaons, hence α 6= 0.
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The paradigm of physics - with its interplay of

data, theory and prediction - is the most powerful

in science.

(Geoffrey West)

8. Determination of the pΛ Spin Triplet
Scattering Length

In this chapter the method for the determination of the pΛ spin triplet and effective
scattering length is described first. Afterwards, the results for the effective scattering
length for the full event sample and the sub samples for different ranges of the helicity
angle cospΛ

pK are shown for further checks of influences from N∗ resonances. Finally, the
spin triplet scattering length is determined and systematic errors are discussed.

8.1. Description of the Fit Method

The fit method follows in general the proposed way in [Gas04, Roe11, CTOF13b]. Nev-
ertheless, it is modified in some details to simplify and stabilize the fit procedure and
convergence. As described in Section 2.4.3.2 and in [Gas04], it is possible to extract
the pΛ scattering length from the pΛ FSI enhancement in the invariant mass distribu-
tion with a known theoretical precision of 0.3 fm. For that purpose the enhancement is
parametrized by

dσ

dmpΛ
= CP S ·PS(mpΛ) ·

∣∣AFSI(mpΛ)
∣∣2 = CP S ·PS(mpΛ) ·exp

[
C0 +

C1

m2
pΛ − C2

]
. (8.1)

It is a modified version of the similar formula in [Gas04] (Equation A.1) or in [Roe11]
(Equation 7.7), where C1 and C2 enter quadratically in the final state parametrization.
The modification leads to one global minimum of the fit in comparison to the four
before1. PS(mpΛ) corresponds to the phase space distribution, and CP S is the strength
of the phase space.

The scattering length a is given by

a(C1, C2) = −1

2
C1

√√√√
(

m2
0

mpmΛ

)
· (m2

max − m2
0)

(m2
max − C2) · (m2

0 − C2)3
~c. (8.2)

mp and mΛ are the corresponding particle masses. m0 = mp +mΛ is the minimum mpΛ

mass and mmax = m0 + 40 MeV/c2 the limit of the dispersion integral from Equation
2.21 to achieve a systematic error of 0.3 fm from theory.

1It has been checked, that the fit with the former quadratic parametrization gives the same result for
the scattering length as the modified one.
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8. Determination of the pΛ Spin Triplet Scattering Length

The implementation of the finite detector resolution σm(mpΛ) for each invariant mass
is done by folding Equation 8.1 with a corresponding Gaussian function. Therefore, the
following function is fitted to the data

dσ

dmpΛ
=
∫ mpΛ+5σm

mpΛ−5σm

dm′
pΛ

CP S · PS(m′
pΛ) ·

∣∣∣AFSI(m′
pΛ)
∣∣∣
2

√
2πσm

· exp

[
−

(mpΛ − m′
pΛ)2

2σ2
m

]
.

(8.3)
It has four parameters: One for the strength of the phase space (CP S) and three for the
final state parametrization (C0, C1 and C2). Since parameter C0 can be absorbed by
the phase space strength and vice versa, pure phase space was first fitted to the upper
range of the invariant mass distribution2 to determine a value for CP S . This value has
been fixed in the subsequent fit of the invariant mass distribution with the function
from Equation 8.3. As it is shown in Section 2.4, a change in C0 does not influence the
result for the scattering length a.3

The error for the scattering length can not be calculated simply by Gaussian error
propagation, since the parameters C1,2 and C0 are highly correlated and a does not
depend on C0. Therefore, the likelihood for the scattering length from the result of the
fit has been taken. It can be approximated according to [Gas04, Roe11] by

L(data, Ci) ≈ exp
[
−1

2
χ2(C0, C1, C2)

]
(8.4)

with the χ2 value for a given set of parameters Ci.
Thus, the likelihood probability for a value of the scattering length a is [Roe11]

L(a) = N

∫ ∫ ∫
dC0dC1dC2 exp

[
−1

2
χ2(C0, C1, C2)

]
δ(a − a′(C1, C2)) (8.5)

The normalization constant N should be chosen such that
∫

L(a)da = 1, but an in-
correct normalization does not influence the result for a. Thus, N was set to 1 in the
calculation.

One integration of Equation 8.5 is calculated straight forward by a variable substitu-
tion from C1 to a′, which is followed by the integration over a′ to eliminate the Delta
function. The substitution gives

dC1 = da′ −2√(
m2

0

mpmΛ

)
· (m2

max−m2
0
)

(m2
max−C2)·(m2

0
−C2)3~c

. (8.6)

After the substitution and the integration over a′, the likelihood probability is

L(a) = N

∫ ∫
dC0dC2

−2
√

...~c
exp

[
−1

2
χ2(C0, C ′(a, C2), C2)

]
(8.7)

2The range of this fit is indicated by the green shaded areas in the figures later.
3This has been confirmed by fitting the data with different values of CP S . There was no difference in

the resulting scattering length a and the corresponding error.

116



8.2. pΛ Effective Scattering Length for Full Data Sample

with the term from Equation 8.6
√

... and

C ′(a, C2) =
−2a

√
...~c

. (8.8)

The two dimensional integral of Equation 8.7 is calculated numerically with Monte
Carlo integration methods from the GNU Scientific Library GSL [GSL]. The integration
is done over a ±3σ range of C0 and C2.

As described in [Roe11], the term χ2(C0, C ′(a, C2), C2) = χ2( ~C) is approximated by
a Taylor expansion up to second order around the results of the fit of the function from
Equation 8.3. Assuming these are given by ~f = (f0, f1, f2), the expansion is

χ2( ~C) ≈ χ2(~f) +
1

2
( ~C − ~f) HC(~f) ( ~C − ~f)T (8.9)

with the Hessian matrix HC . The first order term vanishes since

∇C · χ2(~f) = 0, (8.10)

which is the condition for the fit minimum. The Hessian matrix is obtained from the
software MINUIT [MINUIT], which is used for the fitting procedure. It is the inverse
of the error matrix, and a parabolic χ2 function around the fit minimum is assumed.

The resulting distribution of the likelihood probability for different values of a follows
a Gaussian distribution. By fitting a Gaussian, its mean and sigma value give the result
for a and the error ∆a, including effects from the correlation of the fit parameters.

8.2. pΛ Effective Scattering Length for Full Data Sample

In Figure 8.1 (upper plot) the pΛ invariant mass distribution for the full event sample
is shown. The final state parametrization function (red) is fitted in a range up to
mpΛ = m0 + 40 MeV/c2 with a reduced χ2 of 1.69, which is indicated by the vertical
red dashed line. Beyond this boarder the function is shown by the red dashed line. It
describes quite well the rest of the distribution, besides the enhancement at the NΣ
threshold around 2130 MeV/c2. Additionally, the phase space expectation is fitted in
the green shaded area. The invariant mass distribution as well as the FSI function
divided through the fitted phase space distributions is shown in the lower plot of Figure
8.1. This is the visualization of the spin averaged final state interaction amplitude∣∣∣ÃFSI(mpΛ)

∣∣∣
2
. An exponential function describes the data in the relevant region nearly

perfect. Therefore, the parametrization of the final state interaction amplitude with
Equation 8.1 is reasonable.

The obtained parameters of the final state interaction fit are shown in the upper
plot of Figure 8.1 in the caption. As already mentioned, the likelihood from these
parameters is calculated in order to determine the value of the scattering length and its
error, because the parameters are highly correlated. The obtained likelihood probability
distribution as a function of the scattering length is shown in Figure 8.2.
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Figure 8.1.: Upper: mpΛ invariant mass distribution for the full event sample nor-
malized to a total cross section of 10 µb fitted with phase space (green) and the final
state parametrization function described by Equation 8.3 (red). The red dashed line
marks the upper limit of the FSI fit, and the green shaded area marks the range of
the phase space fit. The behavior of the FSI function extrapolated beyond the fit
range is shown by the red dashed line. The parameters of the fit are given in the
caption. Lower: mpΛ invariant mass distribution from the upper plot divided by the
phase space function. The red line shows the final state fit of the upper plot divided
by the phase space function. The vertical red dashed line marks the upper limit of
the FSI fit.
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8.2. pΛ Effective Scattering Length for Full Data Sample

The distribution is fitted with a Gaussian, which gives an effective scattering length
of ã = (−1.233 ± 0.014stat. ± 0.3theo.) fm.

The small deviations of the likelihood distribution from a Gaussian might stem from
the complicated involved numerical calculations from the scientific library GSL [GSL].
However, the theoretical uncertainty dominates the error of the scattering length. Fur-
ther systematic errors are discussed in Section 8.5.

The weights of the spin singlet and spin triplet contributions to the effective scattering
length are not known, when using the dispersion integral approach (see Section 2.4.3).
Therefore, the determined effective scattering length can not be directly compared with
the spin averaged scattering lengths from [C1198b] and [HIR10], since in these references
the spin singlet and spin triplet contributions to the scattering length are assumed to be
given by the spin statistical weights 1/4 and 3/4, respectively (see inverse Jost function
approach in Section 2.4.3.1). Nevertheless, in [Gas04] the scattering length is extracted
with the dispersion integral approach from unpolarized data from the inclusive reaction
pp → K+X measured at the SPES4 facility in Saclay [Sie94]. The obtained value is
ã = (−1.5±0.15stat. ±0.3theo.) fm. This is compatible with the value determined in this
thesis.

The result for the effective scattering length from the COSY-TOF measurement at
2.95 GeV/c beam momentum is ã = (−1.25 ± 0.08stat. ± 0.3theo.) fm [CTOF13b], which
is consistent with the value obtained in this thesis. However, a systematic influence
of N∗ resonances on the extracted value was seen in [CTOF13b] by a study of the
scattering length value for separated mKΛ regions of the Dalitz plot. The values for
the separated regions are ã(m2

KΛ < 3.176 GeV2/c4) = (−0.86 ± 0.06stat. ± 0.3theo.) fm
and ã(m2

KΛ > 3.176 GeV2/c4) = (−2.06 ± 0.16stat. ± 0.3theo.) fm. Thus, the deviation of
the effective scattering length due to N∗ resonances is in the order of 1.2 fm. To check
for such a deviation in the data from this thesis, a similar analysis is done. For that
purpose, the event sample is split into four different ranges of the helicity angle cos θpΛ

pK

(for an explanation of the angle see Section 7.3). This corresponds to a separation of
the Dalitz plot into four parts with the same phase space volume [Kil13]. For each part
the pΛ effective scattering length is determined. This is shown in the next section.
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Figure 8.2.: The likelihood probability distribution for the full event sample for the
determination of the pΛ effective scattering length ã and its error. The mean value of
the fitted Gaussian corresponds to the effective scattering length ã, while the sigma
value of the Gaussian corresponds to the scattering length error ∆ã.

8.3. pΛ Effective Scattering Length for Different cos θpΛ
pK

Ranges

In Figure 8.3 the pΛ invariant mass distributions are shown for different ranges of the
helicity angle: cos θpΛ

pK > 0.5 (upper left), 0 < cos θpΛ
pK < 0.5 (upper right), −0.5 <

cos θpΛ
pK < 0 (lower left) and cos θpΛ

pK < −0.5 (lower right). Each of the distributions are
fitted with phase space (green) and the FSI function (red) in the limit of the FSI fit
mpΛ = m0 + 40 MeV/c2, indicated by the vertical red dashed lines. The parameters of
the final state interaction fits are shown in the captions, respectively. In Appendix C
the invariant mass distributions divided by the phase space fits are shown, similar to
the lower plot of Figure 8.1.

From the fitted FSI function, the likelihood probability is calculated for each invariant
mass distribution. The results are shown in Figure 8.4. The obtained values for the
effective scattering length ã and the error ∆ã are summarized in Table 8.1.

Only the value for the range cos θpΛ
pK < −0.5 is in agreement with the value for the full

data within 1 σ. Nevertheless, the maximum deviation of the effective scattering length
for the different helicity angle ranges is in the order of 0.15 fm. Therefore, the influence
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8.3. pΛ Effective Scattering Length for Different cos θpΛ
pK Ranges
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Figure 8.3.: mpΛ invariant mass distribution for different ranges of the helicity angle

cos θpΛ
pK fitted with phase space (green) and the final state parametrization function

described by Equation 8.3 (red). The ranges for the plots are cos θpΛ
pK > 0.5 (upper

left), 0 < cos θpΛ
pK < 0.5 (upper right), −0.5 < cos θpΛ

pK < 0 (lower left) and cos θpΛ
pK <

−0.5 (lower right). In each distribution the vertical red dashed line marks the upper
limit of the FSI fit, and the green shaded area marks the range of the phase space fit.
The behavior of the FSI function extrapolated beyond the fit range is shown by the
red dashed line. The parameters of the fit are given in the caption.

of N∗ resonances on the pΛ final state interaction seems to be very weak compared to
the measurement at 2.95 GeV/c beam momentum, where the deviations are in the order
of 1.2 fm [CTOF13b].

The deviations in the ranges cos θpΛ
pK > 0.5 and 0 < cos θpΛ

pK < 0.5 can be explained
by an significant influence of the N∗-1720 MeV resonance, because its peak value is in
these regions if a Breit-Wigner distribution is assumed (see additionally Figures 7.3 and
7.5).

