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Abstract

Geant4 is the first global collaborative effort in high energy physics to employ object
oriented technologies in pursuit of a single goal. The portion of this effort devoted to
providing OpenGL drivers written in object oriented C++ is presented here, togeth-
er with a discussion of the framework that Geant4 provides in favour of visualization.
Also described is the method by which physics processes may become parameter-
ized by Geant4, and an investigation into a possible parameterization of e, ¢, and
~v initiated electromagnetic showers in Caesium lodide doped with Thallium, that

might be used in the BaBar experiment.
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Chapter 1

Detector simulation for particle

physics

1.1 Introduction to Geant4

The role of the physicist is to observe, record and try to see the patterns in the
surrounding world. When a pattern is found, the physicist may try to describe it
and, based on this description, make predictions about the quantities that constitute
the pattern. In modern particle physics, machines are used to observe and record
data, and computers are employed to help store, process and visualize that data.
Computer programs are also able to simulate and visualize the processes observed by
the machines, using descriptions formed from previous inspections of data. Geant4

is one such computer program.

Geant4 has been developed as a research and design project (RD44) at CERN!. It
aims to provide an object oriented toolkit of modules, written in C++, regarding
the simulation and visualization of physics processes of particles in matter. The

toolkit philosophy of production will enable users to supply their own modules to

! The European particle physics laboratory.

15



CHAPTER 1. DETECTOR SIMULATION FOR PARTICLE PHYSICS 16

the Geant4 framework, relieving some of the burden of software maintenance from
the originators of code. Features of object orientation with C++ (chapter 2) and
visualization with OpenGL (chapter 3) in Geant4 (chapter 5) are described, together
with a description of the parameterization framework in Geant4 (chapter 6). Also
described is an investigation into a parameterization of electromagnetic showers in
Caesium Jodide doped with Thallium (chapter 7), which might be inserted into this
framework for use in a simulation of the BaBar experiment at SLAC?. The BaBar
experiment is due to start taking data in early 1999 and will be the first particle
physics experiment to use the Geant4 toolkit. Use of the toolkit is not, however,
limited to particle physics, as applications in medical physics, space physics and

other areas of physics are being evaluated.

1.2 Introduction to BaBar

The BaBar experiment is situated at the interaction vertex of the asymmetric 9.0
GeV e~ on 3.1 GeV et PEP-II storage ring facility at SLAC. This places the centre
of mass energy on the Y (4S) resonance, whose dominant decay mode is to BB. The
asymmetry of the system boosts the centre of mass in the laboratory frame enabling

the short lived (7 ~ 1072 s) B mesons and their decay chains to be observed.

In measuring the decays of B’ and BY mesons, it is anticipated that the effects
of CP violation will be evident, as were first observed in the decay of K? mesons
(t ~ 1078 s) in 1964 by Cronin and Fitch. Although the BB production rate is
only going to be 3 Hz, rising to 10 Hz at the final beam luminosity of 103 cm™2 s71,
the boosted centre of mass and ensuing separation of the B and B vertices promises
to provide enough B°B° decay information (including the time between the decay

of the B® and B°) to help make accurate determinations of some elements of the

Cabibbo-Kobayashi-Maskawa quark mixing matrix.

2Stanford Linear Accelerator Center, San Francisco, USA.
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1.3 The BaBar electromagnetic calorimeter

Electromagnetic calorimetry for the BaBar experiment will be performed by a barrel
calorimeter surrounding the interaction vertex and covering a solid angle range of
—0.80 < cosf# < 0.89, and an endcap calorimeter covering the solid angle range
0.89 < cosf < 0.97. The calorimeters are made from trapezoidal crystals of Cae-
sium Todide doped with Thallium (CsI(T1)), with 5880 such crystals comprising the
barrel, and 900 comprising the endcap. Each crystal is between 16.0 and 17.5 radi-
ation lengths deep, and is backed by two photodiodes (two for redundancy) and the
readout cables to an ADC? board, as well as a fibre optic cable present for in-situ

calibration purposes.

By its very nature (the electromagnetic calorimeter is designed to absorb and mea-
sure as much energy via electromagnetic interactions as possible) the simulation of
interactions undergone by charged particles traversing the electromagnetic calorime-

ter can be a very lengthy process, and a prime candidate for parameterization.

3 Analogue to Digital Converter.



Chapter 2

Object Oriented C++4

2.1 Overview of object oriented programming

Object oriented programming (OOP) is a style of computer programming that em-
phasizes the association between data and their behaviour. It is a development
of programming style, that surpasses more traditional procedural (structured) for-
malisms, designed with larger, multi-developer projects in mind [16]. Programs can
be written in an object oriented style in any language but some languages, such as
Smalltalk, Eiffel [12], C++ [17], [5], and more recently Java, lend themselves to it.
As a program grows in size, so does its complexity. As the complexity increases, the
architecture of the program becomes more significant than the language it is made
from. The employment of OOP can help to minimize the impact of these increas-
es in complexity, for example, by making behaviour independent of the underlying

implementation (see section 2.2.2).

To help achieve a good object oriented program structure, several good Computer
Aided Software Engineering (CASE) tools exist on the market. One such CASE

tool, Rational Rose, was employed to help produce some of the diagrams in this

18



CHAPTER 2. OBJECT ORIENTED C++ 19

report. A brief description of the UML! is given in Appendix A.

The GEANT4 toolkit was designed in an object oriented fashion, and has used C++
to help achieve the design goals. Some salient features of OOP and how they are

realized in C++ are discussed below.

2.2 Object orientation

The mainstay of any object oriented language is the object. An object is a collection
of data and functions (or methods) that together define a single entity, which in
C++ is called the class. The class may then be used as a blueprint to create many
‘instances’ of itself, referred to as objects. The user defined object is treated on equal
terms with objects of intrinsic data types (float, int, char, etc.) and so augments the
language. The real power of an object oriented program is in the quality of design

of its types.

However, C++ merely empowers the programmer to create an OO project; it does
not enforce it. Consequently, a lot of care has to be taken in ensuring that a large
project such as Geant4 does not assume that the use of C++ guarantees OOP. The

goals of reuse, quality, and maintainability are not automatically achieved in C++-.

The attractions of basing a programming effort on the design and creation of objects
are numerous. Three of the more important reasons are discussed below, with

examples of their expression in C++ and Geant4.

2.2.1 Inheritance

Inheritance is the mechanism by which OOP aims to achieve code sharing and

reuse. It is expressed by the derivation of one class from another — for instance

! Universal Modeling Language.
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G40penGLXmView is derived from G40penGLXView in figure 2.5. A derived class may
build on the parent class by reusing all of the parent’s functionality, or it may
redefine parts or all of the implementation. If it is to redefine functions then the
functions must be declared as being virtual in the parent class so that they may
be added to the so-called virtual function table in preparation for dynamic binding
at run time. If the parent class declares a function as being pure virtual then
this function must be defined in any derived class or else that class will be abstract

(unable to be instantiated).

‘ virtual void Draw () = 0;

Figure 2.1: The declaration of a pure virtual function

Another consequence of inheritance is that an object of a derived class type may be
referred to as an object of the parent class type and treated as such where it may

be convenient to do so. (See example in 2.2.3.)

2.2.2 Encapsulation

The concept of encapsulation describes the distinction between an object’s internal
representation and its external interface. In C++4 there are three levels of visibility:
public, protected, and private. These enable a class to limit the extent to which
objects of other classes may interact with objects of its own type. Members (data
or functions) of a class may also be declared as const, static, or extern. The

meanings of these keywords are described below.

public:
the public keyword signifies that a member (datum or function) of a class can be
accessed from any other class or function (i.e. anywhere). The constructor function

of a class would normally be made public.
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protected:
a protected member may be accessed from an instance of the class or any of its
derived classes but nowhere else. protected is a way of keeping access ‘in the family’

for a class hierarchy.

private:

a private member can only be accessed from the instance of its own class.

const:

a const data member must be defined at the same time as its declaration, e.g. const
double pi = 3.14159; as it may not be modified after declaration. A compile time
error is caused if an attempt is made to do so. In the context of functions, const
may occur in two places. When positioned in front of the function name, const acts
on the return type of the function so that the value returned by successful execution
of the function may not be changed. When positioned after the function name,
const signifies that no data members of the object may become altered during the

execution of the function.

G4bool GetValue () const;
const G4VisExtent& GetBoundingSphereExtent ();

const G4ViewParameters& GetViewParameters () const;

Figure 2.2: Some uses of const with functions in Geant4. (i) a const function, (ii) a

function with a const return type, (iii) a const function with a const return type.

static:
data members of a class that are declared as static are shared by all instances
of that class, stored uniquely in one place, and can be accessed independent of an

instance of the class — thus : class_name: : data_member. A static function of



CHAPTER 2. OBJECT ORIENTED C++ 22

a class is designated by the static keyword appearing in the function declaration
before the function name and means that it can be accessed independently of any
instance of the class. Also, it has no access to any non static data members of

that class.

extern:

the extern keyword in C++ allows data and functions to have global scope. Any da-
ta or functions that are declared outside a function are automatically made extern.
This becomes useful when a global variable is defined in one file and is required in
another. By declaring the variable as extern in the file where it is required, the
linker is told to resolve the reference to the variable by looking for its definition

elsewhere.

in filel.cc
double pi = 3.14159;

in file2.cc

extern double pi; // tells compiler that pi is declared elsewhere

double Circumference (Circle c) {

return 2.0*pix*c.radius();

}

Figure 2.3: The extern storage class in C++

The declaration of object members as public, protected, or private should be
viewed as another aid to code reuse. These keywords can help avoid the innocent
mistakes that users unfamiliar with the code they are trying to reuse might conceiv-

ably make. Such declarations provide protection against a cluttered global variable



CHAPTER 2. OBJECT ORIENTED C++ 23

space such as that offered by COMMON blocks in FORTRAN. As with any language

that gives direct access to raw memory, there is no protection against fraudulent use.

2.2.3 Polymorphism

Polymorphism describes a situation in which a single name (e.g. of a function) can
represent many different implementations. Object orientation allows polymorphism

to be expressed in three different ways.

(i) Function overloading

In C++, function overloading is achieved via a process of ‘name mangling’. The
compiled name of each function is constructed to include information on the number
and types of arguments with which the function would be called. This enables the

linker to select the appropriate overloaded function, given the context.

void G40OpenGLScene::AddPrimitive (const G4Text& text)
void G40penGLScene::AddPrimitive (const G4Circle& circle)

void G40penGLScene::AddPrimitive (const G4Polyhedron& polyhedron)

Figure 2.4: Some polymorphic overloaded functions in Geant4 visualization

(ii) Polymorphism via inheritance

Where a class hierarchy exists, functions supplied by a parent class can also be
defined in a derived class. If a particular function in this category is declared as
virtual, then its invocation is only decided upon at run time, i.e. the function

becomes dynamically bound. This action lends itself well to code reuse as the same
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piece of code can lead to different consequences depending on which objects in a
hierarchy have been instantiated.

With reference to figure 2.5, the virtual function mechanism allows the correct

form of CreateMainWindow() to be called in the statement

G40penGLXView* v = new G40penGLXmView(); v->CreateMainWindow() ;.

class G40penGLXView: virtual public G40penGLView {
protected:

virtual void CreateMainWindow ();

}

class G40penGLXmView: public G40penGLXView {
protected:

virtual void CreateMainWindow ();

Figure 2.5: Polymorphism via inheritance in Geant4

(iii) Polymorphism via genericity

C++ gives support for parameterized forms of classes via the template keyword.
Template classes can save a lot of class rewriting when the only differences between
classes would be type declarations. They are particularly useful as containers or
other such objects that may perform operations (on a group of data) which may be

generalized so as to be independent of the data type involved.

Because template classes are compiled they benefit from the C++ compiler’s strong
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type checking. (Similar results may be achieved through the use of precompiler

macro definitions but these bypass the type checking.)

The standard template library is a collection of templates (mostly containers and
iterators) that makes a large contribution to code reuse. These have been tested
and may be assumed to function correctly although their introduction into projects

(such as Geant4) in place of the existing template classes is not trivial.



Chapter 3

The OpenGL Graphics Library

The OpenGL application programming interface (API) is an open standard for the
production of 3D graphics. It originated as the proprietary Graphics Library (GL)
for Silicon Graphics’ IRIS systems and has been adopted as a de facto standard for
the production of 2D and 3D computer graphics. OpenGL is a procedural library
so every detail of a view (camera position, lights, object positions, etc.) must be

described before it can be rendered [11].

