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Chapter 1

Introduction

1.1 The AdS/CFT Correspondence

The AdS/CFT correspondence which has been conjectured by Maldacena in its orig-
inal form [68, 2] relates two seemingly very different theories. It states that there
exists an equivalence between a type IIB superstring theory [80] on AdS5×S5 on one
hand, and supersymmetric N = 4 Yang-Mills-theory with gauge group U(N) on a
compactified four-dimensional Minkowski space in the limit of large N on the other.
Anti-de-Sitter space is a maximally symmetric solution of Einstein’s equations for a
constant negative cosmological constant; the radius of the 5-sphere S5 has to equal
the curvature radius of AdS5 in this context.

A necessary condition for the two theories to be equivalent is that both theories
carry the same symmetry group. Since the symmetry group of AdS5 is SOo(2, 4)
(the identity component of SO(2, 4)), we must have the same set of symmetries on
the Yang-Mills side, a fact easily ascertained by recognising that N = 4 SYM theory
is a conformal theory and the conformal group in four dimensions is SOo(2, 4). There
are more symmetries to be matched: The rotational symmetry of the 5-sphere S5

corresponds to the so-called R-symmetry on the SYM side (an internal symmetry
due to supersymmetry), and the U(N) gauge symmetry corresponds to a similar
“gauge-type” symmetry in the IIB string theory, in connection with Chan-Paton
factors.

The original formulation of the conjecture set out from a specific physical situation.
Maldacena examined how a string theory would behave in the vicinity of N D-branes
embedded into ten-dimensional spacetime. It turned out that there are two different
ways such a system can be described: Since the branes are infinitely massive extended
objects, strings attached to the brane cannot move very far away by gravitational
attraction: Their centre of mass always stays at a finite distance from the brane. One
has a choice of computing the classical solutions of the Einstein equations surrounding
the massive branes, and likewise the solutions for the equations governing the form
flux fields around the branes (since the branes carry a “non-commutative” charge).
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In this setting, a physical description is obtained by formulating a closed IIB string
theory on the curved background spacetime near the branes. Alternatively, one may
consider open strings on a flat background coupled to the branes (such a system is
effectively described by the SYM theory). The background fields are not computed
explicitly in this picture; rather, one assumes that the “part” of the string worldsheet
which couples directly to the branes models the fields surrounding the branes. In
[51], it has been demonstrated for the first time that in this way, the correspondence
can be used to compute gauge theory correlators from string theory.

Subsequently, it became clear that this is not the only geometry which lends itself to
such a dual description: Other brane geometries can be constructed which admit a
similar correspondence, but all these approaches were based on the assumption that
string theory is consistent and that the correspondence is one of its implications (and
a full description goes hand in hand with an understanding of string theory). So far,
there has been no example of a string theory which in some manner contradicts the
correspondence.

A rather striking feature of the correspondence is that it relates a theory with gravity
to another without. A quantum theory incorporating gravity should be expected
to have a dynamical causal structure. On the SYM field theory side, the causal
structure is fixed. In practical approaches, one usually goes to the limit where only
small perturbations of the metric around the AdS metric are expected and uses the
supergravity approximation. In this limit, the closed string theory can be treated
like a (quantum) field theory with a specific set of interactions. By linearising the
(classical) supergravity field equations in the small deviations from the AdS5×S5

background solution, one finds a set of free modes and an excitation spectrum on
the AdS side [54], which can be compared to the spectrum of the boundary theory,
with good agreement in many cases. By this simplification, the dynamical aspect of
the causal structure is lost, however; in order to appreciate the richness of gravity,
it should be treated by its fully non-linear equations, reckoning on the possibility of
large deviations from the AdS geometry.

However, since the advent of algebraic holography (Rehren duality) [83, 82, 84], it has
become evident that a correspondence between a theory on curved AdS spacetime
and a conformal field theory on its conformal boundary does not necessarily have to
be based on string theoretical notions. In the algebraic framework, the correspon-
dence is based on an identification of the underlying nets of observable algebras on
the AdS bulk and its conformal boundary respectively, and the bulk theory is an
ordinary quantum field theory. The proof of this statement is simple and universal,
and it makes some direct structural statements on the observables of the boundary
theory.

How can these two seemingly conflicting approaches be reconciled? There are only
few works which seriously try to argue this matter. Arnsdorf and Smolin [6] examine
the assumption that algebraic holography does in fact reproduce the correspondence
which is “meant” by the original AdS/CFT proposal (and not something entirely
different). Without retracing their arguments in detail, let us just mention that the
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“programmatic” character of the Maldacena conjecture places Rehren duality in a
completely new light: If we believe both approaches to be correct side by side, then
we are given a recipe how to interpret the bulk theory on AdS5 which is obtained
by Rehren duality from the boundary SYM theory. Namely, it should be an alter-
native description of the closed string theory on AdS5×S5. If this were true, the
implications would be, to say the least, very puzzling.

Coupling Constants. A crude impression of the correspondence is obtained by
examination of the mapping of parameters on both sides. The string coupling and
the Yang-Mills coupling are conjectured to be equal, gs = g2

YM. If L is the curvature
radius of AdS and also the radius of the 5-sphere S5, then we have L4 = 4πgsNα′2,
with α′ the Regge slope (it is related to the string tension by T = (2πα′)−1). A

characteristic length scale for strings is given by ℓs = α′1/2.

In the broadest form, the correspondence holds for all values of N and gs. There are
several limiting cases which are still interesting but easier to examine. We can fix
the t’Hooft coupling λ = gsN and let N →∞; this implies that the string coupling
goes to zero as N increases. Consequently, in the limit string loops involving a
higher number of coupling constants gs (ie string worldsheets with higher genus) are
suppressed. A “classical” or “tree-level” string theory containing only worldsheets
of minimal genus should be a good approximation to this limit, as long as the string
coupling in this theory is small.

Conversely, we might consider letting λ → ∞; this implies (with the AdS radius L
held fixed) that the Regge slope α′ → 0, or equivalently the string tension T →∞.
Therefore, we expect that the strings become more and more pointlike objects and
in the limit, we obtain the IIB supergravity approximation to string theory 1. Of
course, both limits may be combined, with the requirement that N grows faster than
λ (so that gs = λ/N → 0): The result is weakly coupled (classical) IIB supergravity.

On the gauge theory side, things look different: If we perform a large-N expansion
of the gauge theory, then only the planar diagrams survive the limit of large N ; this
is in coincidence with the string theory. However, the complexity of the cross-linking
(or “webbing”) of the graphs with a given “gauge genus” (the expansion parameter
in the large-N expansion) is proportional to the t’Hooft coupling λ in the large-N
expansion; so it would rather be the limit λ → 0 which is tractable on the gauge
theory side. In the limit of both large N and small λ, we obtain the free gauge
theory.

1.1.1 Holography of the φ4-model

In this thesis, we shall examine a much simpler model of a conformal field theory and
investigate the holographic theory matching its correlations. We will follow the line
of Klebanov and Polyakov [55] who suggested that starting from a simple conformal

1Since the Regge slope decreases, higher string modes need an increasing amount of energy to
be excited, and therefore only the lowest massless modes need to be considered.
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theory, the UV- or IR- scaling limit of the model containing a vector field φa with N
entries and the O(N)-symmetric interaction (φaφa)2 in three dimensions, one might
in the limit of large N obtain a holographic description in terms of higher-spin (HS)
gauge fields on AdS4. Since the theory contains a coupling constant with a mass
dimension, we expect the coupling constant to drop out in the UV and IR scaling
limits; the UV limit is a free theory and the IR limit is strongly coupled. Although
these limits are very different, the conjecture applies to both, and we will see that
there exists a relation between their holographic duals.

Fields of higher spin have been studied for a long time, started off by the work of
Fronsdal [40] (see also de Wit and Freedman [24] for a very agreeable systematic
exposition); it was soon realised that in flat space, there is no way of implement-
ing a consistent interaction preserving unitarity. In more recent times, it has been
shown by Vasiliev that on background spacetimes with nonzero constant curvature,
an interaction can be constructed by using the inverse cosmological constant in the
definition of the coupling constants [98, 97, 99]. In the limit of a flat space, the
cosmological constant vanishes and the couplings are diverging. Nowadays, there are
algorithms present for obtaining the complete field equations on a constant curvature
background with the interactions to all orders [89, 18]. Note the by symmetry break-
ing of the metric field, it might be possible to reobtain a flat spacetime dynamically.

Sezgin and Sundell have examined whether the HS gauge theory on AdS can be
understood as a truncation of IIB superstring theory, at least in certain limits [90].
Note that the suggestion of holography via HS fields can be immediately understood
immediately in the context of Rehren duality, without resorting to string theory:
We have an ordinary field theory in the bulk, which is taken to be defined pertur-
batively. It contains an infinite tower of fields with arbitrary spin, and these fields
are constructed on an AdS4-background. On the assumption that the local net of
observables can be constructed from gauge invariant combinations of the associated
local field operators, there is no reason why we should not work on the healthy as-
sumption that this net will finally turn out to be the Rehren net. Note however that
the applicability of the Rehren duality demands that the boundary φ4-theory can be
defined rigorously in the framework of algebraic quantum field theory.

However, there are some aspects which seem to transcend this harmless interpre-
tation. The gauge transformations implied by Vasiliev’s HS gauge fields are “gen-
eralised coordinate transforms”, ie for spin-1 fields they look like the usual vector
Abelian gauge transformations for the Maxwell field, for spin 2 they look like coor-
dinate transforms (diffeomorphisms), and for higher spins they are suitable general-
isations. By construction, the local observables in the bulk constructed from gauge
invariant combinations of field operators inherit the locality structure of these fields.
It is an algebraic result that commutativity of local operators on AdS should be
guaranteed on very mild assumptions if the localisation regions of these operators
cannot be connected by a timelike geodesic 2. The transformation properties of the

2This is a consequence of modular nuclearity; it is a somewhat stronger statement than what
we are used to in flat space where a timelike curve should suffice. See eg [19].



10 1. Introduction

HS fields suggest that they should be interpreted näıvely, ie the vector field is the
Maxwell field, the symmetric 2-tensor is the metric tensor, the scalar is the dilaton
field etc. This seems to clash with the specification of the causality structure by
the mentioned perturbative construction. However, this is the usual puzzle faced
by perturbative constructions of gravity throughout. The particular aspect which is
interesting in this context is that we have the backup from Rehren duality, which is
an algebraic and not a perturbative statement: The perturbative construction of the
holographic HS gauge theory including gravity should coincide with the algebraic
(dual) Rehren net! This looks like the perturbative construction of gravity leads
after all in the right direction; on the other hand, Rehren duality has a chance of
containing some description of quantum gravity in the bulk.

Another possibility which must be taken seriously is that ultimately, it may happen
that the O(N)-symmetric φ4

3 vector model does not exist in the strict axiomatic sense,
but only perturbatively. This would forestall the application of Rehren duality; we
could then conjecture that the difficulties faced in the perturbative construction of
the boundary φ4-theory are presumably of a similar type as the ones faced in the
perturbative construction of the bulk HS theory.

For the φ4
3 scalar theory, there are some rigorous constructive results available:

Glimm and Jaffe have shown the positivity of the Hamiltonian [44]; Magnen and
Seneor haven proven the Borel summability of the theory [67] and have studied the
infrared behaviour of the theory [66]. Feldman and Osterwalder have proven the
appearance of a mass gap in the weak coupling regime [38] and shown by Euclidean
methods that the theory fulfills the Wightman axioms.

The O(N) vector model in three dimensions is known to have a nontrivial conformal
fixpoint from renormalisation group analysis [12, 102] (the IR fixpoint).

Euclidean AdS (EAdS). For simplicity, computations in this thesis are done in
the Euclidean domain. While on general curved spaces, the concept of Wick ro-
tation as yet has not been shown to make sense, Bros et al [13] have shown that
on Anti-de-Sitter space, the concept of Wick rotation and the corresponding “Eu-
clidean AdS” make sense. Its conformal boundary is Euclidean flat space, one-point
compactified. One advantage of this treatment is that the representation theoretic
treatment of Dobrev of the AdS/CFT correspondence [30] is formulated conveniently
in the Euclidean setting. Also, Schwinger parametrisation as analytical tool is less
problematic for Euclidean propagators.

1.1.2 Schwinger parametrisation and AdS-presentation

In this thesis we will not concentrate on the full HS gauge theory; rather, we study
the relation between the O(N)-symmetric φ4 vector model on the boundary and its
holographic dual directly, ie on the level of the path integral methods introduced
by Witten and others [103, 51]. We will often resort to the technique of Schwinger
parametrisation, in particular in the technical second part II. This wants an expla-
nation.
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The first point is a technical one. Actual computations of the correlation functions
of in the bulk or correlation functions of the boundary CFT implied by the holo-
graphic bulk theory invariably are resorting to a Schwinger parametrised form of the
propagators. However, the notion of Schwinger parametrisation in the AdS bulk is
a vague one: What is termed a “Schwinger parametrisation” is often nothing more
than some (seemingly arbitrary) integral representation of the propagators, intro-
ducing a new integration variable α running from 0 to infinity for each propagator,
the so-called “Schwinger parameters”. The integrations over the vertex coordinates
or loop momenta of the AdS bulk graphs are then commuted with the integrations
of the Schwinger parameters, and for an educated choice of integral representation,
this makes the computation feasible after all. Although we feel that a sound phys-
ical theory may very well lead to analytic expressions for correlation functions and
other quantities of interest which are difficult to integrate, and on the other hand
a computational recipe which is simple to pull through is not necessarily an indica-
tion that the single steps of this computation have a physical meaning except being
mathematically convenient, the question remains whether Schwinger parametrisation
has an intrinsic meaning and how these integral representations may be generated
systematically.

The second point concerns the recent programmatic approach of Gopakumar [45,
46, 47] who suggested that the Schwinger parametrised form of the correlation func-
tions for dual boundary and bulk theories are related in a very specific manner.
The AdS/CFT correspondence according to this suggestion may be seen as a two-
step procedure: Starting from the correlation functions in the large N expansion
of the conformal boundary theory given in Schwinger parametrised from, in a first
step these correlations are “AdS-presented”, ie the Feynman graphs of the boundary
theory are expressed in a covariant manner as Feynman graphs whose domain is
intrinsically AdS space, with vertices situated in AdS-space, “bulk-to-bulk” propa-
gators between these vertices, and “bulk-to-boundary” propagators stretching all the
way to conformal infinity where the sources are located. The boundary amplitude
is obtained by integrating out the coordinates of the vertices all over the bulk. The
AdS-presentation happens on a graph-by-graph level (or at least certain sums of
graphs on the boundary correspond to certain sums of graphs in the bulk). There
is a delicate relation between the topology of the graphs on the boundary and the
corresponding graphs in the bulk, and there is some evidence that this relation could
be understood efficiently by the method of Schwinger parametrisation. This is yet
a purely mathematical reformulation of these amplitudes. We will examine in de-
tail the AdS-presentation in later chapters, although not entirely from Gopakumar’s
perspective. In a second step, the AdS-presented amplitudes are re-interpreted in
terms of a string theory on a highly curved AdS space in the limit of large N ; this
corresponds to the case where the string coupling gs and consequently the Yang-Mills
coupling gYM on the boundary vanish and we are dealing with a free gauge theory on
the boundary. The Schwinger parameters are in this case conjectured to be related
to the moduli of the string worldsheet.
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But the central technical problem, the AdS-presentation of boundary amplitudes,
is essentially not clarified yet; an exhaustive treatment has been given only for the
simple cases of three- and four point functions. The prescriptions for such a pro-
cedure are in a sense very arbitrary, and it is interesting to ask whether there is a
precise sense in which such AdS-presentation can be performed, and what we can
say about the structure of the resulting terms. While many of the arguments for the
AdS/CFT correspondence are grounded in the perturbative approach, ultimately,
we have to demand that both bulk and boundary theories obey the same physi-
cal requirements, notably unitarity (or, in the Euclidean domain, the corresponding
axiom of reflection positivity in the Osterwalder-Schrader setting). These present
strong restrictions, and it is an important question to clarify how the AdS/CFT
correspondence accommodates itself with these requirements. The possibility of a
correspondence between physical theories on different spacetimes is not only aston-
ishing because of the equivalence of physical effects which should be observable, but
also because there must exist an incorruptible equivalence of the basic universal
notions like ”locality”, ”causality”, ”probability”. We think that the role of this
underlying structural equivalence cannot be stressed enough.

1.2 Overview of this Thesis

This thesis has two parts. The first part is the main part and develops the AdS/CFT
correspondence of the O(N)-symmetric φ4 vector model.

We begin in chapter 2 with a discussion of the O(N)-symmetric vector model, its di-
agrammatics (in particular the 1/N expansion) and renormalisation group fixpoints.
Two fixpoints, one in the UV and another one in the IR, will be of special interest;
it will be argued by perturbative analysis that the UV fixpoint is the free O(N)-
symmetric vector model and the IR fixpoint is an interacting conformal field theory.
We will construct an astonishing relation between these fixpoint theories, the ”UV/IR
duality”. We discuss the twist-2 quasi-primary bilinear tensor currents which are an
important class of operators in the boundary theories (section 2.6) and use them for
the construction of the “twist-2 conformal partial wave expansion” (twist-2 CPWE)
in the free UV fixpoint theory, a variant of the usual CPWE which relies on twist-2
currents only, baring conformal partial waves of higher twist (section 2.7).

Chapter 3 is the main chapter. We discuss the geometry of Euclidean Anti-de-Sitter
space (EAdS) in section 3.1 and introduce the functional integral perspective on the
AdS/CFT correspondence which is central to this text (section 3.2). As a side result,
we will make a proposition how to implement consistently the dual prescription for
boundary source terms in the Dirichlet path integral over EAdS (section 3.2.2). We
will use UV/IR duality to diagnose a relation between the holographic duals of both
(conformal) fixpoint theories of the O(N) vector model, contained in proposition 3.2
on page 65. This puts strong constraints on the expected form of a Lagrangian
holographic bulk theory corresponding to the UV fixpoint theory.

Then, we briefly discuss representation theoretic issues focusing on a mini-review of
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Dobrev’s intertwiner realisation of the correspondence, and present how this is culmi-
nated in Rühl’s “lifting programme”, a protocol for the reconstruction of holographic
bulk theories from their images on the boundary (section 3.3).

An important intermediary step for the lifting procedure is the construction of an
EAdS-presentation of correlation functions on the boundary, ie an integral represen-
tation of the correlation functions relying on the use of covariant EAdS integrals.
An EAdS-presentation of three-point functions of twist-2 bilinear tensor currents in
the free UV fixpoint theory is attempted in section 3.4; the construction is almost
finished, missing only a final technical computation. In section 3.5, this is generalised
to the case of n-point functions, with the result that these are given in terms of the
EAdS-presentation of the three-point functions.

Finally, in section 3.6 we analyse holographic bulk theories which are correspond-
ing to the UV and IR fixpoint theories on the boundary. These holographic theories
must harmonise with the EAdS-presentations of the boundary correlations; in propo-
sition 3.2, we had found further restrictions on their possible structure, and these are
now validated. Special attention is given to the question whether the bulk theories
can be Lagrangian; under this asumption, we are able to derive unusual semi-classical
path integrals for their generating functions in the bulk (theorem 3.9 on page 117).
We also ask in section 3.6.5 whether they do make sense in the axiomatic setting of
Osterwalder and Schrader, adapted to the case of EAdS.

Part I ends with the conclusions and an outlook. We have not included them after
part II, because the second part does not contribute essentially to the main state-
ments of this thesis.

The second part is largely technical and is devoted to a detailed analysis of the func-
tional integral approach to a massive or massless scalar field on EAdS space; it is
detached from the main line of this text. Particular attention is given to Schwinger
parametrisation of the propagators, and the connection between the heat kernel and
the propagator in case the path integral bears constraints. We obtain the prin-
cipal results in an abstract Hilbert space setting relating to as few specific model
assumptions as possible. Therefore, very different types of constraints are covered.
We will find that constraints show up in the heat equation governing the Schwinger
parametrisation consistently as absorption terms. We view this part as an ”experi-
mental lab” which allows to explicitely examine many statements from the general
part and gather ”hands-on” experience whenever necessary.

There are four appendices: In appendix A, we present some computational rules for
conformal propagators. Appendix B contains a lengthy but important computation
of a generic EAdS-integral. Appendix C gives some integrals of Bessel functions, and
appendix D contains a very brief summary of the electronic publication [53] by the
author.
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AdS/CFT Correspondence



Chapter 2

The O(N )-symmetric φ4-model

It is the aim of this text to study the AdS/CFT correspondence in the simple model of
a real vector field φa with N entries transforming in the fundamental representation
of O(N). As a Lagrangian field theory, we can add various interaction terms to the
Lagrangian. This will generate a multitude of different models situated “around”
the free O(N) vector model. These theories are not independent: by scaling the
system (performing a renormalisation group transform), different relevant and irrel-
evant interaction terms are “switched off / on”, and one can see that there exist
interrelations between different interaction potentials. Holographic renormalisation
methods point in the direction that there is a deeper link between AdS/CFT corres-
pondence on one hand and the renormalisation group on the other hand. It will be
therefore our strategy to consider the class of theories obtained from perturbations
around the free O(N) vector model. Our prominent example of an interaction is the
O(N)-invariant quartic term (φaφa)2, so our generic Lagrangian will be of the form
1

S[φ] =

∫

ddx

{

1

2
∂µφ · ∂µφ +

m2

2
φ · φ +

θ

8N
(φ · φ)2

}

. (2.0-1)

The coupling θ furnished with a factor of 1/N is called the t’Hooft coupling. If we
write the action in this form, we can perform an expansion in 1/N - the “large N
expansion” (for a comprehensive review, see [71]). This is a systematic prescription
for an expansion of correlation functions in a dimensionless expansion parameter;
each term in the series is made up of infinitely many Feynman diagrams which can
be summed up analytically.

We remark that this is a very popular model to study, both because the difficulty is
on a manageable level and still, there is already a number of phenomena which are
very characteristic for the AdS/CFT correspondence. The analysis splits naturally
in two steps of increasing complexity: The leading order in 1/N in the φ4 theory
corresponds roughly to a classical field theory on AdS. There is already quite some
amount of insight to be gained from this step; the path to be taken has been pegged
out in a popular article by Klebanov and Polykov [55]. It must be stressed that

1The mass m includes a factor of ~−1 and thus has unit L−1.
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although there is repeated mention of order 1/N corrections, their conclusions are
generally (meant to be) valid only up to leading order in 1/N . We will explicitly
look at some of the conjectures and statements indicated there. However, it is the
stated intention of this work to venture beyond the leading order and ask whether
the clear structure emerging in the leading order can be extended seamlessly further.

2.1 Model Lagrangian

We are constructing the Lagrangian theory of a real vector field φn(x) in d-dimensional
flat Euclidean space, where 2 < d < 4 and n = 1 . . . N is a vector index. 1/N will fea-
ture as expansion parameter [22]. The interaction is (φ·φ)2, which we also abbreviate
φ4. The action is thus

S[φ] =

∫

ddx

{

1

2
∂µφ · ∂µφ +

m2

2
φ · φ +

θ

8N
(φ · φ)2

}

≥ 0. (2.1-2)

Note the peculiar factor of N−1 multiplying the coupling θ. We have decided not
to include Wick ordering in the action, as we will have to renormalise anyhow. We
include a (scalar) source field J(x), coupling to Wick squares :φ(x) · φ(x) : of the
vector field; these are defined as

:φ(x) · φ(y):= φ(x) · φ(y)− 〈φ(x) · φ(y)〉, (2.1-3)

where the expectation is taken in the vacuum state of the interacting theory. The
partition function

Z:φ2:[J ] =

∫

D(φ) exp−1

~

{

S[φ] +
i

2
〈J, :φ · φ:〉

}

(2.1-4)

is a functional over J , and the correlation functions are generated by application of
i∂J(x). The free propagator is given by the integral kernel of ~(m2−△)−1δnm, where

n and m are the colour indices. The vertices are given by − θ
N~

∫

ddx δcolours (the
symmetry factor 1/8 has disappeared). There are still global symmetry factors, and
we get a factor N for each closed colour index loop, due to the summation over n.

In order to perform the 1/N -expansion, we perform a trick due to Coleman, Jackiw
and Politzer [21]. We introduce a new scalar field σ(x) to construct the Gaussian
integral

∫

D(σ) exp−1

~

∫

ddx

{

N

2θ

(

σ + i
θ

2N
φ · φ

)2
}

. (2.1-5)

By construction, this integral is independent of φ. Multiplying (2.1-4) with (2.1-5),
we find that the φ4-interaction term in the action cancels out, and we are left with
the action

S[φ, σ] =

∫

ddx

{

1

2
∂µφ · ∂µφ +

m2

2
φ · φ +

N

2θ
σ2 +

i

2
σ φ · φ

}

. (2.1-6)
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For later use, we will also include a source term K for correlations of σ which are
generated by −i∂K(x) (note the different sign)

Z:φ2:,σ[J, K] =

∫

D(φ)D(σ) exp−1

~

{

S[φ, σ] +
i

2

〈

J, :φ2 :
〉

− i 〈K, σ〉
}

. (2.1-7)

The Feynman rules of this modified theory are different: The φ-propagator Gφ is
still given by the integral kernel of ~(m2 − △)−1δnm. However, instead of the φ4-
interaction, we have the σ-field with propagator Gσ(x − y) = θ~

N
δ(d)(x − y); and

the σφ2-vertex − i
~

∫

ddx δmn. Odd correlations of the auxiliary field σ (eg three-
point functions) will be purely imaginary, as one finds by complex conjugation and
substituting σ → −σ. This is due to the way we introduced this field. Alternatively,
one might consider correlations of iσ; then, the two-point function is negative definite.

Remark. A short comment on our conventions for going over to wave number space.
We insert between the vertices and the ends of each single propagator basis changes

δ(d)(x− y) =

∫

ddk
eikx

(2π)
d
2

· e−iky

(2π)
d
2

.

At each site, we push one exponential onto the propagator and the other exponen-
tial onto the vertex. Finally, the coordinate space integrations ddx are performed.
This will leave us with distributions (2π)dδ(d)(

∑

i ki) at the vertices, and similarly
(2π)dδ(d)(k + k′) on the propagators. We can perform some of the k-integrations,
until all these δ-distributions have been cancelled by enforcing the respective mo-
mentum conservation. This protocol treats propagators and vertices on the same
footing. The resulting factor is (2π)d−nd

2 at an n-vertex; at the propagators (n = 2),
all factors cancel. In wave number space,

Gφ(k) =
~

m2 + k2
, (2.1-8a)

Gσ(k) =
θ~

N
, (2.1-8b)

and at the σφ2-vertices, we have couplings

− i

(2π)
d
2 ~

δ(d)(k1 + k2 + k3). (2.1-9)

Counting powers of N , we find a factor N for every φ-loop, and a factor N−1 for
every σ-propagator. If we think of φ-loops (“bubbles”) as effective vertices, then
the leading power of N is given by the effective tree graphs; inserting additional
σ-propagators, we explore the subleading orders of the 1/N -expansion. In a first
step, we will discuss the full propagators in the leading order of 1/N and discuss
renormalisation of the model.
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Figure 2.1: Typical example of a “bubble tree diagram”. The thick lines are φ-
propagators Gφ, the dashed lines represent σ-propagators Gσ, and the whole diagram
is supposed to end on left at a σφ2-vertex.

Figure 2.2: The diagram determining the mass correction due to a bubble tree dia-
gram. The dashed-dotted line is the full φ propagator G′

φ (2.2-11).

2.2 Renormalisation to the Leading Order

The logical way to study the 1/N -expansion begins with studying the renormalised
mass of φ at leading order in 1/N . This renormalised mass is generated by the
so-called “bubble trees” [88], displayed in fig. 2.1. The bubble trees generate an
additional mass for φ. In order to find out the mass correction, we have to calculate
the loop integral which is depicted graphically in fig. 2.2. It reads

−m2
tree

~
=

1

2

(

− i

(2π)
d
2 ~

)2

Gσ(0)N

∫

ddk G′
φ(k)

=− θ

2(2π)d

∫

ddk
1

m′2 + k2
. (2.2-10)

The factor 1/2 is a symmetry factor. This integral does not converge in d ≥ 2
dimensions; however the malady can be cured by adding a mass counterterm δm2

for φ which cancels the infinity. In fact, we do not perform the calculation, because
it is obvious that by finite renormalisation, we can put the mass shift m2

tree to an
arbitrary value (this does not say anything about the renormalisation flow, of course).
The full φ-propagator

G′
φ(p) =

~

m2 + m2
tree + k2

(2.2-11)

has a total, renormalised mass

m′2 = m2 + m2
tree (2.2-12)



2.2 Renormalisation to the Leading Order 19

Figure 2.3: The full σ-propagator G′
σ(k) (2.2-15) to first order in 1/N .

which is some function of m2 by solving with (2.2-10).

We now concentrate on the full σ-propagator (to leading order in 1/N). Following
closely Bjorken and Drell [11, Chpt. 19], it is given as a geometrical series over
proper self-energy insertions, which are in fact φ-loops to first order in 1/N (see fig.
2.3). Such a loop (including the couplings) is simply given by

Σσ(k) =
1

2

(

− i

(2π)
d
2 ~

)2

N

∫

ddq G′
φ(q + k)G′

φ(q)

=− N

2(2π)d

∫

ddq
1

(q2 + m′2)((q + k)2 + m′2)
. (2.2-13)

Again the factor 1/2 is a symmetry factor of the loop. The integral does not converge
in 4 ≤ d; we limit the examination to 2 < d < 4, so this does not matter for our
purposes.

By standard textbook methods, the integral evaluates as

Σσ(k) = −N Γ
(

2− d
2

)

22d−3 π
d
2

(

k2 + 4m′2) d
2
−2

2F1

(

1

2
, 2− d

2
;
3

2
;

k2

k2 + 4m′2

)

. (2.2-14)

The full σ-propagator is finally

G′
σ(k) = Gσ(k)

∞
∑

j=0

(Σσ(k)Gσ(k))j =
θ~

N

1

1− θ~

N
Σσ(k)

. (2.2-15)

Indeed this result now strongly depends on the dimension d. For integer dimensions
d = 1, 2, 3, the result is expressible in standard functions:

• For d = 1, have

Σ(d=1)
σ (k) = − N

2m′ (k2 + 4m′2)
. (2.2-16)

The full propagator is then

G′(d=1)
σ (k) =

θ~

N

k2 + 4m′2

k2 + 4m′2 + θ~

2m′

. (2.2-17)

• For d = 2, have

Σ(d=2)
σ (k) = −

N ln
(√

k2+4m′2+
√

k2√
k2+4m′2−

√
k2

)

4π
√

k2 + 4m′2
√

k2
. (2.2-18)
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Figure 2.4: A typical (sub)diagram of 3rd-next-to-leading order in 1/N . Thick lines:
G′

φ. Double lines: G′
σ. This particular diagram contains a loop at the right bottom

which needs to be renormalised effectively.

• For d = 3, have

Σ(d=3)
σ (k) = − N

8π
√

k2 + 4m′2
·
arcsin

√

k2

k2+4m′2

√

k2

k2+4m′2

. (2.2-19)

2.3 The 1/N-expansion: An Effective

Weak-coupling Expansion

Let us summarise what we have found so far: For the leading order of the 1/N -
expansion, we have to sum up two classes of diagrams: The “bubble trees” of fig-
ure 2.1 on page 18 (which can be done by a recursive method, yielding an algebraic
equation for the mass - which however can be given an arbitrary value by adjusting
the mass counterterm properly); and the full σ-propagator of figure 2.3 on page 19
(which requires the integration of the σ-self-energy to one-loop order).

We can now use these “building blocks” to assemble larger structures. These struc-
tures consist of two different elements: The remaining φ-propagators G′

φ still can
form loops. These loops in turn are connected by the full σ-propagators G′

σ. An ex-
ample for such a structure is given in fig. 2.4. Note that by construction, each φ-loop
has at least 3 external σ-propagators attached to it: φ-loops with only 2 external σ’s
have been taken care of already in G′

σ (with the exception of the loop coupling two
sources J); loops with only one external σ are part of the bubble trees.

We are now in a position to understand the nature of the 1/N -expansion: Because
G′

σ ≡ O(1/N), and each φ-loop contributes a colour factor of N , we can see that each
loop containing at least one effective σ-propagator in the effective theory is punished
by a factor ~/N . One should compare this to the “usual” Feynman expansion in
the coupling constants, which amounts to punishing each loop with another factor
~. The analogy is clear: The effective theory is established with an effective Planck
constant

~e =
~

N
. (2.3-20)
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This effective Planck constant will decrease as N increases, and in the limit of N →
∞ we expect that the connected correlation functions are dominated by effective
diagrams with an effective tree structure - the only loops which remain are the φ-
loops which are taking the role of effective vertices. Perturbative expansions which
only take into account the tree level diagrams lead to classical theories; so it is
often said that by letting the Planck constant vanish, we obtain the classical limit
of the underlying quantum theory. However, we strongly oppose this denomination,
as it is misleading: The nature of such theories (with small Planck constant) is
rather that of a very weakly coupled system. For, to stay with the effective theory,
consider the full four-point function 〈:φ2 ::φ2 ::φ2 ::φ2 :〉. The connected contribution
is proportional to N whereas there are three disconnected contributions factorising
into two-point functions, proportional to N2. For large N (small ~e), therefore, the
disconnected contributions are dominant! If the Planck constant diminishes, we are
rapidly approaching a free theory.

If we compute the two point function of the field σ in the leading order of 1/N , we
find that it is suppressed by a factor N−1. We therefore should couple the source
terms K and the field σ with a factor

√
N . Similarly, the two-point function of :φ2 :

is of order N , and to make it finite, we have to include a factor
√

N
−1

when the
sources are coupled to the fields. Alternatively, by field strength renormalisation

φ→ N1/4φ and σ →
√

N
−1

σ, we arrive at the action

S ′[φ, σ] =

∫

ddx

{√
N

(

1

2
∂µφ · ∂µφ +

m2

2
φ · φ

)

+
1

2θ
σ2 +

i

2
σ φ · φ

}

.

We can see that the correlation functions of more than two operators (either of :φ2 :

and σ) are suppressed by increasing powers of
√

N
−1

, since a φ-loop with k external
legs carries an effective coupling constant N1−k/2 (remember that the summation
over colours gives a factor N to the φ-loop). Only the two-point functions remain
finite. The theory becomes free in the large-N limit. The 1/N -expansion should
rather be termed a 1/

√
N -expansion in consequence.

2.4 UV and IR Fixed Points

Renormalisation of the O(N) symmetric φ4-theory has been carried out by Wilson
and Kogut in 4−ε dimensions through the ε-expansion [102]. We will reobtain their
results in a slightly different way, separating completely the procedure of infinite
renormalisation (by introducing counterterms) and finite renormalisation (analysing
the effect of scale changes on the system). To begin, we assume that the already
renormalised, massive theory is given on a certain arbitrary scale. It is important
to stress that we assume that the counterterms are determined ab initio on the
scale indicated, and that all UV and IR divergences are taken care of before. We
then determine the action of the renormalisation group [63] by scaling the system.
Although we will only consider the lowest order corrections (self energy of the σ field
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to one-loop order), we obtain complete agreement with the literature (see eg Petkou
[77] for an approach combining diagrammatic and OPE methods).

The system is scaled by the dimensionless scaling parameter α > 0, ie we perform
a substitution x 7→ α · x, k 7→ α−1 · k on the external and internal coordinates and
wave numbers (we must not forget to substitute ddx → αd ddx and ddk → α−d ddk
in the integrals over internal vertex coordinates resp. loop momenta). The infrared
regime lies in the direction α → ∞ (points moving away from each other), and
the ultraviolet (short distance) regime lies in the direction α → 0. We determine
the “weak scaling limit”, ie the scaling limit of the correlation functions under this
action.

In both cases, it will in addition generally be necessary to rescale field operators for
their correlations to stay finite 2. For example, let the two-point function of a local
field operator O(x) behave asymptotically as 〈O(αx)O(αy)〉 ∼ 1

α2∆ . We have to scale
the operator O(x) → α∆O(αx) in order to obtain a finite limit. The parameter ∆
is called the scaling dimension of the operator O. It need not be the same in the
infrared and ultraviolet regime (renormalisation of scaling dimension). By Fourier
transform, we get a factor of α−d from the Jacobian; so in the wave number domain,
the corresponding scaling law is O(k)→ α∆−dO(α−1k).

We will demand that the system approaches asymptotically a fixed point (where all
“reasonable” correlation functions are nonsingular, but some correlations may vanish
completely). Once the fixed point is reached, the resulting theory is conformal, and
the dependence on α drops out altogether. In this limit, we expect that ~ does
not feature any more as loop counting parameter, because it has dimension mass
times length, but there is no intrinsic mass present in the conformal limiting theory.
The mass m′ of the finite scale theory, measured in multiples of ~, has unit inverse
length, and drops out similarly. However, it is by no means clear that the system
will always approach the same IR or UV fixed point: Depending on the initial
parameters, we may approach via the renormalisation flow different asymptotic fixed
points. It is characteristic of the renormalisation group that the parameter regions
making up the attractive neighbourhood of different fixed points possess different
(co-)dimensionality.

Masslessness of φ-propagator. If we substitute the scaling behaviour for k, then
the massive propagator for the field φ has the standard form

G′
φ(α

−1k) =
~

m′2 + α−1k2
.

For α → 0, we approach the UV fixed point. In this limit, the mass term in the
denominator will be suppressed by the wave number term; we conclude that the φ

2The normalisation of a field operator is no intrinsically defined quantity. We make the tacit
and very reasonable assumption that this procedure is convergent. To be strict, we would have
to construct the scaling algebras corresponding to the local field algebras following Buchholz and
Verch [20]. However, we will see that our simple ansatz is fully sufficient.



2.4 UV and IR Fixed Points 23

will become massless in the leading order. The IR fixed point (α → ∞) is more
intricate: If m′ 6= 0, the derivative terms in the propagator are suppressed and the
theory falls apart into a “theory of points” (the field φ becomes conformal with
scaling dimension d

2
). This is only natural; the mass m′ supplies a natural inverse

cutoff length. In order to obtain a nontrivial fixed point, we are forced to start with
a massless theory with m′ ≈ 0. If we assume that the theory is massless on all
scales, then the IR and the UV fixed point are lying on the same renormalisation
trajectory, only at different ends. We will consequently adopt this view.

2.4.1 Divergences and Counterterms

We have to take into account the fact that in there will appear the usual divergences
of perturbative quantum field theory. Divergences might occur in the initial finite
scale theory; and they might arise once we approach the fixed points. We have to
invent, and argue, some kind of regularisation for the divergent integrals. In both
case, the regularisation has to be introduced on the level of the unscaled theory,
before we take the approach to the UV or IR: We should not modify the theory by
having to introduce new regularisations as we scale along.

We have to battle two types of divergences: UV divergences arise from an inade-
quately modelled short-distance behaviour; as indicated before, we introduce some
kind of counterterm to match them. IR divergences are due to the existence of
massless fields in the theory exhibiting long-range correlations; they could be un-
derstood as a ”volume resonance effect”. As a basis for their discussion, imagine
we want to compute a scattering amplitude of some particles, coupled to a massless
field. If we model the coupling of this process to the infinitely many low-energy
background modes which cannot be detected because their energy is too small for
any kind of detector available, we not only get the usual IR divergences from loop
integrations containing massless propagators, but yet another kind which might be
called ”bremsstrahlung divergence” originating in this inclusion of the absorption
and emission of non-detected long-wavelength background modes. It can be shown
that the infrared and bremsstrahlung divergences cancel precisely [76]. The crude
picture behind is that due to the universal limitation of detectors, low-energy ex-
citations below a detector-dependent threshold inevitably escape our notice. If we
build a better detector with a deeper low-energy resolution and enhance the search
horizon for massless low-energy quanta produced (and absorbed 3) in the scattering
process, then we will measure an increasing overall amplitude for the processes. In
the idealised limit of perfect detector sensitivity in the low energy range and perfect
energy resolution of the detector, the amplitude indeed must diverge. So the defini-
tion of a sensible concept of a scattering amplitude or correlation function already
has to contain a lower limit of detector sensitivity.

We conclude that these IR divergences appearing in computations of loop integrals
have physical reality. As a side effect, we find that if the theory is unitary (as

3To ”measure” the absorption of light quanta, we can eg use the energy-momentum balance.
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any decent quantum field theory should be), then the IR divergences are limited
by the phase space density of the corresponding low energy modes coupled to the
process. Note that the ”technical” limitation comes not only from the necessary
size of the detector; also, detection times increase as the energy horizon is lowered.
This is deeply related to the principle that we cannot measure the precise energies
of the scattered particles themselves: They are, by definition, accompanied by the
low-energy cloud carrying a certain, unobservable amount of energy.

One standard method to cope with the infrared problem is to introduce a cutoff wave
number and acknowledge that the bremsstrahlung below the cutoff wave number
cancels precisely the with those contributions from the loop integrals where the loop
wave number is below the cutoff. One simply ignores the coupling to the low-energy
background modes and introduces a regularisation for the massless propagators, eg
by giving a very small mass to the massless particles. This has the simple effect of an
effective cutoff for wave numbers smaller than this mass. It seems that introducing
this mass regularisation has a huge influence on the amplitudes which we compute
- after all, the infrared divergences are rendered finite. The point is that as we
introduce this mass, we have to acknowledge that we do not detect any particle
whose energy is around or below the regulator mass, and in this way the definition
of the amplitude concept depends on the regulator mass as well.

There is a subtlety when we begin to scale the system. On a first glance, it seems that
we should keep the physical cutoff mass fixed, as the definition of the scaling limit
is that the physics should be scaled without modification. We meet two different
problems, depending on the direction of the limit: Going to the IR fixpoint (blowing
up the experimental device and operators), the dimensions of the system itself will
at one point become so large that the typical wave number characterising the system
will be smaller than the lower cutoff wavenumber. The cutoff - which was introduced
as a mere technical tool - will act like a real physical effect then. In the UV, the
problem is different: If the experiment is shrunk further and further, its characteristic
wave number increases. However, if a Feynman diagram contains a massless loop,
we may safely assume that all the modes with wave numbers (energies) lying below
the characteristic wave number (energy) of the experiment and above the lower
cutoff mass (energy) are contributing to the amplitude of the loop integration, which
therefore ever increases. On the detection side, there are no changes to match the
increasing number of field modes which are thus included explicitly. The consequence
is that in the UV limit, the cutoff mass loses its abrasive power - we reobtain the
same IR divergences that we tried to battle in the beginning.

The solution must then be to scale the cutoff mass m′ 7→ α−1m′ as we scale the
system. Other scaling prescriptions for the mass are conceivable; however this is
the simplest one, and it leads to finite results. Any massive field becoming massless
during the scaling must be endowed with the cutoff mass m′ as well.
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Figure 2.5: O(N) self-energy contribution to the propagator of φ. Double line: σ-
propagator G′

σ.

2.4.2 Ultraviolet Fixpoint

As momenta k 7→ α−1k and cutoff mass m′ 7→ α−1m′ scale identically, the scaling be-
haviour of the effective building blocks is extremely simple under this regularisation:
The scaled φ-propagator becomes

G′
φ(k)

α→ α2G′
φ(k) = α2 ~

m′2 + k2
.

For the σ-self energy, we compute with (2.2-14)

Σσ(k)
α→α4−dΣσ(k)

=− α4−dN Γ
(

2− d
2

)

22d−3 π
d
2

(

k2 + 4m′2)d
2
−2

2F1

(

1

2
, 2− d

2
;
3

2
;

k2

k2 + 4m′2

)

=− α4−dN
(

k2 + 4m′2)d
2
−2

fΣ

(

k2

k2 + 4m′2

)

,

where the function fΣ(z) is bounded analytic on the closed unit disk |z| ≤ 1. The

α-dependence comes solely from the factor (k2 + 4m′2)
d
2
−2

. In dimensions 2 < d < 4,
Σσ(k) scales with a positive power of α. It has a negative sign throughout for real
momenta.

Counterterms for UV divergences. We use counterterms to cancel UV diver-
gences, but we will not be very explicit in the precise construction and trust that
the reader can imagine how the procedure works in the more complicated cases. The
counterterms have to be presented in an integral representation, preferably over loop
momenta, which are added in place so that the regularised amplitudes are absolutely
convergent (as integrals) in the UV. Subsequently, we may perform the scaling limit
(if it exists), using our knowledge about the scaling of the effective propagators.

To give an example, consider the O(1/N) contribution to the φ self-energy (fig. 2.5
on page 25) which is proportional to

δΣ′
φ(k) ∼

∫

ddq G′
φ(k + q)G′

σ(q).

A possible subtraction scheme is

δregΣ′
φ(k) ∼

∫

ddq
[

G′
φ(k + q)−Greg

φ (q)
]

G′
σ(q),
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where Greg
φ is a massive propagator for an arbitrary mass m2

reg determined from the
renormalisation conditions of the finite scale theory. When integrated, this second
summand will be mass counterterm for φ. We have to make sure that this integral is
rendered absolutely convergent by the subtraction; in special cases, we need to pick
the symmetric part of the integral.

However, in the UV limit α→ 0, the contribution of the unrenormalised loop scales
as α2−d, as a simple power counting argument shows. In d > 2, the importance of
the counterterm will gradually decrease, and finally, we will obtain again the usual
UV divergence. So this is not a reasonable scaling limit. Of course, we could use the
infrared regularised propagator G′

φ instead of Greg
φ ; this indicates that we change the

renormalisation conditions as we scale. The meaning is that we do not stay on the
same trajectory throughout. This implies that the UV fixpoint we are approaching
cannot be reached from the finite scale theory by simple scaling. However, it is very
convenient, because all the scaling arguments to follow below apply as well to the
counterterms and we do not have to make special arguments.

In the IR (α → ∞), power counting reveals that the unrenormalised loop scales
as α−2, so a counterterm involving a fixed mass will always dominate the long-
distance behaviour, with the consequence that in the deep IR, the amplitude will
diverge (as the counterterm is divergent). Again, using G′

φ instead of Greg
φ will change

the renormalisation conditions as we scale and ultimately, we will reach a sensible
fixpoint.

Ultraviolet Fixpoint. The UV fixed point lies in the direction α → 0. As a
result, we have for the full σ-propagator

G′
σ(k) =

θ~

N

1

1− θ~

N
Σσ(k)

α→ θ~

N
.

At the UV limit, we ultimately lose information about the large-distance behaviour
of the σ-propagator of the finite-scale theory. Note that the same limiting behaviour
is obtained under the assumption that θ~ is very small - so the UV limit point is the
weak coupling limit of the finite scale theory.

To find out how the operator :φ2 : has to be scaled asymptotically, we compute the
n-point function of :φ2(k):. This will give us the proper scaling dimensions. In the
leading order of θ, the connected n-point function is given by a single diagram: the
”free” diagram with a single φ-loop, illustrated in fig. 2.6 (left) on page 27. It will
suffice to count powers of α. We display the full argument in this example: The
”free” contribution is proportional to

Gfree(k1, . . . , kn) ∼ δ(d)(k1 + · · ·+ kn)

∫

ddq (G′
φ)

n.

We count n propagators G′
φ ∼ α2, one loop integral contributing α−d and the momen-

tum conserving δ(d)-distribution giving a factor αd; so altogether, the free diagram
has weight α2n in momentum space.
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Figure 2.6: Free UV theory: (left) Connected n-point function of :φ2 :.
(right) Split of the two-point function of :φ2 : by a full σ-propagator G′

σ.

What happens if we add an internal σ-propagator to this loop (splitting the G′
φ

propagators at each end and introducing an additional loop integral)? For the case
of a two-point function, this is displayed in fig. 2.6 (right). Let us count the correction
in terms of α,

ddq G′
σ(G′

φ)
2 ∼ α−d(α2)2 = α4−d.

This vanishes for α → 0 in d < 4. It is easily checked that the introduction of
additional φ-loops or every other possible modification makes things even worse.
We conclude that all σ-propagators, and therefore also all 1/N corrections, are sup-
pressed in the ultraviolet limit: Only the free diagram survives.

Proposition 2.1. By perturbative renormalisation of the propagators including self-
energy contributions to order O(N0), the O(N)-symmetric φ4 vector model in the
ultraviolet approaches asymptotically the free (non-interacting) O(N) vector model
in 2 < d < 4.

Its connected n-point functions of :φ2 :-operators are solely generated by Wick con-
tractions of the form displayed in figure 2.6 (left) on page 27.

The operator :φ2(k): has to be joined by a factor α−2 for non-vanishing correlation
functions, and therefore in coordinate space, its scaling dimension is ∆(: φ2 :) = d−2.
For a single φ, we have ∆(φ) = d−2

2
, this is the minimal scaling dimension allowed by

unitarity [64]. By a similar analysis, the σ-field asymptotically becomes a free field
with scaling dimension ∆(σ) = d

2
; its (connected) n ≥ 3-point functions all vanish

by definition.

2.4.3 Infrared Fixpoint

This is the limit α→∞. For the σ-self energy, we compute in the dimensional range
2 < d < 4 under investigation

G′
σ(k) =

θ~

N

1

1− θ~

N
Σσ(k)

(2.4-21)

=
θ~

N

1

1 + α4−d θ~ (k2 + 4m′2)
d
2
−2 fΣ

(

k2

k2+4m′2

)

α→ − αd−4

Σσ(k)
.
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The same behaviour of G′
σ is obtained in the limit where θ~ is very large - so the IR

fixpoint theory is the strong coupling limit of the finite scale theory.

At the IR limit, ultimately G′
σ behaves as G′

σ(k) ∼ αd−4(k2 + 4m′2)2− d
2 . This is a

very bad short-distance behaviour (∼ x−4). A detailed analysis shows that for finite
scaling, there is a UV regularisation efficient at scales

k ≫ α (θ~)
1

4−d = α△kmax, x≪ α−1 (θ~)−
1

4−d = α−1△xmin. (2.4-22)

The reason for the bad behaviour at infinite scaling is that the massless field φ
propagates over long distances (the massless propagator behaves as ∼ x2−d); it is
this conformal long-distance behaviour that seeps into the short-distance regime
when we scale towards the IR fixpoint.

If we perform the scaling analysis of the global structure, we find a crucial difference:
The addition of a G′

σ-bridge to any given graph results in a factor

ddq G′
σ(G′

φ)
2 ∼ α−dαd−4(α2)2 = α0.

That means: Any connected n-point function of :φ2(k) : scales as α2n; so all 1/N
corrections persist in the IR limit:

Proposition 2.2. By perturbative renormalisation of the propagators including self-
energy contributions to order O(N0), the O(N)-symmetric φ4 vector model in the
infrared is an interacting conformal field theory in 2 < d < 4.

This is in agreement with the literature [102, 12]. In fact, in-depth analysis of G′
σ

shows that it is equivalent to the nonlinear O(N) “σ-model”, a vector field with
fixed modulus (see eg [79]). We will see that it is more natural in the IR fixpoint
theory to study correlations of the field σ. This does not make a big difference:
The correlations of σ are obtained from those of :φ2 : by glueing G′

σ on the sources
corresponding to :φ2 :; so we find that a tree diagram with n external σ-insertions
scales as (αd−2)n in wave number space. This implies that the scaling dimension is
∆(σ) = 2 in coordinate space.

2.4.4 Interpretation of Results

Finally we obtain some correlation functions which correspond to the scaling limit
theories. They still do contain the infinitesimal mass m′; so it is a question how
to interpret them. The trouble we have with the regulator mass m′ is that we are
interested in obtaining conformal fixpoint theories; and the regularisation parameter
m′ destroys the conformal nature of the fixpoint theories.

We have already indicated that m′ is a natural cutoff and we should assume that
our detectors are not reliable for wave numbers smaller than m′. In the free UV
limit theory where the connected correlations contain only a single φ-loop, one can
immediately see that when the external momenta are non-exceptional, ie no partial
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sum of the external momenta is zero [57], then there are no IR divergences (a typical
exceptional point is when one external momentum is set to 0 in an arbitrary corre-
lation function). In coordinate space, the correlations between local operators are
automatically IR convergent by construction. So we may set m′ = 0. The physical
reason is that the massless background modes completely decouple in any free theory.

In the IR limit theory, the mass m′ appears inside of logarithms in the combina-
tion ln(k2/m′2) or similar generated by the IR region of loop diagrams; and as an
IR regulator of the G′

φ-propagator. Taking m′ → 0, we find that IR divergences
appear at higher orders of 1/N in the φ-loops, eg when there is a self-energy contri-
bution as in figure 2.5 on page 25. This happens when several φ-propagators G′

φ are
”transporting” the same momentum in ”serial connexion”.

We will simply ignore these IR divergences, with the following argument: These di-
vergences appear at higher orders of 1/N . The holographic lifting which we examine
is happening on the level of the 1/N -expansion which we have performed so far, ie
on the level of the O(N0)-renormalised propagators and φ-loops. We take the view
that the renormalisation of IR-divergences happens on a higher level of complexity
than the holographic correspondence we are examining; ie it occurs (in a different
disguise) on both sides of the holographic correspondence. Ultimately, it has to be
addressed, but only after the basic outline of AdS/CFT correspondence is under
control in the IR fixpoint theory.

Another issue is the bad short-distance behaviour of the σ-propagator in the IR
fixpoint theory. This will make diagrams containing loops with σ very prone to
UV divergences, causing the need for yet more counterterms. As long as we do
not reach the IR scaling limit, the σ-propagator will be regularised in the short-
distance region; it has been established in (2.4-22) that the relevant distance is

△xmin ≈ α−1 (θ~)−
1

4−d . We can interpret this as the critical minimal length scale
of physical effects (interactions). The massless modes lead to phenomena on all
distance scales larger than △xmin. When we go towards the IR limit, we keep the
correlation functions normalised so that for unit distance (in the scaled theory) all
effects on shorter distances are integrated out. Going to short distances in the scaled
theory, we have to subtract the effects on distances which are longer. It is this
subtraction which leads to the short-distance infinities in the IR fixpoint theory. To
put it succinctly: All those effects which used to be on such large distance scales
that we could not see them on the observable distance scales of the unscaled theory
(since they happened on huge scales) are now crowding the short distance scales in
the IR limit theory.