However, combining the results of the upper and lower plots in Figure 8.3, the effective
scattering lengths are ã(cos θpΛ

pK > 0) = (−1.273 ± 0.023) fm and ã(cos θpΛ
pK < 0) =

(−1.215 ± 0.019) fm. The first value is now nearly within 1 σ to the result for the
full data, reflecting again the very weak influence of the resonance compared to the
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8. Determination of the pΛ Spin Triplet Scattering Length
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Figure 8.4.: Likelihood probability distribution for the FSI fit of the mpΛ invariant
mass distributions in Figure 8.3. The pΛ effective scattering length ã and its error
∆ã correspond to the mean and sigma value of the Gaussian fit to the likelihood
distribution.

measurement at 2.95 GeV/c beam momentum.
From this results the systematic error from the influence of N∗ resonances is assumed

to be maximal 0.1 fm.
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8.4. Extraction of the pΛ Spin Triplet Scattering Length

cos θpΛ
pK range ã [fm] ∆ã [fm]

cos θpΛ
pK > 0.5 -1.407 0.037

0 < cos θpΛ
pK < 0.5 -1.139 0.027

−0.5 < cos θpΛ
pK < 0 -1.186 0.029

cos θpΛ
pK < −0.5 -1.244 0.025

full range -1.233 0.014

Table 8.1.: pΛ effective scattering length and its error for different ranges of the helicity
angle cos θpΛ

pK from the Gaussian fit of the likelihood distributions in Figure 8.4.

8.4. Extraction of the pΛ Spin Triplet Scattering Length

As described in Section 2.4.3.2 by Equation 2.25, the contribution of the associated
Legendre polynomial P 1

1 to the kaon analyzing power α(mpΛ) has to be multiplied

to the spin averaged final state interaction amplitude
∣∣∣ÃFSI(mpΛ)

∣∣∣
2

to determine the

spin triplet scattering length from the spin triplet final state interaction amplitude
|AFSI,t(mpΛ)|2. Since the mpΛ invariant mass distribution is proportional to phase space
times the final state amplitude, as described by Equation 8.1, α(mpΛ) is multiplied bin
wise to the invariant mass distribution. This gives a distribution proportional to phase
space times |AFSI,t(mpΛ)|2, which is shown in Figure 8.5. This modified invariant mass
distribution is again fitted with phase space (green) and the final state parametrization
of Equation 8.1 (red). From the FSI fit, the spin triplet scattering length can be
obtained in the same way as the effective one.

Due to the large error of the fit parameter C2, the root term of the variable substi-
tution for the likelihood probability calculation (Equation 8.6) is not defined for the
full error range of C2, even in a range of ±1σ. Thus, the likelihood has been set to
zero, if the parameter reaches this undefined range in the calculation of the probabil-
ity via Equation 8.7. Unfortunately, this induces a large deviation of the likelihood
probability distribution, shown in Figure 8.6 from a Gaussian shape. Nevertheless, the
distribution is fitted with a Gaussian for the right side and a mean value is determined.
The error of the scattering length is calculated by the distance of the crossing points of
the half maximum line (blue dashed) with the probability distribution and the mean
value. These values are 0.58 fm for the left point and 0.37 fm for the right point. The
systematic uncertainty from the used method is described in the next section. The
values for σ are calculated with the usual relation between full width half maximum
and sigma of a Gaussian. Thus, an asymmetric error for the spin triplet scattering
length is obtained, reflecting the constraint of the undefined C2 range. The result is
at = (−1.31+0.32

−0.49stat. ± 0.3theo.) fm.

This result is compatible with the recent theoretical prediction of NLO ChEFT cal-
culations at = −1.54 fm [Hai13] within the error bars.
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8. Determination of the pΛ Spin Triplet Scattering Length

 / ndf 2χ  9.086 / 5
p0        0.2730± 0.7746 
p1        4.625e+04± 4.931e+04 
p2        3.276e+04± 4.186e+06 

]2 [MeV/cΛp m
2060 2080 2100 2120 2140 2160

) 
[a

rb
. u

ni
ts

]
Λ

p 
(m

Kα
 *

 
Λ

p 
/d

 m
σ

d 

0

10

20
 / ndf 2χ  9.086 / 5

p0        0.2730± 0.7746 
p1        4.625e+04± 4.931e+04 
p2        3.276e+04± 4.186e+06 

 / ndf 2χ  9.086 / 5
p0        0.2730± 0.7746 
p1        4.625e+04± 4.931e+04 
p2        3.276e+04± 4.186e+06 

Figure 8.5.: mpΛ invariant mass distribution multiplied with the contribution of the
Legendre polynomial P 1

1 to the kaon analyzing power (αK(mpΛ)) for each mass bin.
The fits with phase space (green) and the final state parametrization function de-
scribed by Equation 8.3 (red) are shown. The vertical red dashed line marks the
upper limit of the FSI fit. The result of the fit are given in the caption.

Other experimental results for the pΛ spin triplet scattering length at are

• at = (−1.6+1.1
−0.8) fm (Λp elastic scattering) [Ale68],

• at = (−2.0 ± 0.5) fm (K−d → π−Λp reaction at rest) [Tan69],

• at = (−1.56+0.19
−0.22stat. ± 0.4theo.) fm (pp → K+ + (Λp) inclusive measurement at

pbeam = 2.735 GeV/c) [HIR10].

These results coincide with the result from this thesis within 1 σ error, but they are
determined by the Jost function approach as described in Section 2.4. The value from
[HIR10] is obtained by a combined six-parameter fit of the kaon missing mass spectrum
from their measurement and the Λp elastic scattering data from [Ale68]. Additionally,
the spin triplet scattering length from [Tan69] is used as a 1 σ constraint in the fitting
procedure of [HIR10]. Thus, the result from [HIR10] comprises the other measurements.
However, another implication of [HIR10] is a dominant pΛ spin singlet production
process4 at a similar beam momentum to the measurement presented in this thesis. This

4Their fit gives a spin triplet matrix element |Mt|
2 = (0.0+19

−0.0) b/sr and a spin singlet matrix element
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8.4. Extraction of the pΛ Spin Triplet Scattering Length
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Figure 8.6.: The likelihood probability distribution for determination of the pΛ spin
triplet scattering length and its error. A Gaussian function is fitted to the right side
of the spectrum and its parameters are given in the caption. The mean value is
indicated by the green dashed line. The blue dashed line marks the half maximum
of the Gaussian for the calculation of the asymmetric scattering length error by the
crossing points of the half maximum line with the distribution.

is in contradiction to the observed contribution of the associated Legendre polynomial
P 1

1 to the kaon analyzing power at 2.7 GeV/c beam momentum, which is proportional
to spin triplet scattering. An explanation for the result from [HIR10] could be further
systematic errors from N∗ resonance contributions. These can not be directly studied
by [HIR10] by a Dalitz plot analysis, since the pp → K+ + (Λp) reaction has been
measured inclusively. By the exclusive measurement of the pp → pKΛ reaction with
COSY-TOF, the influences of N∗ resonances can be investigated due to the full phase
space coverage of the detector (see previous section). Therefore, I am convinced, that
the result for the pΛ spin triplet scattering length presented in this thesis is more reliable
than the other one. Furthermore, the dispersion integral method allows the extraction
of the scattering length from the measured data without the use of other data as for
instance the Λp elastic scattering data.

|Ms|
2 = (111+8

−38) b/sr.
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8. Determination of the pΛ Spin Triplet Scattering Length
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Figure 8.7.: Dependence of the determined effective scattering length ã on the limit
of the FSI fit. The red dashed line marks the mean value.

8.5. Systematic Errors

Since the determination of the spin triplet pΛ scattering length from the invariant mass
distribution and the kaon analyzing power is quite complicated, several checks have
been performed for systematic errors.

First, the limit of the FSI fit is varied from the usual value 40 MeV/c2 over thresh-
old. This is done for the determination of the effective scattering length, because it is
assumed that any observed deviation is similar for the determination of the spin triplet
scattering length. In Figure 8.7 the effective scattering length ã, obtained from the
likelihood probability distribution, as a function of the fit limit is shown. The dashed
red line marks the mean value (1.236 fm) for all points, which agrees well with the taken
value for the effective scattering length at a fit limit of 40 MeV/c2 over threshold. Fur-
thermore, no systematic effect of the fit limit on the extracted scattering length value
is observed.

Another systematic error could stem from an improper acceptance correction of the
pΛ invariant mass distribution. This effect is assumed to be negligible, as it is shown
in Section 7.3.1.

The influence of N∗ resonances on the extracted values are shown in Section 8.3. The
obtained systematic error is in the order of 0.1 fm.

The binning of the invariant mass distribution could change the extracted scatter-
ing length value. Thus, the scattering length extraction method is applied to the

126



8.5. Systematic Errors
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Figure 8.8.: Left: mpΛ invariant mass distribution for the full event sample with a
5 MeV/c2 binning normalized to a total cross section of 10 µb. For the description of
the lines and parameters see Figure 8.1. Right: The likelihood probability distribu-
tion for the full event sample with the 5 MeV/c2 binning for the determination of ã
and its error.

pΛ invariant mass distribution with 5 MeV/c2 broad bins. This invariant mass dis-
tribution and the corresponding likelihood probability distribution of the fit are shown
in Figure 8.8. The obtained effective scattering length with the 5 MeV/c2 binning is
ã = (−1.212 ± 0.014stat. ± 0.3theo.) fm. By comparing this values with the result from
Section 8.2, a systematic error of 0.02 fm from the binning is assumed.

To check the influence of a wrongly determined beam polarization on the α parameter,
α has been again evaluated for a beam polarization, which is 5 % lower than the correct
value. The results for α for the correct and wrong beam polarization is shown in Figure
8.9 (left plot) as a function of the pΛ invariant mass. All α values with the wrong
polarization (blue, shifted by mpΛ = +2 MeV/c2 for better visibility) are systematically
shifted to higher values compared to the correct ones (red). However, the ratio of the
α values is almost constant at 95 % over the whole pΛ invariant mass range. This is
shown in the right plot of Figure 8.9. Therefore, a wrong beam polarization changes
only the absolute height of the distribution in Figure 8.5 and not the shape. Thus, no
systematic error is introduced in the determination of the spin triplet scattering length.
Similar, different values for the up and down polarization have no significant effect on
the kaon analyzing power. This is demonstrated in [Hau13].

The errors for the pΛ spin triplet scattering length are determined by the crossing
points of the half maximum line with the likelihood probability distribution. (see pre-
vious section). For this values a systematic uncertainty of 0.05 fm is assumed. This is
the distance between two points of the likelihood probability distribution in Figure 8.6.
Therefore, the corresponding systematic error for σ is assumed to be 0.04 fm.

An overview over the systematic errors can be found in Table 8.2. Taking the sum
of the systematic errors, the results for the spin effective and spin triplet pΛ scattering
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Figure 8.9.: Left: Contribution of the associated Legendre polynomial P 1
1 (α) to the

kaon analyzing power as a function of the pΛ invariant mass for the correct beam
polarization (red) and a wrong polarization, which is 5 % lower (blue). The blue
points are shifted by mpΛ = +2 MeV/c2 for better visibility. Right: Ratio of the two
α values from the left plot as a function of the pΛ invariant mass. The error bars are
not shown, since the error bars of the spectra in the left plot are highly correlated
due to the same underlying event sample.

length are

ã = (−1.233 ± 0.014stat. ± 0.3theo. ± 0.12syst.) fm

at = (−1.31+0.32
−0.49stat. ± 0.3theo. ± 0.16syst.) fm.

Systematic error effective scattering length spin triplet scattering length

Fit limit of the FSI fit negligible negligible
Improper acceptance correction negligible negligible

Influence of N∗ resonances 0.1 fm 0.1 fm
Binning of the mpΛ distribution 0.02 fm 0.02 fm

Wrong beam polarization negligible negligible
Spin triplet error method - 0.04 fm

Total (sum) 0.12 fm 0.16 fm

Table 8.2.: Overview of the considered systematic errors for the scattering length
determination.
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A theory can be proved by experiment; but no

path leads from experiment to the birth of a

theory.

(Manfred Eigen)

9. Comparison of Polarization Observables
with other COSY-TOF Results

In this chapter, the results for the polarization observables are compared with COSY-
TOF measurements of the pp → pKΛ reaction at different beam momenta. These
observables are more sensitive to the features of the production mechanism than the
unpolarized observables. Especially, changes in the behavior of the polarization observ-
ables with beam momentum can give a deeper understanding of the various contribution
in the associated strangeness production. Unfortunately, no predictions from theoreti-
cal side for the polarization observables and their behavior at different beam momenta
exist. Therefore, the results of this chapter are an experimental study, which can be
used as input and constraints for further theoretical investigations of the associated
strangeness production in the pp → pKΛ reaction, such as a partial wave analysis,
which is currently in preparation within the framework of the Bonn-Gatchina group
[Ani07a].

In the first part of the chapter a comparison of the Λ polarization results is shown with
an unexpected result. The dependence of the Λ polarization on the beam momentum
is further studied by fitting associated Legendre polynomials to previous COSY-TOF
data in addition to the data from this thesis.

The second part of the chapter shows the comparison of the analyzing powers. For the
proton and Λ analyzing power the results of fits with the sum of two or three associated
Legendre polynomials are given. In the case of the kaon analyzing power the fit results
are already given in Section 7.5.3.