The term ‘open’ means that the language definition is free from licensing restrictions,
enabling free-ware versions, such as Brian Paul’s Mesa [14], to be written. It defines
over 120 functions that perform a fairly basic set of 3D graphics operations, such
as rotate, translate, scale, etc., as well as providing some functionality in respect
of more sophisticated 3D graphics operations such as texture mapping or evaluated
object support. Some essential features of 3D graphics programming are discussed

below, together with some further aspects of OpenGL.

26



CHAPTER 3. THE OPENGL GRAPHICS LIBRARY 27

3.1 Fundamentals of 3D graphics

There are three operations at the very heart of all 3D graphics modeling: scale (5),
rotate (R), and translate (7). If a point P in euclidean three dimensional space is
represented as a 1 x 3 column vector then these operations may be represented by
a 1 x 3 matrix (translation) and two 3 x 3 matrices. The operation of translation is

additive whereas scaling and rotation are multiplicative.
Translation : P'=P+T
Rotation : P"=R- P

Scaling: P'=S5-P

3.1.1 The homogeneous coordinate system

If we choose to represent the points in three dimensional euclidean space as four
dimensional homogeneous coordinates then translation may also be treated as a
multiplicative process, enabling us to apply translations, scalings, and rotations
in a consistent fashion. Homogeneous coordinates were introduced to geometry in
1946 by E. A. Maxwell [10] and are constructed from the z, y and z components of
euclidean space, plus a fourth, W component. To get from euclidean to homogeneous
coordinates one may simply add the W component set to 1. Given a point in
homogeneous coordinate space, all multiples of it (i.e., points lying on the line
joining it with the origin) refer to the same point in euclidean space. Furthermore,
the plane in homogeneous coordinate space with W = 1 represents the complete set

of points in euclidean space.

The 4 x 4 matrices T, R, and S, used to produce translation, rotation (about the

z — axis), and scaling respectively may be represented as follows.
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1 0 0 T, cosf), —sinf, 0 O S, 0 0 0

01 0 T, sinf, cosf, 0 0 0 S, 0 0
T — = S =

001 T, 0 0 10 0 0 S, 0

000 1 0 0 0 1 0 0 0 1

3.1.2 Compound operations

When combining S, T, and R into a compound matrix, caution must be exercised
in the order of operations. T commutes with neither R nor S and so the order in
which these operations are compounded matters. Assuming that a correct 4 x 4
compound matrix (M) has been formed, the premultiplication of a 1 x 4 homoge-
neous coordinate vector, H, by it would appear to involve 16 multiplications and 12
additions. However, the bottom row of M is always 0 0 0 1 (for a homogenized ma-
trix — one in which all elements have been divided by W) so the operation reduces

to 9 multiplications and 9 additions.

3.2 Stages of modeling in OpenGL

Before OpenGL can draw anything, a model must be specified. A model is a col-
lection of vertices (or an evaluated object(s) such as a NURBS, from which a set
of vertices may be derived) with which other data such as colour may be associat-
ed. The model must eventually become clipped (to discard vertices outside some
region of interest) and represented in 2D to enable visualization in some viewport
(on screen, paper, etc.). The processes employed between the construction of the

model and its visualization are described briefly below.
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3.2.1 The modelview transformations

In constructing the model, rotations, translations, and scalings may be combined and
applied as modeling transformations or viewing transformations. The term viewing
transformation means a transformation applied to the viewer (camera) and the term
modeling transformation means a transformation applied within (or to) the model.
The viewer in OpenGL is initially located at the origin and faces down the negative
z — axis. Moving the model ten units in the negative z direction is equivalent to
moving the viewer ten units in the positive z direction. This equivalence makes
it sensible to think about ‘modelview’ transformations rather than about modeling

and viewing ones separately.

The application of modelview transformations in OpenGL takes place via the mod-
elview matrix stack. Each time a modelview transformation is specified, it postmul-
tiplies the top matrix in the stack to produce a new transformation matrix. This
matrix becomes the new top modelview stack matrix. There may be over 32 ma-
trices in the modelview matrix stack (depending on the OpenGL implementation).
This enables the programmer to ‘push’ and ‘pop’ the top matrix if there is reason to
preserve a copy of its contents. The action of pushing the stack moves all matrices
in the stack down one position (and so may discard the contents of what was the
32nd matrix before the push) and copies the contents of the 2nd place matrix into
the new top matrix. The programmer may restore the original top matrix at any
time by popping the matrix stack, which moves all the matrices up one position

(discarding the contents of the top matrix).

Each vertex described to OpenGL becomes premultiplied by the current top mod-
elview matrix. Hence, the last transformation described to OpenGL is the first
transformation to be applied to a vertex. In this way, the order and effect of the
application of modelview transformations in OpenGL on a point P is equivalent to

the interpretation of transformations being applied to the vertex (rather than to the
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camera).

Implied matrix operations in OpenGL

OpenGL code

M=1
glRotatef (...); M=R
glTranslatef (...); M =MxT

—

glScalef (...); M"=M' xS
glVertex3f (...); P =M"xP

= (R (T x (S x P)));

3.2.2 The projection transformations

Once the model has been composed, it must be clipped in order to discard any ver-
tices lying outside a particular viewing volume. The points lying within the viewing
volume must also become projected onto a 2D plane before they can be mapped into
the viewport. The tasks of clipping and projection onto 2D planes are performed by
the projection matriz. OpenGL actually produces projection matrices which project
vertices into a normalized device coordinate system (NDCS) box between (-1, -1,

-1) and (1, 1, 1).

Although only = and y positions are needed to map the projection into a viewport,
the depth information is retained so that, if requested, rendering does not obscure
foreground pixels with background ones. Two kinds of projection matrix can be

defined in OpenGL; orthographic and perspective.
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3D model

Projectors | i X
\ g

" Projection plane

Centre of projection

Figure 3.1: The projection of a 3D model onto a 2D projection plane

The orthographic projection matrix

A view of a model projected with an orthographic projection matrix preserves paral-
lelism of lines in the model but not angles. For this reason, orthographic projection
is useful for technical drawing but lacks realism, as foreshortening of lines is uniform
rather than dependent on the distance from the centre of projection (as is the case

with the perspective projection).

Figure 3.2: The orthographic projection viewing volume

To construct the orthographic projection matrix, one considers its role of mapping
coordinates in the modeling coordinate system (MCS) into a NDCS box between

(-1,-1,-1) and (1, 1, 1).

From figure 337 INDCS = ( 2xpMes (right+left

) Qi
right left) — (righi—tefp- Similarly,
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XNDCs

left XMcs
right

Figure 3.3: Mapping MCS to NDCS in an orthographic projection

2YMCs (top+bottom)

YNDCS = Top—bottom) — (top—bottom)

___22yc0s  _ (far+near)
ZNDCS = (far—near) (far—near)

In a 4 x 4 matrix, this is represented as

rzl 0 0 - (:_i—ﬁ)

Mortho = ! % 02 N (i)
00 (%) — ()
0 0 0 1

The perspective projection matrix

A perspective projection is characterized by parallel lines in the model, which are not
parallel to the plane of projection, converging to a vanishing point in the view. It is
more realistic than the orthographic projection, as the size of a model element under
a perspective projection is inversely proportional to the distance of that element from

the centre of projection. This is called perspective foreshortening.

The production of the matrix for a perspective projection is rather less straightfor-
ward than for the orthographic case. In projecting points from the frustum viewing
volume of MCS space to a NDCS space, each of x, y, and 2z must be scaled and

translated. Furthermore, zypcs, and yypcs must become functions of zp;c5. The
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Figure 3.4: The perspective projection viewing volume

matrix below is able to accommodate these requirements.

A0 B 0
y 0 C D 0
e 00 E F

00 -1 0
near

Figure 3.5: Considerations for constructing matrix elements of My,

To calculate the matrix elements, one inspects the purpose they must serve. We

: _ right xnpcs _
require that for xy 05 = —2mcs X 720, ot = 1

The transformed x component in NDCS space is xypcs = A X xyos + B X Zyes.

(—2nmos X 2 L Bxayes 1

Noting that WNDCS = —2Zmcs, We get e —ZMCS

.. Ax(—z /xl—E&Jerz /
Similarly, ( MCS%Z;‘ZS) Mes 1,
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The last two can be solved for A and B to give

__ _2Xmnear __ right+left
T right—left’ and B = right—left"

The other elements of M, are produced in the same way to give

2X +1
r—? 0 :—l 0
2 t+b
[V = =
persp —
0 0 o f+n —2fn
f-n  f-n
0 0 -1 0

3.2.3 The viewport transformation

When the model has been transformed into NDCS space, it is ready to be mapped
onto the screen (or file, paper, etc.). OpenGL supplies the function glViewport(x,
y, width, height) to define the pixel dimensions of the window in which the model
is to be rasterized or converted into a pixel representation. It is at the rasterization
stage that information given by the zypcs coordinates may be used to apply depth

buffering or fog effects to the view of the model.

3.3 Colour

The processes discussed so far can produce an image on a 2D screen of a 3D computer
model but no mention has yet been made of how to propagate colours. OpenGL
is a state machine, meaning that its current state will persist without the need
for redefinition, until some signal is received that causes its state to change. More
simply, each time a vertex is specified in the model, the current colour state is
associated with it (which initially defaults to white). Thus, OpenGL’s current colour

state must be changed — via the glColor*(...) function — before specification
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of every vertex that is intended to be a different colour from the last one. During
the rasterization process, OpenGL decides which pixels in the viewport each of the
primitives (i.e., polygon, line, point, bitmap, or image) that comprise the model
occupies. Each pixel then accumulates a value for z (depth), colour, and texture
coordinates (if texture mapping is enabled) from the part of the primitive it is meant

to represent. This collection is referred to as a fragment.

3.3.1 Colour in an unlit model

Each primitive for which fragments are produced is defined by a set of vertices. In
an unlit view, the colour associated with the fragment may be simply derived from
the colour associated with its primitive’s vertices. If the vertices of the primitive are
not all the same colour, then the colour of the fragment is derived from a smooth

interpolation between the colours of the vertices.

3.3.2 The illuminated model

OpenGL also offers the opportunity to specify a number of lights (up to at least 8)
with which to illuminate the model. As soon as light is introduced into the model,

surface properties of primitives becomes important.

Lights

The properties and positions of the lights that may illuminate the model are specified
to OpenGL by the glLight*(...) function. This may define the position of each
light in the model as well as its specular, diffuse, and ambient red, green, blue,
and alpha (RGBA) colour components. The alpha component may be used when
calculating the colour components of fragments where model primitives overlap, and

is best thought of as opacity. Hence, an alpha value of 1.0 represents a totally opaque
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colour, and alpha values of less than 1.0 imply an increasing degree of transparency.
Properties of spot lights (spread angle, intensity distribution, direction, etc.) and

light attenuation coefficients (constant, linear, and quadratic) may also be specified.

e Specularity
Specular light has a definite direction and scatters off objects in a preferred direction.

An example of specular light is sun light reflecting off a highly polished mirror.

e Diffuseness
Diffuse light comes from a definite direction, so is more intense in reflection if its
incidence with an object is ‘square on’ rather than glancing, but is equally likely to

scatter in all directions when reflecting off an object.

e Ambience
Some component of light from a source is scattered so much by the environment that
its direction is impossible to determine. When ambient light reflects off a surface,

it does so in all directions.

Materials

In OpenGL, one may specify terms to describe how the various components of
incident light are reflected off a surface. These are the surface’s material properties.
So there is a term to attenuate incident ambient light, one to attenuate incident
specular light, etc. The eventual colour of a fragment is a function of the ambient
light in the model reflected off the surface of the primitive, the ambient, specular,
and diffuse components of individual (spot)lights reflecting off the surface of the
primitive, and the emission of light from the surface of the primitive. The individual
R, G, and B values for the colour of a fragment are calculated separately, and the

alpha value is derived from the material’s diffuse alpha value at the surface.
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3.4 The OpenGL immediate and stored modes

OpenGL is able to function in two states regarding the way it handles the invocation

of calls made to it — stored, and immediate mode.

3.4.1 Immediate mode

As a state machine, OpenGL interprets data according to the last state variables
it was given (e.g. what colour subsequent vertices are associated with, whether
vertices should be interpreted individually as points, or in triplets as triangles, etc.)
In immediate mode, the OpenGL state machine draws to the screen, operations (and

states) are not stored and therefore not recoverable.