In particular, the formula for △xmin shows that the strong coupling limit θ →∞ is
equivalent to the IR limit theory. This is natural: From the parameters of the finite
scale theory, we can construct the “typical” length scale △xmin of the theory, and all
others lengths have to be compared to this length.

A standard approach to generate the necessary counterterms is dimensional regular-
isation [9, 23], ie to assume that d is an arbitrary complex number. Most computa-
tions have a natural domain of convergence in d, and whenever necessary, one may
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analytically continue the results to any other dimension required. If a correlation
function has a pole at some particular d, one may relatively easy regularise the cor-
relation by subtracting the principal part at the pole, by the Mittag-Leffler theorem.
After the subtraction, all correlations still are conformal. Dimensional renormalisa-
tion is a very short way of implementing exactly those counterterms which preserve
the conformal character of the fixpoint theory, without having to state explicitly
what these counterterms really are. We will take this approach in the sequel to
control the UV divergences in the IR fixpoint model.

Related to this philosophy is the use of Schwinger parametrised conformal propaga-
tors, eg (A.1-2) or (A.1-3). As long as the Schwinger parameters are not integrated,
no divergences appear in the formalism; when they are integrated, the dimension d
again is conveniently taken to be a complex number.

An alternative to pass by these difficulties developed in the seventies of the last cen-
tury is the method of bootstrap equations introduced by Migdal [69] and followed
further in [25, 93]; see also [65]. It is based on the idea that once we have written
down the amplitudes in terms of integrals in coordinate space, we may formulate
differential equations (“bootstrap equations”) for the proper vertex functions and
propagators which can be solved to yield perfectly well-defined amplitudes. Natu-
rally, the solutions will be available only as series; however, from the structure of
the bootstrap equations, we can select an appropriate expansion parameter (eg some
non-analytic function of the coupling) which will give a convergent series expansion.
This approach is commonly adopted in the literature, see eg [26, 78]. With foresight
to the AdS/CFT correspondence developed later on, it would maybe be a good idea
to construct the AdS/CFT correspondence on the level of the bootstrap equations;
however, we will not follow this programme.

Note that both in the IR and UV limiting theories, all factors of ~ have cancelled
as anticipated - ~ is not a loop counting parameter in the asymptotic conformal
theories. Also, the t’Hooft coupling θ has disappeared in both limit theories - in the
free theory, there isn’t any coupling at all; in the interacting O(N) vector model, the
coupling is independent of the finite scale coupling constant θ.

2.5 UV/IR Duality

There is an interesting connection between the UV fixpoint theory (free massless
O(N) vector model, see proposition 2.1 on page 27) and the IR fixpoint theory
(the interacting massless O(N) vector model, see proposition 2.2 on page 28). The
partition function for the UV theory can be stated explicitly: we have

Z
UV

:φ2: [J ] = Z
UV

:φ2: [0] exp N

[ ∞
∑

n=2

1

2n

(−i)n

~n
Tr(JG′

φ)
n

]

,

where J and G′
φ are interpreted as multiplication resp. convolution operators. The

n = 1-term is missing because we have used Wick ordering for the operator :φ2 :
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multiplying the source J in the original partition function (2.1-4). The symmetry
factor (2n)−1 takes care of mirror symmetry and cyclic permutations.

The UV-IR duality is established by treating J as a dynamical field. Ignoring ques-
tions of renormalisability, let us see what happens if we perform a ”functional Fourier
transform” [32], ie a a path integral

FZ
UV

:φ2: [K] ≡ Reg

∫

D(J)e
i
~
〈J,K〉

Z
UV

:φ2: [J ]. (2.5-23)

The new source term K is the ”conjugate variable” to J . The integral is only defined
after regularisation; see below. We evaluate it by splitting Z UV

:φ2: [J ] into a Gaussian

part 4

exp− N

4~2
Tr JG′

φJG′
φ

with an exponent quadratic in J which generates the propagator GJ , and the re-
maining summands with n ≥ 3 which are treated as interaction polynomial for J .
The wave number space kernel of this bilinear form corresponds to the amplitude
of a single φ-loop Σσ as it has been computed in (2.2-13), pending the necessary
couplings. The propagator GJ is the inverse of this bilinear form, it is equal to the
full σ-propagator G′

σ (2.4-21) in the interacting conformal IR limit theory. Moreover,
the ”effective vertices” consisting of φ-loops with n ≥ 3 external legs appear in the
IR limit theory as well, as effective vertices for the field σ. By comparing carefully
all the necessary terms involved, we find that the “field” J assumes the parallel role
to the field σ in the IR fixpoint model. Because we have chosen all factors of i
appropriately, we obtain the important

Proposition 2.3 (UV/IR duality). The partition function Z IR
σ [K] of the interacting

IR fixpoint theory of the O(N)-symmetric φ4 vector model, with the sources coupled
to the auxiliary scalar field σ, is identical to the (properly regularised) functional
Fourier transform of the partition function Z UV

:φ2: [J ] of the corresponding free UV

fixpoint theory, with the sources coupled to the field operators :φ2 :,

(

FZ
UV
:φ2:

)

[K] = Z
IR

σ [K]. (2.5-24)

This gives us precise information on the kind of regularisation necessary to render
FZ UV

:φ2: [K] finite: We have to include exactly the same kind of counterterms which
are necessary to regularise the effective IR limiting theory. There is a finite, small
mass m′2 for φ providing the infrared regulator for G′

φ; a (divergent) mass coun-
terterm δm2 for φ to regularise the self-energy contributions to φ at order O(1/N);
if O(1/N)-contributions to the self-energy of σ resp. J are taken into account, one
should be able to control them by a field strength renormalisation Z〈J, K〉 of the
J/K-coupling (the original φ4-coupling θ has dropped out completely, and therefore,
there are only these two alternatives left). Practically, one will use dimensionally

4The prefactor i for the source J in (2.1-4) has been inserted in order to get the necessary minus
sign in the exponent.
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regularised functional Fourier transform to include the latter. By (2.1-4), we can see
that the counterterms can be introduced by substituting

J 7→ J − i(m′2 + δm2)

in the original action. So the regularised version of the functional Fourier transform
is

FZ
UV
:φ2: [K] ≡

∫

D(J)e
i
~
Z〈J,K〉

Z
UV
:φ2: [J − i(m′2 + δm2)]

=

∫

D(J)e
i
~
Z〈J+i(m′2+δm2),K〉

Z
UV

:φ2: [J ].

The effects are simply a shift and rescaling of the source term K.

Is IR-UV duality a general phenomenon, ie are there general conditions under which
UV- and IR-fixpoints are related by a functional Fourier transform? It does not seem
easy to state general conditions which would enable IR-UV duality starting from
arbitrary finite scale ”seed” theories. On the level of Feynman diagrams, it is clear
that any IR and UV fixpoint theories share similarities, as they are conformal and
are generated by scaling of the same set of Feynman diagrams of the seed theory. In
the UV and IR, different classes of diagrams survive this scaling; it is to be expected
that a suitable UV fixpoint theory (possibly asymptotically free) provides ”effective
vertices” for building the (interacting?) IR fixpoint theory. However, there is a host
of open questions: What if there are several IR or UV fixpoints? IR-UV duality (if
it exists as a generic mechanism) implies that fixpoints appear in pairs. What is the
connection between them?

Proposition 2.3 will be the decisive ingredient when we begin to construct the holo-
graphic pendants to the conformal fixpoint theories of the O(N) vector model in
section 3.2 and will eventually lead to the structural proposition 3.2 on page 65
underlying the AdS/CFT correspondence of these models.

2.6 Quasi-Primary Tensor Currents

In the O(N) vector model there exists a set of traceless, totally symmetric tensor
currents Js constructed from the bilinear field operators of the underlying theory. In
this section, we introduce the currents and list some of the basic properties; however,
no important results are presented, and since the relevant formulas of this section
will be referred to by number whenever necessary, readers who are familiar with
these objects may skip the section without loss.

These currents generally have the form [96, 5, 26]

Js =
s
∑

k=0

as
k :∂⊗kφc ∂⊗s−kφc(∗) : − traces, (2.6-25)
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where it is understood that the indices of the derivatives are totally symmetrised,
and the numerical prefactors are given by

as
k =

1

2
(−1)k

(

s

k

)

(

s+d−4
k+ d

2
−2

)

(

s+d−4
d
2
−2

) =
1

2
(−1)k

(

s

k

)

(d
2
− 1)s

(d
2
− 1)k(

d
2
− 1)s−k

, (2.6-26)

(a)n = Γ(a+n)
Γ(a)

is the Pochhammer symbol. We have indicated that in case of a
complex field, the currents are constructed from the field and its adjoint. By the
Wick contraction, we mean

:φ(x)cφ(y)c := φ(x)cφ(y)c − 〈φ(x)cφ(y)c〉vac,

subtracting the expectation take in the vacuum state. At least on the perturbative
level of the 1/N -expansion, this is a uniquely defined quantity.

In the real field case, it is obvious that due to symmetrisation, only the currents with
even spin s survive the symmetrisation. The currents are (quasi-)primary, implying
that for different spin, they are in general orthogonal; ie 〈JsJt〉 = 0 if s 6= t. In
the UV case, these currents are generally conserved since they are based on the free
field φc, whereas in the IR fixpoint theory, the currents are conserved only to leading
order in 1/N .

2.6.1 Subtraction of Traces

As the tensors are totally symmetric, we may contract the free indices by a vector
y ∈ Cd (this is a very common technique; see eg [86]). Currents are then obtained
by applying a partial derivative with respect to y 5. The “current polynomial” is
thus given by

Js[y] =
s
∑

k=0

as
k :(y · ∂)kφ (y · ∂)s−kφ(∗) : − traces, (2.6-27)

and symmetrisation is implicit in this scheme. We indicate the ”generating argu-
ment” by square brackets. The current operator is reobtained by differentiation,

Js =
1

s!
(∂y)

sJs[y].

Subtraction of traces is technically a nontrivial procedure; this section is meant
largely for the illustration that in the case of the currents Js, the subtraction makes
such difficulties in the general case that we could not find a closed formula and it
does not seem to exist in the literature. There is no deep material requisite for the
rest of the thesis in this subsection.

5In some texts, a factor 1
s! is inserted accounting for the numerical prefactors obtained when

differentiating with respect to y.
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In the y-polynomial scheme, a traceless tensor Ts[y] is characterised by the condition

△yT
s[y] = 0,

so it corresponds to a harmonic function. The “subtraction” term contains (sym-
metrised) tensors of the structure gijT

s−2
(k) , where g is the metric. These would be

represented by y-polynomials of the form

y2ps−2[y],

where ps−2[y] is a homogeneous polynomial of order s − 2. Subtractions are mean-
ingful and well defined if there exists a unique function ps−2[y] such that

△y(J
s[y]− y2ps−2[y]) = 0. (2.6-28)

For the proof of existence and uniqueness of the subtraction, see [7]. Alternatively,
we could restrict the vector y to the complex cone y2 = 0 (this is an important
technique for the proof).

As a first application, we evaluate the subtraction scheme for a symmetric tensor of
the type 1

s!
(t · y)s, t ∈ Cd; by solving the relevant differential equation (2.6-28) and

selecting the unique solution with finite polynomial degree, we find

1

s!
(t · y)s − traces =

(t · y)s

s!
2F1

(

− s

2
,
1

2
− s

2
; 2− s− d

2
;

t2y2

(t · y)2

)

=
|t|s|y|s

2s(d
2
− 1)s

C
d
2
−1

s

( t · y
|t| |y|

)

, (2.6-29)

where Cλ
s (x) are the Gegenbauer polynomials 6 (this may be checked by computing

the divergence). This is the unique harmonic function of homogeneity degree s which
can be constructed from the expressions t · y and y2 (containing y). If there were
another function with that property, the subtraction of traces procedure would not
be well-defined (this is of course not a proof). Note that due to the symmetry of
the expression in t and y, this function is harmonic with respect to the variable t as

well. If O is a real orthogonal matrix in Rd, then

1

s!
(t ·Oy)s − traces =

|t|s|y|s

2s(d
2
− 1)s

C
d
2
−1

s

(t ·Oy

|t| |y|
)

is harmonic in t and y simultaneously. We list the first few cases:

1

0!
(t · y)0 − traces = 1

1

1!
(t · y)1 − traces = t · y

1

2!
(t · y)2 − traces =

(t·y)2

2
− t2y2

2d

1

3!
(t · y)3 − traces =

(t·y)3

6
− t2y2(t·y)

2(d+2)

6also called ultraspherical polynomials
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If we substitute ∂y instead of y, then

(

e
t·∂y − tracest

)

f [y] =
(

e
t·∂yf [y] − tracest

)

= f [t] − tracest = f [t]

iff f is a harmonic function; so
(

e
t·∂y − tracest

)

acts as the identity on the harmonic

functions.

Computing the harmonic y-polynomial for the currents Js[y] is not an easy task. In
a first step, we encode the derivatives acting on the two field operators with left and
right pointing arrows

Js[y] ∼
∑

k

as
k(y ·

←−
∂ )k(y · ~∂)s−k − traces =

∑

k

as
kg

k
1g

s−k
2 − traces.

One one hand side, we can sum easily

s
∑

k=0

as
kg

k
1g

s−k
2 = (−1)

d
2
−2Γ(d

2
− 1)

2
(g1 + g2)

d
2
−2+s (−g1g2)

1− d
4 P

2− d
2

d
2
−2+s

(

g2 − g1

g2 + g1

)

.

For the dimensions usually considered, this becomes quite a simple function; in d = 4,

s
∑

k=0

as
kg

k
1g

s−k
2 =

(g2 + g1)
sPs

(

g2−g1

g2+g1

)

2
.

Subtraction of traces can now be performed by setting g1 = y · ∂1, g2 = y · ∂2

etc. However, the subtraction for general s is a very involved procedure, and the
combinatorial difficulties are protecting the solution very well 7.

We will see that for our purposes, it is more convenient to indicate whenever traces
are subtracted; this will not hinder us to obtain the results we are interested in, at
least within the limitations of this text.

2.6.2 n-point Functions of Currents

When we compute the connected n-point function of these currents of different spin,
we find that the spin-0 current plays a special role. In the UV fixpoint theory,
all connected n-point functions are generated by a single φ-loop with the currents
inserted in an arbitrary order; the total correlation is given by the sum over all
permutations.

In the IR fixpoint theory, the behaviour is considerably different. In the leading
order of 1/N , the effective topology should be tree, ie there may be several φ-loops
which are linked by σ-propagators and span a tree network in this manner. There

7The uniqueness argument does not apply here because we have available the terms y · ∂1, y · ∂2

and y2 for the construction of the currents Js[y]
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is one exception for currents of spin s > 0: The σ couples to to a φ-loop via a σφ2-
coupling, and this can be written as σJ0. Consider a diagram where one Js couples
to a φ-loop which connects only to a single σ-propagator. This means that Js and
J0 are Wick-contracted (like 〈J0 Js〉 is the free UV theory). But this contraction
vanishes, since the currents Js and J0 are orthogonal under Wick contraction.

The important conclusion is that (to leading order in 1/N !) the two-point and
three-point functions of higher-spin tensor currents do not contain any intermediary
σ-propagators, and therefore the correlations are identical in the UV and IR, and so
they are also conserved in the IR fixpoint theory (to this order!).

2.6.3 Two-point Functions in the Free UV Theory

The facts summarised here briefly will be derived explicitly below in in section 3.4.4.
See also [5], whose normalisation of the underlying scalar field operators coincides
with ours 8. The normalisation of the two-point function of the free massless vector
field φa is

〈φa(x)φb(0)〉 =
Γ(d

2
− 1)

4π
d
2

N

(x2)
d
2
−1

δab, N = 1. (2.6-30)

This is in agreement with the earlier discussion of the O(N) vector model. We will
retain the constant N, so that all further results can be easily adapted to a different
normalisation by changing N.

Define the matrix-valued function

Ijl(x) = δjl − 2
xjxl

x2
. (2.6-31)

Note that I is always orthogonal (it acts as a mirror symmetry with respect to the
plane orthogonal to x). Then, symmetry considerations and conservation arguments
dictate the form of the two-point function in coordinate space to be [39, III.2]

〈Js(x)[y]Js(0)[y′]〉 = N · n(s)
(

(y · I(x)y′)s − traces
) 1

(x2)d−2+s
, (2.6-32)

where n(s) is a normalisation. By [5, 26], we find that

n(s) = (−1)s 2s−5 s!Γ(2s + d− 3)Γ(d
2
− 1)2

πdΓ(s + d− 3)
N2.

By covariance, the two-point functions vanish for currents of different spin.

8The normalisation in [4] is different!
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2.7 Twist-2 Conformal Partial Wave Expansion

for the Free UV Theory

We will construct a type of conformal partial wave expansion (CPWE) for the free
O(N) vector model, which we found as UV fixpoint of the O(N)-symmetric φ4 vector
model. Once we have found an appropriate structure, we will be able to give an
EAdS-presentation for the amplitudes of this model, ie a mathematical prescription
how to compute them based on the geometric notions of EAdS. The expansion is
based solely on bilinear twist-2 currents and we will show it for the free UV fixpoint
theory.

Consider the correlation function of n operators 1
2

:φ(xj)
2 :, where xj ∈ R

d. In a
first step, we select by cluster expansion the connected part of this amplitude. An
elementary computation yields that the amplitude is given by the sum

1

2n
〈:φ(x1)

2 : . . . :φ(xn)2 :〉conn

=
∑

p∈π(1,2,...,n)

φc1(xp1
)φc1(xp1

)φc2(xp2
)φc2(xp2

) . . . . . . φcn(xpn
)φcn(xpn

), (2.7-33)

where π denotes the set of permutations of the cyclic (!) and inversion symmetric
n-tupels (so the n-tupel (1, 2, . . . , n) is indistinguishable from (2, 3, . . . , n, 1) and
(n, n− 1, . . . , 1)). The contractions indicated yield massless scalar propagators. All

in all, there are (n−1)!
2

summands in this expression. The right-hand-side will be
proportional to N because of the colour summation.

The operator φ(y) has spin 0 and scaling dimension d
2
− 1 by elementary arguments.

This amplitude can be simplified by recognising that any bilocal operator constructed
out of operators φ(y), φ(z) has an expansion in terms of local (Hermitian) totally
symmetric traceless tensor fields (quasi-primary 9 conserved tensor currents) Js

(i) of

even 10 integer spin s and twist 2 (ie of conformal dimension ∆s = d − 2 + s); here
(i) = i1, . . . , is is a multiindex. These currents have already been introduced in
section 2.6. We have the equality [39, 73]

φ(y)·φ(y)φ(z)·φ(z) =

∫

ddx

∞
∑

even s = 0

Js
(i)(x) c

s|0,0
(i) (x|y, z), (2.7-34)

where cs|0,0(x|y, z) are tensor functions 11 of order N0 whose indices are contracted
with the indices of Js. The currents Js are orthogonal for different spin, 〈Js

(i)J
t
(j)〉 = 0

for s 6= t and we can find the coefficients by

c
s|0,0
(i) (x|y, z) = Ds

(i),(j)(∂x) 〈Js
(j)(x)φ(y)·φ(y)φ(z)·φ(z)〉, (2.7-35)

9There will in general be a large number of secondary fields in the same representation, ie
derivatives of the quasi-primary fields.

10For bilocal combinations of complex scalars φ∗(y)φ(z) we would get also odd spins.
11cs|0,0(x|y, z) might be defined properly only as a distribution.
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where Ds(∂x) is the (tensor) differential operator fulfilling

Ds
(i),(j)(∂x) 〈Js

(j)(x)Js
(k)(y)〉 = δ

(d)
(i),(k)(x− y) − traces. (2.7-36)

Since the two-point function is of order N1, the operator Ds is of order N−1. The
functions cs|0,0 are symmetric

cs|0,0(x|y, z) = cs|0,0(x|z, y), s even. (2.7-37)

Using the currents, we can write the contributions due to the permutations (1, 2, 3, . . . , n)
and (2, 1, 3, . . . , n) in the sum (2.7-33) as

φ(x1)·φ(x1)φ(x2)·φ(x2) . . . . . . φ(xn)·φ(xn)

+ φ(x1)·φ(x1)φ(x2)·φ(x2) . . . . . . φ(xn)·φ(xn)

=

∞
∑

even s = 0

∫

ddy c
s|0,0
(i) (y|x1, x2) Js

(i)(y)φ(x3)·φ(x3) . . . . . . φ(xn)·φ(xn),

where we have indicated that one of the fields φ making up the current Js is contracted
with φ(x3) and the other is contracted with φ(xn); since Js is bilinear, there are
two possible ways of realising this contraction scheme yielding the same result. To
generalise the construction, we need to handle the CPWE of three currents.

The construction for tensor currents is hardly more complicated; since the currents
Js are contractions of bilinears in the fields and their derivatives, we can immediately
state that there exists an expansion of the form

Jt
(i)(y)Ju

(j)(z) =

∫

ddx

∞
∑

even s = 0

Js
(k)(x) c

s|t,u
(k)|(i),(j)(x|y, z), (2.7-38)

with c a function or distribution symmetric in the last index/argument pair. On
the left-hand-side, there are still two elementary field operators left for contraction.
Notice that formula (2.7-34) is a special case of this equation for t = u = 0. In
particular, the correlation of three currents is obtained as

〈Js
(i)(x)Jt

(j)(y)Ju
(k)(z)〉 =

∫

ddx̃ 〈Js
(i)(x)Js

(l)(x̃)〉 c
s|t,u
(l)|(j),(k)(x̃|y, z). (2.7-39)

The last ingredient which we need is the associativity of the contractions: We have
eg

Js
(k) [ Jt

(i)J
u
(j) ] Jv

(l) = Js
(k) Jt

(i)J
u
(j) Jv

(l) + Js
(k) Jt

(i) Ju
(j) Jv

(l), (2.7-40)

where on the left-hand-side the first and third contraction is with the total bracket.

The strategy for computing the n-point correlation function of 1
2

:φ2 :≡ J0 is thus as
follows:
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Figure 2.7: (top) All possible CCNA’s for n = 4. (bottom) Two possible CCNA’s
(without numbering of external operators) for n = 6.

Select an arbitrary cyclic commutative non-associative structure (CCNA) on the set
{1, 2, . . . , n}, ie a set of n − 2 triangles, where each corner of each triangle either
carries one element of the set {1, 2, . . . , n} (“external operator”) or touches exactly
one corner of another triangle (“internal operator”). For each triangle, the order
of the corners is irrelevant, ie the CCNA is not a plane structure. Each number is
supposed to appear exactly once (cf. figure 2.7). The external operators represent
the field operators which appear in the correlation function we are going to compute.

We will show the following facts: i) Each CCNA corresponds to a sum over certain
contraction schemes of the operators 1

2
:φ2 :. ii) If we sum over all CCNA’s, then

we obtain a multiple of the total correlation function (2.7-33). The CCNA’s are
then interpreted as tree Feynman graphs of an effective classical theory, with certain
qualifications concerning the combinatorial prefactors.

Ad i) Assign to each internal operator j an integration coordinate xj ∈ Rd and a spin
variable sj . Assign to the external operators carrying a number k the coordinate xk

of the respective field operator, and the spin 0.

Select an arbitrary triangle of the graph. Using the coordinates x and spins s of
the three adjacent operators a, b, c, we write the expectation on the left-hand-side of
equation (2.7-39) as contraction

∫

ddy 〈Jsa(xa)J
sa(y)〉csa|sb,sc(y|xb, xc) = Jsa(xa)J

sb(xb)J
sc(xc) (2.7-41)

(we have suppressed the tensor indices). Now repeat the following steps: Check
whether all operators appearing in this equation are external operators. We will
assume that this is not the case and there is still one internal operator left, for sake
of concreteness c. Thus there is another triangle bounding on this operator. This
triangle has two more operators, we will call them d and e. Multiply formula (2.7-41)
by csc|sd,se(xc|xd, xe), integrate over xc and sum over sc. On the right-hand-side, we

can use equation (2.7-38) to perform the integral, obtaining a factor 4Jsd(y)Jse(xe).
This expression has to be contracted with the remaining operators; we can resolve the
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contractions using formula (2.7-40). Note that this procedure generates two possible
contraction schemes of the operators. We repeat these step until all operators in the
formula are external. Since we have assigned spin 0 to the external operators, we
may now substitute J0(xj) = 1

2
:φ2(xj): throughout and resolve the contractions.

For the top left CCNA indicated in figure 2.7, we obtain the relation

∑

s even

∫

ddy

∫

ddz cs|0,0(y|x1, x2)〈Js(y)Js(z)〉cs|0,0(z|x3, x4)

= φ(x1)·φ(x1)φ(x2)·φ(x2)φ(x3)·φ(x3)φ(x4)·φ(x4)

+ φ(x1)·φ(x1)φ(x2)·φ(x2)φ(x3)·φ(x3)φ(x4)·φ(x4).

Note that the position of the 〈JJ〉-correlation on the left-hand-side is not unique; we
have a choice when we begin the iteration, and it could be anywhere in the graph.

Ad ii) In the general case, there are n − 2 c-kernels on the left-hand-side and 2n−3

different contraction schemes on the right-hand-side contributing. Counting powers
of 2, we find that the prefactor of the all contraction schemes on the right-hand-side
is always unity. However, obviously it is not sufficient to use one CCNA since we
do not get all different contraction schemes necessary for the connected correlation
function (2.7-33). We have to sum over all different CCNA’s; then, by symmetry,
each contraction scheme will be accounted for the same number of times. It remains
to determine how many different CCNA’s there are.

The answer is simple enough: draw on a plane the CCNA as binary tree with the
external vertex number 1 as top node. The number of different trees is given by
the Catalan number [92] Cn−2 = (2n−4)!

(n−1)!(n−2)!
. There are (n − 1)! different ways to

number the remaining end nodes of the tree by the remaining external operators;
finally, we overcount by a factor of 2n−2 since at each triangle, we may exchange the
two subtrees or external operators hanging on, and there are n− 2 triangles. So the
total number of CCNA’s is

#(CCNA) =
(2n− 4)!

2n−2(n− 2)!
.

Since each CCNA produces a total of 2n−3 different contraction schemes, summing
the multiplicity of all contraction schemes results in a total of (2n−4)!

2(n−2)!
summands. The

correlation function (2.7-33) requires exactly (n−1)!
2

contraction schemes, indicating
that the sum over all CCNA’s overcounts each contraction scheme by a factor

(2n− 4)!

2(n− 2)!

2

(n− 1)!
=

(2n− 4)!

(n− 1)!(n− 2)!
= Cn−2

in comparison with the full connected correlation function.

In order to formulate our results, we will write the c-kernel in a suggestive manner
by help of a “generalised vertex” V . We expect that V only exists in the sense of
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distributions. The generalised vertex is defined by

V s,t,u
(i),(j),(k)(x, y, z) = Dt

(j),(j′)(∂y)D
u
(k),(k′)(∂z)c

s|t,u
(i)|(j′),(k′)(x, y, z) (2.7-42)

and has the order N−2. This definition implies

c
s|t,u
(i)|(j),(k)(x|y, z) =

∫

ddy′
∫

ddz′ 〈Jt
(j)(y)Jt

(j′)(y
′)〉 〈Ju

(k)(z)Ju
(k′)(z

′)〉 V s,t,u
(i),(j′),(k′)(x, y′, z′)

and therefore, by (2.7-39),

Gs,t,u(x, y, z) =〈Js(x)Jt(y)Ju(z)〉

=

∫

ddx′
∫

ddy′
∫

ddz′ 〈Js(x)Js(x′)〉 〈Jt(y)Jt(y′)〉 〈Ju(z)Ju(z′)〉 V s,t,u(x′, y′, z′)

of order N1 (we have suppressed all tensor indices).

Finally, note that all the arguments go through in the general case when we expand
a correlation function of n different twist-2 currents 〈Js1(x1) . . .Jsn(xn)〉. We have
found the following result:

Proposition 2.4. The correlation function 〈Js1(x1) . . .Jsn(xn)〉
conn

is equivalent to
C−1

n−2 times a sum of all amplitudes generated by all possible tree graphs containing
symmetric, traceless quasi-primary tensor currents of all even spins s with propa-
gators 〈Js

(i)J
s
(j)〉 and effective three-current interaction vertices given by the symbols

V s,t,u(x, y, z), with the currents Jsj (xj) at the tips of the tree.

Remark 2.5. Equivalently, the amplitudes corresponding to the trees might be ob-
tained by using correlations of three currents Gs,t,u(x, y, z), and integrating out the
coordinates x with the inverse propagator Ds(∂x) as “kernel” whenever two such
correlations have a common midpoint

∑

s

∫

ddxGs,s1,s2(x, y
1
, y

2
)Ds(∂x)G

s,t1,t2(x, z1, z2)

(suppressing tensor indices).

The operator Ds can formally be assigned an integral kernel (Gs)∗(x, y); see appendix
A.2 for the scalar case.

We have thus generalised a construction given by Diaz and Dorn [26] for n = 4
and proven a conjecture formulated by these two authors. The peculiarity of this
approach is that by registering all different topologies in the CPWE, we have been
able to get rid of all the higher twist currents. The disadvantage is the appearance
of the factor C−1

n−2, forbidding the interpretation of the tree diagrams we have just
constructed as an effective classical field theory. However, this is not completely
surprising: A quantum field theory can never be equivalent to a classical field theory.

Proposition 2.4 is the technical tool which allows us to construct an EAdS-presenta-
tion of the boundary correlations of tensor currents in sections 3.4 and 3.5.
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Example: Three-point functions. Let us study the simplest case V 0,0,0 of the
effective vertices, implied by the scalar three-point function

G0,0,0(x1, x2, x3) =
1

23
〈:φ(x1)

2 ::φ(x2)
2 ::φ(x3)

2 :〉.

We have from the application of Wick’s theorem

G0,0,0(x1, x2, x3) =
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3
1

|x1 − x2|d−2|x1 − x3|d−2|x2 − x3|d−2
.

(2.7-43)
Since the two-point function of the spin-0 current is

1

22
〈:φ(x)2 ::φ(0)2 :〉 =

N

2

(

Γ(d
2
− 1)N

4π
d
2

)2

|x|4−2d (2.7-44)

(implying the conformal dimension ∆ = d− 2), the inverse propagator D0 formally
has scaling dimension ∆∗ = 2 and with the correct normalisation (cf. appendix A.1)
has the formal kernel

(G0)∗(x) =
25 Γ(d− 2)

N2Γ(d
2
− 1)2Γ(2− d

2
)Γ(d

2
− 2)

1

|x|4 . (2.7-45)

Using the D’EPP relation (appendix A.3) to contract the inverse propagator with
the x1 − x2 and x1 − x3-terms, we conclude that

c0|0,0(x1|x2, x3) =
N Γ(d

2
− 1)Γ(d− 2)

4πdΓ(2− d
2
)Γ(d

2
− 1)2

1

|x1 − x2|2 |x1 − x3|2 |x2 − x3|2(d−3)
.

In d = 3, this shows that the symbol c is the three-point correlation of two operators
:φ(x2)

2 :, :φ(x3)
2 : with scaling dimension 1 with the composite operator :φ(x1)

4 :.

In principle, we can now apply the D’EPP relation two more times on the inverse
propagator kernels (G0)∗ attached to the legs x1, x2, thus obtaining the effective
vertex

V 0,0,0(x1, x2, x3) =
27 Γ(d− 2)2(d− 3)(4− d)

N3Γ(2− d
2
)2Γ(d

2
− 1)6Γ(d

2
− 2)2

1

|x1 − x2|2 |x1 − x3|2 |x2 − x3|2
.

This vertex seems to vanish, however, in d = 3, as has been remarked by Petkou
[78]. This is a misleading conclusion, however: the Schwinger parametrisation for
conformal propagators puts serious restrictions on the space dimensionality in which
these computations are valid, and in this case, the conditions mean that we should
not expect validity unless 4 < d < 6. All other dimensions can be reached by
analytic continuation in d. If we take the weak limit d → 3, then the factor d − 3
will vanish, but on the other hand, we get divergent contributions from the x-space
integrals. The precise meaning of this expression can be obtained by the following
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consideration: In d = 3, the x2−x3-term in c0|0,0 vanishes altogether. Therefore, the
inverse propagators act directly on the x1 − x2 resp. x1 − x3-terms which happen
to possess the correct scaling dimensions to yield precisely a delta distribution. In
d = 3, therefore,

V 0,0,0
d=3 (x1, x2, x3) =

256

N3
δ(3)(x1 − x2)δ

(3)(x1 − x3).

This result could have been obtained directly by recognising that in d = 3, the D’EPP
relation can be applied directly to the scalar φ-loop integral, since the necessary
condition ∆1 + ∆2 + ∆3 = 3 for the applicability of D’EPP holds.



Chapter 3

EAdS-Holography of the
O(N )-symmetric φ4 Vector Model

We have already reviewed the general outline of the AdS/CFT correspondence in
the introduction; it is the purpose of this section to establish a holographic descrip-
tion applicable to the O(N)-symmetric φ4 vector model developed in the preceding
section. This is the central chapter of this thesis. We begin by introducing basic
geometrical notions.

Remark. While in the discussion of the O(N)-symmetric φ4 vector model in chapter
2 we have retained ~, we will set ~ ≡ 1 throughout chapter 3, with the exception of
the fundamental discussion in section 3.2.

3.1 Geometry of Euclidean Anti-de-Sitter Space

The d + 1-dimensional Euclidean Anti-de-Sitter space 1 can be defined by its em-
bedding into a d + 2-dimensional ambient space. Let η̃ = diag(+, . . . , +,−) be the
metric of the Minkowski space Rd+1,1, with scalar product (, ). With this metric, the
hyperboloid

EAdSd+1 = {x̃ ∈ R
d+1,1 | η̃µ̃ν̃ x̃

µ̃x̃ν̃ = −1, x̃d+1 > 0} (3.1-1)

with the induced metric defines Euclidean Anti-de-Sitter space with unit curvature.
We adorn all vectors and indices in the embedding space with a tilde. We define the
modulus

|x̃| =
√

−(x̃, x̃), (3.1-2)

which is real in the neighbourhood of the EAdS-hyperboloid |x̃| = 1, x̃d+1 > 0. A
very convenient coordinate system is given by the Poincaré coordinates (x0, . . . , xd)
defined by

x0 =
1

x̃0 + x̃d+1
> 0, xi =

x̃i

x̃0 + x̃d+1
. (1 ≤ i ≤ d) (3.1-3)

1A very helpful collection of formulae concerning Euclidean AdS can be found in [50, 58].
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We will generally denote by x the coordinates (x1, . . . , xd) and refer to them as the
“horizontal” coordinates. The coordinate transform can be inverted by

x̃0 =
1− (x0)2 − x2

2x0
, x̃i =

xi

x0
, x̃d+1 =

1 + (x0)2 + x2

2x0
, (3.1-4)

where 1 ≤ i ≤ d. The metric in Poincaré coordinates is given by

gµν =
1

(x0)2
δµν , (3.1-5)

with determinant det g = (x0)−2(d+1). This is a positive definite metric. The Christof-
fel symbols in Poincaré coordinates are (with gν

µ ≡ δν
µ)

Γσ
µν = x0gµνg

σ
0 −

1

x0

(

gσ
µg0

ν + g0
µg

σ
ν

)

. (3.1-6)

Anti-de-Sitter space is invariant under proper Lorentz transformations SO(d + 1, 1)
in the ambient space Rd+1,1. These transformations leave invariant the scalar product
(ỹ, z̃) = η̃µ̃ν̃ ỹ

µ̃z̃ν̃ , ỹ, z̃ ∈ Rd+1,1. Let u, v be coordinates in the Poincaré patch, and
ũ, ṽ the corresponding coordinates in R

d+1,1. Then

(ũ, ṽ) = −(u0)2 + (v0)2 + (u− v)2

2u0v0
≤ −1

is invariant under SO(d+1, 1) (the product (, ) is not a bilinear form of the Poincaré
coordinates u, v). Note that (ũ, ũ) = −1. Naturally, the squared chordal distance

σ(u, v) ≡ (ũ− ṽ, ũ− ṽ) = −2− 2(ũ, ṽ) =
(u0 − v0)2 + (u− v)2

u0v0
≥ 0

is invariant. Finally, choosing 4 points u, v, y, z in the Poincaré patch, we have the
useful relation

(ỹ − z̃, ũ− ṽ) =(ỹ, ũ)− (ỹ, ṽ)− (z̃, ũ) + (z̃, ṽ)

=− 1

2

(

σ(y, u)− σ(y, v)− σ(z, u) + σ(z, v)
)

.

The d’Alembertian on EAdSd+1 in Poincaré coordinates is

�
g =

1√
g
∂µ
√

g∂µ = (x0)2∂2
0 + (1− d)x0∂0 + (x0)2△, (3.1-7)

where we have abbreviated the lateral derivatives as △ =
∑d

i=1 ∂2
i . The action of

this operator on functions of the squared chordal distance σ(x, y) only is found to be

�
g
xf(σ) =(1 + d)(σ + 2)f ′(σ) + σ(σ + 4)f ′′(σ)

= [σ(σ + 4)]
1−d
2 ∂σ [σ(σ + 4)]

1+d
2 ∂σf(σ)

=r−d

(

1 +
r2

4

)
1−d
2

∂rr
d

(

1 +
r2

4

)
1+d
2

∂rf(r2),
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where we have substituted r =
√

σ. From this form, one can see that for x in the
vicinity of y ∈ EAdSd+1, r(x, y) behaves as a Euclidean distance in a flat space. For
let f(σ) be a function with support close enough to 0. Then

∫

dd+1x
√

gf(σ) =

∫

dd+1x

(x0)d+1
f

(

(x0 − y0)2 + (x− y)2

x0y0

)

≈
∫

dd+1x

(y0)d+1
f

(

(x0 − y0)2 + (x− y)2

(y0)2

)

=

∫

dd+1x f
(

(x0 − y0)2 + (x− y)2
)

.

This estimate is good as long as x0 ≈ y0, so σ ≪ 1. A particular case is the native
δ-distribution on Anti-de-Sitter space: Obviously,

δEAdS(x, y) =
1√
g
δ(d+1)(x, y) = δ

(d+1)
‖.‖2 (σ(x, y)) (3.1-8)

where in the first equality we inserted the definition of the δ-distribution on EAdS
space through the Euclidean flat space δ-distribution; in the second equality, δ

(d+1)

‖.‖2

denotes the flat space distribution depending on the Euclidean distance squared.

Symmetries. In Rd+1,1, the symmetry group SO0(d + 1, 1) is generated by the
algebra of generators Gab, acting via rotations Gab, 0 ≤ a < b ≤ d and Lorentz boosts
Ga,d+1, 0 ≤ a ≤ d. How does the group action look like in Poincaré coordinates?

• Rotations in the (a, b)-plane with Gab, 1 ≤ a < b ≤ d are mapped on identical
rotations Mab.

• The generators G0a and Ga,d+1, 1 ≤ a ≤ d combine: N tr
a = G0a + Ga,d+1

are acting as transverse translations in Poincaré coordinates. The action of
N sc

a = G0a − Ga,d+1 with parameter c is a special conformal transformation
(“conformal translation”)

(x0, x) 7→

(

x0, x− ((x0)2 + x2)c
)

1− 2x · c + ((x0)2 + x2)c2
.

• A boost generated by G0,d+1 with rapidity θ is mapped on a dilation with the
rapidity θ, ie a scaling factor eθ.

The symmetry group may be implemented by the matrices

G ∈ {g̃ ∈ GL(d + 2, R) | tg̃η̃g̃ = η̃, det g̃ = 1, g̃d+1,d+1 ≥ 1}, (3.1-9)

acting on the EAdS hyperboloid embedded in Rd+1,1. In even dimensions, it may
advantageous to use the extended EAdS group

G′ ∈ {g̃ ∈ GL(d + 2, R) | tg̃η̃g̃ = η̃, g̃d+1,d+1 ≥ 1} (3.1-10)

including a reflection on the first d + 1 axes [31].
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Remark 3.1. There is another important symmetry operation keeping the chordal
distance invariant: The inversion I. It acts as

I : (x0, x) 7→ (x0, x)

(x0)2 + x2
. (3.1-11)

One easily checks that in the notation of the embedding space Rd+1,1, the involution
acts as a reflection on the x̃0 = 0-plane,

I : (x̃0, x̃1, · · · , x̃d+1) 7→ (−x̃0, x̃1, · · · , x̃d+1). (3.1-12)

Obviously, it is an involution, obeying I2 = 1. The special conformal transformations
are expressible by inversion through ordinary translations, via

eia·Nsc

= Ie−ia·Ntr

I. (3.1-13)

However, it is clear that the inversion does not preserve orientation; so it is only an
element of the group O(d + 1, 1).

3.2 Correspondence via Partition Functions

Explicit constructions implementing the AdS/CFT correspondence are often based
on the equivalence of correlation functions calculated in the bulk (AdS) theory on
one hand and the boundary theory on the other. The initial suggestions how to
implement this equivalence originate in early papers by Witten [103] and Gubser,
Klebanov and Polyakov [51]. They proposed that there exists a relation between the
generating functionals of both theories. We will discuss the different options in this
section, and apply this to the O(N) vector model. We will formulate a proposition
(proposition 3.2 on page 65) about the mechanism which we believe is at the heart
of the holographic theory of this model. This will lay the foundation for the detailed
analysis in the subsequent parts.

The construction suggested by Witten is based on the definition

〈e 1
~
O(f)〉CFT =

Z cl
ϕ{f}

Z cl
ϕ{0}

. (3.2-14)

We explain the ingredients of this formula. f is a test function living on the boundary
of AdS, and O is an operator in the boundary conformal field theory smeared with the
test function f . The left hand side instructs us to compute the generating functional
for correlations of the operator O in the vacuum state. On the defining side, we have
a classical Lagrangian field theory living on AdS space. This field theory contains a
(scalar) field ϕ “corresponding” to the operator O. ϕ is distinguished because it has
nontrivial boundary conditions: The boundary value of the field ϕ is fixed to be f
(it will be necessary to make detailed instructions on what is meant by “boundary
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value”); this is indicated by the notation ϕ{f}. The functional Z cl
ϕ{f} denotes the

generating function of a classical field theory

Z
cl

ϕ{f} = e−
1
~
Sϕ{f} ,

where Sϕ{f} is the action of the classical solution ϕ{f} of the field equations with
boundary value f . The action generally has to be regularised, ie one needs to sub-
tract a total divergence to render the Lagrangian density absolutely integrable. The
boundary of AdS space can be reached in a finite time from any point inside AdS; this
implies that changing the boundary conditions does make a difference. In general,
there is a simple relationship between the mass of the field ϕ and the scaling dimen-
sion of the boundary operator O. If tensor fields are used, then there exists naturally
a relation between the spins of the bulk field and the boundary operator[70].

Following [32], we will refer to Witten’s prescription as the “dual prescription” for
ϕ, due to the marked difference to the usual field theoretic source term which would
be implemented by a term f · ∂ϕ in the action (∂ϕ is the boundary value).

In the most simple examples, one can show by direct computation that the suggested
correspondence is able to reproduce simple boundary correlations from the associ-
ated bulk graphs. Our first task will be to consider some simple variations of this
elementary procedure.

Quantum correspondence. It is suggestive to try and use not a classical, but a
quantum theory in the bulk. We define the quantum partition function

Zϕ{f} =

∫

{f}
Dϕ e−

1
~

Sϕ ≡
∫

Dϕ δ(∂ϕ− f) e−
1
~

Sϕ, (3.2-15)

where the integration is restricted to field configurations with prescribed boundary
values. In the second equality, the Dirac delta distribution expresses this fact sym-
bolically. The quantum correspondence naturally is defined by

〈e 1
~
O(f)〉CFT =

Zϕ{f}
Zϕ{0}

. (3.2-16)

This path integral incorporates fluctuations around the classical solution ϕ{f}. The
boundary value f appears as a source term coupled to the field by the (dual) “bulk-
to-boundary” propagator. If the boundary CFT has a (formal) expansion in terms
of Feynman diagrams, then it is expected that the correspondence acts crudely in
a graph-by-graph manner; this is due to the fact that the Feynman diagrams are
weighted with multiples of the coupling constants etc. and we expect to find a
similar weighting on the bulk side.

Note that there is a connection between the quantum and the classical generating
functional. It is a basic fact of field theory that the classical generating functional
has a diagrammatic expansion which looks like the Feynman expansion of the cor-
responding quantised field theory; however, it contains only “tree-graphs”, ie graphs
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without loops (this can be shown eg by recursively substituting the field equation
into the action). If we define

e
1
~
Wϕ{f} = Zϕ{f},

then Wϕ{f} is a power series in ~ (with some logarithmic part from vacuum fluc-
tuations) and generates the connected correlation functions; ~ serves in Wϕ{f} as
loop-counting parameter for the connected diagrams. Defining

Z
(α)

ϕ{f} =

∫

{f}
Dϕ e−

1
α~

Sϕ , (3.2-17)

the classical generating functional can be reobtained by

Z
cl

ϕ{f} = lim
α→0+

(

Z
(α)

ϕ{f}

)α

. (3.2-18)

In the limit, only the exponent of order 1/~ corresponding to tree diagrams survives
(the vacuum diagrams logarithmic in ~ vanish). The commonplace description of
“letting ~ go to zero” is actually a “red herring” [42], because ~ just serves to define
the unit of mass.

The success of the classical correspondence in the literature demands that we justify
such a modification. A strong argument is the algebraic version of AdS/CFT found
by Rehren [83, 82] which implies that a quantum correspondence should exist (even
if the direct connection to the Lagrangian approach is not absolutely clear). Indeed,
if we believe in the fundamental character of AdS/CFT , then (3.2-16) is simply
a “quantisation” of the “classical” correspondence (3.2-14); or, rather, (3.2-14) is
the “classical limit” of the fully quantum correspondence (3.2-16). In the weak-
coupling limit a fully quantised field theory converges against the corresponding
weakly-coupled classical field theory; the reason is that if we expand the correlation
functions as a series in the coupling constant, then the leading order term is precisely
the correlation given by the corresponding classical theory. Equality is reached in
general only when the coupling constant vanishes and the theory becomes free. It
is therefore quite a reasonable assumption that the classical Witten-type correspon-
dence is a good approximation as long as the bulk theory is weakly coupled (but
never completely valid except in the limiting case of a free bulk theory).

Different boundary prescriptions. Another modification is obtained by aban-
doning Witten’s boundary value prescription and insisting on using the field theoretic
prescription for taking boundary values,

Z
cl

ϕ[f ] = e−
1
~
(Sϕ[f ]+if ·∂ϕ[f ]).

Here, ϕ[f ] denotes the classical solution in the presence of the “boundary source
term” if · ∂ϕ (this is also in need of a proper definition). Along the boundary, the
field is now allowed to vary (this is the equivalent to Neumann boundary conditions).
It turns out that this rebellious act is very sensible.
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Resorting to diagrammatics again, one finds (eg [32]) that the only modification
necessary is the substitution of a different bulk-to-bulk and bulk-to-boundary pro-
pagator (“field theoretic prescription” for ϕ), and the insertion of i. The AdS/CFT
correspondence reads

〈e− i
~
O(f)〉CFT =

Z cl
ϕ[f ]

Z cl
ϕ[0]

; (3.2-19)

however, the boundary theory (and the operator O) are generally different from
(3.2-14). Note that it is conceivable to use different prescriptions for different fields
at the same time.

The field theoretic prescription is easily transferred to the quantum correspondence.
The partition function is

Zϕ[f ] =

∫

Dϕ e−
1
~
(Sϕ+if ·∂ϕ), (3.2-20)

and the correspondence defined by

〈e− i
~
O(f)〉CFT =

Zϕ[f ]

Zϕ[0]

. (3.2-21)

Comparing to the dual prescription, we can see that (3.2-20) and (3.2-15) are related
by functional Fourier transform [32]: Formally 2,

Zϕ[g] =

∫

Df e−
i
~
f ·g

Zϕ{f} (3.2-22)

We want to check whether such relation also holds in the classical case. Substitute
on both sides ~ 7→ α~, exponentiate by α and take the limit α→ 0:

Z
cl

ϕ[g] = lim
α→0+

(
∫

Df e−
i

α~
f ·g

Z
(α)

ϕ{f}

)α

6=
∫

Df e−
i
~
f ·g lim

α→0+

(

Z
(α)

ϕ{f}

)α

=

∫

Df e−
i
~
f ·g

Z
cl

ϕ{f}.

In the classical case, the two prescriptions are not related by Fourier transform.
What is the meaning of the right-hand side? Interpreting f as a dynamical field,
it is a quantum theory of a single scalar field whose vertices are given by the tree
diagrams of the classical theory. This is, to say the least, very strange.

To summarise, we have the choice of boundary conditions (dual or field theoretic),
and we have the choice of classical vs. quantum. Since we will proceed from a given
boundary theory (the O(N) vector model) to its holographic realisation by some (a
priori unknown) bulk theory, this choice should not be ours. We just have to decide
which version of the correspondence “fits” the boundary model at hand. This will
be the task of the next three subsections.

2There might arise the need for regularising the transformation.
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3.2.1 Criticism of the Classical Correspondence

There are strong arguments limiting the classical version of the correspondence based
on positivity arguments, which we will review in this subsection (there appears a
similar discussion in [85]).

Consider an interacting quantum field theory in the bulk AdS. It has been shown
by Bertola et al [10] (see also [33]) that by computing correlation functions for
the bulk theory and letting the localisation regions of the operators approach the
boundary while scaling the correlations at the same time in a specific manner, one
may obtain correlation functions for a boundary theory obeying all the requirements
of a sensible quantum field theory in the axiomatic sense. Intuitively, this should be
clear also from the fact that we are doing nothing else but restrict the support of the
correlations to the boundary of AdS (or alternatively, to a “brane”, ie a submanifold
hovering over the conformal boundary of AdS). This establishes a correspondence
in the “field-theoretic prescription”, along the lines of formula (3.2-21). The “dual
prescription” is then defined procedurally by the functional Fourier transform of the
generating function, as indicated, even though its interpretation is not clear from
the axiomatic viewpoint.

The assumption of a classical theory in the bulk, however, introduces severe problems:
Let us rewrite formula (3.2-18) as

Z
cl

ϕ{f} = lim
n→∞

(
∫

{f}
Dϕ e−

n
~

Sϕ

)
1
n

. (3.2-23)

It is obvious that without taking the final power 1
n
, the right-hand-side is a perfectly

well-defined path integral for the partition function (since the positivity of the cor-
relation functions does not rely on a specific value for ~, so we may scale ~ as we
like); each term in the Feynman expansion of the partition function is adorned with a
weight nc−ℓ, where c is the number of connected components of the respective graph
and ℓ is the loop number. Taking the power 1

n
, we introduce an additional prefac-

tor n−c, suppressing the disconnected Feynman graphs contributing to the partition
function. One easily checks that this prefactor cannot be ascribed to a rescaling of
the underlying coupling constants and propagators.

The correlations of the holographic boundary theory (3.2-21) receive the same factors
nc−ln−c. The factor nc−l can be absorbed in some parameter rescaling of the boun-
dary theory (this must be possible because the holographic correspondence should
not rely on some particular value of the Planck constant of the bulk theory). Since
the connectedness structure of the correlations is the same in the boundary theory
(this can be shown eg by cluster expansion), the number of disconnected components
is the same in the boundary ansd the bulk correlation functions, and the factor n−c

has the same interpretation in the boundary theory, suppressing correlation functions
with several disconnected pieces (clusters). As in the bulk, it cannot be ascribed to
any rescaling of the underlying coupling constants and propagators. This leads to
a violation of positivity in the boundary correlations which has been studied by
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Kniemeyer [58]. The logical conclusion must be that if the bulk theory is classical,
then the boundary theory must be classical as well. This is an important result.

We want to raise the question whether it really is necessary to take the final power
of 1

n
, enforcing the treatment as “classical” theory. A rather more natural statement

would be to acknowledge that for very large n, the correlation function

Z
wc

ϕ{f} =

∫

{f}
Dϕ e−

n
~

Sϕ. (3.2-24)

describes a weakly coupled quantum system; with the usual implication that tree
graphs and disconnected graphs are overweighted, but without violation of positivity.
In effect, we are dealing with an effective Planck constant ~

n
in this system, and we

have to ask whence this parameter n arises. A natural candidate in the framework
of the AdS/CFT correspondence is the number of colours N of the boundary gauge
theory. So the statement envisioned is then that in the large-N limit, the boundary
theory is corresponding to a (weakly coupled) bulk theory with effective Planck
constant proportional to 1

N
(this rescaling of the Planck constant effectively rescales

all the bulk couplings). If we want the correspondence to hold beyond the leading
order in 1/N , the tree approximation cannot be expected to hold any longer, and
the bulk theory will have to include loop corrections. The assumption of a weakly
coupled quantum system would also imply that the different boundary prescriptions
for the bulk fields are related by a functional Fourier transform of the boundary
source terms, as indicated in (3.2-22).

3.2.2 Propagators in Different Prescriptions

Since we will rely on the perturbative approach for the holographic reconstruction
of the bulk theory from the boundary O(N) vector model, it is imperative to review
some basic properties of propagators in bulk (E) AdS theories. We will not dwell
on technical arguments here, as these are presented in depth in chapter 6, but focus
rather on the conceptual side.

For Lagrangian theories in bulk AdS space, we have defined at the beginning of
section 3.2 the meaning of different prescriptions - field theoretic and dual. These
prescriptions make a statement about the implementation of the source terms on
the conformal boundary, either in the “field-theoretic” fashion eiTsJs

, where Ts is
the bulk field and Js is the source term, or in the “dual” fashion, by a formal δ-
distribution δ(Ts− Js) 3. It is important to realise that the functional integral itself
is quite independent of these prescriptions: we have (and in fact must make) the
choice of a domain of integration. Selecting a path integral domain of integration
consisting of functions with a particular boundary behaviour, we have control over
the boundary conditions of the bulk-to-bulk propagators, without introducing any
source terms on the boundary or prescribed boundary values at all. Once we have

3It is rather adequate to speak of “boundary values” instead of “boundary source terms” in that
case.
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specified the domain of integration, we can choose how to introduce source terms on
the boundary.