9.1. Λ Polarization

In Figure 9.1, the result for the Λ polarization as a function of cos(θCMS
Λ ) is shown

for COSY-TOF measurements at the beam momenta 2.7 GeV/c (black), 2.75 GeV/c
[Piz07] (green) and 2.95 GeV/c [Roe11] (blue)1. The measurement at 2.95 GeV/c from
[Roe11] has been done with the same COSY-TOF detector setup and the same event
reconstruction program as the one presented in this thesis, while the measurement at

1Unfortunately, the Λ polarization can not be compared with the result from the COSY-TOF measure-
ment at 2.68 GeV/c [Met98], because the polarization as a function of cos(θCMS

Λ ) was not determined
there.
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Figure 9.1.: Λ polarization PΛ as a function of cos(θCMS
Λ ) from different COSY-TOF

measurements. The data shown are measured at 2.7 GeV/c (this thesis, black), at
2.75 GeV/c beam momentum [Piz07] (green) and at 2.95 GeV/c beam momentum
[Roe11] (blue).

2.75 GeV/c from [Piz07] has been done with the previous COSY-TOF setup without
the straw tube tracker and a different reconstruction program.

Surprisingly, a large deviation of the Λ polarization measurements at the different
beam momenta is observed. Comparing the measurements at 2.7 GeV/c and 2.95 GeV/c,
the polarization changes the sign and the maximum value of the 2.7 GeV/c data is about
twice the maximum value of the 2.95 GeV/c data. The measurement at 2.75 GeV/c
follows more the behavior at 2.7 GeV/c, but the maximum value is much lower and
within the error bars the result from this measurement is nearly compatible with zero.

To study the behavior of the Λ polarization, all available COSY-TOF results for
the Λ polarization as a function of cos(θCMS

Λ ) has been fitted with the sum of the two
associated Legendre polynomials P 1

1 and P 1
2 in the way as the results from this thesis

shown in Figure 7.13. If there are more than one COSY-TOF measurement at the same
beam momentum, the results of the one with the higher statistics is used. Therefore,
the fitting is applied to the data from [Piz07] (2.75 GeV/c beam momentum), [Fri02]
(2.85 GeV/c beam momentum), [Roe11] (2.95 GeV/c beam momentum) and [Schr03]
(3.2 GeV/c beam momentum). The results of the fits and the data are shown in Figure
9.2 from the upper left plot to the lower right plot. The complete fit is shown in red in
each plot, and the individual contributions of the polynomials P 1

1 and P 1
2 are shown by

the green dashed and blue dashed curves, respectively.
The fit with the sum of the two associated Legendre polynomials describes the various
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Figure 9.2.: Λ polarization PΛ as a function of cos(θCMS
Λ ) for several COSY-TOF mea-

surements. Each polarization is fitted with the sum of the two associated Legendre
polynomials P 1

1 and P 1
2 shown in red. The individual contributions of the polynomials

are shown by the green dashed and blue dashed curves, respectively. The fit results
are given in the captions. The measurements are taken at 2.75 GeV/c beam momen-
tum [Piz07] (upper left), at 2.85 GeV/c beam momentum [Fri02] (upper right), at
2.95 GeV/c beam momentum [Roe11] (lower left) and at 3.2 GeV/c beam momentum
[Schr03] (lower right).

data quite well. The contribution of the associated Legendre polynom P 1
1 (C1) is more

or less compatible with zero in the 1 σ range for each measurement. The contribution of
P 1

1 (C2) on the other hand changes steadily from −0.030 to 0.188 with increasing beam
momentum. This linear increase of the C2 value with beam momentum can clearly be
observed in Figure 9.3, where the results for C1 and C2 from the fits are plotted as a
function of the beam momentum including the result from this thesis at 2.7 GeV/c. In
Table 9.1 the results of the fits are summarized for all measurements.

A theoretical interpretation of the observed behavior of the Λ polarization as a func-
tion of the beam momentum is still missing. Of interest might be that the values C1

and C2 are connected to partial wave amplitudes similar to the α and β values of the
analyzing powers. In this picture the dependence of C2 from the beam momentum
can be interpreted as an increase of a corresponding partial wave interference with an
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Figure 9.3.: C1 and C2 values from the fits of the Λ polarization measurements (this
thesis and [Piz07, Fri02, Roe11, Schr03]) as a function of the beam momentum. The
fits are shown in Figure 9.2 and Figure 7.13.

angular momentum of l = 2. This increase might be connected with the large difference
of the NΣ coupled channel enhancement in the pΛ invariant mass distributions of the
measurements at 2.7 GeV/c and 2.95 GeV/c (see Section 7.2.3 and [Roe11]).
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9.2. Analyzing Power

Beam momentum C1 C2 χ2/NDF
2.70 GeV/c (see Fig. 7.13) −0.002 ± 0.008 −0.133 ± 0.006 1.98
2.75 GeV/c [Piz07] 0.013 ± 0.036 −0.030 ± 0.027 0.79
2.85 GeV/c [Fri02] −0.020 ± 0.051 0.004 ± 0.036 1.61
2.95 GeV/c [Roe11] 0.020 ± 0.019 0.066 ± 0.014 2.31
3.20 GeV/c [Schr03] −0.012 ± 0.053 0.188 ± 0.040 0.75

Table 9.1.: Contributions of the associated Legendre polynomials P 1
1 (C1) and P 1

2 (C2)
to the Λ polarization for measurements at different beam momenta. In addition, the
reduced χ2 values of the fits with the first two polynomials are given.

9.2. Analyzing Power

The results for the analyzing power of the three final state particles are already shown in
Section 7.5. In this section they are compared with the results of the other COSY-TOF
measurements at different beam momenta, which are [Piz07] (2.7 GeV/c beam momen-
tum) and [Roe11, Jow14] (2.95 GeV/c beam momentum). However, some analyzing
powers were not determined in these measurements, and hence in this case no data is
available for the comparison.

9.2.1. Proton Analyzing Power

In Figure 9.4 the proton analyzing power as a function of cos(θCMS
p ) is shown for the

measurements at 2.7 GeV/c from this thesis and at 2.95 GeV/c from [Jow14]. In [Piz07]
and [Roe11], the proton analyzing power was not determined. In the figure the red
points are shifted by cos(θCMS

p ) = +0.0015 for better visibility. Close to cos(θCMS
p ) = −1,

the behavior of the analyzing power differs significantly, but for the rest of the scattering
angle the analyzing power is nearly overlapping within the errors bars.

Additionally, the fit of the analyzing power with the sum of associated Legendre
polynomials is compared. The result from this thesis can be well described by the sum
of the two polynomials P 1

1 and P 1
2 with a reduced χ2 of 1.01 (see Figure 7.17). The same

has been done with the data from [Jow14] with a very poor fit with χ2/NDF = 10.12
[Jow13b]. However, including the next order of the associated Legendre polynomials,
P 1

3 , improves the fit to χ2/NDF = 1.08 [Jow14]. The results for the contribution of
the individual polynomials from the fit are summarized in Table 9.2. In all cases, the
contribution of P 1

1 (α) is the dominant one. β is very small for the measurement at
2.7 GeV/c and compatible with zero for the measurement at 2.95. GeV/c. The value for
γ is about half the size than α in absolute numbers.

These results can be explained by contributions from higher partial waves at the beam
momentum of 2.95 GeV/c than at 2.7 GeV/c. This gives a significant contribution of
the P 1

3 to the proton analyzing power.
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Figure 9.4.: Proton analyzing power as a function of cos(θCMS
p ) for two COSY-TOF

measurements. The results shown are from this thesis (black) and for the data mea-
sured at 2.95 GeV/c beam momentum from [Jow14] (red). The red points are shifted
by cos(θCMS

p ) = +0.015 for better visibility.

Beam momentum α β γ χ2/NDF
2.7 GeV/c 0.043 ± 0.005 −0.009 ± 0.004 - 1.01

2.95 GeV/c [Jow14b] 0.049 ± 0.006 0.001 ± 0.004 - 10.12

2.95 GeV/c [Jow14] 0.054 ± 0.006 −0.001 ± 0.004 −0.026 ± 0.003 1.08

Table 9.2.: Contributions of the associated Legendre polynomials α(P 1
1 ), β(P 1

2 ) and
γ(P 1

3 ) to the proton analyzing power from the fit of the data measured at 2.7 GeV/c
(this thesis, see Figure 7.17) and at 2.95 GeV/c (from [Jow14] and [Jow14b]). In
addition, the reduced χ2 values of the fits are given.
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9.2.2. Λ Analyzing Power
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Figure 9.5.: Λ analyzing power as a function of cos(θCMS
Λ ) for different COSY-TOF

measurements. The results are from this thesis (black), from the data measured
at 2.75 GeV/c beam momentum from [Piz07] (green) and from the data measured
at 2.95 GeV/c beam momentum from [Roe11] (blue) and [Jow14] (red). The red
and blue points are shifted by cos(θCMS

Λ ) = ±0.015 from the black points for better
visibility.

The comparison of the Λ analyzing power as a function of cos(θCMS
Λ ) for different

COSY-TOF measurements is shown in Figure 9.5 with the results from this thesis
(black), from [Piz07] (green), from [Roe11] (red) and from [Jow14] (blue). The red and
blue points are shifted by cos(θCMS

Λ ) = +0.0015 and cos(θCMS
Λ ) = −0.0015 from the

black points for better visibility.
As expected, the results of the two measurements at 2.95 GeV/c match within the

errors bars. In addition, the results of all measurements are similar in the backward
scattering range (cos(θCMS

Λ ) < 0). But in the forward scattering range (cos(θCMS
Λ ) > 0),

the result for the Λ analyzing power from this thesis differs significantly from the other
ones. Moreover, the sign is opposite to the measurements at 2.95 GeV/c.

In Section 7.5, the Λ analyzing power is already fitted with the sum of the two as-
sociated Legendre polynomials P 1

1 and P2. This has been also done for result of the
measurement at 2.95 GeV/c, which is shown by the red points in Figure 9.5 [Jow14b].
However, including the polynomial P 1

3 into the fit gives a better reduced χ2 for both
measurements. The analyzing power of this thesis, fitted with the three associated
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shows the fit with a sum of the three associated Legendre polynomials P 1
1 , P2 and

P 1
3 . The individual contributions of the polynomials are shown by the green dashed,

blue dashed and brown dashed lines, respectively.

Legendre polynomials, is shown in Figure 9.6. The individual contributions of the
polynomials are shown by the green dashed, blue dashed and brown dashed lines, re-
spectively. The obtained values for the contributions are given in the caption. The
similar figure from the fit of the measurement at 2.95 GeV/c can be found in [Jow14].

The obtained values for the contributions and the reduced χ2 values from the different
fits are given in Table 9.3. As expected, the result for α and β is not influenced by
including P 1

3 into the fit. Therefore, the results of the two fits with the sum of three
associated Legendre polynomials are compared.

α is reduced of about 60 % from this thesis to the measurement at 2.95 GeV/c. The
sign of the parameters β and γ flips, and the absolute value of β changes by about
50 %. Most likely, these results and the strong dependence of the Λ polarization with
beam momentum (see Section 9.1) have the same origin. As already mentioned above,
one reason is a strong dependence of the Λ partial wave amplitudes with the beam
momentum. Unfortunately, the data measured at 2.75 GeV/c from [Piz07] can not be
used further for a fit of the associated Legendre polynomials due to the large errors
bars.
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9.2. Analyzing Power

Beam momentum α β γ χ2/NDF
2.7 GeV/c 0.079 ± 0.005 0.023 ± 0.004 - 2.69

2.95 GeV/c [Jow14b] 0.030 ± 0.006 −0.034 ± 0.004 - 3.97

2.7 GeV/c 0.079 ± 0.005 0.023 ± 0.004 0.010 ± 0.003 1.40
2.95 GeV/c [Jow14] 0.032 ± 0.006 −0.034 ± 0.004 −0.009 ± 0.004 3.59

Table 9.3.: Contributions of the associated Legendre polynomials α(P 1
1 ), β(P 1

2 ) and
γ(P 1

3 ) to the Λ analyzing power from the fits of the data measured at 2.7 GeV/c (this
thesis, see Figure 7.18) and at 2.95 GeV/c (from [Jow14] and [Jow14b]). In addition,
the reduced χ2 values of the fits are given.

9.2.3. Kaon Analyzing Power

In Figure 9.7 the kaon analyzing power as a function of cos(θCMS
p ) is shown for the mea-

surements at 2.7 GeV/c from this thesis (black), at 2.75 GeV/c [Piz07] and at 2.95 GeV/c
from [Roe11] (blue) and [Jow14] (red). The result for 2.75 GeV/c is extracted as
the mean value of the points plotted in Figure 33 in [CTOF07], which references to
[Piz07] and a private communication with C. Pizzolotto, since in [Piz07] the kaon an-
alyzing power is not shown. The red and blue points in Figure 9.7 are shifted by
cos(θCMS

K ) = ±0.015 from the black points for better visibility.
The behavior of the analyzing power is similar for the two measurements at 2.95 GeV/c

as expected. The result from this thesis deviates in the range cos(θCMS
K ) > 0.5 from

the measurement from [Jow14]. As already explained in Section 7.5.3, the contribution
of the asymmetric associated Legendre polynomial P 1

2 is lower for the measurement
at 2.7 GeV/c due to a reduced amount of D-wave kaons2. Thus, the kaon analyzing
power distribution is less asymmetric than at 2.95 GeV/c, which is compatible with the
behavior in Figure 9.7. The data measured at 2.75 GeV/c follows the general trend of
the analyzing power. There might be an indication of a deviation from the 2.7 GeV/c
data in the range cos(θCMS

K ) > 0.6, but this is not significant due to the large error bars.