3.4.2 Stored mode

The alternative to immediate mode is stored mode, which utilizes the concept of
display lists. A display list may be thought of as a container in which may be placed
OpenGL function calls (with some exceptions). It is possible to execute OpenGL
function calls at the same time as placing them in a display list, but the real power
of the display list is that it can be executed after creation (invoking all the OpenGL
function calls that were placed inside it) without the overheads of any processing

that was performed in obtaining those function calls.

In the client server model of OpenGL, display lists may become resident on the server
side (in an analogous fashion to XWindows resources — see chapter 4) and so when
operating in a client server environment, the increase in rendering performance of
OpenGL in stored mode will be most noticeable. Indeed if the contents of a display
list are currently sufficient to describe some scene except for a change in, say, the

viewpoint, then only the new projection matrix need be transmitted from client to
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server in order for OpenGL to render the new view.

The disadvantages to using display lists are that they take up memory (which may
be a scarce resource on the server where they will be stored) and are unmodifiable
after creation. The latter restriction is present to minimize the memory management
capabilities required of the server [15] where they will be stored. However, intelligent
use of display lists and the execution of display lists from within other display lists

give back the OpenGL programmer a degree of flexibility.

3.5 OpenGL drawing buffers

As vertices and states are defined to OpenGL, rendering may be performed in one
or more of the four types of buffer that OpenGL makes available to the program-
mer. These buffers may be resident in hardware or software and each represents a
rectangular array of pixels. Together, they comprise the framebuffer. Each pixel in
a given buffer holds the same amount of information but pixels of different buffers
may contain different amounts of information. The role of each buffer is briefly

described below.

3.5.1 Colour buffer

The colour buffer pixel data can contain either a colour index (if OpenGL is oper-

ating in colour index mode ') or RGBA information (in RGBA mode operation).

There may be as many as four auxiliary colour buffers as well as front/back and
left /right colour buffers. The auxiliary buffers are non-displayable but may be copied
into one of the displayable front/back, left/right colour buffers. The intended use

LColour index mode is a state in which a palette of colours is allocated by OpenGL before
any rendering occurs. The colour of each rasterized pixel may only be selected from those colours

available in the palette, each of which is referred to by a unique index.



CHAPTER 3. THE OPENGL GRAPHICS LIBRARY 39

of the left/right buffers is to produce stereoscopic views. Where front/back buffers
exist, the front buffer(s) are displayed, enabling the programmer to render in the
back buffer before swapping the two over. This technique is useful for producing
smooth animation as the user sees the display updated in one go rather than it being
added to gradually (as may be observed if OpenGL rendered directly to the front

colour buffer).

3.5.2 Depth buffer

Pixel data in the depth buffer consists of a single floating point (or double preci-
sion, depending on the OpenGL implementation) number in the range + 1.0. The
contents of the OpenGL model are transformed by the projection matrix into the

NDCS and then the zypcs value for each part of the model that is mapped in-

2.0
pizelsy

to some region (rypcs, YNDCS), (fENDCS+I#£swa YNDpcs+ ) may be compared
with the existing zypcs value for that pixel. The action taken upon the results of
the comparison may be defined by the OpenGL programmer and can affect what
gets drawn into the framebuffer. Most commonly, the depth buffer may be used to

ensure that depth ordering is preserved in the model.

3.5.3 Stencil buffer

The stencil buffer may be used to limit what gets drawn into the framebuffer. Each
pixel is represented in the stencil buffer (if enabled) by some number of bits (depen-
dent on the OpenGL implementation but often the same number as allocated to an
int). The pixel data values held in the stencil buffer can be used to restrict draw-
ing to the framebuffer in a number of ways and, commonly, the stencil buffer may
represent a mask outside of which (for example) no drawing will occur. The stencil
buffer is also commonly used to achieve wireframe drawing with the appearance of

the ‘hidden’ lines having been removed.
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3.5.4 Accumulation buffer

The accumulation buffer may contain RGBA data (as does the colour buffer in
RGBA mode) and is used to aggregate a series of images into a final image. The
accumulation is not drawn to directly but may be used to transfer data to or from
the colour buffer. It is commonly used to produce ‘motion blur’ or antialiasing
effects. The operation of the accumulation buffer whilst OpenGL is in colour index

mode is not defined.

3.6 Rendering Modes

The OpenGL API has been designed so as not to restrict its use merely to the
production of images on a computer display. The state machine is able to be placed
in one of three rendering modes, which dictate what happens to the NDCS vertices
which OpenGL produces in its modeling phase. In the spirit of OpenGL, these
modes do not offer the application developer functionality on a plate, but rather,
they enable an application to evolve into an interactive, feedback driven process,
able to operate on the model in true NDCS space, before vertices are mapped (and
approximated) into a screen viewport. The three rendering modes are described
briefly below, and possible uses for them in the Geant4 OpenGL graphics system

drivers are discussed.

3.6.1 GL_RENDER mode

By making the function call glRenderMode (GL_RENDER);, OpenGL is placed in
its default rendering mode. In this mode, all the NDCS coordinates are passed
to OpenGL’s rasterization phase to form viewport coordinate fragments. Before

OpenGL is placed in GL_RENDER mode, a suitable connection to the current window-
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ing system (Win32, XWindows, etc.) must have been made. GL_RENDER is the only

rendering mode that affects the contents of the framebuffer.

3.6.2 GL_SELECT mode

The GL_SELECT rendering mode enables an application to establish which com-
ponents of a model fall within a particular viewing volume. When drawing in
GL_SELECT mode, each primitive may be associated with a name. The name as-
sociated with a primitive is that which was on the top of the name stack when the
primitive was defined. The name stack can be manipulated in ways similar to the
other stacks that OpenGL uses (modelview matrix stack, etc.,) by pushing, popping,
initializing and loading the stack, and is composed of unsigned ints. It is just a
vehicle for associating some (shared or unique) identifier with a primitive geometri-
cal object. If a stack remains unchanged between drawing two or more primitives

while in GL_SELECT mode, then those primitives share the same name.

Drawing in GL_SELECT mode proceeds in much the same way as it does in any other
rendering mode. Furthermore, the commands which associate primitive objects with
names and manipulate the name stack are simply ignored by OpenGL if it is not
in the GL_SELECT state, so the same piece of application code can be employed to
perform drawing in any of the rendering modes. The (orthographic or perspective)
viewing volume that is defined whilst in GL_SELECT mode is that with which drawn
primitives must overlap if their drawing in GL_SELECT mode is to produce a hit
record. A hit record consists of four components, and is generated only when the
name stack is manipulated, or the rendering mode is changed. The four components
of each hit record are the number of names in the name stack at the time of the hit,

the minimum scaled? NDCS z coordinate of all vertices of all primitives overlapping

2Minimum and maximum NDCS z coordinates (in the range [-1.0, 1.0]) get multiplied by 232 —1

before they are written in a hit record.
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the viewing volume at the time of the hit, the maximum scaled NDCS z coordinate
of all vertices of all primitives overlapping the viewing volume at the time of the hit,
and the contents of the name stack at the time of the hit. Hit records get written
to the select buffer. The select buffer is an array of unsigned int objects which
must be allocated and declared to OpenGL before entering GL_SELECT mode. The
number of hit records written to the select buffer by OpenGL in GL_SELECT mode is
returned from glRenderMode(...) when the rendering mode is changed, and may

may of use when reading the select buffer for hits records.

Picking in GL_SELECT mode

Picking is a useful extension of selection, whereby the selection viewing volume is
interactively chosen by the application user. If a user is trying to focus attention on
a particular component of the model described to OpenGL, then they may do so via
GL_SELECT mode. By using the gluPickMatrix(...) function call, an application
can receive information from the user (via a mouse point-and-click operation, for ex-
ample) on the region that the user is interested in (in screen coordinates), and define
the viewing volume for GL_SELECT mode drawing to be around this point (in NDCS
coordinates). The gluPickMatrix(...) function takes arguments to describe the
x and y screen coordinates (returned by the mouse point-an-click, for example), the
width and height (in screen dimensions, i.e. pixels), and the current OpenGL view-
port. It then postmultiplies a special projection matrix onto the current projection
matrix to create the desired viewing volume for OpenGL to use in GL_SELECT mode.
In this way, the sensitivity of picking may be defined by the application (through the
width and height arguments) and the number of hit records generated in GL_SELECT
mode can be minimized, hastening the determination of what element of the model

the user was actually trying to pick.
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Uses of GL_SELECT rendering in Geant4

The potential uses of the GL_SELECT rendering mode within the Geant4 OpenGL
drivers are mostly in the delivery of user requirements UR10-2 and UR10-5 (see
table 5.1). At the time of writing, the general Geant4 visualization framework for
picking and user selection is in the process of being designed, and no attempt will be
made to incorporate picking and user selection into the OpenGL drivers for Geant4
until such a framework exists for all graphics systems. Eventually, it is anticipated
that a Geant4 user will be able to interrogate the Geant4 kernel about individual
elements of the model visualized in Geant4, via the picking mechanism. The user
will then be able to enquire after the amount of energy deposited in a sensitive
detector, the mother particle of a track, the track associated with a particle and

many other quantities via picking.

3.6.3 GL_FEEDBACK mode

The GL_FEEDBACK rendering mode in OpenGL allows an application to inspect the
primitives that are produced in representation of the model described to OpenGL.
This occurs instead of rasterization, and so the framebuffer is unaltered while
OpenGL is in this state. Before the application enters GL_FEEDBACK mode (via
glRenderMode (GL_FEEDBACK) ;), a feedback buffer must be defined in the applica-
tion and declared to OpenGL via the glFeedbackBuffer(...); function. This
function includes an argument that specifies how much NDCS vertex information

to write to the feedback buffer. The options are given in table 3.1.

The primitives written into the feedback buffer are separated by a code indicating
the primitive type. A full list of these is given in table 3.2. It should also be noted

that the primitives written into the feedback buffer are those that would otherwise be
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Type argument Coordinates | Colour | Texture | Total values
GL_2D T, Y none none 2

GL_3D Ty Y, 2 none none 3
GL_3D_COLOR T, Y, 2 k none 3+k
GL_3D_COLOR_TEXTURE | z, v, 2 k 4 T+k
GL_4D_COLOR_TEXTURE | z, y, z, w | k 4 8+k

Table 3.1: Possible feedback modes in OpenGL. If OpenGL is in RGBA mode then
k=4, and if OpenGL is in Colour Index mode, then k=1.

rasterized by OpenGL. By the rasterization phase, depending on the implementation
of OpenGL, primitives with more than three vertices may have been decomposed
into triangles (as, for example, hardware may be able to rasterize these optimally).
To avoid confusion over the nature of primitives in the feedback buffer, the function
glPassThrough(GLfloat token); may be used between primitives being defined to
OpenGL by the application. This function effectively inserts a primitive of type
GL_PASS_THROUGH_TOKEN followed by token to act as a marker in the feedback buffer,
which can be interpreted by the application. This can help the application parse the
feedback buffer, and removes any uncertainty over whether a list of triangles in the
feedback buffer represents a list of triangles defined to OpenGL in the application,

or the decomposition into a list of triangles of some other polygon.

Uses of GL_FEEDBACK rendering in Geant4

As GL_FEEDBACK mode rendering eliminates the rasterization phase of OpenGL,
one of the most obvious applications in Geant4 is towards the production of high

quality, device resolution independent hardcopy output. Older graphics systems
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Primitive type | Enumeration Associated data
Point GL_POINT_TOKEN vertex
Line GL_LINE TOKEN or
GL_LINE_RESET _TOKEN vertex, vertex
Polygon GL_POLYGON_TOKEN n vertex, vertex, ...
Bitmap GL_BITMAP_TOKEN vertex
Pixel rectangle | GL_DRAW_PIXEL_TOKEN or
GL_COPY_PIXEL_TOKEN vertex
Pass-through GL_PASS_THROUGH_TOKEN | GLfloat

Table 3.2: Types of primitive found in the feedback buffer.
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such as PHIGS? offer PostScript model description as a ‘built in’ feature, but the

GL_FEEDBACK rendering mode in OpenGL exceeds this capability by not restricting

the possibilities for high quality hardcopy to PostScript. If required, a processing

engine that is able to produce line plotter files, or even CAD* STEP? files could be

connected, although the latter possibility may be approaching computer modeling

from the wrong direction.

Currently, the Geant4 OpenGL graphics system drivers offer the user the option to

write colour or greyscale vectored PostScript files (via GL_FEEDBACK mode rendering

(see section 5.8.5).