If we choose the dual prescription and fix the boundary values, then the δ-distributions
will further restrict the domain of integration of the path integral. Out of this re-
striction arise certain consistency conditions between the domain of integration of
the (unconstrained) path integral and the subsequent restriction by a δ-distribution:
the domain of integration has to include functions taking the prescribed boundary
values. Otherwise, the path integral will just vanish. The effective domain of in-
tegration will be situated “around” the classical solution of the field equations in
the bulk, with the prescribed boundary values. Since the fluctuations of the bulk
fields are in this case subdued at the boundary, intuitively we would expect that
the propagators in the bulk which are generated by the fluctuations of the fields are
falling off towards the boundary faster than in the unconstrained case.

For the bulk-to-boundary propagators, the reasoning is different: Since in the dual
prescription, the fields are held fixed stiffly at the boundary, the bulk-to-boundary
propagators tend to fall off much faster in the horizontal direction in a given z0-
slice over the conformal boundary than when the boundary source terms are field-
theoretic.

We have to study in detail the influence of all these factors on the propagators.
For the propagators between sources in the bulk, we have to find out what is there
boundary behaviour; for the propagators coupling to source terms on the boundary,
there is also a question of normalisation [103, 32].

The free equations of motion of the bulk fields depend only on the kinetic term of the
Lagrangian and not on any type of boundary condition or source term prescriptions,
and therefore are always the same. In particular, we expect an identical set of
Feynman rules for all prescriptions and boundary conditions when we perturb the
free theory by an interaction term in the Lagrangian. In the short-distance regime
(ie, much closer than the curvature radius of AdS), the curvature of AdS becomes
negligible, and all bulk-to-bulk propagators are converging to the corresponding flat-
space propagator.

Field-theoretic prescription for boundary source terms. We begin by study-
ing the case of field-theoretic boundary source terms. A free spin s bulk tensor field
Ts(z) of square mass m2 ≥ −d2

4
− s has the equation of motion (cf. (3.4-119) below)

(m2 −�
EAdS
z )Ts(z) = 0. (3.2-25)

The bulk-to-bulk propagators are given by the Green’s functions of the inhomo-
geneous equation of motion. Note that the normalisation of the Green’s function
depends on the normalisation of the kinetic term in the action. We find that there
are basically two types of Green’s functions (all others may composed of linear com-
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binations of these two), with the asymptotic behaviour

G
∆± s
bu (z, u) ∼

(

z0u0

(z − u)2 + (z0)2 + (u0)2

)∆±

when u0 ≫ z0 or u0 ≪ z0 or (z − u)2 ≫ (z0)2 + (u0)2, (3.2-26)

where

∆± =
d

2
±
√

d2

4
+ s + m2 =

d

2
± β0. (3.2-27)

We call β0 the “effective mass” of the field on the curved Anti-de-Sitter space. We
have suppressed the tensor indices. These solutions are behaving near the conformal
boundary u0 → 0 as G

∆± s
bu ∼ (u0)∆±. We say that the dimensions ∆+ and ∆−

fulfilling ∆+ + ∆− = d are conjugate. For ∆+ = ∆− = d
2
, the propagators are

identical. A field-theoretic boundary source term Js(u) has to contain a scale factor

∫

ddu Js(u) lim
u0→0

(u0)−∆±Ts(u) (3.2-28)

to make sense in the limit. Removing u towards the boundary, we find solutions
which can be identified as field-theoretic bulk-to-boundary propagators,

G
ft ∆± s
bubo (z, u) = lim

u0→0
(u0)−∆±G

∆± s
bu (z, u) ∼

(

z0

(z − u)2 + (z0)2

)∆±

. (3.2-29)

For tensor fields, the limit operation includes a projection of the respective tangent
spaces. Near the boundary z0 → 0, they behave as

G
ft ∆± s
bubo (z, u) ∼ (z0)∆±

(z − u)2∆±
z0 ≪ |z − u|,

G
ft ∆± s
bubo (z, u) ∼(z0)−∆+ u = z. (3.2-30)

We will discuss these propagators in section 3.4. One finds that a bulk tensor field
with propagator G

∆± s
bu corresponds to a boundary operator with conformal dimension

∆±; the two-point function for the operator on the boundary is

G
ft ∆± s
bo (z, u) = lim

z0→0
(z0)−∆±G

ft ∆± s
bubo (z, u) ∼ 1

(z − u)2∆±
. (3.2-31)

This result could have been also obtained by the equality of the eigenvalues of the
quadratic Casimir operators of the conformal symmetry group in the bulk and boun-
dary (see section 3.3.1 below).

The masses of bulk fields are therefore related to the scaling dimensions of the boun-
dary operators associated by (3.2-21). Up to the normalisation, the choice of scaling
dimension ∆± for the boundary operator fixes uniquely the propagator which we
have to use in the bulk.
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What are the respective domains of integration for the path integral inducing these
propagators? In section 6, we implement a “näıve ” approach to the (Euclidean)
path integral where all field configurations are taken from a Hilbert space with a
scalar product constructed from the regularised symmetric “Klein-Gordon” form
(the kinetic term of the Lagrangian); it turns out that in order to obtain propagators
Gft ∆+, one has to impose additional constraints on the boundary behaviour of the
configurations (roughly speaking, they should fall off as (u0)∆+). We will address the
path integral which implements a bulk-to-bulk propagator with boundary behaviour
(u0)∆− as Neumann type path integral whereas the path integral which implements
a bulk-to-bulk propagator with boundary behaviour (u0)∆+ as Dirichlet type path
integral. Below, we will show that this terminology makes very much sense.

The path integral may even implement a “mixed” boundary behaviour

Gα s
bu ∼ αG

∆+ s
bu + (1− α)G

∆− s
bu , α ∈ R. (3.2-32)

For α 6= 0, 1, the corresponding conformal operators on the boundary no longer have
a definite scale dimension; they are mixtures of operators with scaling dimension
∆+ and ∆−. On the level of the path integral, these propagators are implementable
by giving different weights to the configurations with boundary behaviour (u0)∆±.
Admittedly, this latter construction is somewhat artificial.

Dual prescription for boundary source terms. If the boundary source terms
for the field Ts are implemented with the dual prescription, then one can formally
realise the fixing of boundary values by a δ-distribution on the boundary, which in
the case of the Neumann path integral with configurations behaving as (u0)∆− near
the boundary reads

∏

u∈Rd

δ

(

Js(u)− lim
u0→0

(u0)−∆−Ts(u)

)

(3.2-33)

Because the fluctuations of the field near the boundary are suppressed by the fixing of
boundary values and the propagators are generated by these fluctuations, the bulk-
to-bulk propagator in this case behaves as (u0)∆+ near the boundary; we consequently

obtain the bulk-to-bulk propagator G
∆+ s
bu

4.

In order to determine the dual bulk-to-boundary propagator, we have to find the
kernel G

dl ∆+ s
bubo (u, x) which fulfills

Js(u) = lim
u0→0

(u0)−∆−

(
∫

ddxG
dl ∆+ s
bubo (u, x)Js(x)

)

(3.2-34)

4By the index ∆+ in the dual prescripiton, we do not refer to the behaviour of the underlying
path integral, as in [32], but to the boundary behaviour of the propagator. So their relation

Γ− = G+ reads G
dl ∆+ s

bu = G
ft ∆+ s

bu here, and we may drop the prescription index on the bulk-to-
bulk propagators.
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for arbitrary, sufficiently regular Js. The term in brackets is the classical solution of
the free field equations whose boundary values are fixed by (3.2-33), as this classical
solution distinguishes the minimum of the action. Note that the normalisation of
G

dl ∆+ s
bubo does thus not depend on the normalisation of the action. Solving this equa-

tion, one shows that the dual and the field-theoretic bulk-to-boundary propagator
are multiples 5

G
dl ∆+ s
bubo = c ·Gft ∆+ s

bubo . (3.2-35)

In the scalar case, for a conventionally normalised action 1
2
φ(m2 − �

EAdS)φ, the
factor c = ∆+−∆−. For the boundary-to-boundary propagators, one gets using the
methods of [32]

G
dl ∆+ s
bo = c2 ·Gft ∆+ s

bo (3.2-36)

with the same constant c.

If we try to implement a näıve δ-distribution also in the case of the Dirichlet path
integral over a function space with boundary behaviour (u0)∆+, then the formalism
turns out to be inconsistent: The resulting propagator (Green’s function) must be
vanishing faster than (u0)∆+ at the boundary, and such a Green’s function does not
exist. So the domain of path integration must always contain functions falling off
like (u0)∆−; we are forced to adopt the Neumann path integral if the dual prescription
is implemented by a simple δ-distribution. We will at the end of this section propose
a method how this difficulty can be overcome.

By functional Fourier transform (Box 3.1) with respect to Js, the field-theoretic
source term (3.2-27) on the branch ∆− (Neumann path integral) is formally trans-
formed into the δ-function (3.2-33), and vice versa; at the same time, the scaling
dimension ∆− of the corresponding boundary operator is changed to the conjugate
dimension ∆+ = d − ∆−. Extrapolating this consideration to the Dirichlet path
integral, we might therefore define the dual prescription with scaling dimension ∆±
by functional Fourier transform of the field-theoretic prescription with scaling di-
mension ∆∓.

From the fact that dual and field-theoretic propagators are related by functional
Fourier transform, it follows strictly that they are related by convolution [32]

G
dl ∆∓ s
bubo G

ft ∆± s
bo =G

ft ∆± s
bubo ,

−G
ft ∆∓ s
bubo G

dl ∆± s
bo =G

dl ∆± s
bubo . (3.2-37)

In particular, the normalisation of the dual boundary-to-boundary propagator does
depend on the normalisation of the action. By the same method of proof,

G
∆∓ s
bu =G

∆± s
bu −G

ft ∆± s
bubo (G

ft ∆± s
bo )−1G

ft ∆± s
bobu ,

G
∆∓ s
bu =G

∆± s
bu + G

dl ∆∓ s
bubo (G

dl ∆∓ s
bo )−1G

dl ∆∓ s
bobu . (3.2-38)

Here, Gbobu and Gbubo are adjoints. In the rest of the work, we take the conservative
view that functional Fourier transform on the boundary acts between the “natural”

5Equation (3.2-34) can not be solved by a multiple of G
ft ∆

−
s

bubo , as one might think näıvely .



Box 3.1: Functional Fourier Transform of Boundary Source Terms

We explain the action of the functional Fourier transform on the path integral for the
free scalar field. With field-theoretic boundary values (3.2-28) and source terms T 0 in the
bulk, the Neumann or Dirichlet path integral for the field T0 is

Z[J0][T
0] = Z

−1
0

∫

D(T0) exp
{

− 1

2

∫

dd+1z T0(G0)−1T0

+

∫

dd+1z T0T 0 +

∫

ddu J0(u) lim
u0→0

(u0)−∆±T0(u)
}

= exp
{1

2

∫

dd+1z T 0G
∆± 0
bu T 0 +

∫

dd+1z T 0G
ft ∆± 0
bubo J0 +

1

2

∫

ddu J0G
ft ∆± 0
bo J0

}

.

Here, (G0)−1 denotes the quadratic kernel of the path integral, and the propagators act by
convolution. By substituting J0 → −iJ0 and performing the functional Fourier transform
with a normalisation constant nf , we obtain on the left hand side

nf

∫

D(J0) exp(iJ0K0)Z[−iJ0][T
0]

= Z
−1
1

∫

D(T0)
∏

u∈∂ EAdS

δ

(

K0(u)− lim
u0→0

(u0)−∆±T0(u)

)

exp
{

− 1

2

∫

dd+1z T0(G0)−1T0 +

∫

dd+1z T0T 0
}

= exp
{1

2

∫

dd+1z T 0G
∆∓ 0
bu T 0 +

∫

dd+1z T 0G
dl ∆∓ 0
bubo K0 +

1

2

∫

ddu K0G
dl ∆∓ 0
bo K0

}

by the definition of dual boundary source terms, and on the right hand side

nf

∫

D(J0) exp(iJ0K0)Z[−iJ0][T
0]

= exp
{1

2

∫

dd+1z T 0G
∆± 0
bu T 0−1

2

∫

ddu (K0−G
ft ∆± 0
bobu T 0)(G

ft ∆± 0
bo )−1(K0−G

ft ∆± 0
bobu T 0)

}

by the rules of Gaussian integration respectively. Equating these two expressions, we get
the first half of the formulas (3.2-37) and (3.2-38). The second half is obtained by applying
again the inverse functional Fourier transform, substituting J0 → iJ0 and equating both
sides. In addition, we extract the relation

G
dl ∆∓ 0
bo = −(G

ft ∆± 0
bo )−1.
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cases Gft ∆− s and Gdl ∆+ s. In the field-theoretic setting, we normalise the propa-
gators consequently by (3.2-29) and (3.2-31), given that the boundary source terms
are formally implemented by (3.2-28). As discussed before, the dual prescription
in terms of an independent path integral with a näıve δ-distribution does not make
sense unless ∆ = ∆+. See however the paragraph at the end of this section.

Unitarity Bound. There exists a physical lower bound to the scaling dimensions
of the symmetric tensor operators of spin s on the boundary, the unitarity bound
[64]

∆s
ub =

{

d
2
− 1 for s = 0

d− 2 + s for s ≥ 1.
(3.2-39)

By the equivalence of representations in the bulk and on the boundary (cf. sec-
tion 3.3.1), the same bound is required in the bulk for the bulk theory to be unitary.
Since for spin s ≥ 1 the unitarity bound ∆s

ub > d
2

in 2 < d < 4, the ∆− ≤ d
2

branch
of scaling dimensions can never occur. For tensor fields, the unitarity bound limits
the mass from below: If m2 in (3.2-27) gets too small, then also ∆+ will lie below
the unitarity bound, so there is no possible set of boundary conditions which makes
sense for these fields. We take this as the definition of a “massless” tensor field in
the bulk: Equating ∆+ = ∆s

ub, we obtain the minimal mass

m2
s = (d− 2 + s)(s− 2)− s (s ≥ 1).

That this mass is not zero (as we expect from a “massless” field) is due to the constant
background curvature of Anti-de-Sitter space. We will find that in the theories we
are discussing, there is set of higher spin gauge fields in the bulk lying precisely on
this lower limit (they are corresponding holographically to the quasi-primary bilinear
tensor currents introduced in section 2.6). For spin 0, there is a certain choice; as
long as

m2 ≤ 1− d2

4
,

both ∆− and ∆+ are an option. It is quite impressive to see that there is such a
direct equivalence between these physical limits in the holographic bulk AdS theory
and the theory on the boundary.

How to implement boundary source terms in the Dirichlet path integral:
a suggestion. This is a side result; since there are some arguments which may be
controversial, it will not be used in the rest of the text.

Before discussing to the EAdS case, we consider first a simple analogy in flat space.
In a flat space path integral over a region U with a boundary ∂U , we have the
choice to implement the path integral over a space of functions with either Dirichlet
or Neumann boundary conditions, yielding propagators which obey these respec-
tive boundary conditions (corresponding to propagators with behaviour (u0)∆+ resp.
(u0)∆− in the AdS setting).

We want to introduce field-theoretic boundary source terms. We define an auxiliary
hypersurface Hε which is a constant distance ε away from the boundary ∂U , and
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place the source terms J on Hε. Then, we let Hε approach the boundary (ε→ 0). In
the Neumann type path integral, the bulk-to-bulk propagator G(u, x) for u, x ∈ U
asymptotically is constant near the boundary, so we couple the field φ to the source
terms by a summand

lim
ε→0

∫

Hε

dxφ(x)J(x) (3.2-40)

in the action; whereas in the Dirichlet case, they have to be coupled by

lim
ε→0

∫

Hε

dx ε−1φ(x)J(x) (3.2-41)

since the the two-point function with Dirichlet boundary conditions behaves as
G(x, u) ∼ dist(x, ∂U) for x, u ∈ U and x near the boundary. So effectively, by
the rule of l’Hospital the sources are coupled to the normal derivative of the field at
the boundary, by a source term in the action

lim
ε→0

∫

Hε

dx [∂n(x)φ(x)]J(x). (3.2-42)

We suggest to take this as definition for field-theoretic boundary source terms in the
Dirichlet path integral. If we demand dual boundary source terms instead, then in
the Neumann path integral, we have to fix the boundary values of the field by the
usual factor

lim
ε→0

∏

x∈Hε

δ(φ(x)− J(x)) (3.2-43)

in the path integral. This seems straightforward, but we want to suggest that the
procedure is subtle: The hypersurface Hε splits the region U into an outer region
Uout (with boundaries ∂U and Hε) and an inner region Uin (with boundary ∂U),
and the path integral falls apart into two separate pieces, under the condition that
discontinuities in the derivative of the field at Hε are allowed. This point has to
be stressed because we will have to make a similar demand in the Dirichlet case.
We argue that the piece in Uout contributes only to the two-point function of the
source terms J . In the limit ε→ 0, the outer region Uout gets so slim that even the
lowest modes have a very high excitation energy; so there is no propagation in the
outer region Uout, and the outer path integral does not contribute anything (except
a constant factor due to the Casimir effect; but this contributes only to the overall
normalisation). In effect, the region Uin takes over the role of U , and the boundary
condition at ∂U due to the path integral is completely extinguished in favour of the
boundary condition at Hε which now takes the role of ∂U .

If we had instead implemented the δ-factors not on Hε, but directly on the boundary
∂U , then we would have a double boundary condition: by the Neumann path integral,
on ∂U , the normal derivative of the field vanishes. At the same time, the value of
the field would be fixed by the δ-distributions. In general, there exists no classical
field configuration solving the field equations and fulfilling both boundary conditions
at the same time; so the method of letting the field fluctuate around the minimum
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of the action (the classical configuration) on which the path integral is based would
not be applicable.

In order to introduce dual boundary source terms in the Dirichlet path integral, we
should consequently fix the normal derivative by a factor

lim
ε→0

∏

x∈Hε

δ([∂n(x)φ(x)]− J(x)). (3.2-44)

We want to argue that the same mechanism as in the Neumann path integral applies
here: The path integral falls apart into two separate pieces over the regions Uin and
Uout, and the integral over Uout in the limit ε → 0 does not contribute any more
to the correlations. If we demand that the derivative is fixed and the path integral
falls apart into two separate pieces, we have to admit that at Hε, the field amplitude
may be discontinuous; the normal derivative, however, is fixed on both sides. We are
aware that this assumption is debatable. We feel that it is justified, because in the
Neumann case, we had to make a similar assumption concerning the discontinuity
of the derivative. In the limit ε→ 0, only the derivative of the field at the boundary
is fixed – not its value.

It is evident that the field fluctuations near the boundary ∂U in the Neumann path
integral with field-theoretic boundary source terms are of the same magnitude as the
fluctuations near the boundary ∂U in the Dirichlet path integral with dual boundary
source terms; the field is free to fluctuate in both cases (for J ≡ 0, they coincide).
This implies that the bulk-to-bulk propagators in both cases are identical, they have
Neumann boundary conditions. Likewise, the field fluctuations near the boundary
∂U in the Dirichlet path integral with field-theoretic boundary source terms are
of the same magnitude as the fluctuations near the boundary ∂U in the Neumann
path integral with dual boundary source terms; in both cases, the fluctuations are
suppressed (for J ≡ 0, they coincide). This implies that the bulk-to-bulk propagators
in both cases are identical, they have Dirichlet boundary conditions.

We expect a similar argument to hold in the EAdS setting. We want to suggest that
the field-theoretic source term (3.2-28) should be re-interpreted in the Dirichlet path
integral case ∆+; the way it is written, it corresponds to (3.2-41), and we should
find a way to formulate it paralleling (3.2-42). For the scalar field, we were in fact
able to derive a completely sufficient prescription for the implementation of field-
theoretic and dual boundary source terms which harmonises with a path integral
of both Neumann (configurations behave as (u0)∆−) and Dirichlet (configurations
behave as (u0)∆+) type. We explain this construction.

For the path integral of Dirichlet type, we propose to define the field-theoretic source
terms in the action for the scalar field by

lim
ε→0

∫

Hε

du J0(u) (u0)∆−−∆++1∂u0

[

(u0)−∆−T0(u)
]

, (3.2-45)

where Hε is the hypersurface u0 = ε in EAdS. Since in the path integral with Dirich-
let type boundary conditions the field configurations have an asymptotic behaviour
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near the boundary as T0(u) ∼ (u0)∆+t(u), the source term (3.2-45) effectively imple-
ments

lim
ε→0

∫

Hε

du J0(u) (u0)∆−−∆++1∂u0

[

(u0)−∆−T0(u)
]

= lim
ε→0

∫

Hε

du J0(u) (∆+ −∆−)t(u)

=(∆+ −∆−) lim
ε→0

∫

Hε

du J0(u) (u0)−∆+T0(u).

This proves that (3.2-45) is equivalent to (3.2-28) on the branch ∆+ in the field-
theoretic case, up to the prefactor ∆+ − ∆−. The bulk-to-boundary propagator
therefore is in this normalisation

G
ft ∆+ 0
bubo (z, u) = (∆+ −∆−) lim

u0→0
(u0)−∆+G

∆+ 0
bu (z, u). (3.2-46)

If the field-theoretic boundary source terms in the Neumann path integral are defined
in this manner and the action is normalised conventionally as 1

2
φ(m2 − �

EAdS)φ,
then equation (3.2-35) holds with c = 1, and similarly equation (3.2-36) which can
be derived from (3.2-35) and (3.2-38) 6. Going over to dual boundary source terms,
we have to introduce a factor

lim
ε→0

∏

u∈Hε

δ
(

J0(u)− (u0)∆−−∆++1∂u0

[

(u0)−∆−T0(u)
])

(3.2-47)

into the path integral. By analog arguments as in the flat space example, EAdS space
is separated into two regions EAdSin and EAdSout, separated by the hypersurface
Hε. The path integral in the region EAdSout has Dirichlet boundary conditions
at ∂ EAdS and ”fixed normal derivative” boundary conditions at Hε, and in the
limit ε → 0 ceases to contribute. Since the field fluctuations near Hε in EAdSin

are not suppressed by (3.2-47), we have to take into account field configurations
with the boundary behaviour (u0)∆−, implying that the bulk-to-bulk propagator is

G
∆− 0
bu . However, we have to ascertain how the dual boundary term (3.2-47) in the

path integral evaluates on these configurations, since originally it was supposed to
act on Dirichlet configurations with a boundary behaviour (u0)∆+. This is a subtle
question. We assume that the relevant field configurations T0 near the boundary
asymptotically solve the free equations of motion (in the flat case, this was the
condition for the applicability of the l’Hospital rule). This implies that they have an
asymptotic expansion

T0(u) ∼(u0)∆−g0(u) + (u0)∆−+2g2(u) + . . . (3.2-48)

+(u0)∆+h0(u) + (u0)∆++2h2(u) + . . . (3.2-49)

6If we set c = 1 and normalise the propagators correspondingly, this seems to contradict with
(3.13) and (3.14) of [32] which rely on an analyticity argument involving a sign change of the factor
c. However, this analyticity argument is simply not valid in our approach since the field-theoretic
boundary terms in the Neumann and Dirichlet path integral are defined differently.
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It is essential that this in an expansion in (u0)2. When inserting T0(u) into the
δ-terms, we get

lim
ε→0

∏

u∈Hε

δ
(

J0(u)− (u0)∆−−∆++1∂u0

[

(u0)−∆−T0(u)
])

= lim
ε→0

∏

u∈Hε

δ
(

J0(u)−
[

2(u0)∆−−∆++2g2(u) + · · ·+ (∆+ −∆−)h0(u) + . . .
])

.

The g0-term is extinguished by the derivative. We have to check that the whole g-
series vanishes in the limit u0 → 0. By the unitarity bound for scalar fields (3.2-39),
∆− ≥ d

2
− 1, so

∆− −∆+ + 2 = ∆− − (d−∆−) + 2 ≥ 2

(

d

2
− 1

)

− d + 2 = 0; (3.2-50)

so (excluding the case where ∆− lies exactly on the unitarity bound), the contribution
g2 and all higher terms from the g-series vanishes and h0 is the only summand which
survives the limit u0 → 0; it is finite. We have shown that the δ-distribution (3.2-47)
is well defined in the Dirichlet path integral.

In order to determine the dual bulk-to-boundary propagator, we have to find the
kernel G

dl ∆− 0
bubo (u, x) which fulfills

J0(u) = lim
u0→0

(u0)∆−−∆++1∂u0(u0)−∆−

(
∫

ddxG
dl ∆− 0
bubo (u, x)J0(x)

)

(3.2-51)

for arbitrary, sufficiently regular J0. The term in brackets is the classical solution of
the free field equations whose boundary values are fixed by (3.2-47), as this classical
solution minimises the action; since it solves the field equation in the bulk, it has an
asymptotic expansion near the boundary of the form (3.2-48) with a non-vanishing

h-series [58]. The normalisation of G
dl ∆− 0
bubo is independent of the normalisation of

the action. Furthermore, equations (3.2-37) are valid independently, since they rest
exclusively on the fact that propagators with conjugate scaling dimension and pre-
scription are related by functional Fourier transform. This allows us to compute for
a conventionally normalised action

G
dl ∆− 0
bubo = G

dl ∆− 0
bubo G

ft ∆+ 0
bo (G

ft ∆+ 0
bo )−1 (3.2-37)

= G
ft ∆+ 0
bubo (G

ft ∆+ 0
bo )−1

(3.2-35) and (3.2-36)
with c = 1= G

dl ∆+ 0
bubo (G

dl ∆+ 0
bo )−1 (3.2-37)

= −G
ft ∆− 0
bubo . (3.2-52)

We summarise our ideas in a tentative

Definition. In the scalar field path integral over EAdS with a domain of integration
appropriate to Neumann boundary conditions for the propagators, boundary source
terms in the field-theoretic prescription are implemented by (3.2-28) with ∆−. Boun-
dary source terms in the dual prescription are implemented by a factor (3.2-33) in
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the Neumann path integral. They are related by functional Fourier transform with
respect to the source term.

In the scalar field path integral over EAdS with a domain of integration appropriate
to Dirichlet boundary conditions for the propagators, boundary source terms in the
field-theoretic prescription are implemented by (3.2-45). Boundary source terms in
the dual prescription are implemented by a factor (3.2-47) in the Dirichlet path
integral. They are related by functional Fourier transform with respect to the source
term.

This is based on the assumption that the path integral separates into two distinct
regions at the hypersurface Hε where the boundary source terms are implemented.
We are confident that this assumption can be more firmly grounded than we have
done it, and that the definition can be extended to fields with spin s > 0.

In the rest of the thesis, we will however retain the normalisation of the propagators
according to equations (3.2-29), (3.2-31) and (3.2-37).

3.2.3 UV/IR Duality and Holographic Duality

We have so far discussed the path integral approach to the AdS/CFT correspondence
and possible variants in this framework; in the preceding subsection, we have stated
the properties of the propagators. In this subsection, we will combine this analysis
with the insights on the renormalisation group fixpoints of the O(N) vector model
obtained in chapter 2. We will thus come to the central proposition of this thesis.

As we have explained in the last subsection, the different boundary prescriptions
(dual and field-theoretic) for a field ϕ in a Lagrangian bulk theory lead to the same
set of Feynman diagrams for this theory, but to a different set of propagators for
the field ϕ. The bulk theories obtained from different prescriptions are related by
functional Fourier transform with respect to the boundary value of ϕ. In section
2.5, we have observed a similar phenomenon for the two conformal scaling limits of
the O(N) vector model: The free UV and interacting IR fixpoint theories were also
related by a functional Fourier transform, cf. proposition 2.3 on page 31. This leads
to the striking conclusion that if there exists a holographic description for one of the
fixpoints, then we can construct the holographic pendant of the other fixpoint by
functional Fourier transform. If the bulk theories are Lagrangian, then the functional
Fourier transform is implemented solely by exchanging the relevant propagators from
one prescription to the other.

Let us briefly characterise what we should expect from the holographic duals, based
on very simple arguments in the line of [55]: The free UV fixpoint theory possesses
the family of conserved quasi-primary tensor currents of even spin which has been
given in section 2.6. It has been conjectured that the UV theory as boundary theory
is holographically dual to the higher spin theory in bulk AdS, containing symmetric
tensor fields Ts of all even spins s ≥ 0 (cf. section 1.1.1).

The correlations between :φ2 :-operators or current operators Js on the boundary
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consist of a single φ-loop. The simplest correlation is the two-point function; it
consists of two parallel massless propagators. The propagators are proportional to
|k|−2, so their coordinate space behaviour is |x|2−d; we find

〈:φ(0)2 ::φ(x)2 :〉UV ∼
1

(x2)d−2
,

so the scaling dimension of :φ2 : is ∆:φ2: = d − 2. In the dimensional range 2 < d <
4, this is below d

2
, which by the reasoning of section 3.2.2 can be identified with

the branch ∆− of the scaling dimension. On this branch, the relation between the
boundary operator scaling dimension and the bulk mass is

∆:φ2: =
d

2
− β0 =

d

2
−
√

d2

4
+ m2

leading to an effective mass β0 = 2 − d
2

and a mass squared m2 = −2(d − 2) of
the scalar bulk field. For the currents Js with spin s > 0 and scaling dimensions
∆Js = d − 2 + s, in the range of dimensions considered ∆Js > d

2
lies on the branch

∆+. The dimensions of the boundary operators and of the bulk propagators are
therefore summarised by

∆UV
s = d− 2 + s (3.2-53)

for all s. When computing boundary correlations by the AdS/CFT correspondence,
we have to use propagators G∆UV

s s for the fields in the bulk to achieve the proper
amplitude; the choice of dual or field-theoretic prescription is a matter of the reali-
sation.

In contrast, in the interacting IR limit theory (where we examine the correlations of
the field σ) the σ-propagator is proportional to k4−d; this gives a coordinate space
behaviour

〈σ(0)σ(x)〉IR ∼
1

(x2)2
.

The scaling dimension of σ is therefore ∆σ = 2; and because this is larger than d
2

in 2 < d < 4, we have to use the branch ∆+. For the corresponding scalar bulk
field, the effective mass β0 = 2 − d

2
and the Lagrangian mass m2 = −2(d − 2) are

identical to those of :φ2 : in the UV case, however. The dimensions ∆:φ2: and ∆σ are
conjugate,

∆:φ2: + ∆σ = d. (3.2-54)

The boundary currents of spin s ≥ 2 retain all their scaling dimensions from the UV
fixpoint theory, to leading order in 1/N (although there are higher order corrections);
but since the spin does not change and s > 1 throughout, the fields are still on
the upper branch ∆+ > d

2
, by unitarity. So in the IR fixpoint model, the scaling

dimensions are summarised by

∆IR
s =

{

2 for s = 0

d− 2 + s for s ≥ 2.
(3.2-55)
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(a) (b)

Figure 3.1: (left top) Typical graph in free UV fixpoint theory. Crosses are :φ2 :
or Js currents. Lines are propagators of the field φ. (left bottom) Two possible
corresponding bulk graphs (a) and (b) with effective topology derived from 1/N
expansion. Crosses are sources on the boundary, circles are vertices in AdS. All
propagators in (b) are bulk-to-boundary propagators, in (a) there is one bulk-to-
bulk propagator.
(right top) Typical graph in interacting IR fixpoint theory. Plusses are source
terms for σ, double lines are σ-propagators. (right bottom) Corresponding bulk
graph with effective topology derived from 1/N expansion. Plusses are sources on
the boundary. There are two bulk-to-bulk propagators between the vertices, and
four bulk-to-boundary propagators. The numbers are referred to in the text.

Since UV/IR duality of the O(N) vector model fixpoints involves a functional Fourier
transform from :φ2 : to σ only, we conclude that in the bulk, the two holographic
theories are related by changing the boundary prescription for the scalar field only.
Since the dual prescription is confined to the branch ∆+, we conclude that in the
holographic IR fixpoint theory, the scalar bulk field with scaling dimension ∆IR

0 = 2
should be realised in the dual prescription, and in the holographic UV fixpoint theory
the scalar field with dimension ∆UV

0 = d− 2 should be realised in the field-theoretic
prescription. However, the issue of prescriptions is somewhat elusive: Formally,
we may use (3.2-35) and (3.2-36) to switch between different prescriptions without
changing the boundary operator scaling dimension; in particular, it is perfectly sensi-
ble to exchange the dual prescription on the IR side for the field-theoretic prescription
(the propagators get a different normalisation then). We will examine this question
of realisation in a section 3.6. In the meanwhile, we assert that, up to normalisation,
the (bulk-to-bulk) propagator for the scalar field in the UV fixpoint holographic the-
ory has boundary behaviour (z0)d−2, while for the IR fixpoint holographic theory, it
behaves as (z0)2. This is a very important result, and our construction of the holo-
graphic correspondence for the UV and IR fixpoint theories has here its foundation.

We also have seen in section 2.3 that the effective graph topology in the boundary
theories is that of the 1/N expansion; the φ-loops take the role of effective vertices.
By the usual rules of AdS/CFT , we should expect that in the bulk theories, 1/N
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appears as a loop counting parameter, ie the effective Planck constant is proportional
1/N ; we are not too specific about the detailed structure of the corresponding bulk
graph, so that for example in figure 3.1 (left) on page 64 we leave open several
possiblities for the realisation in the bulk. The loop number is fixed, however, by
the order in N .

While certainly this seems quite intuitive from the perspective of graph-by-graph
holographic AdS-presentation, it does not seem to agree very well with UV/IR dua-
lity: The IR boundary theory contains an increasing amount of (connected) diagrams
contributing in the subleading orders of 1/N as in figure 3.1 (right) and therefore, the
bulk graphs contributing to the holographic amplitudes should contain an increasing
amount of loops. On the other hand, the connected diagrams in the UV fixpoint
theory on the boundary are all of order 1/N and contain exactly one φ-loop as in
figure 3.1 (left); and should therefore in the corresponding holographic bulk theory
have a tree topology (one may guess that the φ-loop is substituted by one effective
vertex with as many legs as there are insertions on the loop).

However, UV/IR duality demands that we should obtain the holographic UV theory
in the bulk by using a scalar propagator with boundary behaviour (z0)d−2 in place
of the scalar propagator with boundary behaviour (z0)2 endemic to the IR fixpoint
theory – the graph topology does not change when going over from the IR fixpoint
theory. Every holographic bulk graph contributing to the IR fixpoint theory appears
in the holographic UV fixpoint theory. We thus have the

Proposition 3.2. Assume that the holographic bulk theories corresponding to the
UV and IR fixpoint theories of the O(N)-symmetric φ4 vector model on the boundary
are Lagrangian, and that the scalar operators of the boundary theories are coupled
linearly to fundamental fields of the holographic bulk theories, either via the field-
theoretic or the dual prescription. Assume that structure of the boundary theories
under the 1/N-expansion is reflected in the bulk theories by a Planck quantum of
action proportional to 1/N , so that the φ-loops of the boundary theory correspond
holographically to subdiagrams in the bulk with a tree topology.
Then, the UV fixpoint holographic theory in the bulk must contain loop graphs, because
the IR fixpoint holographic theory does. Both holographic theories are quantum (and
not classical). There exists a dynamical mechanism suppressing loop graphs in the
UV fixpoint holographic theory in order to be consistent with the free UV fixpoint
theory on the boundary.

Proof. We summarise the arguments: By UV/IR duality (proposition 2.3 on page 31),
the boundary UV/IR theories are linked by functional Fourier transform. Since the
bulk theories are Lagrangian, the functional Fourier transform on the boundary
sources (3.2-22) acts in a simple manner: It exchanges the boundary prescription
for the scalar bulk field. Since the IR fixpoint theory on the boundary is interact-
ing and has a nontrivial 1/N -expansion, the corresponding holographic bulk theory
has a perturbation expansion containing loops. The assertion for the UV fixpoint
holographic bulk theory follows.
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If the bulk theories are not Lagrangian (ie they have an expansion in graphs but
these graphs do not derive from a Lagrangian), then the action of the functional
Fourier transform when we go over from the IR to the UV hologram or vice versa
via UV/IR duality generates a set of contributing graphs with different topologies,
invalidating the premises of the proposition.

The statement that all loops are suppressed dynamically in the UV hologram is very
strong: A loop may involve as many propagators as one could fancy, and the vertices
in the loop are coupled to other portions of the graph or even external sources and
thereby modulate the amplitude of the loop “alone”. A “graph-global” mechanism
effecting that the amplitude of a Feynman graph vanishes as soon as a propagator
creating a loop is inserted somewhere is hardly imaginable (such a mechanism would
let a graph like in figure 3.1 (right bottom) vanish in the UV holographic theory
since propagators 1 and 2 form a closed loop).

One may however envision a “graph-local” mechanism extinguishing loops. Any
loop graph in the bulk involves bulk-to-bulk propagators; these propagators usually
induce a summation over fields of all possible spins, and different kinds of vertices
for them. If there were a mechanism suppressing bulk-to-bulk propagation in the
graphs, then all loops would be suppressed, since a loop contains at least one bulk-to-
bulk propagator. The UV fixpoint holographic theory would effectively contain only
bulk-to-boundary propagators.

This does not mean that all bulk-to-bulk propagators vanish separately: rather, bulk-
to-bulk propagation which results from the sum over the tensor fields of all possible
spins (HS bulk fields) should cancel:

∑

s

Ṽ s,...
1 (Dz1, . . . ) GUV s

bu (z1, z2) Ṽ s,...
2 (
←−
D z2, . . . ) = 0, (3.2-56)

where Ṽi are vertices in the bulk acting on the propagators via the covariant EAdS-
derivative Dzj (Dz2 acts towards the left here), and GUV s

bu (z1, z2) is the bulk-to-
bulk propagator for the intermediate tensor field with spin s appropriate to the UV
fixpoint holographic theory, ie with boundary behaviour (z0)d−2+s. If one measures
correlations

〈Ts(z) . . . 〉bulk ∼
∫

dd+1z′ GUV s
bu (z, z′) · · ·

of a HS tensor field Ts with other operators in the bulk, a cancellation does not take
place (since there is no summation over spins implied).

In addition, there might exist auxiliary bulk fields whose propagator just cancels the
effective bulk-to-bulk propagator due to the HS fields; in that case, the summation
in equation (3.2-56) would have to extend over these additional fields as well, and we
would have to declare their couplings via additional vertices. However, these fields
must not be detected at the boundary: Otherwise, they would form a part of the
boundary UV fixpoint theory. There are candidates for such fields: For example
the bulk critical scalar of effective mass 0. The critical scalar can never reach the
boundary, so no trace of it can be detected from the boundary. Another possibility
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is that they are tensor fields of odd spin which are discussed in [87]. However, such
speculations make sense only after we have determined the net propagation due to
the summation over the even spin tensor fields. We summarise this in the

Working Hypothesis 3.3. One possible mechanism for the dynamical suppression
of loop graphs in the Lagrangian UV fixpoint hologram is the total cancellation of bulk-
to-bulk propagation if the relevant bulk-to-bulk propagators are summed over tensor
fields of all even spins and possibly one or several auxiliary bulk fields.

If graph-internal bulk-to-bulk propagation is effectively suppressed in the UV holo-
graphic fixpoint theory, how does the AdS-presentation of the (connected) corre-
lations look like? All sources on the boundary are connected to the bulk graphs
by bulk-to-boundary propagators; no internal bulk-to-bulk propagators in the graph
are allowed, and therefore, there has to be exactly one vertex in the bulk where all
these propagators end. So in figure 3.1 (left bottom), graph (a) would be suppressed
and in fact graph (b) is the only allowed bulk graph. Naturally, there should exist
vertices of all orders (since there are boundary correlations of arbitrary order) and
these vertices must be expected to contain high derivatives, possibly of infinite order
- they are nonlocal. We will see that the twist-2 CPWE (section 2.7) is a tool for
the construction of these nonlocal vertices.

Going over to the IR fixpoint holographic theory, we have to use the propagator
with boundary behaviour (z0)∆IR

0 for the bulk scalar which is holographically dual to
the boundary scalar σ. As a consequence, the bulk-to-bulk propagators for the HS
tensor fields in the bulk non longer cancel: rather, we have

∑

s

Ṽ s,...
1 (Dz1 , . . . ) GIR s

bu (z1, z2) Ṽ s,...
2 (
←−
D z2 , . . . )

= Ṽ 0,...
1 (Dz1, . . . )

(

G
∆IR

0 0
bu (z1, z2)−G

∆UV
0 0

bu (z1, z2)
)

Ṽ 0,...
2 (
←−
D z2 , . . . ). (3.2-57)

This is the effective bulk-to-bulk propagator which will contribute to the loops in
the IR fixpoint holographic bulk theory. It solves the equation of motion for the
bulk-to-bulk propagator, but without the usual singularities on the diagonal: These

cancel exactly when subtracting G
∆IR

0 0
bu and G

∆UV
0 0

bu . We expect the the vertices
Ṽ 0,...

j (Dzj , . . . ) coupling to the scalar field do not contain any derivatives Dzj in the
end; since we were not able to complete their construction and could not prove this
statement, we retain the argument Dzj . Apart from this unusual effective propagator,
the IR bulk theory is a quantum field theory with a nonlocal interaction, including
vertices of arbitrary order.

Witten’s original suggestion for a classical bulk theory to correspond to a boundary
CFT appears now in a different light: It is the “missing”, or rather suppressed,
bulk-to-bulk propagation, which gives the theory its pseudo-classical appearance.

Summary. We have by comparison of UV/IR duality in the boundary O(N) vec-
tor model and the duality of the possible boundary prescriptions in holographic
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Lagrangian AdS theories made an important conclusion: Under the assumption of
the validity of the 1/N expansion in the bulk, a Lagrangian UV holographic the-
ory in the bulk is a quantum (not classical) theory. We have for the time being
explained this by a hypothesis demanding that there should be effectively no bulk-
to-bulk propagation in the UV holographic theory. This hypothesis fixes uniquely
the structure of the contributing graphs in the free UV fixpoint holographic theory:
The connected n-point functions (n > 2) contain exactly one vertex in AdS. There
must be vertices of arbitrary order.

In the remainder of this chapter, we will examine whether the conditions in the
proposition (notably the 1/N expansion in the bulk) can be met, and assemble ma-
terial for the final test of the working hypothesis. There is much (and technical) work
to be done, as the necessary objects (propagators and vertices) are only known in
specific cases; we need them in a form which can be handled efficiently. Is there really
a mechanism which effectively makes bulk-to-bulk propagation vanish? If so, then
on the level of perturbation theory, we are a large step further in the understanding
of the holographic correspondence of the O(N) vector model.

In section 3.6, we will show that by a semi-classical path integral for the bulk par-
tition function, bulk-to-bulk propagation can be excluded efficiently. However, it is
not clear whether this construction violates unitarity resp. Osterwalder-Schrader re-
flection positivity (in the Euclidean setting); and therefore, the status of the working
hypothesis is unclear.

3.3 Group Representation Theory and the

AdS/CFT Correspondence

The analysis of the AdS/CFT correspondence in the framework of the representation
theory of the conformal group has been championed by Dobrev [30, 29]; a summary
can be found in [31]. The work is in the Euclidean framework. In this section, we will
shortly summarise the ideas present in the literature. Note that we slightly adapt
the notation of the literature, in order to prevent clashes with the notation used
throughout this text. We have added this section because many concepts which are
in use have been derived in the group theoretical framework. There is no material
in this section which is the author’s own work.

3.3.1 Induced Representations of the Conformal Group

Since the symmetry group SO0(d + 1, 1) of Euclidean AdS and the conformal sym-
metry group of its conformal boundary, the compactified R

d, are identical, it is
suggestive to compare the representations on both spaces and find intertwiners be-
tween these representations. The construction of the representations proceeds by
the technique of induced representations; we summarise the results here with the
utmost brevity and urge the reader to consult the original publications quoted at
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the beginning of the section.

In the sequel, we will need the following subgroups of the Euclidean conformal group:
The Euclidean Lorentz (rotation) group M = SO(d), the one-dimensional dilatation
group A, the Abelian group of Euclidean translations N tr ∼= Rd, and the Abelian
group of special conformal transformations N sc ∼= Rd.

Representations on the boundary. The representations used in the conformal
boundary theory are called elementary representations (ER) after [29]; we give them
in the noncompact picture, which is relevant for physics. They are obtained by
induction from the so-called parabolic subgroup P = MAN sc. This is natural since
N tr is locally isomorphic to G/MAN sc, so we identify the conformal boundary with
N tr. The representation space of the representation Tχ is, following Dobrev,

Cχ = {f ∈ C∞(Rd, Vµ)},

where χ = [µ, ∆], ∆ is the conformal weight, µ is a unitary irreducible representation
of the Euclidean Lorentz group SO(d), and Vµ is the finite-dimensional representation
space of µ. We also have to demand a special asymptotic behaviour of these functions
as →∞, with the leading term f(x) ∼ (x2)−∆.

The irreducible representation Tχ acts like

(Tχ(g)f)(x) = |a|−∆ Dµ(m)f(x′), (3.3-58)

where a is the associated scale factor, and m is the rotation obtained from nonglobal
Bruhat decomposition g = ntrmansc, more precisely g−1ntr

x = ntr
x′m−1a−1(nsc)−1 (see

[31]). The matrix Dµ(m) is the representation matrix of m in the representation µ.
The “coordinates” x and x′ are related by a geometric point transform x′ = g−1x.

Representations in the Bulk. The bulk EAdS can be identified with N trA ≃
G/K, where K = SO(d + 1) is the maximal compact subgroup; we have to discuss
the representations induced by the maximal compact subgroup K. This is shown by
Iwasawa decomposition G = N trAK. The representation spaces are

Ĉτ = {φ ∈ C∞(Rd ×R+, V̂τ )}, (3.3-59)

where τ is an irreducible representation of K, and V̂τ is its finite-dimensional repre-
sentation space. The action of the representation is

(T̂ τ (g)φ)(x, |a|) = D̂τ (k)φ(x′, |a′|), (3.3-60)

where the group elements are related by the Iwasawa decomposition g−1ntr
x a =

ntr
x′a′k−1, and D̂τ (k) is the representation matrix of k in V̂τ ; again, we obtain the geo-

metric point transformation (|a|, x) = g−1(|a′|, x′). While we may choose any irrep τ
of the maximal compact subgroup K, the bulk representations which are usually dis-
cussed in the perturbative approach to AdS/CFT mostly are selected from so-called
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“minimal representations” τ = τ(µ), uniquely specified by a choice of the boundary
representation µ.

However, T̂ τ is not irreducible; so an ER on the boundary can in general only be
equivalent to a subrepresentation of T̂ τ . A good method to single out such subre-
presentations is to select the eigenspaces of the Casimir operators of the conformal
group. The Casimir operators are in general differential operators acting on the func-
tions in the representation space. The selection of an irreducible subrepresentation
amounts therefore to solving the corresponding differential equations; this is not a
simple task.

Pairs of dual representations. Since we have established the content of these
representations, we will now ask in which sense they are equivalent. To begin, we
find that the boundary representations always arrive in pairs: For the representation
χ = [µ, ∆], we find that χ∗ = [µ∗, d − ∆] is the representation conjugated by Weyl
reflection. Here, µ∗ is the “mirror image” of µ.

The conformal two-point function Gχ on the boundary is given by

Gχ(x) ∼ 1

(x2)∆
Dµ(m(x))

with m(x)ij = 2
x2 xixj − δij ∈ M a rotation. It serves as intertwiner between these

representations:

Gχ : Cχ∗ → Cχ, Tχ(g) ◦Gχ = Gχ ◦ Tχ∗(g), ∀g ∈ G

where Gχ is the convolution operator with kernel Gχ(x) defined by

(Gχf)(x1) =

∫

ddx2 Gχ(x1 − x2)f(x2) f ∈ Cχ∗.

Therefore, we have partial equivalence Cχ ≃ Cχ∗ . In particular, the values of all
the Casimirs coincide. At generic points, the representations are even equivalent (so
GχGχ∗ = 1χ and Gχ∗Gχ = 1χ∗).

The dual representations χ = [µ, ∆] and χ∗ = [µ∗, d−∆] can be contracted naturally.
For consider a tensor operator O in the representation χ. If J is a source function
transforming under the representation χ∗, then the integral

∫

ddx J(x) ·O(x),

where · denotes the natural contraction in the representation µ, is invariant under
the action of the conformal group. This is the situation we come across in Witten’s
proposal for the implementation of the AdS/CFT correspondence.
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Equivalent and partially equivalent representations. Since we are inter-
ested in possible equivalences between the bulk and boundary representartions, we
further restrict the bulk representations: Namely, given χ = [µ, ∆] with ∆ real, we de-
fine that Ĉτ

χ is the maximal subrepresentation of Ĉτ which has the same Casimir val-
ues as Cχ and has matching asymptotic behaviour φ(x, |a|) ∼ |a|−∆ϕ(x) for |a| → 0.
It is clear that there must be at least partial equivalence between Cχ and C̃τ

χ. It can
be established that the two representations are indeed equivalent if ∆ is generic (see
[30] for a list of the exceptional values). For these values, it is also established that
Ĉτ

χ = Ĉτ
χ∗ ≡ Ĉτ

χ,χ∗.

There are two intertwiners: The bulk-to-boundary intertwiner Lτ
χ : Ĉτ

χ,χ∗ → Cχ acts
like a projection

(Lτ
χφ)(x) = lim

|a|→0
|a|−∆Πτ

µφ(|a|, x),

where Πτ
µ is the standard projection operator from the K-representation space V̂τ to

the M-representation space Vµ. The intertwining property of Lτ
χ is

Lτ
χ ◦ T̂ τ (g) = Tχ(g) ◦ Lτ

χ ∀g ∈ G.

The boundary-to-bulk intertwiner L̂τ
χ : Cχ → Ĉτ

χ,χ∗, on the other hand, is constructed
as integral convolution operator

(L̂τ
χf)(|a|, x) =

∫

ddx′ |a|∆−dKτ
χ

(

x− x′

|a|

)

f(x′),

where Kτ
χ : Vµ → V̂τ is some linear operator. The intertwining property of L̂τ

χ is

T̂ τ (g) ◦ L̂τ
χ = L̂τ

χ ◦ Tχ(g) ∀g ∈ G.

In particular, L̂τ
χLτ

χ = L̂τ
χ∗Lτ

χ∗ = 1Ĉτ
χ,χ∗

and Lτ
χL̂τ

χ = 1Cχ . It can be shown that

at generic points, we can reconstruct the bulk field completely from its boundary
values.

Dual intertwiners can be related to each other by the boundary propagator: We have
up to a prefactor

Lτ
χ∗ ∼ Gχ∗ ◦ Lτ

χ. (3.3-61)

Bulk-to-bulk Propagators. Different Prescriptions. We are relating the
group theoretical results to the discussion of the propagators in section 3.2.2. We
found that the propagators have a distinguished boundary behaviour, which for a
given mass m2 in the bulk is characterised by (z0)∆±, with ∆± given in (3.2-27).
Can they be characterised by the representation method? The answer is that for
generic points, there is indeed a simple characterisation. Both types of propagators
act according to

G
∆±

χ,χ∗ : Ĉτ
χ,χ∗ → Ĉτ

χ,χ∗. (3.3-62)
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For a crossed contraction of the bulk-to-boundary intertwiners, we have up to a
multiple

L̂τ
χ∗ ◦ Lτ

χ ∼ G
∆−

χ,χ∗ −G
∆+

χ,χ∗ ∼ L̂τ
χ ◦ Lτ

χ∗ (3.3-63)

(this equation will be shown in a functional integral setup in section 6.1.1 below).

The integral kernels of the propagators G
∆±

χ,χ∗(|a|, x; |b|, y) (as function of |a|, x, with
|b|, y fixed, or vice versa) are not elements of Cτ

χ,χ∗, since they solve the free equation

of motion only up to contact terms δ(d)(x − y)δ(|a| − |b|), and the free equations
of motion are precisely the Casimir differential equations required to hold for ele-
ments of Cτ

χ,χ∗. However, they still can be identified by their asymptotic behaviour,

G
∆−

χ,χ∗(|a|, x; |b|, y) ∼ |a|∆− ∼ |a|d−∆ for |a| → 0 and G
∆+

χ,χ∗(|a|, x; |b|, y) ∼ |a|∆ for
|a| → 0, if we identify the ∆ from this section with ∆+ from (3.2-27). It is tempting

to denote the field-theoretic propagator by Gτ
χ∗ ≡ G

∆−

χ,χ∗ and say that it propagates

the representation χ∗, whereas the dual propagator might be called Gτ
χ ≡ G

∆+

χ,χ∗ and
said to propagate the “shadow field” in the representation χ [60].

From what has been said before, however, there is really no stringent reason to make
a distinction between those two representations in the bulk. The limiting behaviour
does not imply relations like “Lτ

χ◦G∆−

χ,χ∗ = 0” or similar: G
∆−

χ,χ∗, acting as convolution
operator according to (3.3-62), will certainly not equal 0, and therefore will not map
into the kernel of neither Lτ

χ not Lτ
χ∗ .

3.3.2 The Lifting Programme

Now we have formulated the equivalence between the bulk and boundary represen-
tations, we proceed to describe how this equivalence is exploited for the good of
the AdS/CFT correspondence. The term “lifting” of correlations means more than
the mere EAdS-presentation of amplitudes which is an essential, but technical, pre-
requisite for the establishment of a holographic correspondence on the perturbative
level (cf. subsection 1.1.2): The amplitudes of the boundary theory are now seen as
boundary limits of the correlations of an intrinsic (physical) bulk theory in the sense
of Dobrev’s representation theory (summarised in the preceding section), where the
coordinates of the correlation functions are taken towards the boundary while the
functions are scaled according to their scaling dimensions. If a theory is “lifted” from
the boundary into the bulk, then the boundary theory can be reobtained from the
“lifted” bulk theory by restriction to the boundary.

The lifting procedure we are reporting about here (as extracted from the literature)
is based on representation theory. The obvious object to lift are the correlation func-
tions of operators in various representations of the conformal group. On a deeper
level, it is a natural question what is a connection between this lifting and the (tech-
nical) EAdS-presentation which can be developed independently, based on Feynman
diagrammatic methods.