2The table with the results of the fits with the associated Legendre polynomials P 1
1 and P 1

2 can be
found in Section 7.5.3 (see Table 7.1).
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Figure 9.7.: Kaon analyzing power as a function of cos(θCMS
K ) for different COSY-TOF

measurements. The results are from this thesis (black), from the data measured at
2.75 GeV/c beam momentum [Piz07] (green) and the data measured at 2.95 GeV/c
beam momentum from [Roe11] (blue) and [Jow14] (red) and the data. The result
for 2.75 GeV/c is extracted as the mean value of the points plotted in Figure 33 in
[CTOF07], which references to [Piz07] and a private communication with C. Piz-
zolotto. The red and blue points are shifted by cos(θCMS

K ) = ±0.015 from the black
points for better visibility.
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10. Summary and Outlook

10.1. Summary

The ~pp → pKΛ reaction was measured with the COSY-TOF detector with a polarized
proton beam at a momentum of 2.7 GeV/c in 2011. The selected data sample consists
of 207,219 events. This is so far the largest data sample for this beam momentum and
for the COSY-TOF experiment. To obtain this amount of statistics, the data taking
process was modified to reduce the dead time of the read out system. Most of the data
were recorded only with the straw tube tracker. Therefore, in the analysis of this thesis
the pKΛ events are reconstructed by the STT alone.

After corrections on the rare TDC spectra of the straw tubes, the STT was calibrated
double layer wise. Similar the geometrical alignment was corrected. The obtained spa-
tial resolutions lie between 120 µm and 150 µm, which corresponds to an ≈ 25 % im-
provement to the previous calibration presented in [Roe11] due to more sophisticated
routines for the calibration and geometrical alignment. In addition, the spatial resolu-
tions have been implemented double layer wise in the Monte Carlo simulations to have
a more adequate description of the detector.

Parameters of the reconstruction software were optimized for high reconstruction
efficiency and low computational time. From Monte Carlo simulations the combined
reconstruction efficiency and acceptance correction for the pKΛ final state has been
obtained to be (15.4 ± 0.01) %. The fraction of ~pp → pKΣ0 background events was
determined by Monte Carlo simulations. It was found to be (0.73 ± 0.11) %, and thus
this background was neglected in the analysis.

The beam direction and polarization as well as target properties were determined by
~pp → pp elastic scattered events, which were triggered and reconstructed in parallel
to the ~pp → pKΛ reaction. Similar to previous analyses ([Roe11, Dzh12]) a small tilt
of the beam direction to the straw tube tracker was determined and corrected in the
pKΛ analysis. The polarization of the beam was extracted to be (79.0 ± 1.1) %, which
is 18 percentage points higher than in the previous measurement at 2.95 GeV/c beam
momentum [CTOF13b].

The analysis of the pKΛ event sample focuses on the polarization observables and
the extraction of the pΛ effective and spin triplet scattering lengths from the shape of
the pΛ final state interaction, where for the determination of the spin triplet scattering
length a new method [Gas04] was used the first time. In addition, the Dalitz plot and
the angular distributions are examined. All these results are presented in Chapter 7
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and Chapter 8.
The Dalitz plot contains no significant enhancement at the NΣ thresholds as seen in

other measurements at higher beam momenta due to a pΛ − NΣ coupled channel effect
(e.g. see [CTOF13a]). However, a small enhancement is visible in the projection on the
mpΛ invariant mass. A theoretical explanation for the change of the strength of this
enhancement with beam momentum is still missing.

A surprising result was obtained for the Λ polarization as a function of cos(θCMS
Λ ).

Compared to the result from the COSY-TOF measurement at 2.95 GeV/c beam mo-
mentum the polarization flips its sign in the full cos(θCMS

Λ ) range. A detailed study has
been done by fitting associated Legendre polynomials to the Λ polarization distribution
of all available COSY-TOF data. It is found out from these fits that the contribution
of the associated Legendre polynomial P 1

2 to the Λ polarization changes smoothly with
beam momentum, and thus the polarization does the same. An easy explanation for
this behavior can not be given. However, the results give important information for
further theoretical investigations of the associated strangeness production.

The result for the pΛ effective scattering length is ã = (−1.233±0.014stat. ±0.3theo. ±
0.12syst.) fm. This is compatible with the result from the measurement at 2.95 GeV/c
[CTOF13b], but significantly smaller errors could be achieved in this thesis. The influ-
ence of N∗ resonances on the scattering length has been studied by dividing the Dalitz
plot and the invariant mass spectra in four parts with the same phase space volume. It
is found out that the influence of the N∗ resonances is weaker than in previous COSY-
TOF measurement at 2.95 GeV/c [CTOF13b]. The systematic error of this influence
on the extracted scattering length in this thesis is determined to be 0.1 fm

The main goal of the thesis, namely the extraction of the pΛ spin triplet scatter-
ing length from data, has been achieved. A requirement, fulfilled by the data, is
that the contribution of the associated Legendre polynomial P 1

1 to the kaon ana-
lyzing power does not vanish for low pΛ invariant masses. This behavior is again
opposite to the measurement at 2.95 GeV/c, where an extraction of the scattering
length was not possible. The obtained result for the spin triplet scattering length
is at = (−1.31+0.32

−0.49stat. ± 0.3theo. ± 0.16syst.) fm. The statistical error is not symmetric
due to the complicated numerical calculations involved in the determination process
(see Section 8.4).

10.2. Outlook

For a further analysis, the origins for the difference in the behavior of the polarization
observables and the pΛ − NΣ coupled channel effect between the measurements from
this thesis and at 2.95 GeV/c have to be figured out by theoretical investigation. Such
an investigation is a partial wave analysis, which is currently in preparation within
the framework of the Bonn-Gatchina group [Ani07a]. This could lead to a deeper
understanding of the associated strangeness production in the pp → pKΛ reaction.
Another quantity which can be studied in this context is the spin transfer coefficient
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DNN , which can be extracted from the data by a new method for a full acceptance
detector, as it is the COSY-TOF detector. This method is proposed in [Hau14]. In
addition, the Dalitz plot can be analyzed in terms of a resonance model as it is shown
in [CTOF10b].

Due to the large number of events, the analyzing powers and Λ polarization can
be studied in more detail by applying an additional binning on kinematic variables
as invariant masses or momenta. These is partly shown in [Jow14] with the newest
COSY-TOF data measured at 2.95 GeV/c.

The successful extraction of the spin triplet scattering length with the dispersion
integral method from [Gas04] could be possibly improved by a more sophisticated fit
method with less numerical difficulties. The scattering length can also be determined by
the Jost function approach, and the results of both methods can be compared directly.
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A. Further Plots for the Λ Analyzing Power
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Figure A.1.: Λ analyzing power as a function of the scaling variable xF .
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A. Further Plots for the Λ Analyzing Power
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Figure A.2.: Λ analyzing power as a function of the transverse momentum pT (Λ) for
the full data (black) and the constaints xF > 0 (red) and xF < 0 (blue). The red
and blue points are shifted by pT = ±4 MeV/c for better visibility.
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B. Data Tables

B.1. Beam Polarization

θCMS
p pB ∆pB θCMS

p pB ∆pB θCMS
p pB ∆pB

54 0.772 0.019 66 0.780 0.036 78 0.827 0.051
48 0.810 0.027 70 0.778 0.037 82.5 0.814 0.073
62 0.842 0.033 74 0.744 0.041 87.5 0.765 0.222

Table B.1.: Beam polarization as a function of θCMS
p .

B.2. Analyzing Power pp Elastic Scattering

θCMS
p A ∆A θCMS

p A ∆A θCMS
p A ∆A

54 0.129 0.004 66 0.084 0.004 78 0.069 0.004
48 0.104 0.004 70 0.083 0.004 82.5 0.044 0.004
62 0.093 0.004 74 0.075 0.004 87.5 0.014 0.004

Table B.2.: Analyzing power from pp elastic scattering as a function of θCMS
p .

B.3. Data Tables for the mpΛ Invariant Mass Distributions
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B. Data Tables

mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆

2054.47 43.1 2.6 2094.99 104.0 2.4 2135.51 77.6 2.0
2055.48 78.8 3.2 2096.00 95.3 2.3 2136.52 78.6 2.0
2056.49 92.6 3.2 2097.01 100.7 2.4 2137.53 75.4 2.0
2057.51 95.8 3.0 2098.03 97.2 2.3 2138.55 73.4 2.0
2058.52 109.6 3.3 2099.04 97.7 2.3 2139.56 78.1 2.0
2059.53 107.4 3.1 2100.05 97.7 2.3 2140.57 75.4 2.0
2060.54 116.4 3.2 2101.06 93.1 2.2 2141.58 71.5 1.9
2061.56 110.8 3.0 2102.08 94.5 2.3 2142.60 70.7 1.9
2062.57 107.4 2.8 2103.09 95.4 2.3 2143.61 71.3 1.9
2063.58 113.9 2.9 2104.10 97.5 2.3 2144.62 73.0 2.0
2064.60 106.6 2.8 2105.12 95.0 2.2 2145.64 70.4 1.9
2065.61 113.1 2.9 2106.13 91.2 2.2 2146.65 69.7 1.9
2066.62 105.6 2.7 2107.14 93.4 2.2 2147.66 64.0 1.9
2067.64 105.0 2.7 2108.16 95.3 2.2 2148.68 63.7 1.8
2068.65 110.4 2.8 2109.17 91.0 2.2 2149.69 66.3 1.9
2069.66 108.4 2.7 2110.18 91.2 2.2 2150.70 63.7 1.9
2070.67 113.4 2.8 2111.19 95.6 2.3 2151.71 60.7 1.8
2071.69 106.6 2.7 2112.21 88.3 2.2 2152.73 61.0 1.8
2072.70 100.4 2.5 2113.22 86.2 2.1 2153.74 56.7 1.8
2073.71 103.1 2.6 2114.23 89.3 2.2 2154.75 56.9 1.8
2074.73 108.1 2.7 2115.25 92.4 2.2 2155.77 57.2 1.8
2075.74 105.4 2.6 2116.26 86.6 2.1 2156.78 57.0 1.8
2076.75 105.9 2.6 2117.27 88.3 2.1 2157.79 53.7 1.7
2077.77 105.5 2.6 2118.29 90.9 2.2 2158.81 52.3 1.7
2078.78 102.3 2.5 2119.30 87.9 2.1 2159.82 48.8 1.6
2079.79 102.8 2.5 2120.31 85.8 2.1 2160.83 50.9 1.7
2080.80 106.0 2.5 2121.32 88.9 2.2 2161.84 46.2 1.6
2081.82 107.5 2.6 2122.34 88.9 2.2 2162.86 42.0 1.5
2082.83 104.5 2.5 2123.35 89.8 2.2 2163.87 41.0 1.5
2083.84 98.6 2.4 2124.36 89.4 2.2 2164.88 43.4 1.6
2084.86 100.3 2.4 2125.38 89.6 2.2 2165.90 39.2 1.5
2085.87 104.7 2.8 2126.39 86.3 2.1 2166.91 37.0 1.5
2086.88 98.9 2.4 2127.40 92.0 2.2 2167.92 33.9 1.4
2087.90 105.0 2.5 2128.42 89.8 2.2 2168.94 33.3 1.4
2088.91 99.7 2.4 2129.43 90.6 2.2 2169.95 30.4 1.4
2089.92 99.6 2.4 2130.44 88.5 2.2 2170.96 25.6 1.3
2090.93 102.0 2.4 2131.45 85.5 2.1 2171.97 19.7 1.1
2091.95 97.0 2.3 2132.47 79.5 2.0 2172.99 18.2 1.1
2092.96 103.8 2.4 2133.48 80.5 2.1 2174.00 12.9 0.9
2093.97 96.5 2.3 2134.49 84.3 2.1 2175.01 3.6 0.6