3A very primitive version of the Programmers Hierarchical Interactive Graphics System

(PHIGS) drivers for Geant4 were written in the very early development stages of Geant4 visu-

alization, to aid the evolution of the general graphics system framework.

4Computer Aided Design.

5STandard for the Exchange of Product model data.
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Xlib and Motif

The X Windowing System (XWindows) is a platform-independent software spec-
ification for displaying and manipulating graphics and text in a network environ-
ment, developed jointly by the Massachusetts Institute of Technology Laboratory
for Computing Science and MIT’s Project Athena. The first widely used version
of XWindows was version 10.4, released in 1986, but more often used today, are
versions 11.5 (X11R5) and 11.6 (X11R6) which were released in 1994. The system
was originally created to extend the set of data objects that could be efficiently
communicated between computers via a network beyond mere ASCII characters,
and it is now commonly employed in Unix-based environments. It has been used
in Geant4 to provide a mature software layer between the graphics hardware and

OpenGL libraries (see figure 4.1).

4.1 The XWindows client-server model

One of the initial goals of XWindows was to enable many different types of machines
to cooperate via a network. To do this there must be processes running on both the

machine that controls the display and input devices (server) and on the machine

46
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issuing the requests (client) that understand the XWindows protocol. Some elements
of the XWindows protocol and their interaction with the G40penGL[X/Xm| drivers are

described briefly below.

4.2 Features of the XWindows protocol

4.2.1 Buffering

XWindows attempts to decouple the client and server processes from the availability
of access to the network. A request sent by the client is only transmitted immediately
if it requires an immediate response from the server or if the client asks the request
buffer to be flushed manually. Also, if the client issues a request to wait until a
certain XWindows event happens, then, given the uncertain time before the event
may occur, the request buffer is flushed. This makes XWindows tolerant of transient
network availability. However, caution must be exercised in flushing the buffer so as
neither to remove the benefits of buffering, as might happen if the buffer is flushed by
the user after every piece of XWindows traffic, nor to allow so much to accumulate
in the buffer that the information displayed to the user is misleading, as may happen
if OpenGL requests lie dormant in the XWindows buffer after the drawing appears
to have finished.

4.2.2 Resources

The communication of windowing information via XWindows requests represents a
reduction in the volume of information that has to be transmitted between server
and client over the pixel-by-pixel descriptive method. Another way to help reduce
this network traffic is by placing some compound items, such as fonts, pixmaps or

colormaps, in the server memory. These items can then be allocated some form
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of integer ID so that the client can refer to the items again in an efficient manner
rather than having to retransmit all of the information they contain. Furthermore,
any client can use any of the resources stored on a server if it knows the resource’s

identifier There is no concept of the ownership of a resource between clients.

An example of a resource reused by G40penGLX code is the colormap. A colormap is
a C struct that XWindows uses to describe the range of colours that are available
for drawing in. An XWindows server has the concept of a default RGB colormap
and a best RGB colormap, whose existences may be tested for. Often, the window
manager (see section 4.2.3) will have already created one or other of these. If a
suitable colormap already exists on the server then G40penGLXView simply uses it
as there is no need to allocate a new one. If the server has yet to allocate a default
or best RGB colormap, or if the ones allocated are insufficient for OpenGL to use,

then G40penGLX code will attempt to allocate a new colormap.

4.2.3 The window manager

XWindows has the concept of a window manager. This is a process that runs on
the server and may receive and process requests made to it by the client. There are
several advantages to forcing all XWindows instructions through a window manag-
er. If multiple client processes attempt to display output on the same XWindows
server then the window manager is responsible for maintaining a single copy of each
resource (font, colormap, pixmap, etc.) needed by the clients. Also, the window
manager decides where and how to place the windows requested by the clients,

resolving any conflicts that may arise.
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4.3 XWindows Toolkit Intrinsics

XWindows Toolkit Intrinsics (Xt) is built on top of XWindows (Xlib) and intro-
duces the concept of an event driven process. An event is defined in XWindows
as an asynchronous notification that something of interest to the client process has

happened at the server [9].

In a conventional XWindows environment, a process must prompt a user for input
in order to determine the direction of program flow. In an event driven environment,
a process can constantly expect user input and respond to it accordingly, producing
a more natural user-process interaction. The cost of this extra interactivity is an

infinite event getting and processing loop.

One potential problem with the infinite event getting loop is the dedication of al-
| processor time to running this loop. This lends itself to ‘locking out’ all other
processes for the duration of the polling loop. A partial solution to this has been
used within Geant4 visualization by manufacturing a single XWindows event get-
ting loop and registering each XWindows event producing process with the G4Xt (see
section 5.8.6) singleton object. This object has responsibility for gathering XWin-
dows events and dispatching them to the relevant process. By doing so, Geant4 is
able to have any number of XWindows event driven graphics systems (or interfaces)
coexisting without locking each other out. The solution does not however provide
an answer for how to avoid locking out all other Geant4 processes (tracking, hits

scoring, etc.) when polling for XWindows events is taking place.

Provision is made in Xt for the creation and maintainance of widgets. A widget is
an object that the window manager is able to identify and associate with events (in
the XWindows sense). Typically, an event driven process creates, maps, and realizes
(i.e. puts on screen) many widgets to make an interactive window. Each button,
scroll bar, menu, dialogue box, etc., is a different widget and, upon creation at the

XWindows server, is assigned a 32 bit identifier Also associated with each widget is
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Layer O Graphics Hardware

Figure 4.1: Relations of Motif, Xt and XWindows.

an event mask, which advises the window manager on which event types (the basic
XWindows server reports 34 different types of event) are of interest to the client for
that widget. When a relevent event occurs in a widget, the window manager sends
an event notification to the client that created it. In the interests of performance,
both the server-to-client event stream and the client-to-server request stream are
usually asynchronous, i.e., the XWindows server does not wait for a reply to one

event before sending the next event.

4.4 The G40penGLXm widget wrapper classes

There exist many widget sets such as Motif (Xm) and Athena (Xaw) that attempt to
form more useful objects such as scroll bars and menu bars out of the Xt library. The
Geant4 toolkit contains OpenGL drivers interfaced to Xm (G40penGLXmView) to pro-
vide an interactive OpenGL environment. In an attempt to help G40penGLXmView’s
functionality to evolve with Geant4’s capabilities, a number of classes have been

written to wrap the Xm widgets and their interactions so that future developer-
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s need no Xm expertise to modify, for example, the Geant4 control panels made
available to the G40penGLXmView user. There are many commercial graphical user
interface (GUI) building packages available (VUIT, Xdesigner, VXP, etc.), which
is why the decision was taken to provide the G40penGLXmView classes. Given the
timescale over which G40penGLXmView must perform (LHC and beyond) and the
uncertainty whether a future Geant4 user will have access to exactly the right GUI
builder if any, it seemed sensible to supply a robust way of adding/subtracting but-
tons, sliders, etc. as part of the G40penGLXmView distribution. The nine classes that

currently comprise the G40penGLXmView Xm wrapper classes are described below.

4.4.1 Overview

The procedure for amalgamating buttons, bars, etc., into meaningful and useful
control panels, dialog boxes, etc., in Xm is to construct a hierarchy of widgets, such
that each widget is parented by some other. The highest widget in this hierarchy
is derived from the window manager. In this way, it is possible to propagate data
essential to the life of every widget, such as colormaps and other data relating to
the XWindows server they are being displayed on, to all widgets consistently. In the
author’s experience, this does not happen automatically, as the literature suggests
it should, resulting in frequent and fatal XWindows errors. Fortunately, all these

automatically inherited resources can be set by the user.

One job performed by the Xm wrapper classes is to ensure that all critical widget da-
ta are synchronized with each other. This is achieved by having all G40penGLXmView
wrapper classes inherit from G40penGLXmVWidgetQObject, a class that acts as a repos-
itory for critical widget data. All these data are derived from the original connection
made between G40penGLXView and the XWindows server. This process ensures the

avoidance of XWindows errors relating to badly set or mismatched widget resources.
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4.4.2 Shells

In Xm, a shell is the point of contact between the window manager and a (collection
of) widget(s). Only one type of shell has been implemented in the G40penGLXmView
wrapper classes. This corresponds to the most flexible of Xm shells, the TopLevel

shell.

(i) G40penGLXmTopLevelShell

A top level shell may become decorated by the window manager with a border, name,
minimize button, etc., and must conform to the window manager’s rules of layout on
the screen. The G40penGLXmTopLevelShell inherits from G40penGLXmVWidgetShell
which, via pure virtual functions, ensures that any derived class provides methods

to add child widgets, return a pointer to itself, and realize itself on the screen.

4.4.3 Containers

There are two G40penGLXmView wrapper class containers, which are described below.
Their job is to manage any components placed within them. In the interests of
simplicity, only classes derived from G40penGLXmVWidgetComponent may be placed
within a container. The parent class, G40penGLXmVWidgetContainer, ensures, via
pure virtual functions, that any derived class provides methods to add component

widgets to itself and add itself to a shell.

(ii) G40penGLXmBox

The G40penGLXmBox class implements the RowColumn Xm widget in G40penGLXmView.
This container arranges its children to make best use of its available area and is able

to act as a container for radio buttons (see below). If it is to act as such then it
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is guaranteed that only one of all the radio buttons contained will be active at any

one time.

(iii) G40penGLXmFramedBox

The G40penGLXmFramedBox is simply an Xm RowColumn widget (such as is created
by G40penGLXmBox) placed inside an Xm FrameWidget. The effect is to place a
visible border around the container. It is useful for visually compartmentalising

components to ease understanding of a control panel’s functionality.

4.4.4 Components

A lot of the effort that has been made towards the simplification offered by the
XmWrapper classes has been invested in those classes that are derived from the
base class G40penGLXmVWidgetComponent. They attempt to provide functionality

to the user in an uncomplicated yet safe way.

(iv) G40penGLXmFourArrowButtons

Figure 4.2: The G40penGLXmFourArrowButtons class widget

This class creates an Xm FormWidget object, in which are placed four ArrowBut-
tonGadgets pointing up, down, left, and right. The responses offered by selection of
each button are defined in a callbacks list that must be specified upon creation of

the object. Multiple callback functions may be registered with each button.
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(v) G40penGLXmPushButton

The G40penGLXmPushButton class creates a simple widget button, with some text

printed on it, which may have multiple callback functions invoked by its selection.

(vi) G40penGLXmRadioButton

# (bject

< Camera

Figure 4.3: The G40penGLXmRadioButton class widget

The G40penGLXmRadioButton class creates a toggle button. Callback functions may
be registered to be invoked by selection of the button and, if selected, it appears
‘depressed’ until deselected by the user. If a number of G40penGLXmRadioButtons
are placed inside a G40penGLXmBox or G40penGLXmFramedBox then the container is
able to manage them in such a way as either to allow many of the radio buttons
to be selected at once, or exactly one. The default action is to allow many radio

buttons to be selected concurrently.

(vii) G40penGLXmSeparator

The G40penGLXmSeparator class creates a vertical bar across a container. It is most

useful for the purpose of visually dividing a control panel into functional parts.

(viii) G40penGLXmSliderBar

G40penGLXmSliderBar creates a horizontal or vertical scale, along which can be
drawn a slider. The scale has a minimum, maximum, and initial value, which may

be displayed immediately above or to the side of the slider. The Xm slider bar is
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1,00

foom =lider

Figure 4.4: The G40penGLXmS1liderBar class widget

only able to represent integer values so an order of magnitude F may be supplied to
the constructor, which has the net effect of multiplying the minimum and maximum
values supplied by 107 and dividing the displayed value (if requested) by the same
factor, giving the same appearance as a slider that is able to accommodate non

integer data.

(ix) G40penGLXmTextField
% Perzpective
# Orthographic

Field of wiew 0,1 -> 89.% degrees,

0, Qo)

Figure 4.5: An example of the G40penGLXmTextField class widget with two objects

of type G40penGLXmRadioButton above it governing the interpretation of input

The G40penGLXmTextField class enables a Geant4 user to enter data directly to
G40penGLXmView. The data is internally represented as a text string (whether it is
really a text string or representative of numeric data). The variable into which user
entered data is written is specified in an overloaded constructor, which is responsible

for determining whether it is relevant to interpret input as text or numeric data.
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4.4.5 Example use of the G40penGLXm wrapper classes

The intended purposes of the G40penGLXmView wrapper classes are threefold:
(i) to propagate widget resources properly and reliably;
(ii) to simplify the inclusion of new features of Geant4 into G40penGLXmView code;

(iii) to isolate future developers from the need for any detailed Xm knowledge.