There are various implementations; we will stick to the formulation by Rühl [86],
with further elaboration by Leonhardt, Manvelyan et al [60, 61]; however cf. Petkou
[78, 79].
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Lifting of correlation functions. The starting point is a CFT on the conformal
boundary of EAdS, the one-point compactification of Rd. Consider a correlation
function

G(f ∗
1 , f ∗

2 , . . . , f ∗
n) = 〈O1(f

∗
1 )O2(f

∗
2 ) . . .On(f ∗

n)〉CFT, (3.3-64)

where Oj are (tensor) operators transforming under the elementary representation χj

of the conformal group, smeared by the test functions f ∗
j transforming under the dual

representation χ∗
j . We assume that the bulk theory is given by some diagrammatic

expansion, without making further assumptions on the nature of this expansion; it
might be a classical perturbative field theory (as in Witten’s original suggestion),
some perturbative quantum theory, or even a skeleton expansion 7. The statement
of the lifting hypothesis is an equality of the sort

G(f ∗
1 , f ∗

2 , . . . , f ∗
n)

!
=

n
∏

j=1

∫

ddxj

∫

EAdS

dd+1yj f ∗(xj)G
bobu
χj

(xj; yj)

〈ϕ∗
1(y1)ϕ

∗
2(y2) . . . ϕ∗

n(yn)〉bulk, amputated,

where Gbobu
χj

(xj; yj) is some bulk-to-boundary propagator for the representation χj ,
ϕ∗

j are bulk fields, and we demand the contraction of the indices of the finite dimen-
sional representation spaces. That Gbobu

χj
should propagate χj is clear since it is to

be contracted with f ∗
j transforming under χ∗

j . Therefore, as a tensor operator, ϕ∗
j

transforms under χ∗
j , implying that its amputated correlations (missing the propa-

gators) are acting as integral kernels between functions transforming according to
χ∗

j . However it cannot be said that these kernels “transform” in some way accord-
ing to the representation χj , since they contain singular “delta”-contributions. We
will assume for simplicity that the representation of ϕ∗

j is equivalent to one of the
representation spaces C

τj

χ∗
j

introduced in the preceding section, so that Gbubo
χj

= L
τj
χj ).

Acting with L̂
τj

χ∗
j
, and using (3.3-63), we obtain

n
∏

j=1

∫

ddxj L̂
τj

χ∗
j
(yj; xj)G(x1, x2, . . . , xn)

!∼
n
∏

j=1

∫

EAdS

dd+1zj (G
τj

χ∗
j
(yj; zj)−Gτj

χj
(yj; zj)) 〈ϕ∗

1(z1)ϕ
∗
2(z2) . . . ϕ∗

n(zn)〉bulk, ampt.

= 〈ϕ∗
1(y1)ϕ

∗
2(y2) . . . ϕ∗

n(yn)〉bulk + shadow field contributions.

The “shadow field contributions” are the contributions by the unwanted propagator
G

τj
χj . If one manages to sort them out from the right-hand side, then we have the bulk

correlations of the field ϕ∗. One may achieve this by analysing the scaling behaviour
when yj is being taken towards infinity; this is rather a procedural than a precise
definition and involves analysis of hypergeometric functions and Kummer relations
[86].

7It is an interesting idea to lift not the correlation functions themselves, but rather the bootstrap
equations which define the boundary CFT.
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A particular case is the two-point function; it can be used to determine explicitly
the bulk-to-bulk propagators. Since G(O(x1), O(x2)) = Gχ(x1, x2) for O an operator
transforming under χ, we get

∫

ddx L̂τ
χ(y1; x)L̂τ

χ∗(y2; x) ∼ Gτ
χ∗(y1; y2)−Gτ

χ(y1; y2), (3.3-65)

so that the bulk-to-bulk propagators can be disentangled by selecting the appropriate
asymptotic behaviour.

3.4 EAdS-Presentation of Three-Point Functions

of Bilinear Quasi-Primary Tensor Currents in

the Free UV Theory

After having discussed the representation-theoretical view of the AdS/CFT corres-
pondence, we will now develop in detail a perturbative approach.

As a first step, we will construct an EAdS-presentation of the three-point function
of bilinear tensor currents in the free UV fixpoint theory, since three-point functions
are the simplest non-trivial objects which have a holographic EAdS-presentation.
This is the first step of the programme developed in section 3.2.3, as it reveals the
structure of the holographic three-vertex. We consider quasi-primary bilinear twist-2
singlets of the form (see 2.6-25)

Js =

s
∑

k=0

as
k :∂⊗kφc ∂⊗s−kφc(∗) : − traces, (3.4-66)

where the tensor indices are silent and we have assumed total symmetrisation. The
constants as

k are given in (2.6-26). If φ is a real field, then currents of odd spin are
all vanishing.

Definition 3.4. An EAdS-presentation of the correlation function of n ≥ 3 bilinear
quasi-primary twist-2 tensor currents is an integral representation of the form

Gs1,...,sn

(l1),...,(ln)(x1, . . . , xn) =〈Js1

(l1)(x1) . . . Jsn

(ln)(xn)〉 (3.4-67)

!
=

∫

ddz dz0

(z0)d+1
Ṽ s1,...,sn (µ1),...,(µn)(Dz1 , . . . , Dzn)

Gs1

bubo (µ1),(l1)(z1, x1) . . .Gsn

bubo (µn),(ln)(zn, xn)
∣

∣

∣

zi=z
,

where z is integrated all over EAdS, Gs
bubo (µ),(l)(z, x) is the spin s bulk-to-boundary

propagator from the boundary point x to the bulk point z with the boundary con-
ditions appropriate to the scaling dimension of the current Js, and Ṽ acts as a
differential operator via the covariant derivatives Dzj on the propagators and is of
order N1.
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The EAdS-presentation has formal conformal covariance if it is conformally covariant
already prior to integration of z.

In the UV fixpoint theory, the scaling dimensions of the currents are ∆(Js) = d−2+s.
In order to define the propagators, we will have to decide for some normalisation.
We choose the normalisation (3.2-29) and (3.2-31) appropriate to the field-theoretic
prescription for all spins; if we later realise the system by a concrete path integral,
we will have to change the normalisation appropriate to the prescriptions necessary.
We denote the respective propagators by Gft UV s

bubo (µ),(l)(z, x).

While the bulk-to-boundary and bulk-to-bulk propagators of the tensor fields have
been reported in the literature (for the vector bulk-to-bulk propagator one may
consult eg [32], the tensor bulk-to-boundary propagators are examined in [60]), we
feel that it is necessary to see in a direct computation how these propagators arise. To
our knowledge, there is to this date no conclusive account of the generic bulk vertex
Ṽ even in the case of n = 3 (there are some newer results on vertices involving the
spin 2 tensor from the holographic renormalisation group [72]). For n = 3, there are
no alternatives to this structure which do not contain loops in EAdS, so it is a good
object to begin with.

We will perform the analysis in Euclidean Anti-de-Sitter space, whose geometry is
discussed in section 3.1. The concept of Wick rotation makes sense in this space [13],
and the amplitudes could be continued analytically to AdS proper. After discussing
the notation of vectors, tangent vectors and related concepts in EAdS and its embed-
ding space Rd+1,1, we will show that the simple concept of Schwinger parametrisation
for the correlations, which has been elaborated by the author in a previous publi-
cation [53], does not lead to proper conformally covariant amplitudes. We will then
discuss alternatives for their derivation.

3.4.1 Conformal Invariants in the Embedding Space

Embedding Geometry. If we want to obtain a truly covariant expression on
EAdS resembling a Feynman graph, we should be introducing a “vertex”-like object
situated at (z0, z). This will include covariant derivatives acting on the boundary-
to-bulk propagators. Since these propagators will certainly propagate tensor fields,
the Christoffel symbols which appear in the covariant derivative whenever it acts on
these tensors will have to be taken care of. These are rather inconvenient to handle.

A possible way out is to perform the calculation in the embedding space Rd+1,1

which is a flat space (see section 3.1), and only in the end restrict the expressions
to the embedded hyperboloid defining Euclidean Anti-de-Sitter space. The resulting
tensors and vectors will have indices running from 0 to d + 1, however. A similar
use of tensor representations on de-Sitter space obtained by restriction of tensors
from the embedding space has been suggested already by Dirac [27, 28]. Einstein
and Mayer [34, 35] have ventured to obtain a sort of “holographic” description of
Kaluza-Klein theory on a 4-dimensional submanifold embedded in a 5-dimensional
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spacetime necessitated by Kaluza-Klein theory, yielding similar tensor fields with
one “odd” orthogonal direction 8. Ultimately, these orthogonal components should
not to contribute at all to the correlations.

Since Rd+1,1 is a flat space, the covariant derivative is replaced by the partial deriva-
tive (as long as we stick to the Euclidean coordinates for Rd+1,1). The vertex coor-
dinate z = (z0, z) must then be replaced by its embedded coordinate

z̃0 =
1− (z)2

2z0
, z̃i =

zi

z0
, z̃d+1 =

1 + (z)2

2z0
, (3.4-68)

with (z)2 = (z0)2+z2. The scalar product of two points on the embedded hyperboloid
which are specified in Poincaré coordinates is according to section 3.1

(ỹ, z̃) = −
(y0)2 + (z0)2 + (y − z)2

2y0z0
≤ −1. (3.4-69)

In what follows, we will frequently use different geometric objects; while the same
letter denotes always the same object, a tilde z̃ means that we consider the object
in Rd+1,1, an underscore x means that this object lives on the conformal boundary
(say, a boundary point or a tangent vector on the boundary) and letters without
any decoration point to an object in EAdS. What are the coordinates of these
objects in Rd+1,1 depends on their type, and we will for every single object give a
coordinatisation in the Euclidean embedding space.

A boundary point x ∈ Rd can be represented by a lightlike ray asymptotically
tangential to the hyperboloid; these rays are characterised by vectors

x̃µ̃ = s(x)

(

1− x2

2
, x,

1 + x2

2

)µ̃

(3.4-70)

(we decorate indices in the Euclidean coordinate system for Rd+1,1 with a tilde).
Here, s(x) is an arbitrary scale factor on the ray which will change under conformal
transformations; since every bulk-to-boundary propagator is thought to be connected
to a boundary operator with a certain scaling dimension, the appearance of the factor
s(x) has to be expected. The scale factor will play a role, however, when pushing
forward the tangent vectors of the boundary into EAdS.

For scalar products of mixed boundary/bulk vectors z ∈ EAdS, x, y ∈ Rd, we get

(x̃, z̃) =− s(x)
(z0)2 + (z − x)2

2z0
, (x̃, ỹ) =− s(x)s(y)

(x− y)2

2
, (3.4-71)

and obviously (x̃, x̃) = 0. On the boundary space, let v ∈ Tx be a tangent vector at
x; it can be taken into EAdS be the relation

v · ∂

∂x
= v · ∂x̃µ̃

∂x

∂

∂x̃µ̃

!
= ṽµ̃ ∂

∂x̃µ̃
, (3.4-72)

8The author is indebted to Prof. H. Gönner for pointing out this connection.
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whence its components in the embedding space Rd+1,1 are

ṽµ̃ = s(x) (−v · x, v, v · x)µ̃ + (v · ∇s(x)) x̃µ̃. (3.4-73)

For v, w ∈ Tx tangent vectors at x, we have

(ṽ, x̃) = 0, (ṽ, w̃) = s(x)2v · w. (3.4-74)

This implies that vectors v ∈ Tx are tangent to the light cone at x̃ in EAdS; from
(3.4-73), one can see that boundary tangent vectors properly correspond to the equiv-
alence class ṽ + Rx̃ in the bulk.

The tangent vectors to EAdS space can be represented in a similar fashion: If tµ, µ =
0 . . .d, is a tangent vector to the point z living on the Poincaré patch, then we have

tµ
∂

∂zµ
= tµ

∂z̃ν

∂zµ

∂

∂z̃ν

!
= t̃ν

∂

∂z̃ν
, (3.4-75)

whence its components in the embedding space Rd+1,1 are

t̃ν ≡ tµ
∂z̃ν

∂zµ
=
(

− t0
1− z2 + (z0)2

2(z0)2
− t · z

z0
,

tz0 − zt0

(z0)2
, −t0

1 + z2 − (z0)2

2(z0)2
+

t · z
z0

)ν

,

with the usual EAdS scalar product

(t̃, t̃) = tµtµ =
(t0)2 + t2

(z0)2
. (3.4-76)

We list possible expressions which can be constructed from the scalar product: if
v ∈ Tx, we can form

vl
l(x̃, z̃) ≡ v · ∂x(x̃, z̃) = (ṽ, z̃) = s(x)

v · (z − x)

z0
− (v · ∇s(x))

(z0)2 + (z − x)2

2z0
.

We indicate the derivative by simply appending the relevant index. The other deriva-
tive µ̃(z̃, x̃) = x̃µ̃ is trivial. Two scalar products may be contracted by

(x̃, z̃)µ̃
µ̃(z̃, ỹ) = (x̃, ỹ) = −s(x)s(y)

(x− y)2

2
,

and thereby

(ỹ, z̃)µ̃
µ̃(z̃, ṽ) = (ỹ, ṽ) = s(x)s(y) v · (y − x)− (v · ∇s(x))s(y)

(x− y)2

2

and, for w ∈ Ty,

(w̃, z̃)µ̃
µ̃(z̃, ṽ) = (w̃, ṽ) = s(y)s(x) w · v + (v · ∇s(x))s(y) w · (x− y)

+ s(x)(w · ∇s(y)) v · (y − x)− (v · ∇s(x))(w · ∇s(y))
(x− y)2

2
.
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We finally mention the boundary point∞ (the point needed for conformal compact-
ification of the boundary of EAdS); in the embedding space, it can be represented
by the ray in direction

∞̃µ̃ = lim
x→∞

x̃µ̃

x2
=

(

−1

2
, 0,

1

2

)µ̃

. (3.4-77)

The expressions involving boundary points and their tangent vectors are in general
not invariants on EAdS, since they do not have the required form; a conformal
symmetry transformation will change the scale factor s(x) locally, and therefore,
the push-forward (3.4-73) of the boundary tangent vectors v will contain factors
of the form (v · ∇s(x)) x̃. While the scale factor s(x) whenever it appears can be
attributed to a physical scale dependence of the underlying physical quantities (eg
the boundary operators whose correlations we are computing), the derivative ∇s(x)
does not have such an interpretation. The logical consequence is that any expression
linear in the boundary tangent vector ṽ should be invariant under the transformation
ṽ 7→ ṽ + r · x̃, r ∈ R. In other words, if Tx̃ is the tangent space at x̃, then there
should be an equivalence relation Tx̃ ∋ x̃ ∼ 0 efficient. For generic functions G(ṽ)
containing several instances of ṽ, conformal covariance means that they vanish under
the application of the differential operator

x̃µ̃∂ṽµ̃G(ṽ) = 0. (3.4-78)

Note that this notion may be even transferred to points situated within EAdS: If
z ∈ EAdS, then the tangent vector z̃ ∈ Tz̃ points in a direction orthogonal to EAdS
should not have a physical meaning, and therefore, covariant expressions should not
depend on this component of the tangent vectors.

For ṽ ∈ Tx̃ and ã ∈ Tz̃, a typical invariant expression is

(ṽ, ã)− (ṽ, z̃)(x̃, ã)

(x̃, z̃)
. (3.4-79)

For ṽ ∼ x̃ or ã ∼ z̃, this will vanish. Or, for x a boundary point and z̃, ũ ∈ Rd+1,

(ṽ, ũ)

(x̃, ũ)
− (ṽ, z̃)

(x̃, z̃)
(3.4-80)

fulfills the same purpose. For one additional point (without a tangent vector) besides
v ∈ Tx, the construction of such invariants is not possible.

We will use the scalar product as the basic building block for the EAdS-presentation
of the correlations. While in the following, we will set s(x) = 1 and ignore the
scale factor, we have to take care that all expression which we obtain ultimately are
formed of invariants like (3.4-79), independent of derivatives ∇s(x) of the boundary
scale factor s(x).
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3.4.2 Formally Non-covariant Generating Function Approach
for 3-Point Correlations

We proceed now to show that a simple generating-function argument based on
Schwinger parametrisation – although it looks intriguingly natural – does not lead
to covariant results. In this sense, this section is a dead end and not a prerequisite
for the more successful truely covariant approach which we will pursue in the sequel;
however, it illustrates nicely the problems which we have to expect.

In coordinate space, the generating function for the correlation function of three
currents is (including the combinatorial factor 1

2
· 23; for charged fields, this factor

does not arise, instead we have to sum over the two different orderings 1-2-3 and
1-3-2) given by a slight modification of the scalar three-point function (2.7-43),

G(x1, x2, x3)[w1, w2, w3] (3.4-81)

=
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3
1

|x1 − x2 − w3|d−2|x2 − x3 − w1|d−2|x3 − x1 − w2|d−2
,

where we had to insert N3 to take into account the general normalisation (2.6-30) of
φ. The currents are generated by letting the derivatives in (3.4-66) act on the vector
indices wj and setting wj ≡ 0 ultimately; we indicate the ”generating arguments”
by square brackets. For example, a tensor current of spin s at x1 is generated by
acting with

Js[∂w3
, ∂w2

] =
s
∑

k=0

as
k

(

− ∂

∂w3

)⊗k (
∂

∂w2

)⊗s−k

− traces.

The sign factor on the w3-derivative had to be included since the wj are directed
variables, “pointing” clockwise around the loop.

In [53, below 6-38] (for a brief summary see appendix D), I show that in the wave
number domain, the generating function can be displayed as

G(k1, k2, k3)[w1, w2, w3] = N4(2π)dδ(d)
(

∑

j

kj

)

(

N

(2π)
d
2

)3
∫ ∞

0

d3τ

(

1

4πT

)
d
2

exp

(

k1 · k2

(τ1 + τ2)τ3

T
+ cycl. perm.

)

exp− i

T
(w3 · (k1τ2 − k2τ1) + cycl. perm.)− 1

4T

(

3
∑

j=1

wj

)2

, (3.4-82)

where the positive scalars τj are Schwinger parameters (”moduli”), and total loop
modulus is T = τ1+τ2+τ3. Now, wj generates a momentum running clockwise around
the loop, so we have to include factors of -1 (see figure 3.2 for the conventions). Note
that there are regeularisation issues for currents with high spin; our derivation will be
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k1

k2

k3

w1, τ1

w2, τ2

w3, τ3

Figure 3.2: Feynman diagram for a massless field φ coupling three tensor currents.

formal (the regularisation scheme which is best suited to our purpose is dimensional
regularisation, as we are dealing anyhow with arbitrary 2 < d < 4). The generating
function can be derived by parametrising the propagators running around the loop
as

1

k2
=

∫ ∞

0

dτ e−τk2

(3.4-83)

and integrating out the loop momentum (see appendix D for few details).

The formal variables wj are not very much suited for a generating function, as eg
w3 is acted on by the derivative operators generating the currents k1 and k2 at the
same time. This is easily remedied by going over to a different parametrisation of
the generating function. We simply split up wj according to

w3 = −v1 + v′
2, w1 = −v2 + v′

3, w2 = −v3 + v′
1.

and let v
(′)
j denote the generating variables of the current j. These have to be

substituted in to the generating function. The variables v
(′)
j are formally tangent

vectors at xj. The current Js coupling to k1 is generated by

Js[∂v1
, ∂v′

1
] =

s
∑

k=0

as
k

(

∂v1

)⊗k (
∂v′

1

)⊗s−k − traces, (3.4-84)

and similarly for the other currents.

We again go over to coordinate space; this is done by Fourier transform with
(2π)−

d
2

∫

ddkj e−ikj ·(z−xj). Since we have in the meantime integrated out the loop
momentum, we obtain a result differing from (3.4-81). The momentum conserving
delta distribution is taken care of by the newly introduced coordinate z; we are
performing a triangle-star diagram transform. The overall result is then

G(x1, x2, x3)[v(j), v
′
(j)] = N4(4π)−2dN3

∫

ddz

∫ ∞

0

d3τ

(

T

τ1τ2τ3

)d

(3.4-85)

exp

[

−T
(z − x1)

2

4τ2τ3
+

v1 · (x2 − x1 + v′
2)

2τ3
+

v′
1 · (x3 − x1)

2τ2
− v2

2 + v′2
3

4τ1
+ cycl. perm.

]

.
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We substitute the Schwinger parameters τj by new parameters αj according to

τj =
α1α2 + α1α3 + α2α3

αj
,

with inverse

αj =
τ1τ2τ3

τj(τ1 + τ2 + τ3)
.

For the Jacobian of the transformation we get

d3τ =
(α1α2 + α1α3 + α2α3)

3

(α1α2α3)2
d3α = α1α2α3A

3 d3α ,

with the abbreviation

A =
1

α1

+
1

α2

+
1

α3

=
α1α2 + α1α3 + α2α3

α1α2α3

. (3.4-86)

We obtain

G(x1, x2, x3)[v(j), v
′
(j)] = N4(4π)−2dN3

∫

ddz

∫ ∞

0

d3α (α1α2α3)
1−dA3−d

exp

[

−(z − x1)
2

4α1
+

v1 · (x2 − x1 + v′
2)

2Aα1α2
+

v′
1 · (x3 − x1)

2Aα1α3
− v2

2 + v′2
3

4Aα2α3
+ cycl. perm.

]

.

(3.4-87)

Since we will have to subtract the traces anyhow in order to generate the currents,
the v2

j and v′2
j -terms are of no consequence.

A form of this expression which comes very close to a proper EAdS-vertex structure
can be obtained by using the Laplace type transform

A3−deC/2A =
27−2d

Γ(d− 3)

∫ ∞

0

dz0

(z0)d+1
(z0)3d−6e−

A(z0)2

4 0F1

(

d− 3; (z0)2C

8

)

,

valid in d > 3. Once we have used this representation, we also rescale all the
Schwinger parameters αj 7→ z0αj/2. This yields

G(x1, x2, x3)[v(j), v
′
(j)] = N

23−3dN3

π2dΓ(d− 3)

∫

ddz dz0

(z0)d+1

∫ ∞

0

d3α (α1α2α3)
1−d

0F1

(

d− 3;
C

2

)

exp

(

−
∑

j

(z − xj)
2 + (z0)2

2z0αj

)

,

with

C =
v1 · (x2 − x1 + v′

2)

α1α2
+

v′
1 · (x3 − x1)

α1α3
− v2

2 + v′2
3

2α2α3
+ cycl. perm.
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independent of z and z0. The integrand has an expansion as Taylor series in C,

0F1

(

d− 3;
C

2

)

=

∞
∑

s=0

1

2ss!(d− 3)s
Cs, (3.4-88)

starting at C0. The measure ddz dz0 (z0)−d−1 is the EAdS volume element, and we
see that the exponent displays the structure of an invariant EAdS-distance. This
looks already like a satisfactory result which has been reached solely by the ap-
plication of Schwinger parametrisation. We now examine whether this formula is
conformally covariant (on the formal level, ie before integration of z).

Failure of Formal Conformal Covariance. Utilising the scalar product avail-
able in the embedding space which has been introduced in section 3.4.1, the gener-
ating function is rewritten in the form

G(x1, x2, x3)[v(j), v
′
(j)] = N

23−3dN3

π2dΓ(d− 3)

∫

ddz dz0

(z0)d+1

∫ ∞

0

d3α (α1α2α3)
1−d

0F1

(

d− 3;
C

2

)

exp
(

∑

j

(z̃, x̃j)

αj

)

, (3.4-89)

with the piece C in the pseudo-invariant form (valid for s(x) ≡ 1)

C =
(ṽ1, x̃2) + (ṽ1, ṽ

′
2)

α1α2
+

(ṽ′
1, x̃3)

α1α3
+ cycl. perm. + quadratic terms in vj , v

′
j .

(3.4-90)

We have left out the quadratic terms v2
j , v′2

j , because the will get subtracted anyhow
when the operators Js[∂v, ∂v′] in the form (3.4-84) generating the currents are applied,
since these include subtraction of traces.

The examination of C reveals that a boundary point x̃j or vector ṽj of leg j is
always accompanied by a factor α−1

j (except in the left-out quadratic terms). The
immediate integration of αj is cumbersome, because C appears as argument of the
hypergeometric series and we would have to expand the powers of C. By a generating
function argument, we can ban all factors α−1

j into an exponential function; C is then
generated by acting with the differential operator

C = (∂ã1 , ∂z̃2) + (∂ã1 , ∂ã′
2
) + (∂ã′

1
, ∂z̃3) + cycl. perm. (3.4-91)

on the generating exponentials

3
∏

j=1

exp
(z̃j , x̃j) + (ãj, ṽj) + (ã′

j , ṽ
′
j)

αj
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and setting afterwards z̃j = z̃, ãj = ã′
j = 0. The exponential terms left over are

precisely the exponentials necessary in the generating function (3.4-89),

G(x1, x2, x3)[v(j), v
′
(j)] = N

23−3dN3

π2dΓ(d− 3)

∫

ddz dz0

(z0)d+1

∫ ∞

0

d3α (α1α2α3)
1−d

0F1

(

d− 3;
C

2

) 3
∏

j=1

exp
(z̃j , x̃j) + (ãj, ṽj) + (ã′

j , ṽ
′
j)

αj

∣

∣

∣

∣

∣ z̃j=z̃
ãj=ã′

j=0

.

Now we may integrate out the Schwinger parameters αj . The resulting powers would
have to be identified as the propagators. Using the expansion (3.4-88), the desired
correlations can be obtained by differentiating with respect to vj and v′

j, and selecting
and applying the relevant differential operators out of the expansion in C.

If we take s(x) 6= 1, the conformal invariance of this term is (formally) lost; by this
we mean that the amplitudes generated by application of the differential operators
Js[∂v, ∂v′] are invariant, but only after integration of z. We will examine two simple
cases. For s = (0, 0, 0), we have to take into account only the C0-term, since there
are no external indices on the relevant generating operator

J0[∂v, ∂v′] =
1

2
.

Integration of the Schwinger parameters results in

G0,0,0(x1, x2, x3) = N2−3dπ−2d(d− 3)Γ(d− 2)2N3

∫

ddz dz0

(z0)d+1

∏

j

(−z̃, x̃j)
2−d.

It is consequent to identify the factors (−z̃, x̃j)
2−d with the boundary-to-bulk pro-

pagators for the scalar fields; including the scale factors, we have simply

GUV 0
bubo(z̃, x) ∼ s(x)2−d(−z̃, x̃j)

2−d, (3.4-92)

where the boundary operator J0(x) = 1
2

:φ(x)2 : has scaling dimension ∆UV
0 = d− 2,

implying the prefactor s(x)−∆ (we do not worry about prescriptions or normalisa-
tions). Since there are no tangent vectors involved, conformal covariance is guaran-
teed as it stands.

The (unsymmetrised!) vector-scalar-scalar case s = 1, 0, 0 with a charged φ uses the
generating operator

J1[∂v, ∂v′ ] =
1

2
∂v′ − 1

2
∂v,

resulting in

non-symG1,0,0
l (x1, x2, x3) = −N2−3−3dπ−2dΓ(d− 1)Γ(d− 2)N3

∫

ddz dz0

(z0)d+1

(−z̃, x̃1)
1−d µ̃(z̃, x̃1)l

(

∂z̃µ̃
2
− ∂z̃µ̃

3

)

(−z̃2, x̃2)
2−d(−z̃3, x̃3)

2−d
∣

∣

∣

z̃2=z̃3=z̃
.
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(mind that this vanishes upon symmetrisation). If we interpret, in parallel to the
scalar case, the term (−z̃, x̃1)

1−d µ̃(z̃, x̃1)l as propagator for the vector field and
(

∂z̃µ̃
2
− ∂z̃µ̃

3

)

as the (unsymmetrised) EAdS-vertex, then we find an unpleasant sur-

prise: Including all scale factors, the propagator has a behaviour

GUV 1 µ̃
bubo l (z̃, x) ∼ s(x)1−d(−z̃, x̃)1−d

(

µ̃(z̃, x̃)l + x̃µ̃∇ls(x)
)

. (3.4-93)

The gradient of the scale factor does not vanish from the propagator; and since the
contraction of the gradient term with the vertex and the other propagators yields a
term proportional to

(

(x̃1, x̃2)

(z̃, x̃2)
− (x̃1, x̃3)

(z̃, x̃3)

)

∇ls(x)

which does not vanish, formally conformal covariance is lost for good.

We also want to mention that for higher spins, we would meet other strange effects:
A boundary field of spin s couples to all bulk representations with spins s̃ ≤ s, and
s− s̃ even. In addition, the bulk tensor representations involve the “odd” tangential
direction z̃ ∈ Tz̃ in an essential manner (this can be checked already for the spin 1 case
displayed). This is in grotesque disagreement with the group theoretical foundations
which have been summarised in section 3.3.1.

We come to the following conclusion: The conformal covariance is broken on the
formal level because already the z-integration is not formally conformally covariant.
Going back, this can already be seen directly from formula (3.4-85) which is still
purely on the boundary, by writing it in the embedding space notation. We take z̃
to be the embedding space point corresponding to the boundary point z. Then the
generating formula (3.4-85) can be written

G(x1, x2, x3)[v(j), v
′
(j)] = N4(4π)−2dN3

∫

ddz

∫ ∞

0

d3τ

(

T

τ1τ2τ3

)d

exp

[

T
(z̃, x̃1)

2τ2τ3

+
(ṽ1, x̃2) + (ṽ1, ṽ

′
2)

2τ3

+
(ṽ′

1, x̃3)

2τ2

+ quadratic terms + cycl. perm.

]

.

One easily checks on simple examples that this does not have the required invariance
if gradient terms (v ·∇s(x)) x̃ are added to ṽ resp. ṽ′ (to be precise, equation (3.4-78)
does not hold).

The lesson we have learned is that we have to insist on proper conformal covariance
right from the moment when we introduce the horizontal vertex integration

∫

ddz .
It is based on a subtle interplay between the different summands contributing to the
correlation functions of the tensor currents. The simple tool of Schwinger parametri-
sation is effectively a shorthand for the numerical prefactors coming along with these
summands, and while it may be that ultimately, some method is found to generate
a formally conformally covariant EAdS-presentation of the correlations by using in-
tegral representations of these prefactors, ordinary Schwinger parametrisation does
not seem to do the job.
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3.4.3 Formally Covariant Correlations on the Boundary

Since we have found in the preceding section that formal conformal covariance of
the EAdS-presentation of the three-point function (ie conformal covariance without
integrating out the EAdS vertex coordinate z in (3.4-67)) is not easy to achieve and
it does not do to follow blindly those manipulations of the correlations which seem to
offer themselves for the purpose, we need to compute explicitly – by force – directly
and step-by-step the EAdS-presentation.

To repeat, the notion of formal conformal covariance means that if the three-point
function is written in an ”embedding space” notation, then for any point x̃ ∈ Rd+1,1

on the lightlike rays (x̃, x̃) = 0 characterising the conformal boundary, the tangent
space vectors ṽ ∈ Tx̃ are in equivalence classes ṽ + Rx̃, and the EAdS-presentation
(3.4-67) respects these classes on a formal level, ie without the vertex integration dz
performed. The necessary criterion for this is

x̃µ̃∂ṽµ̃G(ṽ) = 0, (3.4-94)

with G(ṽ) the correlation. For the EAdS-presented amplitude involving points z̃ ∈
Rd+1,1 lying on EAdS, the tangent vectors ṽ ∈ Tz̃ should be taken from equivalence
classes ṽ + Rz̃.

As a preliminary step one might ask for a form of the three-point correlations purely
on the boundary which displays explicitly the conformal covariance. We know that
they must be covariant since this was one of their defining conditions; however, this
is difficult to see when looking at their definition (2.6-25). In this section, we will
obtain a form of the correlations which displays their covariance immediately.

The three-point function of the currents can be generated by application of the deriva-
tives ṽµ̃

j ∂x̃µ̃
j

to the propagators of the scalar three-point function, written covariantly
as

〈:ϕ(x1)
2 ::ϕ(x2)

2 ::ϕ(x3)
2 :〉

= 4N

(

Γ(d
2
− 1)N

4π
d
2

)3

(−2)3− 3d
2 (x̃1, x̃

′
2)

1− d
2 (x̃2, x̃

′
3)

1− d
2 (x̃3, x̃

′
1)

1− d
2

∣

∣

∣

x̃′
j=x̃j

.

The current at xj is generated by inserting

Js[vj ] =
s
∑

k=0

as
k

(

ṽµ̃
j ∂x̃µ̃

j

)k (

ṽν̃
j ∂x̃′ν̃

j

)s−k

− traces, (3.4-95)

cf. (2.6-25) for the original definition of the currents. This may be checked by the
rules of section 3.4.1, in particular (3.4-71). Note that the quadratic terms (ṽj , ṽj)
are automatically absent, since we use the partial derivative with respect to x̃j (and
not xj or similar).

One easily checks that the derivatives ṽµ̃
j ∂x̃µ̃

j
indeed have all the necessary properties

of derivations (chain rule, . . . ), and commute. In order to compute their action
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on the propagators explicitly, define the following expressions for v ∈ Tx a tangent
vector at x:

I12 =− 1

(x̃1, x̃2)
K12 =(ṽ1, ṽ2)−

(ṽ1, x̃2)(x̃1, ṽ2)

(x̃1, x̃2)

J12 =
(ṽ1, x̃2)

(x̃1, x̃2)
J21 =

(ṽ2, x̃1)

(x̃1, x̃2)
. (3.4-96)

I12 and K12 are symmetric in 1,2, whereas J12 and J21 are not. While I12 and K12

are already respecting the equivalence classes ṽ + Rx̃, J12 and J21 are not. They
fulfill the following simple set of differentiation rules:

ṽµ̃
1 ∂x̃µ̃

1
I12 =− I12J12 ṽµ̃

2 ∂x̃µ̃
2
I12 =− I12J21

ṽµ̃
1 ∂x̃µ̃

1
J12 =− J2

12 ṽµ̃
2 ∂x̃µ̃

2
J12 =− I12K12

ṽµ̃
1 ∂x̃µ̃

1
K12 =− J12K12 = ṽµ̃

2 ∂x̃µ̃
2
K12. (3.4-97)

To have better control over the algebraic behaviour governing these derivatives, we
write them in terms of two auxiliary variables y12 and y21 by setting

ṽµ̃
1 ∂x̃µ̃

1
←→∂y21 ṽµ̃

2 ∂x̃µ̃
2
←→∂y12 . (3.4-98)

Assuming that I12 ≡ I12(y12, y21) and similarly J12/21 and K12, the relations (3.4-97)
are written

∂y21I12 =− I12J12 ∂y12I12 =− I12J21

∂y21J12 =− J2
12 ∂y12J12 =− I12K12

∂y21K12 =− J12K12 = ∂y12K12. (3.4-99)

This nonlinear system of differential equations has the special solution (obeying
symmetry under exchange of indices 1,2)

I12 =− 1

Y12
J12 =

y12

Y12
J21 =

y21

Y12
K12 =

CK
12

Y12
, (3.4-100)

where
Y12 = y21y12 + CK

12, (3.4-101)

and CK
12 a constant. Since every differentiation increases the number of symbols

I/J/K by 1, multiple derivatives act as

(∂y21)
n1(∂y12)

n2In
12 =

Polyn1+n2
(y21, y12)

Y n1+n2+n
12

,

the polynomial Polyn1+n2
(y21, y12) (of maximal order n1 +n2) having CK

12 as counting
parameter for K12.
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As mentioned before, I12 and K12 are invariants in the classes ṽj 7→ ṽj + x̃j . However,
the J ’s are not. When multiple points x̃j are invoked and we define the corresponding
symbols Jij, one sees that certain linear combinations of the Jij ’s referring to different
points are invariant: For x̃3 anywhere in EAdS or on the conformal boundary, the
difference

J12 − J13 =
(ṽ1, x̃2)

(x̃1, x̃2)
− (ṽ1, x̃3)

(x̃1, x̃3)
(3.4-102)

is invariant under ṽ1 7→ ṽ1 + x̃1. So the correlations are covariant if we can give
them as polynomials in the I’s, K’s, and differences of the J ’s! As an aside, for the
two-point function which can be analysed similarly, no third point can be invoked,
and therefore we conclude that it must be a function of K12 and I12 alone. Details
will be given in section 3.4.4.

The scalar correlation including all normalisations is in terms of the symbols Iij

G0,0,0(x1, x2, x3) =
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2 (I12I23I31)

d
2
−1 (3.4-103)

(we see here that due to the inclusion of “−” in the definition of Iij, it is positive and
the powers are convenient to handle even for non-integer dimensions). Combining
this with the current generators (3.4-95) higher-spin tensor correlations are given by

Gs1,s2,s3(x1, x2, x3) =4N

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2

s1
∑

k1=0

as1
k1

s2
∑

k2=0

as2
k2

s3
∑

k3=0

as3
k3

.

[

(ṽµ̃
2 ∂x̃µ̃

2
)s2−k2(ṽµ̃

1 ∂x̃µ̃
1
)k1I

d
2
−1

12

] [

(ṽµ̃
3 ∂x̃µ̃

3
)s3−k3(ṽµ̃

2 ∂x̃µ̃
2
)k2I

d
2
−1

23

]

[

(ṽµ̃
1 ∂x̃µ̃

1
)s1−k1(ṽµ̃

3 ∂x̃µ̃
3
)k3I

d
2
−1

31

]

− traces. (3.4-104)

We will employ the y12/y21 differential calculus to compute these efficiently; as a
preview of the general results of this section, we will find for the vector-scalar-scalar
correlation (non-symmetrised)

G1,0,0
non-symm(x1, x2, x3) ∼ (J12 − J13) (I12I23I31)

d
2
−1 , (3.4-105)

which is clearly confomally covariant. For the tensor-scalar-scalar correlation of a
spin s-tensor, we will find

Gs,0,0
non-symm(x1, x2, x3) ∼ (J12 − J13)

s (I12I23I31)
d
2
−1 − traces

which is similarly conformally covariant (and will vanish for odd spin s upon sym-
metrisation).

In order to prove these results, we have to compute the action of the derivatives in
the current operator Js as given in (3.4-104). Before we may consider the sum over
differentiation schemes, we have to compute the action of these differentiations on
the propagators.
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For the propagator between current 1 and 2, the relevant derivatives are (written in
the yij differentiation scheme)

(∂y12)
s2−k2(∂y21)

k1I
d
2
−1

12

=(∂y12)
s2−k2

(

d

2
− 1

)

k1

(−1)
d
2
−1+k1

yk1
12

Y
d
2
−1+k1

12

=

min(k1,s2−k2)
∑

n12=0

(−1)
d
2
−1+k1+s2−k2−n12

(

d

2
− 1

)

k1+s2−k2−n12

(

s2 − k2

n12

)

k1!

(k1 − n12)!

yk1−n12
12 ys2−k2−n12

21 Y n12
12

Y
d
2
−1+k1+s2−k2

12

=

min(k1,s2−k2)
∑

n12=0

n12
∑

m12=0

(−1)
d
2
−1+k1+s2−k2−n12

(

d

2
− 1

)

k1+s2−k2−n12

(

n12

m12

)(

s2 − k2

n12

)

k1!

(k1 − n12)!

yk1−m12
12 ys2−k2−m12

21 (CK
12)

m12

Y
d
2
−1+k1+s2−k2

12

=

min(k1,s2−k2)
∑

m12=0

min(k1,s2−k2)
∑

n12=m12

(−1)k1+s2−k2−n12+m12

(

d

2
− 1

)

k1+s2−k2−n12

(

n12

m12

)(

s2 − k2

n12

)

k1!

(k1 − n12)!
I

d
2
−1

12 (I12K12)
m12Jk1−m12

12 Js2−k2−m12
21 .

The summation over n12 can be done (this is the only nontrivial summation in the
process), yielding

(∂y12)
s2−k2(∂y21)

k1I
d
2
−1

12 =

min(k1,s2−k2)
∑

m12=0

(−1)s2−k2+k1

(

d

2
− 1 + m12

)

k1−m12

(

d

2
− 1

)

s2−k2

(

s2 − k2

m12

)

k1!

(k1 −m12)!
I

d
2
−1

12 (I12K12)
m12Jk1−m12

12 Js2−k2−m12
21 .

This has to be done for each of the three propagators linking the three currents;
and finally, we may multiply the results, including also the prefactors as

k from the
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summation inherent in the definition (3.4-66) of the current operators. The result is

Gs1,s2,s3(x1, x2, x3) = 4N

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2

s1
∑

k1=0

as1

k1

s2
∑

k2=0

as2

k2

s3
∑

k3=0

as3

k3

min(k1,s2−k2)
∑

m12=0

min(k2,s3−k3)
∑

m23=0

min(k3,s1−k1)
∑

m31=0

(−1)s2−k2+k1

(

d

2
− 1 + m12

)

k1−m12

(

d

2
− 1

)

s2−k2
(

s2 − k2

m12

)

k1!

(k1 −m12)!
I

d
2
−1

12 (I12K12)
m12Jk1−m12

12 Js2−k2−m12
21

(−1)s3−k3+k2

(

d

2
− 1 + m23

)

k2−m23

(

d

2
− 1

)

s3−k3
(

s3 − k3

m23

)

k2!

(k2 −m23)!
I

d
2
−1

23 (I23K23)
m23Jk2−m23

23 Js3−k3−m23
32

(−1)s1−k1+k3

(

d

2
− 1 + m31

)

k3−m31

(

d

2
− 1

)

s1−k1
(

s1 − k1

m31

)

k3!

(k3 −m31)!
I

d
2
−1

31 (I31K31)
m31Jk3−m31

31 Js1−k1−m31
13 − traces.

At this point, it is advantageous to insert the full expression (2.6-26) for the coeffi-
cients as

k; after resolving various factorials, we are left with

Gs1,s2,s3(x1, x2, x3) =
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2 (I12I23I31)

d
2
−1

s1
∑

k1=0

s2
∑

k2=0

s3
∑

k3=0

min(k1,s2−k2)
∑

m12=0

min(k2,s3−k3)
∑

m23=0

min(k3,s1−k1)
∑

m31=0

(−1)s2−k2

(

d
2
− 1
)

s2
(

d
2
− 1
)

m31

s2!

m12!(s2 − k2 −m12)!(k1 −m12)!

(I12K12)
m12Jk1−m12

12 Js2−k2−m12
21

(−1)s3−k3

(

d
2
− 1
)

s3
(

d
2
− 1
)

m12

s3!

m23!(s3 − k3 −m23)!(k2 −m23)!

(I23K23)
m23Jk2−m23

23 Js3−k3−m23
32

(−1)s1−k1

(

d
2
− 1
)

s1
(

d
2
− 1
)

m23

s1!

m31!(s1 − k1 −m31)!(k3 −m31)!

(I31K31)
m31Jk3−m31

31 Js1−k1−m31
13 − traces.
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We exchange the order of summations

s1
∑

k1=0

s2
∑

k2=0

s3
∑

k3=0

min(k1,s2−k2)
∑

m12=0

min(k2,s3−k3)
∑

m23=0

min(k3,s1−k1)
∑

m31=0

=

min(s1,s2)
∑

m12=0

min(s2−m12,s3)
∑

m23=0

min(s3−m23,s1−m12)
∑

m31=0

s1−m31
∑

k1=m12

s2−m12
∑

k2=m23

s3−m23
∑

k3=m31

and shift k1 7→ k1 + m12, k2 7→ k2 + m23, k3 7→ k3 + m31; this reduces the kij-
summations to simple binomial sums involving the Jij-symbols. We have

Lemma 3.5. The correlation of three quasi-primary bilinear twist-2 currents in the
free massless UV theory is given by

Gs1,s2,s3(x1, x2, x3) = 〈Js1(x1)J
s2(x2)J

s3(x3)〉 (3.4-106)

=
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2

min(s1,s2)
∑

m12=0

min(s2−m12,s3)
∑

m23=0

min(s3−m23,s1−m12)
∑

m31=0

(−1)m12+m23+m31

(

d
2
− 1
)

s1
(

d
2
− 1
)

m23

(

d
2
− 1
)

s2
(

d
2
− 1
)

m31

(

d
2
− 1
)

s3
(

d
2
− 1
)

m12

(3.4-107)

s1!

m31!(s1 −m12 −m31)!

s2!

m12!(s2 −m23 −m12)!

s3!

m23!(s3 −m31 −m23)!

(I12I23I31)
d
2
−1(I12K12)

m12(I23K23)
m23(I31K31)

m31

(J12 − J13)
s1−m12−m31(J23 − J21)

s2−m23−m12(J31 − J32)
s3−m31−m23 − traces.

For the mij , the summation bounds effectively mean that 0 ≤ mij and

m12 + m31 ≤s1 m23 + m12 ≤s2 m31 + m23 ≤s3.

Since mij counts the powers of IijKij and Kij contains a summand (ṽi, ṽj) = vi · vj ,
mij is the number of ”delta links” between the tensor indices of the currents and
these bounds are an expression of the fact that there is a limited number of tensor
indices at each current available.

As Iij and Kij are properly conformally covariant, and the Jij terms appear only
as paired differences Jij − Jik with the same first endpoint, it follows that the total
correlation is properly covariant (invariant under the operator x̃µ̃

i ∂ṽµ̃
i
). This is just

what we expected for the correlations of the bilinear tensor currents Js. We will take
equation (3.4-106) as the starting point for the computation of the formally covariant
EAdS-presentation of the three-point function.

To conclude this section, we evaluate formula (3.4-106) for the s, 0, 0 correlation:

Gs,0,0(x1, x2, x3) =
N

2

(

Γ(d
2
− 1)N

4π
d
2

)3

23− 3d
2

(

d

2
− 1

)

s

(3.4-108)

× (I12I23I31)
d
2
−1(J12 − J13)

s − traces.
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3.4.4 Two-point Function of Tensor Currents, Bulk-to-Boundary
Propagators and Action of Covariant EAdS-Derivative

A second ingredient which we need are propagators of the currents, notably bulk-to-
boundary propagators. Again, they should be displayed in a form where conformal
covariance is immediately visible.

In this section, we will discuss how the bulk-to-boundary propagator can be obtained
by a simple procedure from the boundary-to-boundary propagator and derive a set
of characteristic properties of this function. The propagator itself can be found in
the literature, but the characterisation by the embedding space Rd+1,1 is novel. We
also discuss the action of the covariant EAdS-derivative on these propagators, as it
will be needed in the sequel for the construction of the vertices. In particular, it
will turn out that the covariant EAdS derivative is a comparatively simple object if
written in the embedding space notation.

The two-point function of currents can be computed by a way completely similar to
the three-point functions of the preceding section. The result displays immediately
the conformal covariance of the propagators:

Gs1,s2(x1, x2) =δs1s2 · N
2

(

Γ(d
2
− 1)N

4π
d
2

)2
(−2)s1s1!Γ(2s1 + d− 3)

Γ(s1 + d− 3)

22−d−s1 Id−2
12 (I12K12)

s1 − traces. (3.4-109)

This coincides with the formulas reported in the literature (as summarised in section
2.6.3); the scaling dimension of these currents is ∆(Js) = d− 2 + s.

Definition 3.6. The propagator (3.4-109) defines the normalisation of the boundary-
to-boundary propagator in the field-theoretic prescription

Gft s
bo (x1, x2) = Gs,s(x1, x2). (3.4-110)

This fixes the normalisation of the bulk fields, and hence the normalisation of the
bulk-to-bulk propagator.

The bulk-to-boundary propagators can be obtained by the group-theoretical analy-
sis of Dobrev et al (cf. section 3.3.1 and references therein); if we write them in
the language of the embedding space, then they have the form (3.4-109), with the
qualification that we simply lift one of the points from the boundary into the bulk
z ∈ EAdS,

Gft UV s
bubo (z̃, x)[ã, v] =

1

2

(

Γ(d
2
− 1)N

4π
d
2

)2
(−2)ss!Γ(2s + d− 3)

Γ(s + d− 3)

22−d−s Id−2
xz (IxzKva)

s − traces (3.4-111)

(the invariants in this expression are defined in complete parallel to the boundary
invariants (3.4-96); we list them below in (3.4-116)). The normalisation which we
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choose is that appropriate to the field-theoretic prescription (3.2-29), which the ex-
emption of the factor N which we left out.

Near the boundary, these propagators have the behaviour 9

∥

∥Gft UV s
bubo (z, x)[ã, v]

∥

∥

a
∼(z0)d−2+s z0 ≪ |x− z|

∥

∥Gft UV s
bubo (z, x)[ã, v]

∥

∥

a
∼(z0)−d+2−s x = z.

This is in line with the generic behaviour (3.2-30). Quite generally, a bulk-to-
boundary propagator for a bulk field corresponding to a boundary operator of scaling
dimension ∆ has the form

G∆ s
bubo(z̃, x)[ã, v] ∼ I∆

xzK
s
va − traces. (3.4-112)

Generically, bulk-to-boundary propagators can be characterised by the following al-
gebraic properties in the embedding space Rd+1,1: Tensor propagators do not have
contributions orthogonal to the EAdS hyperboloid:

z̃µ̃∂ãµ̃G∆ s
bubo(z̃; x)[ã, v] = 0 (3.4-113a)

by construction; this is a property of Kva. The propagator is traceless on the bulk
side: We have

�ãG
∆ s
bubo(z̃; x)[ã, v] ∼ (∂ãµ̃Kva)(∂ãµ̃

Kva)× other terms− traces

∼ v · v × other terms− traces = 0. (3.4-113b)

Terms proportional (x̃, x̃) = 0 and (x̃, ṽ) = 0 appearing in the contraction vanish at
once. Mind that we could as well take the EAdS trace ∂aµ∂aµ , since by (3.4-113a) only
tangent contributions occur. The propagators are homogeneous in the embedding
space,

G∆ s
bubo(αz̃; x)[ã, v] = α−∆G∆ s

bubo(z̃; x)[ã, v]. (3.4-113c)

They also obey the free, massless equation of motion in the embedding space

�z̃G
∆ s
bubo(z̃; x)[ã, v] ∼ (∂z̃µ̃Kva)(∂z̃µ̃

Kva)× other terms− traces

∼ v · v × other terms− traces = 0 (3.4-113d)

(contributions from the I-terms vanish immediately). Finally, there is a mixed equa-
tion

∂ãµ̃∂z̃µ̃
G∆ s

bubo(z̃; x)[ã, v] = 0. (3.4-113e)

Due to equation (3.4-113a), we may contract the bulk end of the propagator with a
vector a ∈ Tz (tangent to EAdS at z ∈ EAdS) without loss; so it is admissible to

9 By the norm of a bulk tensor T s[ã] of spin s we mean

‖T s[ã]‖2a = gµ1ν1 . . . gµsνsT s
µ1...µs

T s
ν1...νs

.
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write G∆ s
bubo(z, x)[a, v]. For the propagators to be truly EAdS, There should also be

an equation of motion holding within the EAdS hyperboloid (z̃, z̃) = −1. We have
to restrict all expressions to the EAdS hyperboloid and use the covariant derivative
Dµ applicable to that hypersurface.

Equations (3.4-113a) to (3.4-113e) actually have a second propagator solution,

|z̃|d−2∆Gd−∆ s
bubo (z̃, x)[ã, v], (3.4-114)

with the modulus |z̃| =
√

−(z̃, z̃); on the EAdS-hyperboloid, |z̃| = 1. This is
the bulk-to-boundary propagator corresponding to a boundary operator with the
conjugate scaling dimension d−∆. Notice that the dimension ∆ enters the system
of equations

So in particular, since both G∆ s
bubo and Gd−∆ s

bubo are solutions with homogeneity degree
−∆ in (3.4-113c), they will be solutions when we impose a homogeneity degree ∆−d
in (3.4-113c). Thus there are two alternative formulations for the propagators, up
to factors of |z̃|.
The covariant calculus for EAdS gets particularly simple if we use the notation of the
embedding space Rd+1,1 to take down all expressions, even if the covariant derivatives
themselves are supposed to be on EAdS. In the following, we assume that z ∈ EAdS,
y ∈ Rd+1,1 are arbitrary points, and the tangent vectors a, b ∈ Tz are placeholders
for free indices (so the indices they are attached to are acted upon by the Christoffel
symbols (3.1-6) of the covariant derivative). Since we have taken the scalar product
as the underlying object, it turns out that the only covariant derivative we really
have to compute is

aµ Dµ(ỹ, b̃) = (ỹ, z̃)(ã, b̃). (3.4-115a)

Dµ acts on z and not on y in this equation; the derivative is computed by treating
the scalar product as function (ỹ, b̃) = fµ

ỹ (z)bµ. All other expressions may be derived
thereof by the chain and the product rule:

aµ Dµ(b̃, b̃) = 2(b̃, z̃)(ã, b̃) = 0, (3.4-115b)

since (b̃, z̃) = 0 as b ∈ Tz is tangent to EAdS. Trivially,

aµ Dµ(ỹ, z̃) = (ỹ, ã). (3.4-115c)

For more complex expressions, we need more invariants of the type (3.4-96). Conve-
nient definitions with a, b ∈ Tz, v ∈ Tx are

Ixz =− 1

(x̃, z̃)
Kva =(ṽ, ã)− (ṽ, z̃)(x̃, ã)

(x̃, z̃)

Jbx =
(b̃, x̃)

(z̃, x̃)
Jax =

(ã, x̃)

(z̃, x̃)
. (3.4-116)

We compute for these

aµ Dµ Ixz = −aµ Dµ
1

(z̃, x̃)
=

(ã, x̃)

(z̃, x̃)2
= −JaxIxz (3.4-117a)
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and

aµ Dµ Kvb = aµ Dµ

(

(ṽ, b̃)− (ṽ, z̃)(x̃, b̃)

(z̃, x̃)

)

= −JbxKva. (3.4-117b)

Finally,

aµ Dµ Jbx = aµ Dµ
(b̃, x̃)

(z̃, x̃)
= (ã, b̃)− JaxJbx. (3.4-117c)

So we have a very simple set of differentiation rules. For the contraction of two tensor
indices (which we denote by ⋄a), the basic rule is (observing the the contraction is
in the tangent space Tz)

(ã, ỹ) ⋄a (ã, ũ) ≡ ∂aµ(ã, ỹ)∂aµ(ã, ũ) = (ỹ, ũ) + (ỹ, z̃)(z̃, ũ). (3.4-118)

for (z̃, z̃) = −1. From this, one gets quickly at

Kav ⋄a Jax = = 0 v ∈ Tx

Kav ⋄a Kaw =v · w = (ṽ, w̃) w ∈ Tx

Jax ⋄a Jay =
(x̃, ỹ)

(x̃, z̃)(ỹ, z̃)
+ 1,

for (z̃, z̃) = −1. The EAdS Laplacian may then be computed from piecing together
�

EAdS = (aν Dν) ⋄a (aρ Dρ). For a propagator of the general form G∆ s
bubo(z̃; x)[ã, v] ∼

I∆
xzK

s
va − traces, the equation of motion reads

[

(∆2 − d∆− s)−�
EAdS

]

G∆ s
bubo(z̃; x)[ã, v] = 0. (3.4-119)

The constant
m2

∆,s = ∆2 − d∆− s (3.4-120)

is the mass of the tensor field. In the general case, for a given mass m2 there are two
possible values of ∆,

∆± =
d

2
±
√

d2

4
+ s + m2. (3.4-121)

In the UV case, ∆(Js) = d− 2 + s and

m2
s = (d− 2 + s)(s− 2)− s (3.4-122)

is the holographic mass of the bulk tensor of spin s. In particular for the bulk scalar
s = 0, the mass m2

0 = 4 − 2d is the holographic mass value found in the literature
(see also section 6).