Table B.3.: pΛ invariant mass distribution for the full data.
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B.3. Data Tables for the mpΛ Invariant Mass Distributions

mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆

2054.47 9.0 1.1 2094.99 23.6 1.1 2135.51 16.2 0.9
2055.48 17.9 1.6 2096.00 20.9 1.1 2136.52 16.4 0.9
2056.49 22.3 1.6 2097.01 21.2 1.1 2137.53 15.0 0.9
2057.51 21.6 1.4 2098.03 20.2 1.0 2138.55 15.9 0.9
2058.52 23.7 1.5 2099.04 20.3 1.0 2139.56 14.3 0.8
2059.53 25.2 1.5 2100.05 21.1 1.1 2140.57 15.8 0.9
2060.54 25.9 1.5 2101.06 19.4 1.0 2141.58 14.8 0.9
2061.56 22.4 1.3 2102.08 21.7 1.1 2142.60 13.4 0.8
2062.57 23.9 1.4 2103.09 20.9 1.1 2143.61 14.3 0.9
2063.58 25.5 1.4 2104.10 19.6 1.0 2144.62 14.5 0.9
2064.60 23.5 1.3 2105.12 20.1 1.0 2145.64 12.3 0.8
2065.61 24.0 1.3 2106.13 18.7 1.0 2146.65 14.4 0.9
2066.62 20.7 1.2 2107.14 18.9 1.0 2147.66 13.3 0.8
2067.64 21.8 1.2 2108.16 20.2 1.0 2148.68 13.3 0.8
2068.65 23.2 1.3 2109.17 19.0 1.0 2149.69 12.7 0.8
2069.66 22.8 1.3 2110.18 19.1 1.0 2150.70 13.7 0.9
2070.67 23.6 1.3 2111.19 21.3 1.1 2151.71 11.6 0.8
2071.69 21.8 1.2 2112.21 19.9 1.0 2152.73 12.6 0.8
2072.70 20.7 1.2 2113.22 17.9 0.9 2153.74 11.1 0.8
2073.71 21.6 1.2 2114.23 18.1 1.0 2154.75 10.7 0.8
2074.73 24.3 1.3 2115.25 21.4 1.1 2155.77 11.7 0.8
2075.74 20.7 1.1 2116.26 17.9 0.9 2156.78 11.2 0.8
2076.75 22.1 1.2 2117.27 18.9 1.0 2157.79 9.9 0.7
2077.77 24.0 1.2 2118.29 19.0 1.0 2158.81 9.2 0.7
2078.78 20.3 1.1 2119.30 18.0 0.9 2159.82 8.4 0.7
2079.79 22.3 1.2 2120.31 17.4 0.9 2160.83 11.1 0.8
2080.80 22.1 1.1 2121.32 18.1 0.9 2161.84 9.1 0.7
2081.82 20.7 1.1 2122.34 19.3 1.0 2162.86 9.1 0.7
2082.83 21.7 1.1 2123.35 18.5 1.0 2163.87 8.8 0.7
2083.84 21.9 1.1 2124.36 17.0 0.9 2164.88 8.3 0.7
2084.86 22.3 1.2 2125.38 18.7 1.0 2165.90 8.2 0.7
2085.87 23.5 1.2 2126.39 17.7 0.9 2166.91 6.7 0.6
2086.88 21.6 1.1 2127.40 19.1 1.0 2167.92 7.3 0.7
2087.90 19.4 1.0 2128.42 19.7 1.0 2168.94 6.9 0.6
2088.91 21.9 1.1 2129.43 17.7 0.9 2169.95 7.1 0.7
2089.92 19.7 1.0 2130.44 17.6 0.9 2170.96 5.5 0.6
2090.93 21.6 1.1 2131.45 18.3 1.0 2171.97 4.9 0.5
2091.95 20.3 1.1 2132.47 17.3 0.9 2172.99 4.2 0.5
2092.96 23.2 1.1 2133.48 17.6 0.9 2174.00 2.6 0.4
2093.97 20.6 1.1 2134.49 17.2 0.9 2175.01 1.1 0.4

Table B.4.: pΛ invariant mass distribution for cos θpΛ
pK > 0.5.
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B. Data Tables

mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆

2054.47 10.4 1.2 2094.99 27.4 1.3 2135.51 22.8 1.1
2055.48 21.6 1.7 2096.00 26.8 1.2 2136.52 21.6 1.1
2056.49 24.3 1.7 2097.01 26.5 1.2 2137.53 20.7 1.1
2057.51 26.8 1.7 2098.03 26.2 1.2 2138.55 19.2 1.0
2058.52 28.5 1.7 2099.04 25.4 1.2 2139.56 22.0 1.1
2059.53 27.8 1.6 2100.05 27.3 1.2 2140.57 19.3 1.0
2060.54 28.4 1.5 2101.06 27.2 1.2 2141.58 18.4 1.0
2061.56 28.2 1.5 2102.08 26.1 1.2 2142.60 18.6 1.0
2062.57 29.0 1.5 2103.09 25.8 1.2 2143.61 18.5 1.0
2063.58 27.6 1.4 2104.10 27.2 1.2 2144.62 19.5 1.0
2064.60 27.5 1.4 2105.12 28.0 1.2 2145.64 19.6 1.0
2065.61 30.0 1.5 2106.13 27.0 1.2 2146.65 17.5 1.0
2066.62 28.4 1.4 2107.14 25.3 1.2 2147.66 16.7 0.9
2067.64 29.0 1.4 2108.16 25.3 1.2 2148.68 17.4 1.0
2068.65 29.1 1.4 2109.17 24.2 1.2 2149.69 16.0 0.9
2069.66 28.6 1.4 2110.18 26.3 1.2 2150.70 16.0 0.9
2070.67 31.2 1.5 2111.19 28.4 1.3 2151.71 16.5 0.9
2071.69 29.2 1.4 2112.21 24.4 1.1 2152.73 16.0 0.9
2072.70 28.9 1.4 2113.22 24.4 1.2 2153.74 14.7 0.9
2073.71 27.1 1.3 2114.23 25.0 1.2 2154.75 14.0 0.9
2074.73 30.8 1.4 2115.25 24.5 1.1 2155.77 14.8 0.9
2075.74 28.6 1.3 2116.26 23.2 1.1 2156.78 15.2 0.9
2076.75 30.0 1.4 2117.27 24.9 1.2 2157.79 13.6 0.9
2077.77 28.1 1.3 2118.29 25.3 1.2 2158.81 14.1 0.9
2078.78 28.5 1.3 2119.30 26.2 1.2 2159.82 12.7 0.8
2079.79 28.2 1.3 2120.31 26.3 1.2 2160.83 13.5 0.9
2080.80 28.0 1.3 2121.32 25.0 1.2 2161.84 12.9 0.9
2081.82 28.9 1.3 2122.34 23.7 1.1 2162.86 11.5 0.8
2082.83 29.4 1.3 2123.35 25.4 1.2 2163.87 11.5 0.8
2083.84 25.5 1.2 2124.36 24.2 1.1 2164.88 11.1 0.8
2084.86 28.1 1.3 2125.38 25.9 1.2 2165.90 10.5 0.8
2085.87 28.7 1.3 2126.39 23.3 1.1 2166.91 10.6 0.8
2086.88 26.6 1.2 2127.40 25.0 1.2 2167.92 8.1 0.7
2087.90 30.2 1.4 2128.42 23.3 1.1 2168.94 9.6 0.8
2088.91 26.7 1.2 2129.43 27.8 1.3 2169.95 6.6 0.6
2089.92 28.9 1.3 2130.44 24.7 1.2 2170.96 7.5 0.7
2090.93 27.8 1.3 2131.45 22.9 1.1 2171.97 4.9 0.6
2091.95 25.3 1.2 2132.47 20.9 1.1 2172.99 5.2 0.6
2092.96 27.2 1.2 2133.48 21.9 1.1 2174.00 3.5 0.5
2093.97 26.1 1.2 2134.49 22.5 1.1 2175.01 0.7 0.3

Table B.5.: pΛ invariant mass distribution for 0 < cos θpΛ
pK < 0.5.
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B.3. Data Tables for the mpΛ Invariant Mass Distributions

mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆

2054.47 14.0 1.5 2094.99 28.6 1.3 2135.51 20.3 1.0
2055.48 20.6 1.6 2096.00 26.2 1.2 2136.52 21.0 1.1
2056.49 23.5 1.6 2097.01 30.1 1.3 2137.53 20.4 1.0
2057.51 24.7 1.6 2098.03 26.7 1.2 2138.55 20.6 1.1
2058.52 31.0 1.8 2099.04 28.0 1.3 2139.56 21.0 1.1
2059.53 28.4 1.6 2100.05 27.7 1.2 2140.57 20.9 1.1
2060.54 31.4 1.7 2101.06 24.8 1.2 2141.58 19.4 1.0
2061.56 30.9 1.6 2102.08 24.0 1.1 2142.60 19.8 1.0
2062.57 30.0 1.5 2103.09 26.3 1.2 2143.61 18.6 1.0
2063.58 31.6 1.6 2104.10 27.1 1.2 2144.62 19.0 1.0
2064.60 29.1 1.5 2105.12 25.6 1.2 2145.64 19.6 1.0
2065.61 31.5 1.5 2106.13 25.7 1.2 2146.65 20.0 1.0
2066.62 29.2 1.4 2107.14 27.0 1.2 2147.66 16.6 0.9
2067.64 27.4 1.4 2108.16 26.6 1.2 2148.68 16.9 1.0
2068.65 32.5 1.5 2109.17 26.1 1.2 2149.69 19.7 1.1
2069.66 28.6 1.4 2110.18 25.0 1.2 2150.70 16.6 1.0
2070.67 33.9 1.6 2111.19 23.7 1.1 2151.71 16.5 1.0
2071.69 30.6 1.4 2112.21 23.8 1.1 2152.73 16.0 0.9
2072.70 28.6 1.3 2113.22 23.7 1.1 2153.74 16.2 1.0
2073.71 28.9 1.3 2114.23 24.9 1.1 2154.75 17.1 1.0
2074.73 29.4 1.3 2115.25 25.6 1.2 2155.77 15.6 0.9
2075.74 29.9 1.4 2116.26 23.0 1.1 2156.78 16.7 1.0
2076.75 30.5 1.4 2117.27 25.2 1.2 2157.79 14.8 0.9
2077.77 29.2 1.3 2118.29 25.0 1.2 2158.81 13.8 0.9
2078.78 28.6 1.3 2119.30 23.0 1.1 2159.82 14.4 0.9
2079.79 29.3 1.3 2120.31 22.6 1.1 2160.83 13.2 0.9
2080.80 31.2 1.4 2121.32 25.3 1.2 2161.84 12.5 0.8
2081.82 31.1 1.4 2122.34 22.4 1.1 2162.86 10.6 0.8
2082.83 30.0 1.3 2123.35 24.3 1.1 2163.87 10.7 0.8
2083.84 28.9 1.3 2124.36 26.3 1.2 2164.88 11.6 0.8
2084.86 27.4 1.3 2125.38 24.3 1.1 2165.90 10.5 0.8
2085.87 29.3 1.3 2126.39 24.8 1.2 2166.91 10.8 0.8
2086.88 27.8 1.2 2127.40 24.6 1.2 2167.92 9.6 0.8
2087.90 30.8 1.4 2128.42 26.1 1.2 2168.94 8.8 0.7
2088.91 28.5 1.3 2129.43 23.6 1.1 2169.95 7.8 0.7
2089.92 28.1 1.3 2130.44 23.7 1.1 2170.96 6.5 0.6
2090.93 27.7 1.3 2131.45 23.5 1.1 2171.97 4.5 0.5
2091.95 27.2 1.2 2132.47 21.3 1.0 2172.99 3.9 0.5
2092.96 30.6 1.3 2133.48 21.5 1.1 2174.00 4.0 0.5
2093.97 27.7 1.3 2134.49 23.4 1.1 2175.01 0.6 0.3

Table B.6.: pΛ invariant mass distribution for −0.5 < cos θpΛ
pK < 0.
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B. Data Tables

mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆ mpΛ

[
MeV

c2

]
dσ
dm

[
nb c2

MeV

]
∆

2054.47 9.8 1.2 2094.99 24.3 1.2 2135.51 18.3 1.0
2055.48 18.8 1.5 2096.00 21.4 1.1 2136.52 19.7 1.0
2056.49 22.4 1.5 2097.01 23.1 1.1 2137.53 19.4 1.0
2057.51 22.7 1.4 2098.03 24.1 1.2 2138.55 17.8 1.0
2058.52 26.5 1.5 2099.04 24.0 1.2 2139.56 21.0 1.1
2059.53 26.0 1.4 2100.05 21.6 1.1 2140.57 19.6 1.0
2060.54 30.4 1.6 2101.06 21.7 1.1 2141.58 18.9 1.0
2061.56 29.2 1.5 2102.08 22.7 1.1 2142.60 19.0 1.0
2062.57 24.1 1.3 2103.09 22.4 1.1 2143.61 19.8 1.0
2063.58 29.1 1.5 2104.10 23.6 1.1 2144.62 20.0 1.1
2064.60 26.2 1.4 2105.12 21.3 1.1 2145.64 19.0 1.0
2065.61 27.5 1.4 2106.13 20.0 1.0 2146.65 17.7 1.0
2066.62 27.2 1.4 2107.14 22.3 1.1 2147.66 17.4 1.0
2067.64 26.3 1.3 2108.16 23.2 1.1 2148.68 16.2 0.9
2068.65 25.2 1.3 2109.17 21.7 1.1 2149.69 18.0 1.0
2069.66 27.9 1.4 2110.18 21.1 1.0 2150.70 17.4 1.0
2070.67 24.6 1.3 2111.19 22.2 1.1 2151.71 16.0 1.0
2071.69 24.8 1.3 2112.21 20.2 1.0 2152.73 16.5 1.0
2072.70 22.0 1.1 2113.22 20.4 1.0 2153.74 14.6 0.9
2073.71 25.1 1.2 2114.23 21.4 1.0 2154.75 15.2 0.9
2074.73 23.7 1.2 2115.25 20.9 1.0 2155.77 15.2 0.9
2075.74 26.0 1.3 2116.26 22.4 1.1 2156.78 13.9 0.9
2076.75 23.1 1.2 2117.27 19.3 1.0 2157.79 15.8 1.0
2077.77 24.0 1.2 2118.29 21.7 1.1 2158.81 15.3 1.0
2078.78 24.8 1.2 2119.30 20.9 1.0 2159.82 13.5 0.9
2079.79 22.8 1.2 2120.31 19.5 1.0 2160.83 13.1 0.9
2080.80 24.6 1.2 2121.32 20.6 1.0 2161.84 11.7 0.8
2081.82 26.7 1.3 2122.34 23.4 1.1 2162.86 10.8 0.8
2082.83 23.5 1.2 2123.35 21.7 1.1 2163.87 10.1 0.8
2083.84 22.0 1.1 2124.36 22.1 1.1 2164.88 12.7 0.9
2084.86 22.5 1.1 2125.38 20.8 1.0 2165.90 10.0 0.8
2085.87 23.1 1.2 2126.39 20.7 1.0 2166.91 8.9 0.7
2086.88 22.6 1.1 2127.40 23.4 1.1 2167.92 9.0 0.8
2087.90 24.8 1.2 2128.42 20.8 1.0 2168.94 8.1 0.7
2088.91 22.7 1.1 2129.43 21.9 1.1 2169.95 8.9 0.8
2089.92 22.9 1.1 2130.44 22.7 1.1 2170.96 6.2 0.6
2090.93 24.8 1.2 2131.45 20.8 1.1 2171.97 5.4 0.6
2091.95 24.1 1.2 2132.47 20.0 1.0 2172.99 4.9 0.6
2092.96 22.7 1.1 2133.48 19.6 1.0 2174.00 2.9 0.4
2093.97 22.1 1.1 2134.49 21.3 1.1 2175.01 1.2 0.4