To illustrate some of the power of the classes, a brief code fragment is described
below. The code fragment is called from within a derivative of the G40penGLXmView
class and creates a control panel to offer the user the opportunity to create an

encapsulated postscript (EPS) file of the current G40penGLXmView.

G40penGLXmTopLevelShell* shell =
new G40penGLXmTopLevelShell (this, "Printing control");

G40penGLXmFramedBox* button_box =
new G40penGLXmFramedBox ("Create an EPS file", False);
shell->AddChild (button_box);

G40penGLXmFramedBox* colour_box =
new G40penGLXmFramedBox ("Colour choice", True);

shell->AddChild (colour_box);

G40penGLXmFramedBox* style_box =
new G40penGLXmFramedBox ("File type", True);
shell->AddChild (style_box);
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The first action performed is to create shell, a G40penGLXmTopLevelShellx for
the window manager to communicate with. The first argument to shell is of
type G40penGLXmView*, and contains all the information that is required by the
G40penGLXmTopLevelShell object to derive the necessary widget resources. Next,
button_box, style_box and colour_box, all of which are G40penGLXmFramedBox*s
are created and given to shell to manage. The second argument to the constructor
of G40penGLXmFramedBox specifies whether the container is going to be required to

act as a radio button box or not.

The following three code segments place useful G40penGLXmVWidgetObjects in these
three G40penGLXmVWidgetContainers, in order to create a useful ‘popup’ control

panel.

G40penGLXmTextField* text =
new G40penGLXmTextField ("Name of file", (pView->eps_string));

button_box->AddChild (text);

G40penGLXmSeparator* line = new G40penGLXmSeparator ();
button_box->AddChild (line);

XtCallbackRec* cb_list = new XtCallbackRec[2];
cb_list[0].callback = G40penGLXmView: :print_callback;
cb_1ist[0] .closure = pView;

cb_1list[1] .callback = NULL;

G40penGLXmPushButton* button =
new G40penGLXmPushButton ("Create EPS file", cb_list);

button_box->AddChild (button);
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The first argument to the G40penGLXmTextField constructor defines what text is to
be printed above the text entry area. text allows the user to choose the name of the
file that will be written. The second argument to text is of type char* (although it
could just as well be double) and relates to the variable in which to store whatever
gets typed into the text widget. The second argument is also what is displayed

initially in the text entry area.

line is added to button_box simply to create a visual separation between the
G40penGLXmTextField widget and the G40penGLXmPushButton below it. cb_list
is an array that contains all the callback functions that are to be invoked upon selec-
tion of a particular widget. In this case, only one callback, the static class member
G40penGLXmView: :print_callback, is registered and the list is NULL terminated.
The second array element, pView, is an argument passed to the callback function.
cb_list is used as the second argument to the G40penGLXmPushButton constructor,
to define what actions are carried out upon selection of button by the user. The
first argument to the G40penGLXmPushButton constructor defines the text to display
on the button.

cb_list[0].callback = G40penGLXmView::set_print_colour_callback;
cb_list[0].closure = pView;

cb_1list[1] .callback = NULL;

G40penGLXmRadioButton* colour_radiol
new G40penGLXmRadioButton ("Greyscale", cb_list, False, 0);

colour_box->AddChild (colour_radiol);

G40penGLXmRadioButton* colour_radio2
new G40penGLXmRadioButton ("Colour", cb_list, True, 1);

colour_box->AddChild (colour_radio?2);
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Next, two radio buttons, colour_radiol and colour_radio2, are created and man-
aged by colour_box. The four arguments to G40penGLXmRadioButton relate to: the
text string to display with the radio button; the callback function(s) to associate
with selection of the button; whether the button is initially selected or not; and an

integer identifier to associate with selection of the button.

cb_list[0].callback = G40penGLXmView::set_print_style_callback;
cb_list[0].closure = pView;

cb_1list[1] .callback = NULL;

G40penGLXmRadioButton* style_radiol =
new G40penGLXmRadioButton ("Screen dump (pixmap)", cb_list,
False, 0);

style_box->AddChild (style_radiol);
G40penGLXmRadioButton* style_radio2 =
new G40penGLXmRadioButton ("PostScript", cb_list, True, 1);

style_box->AddChild (style_radio2);

shell->Realize();

In adding G40penGLXmVWidgetObjects to style_box, the same methods as were
used to fill colour_box are employed. After button_box, colour_box, and style_box
have been filled with whatever G40penGLXmVWidgetObjects are required, the win-
dow manager can be requested to manage and display all the widgets by issuing the

Realize() method of shell.

The control panel created enables the Geant4 OpenGLXm user to create PostScript

files of the image currently rendered in OpenGL, and its displayed appearance is
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shown in figure 4.6. The details of the process of PostScript file production in

OpenGL are discussed in section 5.8.5.

Mame of file

G40pentL,eps

Create EPS file

wr breyscale

<* Colour

~ Scresn dump Cpixmap?

“* PoztSeript

Figure 4.6: The printing control panel in G40penGLXmView
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Chapter 5

Geant4 Visualization

The goals of the visualization component of the Geant4 toolkit are stated in the
Geant4 User Requirements Document [1], and are summarized in table 5.1. The
philosophy is to provide an item of the Geant4 toolkit which may be easily tai-
lored and incorporated into a user’s application, in order to satisfy their specific

visualization needs.

[tem Requirement for visualization Implemented
UR 10-1 | Entire detector geometry setup or subsections thereof L1
UR 10-2 | Parameters of individual geometrical detector entities ]
UR 10-3 | Particle trajectories at each step of tracking L1
UR 10-4 | Detector response in sensitive detector elements 1
UR 10-5 | Navigation of genealogy of event information ]
UR 10-6 | Genealogy relationships of detector geometry structure L]
UR 19-7 | Well defined interface to visualization. User able to

build a visualizer of their choice into the framework L1

Table 5.1: User requirements of visualization in Geant4.

62
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The visualization needs of a user can vary between none if they require Geant4 to
be a non-interactive batch process for the production of simulation data, and heavy
if they would like their application to enable them to navigate a virtual model of
the detector and view particle trajectories from any angle. The graphics systems
currently implemented in the Geant4 visualization framework are able to produce
detector visualizations quickly on inexpensive computers, create VRML files which
can be viewed in a virtual reality browser, allow the user to interact with the model
of the detector, and produce very high quality hardcopy output. It is up to the user
to decide how much of the available functionality they wish to incorporate into their

application.

5.1 User interface commands for visualization

The following sections describe in some detail the inner workings of Geant4 visual-
ization. The Geant4 user is not expected to be conversant in such matters, but is
instead offered a (growing) set of commands via a User Interface (UI) session. The
components of the Geant4 toolkit are able to register commands with the Ul man-
ager which hopefully will satisfy most end users. The Geant4 user is confronted with
a Ul session (which may be a simple command line interface, or a more friendly and
dynamically built interface panel such as GAG!) from which they may issue these
commands. Each command is an object in a hierarchical structure. Each object in
this structure is of a subclass of G4UICommand, and is instantiated in the constructor
of a subclass of G4UImessenger. Methods to carry out the command are defined in

the particular subclass of G4UImessenger.

The expression syntax of commands in the UI session is similar in structure to a

unix command line. To draw the current scene in the current viewer, the user may

LGAG is the Geant4 Adaptive Graphical Java-based or Tcl/Tk-based user interface developed

in Naruto, Japan.
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issue a command such as /vis/refresh/view (or click the equivalent button in the

GAG interface).

5.2 The Geant4 interface to visualization

Visualization is one component of the Geant4 toolkit. In order to satisfy the re-
quirement that it does not form an integral part of the Geant4 kernel? there must
exist an abstract interface to visualization within the kernel, which must remain
entirely independent of any visualization drivers. This interface is formed by the
classes G4VVisManager and G4VGraphicsScene. Both of these classes declare pure
virtual functions (see section 2.2.1) which are able to declare those functions which
must be supplied by any derived classes (in the visualization side of the interface)
and resolve any references made to the visualization toolkit in user code 3. User
code may refer to elements of visualization say, to draw a red dot at every point
where there is a hit in the detector. To avoid the need to rewrite and recompile
user code between building visualization-inclusive and visualization-exclusive appli-
cations, it is sufficient to protect the user code with the condition that a suitable
derived class of G4VVisManager is instantiated and therefore able to handle requests

for visualization. An example of such protection is given in figure 5.1.

Initially, requests for visualization are directed towards the abstract visualization
interface which is embedded in the Geant4 kernel. If the visualization component
forms a part of the application, then calls made to functions in the abstract inter-
face are realized — via the virtual function mechanism (see section 2.2.3) — as
invocations of derived class member functions. Once the initial visualization request

transactions have been carried out, objects of Geant4 visualization classes are able

2The kernel is that portion of Geant4 which is present in every Geant4 application, and is

essential to communication between toolkit components.
3User code is that code which is supplied by the Geant4 user, and acts as a client of Geant4.
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G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
if (pVVisManager) {

...Geant4 visualization code...

}

Figure 5.1: The protection of Geant4 user visualization code.

to query Geant4 to gather more information as they need it. Note that initially,
Geant4 is the client, and the abstract visualization interface is the server; after the
initial exchanges, the visualization component becomes the client, and the Geant4
kernel the server. This enables visualization objects to extract data from the Geant4
kernel in the form and manner of their choosing, which may be tailored to a par-
ticular graphics system’s needs or abilities. Note also that the abstract interface to

visualization avoids a circular dependence.

5.3 The interface to the graphics systems

The visualization component of the Geant4 toolkit is required not to be bound
to any particular graphics system (UR 19-7). To achieve this, the three classes
G4VGraphicsSystem, G4VScene, and G4VView are provided from which may be de-
rived implementations for graphics systems which are referred to as graphics system
drivers. It is inside these drivers (such as G40penGLStoredX, G40penGLScene, and
G40penGLView) that the interpretation of Geant4 visualization requests for graphic-
system-dependent operations takes place. A schematic representation of the com-
munication between the kernel, visualization component, and graphics system is

shown in figure 5.2.
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[G4VVisManager]

[G4VGraphicsScene}

G4VisManager

Geant4 visualization
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G4VScene

Graphics System
e.g. OpenGL

Figure 5.2: A schematic of communication for Geant4 visualization. The pure ab-

stract interfaces break the circular dependency.

5.4 The implementation of a graphics system

To accomodate the full range of graphics functionality that is to be offered to the
Geant4 user, a highly general interface to graphics systems has been sought. The
essential features of any graphics system that uses a graphical database (the graph-
ical database in this case being supplied by the Geant4 kernel) include an ability to
create some model with which the visualization is concerned, and an ability to ren-
der that model, such that it becomes visualized. The abstract base class G4VScene
is concerned with declaring the methods which will be utilised by derived classes

in creating a graphics system dependent model of items in the Geant4 graphical
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database. The abstract base class G4VView declares the methods upon whose invo-

cation in derived classes, the graphics system will render the model.