By the application of the rules for the covariant derivative, one shows also the EAdS
conservation law

∂aµ Dµ Gft UV s
bubo (z̃; x)[ã, v] = 0. (3.4-123)

By content, this is different from (3.4-113e).

To summarise, we have found and characterised the boundary-to-boundary and bulk-
to-boundary propagators of the HS tensor fields, and we have seen that the action
of the covariant EAdS derivative is if not trivial, then quite managable if written in
the embedding space geometry, employing the usual invariants.
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3.4.5 EAdS-Presentation of Three-Point Functions

After so much preparation, it is time to address the fundamental problem of con-
structing a fully satisfactory EAdS-presentation for the three-point function of the
bilinear tensor currents, with emphasis on formal conformal covariance. We will not
totally reach this ambitious goal within the limitations of this thesis (although this
is planned for a later publication). We will nevertheless lay down the general line of
argument to that purpose, which we have developed.

As material, we have developed in section 3.4.3 the form (3.4-106) of the three-point
function purely on the boundary, which displays directly conformal covariance; and
we have in the preceding section discussed the bulk-to-boundary propagators, and
their properties, and covariant presentation. This resulted in the simple expression
(3.4-111) for the bulk-to-boundary propagators.

To give an EAdS-presentation of the correlation of three currents, we must find a
vertex differential operator Ṽ , such that

Gs1,s2,s3

(l1),(l2),(l3)(x1, x2, x3) =〈Js1

(l1)(x1)J
s2

(l2)(x2)J
s3

(l3)(x3)〉 (3.4-124)

=

∫

ddz dz0

(z0)d+1
Ṽ s1,s2,s3 (µ1),(µ2),(µ3)(Dz1 , Dz2 , Dz3)

Gft UV s1

bubo (µ1),(l1)(z1, x1)G
ft UV s2

bubo (µ2),(l2)(z2, x2)G
ft UV s3

bubo (µ3),(l3)(z3, x3)
∣

∣

∣

zi=z
.

We assign as the bulk endpoint of propagator j a point zj ∈ EAdS. The propagators
can be given in the usual form, where the bulk and boundary ends are contracted
with placeholder vectors aj ∈ Tzj

and vj ∈ Txj
(but we will in time use the general

vector ãj ∈ Tz̃j
for contraction). We take the propagators in the field-theoretic

prescription in order to have definite normalisation.

The General Strategy. We will begin with a generic, very general vertex (see
(3.4-126) below) containing a family of indetermined parameters Cs1,s2,s3

d1,d2,d3
, and work

backwards by connecting this vertex to the propagators and integrating out the ver-
tex coordinate z. Then, the result is compared to the boundary correlation function
Gs1,s2,s3

(l1),(l2),(l3)(x1, x2, x3) in the form (3.4-106). In that way, we determine the param-

eters Cs1,s2,s3

d1,d2,d3
and specify the vertex. It is clear that there might be alternatives to

the general vertex which we select as starting point; we have no means to eliminate
that possibility currently.

Vertex Structure. The first step is to obtain clarity about the general structure
of the vertices which we expect. As indicated, the vertex should “saturate” all the
loose indices at the endpoints of the propagators. There are two possibilities: Two
indices might be contracted with the EAdS metric g as in

Gft UV s1

bubo µ1µ2...µs1
(z1, x1)[v1] gµ1ν1 Gft UV s2

bubo ν1ν2...νs2
(z2, x2)[v2],
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or an index may be contracted with a covariant derivative, as in

Gft UV s1
bubo µ1µ2...µs1

(z1, x1)[v1] D
µ1 Gft UV s2

bubo ν1...νs2
(z2, x2)[v2],

acting on z2 in this case, but taking into account that the unsaturated indices have
to be transformed by the application of Christoffel symbols (in our case, ν1 to νs2).
It is obvious that the order of the contractions and differentiations matters, since
contracted indices do not have to be transformed by Christoffel symbols any more.
Also, there are conflicts because we have three propagators acting on each other with
covariant derivatives, so the order must be set up for the whole vertex at the same
time. Typically, a vertex will contain many different summands, each consisting of
a contraction/differentiation scheme, and a weight factor.

That the order of the differentiations and index contractions has to be specified
when giving the vertex data is rather inconvenient. We now set up a protocol which
allows to circumvent this trouble. We make the assumption that each summand
contributing to the vertex is constructed as follows:

1. Each propagator is acted on with a couple of covariant derivatives; their indices
are not contracted with the indices of any other propagator, but left dangling.
In the end, all indices are symmetrised; this may be effected by contracting
again with the placeholder vector a. Thus, for every propagator, we obtain a
structure of the type

aµ1 . . . aµnaν1 . . . aνs Dµ1 . . .Dµn Gft UV s
bubo ν1...νs

(z, x)[v]. (3.4-125)

2. In the end, the free indices of all propagators are contracted pairwise according
to some predetermined scheme, so that no free index is left. We agree that we
do not contract indices from the same propagator (ie, take the trace) 10.

3. Each vertex consists of a finite number of summands; so in particular, the
number of derivatives is limited.

The symmetrisation of derivatives allows us to use the simple rules (3.4-115a) to
(3.4-115c) for the computation of the covariant derivatives. Note that we use still
the notation of the embedding space, since it allows a very economic treatment.

The contraction scheme which we have to perform is actually fixed by the number
of free indices fj which each propagator (3.4-125) has after the covariant derivatives
have been applied. For let cij be the number of contractions between propagator i
and propagator j. Then, since all free indices have to be contracted,

f1 =c12 + c31 f2 =c23 + c12 f3 =c31 + c23.

This system can be solved for the cij , giving

c12 =
f1 + f2 − f3

2
c23 =

f2 + f3 − f1

2
c31 =

f3 + f1 − f2

2
.

10It might be necessary to modify that rule in the end.
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There are certain conditions for the fj in order for this system to have a solution
in nonnegative integers. If there are dj derivatives acting on propagator j with spin
sj , then fj = dj + sj. The weight which the vertex will give to the differentiations
(d1, d2, d3) will be denoted Cs1,s2,s3

d1,d2,d3
. Gathering everything together, the action of the

total vertex Ṽ s1,s2,s3 in the bulk is

Ṽ s1,s2,s3 (µ1),(µ2),(µ3)(Dz1, Dz2, Dz3) Gft UV s1

bubo (µ1),(l1)(z1, x1)G
ft UV s2

bubo (µ2),(l2)(z2, x2)G
ft UV s3

bubo (µ3),(l3)(z3, x3)
∣

∣

∣

zi=z

=
∑

d1,d2,d3

Cs1,s2,s3

d1,d2,d3

(

gµν∂aµ
1
∂aν

2

)

s1+d1+s2+d2−s3−d3
2

(

gµν∂aµ
2
∂aν

3

)

s2+d2+s3+d3−s1−d1
2

(

gµν∂aµ
3
∂aν

1

)

s3+d3+s1+d1−s2−d2
2

[

(aµ
1 Dµ)d1Gft UV s1

bubo (z̃, x1)[ã1, v1]
] [

(aµ
2 Dµ)d2Gft UV s2

bubo (z̃, x2)[ã2, v2]
]

[

(aµ
3 Dµ)

d3Gft UV s3
bubo (z̃, x3)[ã3, v3]

]

. (3.4-126)

It is necessary to understand that we might be wrong in our assumptions and the
actual vertices have a structure which does not fall under this protocoll.

Covariant Derivatives of Propagators. Our next step is to obtain clarity about
the possible terms which can arise in evaluating the derivatives (3.4-125) of the propa-
gators. The bulk-to-boundary propagators (3.4-111) are generically of the structure

Gft UV s
bubo (z̃, x)[ã, v] ∼ Id−2

xz (IxzKva)
s − traces

with the symbols Ixz and Kva defined in (3.4-116), so we need the covariant deriva-
tives aµ Dµ Ixz and aµ Dµ Kva, and aµ Dµ Jax since Jax is generated by differentiation.
These are listed in (3.4-117a) to (3.4-117c).

In order to have better control over the action of the derivatives, we encode once
more the derivative aµ Dµ by ∂y and assume that Ixz, Jax and Kva are functions of
y. We get the system of equations

∂yIxz(y) = −Jax(y)Ixz(y)

∂yJax(y) = (ã, ã)− Jax(y)2

∂yKva(y) = −Jax(y)Kva(y),

with the particular solution 11

Ixz(y) = sech(y
√

(ã, ã))

Jax(y) =
√

(ã, ã) tanh(y
√

(ã, ã))

Kva(y) = CK sech(y
√

(ã, ã)),

with CK a counting variable for Kva. By the rules of symbolic differentiation,

(aµ Dµ)nGft UV s
bubo (z̃, x)[ã, v] ∼(aµ Dµ)

nId−2
xz (IxzKva)

s

∼Polyn(Jax, (ã, ã)) · Id−2
xz (IxzKva)

s (3.4-127)

∼Cs
K∂n

y

(

sech(y
√

(ã, ã))
)d−2+2s

,

11The hyperbolic secant sechx = (coshx)−1.
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where Polyn is a polynomial of degree n. By an adaptation of a rule for the symbolic
differentiation for the cosine [1, 01.07.20.0004.01],

∂n
y

(

sech(y
√

(ã, ã))
)q

=
n
∑

k=0

k
∑

j=0

n−k
∑

r=0

j
∑

l=0

(−1)k+j+r

2−j−n+k(2l + 2r − j − n + k)n(q)n+1

j + n− k + q

1

r!(n− k − r)! l!(j − l)! (k − j)!
√

(ã, ã)
k
(

√

(ã, ã) tanh(y
√

(ã, ã))
)n−k (

sech(y
√

(ã, ã))
)q

We could not resolve this multiple sum any further, but it is clear that only even k
contribute (since there should only appear powers of (ã, ã) and not its square root).
The notable insight is that the algebra of symbols Ixz, Jax, Kva and (ã, ã) closes
under covariant differentiation in a relatively simple way and that we may expect an
expression of the form (3.4-127) when evaluating the covariant deriavtives.

Contractions at the Vertex. In the next step, the dangling indices a are con-
tracted at the vertex. We have to contract in the tangent space Tz (not in Tz̃);
however, for Kva, these contractions are identical, because Kva has no components
pointing in z̃-direction, z̃µ̃∂ãµ̃Kva = 0. We denote contractions by ⋄a, so that

f(ã) ⋄a g(ã) ≡ [∂aµf(ã)][∂aµg(ã)]. (3.4-128)

Note that a complete contraction of a tensor with n indices will generate a factor
n! by this way of defining contractions. Carefully working out the action of the
contractions, we get the following set of rules:

(ã, ã) ⋄a (ã, ã) =4(ã, ã)

Kva ⋄a (ã, ã) =2Kva

Jax ⋄a (ã, ã) =2Jax

Kv1a ⋄a Kv2a =Kv1v2 +
(Jv1z − Jv1x2) (Jv2z − Jv2x1)

Ix1x2

Kv1a ⋄a Jax2 =− (Jv1z − Jv1x2)Ix2z

Ix1x2

Jax1 ⋄a Jax2 =1− Ix1zIx2z

Ix1x2

. (3.4-129)

The term 1 in the last contraction comes from the fact that neither Jax1 nor Jax2 are
covariant themselves; so they have contributions pointing in z̃-direction, and we have
to take the trace in the tangent space Tz explicitly. The scalar product (ã, ã) can be
contracted with itself, and since only the tangent indices to EAdS are contracted,
the corresponding rule is

∂aµ∂aµ(ã, ã) = 2(d + 1). (3.4-130)
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Note that by these rules, the contraction of a propagator with itself always results
in zero (Kv1a ⋄a Jax1 = 0 etc.).

Gathering everything together, the action of the total vertex Ṽ s1,s2,s3 in the bulk is

Ṽ s1,s2,s3 (µ1),(µ2),(µ3)(Dz1, Dz2 , Dz3) Gft UV s1

bubo (µ1),(l1)(z1, x1)G
ft UV s2

bubo (µ2),(l2)(z2, x2)G
ft UV s3

bubo (µ3),(l3)(z3, x3)
∣

∣

∣

zi=z

=
∑

d1,d2,d3

Cs1,s2,s3

d1,d2,d3

(

gµν∂aµ
1
∂aν

2

)

s1+d1+s2+d2−s3−d3
2

(

gµν∂aµ
2
∂aν

3

)

s2+d2+s3+d3−s1−d1
2

(

gµν∂aµ
3
∂aν

1

)

s3+d3+s1+d1−s2−d2
2

[

(aµ
1 Dµ)d1Gft UV s1

bubo (z̃, x1)[ã1, v1]
] [

(aµ
2 Dµ)

d2Gft UV s2

bubo (z̃, x2)[ã2, v2]
]

[

(aµ
3 Dµ)d3Gft UV s3

bubo (z̃, x3)[ã3, v3]
]

=
∑

d1,d2,d3

Cs1,s2,s3

d1,d2,d3

(

gµν∂aµ
1
∂aν

2

)

s1+d1+s2+d2−s3−d3
2

(

gµν∂aµ
2
∂aν

3

)

s2+d2+s3+d3−s1−d1
2

(

gµν∂aµ
3
∂aν

1

)

s3+d3+s1+d1−s2−d2
2

Poly
(1)
d1

(Ja1x1 , (ã1, ã1)) · Id−2
x1z (Ix1zKv1a1)

s1

Poly
(2)
d2

(Ja2x2 , (ã2, ã2)) · Id−2
x2z (Ix2zKv2a2)

s2

Poly
(3)
d2

(Ja3x3 , (ã3, ã3)) · Id−2
x3z (Ix3zKv3a3)

s3 − traces

=(Ix1zIx2zIx3z)
d−2

∑

{nKK
ij },{nJJ

ij },{nKJ
ij }: i<j

C ′
{nKK

ij },{nJJ
ij },{nKJ

ij }

∏

i<j

(

IxizKvivj
Ixjz +

Ixiz

(

Jviz − Jvixj

) (

Jvjz − Jvjxi

)

Ixjz

Ixixj

)nKK
ij

(

1− IxizIxjz

Ixixj

)nJJ
ij
(

−Ixiz(Jviz − Jvixj
)Ixjz

Ixixj

)nKJ
ij
(

−Ixjz(Jvjz − Jvjxi
)Ixiz

Ixjxi

)nKJ
ji

− traces.

In the last equality, {nKK
ij }, {nJJ

ij }, {nKJ
ij } are parameter families counting how often

the contractions Kviai
⋄a Kvjaj

, Jaixi
⋄ Jajxj

etc. occur. Since the number of K’s is
fixed, these parameters obey the additional restriction

nKK
12 + nKK

13 + nKJ
12 + nKJ

13 = s1, (3.4-131)

and similarly for the other legs. C ′ is just some other family of weights applicable
to the contracted vertex and depends in some complicated manner on the Cs1,s2,s3

d1,d2,d3
.

The last expression which represents the contracted vertex can be even further ra-
tionalised: It consists only of three types of basic building blocks

IxizKvivj
Ixjz,

IxizIxjz

Ixixj

, Jviz − Jvixj
.

So ultimately, the vertex in the bulk reduces after all differentiations and contractions
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have been completed to a form

Ṽ s1,s2,s3 (µ1),(µ2),(µ3)(Dz1 , Dz2 , Dz3)Gft UV s1

bubo (µ1),(l1)(z1, x1)G
ft UV s2

bubo (µ2),(l2)(z2, x2)

Gft UV s3

bubo (µ3),(l3)(z3, x3)
∣

∣

∣

zi=z

=
∑

k12,k23,k31,i12,i23,i31,{jpq}
ck12,k23,k31,i12,i23,i31,{jpq} I−i12

x1x2
I−i23
x2x3

I−i31
x3x1

Id−2+k12+k31+i12+i31
x1z Id−2+k23+k12+i23+i12

x2z Id−2+k31+k23+i31+i23
x3z

Kk12
v1v2

Kk23
v2v3

Kk31
v3v1

∏

p 6=q

(Jvpz − Jvpxq)
jpq − traces. (3.4-132)

Again, c are some counting weights which depend in an obscure manner on Cs1,s2,s3

d1,d2,d3
,

and {jpq} is a family of counting variables. Note that the covariant character of the
vertex is present on the formal level in this expression. This is an indication that
the general form of the vertex which we assumed is correct.

Integration of Vertex Coordinate. For a proper EAdS-presentation (3.4-124),
we must now integrate out the z-coordinate in (3.4-132) and match this with the
boundary correlation Gs1,s2,s3

(l1),(l2),(l3)(x1, x2, x3) in the form of lemma 3.5 on page 90.

This will give us the symbols c, from which we compute back the symbols C ′ and
finally Cs1,s2,s3

d1,d2,d3
. This fixes the vertex Ṽ (but probably not uniquely).

The generic z-integration of terms like (3.4-132) is developed in appendix B. It
is straightforward, if one organises the factors well; there is only one truely tricky
sum (B.2-6). Due to lack of time, the final determination of Cs1,s2,s3

d1,d2,d3
could not be

completed in this work; we are hopeful to solve that problem in the near future. In
the meanwhile, we will be content to quote a simple example illustrating the general
procedure.

The G1,0,0
non-symm-correlation. This correlation function will naturally vanish after

symmetrisation; however, the unsymmetrised terms do not vanish and are a conve-
nient vehicle for the explanation of the mechanism we have in mind.

There are three bulk-to-boundary involved; the spin-1 bulk-to-boundary propagator
from (3.4-111) is

Gft UV 1
bubo (z̃1, x1)[ã, v1] = −

(

Γ(d
2
− 1)N

4π
d
2

)2

21−d(d− 2) · Id−2
x1z1

(Ix1z1Kv1a) ,

and the scalar propagators (j = 2, 3)

Gft UV 0
bubo (z̃j , xj) =

(

Γ(d
2
− 1)N

4π
d
2

)2

21−d · Id−2
xjzj

.
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Since the spin-1 propagator has one free index, there must be one covariant derivative
acting on either of the other propagators; introducing indeterminate parameters
C1,0,0

0,1,0 and C1,0,0
0,0,1 , the vertex is

Ṽ 1,0,0 µ1(Dz2 , Dz3) = gµ1ν
(

C1,0,0
0,1,0 Dzν

2
+C1,0,0

0,0,1 Dzν
3

)

. (3.4-133)

The EAdS-presentation should have the structure

Gft UV 1
bubo (z̃1, x1)[ã, v1] ⋄a

(

C1,0,0
0,1,0a

ν Dzν
2
+C1,0,0

0,0,1a
ν Dzν

3

)

Gft UV 0
bubo (z̃2, x2)G

ft UV 0
bubo (z̃3, x3)

= Gft UV 1
bubo µ (z̃1, x1)[v1]g

µν
(

C1,0,0
0,1,0 Dzν

2
+C1,0,0

0,0,1 Dzν
3

)

Gft UV 0
bubo (z̃2, x2)G

ft UV 0
bubo (z̃3, x3)

(we can make the educated guess C1,0,0
0,0,1 = −C1,0,0

0,1,0 ). The derivatives acting on the
propagators yield by (3.4-117a)

aµ Dzµ
2
Gft UV 0

bubo (z̃2, x2) = −
(

Γ(d
2
− 1)N

4π
d
2

)2

21−d(d− 2) · Jax2I
d−2
x2z2

,

and similarly for propagator 3. For the contractions therefore, by (3.4-129),

Gft UV 1
bubo (z̃1, x1)[ã, v1] ⋄a aµ Dzµ

2
Gft UV 0

bubo (z̃2, x2)G
ft UV 0
bubo (z̃3, x3)

=

(

Γ(d
2
− 1)N

4π
d
2

)6

23−3d(d− 2)2 · Id−2
x1z1

(Ix1z1Kv1a) ⋄a Jax2I
d−2
x2z2

= −
(

Γ(d
2
− 1)N

4π
d
2

)6

23−3d(d− 2)2 · Id−1
x1z1

Jv1z − Jv1x2

Ix1x2

Id−1
x2z2

,

and similarly for the C1,0,0
0,0,1 -term. We must therefore integrate

I2 =

∫

dz0 ddz

(z0)d+1
Id−1
x1z1

Jv1z − Jv1x2

Ix1x2

Id−1
x2z2

Id−2
x3z3

. (3.4-134)

By the general integral formula (B.2-9) of appendix B, the result is

I2 = 2
3d
2
−3π

d
2
Γ(d

2
)2Γ(d

2
− 1)

Γ(d)Γ(d− 1)
(Ix1x2Ix2x3Ix3x1)

d
2
−1 (Jv1x2 − Jv1x3) . (3.4-135)

For the I3-term multiplying C1,0,0
0,0,1 a similar computation gives I3 = −I2. This looks

astonishing: It seems that the C1,0,0
0,1,0 - or C1,0,0

0,0,1 -term alone would already suffice to
generate a working bulk vertex, in the sense of the EAdS-presentation, since af-
ter integrating out the vertex, one obtains already a multiple of the full, unsym-
metrised boundary correlation G1,0,0

non-symm, as given in (3.4-105). However, the C1,0,0
0,1,0

and C1,0,0
0,0,1 -terms of the vertex alone do not have the same symmetry as the boundary

Wick contractions for G1,0,0
non-symm. On second thought, we had to expect that: The

C1,0,0
0,1,0 -term (3.4-134) is conformally invariant as it stands, and so is the boundary
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function (3.4-135) we have obtained after integrating out the vertex. It is the only
conformally invariant possibility on the boundary to couple a vector to two scalars
(unsymmetrised), and therefore the form of the result cannot be different.

The total correlation is

G1,0,0
non-symm = (C1,0,0

0,1,0 − C1,0,0
0,0,1)

(

Γ(d
2
− 1)N

4π
d
2

)6

23−3d(d− 2)

2
3d
2
−3π

d
2
Γ(d

2
)2Γ(d

2
− 1)

Γ(d)Γ(d− 2)
(Ix1x2Ix2x3Ix3x1)

d
2
−1 (Jv1x2 − Jv1x3) .

By symmetry considerations, one has to choose C1,0,0
0,0,1 = −C1,0,0

0,1,0 . Comparing with
the boundary result (3.4-108), we find

C1,0,0
0,1,0 = N

(

Γ(d
2
− 1)N

4π
d
2

)−3
Γ(d)Γ(d− 2)

π
d
2 Γ(d

2
)2Γ(d

2
− 1)

. (3.4-136)

3.4.6 Summary

We have in this section set up a programme for the determination of the vertex
couplings in the bulk which are needed for a successful EAdS-presentation (3.4-67)
of the boundary three-point functions of bilinear tensor currents (3.4-66). Several
points were of importance:

1. It is crucial to insist on conformal invariance of the intermediate expressions
at all times.

2. Notation is greatly simplified when relying on the embedding space notation
throughout, along the lines of section 3.4.1.

3. The problem of bulk vertices has been reduced to a combinatorical problem
of matching prefactors, described in paragraph “Integration of Vertex Coordi-
nate” on page 100. In particular, the integration of a generic, parametrised
vertex as described in paragraph “Vertex Structure” on page 95 is under con-
trol; what is missing is the matching of the generic prefactors Cs1,s2,s3

d1,d2,d3
to the

boundary correlations which are given as polynomials in conformal invariants
(3.4-96).

4. As a necessary prerequisite, we have also discussed the bulk-to-boundary pro-
pagators and their characterising equations in section 3.4.4.

Although we were not able to finish this programme, the outlook is very good.

Since we have discussed the EAdS-presentation of boundary three-point functions of
currents in the free UV theory, we will in the next section enhance EAdS-presentation
to n-point functions of currents. Subsequently, we will have to clarify the question
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of the field system in the bulk, as carriers of the representations we have found. This
will be a step towards the question whether there is a physical grounding to the
EAdS-presentation.

3.5 EAdS-Presentation of n-Point Functions in the

Free UV Theory and Construction of n-valent

Vertices

We have sketched in the last section how 3-point functions of bilinear twist-2 currents
in the free UV fixpoint theory may be given an EAdS-presentation; in short, we
almost completed an equality which can be written formally

Gs1,s2,s3

(l1),(l2),(l3)(x1, x2, x3) =

∫

ddz dz0

(z0)d+1
Ṽ s1,s2,s3 (µ1),(µ2),(µ3)(Dz1 , Dz2 , Dz3) (3.5-137)

Gft UV s1

bubo (µ1),(l1)(z1, x1)G
ft UV s2

bubo (µ2),(l2)(z2, x2)G
ft UV s3

bubo (µ3),(l3)(z3, x3)
∣

∣

∣

zi=z
,

where Ṽ acts as a differential operator on the three propagators and is of order
N1. The propagators are the bulk-to-boundary propagators (3.4-111); and we have
agreed to choose them from the field-theoretic prescription, in order to have a definite
normalisation with respect to the boundary-to-boundary propagators. They are of
order N0, in the normalisation of section 3.4.4.

We have thus served the case n = 3 of definition 3.4 on page 74. In this section,
we are going to continue the examination to n ≥ 4; based on the results for the
three-valent vertex, it will turn out that higher-order vertices are easier to access:
They are given in terms of the three-vertices.

According to proposition 2.4 on page 41 and the following remark 2.5, a correla-
tion function 〈Js1(x1) . . . Jsn(xn)〉conn is equivalent to the inverse Catalan number
C−1

n−2 times a sum of all amplitudes generated by all possible tree graphs (in the
context, they appeared as “cyclic commutative non-associative structures”, in short
CCNA’s, cf. page 38) containing symmetric, traceless quasi-primary tensor currents
of all even spins s bilinear in the fields φ, using the (EAdS-presented) three-point
functions Gs,t,u(x, y, z) as vertices and integrating out the coordinates x with the
inverse propagator Ds(∂x) defined by equation (2.7-36) as kernel whenever two such
correlations have a common midpoint

∑

s

∫

ddxGs,s1,s2(x, y
1
, y

2
)Ds(∂x)G

s,t1,t2(x, z1, z2)

(suppressing tensor indices). The external currents Jsj(xj) are inserted at the tips
of the tree.
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Whenever there appears such a linking term, in the EAdS-presentation this will lead
to an effective bulk-to-bulk propagator of order N−1 (since Ds ∼ N−1)

Geff s
bu (µ1),(µ2)(z1, z2) =

∫

ddxGft UV s
bubo (µ1),(l1)(z1, x) Ds (l1),(l2)(∂x) Gft UV s

bubo (µ2),(l2)(z2, x).

(3.5-138)
It is tempting to interpret this as the bulk-to-bulk propagator; however, by construc-
tion Geff s

bu (z1, z2) should obey the equations of motion w.r.t. z1 and z2 on all EAdS;
there is no singularity on the diagonal z1 = z2 as one expects for any decent propa-
gator. By the general arguments of section 3.2.2 (cf. equation (3.2-38)), the effective
propagator Geff s

bu (z1, z2) is the difference of the bulk-to-bulk-propagators of different
boundary scaling dimensions; it is a completely regular solution of the equation of
motion, and not a Green’s function. With the dimension ∆UV

s = d− 2 + s,

Geff s
bu (z1, z2) = G

∆UV
s s

bu (z1, z2)−G
(d−∆UV

s ) s
bu (z1, z2) (3.5-139)

(G
(d−∆UV

s ) s
bu never appears as independent propagator because it violates the unitar-

ity bound). The näıve EAdS-presentation of the twist-2 CPWE does not yield the
correct propagators for an interpretation as effective (classical) Lagrangian field the-
ory in the bulk, involving the higher spin tensor fields as basic fields. In addition, we
could not get the combinatorics right because of the inverse Catalan number C−1

n−2

appearing in the prefactor demanded by the twist-2 CPWE.

This is not fatal to us, because, by the philosophy of section 3.2.3, we have to find
a single (probably nonlocal) bulk vertex Ṽ s1...sn(Dz1, . . . , Dzn) which EAdS-presents
the n-point correlations. Such a bulk vertex can be obtained from the twist-2 CPWE.
We state the procedure in

Proposition 3.7. The n-valent bulk vertex Ṽ s1...sn(Dz1 , . . . , Dzn), necessary for the
EAdS-presentation of the n-point function of quasi-primary bilinear tensor currents
in the free UV fixpoint theory according to definition 3.4 on page 74, can be con-
structed as follows:

(i) EAdS-presenting each three-point function arising in the twist-2 CPWE (sec-
tion 2.7) of the n-point function of the currents by (3.5-137) in the bulk,

(ii) amputating those propagators which constitute external legs,

(iii) summing over the spins of the internal propagators and integrating out the bulk
coordinates of those vertices which are not connected to an external leg.

(iv) summing over all the different CCNA’s which constitute the total twist-2 CPWE,
with the combinatorial prefactor C−1

n−2.

Since the n-point vertices are generated by EAdS-presentation of φ-loops with n
operator insertions, and each such insertion from the boundary UV theory carries
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an additional coupling −i, there will be a factor (−i)n which we have to supplement
explicitly.

The truth of this proposition follows by construction. Since the boundary φ-loops
and their twist-2 CPWE are all ∼ N1, the resulting n-valent bulk vertices will also
be ∼ N1. For three-valent vertices, the result is simply given by the EAdS-presented
three-valent vertex which we have constructed in section 3.4.

As a more complex example, the quartic scalar bulk vertex is

Ṽ s1,s2,s3,s4(z1, z2, z3, z4) =

1

2

∑

t

{

δAdS(z1 − z2)δ
AdS(z3 − z4) Ṽ t,s1,s2 (µ̃)(y, z1, z2)G

eff t
(µ̃),(ν̃)(bu y, u)Ṽ t,s3,s4 (ν̃)(u, z3, z4)

∣

∣

∣y=z1
u=z3

+ δAdS(z1 − z3)δ
AdS(z2 − z4) Ṽ t,s1,s3 (µ̃)(y, z1, z3)G

eff t
bu (µ̃),(ν̃)(y, u)Ṽ t,s2,s4 (ν̃)(u, z2, z4)

∣

∣

∣y=z1
u=z2

+ δAdS(z1 − z4)δ
AdS(z2 − z3) Ṽ t,s1,s4 (µ̃)(y, z1, z4)G

eff t
bu (µ̃),(ν̃)(y, u)Ṽ t,s2,s3 (ν̃)(u, z2, z3)

∣

∣

∣y=z1
u=z2

}

.

The explicit computation of the vertices shall not be undertaken here, as we are still
missing the precise form of the three-valent vertex. Note that the vertices contain
derivatives acting on the external propagators to be engrafted onto the vertex; the
way we have written it, these are simply to be connected from the right, and the
δ-distributions are to be acknowledged on the final integration of coordinates in the
finished bulk graph.

One might argue that the sum over spins should make the internal propagators in
the n-valent vertices vanish, by the philosophy of section 3.2.3. However, this is not
so: The sum over bulk-to-bulk propagators of different spins was to vanish only for
the true propagators GUV s

bu , and possibly an additional (hypothetical) field must be
included into the sum to this effect.

The total scalar 4-point function in the UV theory is then given by

GUV 0,0,0,0(x1, x2, x3, x4) = i4
4
∏

j=1

∫

dz0
j ddz j

(z0
j )

d+1

(−i)4Ṽ 0,0,0,0(z1, z2, z3, z4)G
ft UV 0
bubo (z1, x1)G

ft UV 0
bubo (z2, x2)G

ft UV 0
bubo (z3, x3)G

ft UV 0
bubo (z4, x4).

Under the hypothesis that the bulk-to-bulk propagation cancels in total, there is a
second term which might possibly be contained, but which vanishes completely,

GUV 0,0,0,0
cancel (x1, x2, x3, x4) = i4

4
∏

j=1

∫

dz0
j ddz j

(z0
j )

d+1

∫

dy0 ddy

(y0)d+1

∫

du0 ddu

(u0)d+1

∑

s

(

(−i)3Ṽ s,0,0(y, z1, z2)G
ft UV 0
bubo (z1, x1)G

ft UV 0
bubo (z2, x2) GUV s

bu (y, u)

(−i)3Ṽ s,0,0(u, z3, z4)G
ft UV 0
bubo (z3, x3)G

ft UV 0
bubo (z4, x4) + perms.

)

,



106 3. EAdS-Holography of the O(N) Vector Model

where we have suppressed the tensor indices and written the trivalent vertices in
the same nonlocal notation as the four-valent vertex. GUV s

bu (y, u) is the bulk-to-
bulk propagator for the intermediate tensor field with spin s. The sum over spins s
possibly includes any hypothetical field needed to make the second summand vanish
in total, by equation (3.2-56).

By their construction, the n-valent vertices are very non-local in nature. Their
internal structure reminds one very much of string theory. We can simulate a “tree-
level” interaction of several strings by inserting n vertex operators on a worldsheet
with the topology of a sphere. The worldsheet in the vicinity of vertex operator j
would then be interpreted as “string j”. There is no saying in which order the strings
resp. vertex operators interact with each other; even if the string worldsheet is drawn
suggestively as a system of tubes linked by regions connecting three tubes each, then
by deforming this worldsheet, we can modify the network in such a manner that the
order of interactions is different. In a way, the n-valent vertices we have constructed
are mirroring this structure since they contain a sum over all different interaction
schemes (CCNA’s).

The non-local nature of string vertices is further reflected in the effective propagator
Geff s

bu which serves as internal propagator inside the vertices: Geff s
bu (z1, z2) does not

contain singularities on the diagonal z1 = z2, since it is the difference (3.5-138) of
two propagators which have the same singularity behaviour on the diagonal (but
different boundary conditions).

So it is not totally unrealistic to imagine that the bulk theory we are constructing
may be obtained as an infinite-tension limit of an underlying string theory in (E)AdS.
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3.6 Analysis of the Holographic Bulk Theories

We are now approaching the topic of the physical model underlying the EAdS-
presentation of boundary correlation functions.

3.6.1 Bulk-to-bulk Propagators of Tensor Fields

While we have discussed the bulk-to-boundary propagators, a full theory in the
bulk must certainly contain bulk-to-bulk propagators. We will, without giving them
explicitly, shortly discuss how they may be evaluated.

As starting point, consider the “propagator” (3.5-138) which features in the EAdS-
presentation of the twist-2 CPWE and which is given by the difference of the field-
theoretic and dual prescription for the boundary current in the intermediate channel.
We denoted this effective propagator of order ∼ N−1 by

Geff s
bu (z̃, ũ)[ã, b̃] =

∫

ddxGft UV s
bubo (l1)(z̃, x)[ã] Ds (l1),(l2)(∂x) Gft UV s

bubo (l2)(ũ, x)[̃b]; (3.6-140)

it is independent of the specific boundary prescriptions for the spin-s tensor field in
the bulk (up to a sign). In this notation, the bulk ends of the propagators are con-
tracted with the ã resp. b̃-vectors, whereas the boundary ends are contracted directly
with the inverse propagator Ds. We have found the bulk-to-boundary propagators
(3.4-111); the difficulty now lies in the application of the inverse propagator Ds. This
very technical operation has been performed in [60, 62], resulting in a representation
of the AdS space propagator in terms of Legendre functions of the second kind.

Note that, by the structure of equation (3.6-140), the propagator Geff s
bu fulfills the

equations (3.4-113a) to (3.4-113e) for each end separately (ie, for the pairs of points
and tangent vectors z̃ ∈ R

d+1,1, ã ∈ Tz̃ and ũ ∈ R
d+1,1, b̃ ∈ Tũ separately), which

hold for the bulk end of the bulk-to-boundary propagators. A true propagator G∆ s
bu

with boundary behaviour (z0)∆ should fulfill these equations as well, up to δ-terms
on the diagonal (when the endpoints coincide). We have thus the following set of
equations, which we write with an undetermined propagator function Gs

bu:

z̃µ̃∂ãµ̃Gs
bu =0, �z̃G

s
bu =0 + diag. terms, �ãG

s
bu =0, ∂z̃µ̃∂ãµ̃

Gs
bu =0 + diag. terms

ũµ̃∂b̃µ̃Gs
bu =0, �ũG

s
bu =0 + diag. terms, �b̃G

s
bu =0, ∂ũµ̃∂b̃µ̃

Gs
bu =0 + diag. terms;

(3.6-141)

and the homogeneity relation

Gs
bu(z̃, ũ)[ã, b̃] = (|z̃||ũ|)−∆Gs

bu

(

z̃

|z̃| ,
ũ

|ũ|

)

[ã, b̃]. (3.6-142)

Note that all these equations hold in the embedding space. Intrinsic EAdS equations
could be formulated using the material of section 3.4.4 to relate the embedding space-
and the covariant EAdS-derivative, using the homogeneity of the propagator in the



108 3. EAdS-Holography of the O(N) Vector Model

embedding space Euclidean coordinates. We know furthermore that Gs
bu is of order

∼ N−1, homogeneous of degree s in ã and b̃; moreover, Gs
bu(z̃, ũ)[ã, b̃] should be

symmetric in the argument pairs (z̃, ã) and (ũ, b̃) by construction.

By (3.4-114), we expect that this system of equations has two linearly independent
propagator solutions, with either the boundary behaviour (z0)∆ or the conjugate
(z0)d−∆; the generic solution is

Gs
bu(z̃, ũ)[ã, b̃] =αG∆ s

bu (z̃, ũ)[ã, b̃]

+ (1− α)(|z̃||ũ|)d−2∆Gd−∆ s
bu (z̃, ũ)[ã, b̃]. (3.6-143)

By way of its definition, there may no other vectors appear in Gs
bu, so that it can be

written as a function of scalar products of its arguments,

Gs
bu(z̃, ũ)[ã, b̃] = (|z̃||ũ|)−∆gs

(

(z̃, ũ)

|z̃||ũ| ,
(ã, z̃)

|z̃| ,
(b̃, z̃)

|z̃| ,
(ã, ũ)

|ũ| ,
(b̃, ũ)

|ũ| , ã2, b̃2, (ã, b̃)

)

.

(3.6-144)
The orthogonality conditions z̃µ̃∂ãµ̃Gs

bu = 0 and resp. for (ũ, b̃) are the easiest to
fulfill; we use the scheme which is by now well-known and introduce the invariants

Kab =(ã, b̃)− (ã, ũ)(z̃, b̃)

(z̃, ũ)
Kaa =(ã, ã)− (ã, z̃)2

(z̃, z̃)
Kbb =(b̃, b̃)− (b̃, ũ)2

(ũ, ũ)

Ja =
(ã, ũ)

(z̃, ũ)
− (ã, z̃)

(z̃, z̃)
Jb =

(b̃, z̃)

(z̃, ũ)
− (b̃, ũ)

(ũ, ũ)
. (3.6-145)

Furthermore, define the scale invariant bifunction

X =
(z̃, ũ)

|z̃||ũ| ≤ −1. (3.6-146)

We find that the most general form possible for the solution is

Gs
bu(z̃, ũ)[ã, b̃] = (|z̃||ũ|)−∆gs (X, Kab, Kaa, Kbb, |z̃|Ja, |ũ|Jb) , (3.6-147)

with the usual homogeneity and symmetry requirements for (z̃, ã) and (ũ, b̃). One
can see that this must be the most general ansatz since it is a function of six argu-
ments fulfilling two differential equations, whereas the functions (3.6-144) has eight
arguments and does not fulfill any differential equation 12. We have six equations
left, and this should be just sufficient to determine Gs

bu, up to a multiple.

For spin 0 one finds, solving these equations up to the normalisation 13,

G0
bu = (|z̃||ũ|)−∆

(

X2 − 1
)

1−d
4

(

C1P
1−d
2

∆− d+1
2

(−X) +
C2

Γ(∆− d + 1)
Q

1−d
2

∆− d+1
2

(−X)

)

.

(3.6-148)

12A general argument for the invariants which are fundamental for propagators on maximally
symmetric spaces can be found in [3].

13 For s = 0 and ∆ = d − 2, this result can be computed directly from formulas (3.6-140) and
(3.5-138), by employing a Schwinger representation not only for the bulk-to-boundary propagator,
but also for the kernel of the wave operator D0. This would also give the proper normalisation.
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The C1-term is the difference of propagators with different boundary conditions,
without the singular terms on the diagonal X = −1, similar to Geff 0

bu obtained from
the EAdS-presentation of the twist-2 CPWE. The C2-term is the scalar bulk-to-bulk
propagator with a boundary behaviour (z0)∆; It obeys the differential equation only
for X < −1, with a singular contribution at X = −1. This is in accordance with
the results (6.1-18) and (6.1-17) which will be found in a later chapter from a direct
functional integral approach.

There is a useful integral representation for the C1-term valid for |∆ − d
2
| < d

2
, by

(C.3-10),

(X2 − 1)
1−d
4 P

1−d
2

∆− d+1
2

(−X) =

√

2

π

1

Γ(∆)Γ(d−∆)

∫ ∞

0

dτ

τ
τ

d
2 eXτK∆− d

2
(τ). (3.6-149)

The modified Bessel function of the second kind K∆− d
2
(τ) can be expressed by mod-

ified Bessel functions of the first kind,

2

Γ(d
2
−∆)Γ(1− d

2
+ ∆)

K∆− d
2
(τ) = I∆− d

2
(τ)− Id

2
−∆(τ). (3.6-150)

When the Bessel functions I∆− d
2
(τ) or Id

2
−∆(τ) are substituted into (3.6-149), we

obtain certain linear combinations of the C1- and the C2-terms; the necessary integral
is given in (C.3-11) in the appendix. Each of these generates one particular boundary
behaviour of the propagator. Since we want to reserve the term “propagator” for
the objects which feature in the actual bulk theory and have a normalisation which
is adapted to the normalisation of the vertices Ṽ s1,...,sn, we will for now be content
to give the normalised Green’s functions H∆, s

bu in the cases

Heff 0
bu =− (|z̃||ũ|)2−d

(2π)
d
2 Γ(2− d

2
)Γ(d

2
− 1)

∫ ∞

0

dτ

τ
τ

d
2 eXτK2− d

2
(τ) (3.6-151a)

Hd−2, 0
bu =

(|z̃||ũ|)2−d

2(2π)
d
2

∫ ∞

0

dτ

τ
τ

d
2 eXτId

2
−2(τ)

=− Γ(d−1
2

)

4π
d+1
2

(z̃, ũ)

((z̃, ũ)2 − |z̃|2|ũ|2)
d−1
2

(3.6-151b)

H2, 0
bu =

(|z̃||ũ|)2−d

2(2π)
d
2

∫ ∞

0

dτ

τ
τ

d
2 eXτI2− d

2
(τ). (3.6-151c)

The Green’s function on the branch ∆− = d − 2 < d
2

is an algebraic function, as
given. The actual propagators will be multiples of these Green’s functions.

For the normalisation of the Green’s functions, we have choosen the following con-
ventions: By computing the action of the d’Alembertian, one shows that

(

−�
EAdS
z̃ +

2(2− d)

|z̃|2
)

Hd−2, 0
bu = −�z̃H

d−2, 0
bu = |z̃|−d|ũ|2−dδ

(d+1)
EAdS

(

z̃

|z̃| ,
ũ

|ũ|

)

,

(3.6-152)
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and equivalently for the dual prescription. There will be a divergent contribution
whenever z̃ and ũ are lying on the same ray in the embedding space. On the EAdS-
hypersurface |z̃| = |ũ| = 1, z̃d+1, ũd+1 > 0, we obtain the usual EAdS scalar Green’s
function.

The first nontrivial case is spin 1 (we choose ∆ = d − 1). For spin 1, the general
form (3.6-147) can be reduced to

G1
bu =|z̃|1−d|ũ|1−d

{

gA(X) · (Kab + (z̃, ũ)JaJb)−XgB(X) ·Kab

}

(3.6-153)

in terms of the invariants (3.6-145). We have chosen the specific parametrisation
with a view to the solution.

While the second-order equations in ã and b̃ are automatically fulfilled for a tensor
of order 1 (ie, a vector), we have to take care of the �z̃- and �ũ- and the mixed
equations (3.4-113d) to (3.4-113e). The solution of these equations is complicated,
but standard, taking care that they are fulfilled for any z̃, ũ, ã, b̃, and we obtain the
general solution

gA(X) =C1(X
2 − 1)−

d+3
4 P

− d+3
2

d−3
2

(−X) + C2(X
2 − 1)−

d+3
4 Q

d+3
2

d−3
2

(−X), (3.6-154a)

gB(X) =C1
d + 1

2
(X2 − 1)−

d+3
4 P

− d+3
2

d−1
2

(−X)− C2(X
2 − 1)−

d+3
4 Q

d+3
2

d−1
2

(−X).

We do not give the correct normalisation in this place, because we are just interested
in the mechanism for the solution of these equations. It is in principle possible
to obtain an integral representation of the kind (3.6-151a) to (3.6-151c) for these
expressions. Note that when these solutions are substituted into (3.6-153) to obtain
the EAdS propagators, all radii become |z̃| = |ũ| = 1. The asymptotic behaviour
of these two linearly independent solutions reveals that the C1-term describes the
effective propagator Geff 1

bu won by lifting of the twist-2 CPWE (see (3.5-138)); by
linear combinations of the C1- and C2-terms, one obtains the true propagators with
behaviour (z0)d−1 resp. (z0)1; they diverge at X = −1, ie z = u and z0 = u0

simultaneously. The propagator with dimension ∆− = 1 already violates in 2 < d < 4
the unitarity bound ∆1

ub = d− 1 for spin 1.

Summary. We have found characteristic equations for the propagators in the em-
bedding space. The advantage of working in the embedding space is that we can
work without having to use the covariant derivative, using the partial derivative of
the embedding space exclusively. The mass of the fields is contained in a homogeneity
condition; and the system of equations has two propagator solutions, corresponding
to the boundary behaviour (z0)∆ and (z0)d−∆. For higher spins, the solution of the
propagator equations is involved.
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3.6.2 Higher Spin Gauge Symmetries

The bulk theory we are discussing is a gauge theory. For the spin-1 massless tensor,
the gauge symmetry has exactly the form of the Maxwell gauge symmetry (vector
potential), for the spin-2 tensor (graviton field), it is the Einstein diffeomorphism
symmetry; for the higher spin tensors T in the bulk, it is a generalisation. The
corresponding gauge transformations are of the form

Tµ1...µs → Tµ1...µs + ∂(µ1Λµ2...µs),

with Λ a (traceless) field determining the gauge transformation. Since the subject of
gauge transformations is not followed in this work (with the exception of general bulk
covariance of the propagators), we will not dwell on this point and refer the reader
to the literature. A systematic discussion can be found in [99]; the Goldstone fields
in case of a broken symmetry are analysed in [87], and some hands-on computations
(concerning gauge fixing) can be examined in [70].

3.6.3 Expansion Rules for the UV Holographic Theory

We summarise the rules of EAdS-presentation which we have found. Since we are
going to discuss Lagrangian theories, we will redistribute the factors of i which
appeared in this graphical expansion, in such manner that the Lagrangian theories
we are going to obtain have a real action. The factors of i which had to be inserted
when applying the derivative i∂J etc. on the generating function are abolished. The
physical content is left completely unchanged by this step. We obtain the following
rules:

(F) The bulk theory contains a tensor field Ts for all even spins s, which may be
coupled to boundary sources Js. Boundary correlations are generated by ∂J .

(P) Bulk-to-boundary propagators Gft UV s
bubo for these fields have been analysed in

section 3.4.4; two sources on the boundary may also be coupled by a boundary-
to-boundary propagator (ibid).

(V) There is a set of bulk vertices Ṽ s1,...,sn for all valencies n ≥ 3, linking tensor
propagators of every possible spin s1, . . . , sn (and we have found no general
rule saying that some subset of these couplings should vanish in general). For
n = 3, these have been discussed in section 3.4, for n ≥ 4 in section 3.5 (cf.
proposition 3.7 on page 104).

(G) The correlation functions are represented by graphs. A two-point function is
represented by a propagator connecting the sources. A (connected) n-point
function is represented by a graph containing exactly one vertex, connected to
n ≥ 3 sources. Disconnected correlation functions are obtained by summing
over all factorisations into connected correlations.
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These rules have been derived with no reference whatsoever to the programme laid
down in section 3.2.3; so we are free to interpret them. We can promote (lift) this
set of rules into a field theory in the bulk if we supplement the following rule:

(Bu) There are also source terms T s in the bulk; their correlations are generated by
∂T s . They are coupled to other bulk source terms and to the vertices by bulk-
to-bulk propagators GUV s

bu (section 3.6.1), and to the sources on the boundary
by bulk-to-boundary propagators (section 3.4.4).

By application of the rule (Bu), we have a recipe by which to compute correlations
between sources in the bulk. This step contains an ad hoc element because the
correlations between sources in the bulk never was relevant to the EAdS-presentation.
Our justification is that by the group-theoretic considerations of section 3.3, the
boundary correlations may be obtained as limits of the bulk correlations when the
sources are moved towards the boundary and a suitable scaling factor is applied.

There are competing possible interpretations of this structure; we will discuss them
in turn.

3.6.4 Lagrangian Interpretation: The Cancellation of Bulk-
to-bulk Propagation in the UV Fixpoint Theory

Under the assumption that the UV holographic theory in the bulk is Lagrangian,
we have to find a path integral which would repreduce the rules (F) to (Bu) for the
computation of the correlations. If the Planck quantum of action in this supposed
Lagrangian theory is proportional to 1/N , then the conditions for proposition 3.2
on page 65 are met, implying that the UV hologram must be a full quantum theory,
and we have to rely on dynamical cancellation of loop diagrams. We will use this as
a guideline.

When we give a Lagrangian bulk theory, we have to say which type of boundary
source terms we use, either field-theoretic or dual. For the scalar operator of the UV
holographic fixpoint theory with scaling dimension d − 2 on the lower branch ∆−,
we are forced to choose the field-theoretic convention; for the tensor fields with spin
s ≥ 2 with scaling dimension d− 2 + s on the upper branch ∆+, we have the choice
between field-theoretic and dual prescription. For simplicity, we will choose the
field-theoretic source terms. This means that the field-theoretic propagators which
we have used throughout the EAdS-presentation and whose normalisation is given
in definition 3.6 on page 91 are the propagators which appear in the Lagrangian and
therefore, the normalisations of the vertices etc. do not need to be modified.

The Lagrangian interpretation is supplied by rule (G’) which reduces to rule (G) if
evaluated:
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(G’) The correlation functions are represented by graphs. The graphs are derived
from an action which is symbolically of the form

S[T] =

∫

EAdS

dd+1z

{

∑

s

1

2
Ts(Gs

bu)
−1Ts − V (T)

}

, (3.6-155)

with the interaction potential

V (T) =
∞
∑

n=3

∑

s1,...

1

n!
Ṽ s1,...,snTs1 . . .Tsn . (3.6-156)

(Gs
bu)

−1 is the inverse propagator, and we have resisted giving “boundary con-
ditions” for it, since it is a differential operator. It should be noted that the
action is proportional to N , since Ṽ ∼ N and all propagators Gs

bu ∼ N−1. The
path integral is

Z[J ][T ] =

∫

D(T) exp

(

−S[T]+
∑

s

∫

EAdS

dd+1z T sTs+
∑

s

∫

∂ EAdS

ddx JsTs

)

.

(3.6-157)

The last term represents the field-theoretic coupling of the sources at the boun-
dary. Under the assumption that cancellation of bulk-to-bulk propagation takes
place, the UV theory holographic correspondence is defined by

〈

exp
(

∑

s

∫

ddx JsJs
)

〉

UV

=
Z[J ][0]

Z[0][0]
. (3.6-158)

This Lagrangian is symbolic only because inverse bulk-to-bulk propagator (Gs
bu)

−1

does not exist as it stands. Research has been going on for a long time on this topic,
initiated by Fronsdal (eg [40, 41]) who showed that one needs a set of auxiliary
tensor fields ϕs−2 which ultimately drop out in order to get the correct equations of
motion for the (free) higher spin tensor fields in the bulk. Formally, if we believe
that these problems can be solved somehow, then the path integral will result in the
propagators GUV s

bu , with boundary behaviour (z0)d−2+s.

As indicated, there must be a mechanism suppressing graphs containing loops, if this
Lagrangian theory should reduce correctly to the EAdS-presentation summarised by
the rules (F) to (G). As a possible mechanism, we have suggested in hypothesis 3.3
on page 67 that bulk-to-bulk propagation cancels when summed over all spins, and
probably under inclusion of one or several additional fields; in that case, we have to
supplement a set of vertices and propagators for these fields. That means we have
to prove that

∑

s

Ṽ s,...
1 (Dz1 , . . . ) GUV s

bu (z1, z2) Ṽ s,...
2 (
←−
D z2 , . . . ) = 0. (3.6-159)
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Figure 3.3: For explanation, see section 3.6.4.

On the first glance, this seems rather outlandish: As Ṽ1 and Ṽ2 can be vertices
of arbitrary order constructed in section 3.5 and each vertex takes a different form,
there seems to be an amount of constraints which is impossible to fulfill. However, as
we have constructed the n-valent bulk vertices by EAdS-presentation of the twist-2
CPWE, they consist solely of the elementary three-valent vertex Ṽ s1,s2,s3 as building
block. We conclude

Proposition 3.8. If relation (3.6-159) holds for Ṽ1, Ṽ2 three-valent bulk vertices,
then it will hold for all different n-valent vertices in the bulk obtained by EAdS-
presentation of the twist-2 CPWE.

This is certainly good news.