Table B.7.: pΛ invariant mass distribution for cos θpΛ
pK < −0.5.
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B.4. Data Tables for the Angular Distributions

B.4. Data Tables for the Angular Distributions
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B. Data Tables

cos θCMS
K

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.796 0.028 -0.33 0.817 0.019 0.33 0.778 0.018
-0.97 0.746 0.024 -0.31 0.781 0.018 0.35 0.787 0.018
-0.95 0.728 0.023 -0.29 0.804 0.019 0.37 0.786 0.018
-0.93 0.759 0.022 -0.27 0.798 0.019 0.39 0.785 0.018
-0.91 0.769 0.022 -0.25 0.789 0.018 0.41 0.803 0.019
-0.89 0.739 0.021 -0.23 0.776 0.018 0.43 0.777 0.018
-0.87 0.791 0.021 -0.21 0.797 0.019 0.45 0.830 0.019
-0.85 0.782 0.021 -0.19 0.801 0.019 0.47 0.818 0.019
-0.83 0.777 0.021 -0.17 0.774 0.018 0.49 0.820 0.019
-0.81 0.789 0.021 -0.15 0.833 0.019 0.51 0.825 0.019
-0.79 0.799 0.021 -0.13 0.822 0.019 0.53 0.814 0.019
-0.77 0.749 0.020 -0.11 0.800 0.018 0.55 0.850 0.020
-0.75 0.807 0.020 -0.09 0.794 0.018 0.57 0.837 0.020
-0.73 0.806 0.020 -0.07 0.785 0.018 0.59 0.811 0.019
-0.71 0.762 0.019 -0.05 0.797 0.018 0.61 0.853 0.020
-0.69 0.786 0.020 -0.03 0.783 0.018 0.63 0.854 0.020
-0.67 0.769 0.020 -0.01 0.824 0.019 0.65 0.852 0.020
-0.65 0.782 0.019 0.01 0.801 0.018 0.67 0.836 0.020
-0.63 0.812 0.020 0.03 0.812 0.018 0.69 0.830 0.020
-0.61 0.821 0.020 0.05 0.755 0.018 0.71 0.862 0.020
-0.59 0.791 0.019 0.07 0.799 0.018 0.73 0.833 0.020
-0.57 0.791 0.019 0.09 0.798 0.018 0.75 0.896 0.021
-0.55 0.779 0.019 0.11 0.776 0.018 0.77 0.870 0.021
-0.53 0.795 0.019 0.13 0.801 0.018 0.79 0.861 0.021
-0.51 0.825 0.019 0.15 0.788 0.018 0.81 0.801 0.020
-0.49 0.816 0.019 0.17 0.781 0.018 0.83 0.874 0.021
-0.47 0.807 0.019 0.19 0.783 0.018 0.85 0.858 0.021
-0.45 0.825 0.019 0.21 0.790 0.018 0.87 0.833 0.021
-0.43 0.822 0.019 0.23 0.813 0.018 0.89 0.844 0.021
-0.41 0.811 0.019 0.25 0.753 0.017 0.91 0.763 0.020
-0.39 0.782 0.018 0.27 0.784 0.018 0.93 0.767 0.020
-0.37 0.795 0.019 0.29 0.835 0.019 0.95 0.752 0.020
-0.35 0.787 0.019 0.31 0.788 0.018 0.97 0.687 0.020

0.99 0.301 0.015

Table B.8.: Kaon CMS distribution.
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B.4. Data Tables for the Angular Distributions

cos θCMS
Λ

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

Λ
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

Λ
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.903 0.026 -0.33 0.741 0.018 0.33 0.729 0.017
-0.97 0.898 0.026 -0.31 0.756 0.018 0.35 0.752 0.017
-0.95 0.888 0.025 -0.29 0.757 0.018 0.37 0.729 0.017
-0.93 0.865 0.024 -0.27 0.756 0.018 0.39 0.739 0.017
-0.91 0.878 0.024 -0.25 0.707 0.017 0.41 0.748 0.018
-0.89 0.883 0.023 -0.23 0.740 0.018 0.43 0.777 0.018
-0.87 0.923 0.024 -0.21 0.705 0.017 0.45 0.764 0.018
-0.85 0.865 0.023 -0.19 0.719 0.017 0.47 0.750 0.018
-0.83 0.922 0.023 -0.17 0.716 0.017 0.49 0.779 0.018
-0.81 0.900 0.023 -0.15 0.702 0.017 0.51 0.774 0.018
-0.79 0.930 0.023 -0.13 0.701 0.017 0.53 0.794 0.019
-0.77 0.924 0.023 -0.11 0.668 0.016 0.55 0.815 0.019
-0.75 0.925 0.022 -0.09 0.711 0.017 0.57 0.810 0.019
-0.73 0.896 0.022 -0.07 0.690 0.017 0.59 0.812 0.019
-0.71 0.912 0.022 -0.05 0.691 0.017 0.61 0.846 0.019
-0.69 0.864 0.021 -0.03 0.713 0.017 0.63 0.801 0.019
-0.67 0.896 0.022 -0.01 0.659 0.016 0.65 0.836 0.019
-0.65 0.857 0.021 0.01 0.705 0.017 0.67 0.820 0.019
-0.63 0.871 0.021 0.03 0.727 0.017 0.69 0.907 0.021
-0.61 0.878 0.021 0.05 0.690 0.017 0.71 0.875 0.020
-0.59 0.856 0.021 0.07 0.687 0.017 0.73 0.871 0.020
-0.57 0.864 0.020 0.09 0.674 0.016 0.75 0.860 0.020
-0.55 0.872 0.021 0.11 0.696 0.017 0.77 0.859 0.020
-0.53 0.844 0.020 0.13 0.703 0.017 0.79 0.892 0.021
-0.51 0.827 0.020 0.15 0.693 0.017 0.81 0.845 0.020
-0.49 0.828 0.020 0.17 0.695 0.017 0.83 0.879 0.021
-0.47 0.831 0.020 0.19 0.697 0.017 0.85 0.848 0.020
-0.45 0.820 0.019 0.21 0.738 0.017 0.87 0.888 0.021
-0.43 0.761 0.018 0.23 0.722 0.017 0.89 0.874 0.021
-0.41 0.782 0.019 0.25 0.718 0.017 0.91 0.870 0.022
-0.39 0.802 0.019 0.27 0.692 0.017 0.93 0.810 0.021
-0.37 0.784 0.019 0.29 0.734 0.017 0.95 0.797 0.021
-0.35 0.779 0.019 0.31 0.721 0.017 0.97 0.774 0.021

0.99 0.706 0.020

Table B.9.: Λ CMS distribution.
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B. Data Tables

cos θCMS
p

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

p
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θCMS

p
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.807 0.024 -0.33 0.647 0.016 0.33 0.711 0.018
-0.97 1.048 0.024 -0.31 0.694 0.017 0.35 0.682 0.017
-0.95 1.144 0.025 -0.29 0.663 0.016 0.37 0.673 0.017
-0.93 1.123 0.024 -0.27 0.679 0.016 0.39 0.693 0.018
-0.91 1.120 0.024 -0.25 0.649 0.016 0.41 0.659 0.017
-0.89 1.095 0.023 -0.23 0.620 0.016 0.43 0.712 0.018
-0.87 1.104 0.023 -0.21 0.628 0.016 0.45 0.702 0.018
-0.85 1.066 0.023 -0.19 0.615 0.016 0.47 0.732 0.018
-0.83 1.063 0.022 -0.17 0.633 0.016 0.49 0.720 0.019
-0.81 0.978 0.021 -0.15 0.633 0.016 0.51 0.777 0.019
-0.79 0.984 0.021 -0.13 0.609 0.015 0.53 0.759 0.019
-0.77 0.963 0.021 -0.11 0.625 0.016 0.55 0.783 0.020
-0.75 0.921 0.020 -0.09 0.603 0.015 0.57 0.805 0.020
-0.73 0.902 0.020 -0.07 0.595 0.015 0.59 0.803 0.020
-0.71 0.920 0.020 -0.05 0.633 0.016 0.61 0.843 0.021
-0.69 0.850 0.019 -0.03 0.620 0.016 0.63 0.822 0.020
-0.67 0.832 0.019 -0.01 0.623 0.016 0.65 0.865 0.021
-0.65 0.836 0.019 0.01 0.626 0.016 0.67 0.899 0.022
-0.63 0.844 0.019 0.03 0.615 0.016 0.69 0.915 0.022
-0.61 0.790 0.018 0.05 0.650 0.016 0.71 0.946 0.023
-0.59 0.801 0.018 0.07 0.623 0.016 0.73 0.953 0.023
-0.57 0.799 0.018 0.09 0.645 0.016 0.75 0.993 0.024
-0.55 0.746 0.017 0.11 0.650 0.017 0.77 1.050 0.025
-0.53 0.739 0.017 0.13 0.616 0.016 0.79 1.006 0.024
-0.51 0.725 0.017 0.15 0.632 0.016 0.81 1.060 0.025
-0.49 0.746 0.017 0.17 0.639 0.017 0.83 1.125 0.026
-0.47 0.700 0.017 0.19 0.632 0.016 0.85 1.069 0.026
-0.45 0.733 0.017 0.21 0.644 0.017 0.87 1.180 0.028
-0.43 0.731 0.017 0.23 0.618 0.016 0.89 1.180 0.028
-0.41 0.704 0.017 0.25 0.670 0.017 0.91 1.240 0.029
-0.39 0.696 0.016 0.27 0.661 0.017 0.93 1.189 0.028
-0.37 0.687 0.016 0.29 0.656 0.017 0.95 1.153 0.028
-0.35 0.685 0.016 0.31 0.654 0.017 0.97 0.819 0.024

0.99 0.177 0.017

Table B.10.: Proton CMS distribution.
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B.4. Data Tables for the Angular Distributions

cos θpΛ
p

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θpΛ

p
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θpΛ

p
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 1.046 0.026 -0.33 0.665 0.016 0.33 0.691 0.017
-0.97 1.033 0.025 -0.31 0.641 0.016 0.35 0.668 0.017
-0.95 1.042 0.024 -0.29 0.672 0.016 0.37 0.683 0.017
-0.93 1.007 0.023 -0.27 0.653 0.016 0.39 0.731 0.018
-0.91 1.009 0.023 -0.25 0.656 0.016 0.41 0.703 0.018
-0.89 1.055 0.023 -0.23 0.653 0.016 0.43 0.702 0.018
-0.87 1.013 0.022 -0.21 0.634 0.016 0.45 0.760 0.019
-0.85 0.987 0.022 -0.19 0.639 0.016 0.47 0.753 0.019
-0.83 0.976 0.021 -0.17 0.647 0.016 0.49 0.766 0.019
-0.81 0.954 0.021 -0.15 0.609 0.015 0.51 0.756 0.019
-0.79 0.930 0.021 -0.13 0.620 0.016 0.53 0.775 0.019
-0.77 0.925 0.020 -0.11 0.600 0.015 0.55 0.749 0.019
-0.75 0.921 0.020 -0.09 0.619 0.016 0.57 0.811 0.020
-0.73 0.904 0.020 -0.07 0.630 0.016 0.59 0.801 0.020
-0.71 0.862 0.019 -0.05 0.582 0.015 0.61 0.823 0.020
-0.69 0.873 0.020 -0.03 0.603 0.015 0.63 0.842 0.021
-0.67 0.863 0.019 -0.01 0.637 0.016 0.65 0.883 0.021
-0.65 0.850 0.019 0.01 0.589 0.015 0.67 0.906 0.022
-0.63 0.814 0.018 0.03 0.610 0.016 0.69 0.922 0.022
-0.61 0.816 0.019 0.05 0.602 0.016 0.71 0.929 0.022
-0.59 0.781 0.018 0.07 0.622 0.016 0.73 0.947 0.023
-0.57 0.803 0.018 0.09 0.633 0.016 0.75 0.976 0.023
-0.55 0.763 0.018 0.11 0.612 0.016 0.77 0.988 0.024
-0.53 0.762 0.018 0.13 0.635 0.016 0.79 1.048 0.025
-0.51 0.734 0.017 0.15 0.583 0.015 0.81 0.995 0.024
-0.49 0.730 0.017 0.17 0.636 0.016 0.83 1.077 0.026
-0.47 0.744 0.017 0.19 0.619 0.016 0.85 1.118 0.027
-0.45 0.703 0.017 0.21 0.650 0.016 0.87 1.113 0.027
-0.43 0.698 0.017 0.23 0.670 0.017 0.89 1.122 0.028
-0.41 0.691 0.017 0.25 0.645 0.016 0.91 1.132 0.028
-0.39 0.685 0.016 0.27 0.640 0.017 0.93 1.101 0.028
-0.37 0.684 0.017 0.29 0.655 0.017 0.95 1.118 0.030
-0.35 0.666 0.016 0.31 0.645 0.017 0.97 1.103 0.031

0.99 0.955 0.030

Table B.11.: Proton Jackson angle in the pΛ rest frame.