5.4.1 The G4VGraphicsSystem base class

Functionality
(from G4VGraphicsSystem)

1

#fFunctionality

1

G4VGraphicsSystem

G40penGLImmediateX

G40penGLStoredWin32 G40penGLStoredXm

G40penGLImmediateWin32

G40penGLImmediateXm

G40penGLStoredX

Figure 5.3: The OpenGL implementation of G4VGraphicsSystem

G4VGraphicsSystem declares pure virtual methods which when defined in a de-

rived graphics system implementation class, are able to instantiate a scene and a

view of that graphics system. Each implemented graphics system class derived from

G4VGraphicsSystem which is to become a part of a given application must be regis-

tered with the user’s G4VisManager object in the user’s main program. The Geant4

distribution facilitates the inclusion of graphics driver code via the use of prepro-

cessor #ifdef flags within source code. Examples of such are provided with the

distribution. Such flags may be set before the application is built to dictate which

graphics systems become registered (and hence, form a part of the application).
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Upon registration, each G4VGraphicsSystem derived object is appended to a list of

available graphics systems, and offered to the user.

virtual ~G4VGraphicsSystem ();
virtual G4VScenex CreateScene () = 0;

virtual G4VViewx CreateView() = 0;

Figure 5.4: virtual function declarations of G4VGraphicsSystem

5.4.2 The G4VScene base class

G4VGraphicsScene

1 | GAVGraphicsSystem

G4VScene

1
o/#fSystem

G40penGLScene

G40penGLImmediateScene G40penGLStoredScene

Figure 5.5: The OpenGL implementation of G4VScene

The G4VScene class inherits from G4VGraphicsScene (a member of the kernel)

and declares those objects out of which it is reasonable for the Geant4 graphical



CHAPTER 5. GEANT4 VISUALIZATION 69

database to compose a visualizable model. One salient feature of a G4VScene is its

G4SceneData data member. This maintains a list of all the G4VModels which are

displayed by the scene to which the G4SceneData object belongs.

virtual
virtual
virtual
virtual
virtual

virtual

virtual

virtual void AddThis (const G4Box&);

virtual void AddThis (const G4VSolid&);
virtual void PreAddThis (const G4Transform3D&,

const G4VisAttributes&);

void
void
void
void
void

void

void

PostAddThis () ;

BeginModeling ();

EndModeling Q) ;

BeginPrimitives (const G4Transform3D&) ;
EndPrimitives ();

AddPrimitive (const G4Polyline&) = O;

AddPrimitive (const G4NURBS&) = 0;

Figure 5.6: virtual function declarations of G4VScene

In Geant4, geometries are described in a hierarchical fashion, and a G4VModel has

the concept of a ‘top volume’ to describe that volume which has no parent, most

usually relating to the Geant4 ‘world’. The model is able to respond to a request

by the scene to describe itself, by describing the top volume, before descending the

geometry hierarchy, and describing each daughter volume encountered until some

predefined genealogical depth is reached, or no more daughters are defined. For

each volume encountered, an attempt is made to append the graphics system scene

with the volume itself ‘as is’, i.e., as a G4Box, G4Tubs, etc., via the AddThis (G4Box&)

methods, etc., which can be implemented for the graphics system (but is not manda-
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tory). Otherwise, the base class implementation demands another representation of
the object (such as a G4Polyhedron or G4NURBS) which becomes appended to the
graphics system scene via the AddPrimitive (G4Polyhedron&), etc. methods, which

every graphics system scene must implement (see figure 5.6).

5.4.3 The G4VView base class

G4VView

G40penGLView

G40penGLXView

‘ G40penGLImmediateView ‘ ‘ GA40penGLWin32View G40penGLStoredView

e \X

G40penGLImmediateXView ‘ G40penGLImmediateXmView ‘ G40penGLStoredXmView

‘ G40penGLImmediateWin32View

‘ G40penGLStoredWin32View

‘ G40penGLStoredXView

Figure 5.7: The OpenGL implementation of G4VView

G4VView requires just three mandatory virtual methods (and offers other non-
mandatory virtual methods) in any derived classes that are to be non abstract
(see figure 5.8). The methods are those required to set (i.e., to get light positions,
calculate the projection matrix, etc.), clear (i.e., to reset graphics system states, erase
the contents of all buffers, etc.), and draw a view. For the benefit of graphics systems
that require separate notification at the end of the modeling phase to perform some

function (e.g., the Fukui Renderer needs to have the whole model before it can begin
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processing it for hidden line removal), there are declared two further methods which

need not be supplied by all view implementation classes.

G4VView keeps a record of viewing parameters requested by the user (e.g., wireframe
or solid, polyhedron or NURBS). It is up to the graphics system implementation
classes to decide when the geometry database (kernel) needs to be visited. This
may be necessary if the user changes one of the viewing parameters, or if a new
model is specified. The decision is left with the graphics system implementation
classes, as some graphics systems (e.g., OpenGL in stored mode) are able to utilize
a stored list of their proprietary graphics primitives (e.g., display lists (see chapter
3)) which need not be recompiled if the user wishes simply to view the scene from
a different angle. Other graphics systems (e.g., OpenGL in immediate mode) need

the geometry hierarchy described to them each time a view is updated.

virtual void SetView () = 0;
virtual void ClearView () = 0;
virtual void DrawView () = O;

virtual void ShowView ();

virtual void FinishView ();

Figure 5.8: virtual function declarations of G4VView

5.5 The OpenGL implementation in Geant4

In implementing the OpenGL graphics library within the visualization framework of
Geant4, every attempt has been made to utilize the paradigms of object orientation.
The implementation does not realize OpenGL as a single graphics system, rather
(currently) as six. As shown in figure 5.3, the six are the combinations of stored

or immediate mode OpenGL interfaced to XWindows (G4OpenGLX), XWindows
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with the Motif toolkit (G4OpenGLXm), and the 32bit operating system Microsoft
Windows variants — Windows98 and NT4.0 (G40penGLWin32). This is achieved
partly through multiple inheritance in the classes derived from G4VView (see figure
5.7). Multiple inheritance has enabled the encapsulation of ‘storedness’ and ‘imme-
diateness’, as well as the flavour of windowing system. Indeed, to further promote
code reuse, the Xm implementation is inherited from (or extends) the XWindows
implementation. Below is a description of the different flavours of OpenGL imple-

mentation within OpenGL.

5.6 The immediate mode implementation

The currently implemented immediate mode OpenGL Geant4 graphics systems
G40penGLImmediateX, G40penGLImmediateXm, and G40penGLImmediateWin32 are
each able to create an instance of a G40penGLImmediateScene, and an instance of
a view relevant to the graphics system. The excerpt from the G40penGLImmediateX
header below is typical of the amount of functionality required of a Geant4 OpenGL

G4VGraphicsSystem implementation class.

class G40penGLImmediateX: public G4VGraphicsSystem {
public:

G40penGLImmediateX ();

G4VScenex CreateScene ();

G4VView* CreateView (G4VScene&);

¥

Figure 5.9: A typical declaration of the G4VGraphicsSystem base class.



CHAPTER 5. GEANT4 VISUALIZATION 73
5.6.1 The immediate mode scene

Most of the functionality of the scene implementation classes is within G40penGLScene,
from which G40penGLImmediateScene inherits. G40penGLScene is described later.
The immediate mode scene keeps a record (via a static data member) of the number
of G40penGLImmediateScenes there are, for identification purposes, and so the user

can refer to them individually.

5.6.2 The immediate mode view

When an OpenGL immediate mode view is requested, it is assumed that the user
wishes to avoid the use of display lists. A user might be motivated to do so if their
server might soon baulk at the memory requirements of a display list implementa-
tion (although protection is given against this - see 5.7) or if they are debugging a
large (and maybe slow to render) geometry. The reason that the latter may be a
motivation for the use of immediate mode is that the implementation of immediate
mode OpenGL in Geant4 requests the use of a single buffered visual. If only a double
buffered visual is available, then all drawing takes place in the front (visible) buffer,
hence the progress of drawing can be seen by the user as requests are processed by
OpenGL. The user who wishes to animate their view with OpenGL, will choose a

stored mode view.

5.7 The stored mode implementation

G40penGLStoredXView, G40penGLStoredXmView, and G40penGLStoredWin32View
comprise the currently implemented OpenGL stored mode graphics systems in Gean-
t4. As with the immediate mode implementations of G4VGraphicsSystem, their sole

role is to create instances of scenes and views of an appropriate nature.
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5.7.1 The stored mode scene

The stored mode scene has all the functionality of the immediate mode scene (via
its inheritance from G40penGLScene, but also is able to create and manage OpenGL

display lists.

Display list allocation protection

Figure 5.10: A view of an OpenGL rendered Geant4 simulation of a large electro-
magnetic shower in the BaBar EMC testbeam. 7000 display lists were used (in a
Mesa implementation) before display list memory was exhausted. Most were used

to help visualize individual simulation steps.

Upon the creation of a G40penGLStoredScene, a boolean data member of the object,
fMemoryForDisplayLists, is set (initially to true) to say whether there is enough
memory to allocate a new display list. Each time a new primitive is added to the
stored mode scene, an attempt is made to pre-allocate a new display list identifier,
and set fMemoryForDisplayLists accordingly. If the attempt is successful, then
the G40penGLStoredScene: :BeginPrimitives method appends the display list i-

dentifier and associated transformation of the Geant4 primitive to two template list
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objects (fPODLList? and fPODLTransformList) and makes a call to glNewList to
signify that all following OpenGL function calls (until glEndList is encountered)

should be placed within the pre-allocated display list.

If the attempt to allocate a new display list identifier fails, then a warning mes-
sage is issued to the user, fMemoryForDisplayLists is set to false, and all sub-
sequent drawing proceeds in an identical fashion to immediate mode, i.e. to the
front buffer, without the use of display lists. If the scene is cleared (and display
lists destroyed) then another attempt is made to allocate a display list id., and
fMemoryForDisplayLists is set accordingly to potentially reenable stored mode

operation.

Persistent and transient geometrical objects

The Geant4 primitives whose representations in OpenGL may be placed inside a
display list fall into two catagories; persistent and transient. Persistent objects are
deemed to be those with run duration persistence, such as items of detector, whereas
transient objects are deemed to be those with less than run duration persistence,
such as steps®. Either category of Geant4 primitive may be placed inside a display

list, although they are treated differently.

When a persistent geometrical object is placed in a display list, it only becomes
rendered in the view at the end of modeling, when the display list is executed in
a glCallList function call. Typically, all the display lists which are representa-
tive of persistent geometry elements in the current view are called from a single
super display list (fTopPODL) which may then be executed with a single call to
glCallList. However, transient objects are representative only of artefacts of sim-

ulation (i.e., steps, hits, etc.) and may be very numerous, and produced at every

4PODL stands for Persistent Object Display List.
5A step is two adjacent points in a tracked particle’s trajectory, between which the particle

undergoes some change.
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step of the simulation. For these reasons, drawing of transient objects (in or out
of display lists) proceeds in the front framebuffer. In addition, transient objects
which are placed in display lists are executed (rendered) at the same time as being
compiled into the display list, so that the user may see the progress of the sim-
ulation (which may take some considerable time). No effort is made to make a
super display list for transient geometrical objects on account of their transient na-
ture. For the duration of their existence, their display list identifiers and associated
transformations are kept in two lists (currently, both are objects of a RogueWave
template class, RWTValOrderedVector<class>), the members of which are executed

recursively when required.

Display list reuse

In an attempt to reduce the amount of redundancy in the allocation and compila-
tion of display lists, the G40penGLStoredScene maintains a dictionary of Gean-
t4 primitives it already has a display list for. The dictionary is composed of
G4VSolidPointer objects (a typedef of unsigned int, and able to represent any
pointer value, as well as having a well defined method for comparison) and each
entry has associated with it a display list identifier. The dictionary becomes useful
if a detector is composed of many repetitions of a single G4VSolid with different
transformations. By storing the display list pertaining to each element of the scene
and its transformation separately (the PODLList and PODLTransformList), the s-
tored scene is able to decouple a Geant4 primitive from its current transformation,

and so reuse the display list information for many orientations of the primitive.

5.7.2 The stored mode view

The stored mode OpenGL view attempts to render via the use of display lists, and by

that token, it must know when those display lists become insufficient to describe the
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scene as the user has requested (e.g., if the user has changed the material density
below which volumes are culled®). G40penGLStoredView (from which all stored
mode implementations of an OpenGL view inherit - see figure 5.7) contains the
methods to compare the current requested viewing parameters against those with
which the current display lists were constructed, and so is able to trigger a Geant4

geometry kernel revisit if necessary.

It is the job of the windowing system specific Geant4 view implementation (e.g.
G40penGLXView) to make the connection between OpenGL and the windowing sys-
tem, as well as appropriating the necessary resources (e.g., colormaps, visuals, win-
dows, etc.) for OpenGL to be able to use the windowing system effectively. Motif
being an extension of XWindows has enabled the Geant4 OpenGL Motif implemen-
tation to be derived from the Geant4 OpenGL XWindows implementation. With a
sensible division of tasks, methods have been written in the XWindows implementa-
tion that can be used by the Motif implementation (e.g., for creation of colormaps,
definition of viewports, and synchronisation of the connection to XWindows from

OpenGL).

5.8 Features of all OpenGL implementations in

Geant4

Each of the six graphics system implentations of OpenGL in Geant4 has their own
set of features and reasons why a user might request them. However, all OpenGL
specific functionality has purposely been placed inside windowing system indepen-
dent classes, so that subsequent graphics system implementations of OpenGL may
inherit from them and share their code. A summary and brief description of the

features is given below.