Crossed Channels. One might consider the possibility that the cancellation mech-
anism (3.6-159) includes crossed channels in some way or other. Since crossed chan-
nels are only defined for three-valent vertices, such an argument would be on the
level of the elementary three-vertices making up all graphs. However, since by chan-
nel crossing, one changes the topology, it happens sometimes that one generates a
(forbidden) n-valent bulk vertex which contains a closed loop, as in figure 3.3 on
page 114. Left is a bulk graph in the UV fixpoint holographic theory. Crosses are
boundary sources; they are linked by bulk-to-boundary propagators (dashed lines)
to the slightly dotted circle enclosing a 5-valent vertex Ṽ . The vertex arises by the
mechanism described in section 3.5 out a sum of tree diagrams with effective propa-
gators Geff s

bu (drawn through lines) generated by the twist-2 CPWE of the boundary
5-point function of bilinear currents. One particular summand of this five-point func-
tion is displayed. The dashed propagator at the bottom is a bulk-to-bulk propagator
forming a loop; eventually, this diagram must vanish dynamically in the UV fixpoint
holographic theory.

On the right, one of the crossed channels of this bulk-to-bulk propagator is displayed.
The topology of the effective graph defining the vertex has changed; this new vertex
contains a loop and cannot arise out of any EAdS-presentation of a boundary corre-
lation; so it is not a valid vertex of the UV fixpoint holographic theory. We conclude
that the left diagram must vanish on its own and that the dynamical mechanism
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responsible for cancellation of bulk-to-bulk propagation does not involve crossed
channels (since this operation does not always create admissible graphs).

The natural setup for examining bulk-to-bulk propagation is therefore the holo-
graphic four-point function, in restriction to the s-channel. Currently we do not
have all necessary tools at hand in order to compute the net bulk-to-bulk propa-
gation and deliver an explicit answer to the question whether or how bulk-to-bulk
propagation cancels.

Nullifier Field. As a “brute force” method, one might consider adding for every
bulk tensor field of spin s a “nullifier” tensor field T′s with the same mass and spin
s and in the same boundary prescription, which couples to the same vertices, only
with an additional factor i in the coupling (alternatively, one could endow it with
a propagator carrying an additional factor −1) 14. This certainly puts an end to
bulk-to-bulk propagation. However, this would also imply that there is a second
family of boundary currents J′s with integer (even) spin, behaving very similar to Js

in the (mixed) connected n-point functions

〈Js1 . . . JsjJ′t1 . . . J′tn〉conn = in〈Js1 . . . JsjJt1 . . . Jtn〉conn, (n ≥ 3),

but having a vanishing mixed two-point function 〈J′s Js〉 = 0. A second family with
these properties does not exist. And since the two-point function 〈J′s J′s〉 = 〈Js Js〉
does not fit into the above scheme, the fields Ts and T′s can be distinguished by an
observer on the boundary, and it is not possible to argue that all source terms couple
to 1

2
(Ts − iT′s).

Semi-classical Path Integral We can write down a generating function for the
correlations defined by rules (F) to (Bu); we will in turn interpret the generating
function as a semi-classical path-integral.

The classical field equation for the tensor fields in the bulk with the source terms Js

on the boundary is formally
(

(Gs
bu)

−1Ts
)

(z) = T s(z) + δ(z0)Js(z). (3.6-160)

We supplement this with the boundary behaviour (z0)d−2+s required by the scaling
dimensions of the boundary operators. This equation has then the unique solution

Ts
[J ][T ] = GUV s

bu T s + Gft UV s
bubo Js, (3.6-161)

where the propagators act as convolution operators. The generating function is

Z[J ][T ] = Z
−1

0 exp
(

− S[T] +
∑

s

∫

EAdS

dd+1z T sTs +
∑

s

∫

∂ EAdS

ddx JsTs
)

∣

∣

∣

∣

∣

Ts=Ts
[J]

[T ]

,

(3.6-162)

14Krotov and Morozov [59] have taken a similar approach to construct a holographic theory.
However, in their case, the vanishing mechanism is simply enforced by having two identical real
scalar fields, with the couplings of the second field differing by a factor i.
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with the action (3.6-155). One reads off the correlations by substituting Ts
[J ][T ] and

observing that for field-theoretic propagators, both

(Gs
bu)

−1GUV s
bu T s =T s

(Gs
bu)

−1Gft UV s
bubo Js =Js.

Looking at the interaction potential, it is clear that source terms T s in the bulk
and Js on the boundary couple to the vertices by propagators GUV s

bu resp. Gft UV s
bubo .

Likewise, the boundary-to-boundary propagator is Gft UV s
bo , with the positive sign.

So the proof of the statement is immediate 15.

We suggest to interpret this generating function as a semi-classical path integral with
a domain of integration consisting of a single field configuration.

For the holographic theory corresponding to the IR fixpoint theory, we have to per-
form a functional Fourier transform with respect to the sources J0 on the boundary.
Since J0 acts as boundary source term in the solution Ts

[J ][T ] and therefore controls its
boundary behaviour, the functional Fourier transform acts as a path integral which
varies over all possible solutions of the free field equation (3.6-160) with different
boundary values. We obtain thus

Z[K0], s≥2: [Js][T ] = Z
−1
0

∫

D(J0) exp
(

− S[T] +
∑

s

∫

EAdS

dd+1z T sTs

+
∑

s

∫

∂ EAdS

ddx JsTs + i

∫

∂ EAdS

ddxK0J0

)
∣

∣

∣

∣

∣

Ts=Ts
[J]

[T ]

. (3.6-163)

The holographic correspondence is defined by

〈

exp
(

∑

s≥2

∫

ddx JsJs +

∫

ddxσK0
)

〉

IR

=
Z[K0], s≥2: [Js][0]

Z[0], s≥2: [0][0]
. (3.6-164)

The factor i which appears here in the coupling between J0 and K0 leads to imaginary
boundary correlations for the field σ. We have to look back to (2.1-5) right at the
beginning, when we introduced the auxiliary field σ: By the way we introduced it,
the odd correlations of σ are imaginary.

A comment on the status of this integral is in required. The quadratic Gaussian
kernel for J0 is given by the two-point function Gft UV 0

bo . This is a positive definite
function, so the integral is only formally defined. The two-point function for the
boundary terms iK0 is −(Gft UV 0

bo )−1. A possible solution is to substitute J0 → −iJ0.
The J0-path integral is the bulk analog of the σ-path integral in the boundary theory;
so we should not be astonished that it is only a formal device.

15By formally integrating out the nullifier field of the preceding paragraph, one could find this
result as well; however, the formal difficulties arising out of the manipulation of different propagators
etc. are rather confusing.
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There are actually two bulk-to-bulk scalar propagators in the IR fixpoint holographic
theory: For the bulk-to-bulk propagator between vertices, we have to convolute the
bulk-to-boundary propagators with the inverse boundary-to-boundary propagator,

Geff 0
bu = Gft UV 0

bubo (−Gft UV 0
bo )−1Gft UV 0

bobu . (3.6-165)

The bulk-to-bulk propagator between source terms T 0 on the other hand includes
the “direct” propagator which is a part of the Lagrangian; by (3.2-38),

GUV 0
bu + Gft UV 0

bubo (−Gft UV 0
bo )−1Gft UV 0

bobu = GIR 0
bu , (3.6-166)

since the scalar in the UV theory have scaling dimension ∆UV
0 = d− 2 on the lower

branch ∆− and in the IR theory, ∆IR
0 = 2 on the upper branch.

We summarise our results in

Theorem 3.9. The correlation functions of the UV fixpoint holographic theory can
be computed from the semi-classical path integral in the bulk Z[J ][T ] defined in equa-
tion (3.6-162). The domain of the path “integration” is given by the unique solu-
tion (3.6-161) of the free equation of motion (3.6-160) in the bulk (including the
source terms in the bulk and on the boundary); the AdS/CFT correspondence is in-
stalled by (3.6-158).
The correlation functions of the IR fixpoint holographic theory can be computed
from the semi-classical path integral in the bulk Z[K0], s≥2: [Js][T ] defined in equa-
tion (3.6-163). The domain of the path integration ranges over the solutions (3.6-161)
of the free equation of motion (3.6-160) in the bulk, where the variational degrees of
freedom are the boundary source terms for the scalar field. The AdS/CFT corres-
pondence is installed by (3.6-164).

These results are somewhere in the middle between the “classical correspondence”
and the statement of proposition 3.2 on page 65 that the UV fixpoint holographic
theory is a quantum field theory if it is Lagrangian and the 1/N -expansion applies
in the bulk. For a purely classical theory, the interactions should be part of the
equation of motion (3.6-160).

So if one is content with this semi-classical path integral, then the problem of can-
cellation of bulk-to-bulk propagation does not arise. There are axiomatic issues,
however, which we now discuss.

3.6.5 Axiomatic Interpretation

Precluding the question of a Lagrangian strategy, we may ask whether the UV fix-
point holographic bulk theory whose correlations we are instructed to compute by
rules (F) to (Bu) on page 111 is well defined in the axiomatic sense 16. We may

16The notion of “field-theoretic” and “dual” boundary source terms for the bulk fields does not
make sense in this setting as there is no path integral involved, however, we will keep these terms
to differentiate between the propagators which have to be used.
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use the semi-classical path integral described in theorem 3.9 on page 117 to com-
pute these correlations efficiently. A similar analysis must be performed for the IR
fixpoint holographic theory.

A simple set of axioms for the correlation functions (Schwinger functions) of scalar
quantum field theories on Euclidean Anti-de-Sitter space, as well as the meaning
of the Wick rotation for this space, has been given in [13]; these rules correspond
directly to the Osterwalder-Schrader axioms [74, 75] for Euclidean quantum field
theories on flat space.

We shortly relate these axioms for the case of EAdS (we arrange them following [91]).
Let Gn(z1, . . . , zn) denote the Schwinger functions of n scalar fields at zj ∈ EAdS.
By the Osterwalder-Schrader axioms, these functions must fulfill

(OS1) Covariance under the full EAdS group SO(d + 1, 1).

(OS2) Symmetry in the arguments.

(OS3) Analyticity at all non-coinciding points (zj 6= zk); in particular, this implies
that

Gn(I(z1), . . . , I(zn)) = Gn(z1, . . . , zn),

where I is the inversion at the unit sphere (3.1-11).

(OS4) Cluster Property. For any two sets of non-coincident points z′1, . . . z
′
m ∈ EAdS

and z1, . . . zn ∈ EAdS,

lim
α→∞

Gm+n(z′1, . . . , z
′
m, αz1, . . . , αzn) = Gm(z′1, . . . , z

′
m)Gn(z1, . . . zn).

(OS5) Reflection Positivity. Let S (EAdSn) be the space of Schwartz functions on
the n-fold tensor product of EAdS. If f0 ∈ C and, for 1 ≤ m ≤ M , fm ∈
S (EAdSm) has its support in {(z1, . . . , zm) : 1 > (z0

1)
2+z2

1 > · · · > (z0
m)2+z2

m},
then, with the convention G0 = 1,

M
∑

m,n=0

∫

dz′1 · · ·dz′m dz1 · · ·dzn fm(z′1, . . . , z
′
m)fn(z1, . . . , zn)

Gm+n(I(z′m), . . . , I(z′1), z1, . . . , zn) ≥ 0, (3.6-167)

where I is the inversion at the unit sphere (3.1-11). So the meaning of reflection
positivity on EAdS is rather one of “inversion positivity”.

If a Euclidean theory on EAdS does not obey reflection positivity, then after the Wick
rotation, the resulting quantum field theory on AdS does not obey the equivalent
of Wightman positivity for AdS, making the construction of an underlying Hilbert
space impossible [85].

We must demand these axioms to hold for the proposed UV fixpoint holographic
theory; there are some complications because it is a tensor field theory, so the axioms
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must be adapted to test functions and correlations (Schwinger functions) with tensor
indices. There might be positivity problems because the tensor fields are gauge fields
by assumption. But we can already get results if we restrict the examination to the
scalar sector of the bulk theory.

The axioms (OS1) to (OS4) can be checked without much difficulty. Axiom (OS5) is
nontrivial. The most basic test for reflection positivity is of course the case M = 1,
where it leads to the condition: If f ∈ S (EAdS) has its support in {z : 1 >
(z0)2 + z2}, then

0 ≤
∫

dz′ dz f(z′)f(z)G2(I(z′), z) =

∫

dz′ dz f(z′)GUV 0
bu (I(z′), z)f(z). (3.6-168)

Since the scalar propagator GUV 0
bu is positive, we find that for M = 1, reflection

positivity is fulfilled. For M ≥ 2, the test involves the integration of vertices. The
analysis is by no means a formality: The effective description in theorem 3.9 on
page 117 is not a path integral in the usual sense, so the formal arguments of [85]
which guarantee the positivity of a Euclidean theory defined by a path integral are
not applicable.

For the IR theory, the two-point function GIR 0
bu in the bulk is positive, so for M = 1

reflection positivity in the bulk holds at least to the leading order in 1/N . Since the
semi-classical path integral for the IR fixpoint holographic theory is only formally
defined, this theory carries the hidden germ of non-positivity. It is a question whether
this ultimately breaks through (when M > 1) or whether positivity prevails.

We did not complete this analysis, but we want to point out that the bulk theories
can only be regarded as a sensible theories if the Osterwalder-Schrader axioms are
completely fulfilled.

3.6.6 A Free UV Bulk Theory

K.-H. Rehren has suggested 17 that the UV holographic fixpoint theory in the bulk
may be set up as free theory, since the boundary theory is free. The free O(N)
boundary theory contains the massless O(N) vector (conformal scalar) field φ with
scaling dimension d

2
− 1. One could argue that the UV holographic fixpoint theory

contains a single O(N) vector (EAdS scalar) field ϕ with mass 1− d2

4
; by (3.4-120),

this would exactly reproduce the correlations of the boundary field φ if we choose
the propagator on the branch ∆−. The bilinear tensor currents Js on the boundary
would then be realised as bilinears in the bulk field ϕ; and they could possibly be
lifted into the bulk easily by finding corresponding EAdS bilinears in ϕ which reduce
to the currents Js in the limit where the field operators approach the boundary.

For the free theory, this is certainly a very appealing point of view. Could it be
that this theory is equivalent to the UV fixpoint holographic theory which we have
constructed by EAdS-presentation? The simplest test for this hypothesis is to study

17private communication
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the two-point function in the bulk. In the free theory suggested by Rehren, the two-
point function between operators :ϕ2 : in the bulk should be equal (or a a multiple
of) the two-point function of the scalar field T0 of our previously constructed theory.
Since T0 has boundary scaling dimension d−2 and ϕ has boundary scaling dimension
d
2
− 1, we should verify an equality of the sort

(G
d
2
−1, 0

bu )2 ∼ Gd−2, 0
bu .

between the corresponding bulk-to-bulk propagators. We did not determine the
scalar propagator G

d
2
−1, 0; but we have checked that the the square root (Gd−2, 0

bu )1/2

does not solve the wave equation for an EAdS scalar of mass 1 − d2

4
(or any other

mass). So if there is an equivalence, it is not on such simple level; there might
eg be smearing involved. In contrast, for the bulk-to-boundary propagators, the
corresponding identity

(G
d
2
−1, 0

bubo )2 ∼ Gd−2, 0
bubo (3.6-169)

does hold, since their functional form (3.4-112) is very simple. The bulk-to-boundary
propagators of the tensor fields Ts should presumably obey a similar relation (ie one

should be able to construct them from G
d
2
−1, 0

bubo and its derivatives).

The IR fixpoint holographic theory is then still attainable by functional Fourier trans-
form with respect to the boundary source terms J0. However, when we transform
the free bulk theory in this way, we obtain a theory whose interactions are localised
exclusively on the boundary.

This is a general construction: Any conformal boundary theory constructed by per-
turbation around a conformal free field with arbitrary scaling dimension (as advo-
cated in [32, 33]) has an immediate AdS/CFT holographic correspondent, by repre-
senting the (free) conformal boundary fields through boundary correlations of (free)
fields in AdS. The interactions (vertices) are in such an approach always localised
purely on the boundary, and the propagators between the vertices are boundary-to-
boundary propagators.

If we integrate out the bulk vertices of the holographic IR or UV fixpoint theory
which we have constructed by EAdS-presentation, then we obtain a theory which
should be very similar in appearance: All the interactions are again localised on the
boundary. In a sense, while these free bulk theories are situated in EAdS, they do
not realise the AdS/CFT correspondence on the descriptive level, but rather are
“prior” to it.

Why do we insist on obtaining interactions in the bulk? After all, a theory is charac-
terised by its correlations (and not by some method to compute them – one method
is as good as any other). This is the point of view of the algebraic version of the cor-
respondence [83]. The answer lies in the nature of the Maldacena conjecture [68] of
the AdS/CFT correspondence. It can be pointedly formulated as a correspondence
between different descriptions of the same theory in the bulk and on the boundary.
This is to say that we associate different (physical) pictures with the theories which
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we compare (eg ”string theory” vs. ”CFT”). At least as long as we do not have
perfect control over the physical implications of any model we might formulate, the
description will continue to play a role for us. In that sense, the theory with inter-
actions in the bulk is nearer to a string theoretical description in the bulk than the
same theory formulated with interactions on the boundary only.



Chapter 4

Conclusions and Perspective

Since the second part does not pursue further the main line of argument, but rather
follows a sideline and presents many technical computations, we draw the conclusions
right after the main body of the text.

In the present work, we construct a realisation of the AdS/CFT correspondence for
the conformal UV and IR fixpoint theories of the O(N)-symmetric φ4 vector model
in 2 < d < 4 dimensions, in terms of a semi-classical path integral in Euclidean
Anti-de-Sitter space.

The construction is based on the graphical 1/N -expansion of the boundary theories;
by a procedure called “EAdS-presentation”, the graphs of this expansion are trans-
ported step-by-step into Euclidean Anti-de-Sitter space, where they take the form
of covariant integral representations, again with a graphical structure. The corre-
lation functions of the fixpoint theories on the boundary have thus a diagrammatic
expansion in Euclidean Anti-de-Sitter space. By formulating a set of rules govern-
ing the syntax of these diagrams in the bulk which does not refer to the boundary
correlation functions, these integral representations are promoted to a prescription
for computing correlation functions between operators localised in bulk EAdS. In a
second step, we obtain a semi-classical “path integral” in bulk EAdS which produces
precisely those correlations.

This procedure is performed explicitely for the UV fixpoint theory on the boundary;
by “UV/IR duality”, the results are extended also to the IR fixpoint theory.

The bulk holographic theories contain tensor fields of all even spins and vertices of
arbitrary order n, starting at n = 3. The vertices are highly non-local, and in their
structure are suggestive of string theory. The UV fixpoint theory on the boundary is
the free O(N) vector theory, and the corresponding holographic theory in the bulk
has a very simple diagrammatic expansion, where connected correlations contain
at most one vertex and all loop graphs are suppressed. The IR fixpoint theory on
the boundary is interacting, and correspondingly, the bulk theory has a complex
diagrammatic expansion.

The semi-classical character of the bulk path integrals is contained in their path
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integral domain of integration: It ranges only over configurations obeying the free
equations of motion in the bulk, taking into account source terms in the bulk and
on the boundary. Only the scalar field in the IR fixpoint holographic theory has
variational degrees of freedom left since its boundary value is not fixed a priori. This
is interesting because the entropy problem and the question of how the degrees of
freedom on the boundary and in the bulk relate to each other are problems which are
debated hotly, leading back to the works of Bekenstein and Hawking [8, 52] on black
hole entropy which initiated the holographic era. In the semi-classical path integral
as we have found it, the degrees of freedom are “shared” between bulk EAdS and
its conformal boundary; either viewpoint has its own right. This is a very strong
indication that we are on the right track. In the UV fixpoint holographic theory, the
semi-classical “path integral” has no degrees of freedom at all and ranges only over
a single configuration.

In order to complete the construction of the bulk theories, the precise form of the
three-vertices in the bulk must be computed; this project could not be finished within
the confines of this thesis, but we have preliminary results which are getting very
close to completion. To establish the form of the vertices would indeed be novel; in
particular, as the precise form of the vertices does not rely on very specific model
assumptions but rather follows from rather general premises and may be applicable
to similar models.

A detailed, axiomatic characterisation of the Euclidean bulk theories is eminently
important. This involves testing the axiom of reflection positivity. As long as we do
not have clarity on that point, we cannot decide whether the bulk theories do make
sense at all as quantum theories. We must point out that this characterisation will
in the IR case require additional regularisation of the amplitudes, as the boundary
IR theory as we have handled it still contains residual divergences, and these will
naturally appear in the bulk theory as well.

Lastly, there is the question of interpretation of the bulk theories: The AdS/CFT
correspondence as advocated by Maldacena [68] relates a conformal field theory on
the boundary to a bulk theory containing gravity; so do the bulk theories we have
constructed bear some relation to gravity? Certainly, the UV fixpoint holographic
theory is a very plain theory; we have discussed briefly a possibility how the UV
fixpoint holographic bulk theory might be related explicitly to a free bulk theory. In
the best case, it will be a sort of “free” field theory on a gravity background. There
are some rudimentary interactions between the various tensor fields, in particular all
fields are coupled to the spin-2 tensor field, which might model a simple interaction
with gravitons; so this is not completely impossible. On the other hand, from the
point of view of Rehren duality [83], there is no immediate reason why the bulk
theories have to bear any resemblance to gravity. The question has to remain open
for the time being, until a detailed investigation into the phenomenology of the bulk
theories is made.

The construction of the bulk theories in this thesis has relied heavily on the particular
structure of the O(N)-symmetric φ4 vector model on the boundary. A generalisation
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of the results might aim to include also boundary operators which are not in the O(N)
singlet sector. Ultimately, this leads to the question whether the methods used in this
thesis are applicable to the full Yang-Mills theory with gauge group O(N) (at least
pure Yang-Mills, without coupled fermions). This construction faces the difficulty
that the 1/N -expansion in this case is very complex already on the boundary; in
the double-line notation of t’Hooft [94], it is a genus expansion. The resummation
which could be performed comfortably in the O(N)-symmetric φ4 vector model is
seemingly impossible. So we do not see how the simple method of EAdS-presentation
would be applied.

The significance of this current work from my personal point of view lies in the
fact that for the specific perturbative model which I have considered, the AdS/CFT
correspondence is filled with life; and since the determination of the vertices is only
a small step away, we can attack a host of challenging questions which are relevant
for the AdS/CFT concept as a whole, in this particular model.



Part II

Technical Supplement:
Schwinger Parametrisation with

Constraints
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The Schwinger parametrisation is a common technique in perturbative Euclidean
quantum field theory to compute Feynman amplitudes. It is based on the close
connection between Green’s functions of the Laplace operator and the heat kernel,
which is a solution of the hyperbolic partial differential heat equation. The “time”
parameter in this equation is a variable which is introduced artificially.

In particular on curved spaces, this method is very popular, as the heat kernel can
be expanded systematically in the local curvature, and already the low-order terms
will yield very good approximations to the Green’s function [100]. One advantage of
this method is that the asymptotic behaviour of the heat kernel is very well known;
so boundary value problems are under very good control.

In this chapter we want to discuss the Schwinger parametrisation of simple quan-
tum field systems under the assumption of additional constraints on the fields. Such
constraints arise naturally in the AdS/CFT correspondence where the dependence
of the partition function of a quantum field on anti-de Sitter space is studied as a
functional of its boundary values at infinity. The type of constraint which applies
in this system is actually very subtle: Because the expectation of the field operator
vanishes even in the unconstrained case when the localisation of the field operator
approaches conformal infinity, the constraints have to be put on suitably scaled ex-
pectation values. While this is no disaster, it shows that the concept of a constraint
is a very broad one. – In the path integral approach, where the fields are varied over a
family of possible configurations, constraints are linear functionals, evaluating these
field configurations. The effect of these constraints on the Green’s functions (propa-
gators) of the quantum fields can be modelled by appropriate boundary conditions.
The same is true for the heat kernel which underlies the Schwinger parametrisation.

The constraints realised through linear maps have not always to equal zero. In some
cases (including the mentioned EAdS case) we might want to assign them a par-
ticular value. This is equivalent to demanding that the fields are having prescribed
boundary values; in the discussion of the holographic conjecture in the preceding
chapters, this has been termed the “dual prescription”. In perturbative calculations,
these boundary values will couple to the Feynman graphs via the bulk-to-boundary
(or boundary-to-bulk) propagators. These again can be found as solutions of cer-
tain partial differential equations with the appropriate boundary condition. Is there
something like a Schwinger representation for these kernels? After all, they are maps
from the space of possible boundary values into the space of functions over the mani-
fold supporting the theory. When the Schwinger kernel is interpreted as the solution
of the heat equation, we might make the educated guess that the “bulk-to-boundary
Schwinger kernel” describes absorption at the boundary – the localisation region of
the constraint. We will see that there are conditions when this point of view can be
supported; in other cases (like Euclidean AdS) it will fail, as the boundary is simply
“too far away” from any region of interest. We will show that by a local rescaling
of fields in the EAdS setting, the boundary can be “brought into reach” and there
does exist a Schwinger kernel for the bulk-to-boundary propagator.

Because handling general constraints involves much dealing with distributions, we
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will perform all calculations in a Hilbert space setting which is very well adapted
to the problem; however, the usual spaces L2(M, g) and S (M, g) will not figure
prominently. This will make some formulae look quite unusual. However, we feel
that turning away from well trodden paths is justified by the claims of the problem
at hand, and accordingly the results. We have tried to distill a set of abstract
assumptions characterising the important spaces and their relations; the results will
the be obtained by formal manipulation of these basic assumptions. In this way, a
broad set of constraint situations is covered.

The plan of the second part is as follows: In chapter 5, we formulate the path
integral under constraints, and develop a formalism which tells us how to handle the
Schwinger parametrisation under these constraints. This involves the simple example
of a massive scalar φ(x) field on the real line, restricted by the constraint φ(0) = φ0.
In chapter 6, we discuss the application to scalar fields on EAdS.

Remark. The path integrals which we consider in this second part fall exclusively
under the notion of “Neumann path integrals” in the language of section 3.2.2.
However, the formalism which will be developed in chapter 5 should be general
enough to be applicable also the Dirichlet path integral; we have not tried this,
though.



Chapter 5

Path Integrals with Constraints

5.1 Perturbation Theory on Curved Euclidean Spaces

As our main application will be a field theory on anti-de Sitter space, it makes sense
to work on curved spaces right from the beginning. In this section we will introduce
perturbation theory on curved spaces via the path integral. The developments will
be largely formal. Note that there are only few examples of curved spaces where
it has been shown that Wick rotation makes sense, notably the spaces of constant
curvature.

We begin with a Lagrangian field theory of a single scalar field φ on a curved Eu-
clidean space M(g) with d dimensions and metric gµν . To illustrate the principle, we
include a φn-interaction. The action is 1

S[φ] =

∫

ddx
√

g

{

1

2
∂µφ∂µφ +

1

2
m2φ2 +

cn

n!
φn

}

,

and we are computing the path integral

Z [J ] =

∫

D(φ) exp−1

~
[S[φ] + 〈J, φ〉g] ,

with 〈J, φ〉g =
∫

ddx
√

g(x)J(x)φ(x). The sources J are taken from some appropriate
test function space F (M), and the fields φ are living in the dual space (path space)
F ′(M) [43]. For this reason, the path integral can only be a formal device.

The first step leading to the Feynman expansion is integration by parts of the kinetic
term, yielding

∫

ddx
√

g∂µφ∂µφ = −
∫

ddx
√

gφ�
gφ,

where �
g = 1√

g
∂µ
√

g∂µ is the d’Alembertian on curved manifolds. The Feynman

1m has units [L−1].
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expansion is a Taylor expansion in the coupling constant cn:

Z [J ] =

∫

D(φ)
∞
∑

j=0

1

j!

(

−cn

~

∫

ddx
√

g
φn

n!

)j

exp−1

~

∫

ddx
√

g

{

1

2
φ(m2 −�

g)φ + Jφ

}

=

∞
∑

j=0

1

j!

(

−cn

~

∫

ddx

√
g

n!

(

− ~√
g

∂

∂J

)n)j ∫

D(φ) exp−1

~

∫

ddx
√

g

{

1

2
φ(m2 −�

g)φ + Jφ

}

=Z [0]

∞
∑

j=0

1

j!

(

−cn

~

∫

ddx

√
g

n!

(

− ~√
g

∂

∂J

)n)j

exp
1

~

∫

ddx
√

g

{

1

2
J(m2 −�

g)−1J

}

,

(5.1-1)

where the normalisation is the usual determinant

Z [0] =
∥

∥

∥

m2 −�
g

2π~

∥

∥

∥

−1/2

g
.

This leaves us with the following Feynman rules in coordinate space:

• Propagators G are given by the integral kernel of

~

m2 −�g
,

so they fulfill the differential equation

(m2 −�
g)Π =

~√
g
δ(M,g).

Here, δ(M,g) = g−1/2 δ(d) is the Dirac delta distribution appropriate to the man-
ifold M.

• Each vertex carries a coordinate x and corresponds to

−cn

~

∫

ddx
√

g.

• Source terms are coupled to the ends of propagators and carry

−1

~

∫

ddx
√

gJ.

• There are the usual symmetry factors Sym−1 associated to overcounting of
diagrams.

As a rule of thumb, all prefactors are exactly as they appear in the exponential of the
path integral, with the exception of the propagator which gets an additional minus
sign (and therefore is positive).
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5.2 Schwinger Parametrisation of Propagator

In order to determine explicitly the Green’s function, we have to find the inverse of
the operator (m2−�

g). We can always try to expand in (generalised) eigenfunctions;
as it is self-adjoint by assumption, these will be orthogonal and we can use them as
a basis. An example is flat space, where the eigenfunctions are plane waves and we
are finally led to momentum space loop integrals. The inversion can be performed
by the Schwinger integral

1

m2 −�g
=

∫

dα exp−α(m2 −�
g). (5.2-2)

The integral kernel K̃α(x, y) of the operator exp−α(m2 − �
g) is the heat kernel at

“Schwinger time” α > 0. It fulfills the differential equation

∂

∂α
K̃α(x, y) = −(m2 −�

g)xK̃α(x, y). (5.2-3)

For α = 0, we find the initial condition

K̃0(x, y) = g−1/2δ(d)(x, y) (5.2-4)

(g−1/2 appears due to the ever present
∫

ddx
√

g in integrations), so that
∫

ddy
√

g(y)K̃0(x, y)φ(y) = φ(x).

We assume that K̃α(x, y) is a smooth function for α > 0. If we interpret K̃α(x, y) as
a density at x, then we find for the integral

Ṽα(y) =

∫

ddx
√

g(x)K̃α(x, y)

the differential equation

∂

∂α
Ṽα(y) = −

∫

ddx
√

g(x)(m2 −�
g
x)K̃α(x, y) = −m2Ṽα(y),

using again partial integration. With the initial condition Ṽ0(y) = 1 from (5.2-4) the
solution is

Ṽα(y) = exp−m2α.

The mass does not play a very interesting role in the heat kernel: If Kα(x, y) is the
heat kernel for m = 0, then we can always obtain

K̃α(x, y) = e−m2αKα(x, y).

We will therefore concentrate on Kα(x, y). Very few heat kernels are actually known
analytically. In flat space, the heat kernel is given by the appropriate Gaussian kernel
for the Wiener measure. In curved space, it is approximately so for small times and
neighbourhoods.
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5.3 Implementing Constraints

So far, we have not made any statements about the boundary values of the fields. In
flat space, this seems hardly necessary indeed: The boundary is infinitely far away,
and the conditions at “infinity” are irrelevant to what is happening in the region of
observation. There are however situations where a “boundary” can be reached in a
finite time and it makes sense to prescribe boundary values for the fields [42].

Assume that a constraint on field configurations φ is given in the form

Bφ = f, (5.3-5)

where B is some linear operator mapping the field configuration space into the “con-
straint space” and f is a function giving the prescribed value of the constraint. For
example, if the manifold M had a boundary, then B could be the procedure of taking
the limit of the field as we approach the boundary, and f would be some function on
the boundary prescribing the limiting values. In the operator language the constraint
takes the form

B〈φ . . . 〉 = f〈. . . 〉, (5.3-6)

where the dots indicate any other operators, as long as their support stays away from
the support of Bφ, and we compute the expectation in some state.

Loosely speaking, in the path integral we want to include a factor δ(Bφ− f), where
δ is an appropriate Dirac distribution. Equation (5.3-5) is quite problematic: If we
take some dual space F (M)′ as configuration space (eg F (M) = S (M) the Schwartz
space), then an operation like “taking the boundary value” is clearly impossible. We
will therefore make a very strong assumption: Writing the free quadratic part of the
Lagrangian as a sesquilinear form Π−1(φ, φ), we assume that the fields are living in a
Hilbert space φ ∈H with a scalar product defined by this sesquilinear form. Field
configurations falling into this category have to be differentiable almost everywhere,
and so a reasonable boundary value can be expected to exist – although it cannot
be expected to be very smooth or have decent behaviour. We take the view that
path integration is a formal development; the formal result of the path integration
will be taken as a definition of the covariance under constraints on a curved space.
Introducing the abbreviation 〈φ〉g =

∫

ddx
√

g φ, the sesquilinear form will also be
written

Π−1(φ, φ) = 〈φ∗(m2 −�
g)φ〉g.

To implement the δ-distribution, we follow the procedure indicated in [32] and in-
troduce a path integral to enforce the constraint. We treat the boundary projection
as a function C ∋ c 7→ (Bφ)(c) on the constraint manifold C. C is the equiva-
lent of a “boundary manifold” where the constraints are localised. The constraint
Bφ(c) = f(c) would then be enforced by the path integral

∫

D(σ) exp
i

~
σ[Bφ− f ], (5.3-7)
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where σ is integrated over the elements of an appropriate dual space to the space of
constraint functions on the boundary. Before we can formulate the constrained path
integral, we must formalise these concepts.

Definitions

Definition (Configuration Space and Boundary Space). We assume that Π−1 is a
positive, symmetric sesquilinear form (anti-linear in the first argument). Define the
scalar product

〈f, h〉 ≡ Π−1(f, h) (5.3-8)

on its domain Q(Π−1); by completion, we obtain the (real or complex) Hilbert space
H . Π−1 acts locally like the differential quadratic form 〈f ∗(m2−�

g)h〉g. We expect
that H contains all vectors of interest to the theory which may possibly be subject
to the operator Π−1 (in general, it is not a subspace of L2(M, g)). We denote the
adjoint of an operator A in this Hilbert space by A†.

The “boundary space” or “constraint space” B is a Hilbert space; the “constraint
map” B : H → B is a partial isometry with domain DomB = Hbo, range RanB =
B and kernel KerB = Hbu. It implies the orthogonal decomposition H = Hbo ⊕
Hbu. We define the self-adjoint projection Pbu : H →Hbu ⊂H .

We introduce the space B because many authors like to view the boundary as sep-
arate space in its own right.

Definition (Dual Structure [101]). Let H ′ be the dual space of H . As H is a
Hilbert space, H ′ is a Hilbert space isomorphic to H ; still, as the scalar product
contains derivatives, it will make things easier to retain the dual space as a separate
entity. The Banach space product between vectors f ∈H and dual vectors g ∈H ′

is denoted 〈f, g〉H or 〈g, f〉H (these are anti-linear in the left component and linear
in the right component). Note that due to the sesquilinearity of the product 〈, 〉H ,
the Banach space dual is anti-linear: (zA)′ = zA′, z ∈ C, A : H → H . By the
Riesz theorem, every functional f ∈ H ′ corresponds to a vector “Π f” in H . The
scalar product in H ′ is

〈f, g〉′ = 〈Π f, Π g〉, f, g ∈H
′

and the adjoint A†′ . The natural mappings

Π : H ′ → H

Π−1 : H → H
′

are isometric isomorphisms. We overload the symbol Π−1 here; it denotes the original
sesquilinear form (5.3-8) as well as the operator.

Under Π−1, the decomposition of H is mapped on the decomposition H ′ = H ′
bu ⊕

H ′
bo = Π−1Hbu ⊕ Π−1Hbo. The associated self-adjoint projection in H ′ is P′

bu :
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H ′ →H ′
bu ⊂H ′; it is the (Banach space!) dual of Pbu. The ranges and kernels of

the projections annihilate each other ”crosswise”:

〈H ′
bo, Hbu〉H = 0 = 〈H ′

bu, Hbo〉H . (5.3-9)

We denote the Banach space product on the boundary by 〈b, b′〉B, b ∈ B, b′ ∈ B′

(anti-linear in the first entry). The constraint map B has a (Banach space) dual
B′ : B′ → H ′

bo ⊂ H ′ which is an inclusion fulfilling 〈Bf, b′〉B = 〈f, B′b′〉H , f ∈
H , b′ ∈ B′.

In complete parallel to the operator Π on the bulk, we define

Πbo = BΠB′ : B
′ → B (5.3-10)

for the boundary. We demand that Πbo is invertible. The scalar product on B will
be denoted

〈fB, gB〉 = 〈fB, Π−1
bo gB〉B = 〈(1− Pbu)f, (1− Pbu)g〉

where fB = Bf ∈ B, gB = Bg ∈ B, f, g ∈ H . The dual boundary B′ has a
natural scalar product 〈b′, c′〉′ ≡ 〈B′b′, B′c′〉′ = 〈Πbob

′, c′〉B, where b′, c′ ∈ B′.

The following diagram visualises the spaces and maps relevant in the sequel:

H ′

Π

��

Πbobu

��
=

P′
bu ,,

H ′
bu ⊕

Πbu

��

H ′
bo B′∼=

B′
oo

Πbo

��
Dbu ⊂ D

ı

>>}}}}}}}}
⊂ H =

Pbu

22 Hbu ⊕ Hbo

∼=
B

// B

Πbubo

YY DC⊃


``BBBBBBBB

By simple algebra, one finds that the Hilbert space adjoint A† of an operator A :
H →H is related to the Banach space dual A′ : H ′ →H ′ by

A† = ΠA′Π−1.

Likewise, A†′ = Π−1A′Π for A : H ′ →H ′. Finally, there is the algebraic result

Pbu = 1− Π B′ (B Π B′)
−1

B, (5.3-11)

P′
bu = 1− B′ (B Π B′)

−1
B Π.

The local interpretation is supplied by the following

Assumption 5.1 (Local Interpretation). We assume that there exists an interpre-
tation of H as a set of g-measurable functions. So if f, g ∈H ∩ L2(M, g), then we
know that the scalar product

〈f, h〉g =

∫

M

dx
√

g f(x)∗h(x)
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is finite.

The local structure is implemented by a self-dual operator (in the Banach space
sense) ı : D ⊂H →H ′ with the defining property

〈ıf, g〉H := 〈f, g〉g, f, g ∈ D. (5.3-12)

The scalar product 〈, 〉g is well-defined only for f, g ∈ L2(M, g), requiring D ⊂
L2(M, g). It is assumed to be non-degenerate on D; ie 〈d, d〉g = 0 implies d = 0 in
D 2. We define also the subspace Dbu = D ∩ Hbu.

Due to the non-degeneracy of 〈, 〉g on D, the map ı is injective. The definition of ı
implies that Πı and ıΠ are self-adjoint operators in the Hilbert space H resp. H ′.
We enlarge the definition of the g-scalar product by setting

〈h, d〉g := 〈h, ıd〉H , h ∈H , d ∈ D. (5.3-13)

We need a technical

Assumption 5.2. We assume that ıDbu ∩H ′
bo = {0}, and that ıDbu +H ′

bo is dense
in H ′. Finally, Dbu is supposed to be dense in Hbu and P′

buı|Dbu
: Dbu ⊂ Hbu →

H ′
bu self-dual in the restriction to the bulk space.

To justify the first assumption, suppose that there exists f ∈ Dbu such that ıf ∈H ′
bo.

Then, for all h ∈ Hbu, 〈h, f〉g = 〈h, ıf〉H = 0; so f is weakly localised purely “on
the boundary”, while at the same time, it is an element of Dbu, so it has a vanishing
boundary value Bf = 0 - a rather unpleasant situation. The last assumption says
that that inclusion with Dirichlet boundary conditions is self-dual.

Remark. In an L2(M, g)-setting, we would have to solve the analog task of giving a
self-adjoint extension for the unbounded operator (m2 −�

g) and its inverse.

In order to complete the picture, we have to give a scheme for the

Definition (Local Interpretation of Boundary). We assume that there exists a
“boundary manifold” C with a metric ∂g. The vectors in the boundary space B

have an interpretation as ∂g-measurable functions over the manifold C. This implies
that the sesquilinear scalar product

〈f, h〉∂g =

∫

C

dx
√

∂g f(x)∗h(x)

makes sense for f, h ∈ B ∩ L2(C, ∂g).

The local structure is implemented by a self-dual operator (in the Banach space
sense)  : DC ⊂ B → B′ with the defining property

〈f, g〉B := 〈f, g〉∂g, f, g ∈ DC. (5.3-14)

2The meaning of this assumption lies in the fact that we assume the Hilbert space H norm
always vanishes for functions which are null in the L2(M, g)-sense
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The scalar product 〈, 〉∂g is well-defined only for f, g ∈ L2(C, ∂g), requiring DC ⊂
L2(C, ∂g). It is assumed to be non-degenerate on DC; ie 〈d, d〉∂g = 0 implies d = 0
in DC.

Due to the non-degeneracy of 〈, 〉∂g on DC, the map  is injective. The definition of
 implies that Πbo and Πbo are self-adjoint operators in the Hilbert space B resp.
B′. We enlarge the definition of the ∂g-scalar product by setting

〈b, d〉∂g := 〈b, d〉B, b ∈ B, d ∈ DC. (5.3-15)

There are no assumptions about a natural relationship between the local interpreta-
tion of the bulk functions and of the boundary functions.

Formulation of constrained path integral

Written in terms of the spaces just introduced, the path integral (5.1-1) with the δ
given by (5.3-7) inserted is

Zφ{f}[J ] =
∞
∑

j=0

1

j!

(

−cn

~

1

n!

〈(

− ~√
g

∂

∂J

)n〉

g

)j
∫

ℜB′

D(σ)

∫

ℜH

D(φ)

exp
1

~

{

−1

2
Π−1(φ, φ)− 〈J, φ〉g + i〈σ, Bφ− f〉B

}

. (5.3-16)

Although we are only working with real functions, we will keep a complex notation
and restrict ourselves to real spaces only in the end; we assume J ∈ D real and
f ∈ B real.

The Hilbert space Gaussian integral formula we want to apply is

∫

ℜH

D(φ) exp
1

~

(

−1

2
〈φ, φ〉 − 〈h′, φ〉H

)

= Z [0] exp
1

2~
〈h′, h′〉′, h′ ∈H

′.

(5.3-17)
This is because the field φ is real. Under the condition J ∈ D real, the L2(M, g)
scalar product in (5.3-16) can be rewritten using the inclusion ı, and we find

Zφ{f}[J ] =

∞
∑

j=0

(. . . )j

j!

∫

ℜB′

D(σ)

∫

ℜH

D(φ) exp
1

~

{

−1

2
〈φ, φ〉 − 〈ıJ + iB′σ, φ〉H − i〈σ, f〉B

}

=
∞
∑

j=0

(. . . )j

j!
Z [0]

∫

ℜB′

D(σ) exp
1

~

{

1

2
〈ıJ + iB′σ, ıJ − iB′σ〉′ − i〈σ, f〉B

}

.

The Gaussian integral which will help us to integrate σ is

Z [0]

∫

ℜB′

D(σ) exp
1

~

(

−1

2
〈σ, σ〉′ − i〈σ, f〉B

)

= Z̃ [0] exp− 1

2~
〈f, f〉.
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Since f ∈ B is assumed to be real, the generating function finally reads

Zφ{f}[J ] =Z̃ [0]

∞
∑

j=0

(. . . )j

j!
exp

1

2~
{〈ıJ, ıJ〉′ − 〈f + B Π ıJ, f + B Π ıJ〉}

≡Z̃ [0]

∞
∑

j=0

1

j!

(

−cn

~

1

n!

〈(

− ~√
g

∂

∂J

)n〉

g

)j

(5.3-18)

exp
1

~

{

1

2
〈J, ΠbuJ〉g − 〈J, Πbubof〉g − 〈f, Π−1

bo f〉B
}

.

We read off the modified Feynman rules of the constrained theory 3:

• The bulk-to-bulk propagator Gbu : H →H is the integral kernel (with respect
to the measure

√
g dx ) of

Gbu = ~ Πbuı = ~

(

Π − Π B′ (B Π B′)
−1

B Π
)

ı. (5.3-19)

The propagator does not depend on the value f of the constraints; it depends
only on the type of constraint, ie on the operator B. Obviously

Πbu = PbuΠ = ΠP′
bu = PbuΠP′

bu.

• The boundary-to-bulk operator Πbubo : B →H is given by

Πbubo = Π B′ (B Π B′)
−1

=
(

B|
Hbo

)−1
(5.3-20)

(The boundary space is supposed to act from the right). The associated pro-
pagator can only be constructed if we specify the measure used for boundary
localisation. The bulk-to-boundary operator Πbobu : H ′ → B′ is given by the
Banach space dual

Πbobu = Π′
bubo = (B Π B′)

−1
B Π = (B′)−1(1− P′

bu). (5.3-21)

• The term quadratic in f takes role of a boundary-to-boundary propagator; at
the same time it defines a “hangover” Lagrangian. By integrating f , the path
integral without boundary conditions is recovered. Therefore, it is adequate to
introduce the operator Π−1

bo : B → B′ defining the boundary Lagrangian

Π−1
bo = (B Π B′)

−1
. (5.3-22)

3 We strictly distinguish abstract operators (or quadratic forms) Π and their respective kernels;
for an operator Π : H ′ →H , the associated kernel is

Π(x, y) = 〈δx, Πıδy〉g = 〈δx, ıΠıδy〉H ,

where δx is the Dirac distribution of the underlying measure. Propagators G contain an additional
factor ~.
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At the same time, Π−1
bo is the kernel of the scalar product in the space B, just

as Π−1 is in the full space H , and acts as boundary-to-boundary propagator
in the generating function (5.3-18). Note that there appears an additional sign
in the boundary-to-boundary correlations.

• Each vertex carries a coordinate x and corresponds to

−cn

~

∫

ddx
√

g.

• Source terms are coupled to the bulk ends of propagators and carry

−1

~

∫

ddx
√

gJ.

• Constraint terms are coupled to the boundary ends of propagators and carry

1

~
|f〉

B
.

• There are the usual symmetry factors Sym−1 associated to overcounting of
diagrams.

We comment shortly on the condition that the space of field configurations is a
Hilbert space. Usually, it is assumed that the field configurations are living in the
dual of a nuclear space, like the Schwartz space. However, we take the simplistic
view that the (unconstrained) Gaussian path integral is defined in a natural manner
on the Hilbert space H . After the path integral is performed, the Hilbert space
H ′ accommodates the sources ıJ smearing the operators. Now the source terms
are usually restricted to be Schwartz functions or similar test function spaces. As
long as we consider (unconstrained) free fields, our treatment yields the maximal
space of source functions; given two sources f, g ∈ H ′, their correlation 〈f, g〉′ will
be finite by definition. For interacting theories, the space H ′ is probably too large;
to be able to integrate the vertices, we have pulled back the sources by ı onto the
space H (they could in fact be implemented without pulling back, by giving up the
claim that they should be coupled to the propagators by an L2(M, g)-integral). This
space is presumably still too large. However, this is not a problem: From the point
of view of perturbation theory, the “proper” test function space is only attainable
perturbatively – and we do not lose much by making it slightly too large at the
outset.

”Dual” and ”field theoretic” prescription

We want to compare the path integral with fixed boundary values developed so far
(”dual prescription” according to [32]) to the ”usual” unconstrained path integral
with a linear boundary source term 〈φ, B′k′〉H , k′ ∈ B′ in the Lagrangian replacing
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the constraints (“field theoretic prescription”). This is equivalent to using the full
propagator Π; alternatively, we could imagine integrating over all possible boundary
configurations, ie to treat the boundary configurations f in (5.3-18) as dynamical
fields. The duality is captured by the relation

Π = Πbu + ΠbuboΠboΠbobu. (5.3-23)

The unconstrained propagation splits up into a part freely crossing through the bulk,
and another part propagating along the boundary for some time (with a propagator
determined by the ”boundary Lagrangian” Π−1

bo ).

Adding a source term 〈Bφ, k′〉B with k′ ∈ B′ to the action in the path integral
(5.3-16), we find after performing the integrations that sources k′ on the boundary
are coupled to the the propagator Π by

ΠB′k′ = ΠbuboΠbok
′ ≡ Πft

bubok
′.

Using the lift operation  we can represent the boundary source term as k′ = k,
k ∈ B. The boundary-to-boundary propagator is given by

Πbo = BΠB′.

This is the inverse of the quadratic kernel of the boundary Lagrangian (5.3-22). Note
that there exists an inverse to the relation (5.3-23), describing the transition from
the field theoretic bulk-to-bulk propagators to the ”dual” one:

Πbu = Π + i2Πft
buboΠ

−1
bo Πft

bobu. (5.3-24)

We need the factor i2, it can be realised as a coupling between the propagators.

5.4 A Simple Example

Consider a simple example illustrating nicely the application of constraints: A free
massive scalar field in d = 1 dimensions (on the real line) with the constraint

φ(0) = φ0.

Of course, this is a flat space theory, but it serves the purpose even better as the
results will not be shrouded by technicalities. The sesquilinear form defining the
Lagrangian is

Π−1(f, g) =

∫

dx f(x)∗(m2 − ∂2
x)g(x).

We will take H to be real. We define H as the domain of selfadjointness of the
Klein-Gordon operator with vanishing boundary conditions at infinity. Vectors in H ′

may not necessarily be representable as functions (rather as distributions); however,
we will write them as if they were functions. The unconstrained bulk operator Π is

H
′ ∋ f 7→ (Πf)(y) = 〈x 7→ e−m|x−y|

2m
, f〉H =

∫

dx f(x)
e−m|x−y|

2m
.
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Applying the Klein-Gordon operator Π−1 on this function, one reobtains f . If con-
tracted with g ∈ H ′, this will be the H ′ scalar product. The scalar products are
most easily implemented in wave number space; they are

〈f, g〉 =
∫

dk (m2 + k2)f̂(−k)ĝ(k), 〈f, g〉′ =

∫

dk
f̂(−k)ĝ(k)

m2 + k2
.

The space H = W1(R) is the first Sobolev space; it contains functions whose first
derivative may be discontinuous (but nothing worse than that). These functions will
be bounded, moreover.

We comment shortly on the inclusion ı. The interpretation of H as function space is
automatic by construction; it is in fact a subspace of L2(R) (easy to see in the Fourier
domain). At the same time, H ′ ⊃ L2(R). The inclusion ı : H →֒ H ′ is verbatim
when vectors are written as functions, it is a bounded operator. This implies D = H .
In view of this remark, we may thus say briefly that Π(x, y) = e−m|x−y|

2m
.

Obviously, the constraint operator has to act as

Bf = f(0), f ∈H .

It maps into B = R, with dual B′ = R. The easiest way to proceed is by constructing

(B′b′)(x) = b′δ(x), b′ ∈ R.

This implies the dual null space H ′
bo = Ran(B′) = Rδ(x). From that, we get the

null space Hbo = ΠH ′
bo = Re−m|x| and Hbu = Dbu = {f ∈ H | 〈H ′

bo, f〉H = 0} =

{f ∈ H | f(0) = 0} =
◦

W 1(R), a Sobolev space with internal boundary condition,
indicated by the circle [104].

We investigate the boundary space. From

B Π f =

∫

dx f(x)
e−m|x|

2m

for f ∈H ′, obtain

Π−1
bo = (B Π B′)

−1
= (B Π ◦x δ(x))−1 =

(
∫

dx δ(x)
e−m|x|

2m

)−1

= 2m

which is the positive kernel of the quadratic boundary Lagrangian. The action of
the projections (5.3-11) turns out to be

(P′
buf)(x) =

(

f − B′ (B Π B′)
−1

B Π f
)

(x)

=f(x)− δ(x)

∫

dy e−m|y|f(y),

(Pbuf)(x) =f(x)− e−m|x|f(0).
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The kernel of the boundary-to-bulk propagation operator (5.3-20) is

Πbubo(x) =
(

B|
Hbo

)−1
= e−m|x|.

The bulk-to-bulk propagator by (5.3-19) is

Gbu(x, y) = ~
e−m|x−y|

2m
− ~e−m|x|e

−m|y|

2m
= ~

e−m|x−y| − e−m(|x|+|y|)

2m
≥ 0.

We can see that
Gbu(x, y) = 0 if x · y ≤ 0.

There is no propagation across the origin where the field is pinned. The vacuum
expectation is

〈φ(x)〉 = Πbubo(x)φ0 = e−m|x|φ0. (5.4-25)

Near the origin, the field is pinned to φ0 as expected; there is a spatial relaxation on
the scale of the inverse mass. The two-point function is

〈φ(x)φ(y)〉 =〈φ(x)〉〈φ(y)〉+ 〈φ(x)φ(y)〉c

=e−m(x+y)φ2
0 + ~

e−my sinh mx

m
, 0 ≤ x ≤ y.

The second part is the correlation of fluctuations. As x→ 0, the fluctuations of φ(x)
are obviously suppressed.

There is an interesting interpretation of the propagator Gbu(x, y): Consider the
case where x, y > 0. The first summand proportional exp−m|x − y| is the pro-
pagator without the pinning condition at 0. The second summand proportional
− exp−m(|x| + |y|) can be interpreted as propagating from x to 0, and from 0 to
y, with a reflection at 0. The reflection brings a factor −1 into the amplitude. This
indicates an absorbing boundary.

For sake of completeness, we touch on the local structure of the boundary which is
simple in this case. A “natural” metric structure ∂g on the boundary would be given
by

〈f, g〉∂g = fg, f, g ∈ B.

Compare this to the induced Hilbert space structure, which yields

〈f, g〉B = 〈Π−1
bo f, g〉C = 2mfg.

The boundary inclusion is trivially  : B = R ∋ f 7→ f ∈ R = B′.

5.5 Schwinger Parametrisation with Constraints

In the case without boundary conditions, we had for the Schwinger parametrisation
the formula

Π =

∫ ∞

0

dα exp−α(m2 −�
g).
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As an operator equation in L2(Rd), this is obviously true for analytic vectors of
m2 −�

g.