155



B. Data Tables

cos θKΛ
K

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θKΛ

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θKΛ

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.679 0.021 -0.33 0.846 0.019 0.33 0.794 0.019
-0.97 0.670 0.021 -0.31 0.868 0.020 0.35 0.817 0.019
-0.95 0.709 0.021 -0.29 0.859 0.019 0.37 0.805 0.019
-0.93 0.658 0.020 -0.27 0.852 0.019 0.39 0.784 0.019
-0.91 0.709 0.021 -0.25 0.881 0.020 0.41 0.812 0.019
-0.89 0.703 0.020 -0.23 0.869 0.019 0.43 0.809 0.019
-0.87 0.704 0.020 -0.21 0.856 0.019 0.45 0.822 0.019
-0.85 0.740 0.020 -0.19 0.844 0.019 0.47 0.786 0.019
-0.83 0.726 0.020 -0.17 0.826 0.019 0.49 0.800 0.019
-0.81 0.791 0.021 -0.15 0.872 0.019 0.51 0.808 0.019
-0.79 0.758 0.020 -0.13 0.856 0.019 0.53 0.812 0.019
-0.77 0.817 0.021 -0.11 0.845 0.019 0.55 0.813 0.019
-0.75 0.767 0.020 -0.09 0.841 0.019 0.57 0.815 0.019
-0.73 0.781 0.020 -0.07 0.805 0.018 0.59 0.761 0.019
-0.71 0.791 0.020 -0.05 0.872 0.019 0.61 0.767 0.019
-0.69 0.778 0.019 -0.03 0.854 0.019 0.63 0.825 0.020
-0.67 0.792 0.019 -0.01 0.823 0.019 0.65 0.830 0.020
-0.65 0.810 0.020 0.01 0.836 0.019 0.67 0.820 0.020
-0.63 0.837 0.020 0.03 0.815 0.018 0.69 0.766 0.019
-0.61 0.820 0.020 0.05 0.850 0.019 0.71 0.789 0.020
-0.59 0.850 0.020 0.07 0.872 0.019 0.73 0.819 0.020
-0.57 0.811 0.019 0.09 0.844 0.019 0.75 0.771 0.020
-0.55 0.839 0.020 0.11 0.792 0.019 0.77 0.752 0.020
-0.53 0.824 0.019 0.13 0.818 0.018 0.79 0.787 0.020
-0.51 0.859 0.020 0.15 0.844 0.019 0.81 0.750 0.020
-0.49 0.817 0.019 0.17 0.861 0.019 0.83 0.720 0.019
-0.47 0.806 0.019 0.19 0.810 0.020 0.85 0.727 0.020
-0.45 0.830 0.019 0.21 0.798 0.019 0.87 0.714 0.020
-0.43 0.840 0.019 0.23 0.805 0.019 0.89 0.715 0.020
-0.41 0.848 0.019 0.25 0.799 0.019 0.91 0.697 0.020
-0.39 0.851 0.019 0.27 0.830 0.019 0.93 0.644 0.019
-0.37 0.831 0.019 0.29 0.799 0.019 0.95 0.691 0.021
-0.35 0.876 0.020 0.31 0.830 0.019 0.97 0.626 0.020

0.99 0.540 0.019

Table B.12.: Kaon Jackson angle in the KΛ rest frame.
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B.4. Data Tables for the Angular Distributions

cos θKp
K

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θKp

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θKp

K
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.874 0.023 -0.33 0.794 0.019 0.33 0.677 0.016
-0.97 0.946 0.025 -0.31 0.761 0.018 0.35 0.681 0.016
-0.95 0.900 0.024 -0.29 0.753 0.018 0.37 0.714 0.017
-0.93 0.925 0.025 -0.27 0.750 0.018 0.39 0.696 0.017
-0.91 0.927 0.024 -0.25 0.765 0.018 0.41 0.695 0.017
-0.89 0.957 0.025 -0.23 0.780 0.019 0.43 0.713 0.017
-0.87 0.961 0.025 -0.21 0.764 0.018 0.45 0.720 0.017
-0.85 0.977 0.025 -0.19 0.743 0.018 0.47 0.744 0.018
-0.83 0.951 0.024 -0.17 0.750 0.018 0.49 0.756 0.018
-0.81 0.966 0.024 -0.15 0.701 0.017 0.51 0.738 0.017
-0.79 0.941 0.023 -0.13 0.701 0.017 0.53 0.761 0.018
-0.77 0.951 0.023 -0.11 0.705 0.017 0.55 0.752 0.018
-0.75 0.917 0.023 -0.09 0.723 0.017 0.57 0.777 0.018
-0.73 0.929 0.023 -0.07 0.762 0.018 0.59 0.766 0.018
-0.71 0.898 0.022 -0.05 0.700 0.017 0.61 0.787 0.018
-0.69 0.898 0.022 -0.03 0.705 0.017 0.63 0.812 0.019
-0.67 0.914 0.022 -0.01 0.691 0.017 0.65 0.841 0.019
-0.65 0.890 0.021 0.01 0.673 0.017 0.67 0.832 0.019
-0.63 0.885 0.021 0.03 0.729 0.017 0.69 0.866 0.020
-0.61 0.911 0.022 0.05 0.703 0.017 0.71 0.860 0.020
-0.59 0.866 0.021 0.07 0.697 0.017 0.73 0.899 0.020
-0.57 0.861 0.021 0.09 0.681 0.017 0.75 0.866 0.020
-0.55 0.825 0.020 0.11 0.712 0.017 0.77 0.873 0.020
-0.53 0.842 0.020 0.13 0.678 0.017 0.79 0.874 0.020
-0.51 0.802 0.019 0.15 0.694 0.017 0.81 0.881 0.020
-0.49 0.826 0.020 0.17 0.677 0.017 0.83 0.850 0.020
-0.47 0.834 0.020 0.19 0.713 0.017 0.85 0.872 0.021
-0.45 0.803 0.019 0.21 0.710 0.017 0.87 0.841 0.020
-0.43 0.822 0.020 0.23 0.687 0.017 0.89 0.848 0.021
-0.41 0.779 0.019 0.25 0.688 0.017 0.91 0.845 0.021
-0.39 0.790 0.019 0.27 0.688 0.017 0.93 0.816 0.021
-0.37 0.768 0.019 0.29 0.714 0.017 0.95 0.755 0.020
-0.35 0.780 0.019 0.31 0.684 0.017 0.97 0.740 0.020

0.99 0.639 0.019

Table B.13.: Kaon Jackson angle in the Kp rest frame.
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B. Data Tables

cos θpΛ
pK

dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]
cos θpΛ
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dσ
dΩ

[
µb
sr

]
∆
[

µb
sr
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cos θpΛ
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dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.731 0.020 -0.33 0.853 0.020 0.33 0.830 0.019
-0.97 0.749 0.020 -0.31 0.859 0.020 0.35 0.815 0.019
-0.95 0.775 0.020 -0.29 0.871 0.020 0.37 0.819 0.019
-0.93 0.734 0.019 -0.27 0.859 0.020 0.39 0.769 0.018
-0.91 0.730 0.019 -0.25 0.878 0.020 0.41 0.806 0.019
-0.89 0.790 0.020 -0.23 0.870 0.020 0.43 0.822 0.019
-0.87 0.778 0.019 -0.21 0.826 0.019 0.45 0.830 0.020
-0.85 0.783 0.019 -0.19 0.853 0.020 0.47 0.792 0.019
-0.83 0.767 0.019 -0.17 0.863 0.020 0.49 0.789 0.019
-0.81 0.777 0.019 -0.15 0.889 0.020 0.51 0.810 0.019
-0.79 0.794 0.019 -0.13 0.816 0.019 0.53 0.755 0.018
-0.77 0.792 0.019 -0.11 0.846 0.020 0.55 0.809 0.019
-0.75 0.791 0.019 -0.09 0.855 0.020 0.57 0.789 0.019
-0.73 0.823 0.020 -0.07 0.864 0.020 0.59 0.726 0.018
-0.71 0.798 0.019 -0.05 0.876 0.020 0.61 0.755 0.019
-0.69 0.807 0.019 -0.03 0.856 0.020 0.63 0.755 0.019
-0.67 0.785 0.019 -0.01 0.900 0.020 0.65 0.735 0.018
-0.65 0.809 0.019 0.01 0.850 0.020 0.67 0.766 0.019
-0.63 0.831 0.020 0.03 0.846 0.020 0.69 0.739 0.018
-0.61 0.850 0.020 0.05 0.862 0.020 0.71 0.731 0.018
-0.59 0.817 0.019 0.07 0.831 0.019 0.73 0.687 0.018
-0.57 0.842 0.020 0.09 0.873 0.020 0.75 0.707 0.018
-0.55 0.844 0.020 0.11 0.863 0.020 0.77 0.709 0.018
-0.53 0.846 0.020 0.13 0.870 0.020 0.79 0.726 0.018
-0.51 0.833 0.020 0.15 0.867 0.020 0.81 0.690 0.018
-0.49 0.817 0.019 0.17 0.867 0.020 0.83 0.690 0.018
-0.47 0.861 0.020 0.19 0.842 0.019 0.85 0.664 0.018
-0.45 0.824 0.019 0.21 0.874 0.020 0.87 0.682 0.018
-0.43 0.855 0.020 0.23 0.808 0.019 0.89 0.660 0.018
-0.41 0.848 0.020 0.25 0.822 0.019 0.91 0.612 0.017
-0.39 0.839 0.020 0.27 0.866 0.020 0.93 0.594 0.017
-0.37 0.860 0.020 0.29 0.859 0.020 0.95 0.603 0.018
-0.35 0.834 0.020 0.31 0.806 0.019 0.97 0.536 0.017

0.99 0.520 0.018

Table B.14.: Proton to Kaon helicity angle in the pΛ rest frame.
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B.4. Data Tables for the Angular Distributions

cos θKΛ
pΛ

dσ
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sr

]
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µb
sr
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cos θKΛ
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dσ
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[
µb
sr

]
∆
[

µb
sr

]
cos θKΛ

pΛ
dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 0.414 0.016 -0.33 0.707 0.018 0.33 0.837 0.019
-0.97 0.454 0.015 -0.31 0.706 0.018 0.35 0.902 0.020
-0.95 0.479 0.016 -0.29 0.724 0.018 0.37 0.883 0.020
-0.93 0.486 0.015 -0.27 0.728 0.018 0.39 0.867 0.020
-0.91 0.512 0.016 -0.25 0.717 0.018 0.41 0.911 0.021
-0.89 0.541 0.016 -0.23 0.746 0.018 0.43 0.883 0.020
-0.87 0.521 0.015 -0.21 0.741 0.018 0.45 0.919 0.021
-0.85 0.548 0.016 -0.19 0.739 0.018 0.47 0.881 0.020
-0.83 0.564 0.016 -0.17 0.761 0.018 0.49 0.894 0.020
-0.81 0.581 0.016 -0.15 0.725 0.018 0.51 0.916 0.021
-0.79 0.566 0.016 -0.13 0.748 0.018 0.53 0.915 0.021
-0.77 0.588 0.016 -0.11 0.717 0.018 0.55 0.921 0.021
-0.75 0.568 0.016 -0.09 0.772 0.018 0.57 0.953 0.021
-0.73 0.581 0.016 -0.07 0.764 0.018 0.59 0.944 0.021
-0.71 0.609 0.016 -0.05 0.735 0.018 0.61 0.970 0.022
-0.69 0.642 0.017 -0.03 0.755 0.018 0.63 0.956 0.021
-0.67 0.598 0.016 -0.01 0.816 0.019 0.65 0.973 0.022
-0.65 0.587 0.016 0.01 0.786 0.019 0.67 0.940 0.021
-0.63 0.604 0.016 0.03 0.796 0.019 0.69 1.006 0.022
-0.61 0.643 0.017 0.05 0.766 0.018 0.71 1.035 0.023
-0.59 0.655 0.017 0.07 0.751 0.018 0.73 1.029 0.023
-0.57 0.625 0.016 0.09 0.783 0.019 0.75 1.046 0.023
-0.55 0.629 0.016 0.11 0.798 0.019 0.77 1.078 0.024
-0.53 0.642 0.017 0.13 0.777 0.019 0.79 1.059 0.023
-0.51 0.651 0.017 0.15 0.794 0.019 0.81 1.091 0.024
-0.49 0.644 0.017 0.17 0.805 0.019 0.83 1.095 0.024
-0.47 0.647 0.017 0.19 0.798 0.019 0.85 1.108 0.024
-0.45 0.693 0.017 0.21 0.851 0.020 0.87 1.146 0.025
-0.43 0.690 0.017 0.23 0.817 0.019 0.89 1.173 0.026
-0.41 0.694 0.017 0.25 0.834 0.019 0.91 1.155 0.025
-0.39 0.689 0.017 0.27 0.804 0.019 0.93 1.207 0.026
-0.37 0.682 0.017 0.29 0.851 0.020 0.95 1.220 0.027
-0.35 0.700 0.017 0.31 0.831 0.019 0.97 1.272 0.027