6Culling is a process whereby data are ignored if they fail to meet certain criteria.
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5.8.1 Polyhedron representation

The OpenGL graphics library is unable to make use of most of the Geant4 primitives
‘as is’, and so when they become appended to an OpenGL scene, by default, the
drivers request the kernel to supply polyhedron representations for each primitive.
Each primitive is split into three and four sided facets before the vertices comprising
these facets are communicated to the OpenGL drivers. The OpenGL state machine
is prepared to expect quadrilaterals’, necessitating the duplication of the last vertex
for each facet for which only three vertices have been specified — the kernel guaran-
tees to never attempt to supply a facet with more than four or less than two sides.
A boolean flag is passed with each vertex from G4Polyhedron to describe whether
the line linking the current vertex to the next vertex is physically representative of a
some portion of the volume (or is an approximation to such) or is just an artifact of
the decomposition of the volume into a polygon. This flag may be used by OpenGL
to control the rendering of individual lines in a polyhedron. For example in drawing
a wireframe cylinder (which by default in Geant4, is represented by 48 triangles (two
24 segment circles) and 24 rectangles) the 24 bars joining the two circles and the
‘spokes’ in each of the ends of the cylinder are not necessary to represent it, and so

are not drawn.

Once the vertex information has been communicated to the OpenGL scene, some
processing in respect of the user’s specified visualization attributes is possible. Some

of the available options and their execution using OpenGL are described below.

5.8.2 Wireframe

The representation of solids as wireframes in OpenGL requires the least of the

implementation’s vertex processing abilities. To increase performance, lighting and

"OpenGL is often able to optimize the primitive assembly phase of modeling if it knows that

all supplied primitives will be of a given type (e.g., quadrilaterals, triangles, etc.)
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back-face culling® are disabled, although depth testing is left enabled to preserve

depth sense if wireframe objects are drawn in the same scene as filled-face solid

objects.

5.8.3 Hidden line/surface removal

Figure 5.11: A view of the PSI BaBar EMC testbeam with hidden surface removal
enabled

8Back-face culling is a rendering optimization, whereby facets with their surface normals point-
ing away from the eye point are discarded (as they would be obscured by foreground facets anyway).

The technique can reduce by a half, the number of facets to be rendered.
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Hidden surfaces

Hidden line/surface removal requires some degree of extra processing over simple
wireframe drawing. A scene with the hidden surfaces removed can be easily achieved
with OpenGL, by requesting that polygons be drawn with their interiors filled, and
that depth testing is enabled. To add realism, lighting is also enabled, and for speed,
back-face culling is enabled. The filled faces of the polygons are given ambient and
diffuse material properties derived from their constituent vertex colours, from which
light may reflect. The depth testing ensures that the surfaces which remain after

back-face culling, are not obscured by any surfaces which pass behind them.

Hidden lines

The hidden lines in a wireframe view of a model are those which would be obscured
by front facing facets if the model was rendered as a collection of solid objects. The
process of removing hidden lines is meant to provide a simple view of surface features
of the model, without introducing the additional colour information associated with
the filled facets. There are many algorithms for the removal of hidden lines, but most
rely on the complete scene being rendered at least twice. Currently, hidden lines
are removed in the Geant4 OpenGL drivers, by drawing each facet of the model
as a wireframe followed by a filled polygon. The filled polygon is drawn in the
current background colour of the view, and obscures any lines it passes over. Depth
buffering ensures that lines drawn on the visible surface of the model do not become
obscured. This method of hidden line removal suits the way that information is
made available to the OpenGL drivers, in the sense that the whole model need only
be traversed once, and need not be stored. Many alternative techniques require
the model to be drawn in full, at least twice. One possible disadvantage to the
implemented technique is its inclusion of depth buffering artifacts. These express

themselves as discontinuities of lines, where the filled polygon drawing occasionally
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mistakenly obscures lines where the depth test occurs between two very similar
depth values. Such conflicts in the depth buffer are easily overcome by the use of
polygon offsetting, a feature of version 1.1 and later of the OpenGL API, which
enables some factor and/or a bias to be applied to all vertices being representative
of a particular form of polygon (filled or wireframe) which are being compared in

the depth buffer.

5.8.4 Haloing

Haloing is a procedure which may be applied to a wireframe drawing, whereby
lines in the foreground are drawn complete, and lines passing behind them in the
background, are interrupted for some distance either side of a foreground line. This
helps to distinguish between foreground and background in a wireframe drawing,
and also reduces the amount of visual information in a scene that may be very
cluttered with lots of detail. The reduction of information comes at no expense to

objects in the foreground.
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Figure 5.12: (a) A wireframe visualization with haloing disabled. (b) A wireframe

visualization with haloing enabled.
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To achieve haloing, two rendering passes must be completed. First, the wireframe
objects must be rendered with a thick line width, into the depth buffer alone. This
creates a chunky image of the wireframe drawing in depth coordinates. Next, the
scene is rendered into the colour buffer, using a thin line width and depth testing.
The depth testing algorithm is set so as only to permit the drawing of pixels into
the colour buffer where the pixel depth value is equal to that stored in the depth
buffer for that pixel position. As the depth buffer contains a chunky image of
the ‘foreground mask’ of the wireframe scene, all the foreground lines get drawn,
and where they cross with background lines, an exclusion zone exists around the

foreground line to make it clear which passes in front of which.

5.8.5 Encapsulated PostScript file production

The ability to generate hard copy output of the results of Geant4 visualization is
of secondary importance to the OpenGL drivers, as another element of the toolkit,
DAWN? [8], is able to produce very high quality PostScript files. However, quality
hardcopy output is a desirable feature of any graphics system, and so some solution

in OpenGL was sought.

The pixmap solution

The first solution to hardcopy output investigated was to simply produce an ‘auto-
mated screen dump’ of the rendered output of OpenGL. OpenGL has the concept of
a rendering context, to which it sends the output of its rendering phase. If rendering
is intended to update the framebuffer, then the rendering context is associated with
an area of the screen. Alternatively, the rendering context can be defined as an area
of memory. The rendering phase is where the OpenGL model becomes decomposed

into fragments via the application of the projection transformation matrix and defi-

9Drawer for Academic WritiNgs, written by Satoshi Tanaka et al., Fukui University, Japan.
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nition of a rectangular viewport (see Chapter 3). As each fragment is a collection of
data necessary to define the contents of one pixel in the rendering context, it is this
decomposition into fragments that imposes a certain image resolution on the final
output. The pixmap solution to hardcopy output by the Geant4 OpenGL drivers
defines a rectangular array of objects in memory, each of which is able to accom-
modate one fragment. OpenGL is then instructed to render to this context, after
which the array contains fragment information relevant to the OpenGL model. The
RGB values (or intensity value, if a greyscale picture is required) of each fragment
in the array is then written to a file. This file has a PostScript header to instruct

any device reading the file, to interpret the data as RGB pixels (or greyscale pixels).

The pixmap approach to producing hardcopy of Geant4 OpenGL visualization pro-
duces much the same sort of result as may be obtained by the user ‘grabbing’ the
contents of a graphics window by hand (using xv or xwd for example). In addition to
the image being produced at a resolution defined by the dimensions of the viewport
to which the model was rendered (which may well not be as fine as the resolution
offered by most laser printers) the files produced can be very large, especially if a
colour image is described (as this requires three integer values to be supplied for

every pixel in the image).

The vectored PostScript solution

Many of the disadvantages of the pixmap solution to hardcopy output of OpenGL
visualization stem from the fact that the rasterization phase introduces a finite image
resolution. Fortunately, OpenGL can be placed in a ‘feedback’ mode of operation
(via the command glRenderMode (GL_FEEDBACK) ;) whereby OpenGL processes the
model as far as the rasterization phase, and then makes available for inspection the
geometrical primitives it has produced as being representative of the model (see

section 3.6.3). By stopping short of the OpenGL rasterization phase, an opportunity
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Figure 5.13: A pixmap OpenGL wireframe representation of the PST EMC testbeam

with the steps produced in an electromagnetic shower shown.

is given for some other ‘rendering engine’ to process the work done by OpenGL in its
modeling phase and subsequent transformation into NDCS space. It is possible, as
was first demonstrated by Mark Kilgard [13], to generate a list of triangles from the
planar primitives returned by the OpenGL modeling and transformation phases.
Given a PostScript description of an arbitrary triangle such as that provided by
Frederic Delhoume [4], a file can be written that describes the OpenGL model as a set
of device resolution independent triangles. These techniques have been incorporated
into the Geant4 OpenGL drivers, to offer the Geant4 user a high quality, vectored
PostScript output option.

A disadvantage of the vectored output solution, is that it omits any of the processing

steps performed in the normal OpenGL rasterization phase. One such processing
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step is depth testing, where the depth value of a fragment is inspected before it
is allowed to update the framebuffer. To overcome this disadvantage, the list of
triangles returned from the modeling and transformation phases is sorted into de-
scending depth order (a process often referred to as the painter’s algorithm) before
being written to the file, so that when read by a PostScript interpreter, the first
triangles drawn (and hence with the greatest potential for being obscured by subse-
quent triangles) are those furthest from the near face of the viewing volume. Another
problem is that some operations performed on specific buffers (such as the depth
buffer) which result in a discrimination over what gets drawn into the framebuffer
(as occurs with haloing, for example) do not necessarily have the same effect. If a
Geant4 OpenGL haloing-enabled image is saved as a vectored PostScript file, then
twice as many triangles are evident in the final PostScript file as are required, as two
models have been described to the PostScript rendering engine. The first describes
the ‘chunky’ wireframe model which is only rasterized to the depth buffer when
OpenGL rasterization takes place, and the second describes the thinner wireframe

model which is normally rasterized into the framebuffer.

For comparison, examples of the same OpenGL visualized model printed using
colour/greyscale, pixmap/vectored PostScript are given in figure 5.15. The file sizes
are also given in the caption. Note that the greyscale vectored PostScript file is ac-
tually larger than the colour vectored PostScript file (but still smaller than either of
the pixmap files) because, in this implementation, greyscale is achieved by forming
the average of the red, green and blue values for each vertex, and then specifying
this value for all the colour components (R, G, and B) for that vertex. Hence each
R, G, and B value is more often fractional rather than integer, and so when written

as an ASCII file, takes a few more characters to represent.'’

OFor example, R=1, G=1, B=0 might take as little as 5 characters (0 0 1) to represent in an
ASCII file, whereas the averages, R=0.66667, G=0.66667, B=0.66667, may take just under 7 times
as many characters to represent, if they were quoted to five decimal places. The truncation of

floating point numbers is an operating system dependent feature.
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Figure 5.14: A vectored PostScript OpenGL wireframe representation of the PSI
EMC testbeam.

5.8.6 The G4Xt singleton class

The OpenGL drivers interfaced to Motif provide an event driven visualization tool
for the Geant4 user. The events (in the XWindows sense) are generated by the
interaction of the user with the application. The usual way of creating an event
aware application, is to allow the application to inspect all XWindows events, and
respond to those which are of interest. In the case of the OpenGLXm drivers for
Geant4, the Geant4 kernel is the true application, and the OpenGLXm drivers are
just clients of it, so there is a need for an XWindows event getting loop to be a
constituent part of the Geant4 kernel. This component must have responsibility for
catching all XWindows events that are of interest to the Geant4 application, and

then distribute them to the component of the toolkit to which they are relevent. The
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task is performed by the G4Xt class, designed by Guy Barrand [3] of LAL, Orsay,
and allows many XWindows event-aware components of the Geant4 toolkit ( e.g.
GAG, Momo, OpenGLXm, OPACS ) to coexist, without ‘locking out’ each other (
as might otherwise happen if a single component contained an event getting loop

which responded only to those events of interest to itself, and discarded all others.)
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Figure 5.15: Four Encapsulated PostScript images of the BaBar EMC Testbeam
at PSI (file size in brackets). (a) Greyscale pixmap (758476 bytes) (b) Colour
pixmap (2274103 bytes) (¢) Greyscale vectored PostScript (337887 bytes) (d) Colour
vectored PostScript (281943 bytes)



Chapter 6

Parameterization in Geant4

6.1 Introduction

The role of the simulation elements of the Geant4 detector simulation and visualiza-
tion toolkit are to produce a faithful likeness to data that may be produced by the
real experiment that is modeled in Geant4. The motivation for such simulation is
often to produce a larger number of certain types of event (or events in a certain part
of the detector) so that a better feel for what to expect from the real experiment

may be gained.