This expression must be modified accordingly if it should fit into the constraint
formalism based in the dual pair of spaces H /H ′. Π−1 and Π−1

bu are maps from H

into H ′, so it does not make sense to exponentiate them. This problem of domains
can be overcome by inserting an inclusion ı at a suitable position; we want to give
meaning to the expression

Πbuı =

∫ ∞

0

dα exp−α (Πbuı)
−1.

Because we are in the first place interested in the bulk-to-bulk propagator, we will
consider the restricted operator Πbuı|Dbu

. Subsequently, we suggest an operator
serving as inverse for (Πbuı|Dbu

)−1, show that it is self-adjoint and apply functional
calculus to do the Schwinger integral.

Consider the operator S fulfilling

S : ıDbu + H
′

bo →Dbu (5.5-26)

ıdbu + h′
bo 7→dbu.

It is easy to see that S is well defined by the assumption ıDbu ∩H ′
bo = {0}. In

particular, S fulfills

SP′
buıdbu =dbu, dbu ∈ Dbu. (5.5-27)

〈Sh′, dbu〉g =〈h′, dbu〉H . h′ ∈ Dom(S), dbu ∈ Dbu. (5.5-28)

The operator ıS : ıDbu + H ′
bo → ıDbu is idempotent. It is not a projection operator

in H ′ in general, as it need not be self-adjoint: The kernel Ker(ıS) = H ′
bo and the

range Ran(ıS) = ıDbu are orthogonal only if ıDbu ⊂ H ′
bu (which is highly exotic).

In fact, it may be even unbounded. This operator will play an important role later
on.

Lemma 5.3. The inverse (Πbuı|Dbu
)−1 ⊂ SΠ−1.

Proof. For dbu ∈ Dbu,

(SΠ−1) Πbuıdbu = (SΠ−1) Π P′
bu ıdbu = S P′

buıdbu = dbu,

so SΠ−1 is a proper left inverse of Πbuı|Dbu
. It is easy to show that if f ∈ Ran(Πbuı|Dbu

),
then f ∈Hbu and Π−1f ∈ Dom(S). For such f ,

Πbuı(SΠ−1)f = PbuΠ (Π−1f + h′
bo) = Pbu(f + Π h′

bo) = f

where h′
bo ∈ H ′

bo such that Π−1f + h′
bo ∈ ıDbu = Ran(ı); so SΠ−1 is also a proper

right inverse of Πbuı|Dbu
.
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Self-adjointness of SΠ−1. In the following we examine SΠ−1 as operator with
domain

Dom(SΠ−1) = Π Dom(S) = ΠıDbu + Hbo.

Proposition 5.4. SΠ−1 is a self-adjoint, positive operator in the Hilbert space H .

Proof. The density is clear by the density of Π−1 Dom(SΠ−1) = ıDbu + H ′
bo ⊂ H ′,

and the fact that Π is an isomorphism. Let d, d̃ ∈ Dbu and n, ñ ∈Hbo. Then

〈Πıd + n, SΠ−1(Πıd̃ + ñ)〉 = 〈Πıd + n, d̃〉 = 〈Πıd, d̃〉
= 〈ıd, d̃〉H = 〈d, d̃〉g = 〈SΠ−1(Πıd + n), Πıd̃ + ñ〉,

which proves the symmetry and positivity (by the positivity of L2(M, g)).

The self-adjointness is shown by the (Banach space) self-duality of S. We compute
directly that the dual S′ = S. For assume that given f ′ ∈ H ′, there exists f ∈ H

such that 〈f ′, Sg〉H = 〈f, g〉H for all g = ıdbu + h′
bo ∈ Dom(S). Then, by definition

of the dual, f ′ ∈ Dom(S′) and f = S′f ′. Since Sg = dbu is independent of h′
bo, such

f must fulfill f ∈ Hbu, with the implication 〈f ′, dbu〉H = 〈f ′, Sg〉H = 〈f, g〉H =
〈f, ıdbu〉H . We use that P′

buı|Dbu
: Dbu ⊂ Hbu → H ′

bu is self-dual by assumption
5.2; so 〈f, ıdbu〉H = 〈ıf, dbu〉H . Since Dbu is dense in Hbu, that implies f ′ − ıf ∈
Hbu

⊥ = H ′
bo. But this is equivalent to f = Sf ′.

Consequently, the Schwinger kernel

Kbu
α = exp−αSΠ−1, α > 0, (5.5-29)

implements a strongly continuous semigroup (strongly continuous in H !). The
Schwinger parametrised representation of the propagator

Πbuı =

∫ ∞

0

dα exp−αSΠ−1. (5.5-30)

can be defined by ordinary functional calculus for self-adjoint operators. As the
integrand exp−αSΠ−1 is a bounded operator, it is well-defined on all of H by
closure; as it is positive furthermore, the integration delivers the maximal domain
for the propagator.

Interpretation as Diffusion Process with Absorption at the Boundary.
Define the bounded, self-adjoint operator Kbu

α = exp−αSΠ−1, α > 0. We can
obtain an operator differential equation for Kbu

α , giving the “time” derivative

∂

∂α
Kbu

α = −SΠ−1Kbu
α (5.5-31)

with the initial condition
s-lim
α→0+

Kbu
α = id . (5.5-32)

Some properties of the evolution under Schwinger “time” α are collected in the
following
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Proposition 5.5. For α > 0 and f ∈ H , the vector Kbu
α f is an analytic vector

for SΠ−1. On the subdomain Dom(SΠ−1) ∩ Dbu, SΠ−1 is a positive operator with
respect to the L2(M, g) scalar product. For f ∈Hbu(Hbo), Kbu

α f lies in the subspace
Hbu(Hbo). For f ∈ Dbu, Kbu

α f lies in the subspace Dbu.

Remark. By definition [81, X.6], the set C∞(A) =
⋂∞

n=1 Dom(An) contains the C∞-
vectors for an operator A. A vector f ∈ C∞(A) is an analytic vector [ibid] for A if
there exists t > 0 such that

∞
∑

n=0

‖Anf‖
n!

tn <∞.

Proof. Since (SΠ−1)nKbu
α = (SΠ−1)n exp−αSΠ−1 is a bounded operator by func-

tional calculus, certainly Kbu
α f ∈ Dom((SΠ−1)n) for all n > 0. For the analyticity,

note that by functional calculus, ‖(SΠ−1)n exp−αSΠ−1‖ ≤
(

n
α

)n
e−n, so

∞
∑

n=0

‖(SΠ−1)nKbu
α f‖

n!
tn ≤ ‖f‖

∞
∑

n=0

nne−n

n!

(

t

α

)n

.

Choosing t = α/2 > 0, it is easily shown using Stirling’s approximation that the
r.h.s. converges.

Given a vector f ∈ Dom(SΠ−1) ∩Dbu, we have

0 ≤ 〈f, f〉 f∈Dbu= 〈Sıf, f〉 = 〈SΠ−1 Πıf, f〉 f∈Dom(SΠ−1)
= 〈Πıf, SΠ−1 f〉

= 〈ıf, SΠ−1 f〉H
f∈D
= 〈f, SΠ−1 f〉g.

To show that Hbu and Hbo are invariant subspaces, use that by construction we
have Kbu

α hbo = hbo and 〈hbo, Kbu
α fbu〉 = 〈Kbu

α hbo, fbu〉 = 〈hbo, fbu〉 = 0 for hbo ∈
Hbo, fbu = Hbu, by the self-adjointness of Kbu

α .

For the last statement, assume that f ∈ Dbu. This implies that there exists g ∈H

such that f = SΠ−1g. But then, Kbu
α f = Kbu

α SΠ−1g = SΠ−1Kbu
α g lies in the domain

Ran(S) = Dbu.

Let Kbu
α (x, y) be the L2(M, g)-integral kernel of Kbu

α . Can we find a partial differen-
tial equation for Kbu

α (x, y)? By the proposition, it is clear that Hbo is an invariant
eigenspace with eigenvalue 0 which does not mix with other eigenspaces under the
flow of the differential equation (5.5-31). At any given time α, we can project out
the piece (1−Pbu)K

bu
α mapping into this eigenspace. Applying differential equation

(5.5-31), we derive the “boundary condition”

∂

∂α
B(1− Pbu)K

bu
α = 0, (5.5-33)

valid for all α > 0 (the isometry B has been inserted for convenience). In particular
for f ∈Hbu in the bulk, we have the initial condition (1−Pbu)K

bu
0 f = (1−Pbu) id f =

0, which must therefore hold for all α > 0.
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On the other hand, choose any dbu ∈ Dbu and take the L2(M, g) scalar product with
equation (5.5-31). By property (5.5-28), we have for all f ∈H

∂

∂α
〈dbu, Kbu

α f〉g = −〈dbu, SΠ−1Kbu
α f〉g = −〈dbu, Π−1Kbu

α f〉H . (5.5-34)

This is the equation governing the bulk behaviour of the constrained Schwinger ker-
nel. (5.5-33) and (5.5-34) together with the initial condition (5.5-32), when written
explicitly using the kernel Kbu

α (x, y), constitute a set of equations determining this
kernel. They take the form of a diffusion system.

Bulk-to-boundary Schwinger kernel. Similarly to what we did in the uncon-
strained case, we pick a heat packet f ∈ Dbu, let it evolve with Kbu

α and finally
test the result with an arbitrary vector d ∈ D, in the L2(M, g)-sense. The resulting
amplitude is called

Vd,α(f) = 〈d, Kbu
α f〉g.

Its “time” derivative is

∂

∂α
Vd,α(f) = −〈d, SΠ−1Kbu

α f〉g = −〈d, ıSΠ−1Kbu
α f〉H .

We now perform the operator equivalent of integration by parts, writing

∂

∂α
Vd,α(f) =− 〈d, Π−1Kbu

α f〉H − 〈d, (ıS− 1)Π−1Kbu
α f〉H .

The first summand consists itself of two parts. These correspond to the two terms
in Π−1 = m2 − �

g: The m2 determines the volume dissipation by the mass (which
appears in the Schwinger representation as a linear damping). The contribution from
�

g is just the local concentration change resulting from the redistribution through
diffusion.

The second summand must then be the absorption at the boundary. This gives a
very direct interpretation of the processes which have to be set up in order to derive
a path integral for the Schwinger representation. To understand the significance of
this second summand, notice that Ran(ıS − 1) = H ′

bo. This shows that the second
summand contributes only through the boundary value Bd - the bulk behaviour of
d is of no consequence. Consider what happens if we integrate the Schwinger kernel
inside the scalar product

〈d, (ıS− 1)Π−1

∫ ∞

0

dα Kbu
α f〉H = 〈d, (ıS− 1)Π−1Πbuıf〉H = 〈d, (ıS− 1)P′

buıf〉H

= 〈d, (1− P′
bu)ıf〉H = 〈(1− Pbu)d, ıf〉H = 〈Bd, Πbobuıf〉B. (5.5-35)

We will use equation (5.5-35) to characterise the novel Schwinger kernel for the bulk-
to-boundary propagator obeying a relation very similar to the one of the bulk-to-bulk
kernel:

〈Bd, Πbobuıf〉B ≡
∫ ∞

0

dα 〈Bd, Kbobu
α f〉∂g, (5.5-36)
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where ∂g is the metric structure on the boundary. This relation is clearly not suf-
ficient to define Kbobu

α , but it will motivate the following developments. A natural
means to obtain a formula in the form (5.5-36) is provided if

〈d, (ıS− 1)Π−1

∫ ∞

0

dα Kbu
α f〉H ?

=

∫ ∞

0

dα 〈d, (ıS− 1)Π−1Kbu
α f〉H (5.5-37)

is true. We will comment momentarily on this condition, but let us first explore its
consequences. Combining (5.5-35), (5.5-36) and (5.5-37), the action of the “Schwinger
kernel” Kbobu

α : H → B for to bulk-to-boundary propagator is explicitly given by

〈Bd, Kbobu
α f〉∂g

?
=〈d, (ıS− 1)Π−1Kbu

α f〉H
=〈(1− Pbu)d, (ıS− 1)Π−1Kbu

α f〉H since Ran(ıS− 1) = H
′

bo

=〈(1− Pbu)d, ıSΠ−1Kbu
α f〉H since Kbu

α f ∈Hbu

=〈(1− Pbu)d, SΠ−1Kbu
α f〉g

=− 〈(1− Pbu)d, ∂αKbu
α f〉g. (5.5-38)

The bulk-to-boundary Schwinger kernel is not a simple heat kernel; it is obtained
from the bulk heat kernel by measuring the extent of absorption at the boundary.

What can go wrong in the equality (5.5-37)? Since the integral of the Schwinger
kernel is basically defined by matrix elements, there are no principal obstructions
against pulling it out of a scalar product. The Achilles’ heel is the operator ıS:
This may be an unbounded operator in H ′, and therefore not continuous; in this
case, there is a hazard that (5.5-37) is spoilt. One might try to take the dual
(ıS − 1)′ = Sı − 1 and let it act on d on the left-hand side; as the integration
commutes with taking a matrix element, this would render both sides equal. The
point is that in the interesting case where Bd 6= 0 has a non-vanishing boundary
value, d ∈ D but d 6∈ Dbu; in this case, possibly ıd 6∈ Dom(S). We cannot expect
that taking the dual is allowed in the generic case.

To summarise, the relation (5.5-37) might not hold because integration does not
commute with the evaluation of an unbounded functional.

Remark 5.6. The third line of (5.5-38) offers a practical way of calculating the
Schwinger kernel of the bulk-to-boundary propagator. Observe that on the right-
hand side SΠ−1 Kbu

α f ∈ Dbu. Topologise H by the weak σ(H , Dbu)g-topology. Let
nj ∈ Hbu be a family of functions approximating (1 − Pbu)d ∈ Hbo in this weak
topology (such a family need not always exist). By (5.5-28),

〈Bd, Kbobu
α f〉∂g = lim

j
〈nj , SΠ−1Kbu

α f〉g

= lim
j
〈nj , Π−1Kbu

α f〉H = lim
j
〈nj, Kbu

α f〉. (5.5-39)

If nj is chosen skilfully, then this last limit may be evaluated with ease. The point is
that Kbu

α f ∈Hbu, so when the actual kernel Kbu
α (x, y) is known, the scalar product

may be simplified by integration by parts. The bulk-to-boundary propagator is thus
a suitable limit of the bulk-to-bulk propagator.
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5.6 A Simple Example (cont’d)

We are looking for a linear operator S fulfilling

S(ıfbu + h′
bo) =S ◦x (fbu(x)− h′

boδ(x))
!
= fbu

for functions fbu ∈ Dbu = Hbu and h′
bo ≡ h′

boδ(x) ∈H ′
bo. The solution is

Sf(x) =

{

0 if x = 0,

f(x) if x 6= 0.
f ∈H

′
bo + ıDbu

The value at x = 0 is of no importance; it is important that we “project out” the
distributional part. A little analysis shows that the (generalised) eigenvectors of
SΠ−1 may be labelled conveniently as

ek(x) =

(

2

π(m2 + k2)

)1/2

θ(kx) sin(kx), k ∈ R \ {0},

eB(x) =
1

(2m)1/2
e−m|x|.

where the normalisation is adapted to the scalar product in H and the corresponding
eigenvalues for SΠ−1 are k2 + m2 and 0.

We can see that ıS is an unbounded operator by the following example: Let δε ∈ Dbu

be a smooth approximation of width ε to the Dirac delta distribution (it may have
support on all of R). Note that

∣

∣

x
ε

∣

∣ δε2(x− ε) ∈ Dbu for ε 6= 0. Consider the family

nε(x) = δ(x)−
∣

∣

∣

x

ε

∣

∣

∣
δε2(x− ε) ∈H

′.

For ε → 0, we can estimate ‖nε‖′ ≈ 1
m

(1 − e−m|ε|) ≈ |ε| using the integral kernel
1

2m
e−m|x−y| of the scalar product in H ′. However, (ıSnε)(x) = −

∣

∣

x
ε

∣

∣ δε2(x− ε) with
norm ‖ıSnε‖′ = 1

2m
.

Let us examine what the PDE approach has to say about the kernel Kbu
α (x, y). The

PDE (5.5-34) reads

∂

∂α
Kbu

α (x, y) = −(m2 − ∂2
x)K

bu
α (x, y), x 6= 0. (5.6-40)

The boundary condition (5.5-33) becomes

∂

∂α
Kbu

α (0, y) = 0. (5.6-41)

Together with the initial condition Kbu
0 (x, y) = δ(x− y), the solution is determined

as

Kbu
α (x, y) =

θ(xy)

2
√

πα

(

e−
(x−y)2

4α − e−
(x+y)2

4α

)

e−m2α

+ δ(y)

{

em|x|

2

(

1− erf
|x|+ 2mα

2
√

α

)

+
e−m|x|

2

(

1− erf
|x| − 2mα

2
√

α

)}

.
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Let us interpret the single terms. The first line is the part which is relevant for
the bulk heat equation; it is a diffusion term with a sink at x = 0. The second
line maintains the property (5.6-41); it balances any change by a variable source at
x = 0. Note that away from the origin x = 0, the second line fulfills the heat equation
independently. Although this is not immediately visible, Kbu

α is a symmetric operator
in the Hilbert space H (not in L2(M, g)).

The integration Gbu(x, y) =
∫∞
0

dα Kbu
α (x, y) will be divergent on the second line, so

we have to select y 6= 0. The support of Kbu
α is restricted to both x and y lying on

the same side of the origin; there is no diffusion across 0. It is positive. Its “Fourier
transform” with respect to the generalised eigenfunctions is

Kbu
α (k, k′) = δ(k − k′)e−(k2+m2)α + δk, Bδk′, B.

This is written down the teensiest bit laissez-faire, the second summand containing
Kronecker deltas picking the boundary basis vector eB. Finally, the heat kernel of
the bulk-to-boundary propagator is according to (5.5-38) given by

Kbobu
α (y) = −

∫

dx e−m|x|∂αKbu
α (x, y) =

|y|
2
√

πα3
e−

y2

4α
−m2α, y 6= 0. (5.6-42)

We will demonstrate the application of remark 5.6 to the calculation of this kernel.
The elements of the boundary space Hbo are multiples of n0(x) = e−m|x|. One sees
easily that this function is well approximated in the weak σ(H , Dbu)dx -topology by

nǫ(x) =

{

e−m|x| if |x| ≥ ǫ
e−mǫ

sinhmǫ
sinh m|x| if |x| < ǫ.

(5.6-43)

as ǫ→ 0+. This is a solution of the massive Klein-Gordon equation with eigenvalue
0 for |x| 6= ǫ, x 6= 0, so

(m2 − ∂2
x)nǫ(x) =

m

sinh mǫ
(δ(x− ǫ) + δ(x + ǫ)) + c0δ(x). (5.6-44)

The actual value of the constant c0 is not important. The Schwinger kernel of the
bulk-to-boundary propagator is determined by the scalar product

〈Bn0, Kbobu
α f〉∂g = lim

ǫ→0+
〈nǫ, Kbu

α f〉

= lim
ǫ→0+

∫

dx
m

sinh mǫ

(

Kbu
α (ǫ, x) + Kbu

α (−ǫ, x)
)

f(x).

The term
∫

dx c0K
bu
α (0, x)f(x) = c0f(0) vanishes because f(0) = 0 by assumption

(f ∈ Dbu). Taking the limit is now straightforward. Because Bn0 = 1 and ∂g = 1,
we obtain

Kbobu
α (x) = lim

ǫ→0+

m

sinh mǫ

(

Kbu
α (ǫ, x) + Kbu

α (−ǫ, x)
)

=
|x|

2
√

πα3
e−

x2

4α
−m2α
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as before. In this sense, the bulk-to-boundary propagator is the limit

Gbobu(x) = lim
ǫ→0+

1

ǫ
(Gbu(ǫ, x) + Gbu(−ǫ, x)) .

of the bulk-to-bulk propagator.

We want to point out that this model can be regarded as a super-simple realisation
of AdS/CFT with a boundary consisting of one point. If one introduces a second
constraint φ(x1) = φ1, then we have a boundary consisting of two points, so we can
even get an intuition about boundary-to-boundary propagation.



Chapter 6

Application to Field Theory on
EAdS

The geometry of Euclidean Anti-de-Sitter space has been covered in section 3.1.

6.1 Scalar Field Theory on EAdS with Constraints

According to the situation in AdS/CFT correspondence with dual boundary source
terms (cf. section 3.2), we have to consider a field theory on (Euclidean) AdS with
fixed conditions on the boundary of EAdS. We want to construct a Neumann path
integral on the Euclidean Anti-de-Sitter space introduced in section 3.1, under the
restriction that we want to prescribe values of the field for z0 → 0 in a sensible way 1.
For that purpose, we will adapt the formalism developed in the preceding section.
We begin by constructing the Hilbert spaces Hbu ⊂H and H ′. We take Hbu to be
the a concrete domain of self-adjointness of the Klein-Gordon operator m2 − ~

2
�

g

and adjoin some non-normalisable solutions of the wave equation in the space Hbo.
The Hilbert space H is then the abstract sum Hbu ⊕Hbo.

Construction of the positive symmetric form

We will construct a symmetric, positive domain by simply enumerating all (smooth)
eigenfunctions of the Klein-Gordon operator on EAdS having nonnegative eigenval-
ues and making an appropriate choice (this amounts to selecting appropriate boun-
dary conditions). Its domain will be a linear space generated by a subset of these
eigenfunctions, under the condition that it should be invariant under the EAdS sym-
metry group. By definition, all the eigenfunctions are orthogonal. The advantage of
this method lies in the fact that completeness is automatic.

1There is a related analysis of EAdS path integral function spaces by Gottschalk and Thaler in
the setting of nuclear spaces[48].
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We begin by determining the solutions of the Klein-Gordon equation for the real
eigenvalue λ,

λf =(m2 −�
g)f (6.1-1)

=m2f −
(

(x0)2∂2
0 + (1− d)x0∂0 + (x0)2△

)

f, x0 > 0.

Because the Poincaré coordinates are horizontally translation invariant, we make the
general ansatz

f(x) = eik·xf0(x
0), k ∈ R

d.

We will later build a real Hilbert space from these functions; however, for the moment
it is easier to construct the complex Hilbert space. We restrict the vectors k to real
values; so we exclude solutions which are growing exponentially. Later, we will see
that for our purposes, this is acceptable. We have now a one-dimensional differential
equation

(m2 − λ)f0(x
0) =

(

(x0)2∂2
0 + (1− d)x0∂0 − (x0)2k2

)

f0(x
0).

By substituting f0(x
0) = (x0)d/2f1(x

0), we get a modified Bessel differential equation

(

d2

4
+ m2 − λ

)

f1(x
0) =

(

(x0)2∂2
0 + x0∂0 − (x0)2k2

)

f1(x
0).

We abbreviate on the left hand side

β2 =

∣

∣

∣

∣

d2

4
+ m2 − λ

∣

∣

∣

∣

.

Because we will need it often, we define also the value at λ = 0,

β0 =

√

d2

4
+ m2.

For the eigenfunctions to form a complete set of functions, we will see later that β0

must be real; this provides a lower bound m2 ≥ −d2/4 on the mass square. There
are two types of solutions depending on the parameter range (k 6= 0):

f1(x
0) =

{

CβKβ(|k|x0) + DβIβ(|k|x0), if d2

4
+ m2 − λ > 0,

CiβKiβ(|k|x0) + DiβIiβ(|k|x0), if d2

4
+ m2 − λ ≤ 0

(6.1-2)

(C. and D. are normalisations). In addition, for k = 0, there are solutions f1(x
0) ∼

(x0)±β resp. f1(x
0) ∼ (x0)±iβ (however, k = 0 is a null set in wave number space,

so we disregard them). The function Kβ(z) behaves as z−β for small z and falls
off exponentially as z → ∞. The function Iβ(z) increases exponentially for large
z. We will therefore exclude it from out considerations. Similarly, the real function
Kiβ(z) = K−iβ(z) oscillates with an ever increasing frequency

Kiβ(z) ≈ ℜ
[

2iβΓ(iβ)e−iβ ln z
]

+ O(z) as β > z → 0
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and drops off exponentially for large z, whereas Iiβ(z) again grows exponentially
after an initial period of (complex) oscillations 2; so we discard it. So we are left
with a pair of solutions for f(x):

f(x) =Cβ eixk (x0)d/2 Kβ(|k|x0) ≡ek,β(x) if
d2

4
+ m2 − λ > 0, (6.1-3a)

f(x) =Ciβ eixk (x0)d/2 Kiβ(|k|x0) ≡ek,iβ(x) if
d2

4
+ m2 − λ ≤ 0. (6.1-3b)

To build a Hilbert space of functions H out of these eigenvectors, we must declare
the scalar product. By definition,

〈f, h〉 = Π−1(f, h) = 〈f ∗, Π−1h〉H ,

where Π−1 is understood as quadratic form resp. as operator from H into H ′. The
dual Hilbert space H ′ contains certain distributions in the bulk, and it contains
the generalised boundary values H ′

bo. In the bulk, the action of Π−1 is given by
the differential operator (6.1-1). The generalised boundary values must chosen in
such a way that the scalar product 〈, 〉 is symmetric. A way to do this has been
shown by Klebanov and Witten [56]: Select a real solution (m2−�

g)s(x) = 0 of the
Klein-Gordon equation. With this solution, the action of the Klein-Gordon operator
in the bulk can be written as

(m2 −�
g)f =m2f − (x0)1+d∂µ(x0)1−d∂µf

=− s−1(x0)1+d∂µs2(x0)1−d∂µ [s−1f ].

By integration by parts, the following equality holds for suitable f , h:

−
∫

dd+1x [s−1f ]∗ ∂µs
2(x0)1−d∂µ [s−1h] +

∫

∂ EAdS

ddx [s−1f ]∗ s2(x0)1−deµ(x)∂µ [s−1h]

=−
∫

dd+1x ∂µs
2(x0)1−d∂µ [s−1f ]∗ · [s−1h] +

∫

∂ EAdS

ddx s2(x0)1−deµ(x)∂µ [s−1f ]∗ · [s−1h]

=

∫

dd+1x s2(x0)1−d ∂µ[s−1f ]∗ · ∂µ[s−1h] (6.1-4)

where eµ(x) is the normal vector on the boundary (in the local chart!). The inte-
gral over the surface of EAdS is understood as an integral over a surface which is
immersed in EAdS and pushed towards infinity. The last integral gives us the possi-
bility to define the scalar product in an intrinsically symmetric form if we choose an
appropriate solution s. There is a certain arbitrariness in the choice of s; this reflects
the fact that there are several possible ways to take boundary values. We choose

s = (x0)∆−, where ∆± =
d

2
± β0 =

d

2
±
√

d2

4
+ m2, (6.1-5)

2For sake of completeness, we note that Iiβ(z) ≈ 2−iβ

Γ(1+iβ)e
iβ ln z for z < β.
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and declare therefore the action of Π−1 as

〈f, h〉 = Π−1(f, h) ≡−
∫

dd+1x [(x0)−∆−f ]∗ ∂µ(x0)2∆−+1−d∂µ [(x0)−∆−h]

+

∫

∂ EAdS

ddx [(x0)−∆−f ]∗ (x0)2∆−+1−deµ(x)∂µ [(x0)−∆−h]

=

∫

dd+1x (x0)2∆−+1−d ∂µ[(x0)−∆−f ]∗ · ∂µ[(x0)−∆−h]. (6.1-6)

This scalar product comes “equipped with its own suitable boundary terms” 3. It
shown in the appendix that the Hilbert space H is spanned by the orthogonal
vectors ek,iβ and ek,β0. The first set is the equivalent of standing waves near the
x0 = 0 boundary of EAdS. Almost all geodesics in EAdS are arcs penetrating the
system from the x0 plane until they reach their point of return, whence they fall
back towards the boundary. This structure is clearly visible in the wave functions
ek,iβ: Passing on out of the initial oscillatory region, the waves have to tunnel into
the potential wall generated by curvature, so they are damped exponentially.

Choosing the normalisations

Ciβ =

(

2β sinh πβ

(2π)dπ2

)
1
2

, Cβ0 =

(

2 sin β0π

(2π)dπ

)
1
2

, (6.1-7)

we summarise the structure with

Proposition 6.1. The Hilbert space H with the scalar product (6.1-6) is a sum of
two orthogonal subspaces Hbu⊕Hbo; the subspace Hbu is spanned by the oscillating
basis functions ek,iβ (β > 0); the subspace Hbo is spanned by the ek,β0, where we
have to impose the condition 0 < β0 < 1 on the mass 4. In the abstract setting,
Hbu

∼
= L2(Rd × R+, λiβ ddk dβ ) with the scalar product

〈f, g〉 =
∫

ddk dβ λiβ f̂ ∗(k, iβ)ĝ(k, iβ).

contains the functions f̂(k, iβ) which are represented concretely in coordinate space
as

f(x) =

∫

ddk dβ f̂(k, iβ)ek,iβ(x).

The inverse transformation is f̂(k, iβ) = λ−1
iβ 〈ek,iβ, f〉.

Similarly, Hbo
∼
= L2(Rd, ddk ) has the scalar product

〈f, g〉 =

∫

ddk f̂(k, β0)
∗ĝ(k, β0).

3Notice that in case m2 = 0, this procedure is trivial as s ≡ 1.
4This is in agreement with [56]. For β0 = 0, there are simply no boundary modes: The field

“recedes” into the bulk.
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Dual Spaces, Measurable Structure, Boundary Space

The other spaces of interest are now defined easily. The dual space of Hbo is H ′
bo =

Hbo
′ ∼
= L2(Rd, ddk ). We call its basis functions e′k,β0

, and they are dual to the basis

functions of Hbo, 〈ek,β0, e
′
k′,β0
〉H = δ(d)(k − k′). This implies Π−1ek,β0 = e′k,β0

.

Likewise, the dual space of Hbu is H ′
bu = Hbu

′ ∼
= L2(Rd×R+, λ−1

iβ ddk dβ ). We call
its basis functions e′k,β, and they are dual to the basis functions of Hbu, 〈ek,β, e′k′,β′〉H =

δ(d)(k − k′)δ(β − β ′). This implies Π−1ek,iβ = λiβe
′
k,iβ. The total dual space is

H ′ = H ′
bo ⊕H ′

bu. The measurable structure on H is fixed a priori in this con-
struction: The vectors ek,iβ(x) and ek,β0(x) were designed as functions on EAdS; this
fixes a canonical action of the scalar product 〈, 〉g.
Remark 6.2. It is important to have coordinate space expressions for the scalar
product 〈, 〉. Let f(x) be a function on EAdS-space with compact support. Then by
integration by parts of (6.1-6), the boundary terms are discarded and we have

f̂(k, iβ) = λ−1
iβ 〈ek,iβ, f〉 = 〈ek,iβ, f〉g.

Similarly, for h(x) an arbitrary bulk function decreasing fast enough for |x| → ∞,
the product 〈ey,β0, h〉 can be simplified by rolling the Klein-Gordon operator onto
ey,β0. As this is an eigenvector with eigenvalue 0, only the boundary term survives
the integration by parts, and we have

〈ey,β0, h〉 = lim
x0→0+

(x0)1−d+∆−

∫

ddx ∂0((x
0)−∆−ey,β0(x)) h(x)

=Cβ0

Γ(d+β0

2
)Γ(d−β0

2
+ 1)

2−d/2Γ(d
2
)

lim
x0→0+

(x0)−∆−

∫

ddx

((x0)2 + |x− y|2)d+β0
2

2F1

(

d + β0

2
,
β0

2
− 1;

d

2
;

|x− y|2
|x− y|2 + (x0)2

)

h(x)

(where ey,β0(x) is found in the appendix). In particular, the scalar product vanishes
for compactly supported functions. Note that this kernel is not positive definite.
In case the bulk function is of the form h =

∫

ddy hbo(y)ey,β0 + hbulk, the product
simplifies to

hbo(y) = 〈ey,β0, h〉 =
21−β0

Cβ0(2π)d/2Γ(β0)
lim

y0→0+
(y0)−∆−|∇|β0h(y). (6.1-8)

Here, |∇|β0 means the operator which in wave number space is given by |k|β0. This
formula shows that the Hbo-basis vectors ek,β0 resp. their boundary projections are
not a suitable basis for the boundary space (ie, they do not imply the usual geometric
procedure of taking the boundary value). The factor |∇|β0 represents a non-local
operation in coordinate space.

We identify the boundary spaces B
∼
= Hbo = L2(Rd, ddk ) and B′ ∼

= H ′
bo =

L2(Rd, ddk ). The operators B : H → B and B′ : B′ → H ′ are the trivial
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projection/inclusion. The boundary kernel of the Lagrangian acts simply as

Π−1
bo ek,β0 = (BΠB′)−1ek,β0 = e′k,β0

,

where e
(′)
k,β0
∈ B(′) are generalised boundary vectors. If we choose a different basis

for the boundary space B assembled out of the vectors

bk =
21−β0

Cβ0(2π)d/2Γ(β0)
|k|β0ek,β0, (6.1-9)

then the boundary projection of a function h(x) takes the form

Bh =
21−β0

Cβ0(2π)d/2Γ(β0)

∫

ddk (B∆−h)(k) |k|β0ek,β0 =

∫

ddk (B∆−h)(k) bk

with the usual geometric boundary projection B∆− : H → L2(Rd) acting as

(B∆−h)(x) = lim
x0→0

(x0)−∆−h(x).

We impose on the boundary the L2(Rd) scalar product

〈

∫

ddk f(k)bk,

∫

ddk h(k)bk

〉

∂g
=

∫

ddk f(k)∗h(k);

it implies a map  : DC ⊂ B → B′ on the boundary with the defining property

〈f, h〉∂g = 〈f, h〉B

for all f ∈ B, h ∈ DC. In particular, on finds

ek,β0 =
C2

β0
(2π)dΓ(β0)

2

41−β0
|k|−2β0e′k,β0

(6.1-10)

from 〈bk, bk′〉∂g = δ(d)(k − k′). The map  plays the same role as ı in the bulk: It
defines the measurable structure of the underlying Banach space. However, there
is no direct connection between ı and . Rather, the boundary space structure is
fixed by the requirement that bulk and boundary are subject to the same symmetry
group.

The quadratic term of the boundary Lagrangian can now be written with an integral
kernel in the b-basis. We have

〈f, (B′ΠB)−1h〉B =
〈

∫

ddk f(k)bk, (B′ΠB)−1

∫

ddk h(k)bk

〉

B

=
41−β0

C2
β0

(2π)dΓ(β0)2

∫

ddk |k|2β0f(k)∗h(k)

=
41−β0

C2
β0

(2π)dΓ(β0)2
〈|∇|β0f, |∇|β0h〉∂g. (6.1-11)
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In fact, there is a slight mismatch between the boundary space B and the space
L2(Rd, ∂g) of “local boundary values”, which we will simply ignore in the sequel.

The “two-point function” for the constraints is from (6.1-11) proportional to |k|2β0

in wave number space; in coordinate space, this implies a behaviour |x|−d−2β0 . Its
scaling dimension is therefore ∆ = d

2
+ β0 = ∆+. Note that for the “unconstrained”

system, the two-point function is given by the inverse BΠB′; so in the bk-basis, it
behaves like |k|−2β0 , resp. |x|−d+2β0. The scaling dimension is ∆ = d

2
− β0 = ∆−.

Remark 6.3. It may seem strange that the boundary C = Rd of EAdS is not emerging
as a compact manifold. However, in the Hilbert space setting, the concept of com-
pactification does not make sense, as L2(Rd)-functions are anyhow vanishing towards
infinity.

Completeness in the L2(M, g) Sense

We present a formal (!) completeness relation: For x, y ∈ EAdS, let δy(x) =
1√
g

δ(d)(x−y)δ(x0−y0) the Dirac distribution appropriate to EAdS space. Although

δy is not in H , by formal algebra

δ̂y(k, iβ) = 〈ek,iβ, δy〉g = e−k,iβ(y) = Ciβ e−iyk (y0)d/2 Kiβ(|k|y0).

Transforming back, we have
∫

ddk dβ ek,iβ(z) δ̂y(k, iβ)

=
2(y0z0)d/2

(2π)dπ2

∫

ddk dβ β sinh πβ ei(z−y)k Kiβ(|k|z0)Kiβ(|k|y0)

=
(y0)d+1

(2π)d
δ(z0 − y0)

∫

ddk ei(z−y)k

= (y0)d+1δ(z0 − y0)δ(d)(z − y) = δy(z). (6.1-12)

where we used the formal integral
∫ ∞

0

dβ β sinh πβ Kiβ(a)Kiβ(b) =
π2a

2
δ(a− b).

[49, 6.794 1, processed].

6.1.1 Schwinger Parametrised Bulk Propagator

For the g-products of the basis vectors, one computes

〈ek,iβ, ek′,iβ′〉g = δ(d)(k − k′)δ(β − β ′) = λ−1
iβ 〈ek,iβ, ek′,iβ′〉

〈ek,β0, ek′,β0
〉g = +∞ · δ(d)(k − k′),

〈ek,iβ, ek′,β0
〉g = not defined.
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So the domain D, which should contain vectors d with |〈d, h〉g| <∞ for all h ∈H ,
must be a subset of Hbu. Because for d, h ∈Hbu

|〈d, h〉g|2 ≤ 〈d, d〉g〈h, h〉g ≤ λ−2
i0 〈d, d〉〈h, h〉 <∞,

the condition is automatically fulfilled for these h. Therefore, the remaining condition
is that for all h ∈Hbo, 〈d, h〉g is finite. Roughly, this means that

∫

dd+1x (x0)−d/2−β0−1|d(x)|

is finite; so d(x) ∼ O((x0)d/2+β0+ǫ) near the boundary.

We construct the map ı. By definition,

〈ek′,iβ′, ıek,iβ〉H = 〈ek′,iβ′, ek,iβ〉g = δ(d)(k − k′)δ(β − β ′), (6.1-13)

so P′
buıek,iβ = e′k,iβ, whereas the H ′

bo-content is better determined formally in the
Dirac basis

〈ek,β0, ıδy〉H = 〈ek,β0, δy〉g = e−k,β0(y), (6.1-14)

so (1−P′
bu)ıδy =

∫

ddk e′k,β0
e−k,β0(y). The relation D ⊂Hbu implies Dbu = D. We

determine the operator S by its action

Se′k,iβ = ek,iβ, Se′k,β0
= 0. (6.1-15)

In the eigenbasis, S is rather trivial; however in coordinate space, this is a rather
complicated action. The Schwinger (heat) kernel is determined as

(

exp−αSΠ−1
)

ek,iβ = e−αλiβek,iβ. (6.1-16)

For a δ-distribution,

Kbu
α (x, y) =

(

exp−αSΠ−1
)

δy(x)

=

∫

ddk dβ ek,iβ(x) e−αλiβ δ̂y(k, iβ)

=(x0y0)d/2

∫

ddk dβ e−(β2
0+β2)α C2

iβ ei(x−y)k Kiβ(|k|x0) Kiβ(|k|y0).

This expression is studied in the appendix; it can be reduced to a contour integral

Kbu
α (x, y) =

Γ(d
2

+ 1)i

2d/2+2 π(d+3)/2α1/2
e−β2

0α

∫

Cǫ

dt
(sinh t)e−

t2

4α

((1 + σ(x,y)
2

)− cosh t)d/2+1
,

where the contour Cǫ encloses the positive axis anti-clockwise, crossing through the
origin. For even d, we may obtain the closed expression (C.2-7) by Cauchy’s formula.
Note that the volume damping term e−β2

0α uses the effective mass β0. According to
equation (5.5-30), the bulk-to-bulk propagator can be obtained from the Schwinger
kernel by integrating

Gbu(x, y) = ~

∫ ∞

0

dα Kbu
α (x, y) = ~

e−iπ d−1
2

2 π
d+1
2 [σ(σ + 4)]

d−1
4

Q
d−1
2

β0− 1
2

(1 +
σ

2
), (6.1-17)

as shown in the appendix (C.2-8). Note that this kernel depends solely on the chordal
distance σ.
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Unconstrained propagator (“field theoretic prescription”). The unconstrained
propagator is by definition the integral kernel of Π, ie

G(y, x) = ~〈δy, Πıδx〉g,

where δx is the Dirac distribution appropriate to EAdS-space. We now split the right
hand side in two parts:

Πıδx =ΠP′
buıδx + Π(1− P′

bu)ıδx

=Πbuıδx + Π(1− P′
bu)ıδx.

The contribution of the first summand is already known; it is the constrained bulk-
to-bulk propagator

Gbu(y, x) = ~〈δy, Πbuıδx〉g.
The second summand gives a new contribution which we still have to evaluate. Ex-
plicitly, using [49, 6.578 10]

~〈δy, Π(1− P′
bu)ıδx〉g =~

∫

ddk e−k,β0(x) 〈δy, Πe′k,β0
〉g (6.1-18)

=~

∫

ddk e−k,β0(x) ek,β0(y)

=~
Γ(d

2
− β0)Γ(d

2
+ β0) sin β0π

2π
d+1
2 [σ(σ + 4)]

d−1
4

P
1−d
2

β0− 1
2

(1 +
σ

2
).

Again, this depends solely on the chordal distance σ. Adding this to Gbu, we obtain
after an amount of algebra [49, 8.736 1 and 7]

G(y, x) = ~
e−iπ d−1

2

2π
d+1
2 [σ(σ + 4)]

d−1
4

Q
d−1
2

−β0− 1
2

(1 +
σ

2
). (6.1-19)

This is distinguished from Gbu only by the sign of β0. These results are confirmed
also by the literature [14, 15, 16].

Contact with Intertwiner Representations.

It is at this point important to make the connection to Dobrev’s intertwiner rep-
resentation of the AdS/CFT correspondence. Since the main point in his work is
concerned with the equivalence of representations in the bulk and boundary of EAdS
space, we can give the dictionary between our notation and his. Note that here, we
are only dealing with scalar fields; however, to establish the general picture, this is
totally sufficient.

The standard bulk-to-boundary intertwiner in the representation χ = [0, ∆−] is up
to multiplicity given by

Lχ ∼ B
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(there is only one bulk representation, so we drop the index τ). Its inverse (the
boundary-to-bulk intertwiner) is given by

L̂χ ∼ Πbubo =
(

B|
Hbo

)−1
,

and we find that the corresponding representation spaces are on the boundary Cχ =
B 5 with basis vectors bk and scalar product 〈, 〉∂g and in the bulk Cχ,χ̃ = Hbo with
basis vectors eβ0,k. Note that for a complete correspondence in terms of function
spaces, the choice of a basis is necessary.

The dual boundary space Cχ̃ is naturally identified with the dual B′ with basis
vectors b′k (the Banach dual basis to bk) and a scalar product making these vector
orthonormal, and the natural equivalent of Dobrev’s boundary propagator is

Gχ̃ : B → B
′ ∼ Πbo

−1 = (BΠB′)−1,

with inverse
Gχ : B

′ → B ∼ Πbo = BΠB′.

By concatenating the propagator Gχ̃ and Lχ, we find the dual intertwiner

Lχ̃ ∼ Gχ̃ ◦ Lχ ∼ (BΠB′)−1B = (ΠB′)−1,

and similarly the inverse propagator is obtained as L̂χ̃ ∼ ΠB′.

Note that the setup by Dobrev completely ignores the bulk space Hbu; all intertwiners
are restricted to the boundary spaces.

Rühl’s construction of bulk-to-bulk propagators. We are now in the situation
to comment on the ideas of Rühl, Leonhardt and others on the construction of
the bulk-to-bulk propagator by convolution of the kernels of the boundary-to-bulk
propagators L̂χ and L̂χ̃. Let bx denote an element of the (generalised) orthonormal
coordinate basis for the boundary space C = R

d ∋ x with scalar product ∂g; on the
bulk side, we will not use the orthonormal coordinate vectors for the metric g for
testing the kernel, but simply test with an element h ∈H in the Π-scalar product.
Since we have L̂χ ∼ B−1, the respective kernel can be written

Ĝχ(h, x) = 〈h, B−1bx〉.

The kernel for L̂χ̃ ∼ ΠB′ is in this basis given by

Ĝχ̃(h̃, x) = 〈h̃, ΠB′ bx〉

(the point is that we have to transport the wave functions from B to B′ in the
standard bases bx and b′x; this is exactly he action of ). We will take the liberty to

5We are a little bit sketchy here and should rather take DC or similarly.
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use the complex conjugate of the kernel Ĝχ̃; since it is a real kernel, this is not an
issue. Convolution of the kernels is equivalent to computing

G(h, h̃) =

∫

ddx Ĝχ(h, x)Ĝχ̃(h̃, x).

To get rid of the integration, we will use the completeness relation
∫

ddx bx〈bx, f〉∂g = f f ∈ B.

Since

Ĝχ̃(h̃, x) = 〈ΠB′ bx, h̃〉 = 〈B′ bx, h̃〉H = 〈 bx, Bh̃〉B = 〈bx, Bh̃〉∂g,

the convolution yields

G(h, h̃) =

∫

ddx 〈h, B−1bx〉〈bx, Bh̃〉∂g

=〈h, B−1Bh̃〉
=〈h, (1− Pbu)h̃〉.

In other words, the convolution yields nothing but the projection operator onto the
boundary subspace Hbo. Using the L2(M, g) coordinate basis δx and the boundary-
to-bulk kernel Ĝχ(y, x) ≡ 〈δy, B

−1bx〉g = Ĝχ(Πıδy, x) and similarly for Ĝχ̃, the con-
voluted kernel G is written as

G(x, y) ≡ G(Πıδx, Πıδy) = 〈Πıδx, (1− Pbu)Πıδy〉 = 〈δx, (1− Pbu)Πıδy〉g.
In the L2-sense, this is just the kernel of the field-theoretic (unconstrained) propa-
gator Π, restricted to the boundary subspace Hbo.

Following the prescription of Rühl and coworkers, we now have to select two terms,
the ”A-term” and the ”B-term” which are characterised by their asymptotic be-
haviour towards spatial infinity. Remembering that Πbu = PbuΠ, it is clear that the
meaning of the split procedure is

(1− Pbu)Π = Π−Πbu. (6.1-20)

The A-term and B-term are thus both to be interpreted as propagators, although in
different prescriptions.

6.1.2 Schwinger Kernel of Boundary-to-bulk Propagator

does not exist

By (5.3-20), the boundary-to-bulk propagator is given by the integral kernel of
~(B|

Hbo
)−1. We choose the bx-basis on the boundary and compute

Gbubo(x, y) =
~Γ(d

2
+ β0)

π
d
2 Γ(β0)

(

x0

(x0)2 + |x− y|2
)

d
2
+β0

= Gbobu(y, x), (6.1-21)
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by the duality of the respective operators. In wave number space,

Gbubo((y
0, k), k′) = δ(d)(k − k′)

~ 21−β0

Γ(β0)
|k|β0(y0)d/2Kβ0(|k|y0). (6.1-22)

The propagator in the field theoretic (unconstrained) prescription is obtained by ex-
changing β0 7→ −β0. We want to ascertain whether the bulk-to-boundary propagator
can be generated by a Schwinger kernel as well. We use the procedure indicated in
remark 5.6 for the determination of the putative Schwinger kernel of the bulk-to-
boundary propagator. The first step is to choose an element nbo ∈ Hbo and a
family nj ∈ Hbu approximating nbo in the weak σ(H , Dbu)g-topology. We choose

nbo = 21−β0

Cβ0
(2π)d/2Γ(β0)

|k|β0ek,β0, although this is only a generalised element of Hbo (the

reason is that Bnbo = bk is a “normalised” plane wave on the boundary). nbo is
approximated by the family

nǫ(x) =

{

21−β0

(2π)d/2Γ(β0)
|k|β0 eixk (x0)d/2 Kβ0(|k|x0) if x0 ≥ ǫ

21−β0

(2π)d/2Γ(β0)
|k|β0 eixk (x0)d/2 Iβ0(|k|x0)

Kβ0
(|k|ǫ)

Iβ0
(|k|ǫ) if x0 < ǫ

(6.1-23)

as ǫ→ 0+ (please compare to the example on the real line!). Again, nǫ(x) solves the
massive Klein-Gordon equation in EAdS with eigenvalue 0 everywhere in the bulk
except at x0 = ǫ; the precise analysis yields

(m2 −�
g)nǫ(x) =

21−β0

(2π)d/2Γ(β0)
eixk δ(x0 − ǫ)

ǫd/2+1|k|β0

Iβ0(|k|ǫ)
+ boundary terms.

The bulk-to-boundary Schwinger kernel is then by convolution

Kbobu
α (y, k) = lim

ǫ→0+

∫

ddx dx0

(x0)d+1
Kbu

α (y, x) (m2 −�
g)nǫ(x)

= lim
ǫ→0+

21−β0

(2π)d/2Γ(β0)

∫

ddx |k|β0

ǫd/2Iβ0(|k|ǫ)
Kbu

α (y, (x, ǫ))eixk

= lim
ǫ→0+

2β0

(2π)d/2

∫

ddx

ǫd/2+β0
Kbu

α (y, (x, ǫ))eixk,

where we have used the z ≪ 1 approximation Iβ0(z) = 1
Γ(β0+1)

(

z
2

)β0
(note that k is

a horizontal wave number on the boundary and y is a bulk coordinate). Because the
k-dependence under the integral is trivial, this is equivalent to

Kbobu
α (y, x) = lim

ǫ→0+

2β0

ǫd/2+β0
Kbu

α (y, (x, ǫ)). (6.1-24)

As the kernel Kbu
α falls off towards the boundary faster than any power, cf. (C.2-7),

this expression actually vanishes! The conclusion is that the exchange of the α-
integration and the scalar product between equations (5.5-35) and (5.5-38), serving
to define Kbobu

α , is not allowed.
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Let us stop for a moment and try to interpret this result. The deeper reason for
the vanishing of Kbobu

α can be traced to the vanishing of 〈hbo, SΠ−1 Kbu
α f〉g for

f ∈ Dbu, hbo ∈ Hbo in expression (5.5-38). The Schwinger kernel Kbu
α vanishes so

smoothly at the boundary that we may integrate by parts

〈hbo, SΠ−1 Kbu
α f〉g

p.i.
= 〈SΠ−1 hbo, Kbu

α f〉g = 0

by definition of S. This is to be contrasted with the situation in the model on the
real line. There, the Schwinger kernel Kbu

α has a linear behaviour at the boundary, so
integration by parts creates boundary terms. The different behaviour is of course to
be attributed to the different character of the boundaries in question: In the real line
model, the “boundary” has a finite distance from any internal point of the manifold;
a diffusing particle modelled by the Schwinger kernel Kbu

α can reach the boundary
in a finite (Schwinger) time α. The interpretation of Kbobu

α as “absorption rate”
is then the correct one. In contrast, the boundary of EAdS is infinitely far away.
No diffusing particle can reach the boundary in finite Schwinger time; therefore,
there cannot be a nonzero bulk-to-boundary Schwinger kernel which would allow an
interpretation of diffusing particle absorption at the boundary.

Basically, we can see two ways out of this situation. The first scenario uses the
assumption that the formula (6.1-24) for the bulk-to-boundary Schwinger kernel
is essentially correct; however, it should only be applied within complete Feynman
graphs in EAdS space with all external propagators attached to the boundary. The
limit ǫ→ 0 should then be applied only after all vertex integrations over EAdS-space
have been performed. The thoughtline is that all “Schwinger particles” are linked
to the boundary by a diffusion process with a finite Schwinger time duration; so all
processes are taking place mainly in a very thin layer next to the boundary. This
indeed looks like a mechanism which maps the Schwinger diffusion processes from
the interior of EAdS space onto equivalent processes on the boundary - if it works!
The boundary value which we obtain when we take the limit ǫ → 0 is probably a
distribution. However, it is not amiss to mention here that the integrals encountered
are way off what is found in the usual tables.

The second alternative is a novel rescaling of the fields, ie the substitution of φ =
(x0)−1φ̃ in the Lagrangian, where x0 is the EAdS depth coordinate (that we should
use the particular factor (x0)−1 was found by experiment). The kinetic operator is
then (x0)−1(m2−�

g)(x0)−1, and vertices of n fields carry a factor (x0)−n which has to
be included in the volume integration. This leads to a completely new propagator; the
correlation functions of operators are identically the same, however, if the operators
are rescaled in a similar fashion 6. One finds that the new Schwinger kernel K̃bu

α

does not fall off equally fast any more when approaching the boundary. This second
method leads to the Schwinger parametrisation used by Gopakumar in his article
series [45, 46, 47]; by appearance, they are Gaussian and therefore much easier to
handle in practical calculations. However, the rescaling of the fields and operators
seems somewhat ad hoc: Why should one use precisely this scaling and not any other?

6Of course, composite operators scale in a more sophisticated manner.
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Besides, invariance under the full symmetry group is broken in this approach, not
only in the way the boundary values are taken (this is a common fault of all these
approaches), but also in the interior of EAdS space. We have to ask the question
whether there can be a physical interpretation of the rescaled fields. One possible
interpretation is suggested by the holographic renormalisation group []: The depth
coordinate z0 corresponds there to the renormalisation scale. The factor (z0)−1 would
then indicate that the field strength needs a renormalisation, depending linearly on
the scale (in the free field model underlying the perturbation series).

6.2 Rescaling of the Fields

As the general method should clear by now, we will sketch very briefly how the
rescaling of the fields changes the formalism. As indicated in the last section, we
substitute φ = (x0)−1φ̃ in the EAdS Lagrangian in Poincaré coordinates, where x0

is the EAdS depth coordinate. The Klein-Gordon operator becomes

(x0)−1(m2 −�
g)(x0)−1 =

m2

(x0)2
−
(

∂2
0 −

1 + d

x0
∂0 +

1 + d

(x0)2
+△

)

, (6.2-25)

and vertices of n fields carry a factor (x0)−n which has to be included in the volume
integration. The Klein-Gordon equation for the real eigenvalue λ is

λf =
m2

(x0)2
f −

(

∂2
0 −

1 + d

x0
∂0 +

1 + d

(x0)2
+△

)

f, x0 > 0.

By substituting
f(x) = eik·x (x0)d/2+1 f1(x

0), k ∈ R
d,

we get a Bessel differential equation for f1(x), with the general solution

f1(x
0) =

{

AγJβ0(γx0) + BγYβ0(γx0), if λ > k2,

AiγIβ0(γx0) + BiγKβ0(γx0), if λ ≤ k2,
(6.2-26)

where we have defined
γ2 =

∣

∣λ− k2
∣

∣ . (6.2-27)

(A. and B. are normalisations). In addition, for λ = k2, there are solutions f1(x
0) ∼

(x0)±β0 (however, k = 0 is a null set in wave number space, so we disregard them).