0.99 1.228 0.027

Table B.15.: Proton to Λ helicity angle in the KΛ rest frame.
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B. Data Tables

cos θpK
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sr

]
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sr
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cos θpK
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[
µb
sr

]
∆
[

µb
sr
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dσ
dΩ

[
µb
sr

]
∆
[

µb
sr

]

-0.99 1.244 0.032 -0.33 0.822 0.019 0.33 0.685 0.017
-0.97 1.264 0.029 -0.31 0.828 0.019 0.35 0.653 0.017
-0.95 1.257 0.028 -0.29 0.811 0.019 0.37 0.675 0.017
-0.93 1.223 0.027 -0.27 0.798 0.019 0.39 0.659 0.017
-0.91 1.217 0.027 -0.25 0.809 0.019 0.41 0.656 0.017
-0.89 1.191 0.026 -0.23 0.815 0.019 0.43 0.656 0.017
-0.87 1.186 0.026 -0.21 0.788 0.019 0.45 0.653 0.017
-0.85 1.136 0.025 -0.19 0.811 0.019 0.47 0.638 0.016
-0.83 1.142 0.025 -0.17 0.746 0.018 0.49 0.673 0.017
-0.81 1.121 0.024 -0.15 0.789 0.019 0.51 0.648 0.017
-0.79 1.036 0.023 -0.13 0.787 0.019 0.53 0.650 0.017
-0.77 1.092 0.024 -0.11 0.764 0.018 0.55 0.654 0.017
-0.75 1.011 0.023 -0.09 0.765 0.018 0.57 0.640 0.017
-0.73 1.039 0.023 -0.07 0.785 0.019 0.59 0.670 0.017
-0.71 1.002 0.022 -0.05 0.768 0.018 0.61 0.629 0.017
-0.69 0.982 0.022 -0.03 0.732 0.018 0.63 0.631 0.017
-0.67 0.941 0.021 -0.01 0.748 0.018 0.65 0.635 0.017
-0.65 0.919 0.021 0.01 0.751 0.018 0.67 0.656 0.017
-0.63 0.953 0.021 0.03 0.790 0.019 0.69 0.656 0.017
-0.61 0.933 0.021 0.05 0.740 0.018 0.71 0.614 0.016
-0.59 0.922 0.021 0.07 0.709 0.017 0.73 0.635 0.017
-0.57 0.880 0.020 0.09 0.757 0.018 0.75 0.640 0.017
-0.55 0.926 0.021 0.11 0.710 0.017 0.77 0.625 0.017
-0.53 0.893 0.020 0.13 0.708 0.017 0.79 0.628 0.017
-0.51 0.881 0.020 0.15 0.709 0.017 0.81 0.619 0.017
-0.49 0.867 0.020 0.17 0.755 0.018 0.83 0.616 0.017
-0.47 0.910 0.020 0.19 0.676 0.017 0.85 0.625 0.017
-0.45 0.839 0.019 0.21 0.690 0.017 0.87 0.613 0.017
-0.43 0.837 0.020 0.23 0.710 0.017 0.89 0.640 0.017
-0.41 0.862 0.020 0.25 0.694 0.017 0.91 0.579 0.017
-0.39 0.821 0.019 0.27 0.684 0.017 0.93 0.578 0.017
-0.37 0.831 0.019 0.29 0.685 0.017 0.95 0.594 0.018
-0.35 0.836 0.019 0.31 0.689 0.017 0.97 0.590 0.018

0.99 0.546 0.018

Table B.16.: Kaon to Λ helicity angle in the pK rest frame.
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B.5. Data Tables for the Λ Polarization

B.5. Data Tables for the Λ Polarization

cos θCMS
Λ PΛ ∆PΛ cos θCMS

Λ PΛ ∆PΛ

-0.9375 -0.110 0.031 0.0625 -0.046 0.027
-0.8125 -0.223 0.028 0.1875 0.080 0.027
-0.6875 -0.155 0.027 0.3125 0.110 0.027
-0.5625 -0.179 0.027 0.4375 0.147 0.027
-0.4375 -0.139 0.027 0.5625 0.199 0.026
-0.3125 -0.072 0.027 0.6875 0.188 0.026
-0.1875 -0.089 0.028 0.8125 0.217 0.026
-0.0625 -0.034 0.028 0.9375 0.219 0.029

Table B.17.: Λ polarization dependence on cos θCMS
Λ .

xF PΛ ∆PΛ xF PΛ ∆PΛ xF PΛ ∆PΛ

-0.9 -0.284 0.089 -0.25 -0.077 0.024 0.35 0.159 0.025
-0.75 -0.183 0.055 -0.15 -0.055 0.023 0.45 0.209 0.027
-0.65 -0.311 0.039 -0.05 -0.042 0.023 0.55 0.228 0.030
-0.55 -0.237 0.032 0.05 -0.007 0.023 0.65 0.282 0.036
-0.45 -0.178 0.028 0.15 0.064 0.023 0.75 0.292 0.046
-0.35 -0.152 0.026 0.25 0.130 0.024 0.9 0.334 0.067

Table B.18.: Λ polarization dependence on the scaling variable xF =
pCMS

||

pCMS
||max

(Λ).
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B. Data Tables

pT PΛ ∆PΛ pT PΛ ∆PΛ pT PΛ ∆PΛ

20 0.001 0.051 150 0.015 0.025 270 -0.000 0.026
50 0.065 0.046 170 0.027 0.024 290 -0.007 0.027
70 0.043 0.038 190 -0.009 0.023 310 -0.006 0.030
90 -0.019 0.033 210 0.026 0.023 330 -0.008 0.034
110 0.082 0.029 230 0.011 0.024 350 0.048 0.043
130 0.022 0.026 250 -0.021 0.024 380 -0.073 0.054

Table B.19.: Λ polarization dependence on the transverse momentum pT (Λ) without
constraint on xF .

pT PΛ ∆PΛ pT PΛ ∆PΛ

40 0.116 0.036 220 0.147 0.023
100 0.138 0.030 260 0.184 0.024
140 0.115 0.025 300 0.166 0.028
180 0.115 0.023 360 0.122 0.034

Table B.20.: Λ polarization dependence on the transverse momentum pT (Λ) for xF >
0.

pT PΛ ∆PΛ pT PΛ ∆PΛ

40 -0.034 0.036 220 -0.121 0.024
100 -0.068 0.031 260 -0.223 0.025
140 -0.084 0.026 300 -0.197 0.029
180 -0.105 0.024 360 -0.133 0.034

Table B.21.: Λ polarization dependence on the transverse momentum pT (Λ) for xF <
0.
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B.6. Data Tables for the Analyzing Power of the Final State Particles

B.6. Data Tables for the Analyzing Power of the Final State
Particles

cos θCMS
p AN (p) ∆AN (p) cos θCMS

p AN (p) ∆AN (p)

-0.875 -0.048 0.010 0.125 -0.043 0.013
-0.625 -0.038 0.011 0.375 -0.048 0.013
-0.375 -0.044 0.012 0.625 -0.013 0.012
-0.125 -0.048 0.012 0.875 -0.006 0.012

Table B.22.: Proton analyzing power dependence on cos θCMS
p .

cos θCMS
Λ AN (Λ) ∆AN (Λ) cos θCMS

Λ AN (Λ) ∆AN (Λ)

-0.875 -0.020 0.013 0.125 -0.077 0.012
-0.625 -0.035 0.012 0.375 -0.076 0.011
-0.375 -0.062 0.012 0.625 -0.116 0.011
-0.125 -0.066 0.012 0.875 -0.094 0.012

Table B.23.: Λ analyzing power dependence on cos θCMS
Λ .

cos θCMS
K AN (K) ∆AN (K) cos θCMS

K AN (K) ∆AN (K)

-0.875 0.116 0.014 0.125 0.132 0.011
-0.625 0.172 0.012 0.375 0.076 0.011
-0.375 0.151 0.011 0.625 0.056 0.011
-0.125 0.186 0.011 0.875 0.023 0.013

Table B.24.: Kaon analyzing power dependence on cos θCMS
K .

163



B. Data Tables

cos θCMS
K AN (K) ∆AN (K) cos θCMS

K AN (K) ∆AN (K)

-0.875 0.038 0.126 0.125 -0.019 0.058
-0.625 0.323 0.071 0.375 -0.044 0.061
-0.375 0.155 0.062 0.625 0.045 0.063
-0.125 0.188 0.058 0.875 -0.089 0.084

Table B.25.: Kaon analyzing power dependence on cos θCMS
K for mpΛ < mp + mΛ +

5 MeV/c2.

mpΛ

[
MeV

c2

]
−αK ∆αK βK ∆βK

2056.46 0.104 0.027 0.097 0.023
2061.46 0.143 0.021 0.153 0.018
2066.46 0.126 0.021 0.082 0.018
2071.46 0.081 0.021 0.097 0.017
2076.46 0.139 0.021 0.087 0.017
2081.46 0.129 0.021 0.055 0.016
2086.46 0.130 0.021 0.040 0.016
2091.46 0.165 0.021 0.040 0.016
2096.46 0.136 0.021 0.042 0.016
2101.46 0.179 0.021 0.036 0.017
2106.46 0.156 0.021 0.043 0.016
2111.46 0.154 0.022 0.044 0.017
2116.46 0.127 0.022 -0.006 0.017
2121.46 0.161 0.022 -0.006 0.017
2126.46 0.071 0.022 0.010 0.017
2131.46 0.224 0.023 0.016 0.017
2136.46 0.169 0.024 0.020 0.018
2141.46 0.174 0.024 0.014 0.019
2146.46 0.126 0.026 0.008 0.020
2151.46 0.184 0.027 0.008 0.021
2156.46 0.206 0.029 -0.048 0.023
2161.46 0.121 0.032 0.036 0.025
2166.46 0.083 0.037 -0.014 0.030
2171.46 0.076 0.050 -0.038 0.043

Table B.26.: −α and β contribution to the kaon analyzing power dependent on the
pΛ invariant mass.
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B.7. Data Table Modified mpΛ Distribution

B.7. Data Table Modified mpΛ Distribution

mpΛ

[
MeV

c2

]
dσ
dm

αK [a. U.] ∆ mpΛ

[
MeV

c2

]
dσ
dm

αK [a. U.] ∆

2056.46 9.2 2.4 2116.46 11.9 2.1
2061.46 16.8 2.4 2121.46 14.7 2.1
2066.46 14.4 2.3 2126.46 6.7 2.1
2071.46 9.0 2.3 2131.46 20.1 2.0
2076.46 15.2 2.3 2136.46 13.9 1.9
2081.46 14.1 2.3 2141.46 13.2 1.9
2086.46 14.0 2.2 2146.46 9.1 1.8
2091.46 17.4 2.2 2151.46 11.6 1.8
2096.46 14.2 2.2 2156.46 11.8 1.7
2101.46 17.6 2.1 2161.46 5.6 1.5
2106.46 15.0 2.1 2166.46 3.1 1.4
2111.46 14.5 2.1 2171.46 1.9 1.2

Table B.27.: pΛ invariant mass distribution multiplied with the contribution of the
Legendre polynomial P 1

1 to the kaon analyzing power
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C. Other Plots for the Effective Scattering
Length Determination
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Figure C.1.: mpΛ invariant mass distributions from Figure 8.3 divided by the fitted

phase space. The ranges of the helicity angle cos θpΛ
pK in the plots are: cos θpΛ

pK > 0.5

(upper left), 0 < cos θpΛ
pK < 0.5 (upper right), −0.5 < cos θpΛ

pK < 0 (lower left) and

cos θpΛ
pK < −0.5 (lower right). The red line in each plot shows the final state fit divided

by the phase space function. The vertical red dashed line marks the upper limit of
the FSI fit.
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Acronyms

A Analyzing power for the pp elastic scattering
AN (K) Kaon Analyzing power
AN (Λ) Λ Analyzing power
AN (p) Proton Analyzing power
PΛ Λ Polarization
ã Effective pΛ scattering length
at Spin Triplet pΛ scattering length
pb Beam Polarization

ADC Analog to Digital Converter

ChEFT Chiral Effective Field Theory
CMS Center Of Mass System
COSY COoler SYnchroton
COSY-TOF COSY TOF Detector

DAQ Data AQuisition

FSI Final State Interaction
FWHM Full Width Half Maximum

JULIC JUeLIch Cyclotron

QCD Quantum Chromo Dynamics

SQT Silicon Quirl Telescope
STT Straw Tube Tracker

TDC Time to Digital Converter
TOF Time Of Flight
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Acronyms

VME Versa Module European Bus
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