The quadratic Klein-Gordon form is declared to be

〈f, h〉 =

∫

dd+1x (x0)2∆−+1−d ∂µ[(x0)−∆−−1f ]∗ · ∂µ[(x0)−∆−−1h]. (6.2-28)

Testing the solutions (6.2-26), it turns out that a proper basis of orthogonal eigen-
functions parametrised by γ is given by the vectors

Hbu ∋ ẽk,γ(x) =

√

γ

(2π)d
eikx (x0)d/2+1 Jβ0(γx0), (γ > 0) (6.2-29a)

Hbo ∋ ẽk,i|k|(x) =Cβ0e
ikx (x0)d/2+1 Kβ0(|k|x0). (6.2-29b)
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Their respective normalisation is 〈ẽk,γ, ẽk′,γ′〉 = λk,γ δ(d)(k−k′)δ(γ−γ′) where λk,γ =
γ2 + k2, and 〈ẽk,i|k|, ẽk′,i|k′|〉 = δ(d)(k − k′). This underlines the role of γ as ”x0-
component of the momentum”. The interpretation of these basis vectors as functions
in coordinate space is automatic. A completeness relation like (6.1-12) can be proven
easily. The definition of the dual basis and the boundary spaces runs also completely
analogous. Note that while the basis vectors of Hbu (in the bulk) are structured
completely different, the boundary basis vectors in Hbo are simply the scaled versions
of those vectors we had in the non-scaled version.

We come to the really interesting point: The determination of the various Schwinger
kernels. We have again

(

exp−αSΠ−1
)

ẽk,γ = e−αλ|k|,γ ẽk,γ, (6.2-30)

and for a δ-distribution,

K̃bu
α (x, y) =

(

exp−αSΠ−1
)

δy(x)

=

∫

ddk

∫ ∞

0

dγ ẽk,γ(x) e−αλ|k|,γ δ̂y(k, γ)

=(x0y0)d/2+1

∫

ddk

∫ ∞

0

dγ
γ

(2π)d
e−(γ2+k2)α ei(x−y)k Jβ0(γx0) Jβ0(γy0)

=
(x0y0)d/2+1

2α

∫

ddk

(2π)d
e−k2α− (x0)2+(y0)2

4α ei(x−y)k Iβ0

(

x0y0

2α

)

=
x0y0

2α

(

x0y0

4πα

)d/2

e−
(x−y)2+(x0)2+(y0)2

4α Iβ0

(

x0y0

2α

)

(6.2-31)

by [49, 6.633 2]. Integrating and attaching the proper scale factors

Gbu(x, y) = ~ (x0y0)−1

∫ ∞

0

dα K̃bu
α (x, y), (6.2-32)

we are able to obtain the correct result (C.2-8). Note that towards the boundary
x0 → 0, this Schwinger kernel scales like a power. However, obviously K̃bu

α does
not depend any more solely on the invariant chord length in EAdS space. This
can be cured by scaling the Schwinger time parameter α → x0y0 α (although this
procedure is somewhat arbitrary). The factor x0y0 originating from the rescaling of
the differential dα cancels exactly the necessary factors which must be attached to
the ends of the propagator, so we obtain the integral representation

Gbu(x, y) =~

∫ ∞

0

dα

2α

(

1

4πα

)d/2

e−
σ+2
4α Iβ0

(

1

2α

)

=~

∫ ∞

0

dα̃

2α̃

(

α̃

2π

)d/2

e−(σ
2
+1)α̃Iβ0(α̃).
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We can see that the only dependence on the coordinates is by the squared chordal
distance σ(x, y). 7

Note that the modified scheme gives us the chance to determine the Fourier transform
of the propagator directly: We have

Gbu(x, y) =~(x0y0)−1

∫

ddk

∫ ∞

0

dγ

λ|k|,γ
ẽk,γ(x) δ̂y(k, γ) (6.2-33)

=~
(x0y0)

d
2

(2π)d

∫

ddk ei(x−y)k

∫ ∞

0

dγ
γ

γ2 + k2 Jβ0(γx0) Jβ0(γy0)

=~
(x0y0)

d
2

(2π)d

∫

ddk ei(x−y)k Iβ0(|k|min(x0, y0)) Kβ0(|k|max(x0, y0))

by [49, 6.541 1].

We show that the Schwinger kernel for the bulk-to-boundary propagator does not
vanish for the rescaled field. Because of the similarity of the boundary wave func-
tions, we can re-use the family (6.1-23) after scaling with x0, ie we use x0nǫ(x) →

21−β0

Cβ0
(2π)d/2Γ(β0)

|k|β0 ẽk,i|k|; accordingly, we get

K̃bobu
α (y, k) = lim

ǫ→0+

21−β0

(2π)d/2Γ(β0)

∫

ddx |k|β0

ǫd/2+1Iβ0(|k|ǫ)
K̃bu

α (y, (x, ǫ))eixk.

In coordinate space, this becomes after some straightforward simplifications

K̃bobu
α (y, x) = lim

ǫ→0+

2β0

ǫ
d
2
+β0+1

K̃bu
α (y, (x, ǫ))

=
y0

Γ(β0)π
d
2 α

(

y0

4α

)
d
2
+β0

e−
(x−y)2+(y0)2

4α . (6.2-34)

After integration of α, this reduces to the usual bulk-to-boundary propagator (6.1-21),
for the un-rescaled fields. In Fourier space, the respective kernel is

K̃bobu
α ((y0, k), k′) =δ(d)(k − k′)

(y0)
d
2
+1

Γ(β0)α

(

y0

4α

)β0

e−αk2− (y0)2

4α . (6.2-35)

Again, the field theoretic prescription is obtained by substituting β0 7→ −β0. After
integration of α, this reduces to the usual bulk-to-boundary propagator (6.1-22), for
the un-rescaled fields.

7It is worthwhile to note that the integrand I of the last representation fulfills the differential
equation α̃∂α̃I + I + (m2 − �

g)I = 0 in the sense that this equation vanishes if integrated over α̃.
The Schwinger representation which will formally reproduce directly the kernel I is [49, 5.55]

Π−1 =

∫ ∞

0

dα

α
Iβ0

(

1

2α

)

K√
β2
0
−Π

(

1

2α

)

=

∫ ∞

0

dα̃

α̃
Iβ0

(α̃)K√
β2
0
−Π

(α̃).

It is not completely independent of the mass used, and of the dimensionality of the problem (so its
meaning is still unclear).



Appendix A

Conformal Propagators and
D’EPP Formula

A.1 Conformal Propagators

We are discussing the Schwinger parametrisation of conformal propagators

G∆(x− y) =
~

|x− y|2∆ . (A.1-1)

The scaling behaviour will be contained solely in a τ -dependent prefactor. Introduc-
ing a Schwinger-like representation in coordinate space

1

(x2)∆
=

1

Γ(∆)

∫ ∞

0

dα α∆−1e−αx2

, ℜ∆ > 0, (A.1-2)

we can compute the Fourier transform as
∫

ddx e−iq·x 1

(x2)∆
=

1

Γ(∆)

∫

ddx e−iq·x
∫ ∞

0

dα α∆−1e−αx2

=
π

d
2

Γ(∆)

∫ ∞

0

dα α∆− d
2
−1e−

q2

4α

by completing the square. Substituting α → (4τ)−1, we get the usual Schwinger
parametrisation

G∆(q) = ~
2d−2∆π

d
2

Γ(∆)

∫ ∞

0

dτ τ
d
2
−∆−1e−τq2

. (A.1-3)

This representation is special insofar as the exponential part takes exactly the form
of a massless propagator. The only modification is the power of τ in the Schwinger
kernel. If ℜ∆ < d

2
, we can evaluate the integral explicitly to obtain

G∆(q) = ~
2d−2∆π

d
2 Γ(d

2
−∆)

Γ(∆)
|q|2∆−d. (A.1-4)
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Note that even when ∆ is not within the bounds indicated, we may by analytic
continuation reach almost every complex ∆.

Formally, the coordinate space δ-distribution is then represented by

δ(d)(x) =
Γ(d

2
)

~π
d
2 Γ(0)

Gd
2
(x).

A.2 Composition of Conformal Propagators

We have seen that conformal propagators can be defined by Schwinger parametrisa-
tion if the conformal dimension fulfills the condition 0 < ℜ∆ < d

2
. Once the propa-

gators are given in Schwinger parametrised form, they may be switched parallel or
serial, and we would like to find out under which conditions these compositions make
sense. So let G∆(k) be the conformal propagator (A.1-3) in Schwinger parametrised
form (and we not demand that these formulas can actually be integrated; so we are
allowed arbitrary ∆).

When the actual computations are performed, we find that by parallel switching,

G∆(x)G∆′(x) = G∆+∆′(x)

For “serial connection”, we find

G∆(k)G∆′(k) = ~π
d
2
Γ(d

2
−∆)Γ(d

2
−∆′)Γ(∆ + ∆′ − d

2
)

Γ(∆)Γ(∆′)Γ(d−∆−∆′)
G∆+∆′− d

2
(k)

In particular, since ∆ = d
2

signifies the “δ-propagator”, we find that the inverse
conformal propagator (G∆)∗ in principle should have dimension ∆∗ = d − ∆; the
precise normalisation for the inverse propagator is

(G∆)∗(k) =
Γ(∆)Γ(d−∆)

~2πdΓ(d
2
−∆)Γ(∆− d

2
)
Gd−∆(k).

The serial composition of a conformal propagator with its inverse in the Schwinger
domain is however never well defined as the necessary conditions ℜ∆ < d

2
, ℜ∆∗ =

d− ℜ∆ < d
2

can never be satisfied simultaneously.

A.3 D’EPP Relation

We prove a relation introduced first by D’Eramo, Parisi and Peliti [25]. It describes
the transformation of a star graph of conformal propagators into a triangle graph
by integrating out the central vertex. In the electric circuit analogy, this is the
star-δ-transform [17]. Consider the star graph defined by the equation

G(x1, x2, x3) =

∫

ddu |x1 − u|−2∆1|x2 − u|−2∆2|x3 − u|−2∆3,
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with ∆1 +∆2 +∆3 = ∆. Performing a Fourier transform, this becomes with (A.1-3)

G(k1, k2, k3) = (2π)−
d
2 δ(d)(k1 + k2 + k3)

3
∏

j=1

2d−2∆jπ
d
2

Γ(∆j)

∫ ∞

0

dαj α
d
2
−∆j−1

j e−αjk2
j .

Using momentum conservation, k2
1 = −k1(k2+k3) etc.; then the exponential becomes

(α1 + α2)k1k2 + (α1 + α3)k1k3 + (α2 + α3)k2k3.

This is already the correct form for the exponent of a triangle graph. However, we
still need to get the correct prefactors for the momenta. Going from a star to a delta
network means to substitute

τj =
α1α2 + α1α3 + α2α3

αj
,

where τj is the resistance opposite to node j. The inverse transformation is

αj =
τ1τ2τ3

τj(τ1 + τ2 + τ3)
.

For the Jacobian of the transformation we get

dα1 dα2 dα3 =
τ1τ2τ3

(τ1 + τ2 + τ3)3
dτ1 dτ2 dτ3 ,

or

dτ1 dτ2 dτ3 =
(α1α2 + α1α3 + α2α3)

3

α2
1α

2
2α

2
3

dα1 dα2 dα3 .

Performing all the necessary substitutions, the amplitude reads

G(k1, k2, k3) =(2π)−
d
2 δ(d)(k1 + k2 + k3)

(

3
∏

j=1

2d−2∆jπ
d
2

Γ(∆j)

∫ ∞

0

dτj τ
d−∆+∆j−1
j

)

(τ1 + τ2 + τ3)
∆− 3d

2

e
τ3(τ1+τ2)k1·k2+τ2(τ1+τ3)k1·k3+τ1(τ2+τ3)k2·k3

τ1+τ2+τ3 .

We see now that under the condition ∆ = d, we can indeed reach a Schwinger
parametrised triangle graph formula; substituting back the conformal propagator
formula (A.1-3), we obtain finally in coordinate space

G(x1, x2, x3) = π
d
2
Γ(∆23)Γ(∆13)Γ(∆12)

Γ(∆1)Γ(∆2)Γ(∆3)

1

|x1 − x2|2∆12

1

|x1 − x3|2∆13

1

|x2 − x3|2∆23
,

with ∆12 = d
2
−∆3 resp. ∆3 = ∆13 +∆23 etc. They obey ∆12 +∆13 +∆23 = d

2
. Note

that in coordinate space, the formula is valid only in the range 0 < ℜ∆j < d
2
. It can

be analytically continued to disallowed scaling dimensions.



Appendix B

Vertex Integration in EAdS

In this appendix, we compute general EAdS-integrals needed in section 3.4.5 for
the EAdS-presentation of three-point functions of currents. The summations in this
appendix have been performed with the symbolic computation package Maple 10
(Waterloo Software).

B.1 Non-conformally Covariant Integrals

In the first section, we compute the elementary integrals

I =

∫

dz0 ddz

(z0)d+1

3
∏

k=1

(Ixkz)
ik(Jvkz)

jk − traces, (B.1-1)

where ik ∈ R+, jk ∈ N0 are arbitrary powers, xk ∈ Rd are points on the conformal
boundary of EAdS, vk ∈ Txk

are tangent vectors at these points, and the symbols

Ixkz =− 1

(x̃k, z̃)
=

2z0

(xk − z)2 + (z0)2

Jvkz =
(ṽk, z̃)

(x̃k, z̃)
= −vk · (z − xk)

z0

2z0

(xk − z)2 + (z0)2

Kvjvk
=(ṽj , ṽk)−

(ṽj , x̃k)(x̃j , ṽk)

(x̃j, x̃k)
(B.1-2)

are the bulk/boundary invariants which we introduce in (3.4-116). Subtraction of
traces is with respect to the tangent vectors vk.

Methodically, we will resort to Schwinger parametrisation, as a technical tool only.
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The amplitude can be formally written as

I =

∫

dz0 ddz

(z0)d+1

3
∏

k=1

(−1)jk

Γ(ik + jk)
∂jk

βk

∫ ∞

0

dγk γik−1
k exp (γk(x̃k, z̃) + βkγk(ṽ, z̃))

∣

∣

∣

∣

β≡0

− traces

=

∫

dz0 ddz

(z0)d+1

3
∏

k=1

(−1)jk

Γ(ik + jk)
(z0)ik∂jk

βk

∫ ∞

0

dγk γik−1
k

exp

(

−γk
(xk − z)2 + (z0)2

2
+ βkγkv · (z − x)

)
∣

∣

∣

∣

β≡0

− traces.

The z-integrations can be exchanged with the γ-integrations and done, resulting in

I =2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)
∫ ∞

0

d3γ G− i1+i2+i3
2

(

3
∏

k=1

(−1)jk

Γ(ik + jk)
∂jk

βk
γik−1

k

)

exp

(

γ1γ2(x̃1, x̃2)

G
+ β1

γ1γ2(ṽ1, x̃2)

G
+ β1

γ1γ3(ṽ1, x̃3)

G
+ cycl. perms.

+
(β1γ1v1 + β2γ2v2 + β3γ3v3)

2

2G

)
∣

∣

∣

∣

∣

β≡0

− traces,

with
G = γ1 + γ2 + γ3.

This was the main computation; the rest is the organisation of the prefactors. As
usual, the subtraction of traces will completely remove the v2

j -terms (however this is
not sufficient for a complete removal of trace terms).

Note that the exponent can be written in a very compact notation: Denoting by γ
a vector in R3 with entries γk, and by W the symmetric 3× 3-matrix with entries

Wjk =(x̃j + βj ṽj , x̃k + βkṽk) (j 6= k),

Wjj =0,

we have

I =2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)
∫ ∞

0

d3γ G− i1+i2+i3
2

(

3
∏

k=1

(−1)jk

Γ(ik + jk)
∂jk

βk
γik−1

k

)

exp
γtrWγ

2G

∣

∣

∣

∣

β≡0

− traces. (B.1-3)

The diagonal terms of W vanish since (x̃k, x̃k) = (x̃k, ṽk) = 0, and (ṽk, ṽk) = vk · vk

is removed by the subtraction of traces. We perform the variable change

δk =
γk√
G

,
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with the Jacobian

d3γ = 2(δ1 + δ2 + δ3)
3 d3δ ,

and obtain

I =2
i1+i2+i3

2 π
d
2 Γ

(

i1 + i2 + i3 − d

2

)
∫ ∞

0

d3δ

(

3
∏

k=1

(−1)jk

Γ(ik + jk)
∂jk

βk
δik−1
k

)

exp
δtrWδ

2

∣

∣

∣

∣

β≡0

− traces.

We compute the action of the β-derivatives. A quick combinatorial argument shows
that

(

3
∏

k=1

∂jk

βk

)

exp
δtrWδ

2

∣

∣

∣

∣

βk=0

=
∑

n12

∑

n23

∑

n31

∑

m12

∑

m23

∑

m31

1

n12!n23!n31!

j1!

m12!(j1 − n12 − n31 −m12)!

j2!

m23!(j2 − n23 − n12 −m23)!

j3!

m31!(j3 − n31 − n23 −m31)!

(ṽ1, ṽ2)
n12(ṽ2, ṽ3)

n23(ṽ3, ṽ1)
n31 (ṽ1, x̃2)

m12(ṽ2, x̃3)
m23(ṽ3, x̃1)

m31

(ṽ1, x̃3)
j1−n12−n31−m12(ṽ2, x̃1)

j2−n23−n12−m23(ṽ3, x̃2)
j3−n31−n23−m31

δj1+j2−n23−n12−m23+m31
1 δj2+j3−n31−n23−m31+m12

2 δj3+j1−n12−n31−m12+m23
3 exp

δtrW 0δ

2
.

The sums are supposed to cover the whole range of integers; practically, the summa-
tion is limited to those values of the counting parameters for which the factorials are
finite (with the rule n! = Γ(n+1) =∞ if n < 0). We have abbreviated W 0 = W |β≡0.

Now we can perform the δ-integrals; they are of the type

∫ ∞

0

d3δ

(

3
∏

k=1

δdk−1
k

)

exp
δtrW 0δ

2

=
Γ
(

d1+d2−d3

2

)

Γ
(

d2+d3−d1

2

)

Γ
(

d3+d1−d2

2

)

2
(−W 0

12)
d3−d1−d2

2 (−W 0
23)

d1−d2−d3
2 (−W 0

31)
d2−d3−d1

2 .

and can be solved in terms of simple algebraic functions because W 0 does not have
diagonal terms (otherwise, the degree of complexity increases greatly).

Combining all terms and making the obvious substitutions of the invariants Jvjxk
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and Ixjxk
, we obtain

I =2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)

(

3
∏

k=1

1

Γ(ik + jk)

)

∑

n12

∑

n23

∑

n31

∑

m12

∑

m23

∑

m31

1

n12!n23!n31!

j1!

m12!(j1 − n12 − n31 −m12)!

j2!

m23!(j2 − n23 − n12 −m23)!

j3!

m31!(j3 − n31 − n23 −m31)!

Γ

(

i1 + i2 − i3
2

+ j2 − n23 −m23 + m12

)

Γ

(

i2 + i3 − i1
2

+ j3 − n31 −m31 + m23

)

Γ

(

i3 + i1 − i2
2

+ j1 − n12 −m12 + m31

)

(Ix1x2)
i1+i2−i3

2
+n12(Ix2x3)

i2+i3−i1
2

+n23(Ix3x1)
i3+i1−i2

2
+n31

(ṽ1, ṽ2)
n12(ṽ2, ṽ3)

n23(ṽ3, ṽ1)
n31 (Jv1x2)

m12(Jv2x3)
m23(Jv3x1)

m31

(Jv1x3)
j1−n12−n31−m12(Jv2x1)

j2−n23−n12−m23(Jv3x2)
j3−n31−n23−m31 − traces.

This is not yet the preferred version, since we still have the scalar products (ṽj , ṽk)
between boundary tangent vectors which are non-invariant under ṽk 7→ ṽk + Rx̃k.
These should be substituted by the invariants Kvjvk

, by means of the equality

(ṽj , ṽk) = Kvjvk
− Jvjxk

Jvkxj

Ixjxk

.

After expanding the powers of these by the binomial formula, reshuffling the sum-
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mations, and summing up what can be summed, we get the final result

∫

dz0 ddz

(z0)d+1

3
∏

k=1

I ik
xkzJ

jk
vkz − traces (B.1-4)

=2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)

(

3
∏

k=1

1

Γ(ik + jk)

)

∑

p12

∑

p23

∑

p31

∑

n12

∑

n23

∑

n31

1

n12!p12!n23!p23!n31!p31!

j1!

(j1 − p12 − p31 − n12)!

j2!

(j2 − p23 − p12 − n23)!

j3!

(j3 − p31 − p23 − n31)!

Γ

(

i1 + i2 − i3
2

+ j2 − p23 − n23

)(

i1 + i2 − i3
2

+ p12

)

n12

Γ

(

i2 + i3 − i1
2

+ j3 − p31 − n31

)(

i2 + i3 − i1
2

+ p23

)

n23

Γ

(

i3 + i1 − i2
2

+ j1 − p12 − n12

)(

i3 + i1 − i2
2

+ p31

)

n31

(Ix1x2)
i1+i2−i3

2 (Ix2x3)
i2+i3−i1

2 (Ix3x1)
i3+i1−i2

2 (Ix1x2Kv1v2)
p12(Ix2x3Kv2v3)

p23(Ix3x1Kv3v1)
p31

(Jv1x2)
n12(Jv1x3)

j1−p12−p31−n12 (Jv2x3)
n23(Jv2x1)

j2−p23−p12−n23

(Jv3x1)
n31(Jv3x2)

j3−p31−p23−n31 − traces.

The summations run over all values which are admitted by the factorials in the
denominator. The mirror symmetry (123-132) is difficult to see on the Γ-factors in
the middle, but we have checked that it is indeed there.

B.2 Conformally Covariant Integrals

We now consider the conformally covariant integrals

I′ =

∫

dz0 ddz

(z0)d+1

3
∏

k=1

(Ixkz)
ik
∏

p 6=q

(Jvpz − Jvpxq)
jpq − traces. (B.2-5)

These can be obtained from (B.1-4) by manipulation of the summations. We keep the
convention that sums run over all integers, and the factorials of negative argument
are formally infinite and limit the domain of summation. The idea is to expand
the powers jpq by the binomial formula, introducing new summation variables kpq;
the summands are then of the type covered in the first section and can be done by
(B.1-4).

After some translation of the summations, we get a form which we will see mirrors
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already the invariant character of the total amplitude:

I′ =2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)

∐

p 6=q





∑

kpq

(

jpq

kpq

)

(−1)jpq−kpq





∑

p12

∑

p23

∑

p31

∑

n12

∑

n23

∑

n31

1

(n12 − j12 + k12)!p12!(n23 − j23 + k23)!p23!(n31 − j31 + k31)!p31!

1

Γ(k12 + k13 + i1)Γ(k23 + k21 + i2)Γ(k31 + k32 + i3)

(k12 + k13)!

(j12 + k13 − p12 − p31 − n12)!

(k23 + k21)!

(j23 + k21 − p23 − p12 − n23)!

(k31 + k32)!

(j31 + k32 − p31 − p23 − n31)!

Γ

(

i3 + i1 − i2
2

+ j12 + k13 − p12 − n12

)(

i1 + i2 − i3
2

+ p12

)

n12−j12+k12

Γ

(

i1 + i2 − i3
2

+ j23 + k21 − p23 − n23

)(

i2 + i3 − i1
2

+ p23

)

n23−j23+k23

Γ

(

i2 + i3 − i1
2

+ j31 + k32 − p31 − n31

)(

i3 + i1 − i2
2

+ p31

)

n31−j31+k31

(Ix1x2)
i1+i2−i3

2 (Ix2x3)
i2+i3−i1

2 (Ix3x1)
i3+i1−i2

2 (Ix1x2Kv1v2)
p12(Ix2x3Kv2v3)

p23(Ix3x1Kv3v1)
p31

(Jv1x2)
n12(Jv1x3)

j12+j13−p12−p31−n12 (Jv2x3)
n23(Jv2x1)

j23+j21−p23−p12−n23

(Jv3x1)
n31(Jv3x2)

j31+j32−p31−p23−n31 − traces.

The summations over kpq are not interferring with the invariants any more; they
are concerning just the prefactors, and we will see what we can do to sum them up
efficiently. This expression falls apart into three independent blocks, the first block
eg containing the relevant summations

B1 =
∑

k12

∑

k13

∑

n12

(

j12

k12

)(

j13

k13

)

(−1)j12−k12+j13−k13
1

(n12 − j12 + k12)!p12!
.

1

Γ(k12 + k13 + i1)

(k12 + k13)!

(j12 + k13 − p12 − p31 − n12)!
(B.2-6)

Γ

(

i3 + i1 − i2
2

+ j12 + k13 − p12 − n12

)(

i1 + i2 − i3
2

+ p12

)

n12−j12+k12

(Jv1x2)
n12(Jv1x3)

j12+j13−p12−p31−n12

and the other blocks the respective cyclic permutations of indices 1 → 2 → 3 →
1. The sums k12 and k13 are hard and we failed to sum them symbolically or via
computer algebra; however, we can knock them out them by a trick. We know that
since the total expression is conformally invariant by construction, the J-invariants
must combine into powers

(Jv1x2 − Jv1x3)
j12+j13−p12−p31 . (B.2-7)
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The n12-summation is just the binomial expansion of these, with the corresponding
binomial coefficients

(−1)j12+j13−p12−p31−n12

(

j12 + j13 − p12 − p31

n12

)

.

If we divide out these binomial coefficients from the summands of B1 and at the same
time substitute (B.2-7) for the invariants J appearing in B1, then the remaining sum
must be independent of n12 (although it appears in several places):

B1 =
∑

k12

∑

k13

(

j12

k12

)(

j13

k13

)

(−1)p12−k12+p31−k13+n12

(

j12 + j13 − p12 − p31

n12

)−1
1

(n12 − j12 + k12)!p12!

1

Γ(k12 + k13 + i1)

(k12 + k13)!

(j12 + k13 − p12 − p31 − n12)!

Γ

(

i3 + i1 − i2
2

+ j12 + k13 − p12 − n12

)(

i1 + i2 − i3
2

+ p12

)

n12−j12+k12

(Jv1x2 − Jv1x3)
j12+j13−p12−p31 .

The judicious choice n12 = j12 + j13 − p12 − p31 ≥ 0 now kills the k13-summation:

B1 =
∑

k12

∑

k13

(

j12

k12

)(

j13

k13

)

(−1)−k12−k13+j12+j13

1

(j13 − p12 − p31 + k12)!p12!

1

Γ(k12 + k13 + i1)

(k12 + k13)!

(k13 − j13)!

Γ

(

i3 + i1 − i2
2

+ k13 − j13 + p31

)(

i1 + i2 − i3
2

+ p12

)

j13−p12−p31+k12

(Jv1x2 − Jv1x3)
j12+j13−p12−p31

=
∑

k12

(

j12

k12

)

(−1)−k12+j12
1

(j13 − p12 − p31 + k12)!p12!

(k12 + j13)!

Γ(k12 + j13 + i1)

Γ

(

i3 + i1 − i2
2

+ p31

)(

i1 + i2 − i3
2

+ p12

)

j13−p12−p31+k12

(Jv1x2 − Jv1x3)
j12+j13−p12−p31 ,

since only k13 = j13 contributes to the sum (all other contributions are suppressed
by the factor 1

(k13−j13)!
). That the pochhammer symbol might have a negative index

is no problem, as we may represent it by

(x)n =
Γ(x + n)

Γ(x)
, n ∈ Z,
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i1+i2−i3
2

is supposed to be arbitrary real, and therefore, we may exclude the possi-
bility that the Γ-function in the enumerator will encounter a pole when counting
downwards (we take the correlation to be analytic in the exponents i1, i2, i3).

The sum k12 can be evaluated in terms of a hypergeometric function

B1 =
(j12 + j13)!

p12!(j12 + j13 − p12 − p31)!

Γ
(

i3+i1−i2
2

+ p31

) (

i2+i1−i3
2

+ p12

)

j12+j13−p12−p31

Γ(i1 + j12 + j13)

3F2

(

−j12, 1−i1−j12−j13, −j12−j13+p12+p31; −j12−j13, 1− i2+i1−i3
2

−j12−j13+p31; 1

)

(Jv1x2 − Jv1x3)
j12+j13−p12−p31 , (B.2-8)

however, there is no simple expression for this hypergeometric function; it is just an
abbreviation for the (finite) sum indicated. The total conformally invariant ampli-
tudes is

∫

dz0 ddz

(z0)d+1

3
∏

k=1

I ik
xkz

∏

p 6=q

(Jvpz − Jvpxq)
jpq − traces (B.2-9)

=2
i1+i2+i3

2
−1π

d
2 Γ

(

i1 + i2 + i3 − d

2

)

∑

p12

∑

p23

∑

p31

(j12 + j13)!

p12!(j12 + j13 − p12 − p31)!

Γ
(

i3+i1−i2
2

+ p31

) (

i2+i1−i3
2

+ p12

)

j12+j13−p12−p31

Γ(i1 + j12 + j13)

(j23 + j21)!

p23!(j23 + j21 − p23 − p12)!

Γ
(

i1+i2−i3
2

+ p12

) (

i3+i2−i1
2

+ p23

)

j23+j21−p23−p12

Γ(i2 + j23 + j21)

(j31 + j32)!

p31!(j31 + j32 − p31 − p23)!

Γ
(

i2+i3−i1
2

+ p23

) (

i1+i3−i2
2

+ p31

)

j31+j32−p31−p23

Γ(i3 + j31 + j32)

3F2

(

−j12, 1−i1−j12−j13, −j12−j13+p12+p31; −j12−j13, 1− i2+i1−i3
2

−j12−j13+p31; 1

)

3F2

(

−j23, 1−i2−j23−j21, −j23−j21+p23+p12; −j23−j21, 1− i3+i2−i1
2

−j23−j21+p12; 1

)

3F2

(

−j31, 1−i3−j31−j32, −j31−j32+p31+p23; −j31−j32, 1− i1+i3−i2
2

−j31−j32+p23; 1

)

(Ix1x2)
i1+i2−i3

2 (Ix2x3)
i2+i3−i1

2 (Ix3x1)
i3+i1−i2

2 (Ix1x2Kv1v2)
p12(Ix2x3Kv2v3)

p23(Ix3x1Kv3v1)
p31

(Jv1x2 − Jv1x3)
j12+j13−p12−p31(Jv2x3 − Jv2x1)

j23+j21−p23−p12(Jv3x1 − Jv3x2)
j31+j32−p31−p23 − traces.

An application of this formula is given in section 3.4.5.



Appendix C

Some Integrals of Bessel functions

C.1 Coordinate Space Representation of Bulk-To-

Boundary Vectors

The coordinate space representation of ek,β0 is obtained by performing a Fourier
transform in the index variable k,

ey,β0(x) =(2π)−d/2

∫

ddk e−ikyek,β0(x) (C.1-1)

=
Cβ0(x

0)d/2

(2π)d/2

∫

ddk eik(x−y)Kβ0(|k|x0)

=Cβ0(x
0)d/2|x− y|1−d/2

∫

dk kd/2 Jd/2−1(|x− y|k) Kβ0(kx0)

=Cβ0

Γ(d+β0

2
)Γ(d−β0

2
)

21−d/2Γ(d
2
)

(x0)−d/2
2F1

(

d + β0

2
,
d− β0

2
;

d

2
; −
|x− y|2
(x0)2

)

.

C.2 Bulk-to-bulk Propagator and Heat Kernel

We want to study the integral

Kbu
α (x, y) =(x0y0)d/2

∫

ddk

∫ ∞

0

dβ e−(β2
0+β2)α C2

iβ ei(x−y)k Kiβ(|k|x0) Kiβ(|k|y0)

=
2(x0y0)d/2

(2π)dπ2
e−β2

0α

∫

ddk

∫ ∞

0

dβ β sinh πβe−β2α ei(x−y)k Kiβ(|k|x0) Kiβ(|k|y0).

We use the helpful representation [37, 7.14.2(60)]

Kµ(z)Kµ(Z) =
1

2

∫ ∞

−∞
dt cosh µt K0[(z

2 +Z2 +2zZ cosh t)1/2] ℜz > 0, ℜZ > 0.

(C.2-2)
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This yields

Kbu
α (x, y) =

(x0y0)d/2

(2π)dπ2
e−β2

0α

∫

ddk

∫ ∞

0

dβ β sinh πβe−β2α ei(x−y)k

∫ ∞

−∞
dt cos βt K0[|k|((x0)2 + (y0)2 + 2x0y0 cosh t)1/2].

Using the integrals

∫ ∞

0

dβ β sinh πβe−β2α cos βt =
i
√

π

8α3/2

(

(t− iπ)e−
(t−iπ)2

4α − c.c.

)

(C.2-3)

and

1

(2π)d/2

∫

ddk eizkK0(|k|a) =|z|1−d/2

∫ ∞

0

dk kd/2Jd/2−1(|z|k)K0(ka)

=
2d/2−1Γ(d

2
)

(|z|2 + a2)d/2
(C.2-4)

[49, 6.576 7], obtain

Kbu
α (x, y) =

(x0y0)d/2

(2π)d/2π2
e−αβ2

0

∫ ∞

−∞
dt

i
√

π

8α3/2

(

(t− iπ)e−
(t−iπ)2

4α − c.c.

)

2d/2−1Γ(d
2
)

(|x− y|2 + (x0)2 + (y0)2 + 2x0y0 cosh t)d/2

=
Γ(d

2
)i

16 π(d+3)/2α3/2
e−β2

0α

∫

C1

dt
te−

t2

4α

(σ(x, y) + 2− 2 cosh t)d/2
,

where the contour C1 runs from −∞ − iπ to ∞ − iπ and from ∞ + iπ back to
−∞ + iπ. The value of the integral is determined by the singularities and cuts on
the strip enclosed by C1.

In even dimensions, the function in the denominator is analytic in t. There are
singularities determined by the equation

cosh t = 1 +
σ(x, y)

2
> 1

at t0 = arccosh(1+ σ(x,y)
2

) on the positive axis and at −t0 on the negative axis. In odd
dimensions, there are two cuts [t0,∞[ and ]−∞,−t0]. If we introduce the contour
C2 running from∞+ iπ to iπ to −iπ to ∞− iπ, then C1 = C2∪−C2. However, the
integral is symmetric with respect to the contour, and therefore integration along C2

and −C2 yields the same value. We restrict therefore to the contour C2; and pushing
this contour close to the real axis, we get the contour Cǫ running from ∞+ iǫ to iǫ
to −iǫ to ∞− iǫ.
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For even dimensions, we are almost there. Integrating by parts and substituting
u = cosh t,

Kbu
α (x, y) =

Γ(d
2

+ 1)i

2d/2+2 π(d+3)/2α1/2
e−β2

0α

∫

Cǫ

dt
(sinh t)e−

t2

4α

((1 + σ(x,y)
2

)− cosh t)d/2+1
(C.2-5)

=
Γ(d

2
+ 1)i

2d/2+2 π(d+3)/2α1/2
e−β2

0α

∫

cosh Cǫ

du
e−

(arccosh u)2

4α

((1 + σ(x,y)
2

)− u)d/2+1
. (C.2-6)

There is a single pole enclosed in the contour; it is the pole at u = 1 + σ(x,y)
2

, and it
has order d/2 + 1. Using Cauchy’s formula,

Kbu
α (x, y) =

e−β2
0α

2d/2+1 π(d+1)/2α1/2

(

− ∂

∂u

)
d
2

e−
(arccosh u)2

4α

∣

∣

∣

∣

u=1+
σ(x,y)

2

=
e−β2

0α

2 π(d+1)/2α1/2

(

− ∂

∂σ

)
d
2

e−
(arccosh(1+

σ(x,y)
2 ))2

4α . (C.2-7)

As a series,

(

arccosh(1 +
σ

2
)
)2

≈ σ − σ2

12
+

σ3

90
− σ4

560
+

σ5

3150
− . . .

For small α, Kbu
α (x, y) is supported significantly only in the region of small σ; in this

case, as the series expansion shows, we get a Gaussian profile as in flat Euclidean
space (with σ ∼ r2 taking the role of the distance squared). In particular, for
d = 0 we get the result from the real line computation after reparametrising the
x0-coordinate as ln x0 = u.

The kernel of the propagator is obtained by integrating

Gbu(x, y) =~

∫ ∞

0

dα Kbu
α (x, y).

In the even dimensional case, we can determine the propagator directly using
∫ ∞

0

dα

α1/2
e−m2α− t2

4α =

√
πe−mt

m
(|ℑt| < ℜt),

whence

Gbu(x, y) =
~

2 πd/2 β0

(

− ∂

∂σ

)
d
2

e−β0 arccosh(1+
σ(x,y)

2
).

In the general case, we integrate the contour integral representation (C.2-5), as it is
valid for all dimensions. The propagator then appears as

Gbu(x, y) =~
Γ(d

2
+ 1)i

2d/2+2 πd/2+1 β0

∫

Cǫ

dt
(sinh t)e−β0t

((1 + σ(x,y)
2

)− cosh t)d/2+1
.
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This integral can be done analytically. We push out the contour again to C2. The
vertical contribution from iπ to −iπ can be written

−i

∫ π

0

dt
cos(β0 − 1)t− cos(β0 + 1)t

((1 + σ(x,y)
2

)− cosh t)d/2+1
.

The horizontal contributions add up to

−i sin πβ0

∫ ∞

0

dt
e−(β0−1)t − e−(β0+1)t

((1 + σ(x,y)
2

) + cosh t)d/2+1
.

According to [49, 8.713 1]

∫ π

0

dt
cos νt

(z − cos t)d/2+1
− sin πν

∫ ∞

0

dt
e−νt

(z + cosh t)d/2+1
=

√
2πe−iπ d+1

2 Q
d+1
2

ν− 1
2

(z)

Γ
(

d
2

+ 1
)

(z2 − 1)
d+1
4

,

integration yields associated Legendre functions and the result is (σ ≡ σ(x, y))

Gbu(x, y) =~
e−iπ d+1

2

2 π
d+1
2 β0[σ(σ + 4)]

d+1
4

[

Q
d+1
2

β0− 3
2

(1 +
σ

2
)−Q

d+1
2

β0+ 1
2

(1 +
σ

2
)
]

=~
e−iπ d−1

2

2 π
d+1
2 [σ(σ + 4)]

d−1
4

Q
d−1
2

β0− 1
2

(1 +
σ

2
) (C.2-8)

=~
Γ(β0 + d

2
)

Γ(β0 + 1− d
2
)

eiπ d−1
2

2 π
d+1
2 [σ(σ + 4)]

d−1
4

Q
1−d
2

β0− 1
2

(1 +
σ

2
).

C.3 Further Relevant Integrals

The following integrals will be needed throughout the text:

∫ ∞

0

dτ

τ
τµeXτK±ν(τ) (X ≤ −1, µ− |ν| > 0)

=

√
π√

2(1−X)µ− 1
2

Γ(µ + ν)Γ(µ− ν)

Γ(µ + 1
2
)

2F1

(

1

2
+ ν,

1

2
− ν;

1

2
+ µ;

1 + X

2

)

, (C.3-9)

using [49, 6.621 3 and 9.131 1]. In particular, this implies a representation

(

X2 − 1
)

µ
2 P µ

ν− 1
2

(−X) =
(1−X)µ

Γ(1− µ)
2F1

(

1

2
+ ν,

1

2
− ν; 1− µ;

X + 1

2

)

=

√

2

π

1

Γ(1
2
− µ + ν)Γ(1

2
− µ− ν)

∫ ∞

0

dτ

τ
τ

1
2
−µeXτK±ν(τ)

(C.3-10)
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for associated Legendre functions (using [49, 8.702]). Similarly, from [49, 6.622 3,
8.736 4 and 8.773 2], for 1

2
− µ + ν > 0,

√

π

2

1

Γ(1
2

+ ν − µ)

∫ ∞

0

dτ

τ
τ

1
2
−µeXτIν(τ) =

e−µπi

Γ(1
2

+ ν + µ)

(

X2 − 1
)

µ
2 Qµ

ν− 1
2

(−X)

=
Γ(µ)

2 Γ(1
2

+ ν + µ)
(1−X)µ

2F1

(1

2
+ ν,

1

2
− ν; 1− µ;

X + 1

2

)

+
Γ(−µ)

2µ+1 Γ(1
2

+ ν − µ)
(X2 − 1)µ

2F1

(1

2
+ µ− ν,

1

2
+ µ + ν; 1 + µ;

X + 1

2

)

. (C.3-11)

For the hypergeometric functions to be expandable in a series around X = −1, we
must have µ < 1.

We discuss the validity of this formula: The generic case is ν 6∈ −N (so Iν(τ) ∼ τ ν).
The Legendre function Qµ

ν− 1
2

diverges with a simple pole if the parameters approach

µ + ν − 1
2
∈ −N; however this is balanced by the Γ-function on the right-hand-

side which diverges in this limit as well, so that the quotient is finite. Similarly, the
integral on the left-hand side diverges (ie, the analytic continuation in the parameters
of the integral diverges) if 1

2
+ν−µ ∈ −N0, but this is balanced by the Γ-function on

the left-hand side which diverges in the same parametric domain, so that the limit
is finite when one approaches one of these points.

Finally, there are the special points where ν ∈ −N, and Iν(τ) ∼ τ−ν . Then, the
condition for the integral on the LHS to diverge is 1

2
− ν − µ ∈ −N0. This implies

that 1
2

+ ν − µ ∈ −N0 as well, so the Γ-function on the left-hand side still diverges
and the limit is finite. The only case where both sides of the equation vanish is when
ν ∈ −N, the integral is convergent (1

2
− ν − µ 6∈ −N0), but the Γ-function diverges

(1
2
+ ν−µ ∈ −N0). In this case, it is easy to prove that µ+ ν + 1

2
∈ −N0, so that the

Γ-function on the right-hand-side diverges. In parallel, the Legendre function on the
right-hand-side diverges logarithimcally, so that it is dominated by the Γ-function,
and the right hand side will vanish as well. So these cases have to be excluded from
the above formula (the formula is correct, but useless).

C.4 Orthonormal Basis for the EAdS Klein-Gordon

Operator

We need to check the orthogonality and normalisation of the eigenfunctions

ek,β(x) =Cβ eixk (x0)d/2 Kβ(|k|x0) if
d2

4
+ m2 − λ > 0

ek,iβ(x) =Ciβ eixk (x0)d/2 Kiβ(|k|x0) if
d2

4
+ m2 − λ ≤ 0
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of the Klein-Gordon form (6.1-6). For the vectors ek,iβ,

〈ek,iβ, ek′,iβ′〉m =|Ciβ|2
∫

dd+1x (x0)1−2β0 ∂µ

[

(x0)β0 eikx Kiβ(|k|x0)
]∗ · ∂µ

[

(x0)β0 eik′x Kiβ′(|k′|x0)
]

=|Ciβ|2(2π)dδ(d)(k − k′)

∫

dx0
{

x0K−iβ(x0)Kiβ′(x0)+

(x0)1−2β0 ∂0

[

(x0)β0 K−iβ(x0)
]

· ∂0

[

(x0)β0 Kiβ′(x0)
]

}

. (C.4-12)

The integral can be evaluated if we make some basic assumptions characteristic for
the bulk part of the wave functions; this will enable us to perform integration by
parts. We study the second summand in the brackets. Ignoring the prefactors and
abbreviating Kν(x

0) ≡ Kν , it can be written as
∫

dx0
{

(x0)1−2β0 ∂0

[

(x0)β0−iβ(x0)iβ K−iβ

]

· ∂0

[

(x0)β0+iβ′

(x0)−iβ′

Kiβ′

]}

=

∫

dx0 x0

[

β0 − iβ

x0
K−iβ −K−iβ+1

]

·
[

β0 + iβ ′

x0
Kiβ′ −Kiβ′+1

]

=(β0 − iβ)(β0 + iβ ′)

∫

dx0 K−iβKiβ′

x0

− β0

∫

dx0 (K−iβKiβ′+1 + K−iβ+1Kiβ′)

+

∫

dx0
(

x0K−iβ+1Kiβ′+1 + iβK−iβKiβ′+1 − iβ ′K−iβ+1Kiβ′

)

.

These integrals can be evaluated using the formula
∫ ∞

0

dz

z
K−iβ(z)Kiβ′(z) =

π

2
|Γ(iβ)|2δ(β − β ′) =

π2

2β sinh πβ
δ(β − β ′) β, β ′ > 0.

(This is the well-known kernel of the Kontorovich-Lebedev transform 1) [36, 95]. Con-
cerning the second integral, we may write it as a total derivative and a Kontorovich-
Lebedev remainder,

−K−iβKiβ′+1 −K−iβ+1Kiβ′ = ∂0K−iβKiβ′ +
i(β − β ′)

x0
K−iβKiβ′ .

The last integral can be compounded with the contribution from the transverse
derivatives which we left out so far. This gives

x0K−iβKiβ′ + x0K−iβ+1Kiβ′+1 + iβK−iβKiβ′+1 − iβ ′K−iβ+1Kiβ′

= ∂0

(

−x0K−iβKiβ′+1 + iβ ′K−iβKiβ′

)

+ iβ ′ i(β − β ′)

x0
K−iβKiβ′ .

When we compute the total integral, we assume that the Bessel functions are suf-
ficiently smeared in β resp. β ′ so that limx0→0+

∫

dβ f(β)Kiβ(x0) = 0 fast enough,

1Also called “Kantorovich-Lebedev” transform in the literature.
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where β is the smearing function. Then, the integral over the total derivatives van-
ishes. That this assumption is reasonable will be obvious once we have computed the
scalar product in (k, β)-space; the normalisation conditions will be seen to guarantee
this assumption .

Employing the Kontorovich-Lebedev kernel, we obtain for the integrations

[(β0 − iβ)(β0 + iβ ′) + (iβ ′ + β0)(iβ − iβ ′)]
π2

2β sinh πβ
δ(β − β ′).

So the kernel of the scalar product is

〈ek,iβ, ek′,iβ′〉 =|Ciβ|2(2π)dδ(d)(k − k′)
π2 λiβ

2β sinh πβ
δ(β − β ′),

where we have used λiβ ≡ β2
0 + β2.

It is assumed here implicitely that the “plane waves” in this scalar product are
smeared with wave functions f(β, k) which are at least L2

loc(AdS). We choose there-
fore a normalisation

Ciβ =

(

2β sinh πβ

(2π)dπ2

)1/2

.

Then, 〈ek,iβ, ek′,iβ′〉 = λiβδ
(d)(k − k′)δ(β − β ′).

For the eigenvectors ek,β, the situation is completely different. For small x0, Kβ(x0) ∼
(x0)−β. Accordingly, the integrand of the scalar product becomes

x0Kβ(x0)Kβ′(x0) + (x0)1−2β0 ∂0

[

(x0)β0 Kβ(x0)
]

· ∂0

[

(x0)β0 Kβ′(x0)
]

∼ (x0)1−β−β′

+ (β0 − β)(β0 − β ′)(x0)−1−β−β′

.

One can see that if the second terms does not vanish, the integral in the scalar
product must diverge - smearing with respect to β or β ′ can not cure the problem.
So either β = β0 or β ′ = β0; and because of (generalised) normalisability of the
eigenvectors, this means that there can be no generalised eigenvector for real β 6= β0.
A bit of analysis yields

〈ek,β0, ek′,β0
〉 =|Cβ0|2(2π)dδ(d)(k − k′)

∫

dx0
{

x0Kβ0(x
0)Kβ0(x

0)+

(x0)1−2β0 ∂0

[

(x0)β0 Kβ0(x
0)
]

· ∂0

[

(x0)β0 Kβ0(x
0)
]

}

=|Cβ0|2(2π)dδ(d)(k − k′)

∫

dx0
{

x0Kβ0(x
0)2 + x0Kβ0−1(x

0)2
}

=|Cβ0|2(2π)dδ(d)(k − k′)
π

2 sin β0π
, if 0 < β0 < 1

[49, 6.521 3]. Convergence imposes the bounds −d2

4
< m2 < (1− d2

4
) on the range of

possible masses. Choosing the normalisation

Cβ0 =

(

2 sinβ0π

(2π)dπ

)1/2

,
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the scalar product becomes 〈ek,β0, ek′,β0
〉 = δ(d)(k − k′).

We have yet to check the orthogonality of the imaginary and the real indexed eigen-
functions:

〈ek,iβ, ek′,β0
〉 =CiβCβ0(2π)dδ(d)(k − k′)

∫

dx0
{

x0K−iβ(x0)Kβ0(x
0)+

(x0)1−2β0 ∂0

[

(x0)β0 K−iβ(x0)
]

· ∂0

[

(x0)β0 Kβ0(x
0)
]

}

=CiβCβ0(2π)dδ(d)(k − k′)

∫

dx0
{

x0K−iβ(x0)Kβ0(x
0)+

− ∂0

[

(x0)β0 K−iβ(x0)
]

· (x0)1−β0 Kβ0−1(x
0)
}

= 0

by integration by parts.



Appendix D

Worldgraph Formalism for
Feynman Amplitudes

We summarise very briefly the content of a previous publication by the author [53],
which is used in section 3.4 to derive the generating formula (3.4-82) for the three-
point functions of tensor currents.

A unified treatment of Schwinger parametrised Feynman amplitudes is suggested
which addresses vertices of arbitrary order on the same footing as propagators. Con-
tributions from distinct diagrams are organised col- lectively. The scheme is based
on the continuous graph Laplacian. The analogy to a classical statistical diffusion
system of vector charges on the graph is explored.

Given a Euclidean Feynman graph for particles of mass m, the propagators can be
parametrised in wave number space as

1

k2 + m2
=

∫ ∞

0

dτ e−τ(k2+m2). (D.0-1)

If the ”Schwinger parameters” τ associated thus with each propagator are interpreted
as ”times” (although this is only a formal notion), then one can give a complete
statistical interpretation in terms of a classical diffusive system to the Feynman
graph amplitudes. This can be understood from the fact that the integral kernel in
(D.0-1) is nothing but the d-dimensional diffusion kernel in wave number space, for
time τ .

Not only does this allow very simple and highly symmetric generating function ar-
guments like the one we use here, for graphs of arbitrary topology; the similarity to
correlations as implied by string theory is stressed in this approach, and the similar-
ity of the Schwinger parameters to the ”moduli” of string theory can be driven to
an astonishing degree.
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[37] A. Erdélyi, editor. Higher transcendental functions. Vol. II. Bateman
Manuscript Project, California Institute of Technology. Malabar, Florida:
Robert E. Krieger Publishing Company, 1981.

[38] J. S. Feldman and K. Osterwalder. The Wightman axioms and the mass gap
for weakly coupled φ4

3 quantum field theories. Annals Phys., 97:80–135, 1976.

[39] E. S. Fradkin and M. Y. Palchik. Conformal quantum field theory in D di-
mensions, volume 376 of Mathematics and its applications. Kluwer, 1996.
Dordrecht, Netherlands.

[40] C. Fronsdal. Massless fields with integer spin. Phys. Rev. D, 18(10):3624–3629,
Nov 1978.



188 BIBLIOGRAPHY

[41] C. Fronsdal. Singletons and massless, integral spin fields on de Sitter space
(elementary particles in a curved space vii). Phys. Rev., D20:848–856, 1979.

[42] S. A. Fulling. Aspects of quantum field theory in curved space-time. London
Math. Soc. Student Texts, 17, 1989.

[43] J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view.
Springer-Verlag, New York - Heidelberg - Berlin, 1981.

[44] J. Glimm and A. M. Jaffe. Positivity of the φ4
3 Hamiltonian. Fortsch. Phys.,

21:327–376, 1973.

[45] R. Gopakumar. From free fields to AdS. Phys. Rev., D70:025009, 2004, hep-
th/0308184.

[46] R. Gopakumar. From free fields to AdS. II. Phys. Rev., D70:025010, 2004,
hep-th/0402063.

[47] R. Gopakumar. From free fields to AdS. III. Phys. Rev., D72:066008, 2005,
hep-th/0504229.

[48] H. Gottschalk and H. Thaler. AdS/CFT correspondence in the Euclidean
context. 2006, math-ph/0611006.

[49] I. Gradshteyn and I. Ryzhik. Table of integrals, series, and products. Academic
Press, San Diego, 6th edition, 2000.

[50] A. Grundmeier. Die Funktionalintegrale der AdS-CFT-Korrespondenz. Mas-
ter’s thesis, Georg-August-Universität Göttingen, 2004.

[51] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov. Gauge theory correla-
tors from non-critical string theory. Phys. Lett., B428:105–114, 1998, hep-
th/9802109.

[52] S. W. Hawking. Particle creation by black holes. Commun. Math. Phys.,
43:199–220, 1975.

[53] H. Hölzler. World graph formalism for Feynman amplitudes. 2007,
arXiv:0704.3392 [hep-th].

[54] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen. Mass spectrum of chiral
ten-dimensional N = 2 supergravity on S5. Phys. Rev. D, 32(2):389–399, Jul
1985.

[55] I. R. Klebanov and A. M. Polyakov. AdS dual of the critical O(N) vector
model. Phys. Lett., B550:213–219, 2002, hep-th/0210114.

[56] I. R. Klebanov and E. Witten. AdS/CFT correspondence and symmetry break-
ing. Nucl. Phys., B556:89–114, 1999, hep-th/9905104.



BIBLIOGRAPHY 189

[57] H. Kleinert and V. Schulte-Frohlinde. Critical properties of phi4-theories.
World Scientific, 2001. River Edge, USA.

[58] O. Kniemeyer. Untersuchungen am erzeugenden Funktional der AdS-CFT-
Korrespondenz. Master’s thesis, Universität Göttingen, 2002.

[59] D. Krotov and A. Morozov. A solvable sector of AdS theory. Journal of High
Energy Physics, 2005(10):062–062, 2005.

[60] T. Leonhardt, R. Manvelyan, and W. Rühl. The group approach to AdS space
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