In a detailed simulation, the trajectory followed by a particle is approximated to a
succession of steps. Before each step is taken, a decision is made regarding how the
step will be limited in the interaction of the particle with its current environment
— which includes the material it is currently traversing, any electromagnetic fields
present (if the particle has electric charge), and the lifetime of the particle compared
with its current age — and at the end of the step, the particle state is modified
accordingly. Any energy lost by the particle is recorded as a hit in the current
sensitive detector (if one has been declared). At the end of each event, the hits

stored in each sensitive detector may be combined into a digitisation. Digitisations
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are of a similar form to the real data read from an experiment, and may enter
the reconstruction phase, where all detector signals (or digitisations) are inspected
and macroscopic features extracted accordingly (such as clusters, helices, extracted

photon energies, etc.)

A typical Geant4 simulation of 100 MeV electrons passing through Caesium lodide
results in 220.7 4 17.3 hits per initial particle. Although the detailed simulation is
thorough and (hopefully) faithful, it is very CPU intensive and time consuming, and
so may not suit the needs of a user wishing to generate a very large pool of data.
A parameterized simulation is one for which a detailed study of certain events in a
certain medium has been undertaken, and a ‘shortcut’ produced on the grounds of
this. The shortcut may produce hits (as does the full simulation) or digitisations, or
any other products of simulation, but must remain faithful to the detailed simulation,

within some tolerance.

6.2 Parameterizations code in Geant4

Geant4 provides a framework into which may be placed a user’s parameterization.
Essentially, the user defines a parameterization envelope — which may be specific
volume elements of a detector, or some other artificial area — in which the user wish-
es the parameterization to become applied. The user also must write a class that
inherits from G4VFastSimulationModel. This class should define three virtual
methods of G4VFastSimulationModel (two of which are mandatory) which are in-
tended i) to determine the species of particles whose entry into the parameterization
envelope is sufficient to trigger the parameterization, ii) to trigger the parameteri-
zation if the particle state falls within the acceptable range of particle states (e.g.,
particle energy is low enough, and it is far enough away from a boundary), and iii)
to perform the actions and processes defined by the parameterization, which may

include ‘killing’ the incident particle, producing some detector response, and prop-
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agating some (lesser energy) particles out of the other side of the parameterization
envelope. The parameterization envelope is made known to the derived class of

G4VFastSimulationModel when an instance of the derived class is made.

class G4VFastSimulationModel {

public:

G4VFastSimulationModel(const G4String&) ;
G4VFastSimulationModel(const G4String&, G4Envelope*, G4bool);

G4VFastSimulationModel () {};

virtual G4bool IsApplicable(const G4ParticleDefinition&) {

return true;

}

virtual G4bool ModelTrigger(const G4FastTrack &) = 0;

virtual void DoIt(const G4FastTrack&, G4FastStep&) = 0;

¥

The framework into which a parameterization model must fit was designed by Mar-
¢ Verderi and Paolo Mora deFreitas of EcolePolytechm’que, and receives a fuller

discussion in the Geant4 User’s Guide for Application Developers [2].



Chapter 7

Electromagnetic Shower

Parameterization

7.1 Approaches to parameterization

In terms of speed, the performance of a parameterization depends on the mechanism
by which the parameterization gets called, the algorithms implemented to describe
the processes being parameterized, and the amount of processing which the product
of the parameterization requires before can it be compared to real data (i.e., forming
digitisations out of hits, clusters out of digitisations, etc.). The issue of how the
parameterization algorithm gets called is fixed for Geant4 in the framework (see
Chapter 6), but the issues of algorithm efficiency and how readily digitisations (to
be compared with real data) can be formed from the parameterization output may

be chosen by the implementor.

There are many ways in which patterns may be sought in data such that a param-
eterization may be produced. This chapter describes some preliminary studies of
the description of electromagnetic showers in CsI(T1) using data simulated by the

Geant4 toolkit. These studies were concerned only with the possibility of producing
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simple and very fast algorithms. The ability to ‘kill’ a tracked particle whose en-
ergy and distance to travel in the current sensitive volume have reached some user
defined threshold already exists in the Geant4 toolkit. The studies were aimed at

progressing beyond this simple energy and range dependent ‘cut’ approach.

Some data relating to the model used in the Geant4 simulation are given in ap-

pendix B.

7.2 Backscattering of shower energy

When e*, 7 are incident upon CsI(T1), some of the ensuing electromagnetic shower
may be directed back out of the surface of incidence. In the case of e*, v entering
a sensitive calorimeter element from an insensitive volume such as the atmosphere
then that portion of the shower which is scattered behind the plane of incidence is
deemed unable to deposit energy in the sensitive volume. Hence any attempt to
parameterize electromagnetic showers due to incident e*, y in CsI(T1) must account
for this backscattering effect. The reduction of total shower energy as a function of

normally incident particle energy is given for e*, v in figure 7.1.

7.3 Profiles of electromagnetic energy deposition

in CsI(T1)

Two studies relating to electromagnetic shower development in CsI(T1) were un-
dertaken in an attempt to highlight a profitable course in the pursuit of a parame-
terization. The first of these studies was an attempt to quantify in some way how
the ‘containment’ of electromagnetic showers initiated by normally incident e*, v
in CsI(T1) varied with incident particle energy. Of course, it is difficult to try and

quantify the containment of an electromagnetic shower in matter, unless contain-
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Figure 7.1: The fraction of an electromagnetic shower’s energy which is back s-
cattered behind the surface of incidence for normal incidence e* and « initiated

electromagnetic showers in CsI(TI)

ment relates to the average containment of some fraction of the total shower energy.

7.4 Envelopes of 99% shower containment

The radiation length® for CsI(T1) is 1.85¢cm and provides us with a suitable scale for
the exponential decay of electron energy with distance travelled. For the purposes
of the study it was decided to record the containment of 99% of shower energy in
CsI(T1). At each incident particle energy studied 64,000 electromagnetic showers
were simulated and the Geant4 hits produced by these were binned according to

how far into the CsI(TI) test volume (see appendix B) they had penetrated®. Each

!The radiation length (X) in a material is defined as the mean distance over which a high

energy electron (E >~ 20MeV) loses all but 1/e of its energy by bremsstrahlung.
2Penetration was defined in these studies as the distance from the surface of incidence upon the

CsI(T1) volume along the incident trajectory.
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bin covered a penetration of 12mm. Once the bins had been filled, their contents
were sorted into ascending order of perpendicular displacement from the incident

particle axis, and the 99th percentile for each bin was sought. The results are shown

in figure 7.2.
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Figure 7.2: Envelopes of 99% shower containment for electromagnetic showers in-
duced by e* (top) e~ (middle) and v (bottom) in CsI(Tl). The five envelopes
correspond in each case to showers induced by initial particles of energy 10 MeV
(innermost envelope), 50 MeV, 100 MeV, 150 MeV, and 200 MeV (outermost enve-

lope).
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7.5 The distribution of energy deposition in elec-

tromagnetic showers

It is known that for electromagnetic showers in a particular medium approximately
10% of the total shower energy lies outside a cylinder of radius R,;®, centred on the
incident particle trajectory’s axis and approximately 1% of the energy lies outside
the cylinder of radius 3.5 Ry, [7]. It is also known that beyond a radius of 3.5 Ry,
and beyond, composition effects become more important and the scaling with R,

begins to fail.

The second study involved conducting a series of simulations of electromagnetic
shower production in CsI(T1) initiated by each of e*, v at various energies. For each
complete shower simulation the hits generated were sorted into ascending order of
perpendicular distance from the incident particle axis. This list was then traversed,
and the perpendicular distance by which 10%, 20%, ..., 100% of the total energy
contained in that shower was deposition was recorded. When the percentile data for
all simulated showers initiated by a given particle species of a given initial energy
were combined they produced the average distribution of energy deposition across
showers of that origin. This distribution was produced to reveal whether the dis-
tribution of energy depositions within an electromagnetic shower develops in a way
that can be reconciled with the development of shower containment profiles given

in figure 7.2.

The data produced in the second study are shown in figure 7.3.

3Rys is the Moliere radius. For CsI(T1), Ry = 3.8cm.
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7.6 Conclusions

It was found that the average distribution of energy deposition throughout elec-
tromagnetic showers originating from e*, v becoming incident upon CsI(T1) varied
with the energy of the incident particle. The average radially symmetric envelope
required to contain 99% of all shower energy was also found to vary with the energy

of the incident particle.

The studies suggest that a profitable development of this form of parameterization,
may be to sub-divide a parameterized shower containment envelope into a number
of contiguous volumes, and then study the energy deposition into these volumes.
The successful treatment of the correlation between the deposition of energy into
each volume and all the others would also allow the parameterization to distance

itself from the radially symmetric nature of the average electromagnetic shower in

CsI(T1).
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radius was normalised to the maximum radial extent for each shower.



Chapter 8

Results

8.1 Introduction

The design and implementation of the OpenGL drivers form the major part of the
work for this thesis. The Motif extensions offer facilities over and above the basic
Geant4 interface — the Geant4 visualization philosophy of “value adding”. We
summarize the acheivements in the next section — details can be found in earlier

chapters.

The work also includes a significant investigation into the parameterization of elec-
tromagnetic showers for particle physics detection with particular relevance to the
BaBar experiment. This experiment will be the first to use Geant4 and its new

facilities. The results of the investigation are also summarized in this chapter.

8.2 The Geant4 OpenGL drivers

The Geant4 user requirements document [1] laid out a minimal set of requirements

that the visualization components of Geant4 should satisfy. The Geant4 OpenGL
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drivers are able to satisfy all those requirements for which there exists an abstract

visualization interface (see table 5.1).

The current capabilities of the Geant4 OpenGL drivers are outlined below for the
drivers interfaced to XWindows and Motif.

8.3 Features available in OpenGLX drivers

Feature Options

CSGldrawing - wireframe
- hidden lines removal
- hidden surfaces removal

- hidden lines and surfaces removal

NURBS?rendering - wireframe
- filled polygon

Rendering mode immediate

stored

Viewer operations®

pan up/dow, left/right
rotate

slice scene (DCUT in Geant3)

XWindow operations | - user resize by drag

auto update on expose

Table 8.1: Visualization features available via the OpenGLX drivers.

LConstructive Solid Geometry
2Non-Uniform Rational B-Spline
3Viewer operations as defined by the Geant4 visualization interface
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8.4 Features available in OpenGLXm drivers

The visualization features currently available via the OpenGL drivers interfaced to

the Motif toolkit, are given in table 8.2.

Feature Options

Interactive control - pan up/down, left/right
- orbit
- zoom
- dolly

- orthographic/perspective view
- transform scene/camera
- drawing style

- rendering style

Hardcopy output - Rasterized /vectorized PostScript

- Greyscale/colour file production

Antialiasing of lines - on
- off
Transparency of solids - on
- off

Haloing of wireframe objects | - on

- off

Background colour - black

- white

Table 8.2: Visualization features available via the OpenGLXm drivers.

A typical example of the presentation of the Geant4 OpenGLXm viewer is given in

figure 8.1
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Figure 8.1: An example of an OpenGLStoredXm session.

8.5 The parameterization of electromagnetic show-

ers in CsI(T1)

The studies of e* and v induced electromagnetic showers produced a consistent
picture of the showering process in CsI(T1), but also exposed the difficulty of pro-
ducing a simple algorithm to intercept e* and ~ which is bias free. Scope for further

investigation is highlighted in section 7.6, but is beyond the scope of this thesis.



Chapter 9

Conclusions

9.1 Geant4

The Geant4 project has brought together the effort of over 100 physicists around the
globe to design and produce a toolkit of components using object oriented method-
ologies and C++. This scale of division of labour has been possible largely through
the use of object orientation, highlighting the potential value of such practices to

the particle physics community.

9.2 G40penGL drivers

OpenGL has established itself as the foremost cross-platform graphics library, and
lends itself well to the concept of desktop computing that is of increasing importance
to particle physics. The employment of C++ and OO paradigms have enabled much
commonality between the various Geant4 OpenGL drivers to be factored out and
reused by means of inheritance promoting ease of code maintainance and a greater

longevity. The Geant4 OpenGLXm implementation exploits the concept of value
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adding to provide functionality beyond that available in the Geant4 visualization
interface, such as viewer interaction and the ability to make hardcopy output. The
concept of picking' is not yet addressed by the Geant4 visualization interface, but

the Geant4 OpenGL drivers may be extended as and when necessary.

The Geant4 OpenGL drivers provide a base visualization functionality that may be
extended by other parts of the toolkit. For example, the capabilities of the Geant4
OpenGL drivers interfaced to Motif in respect of interactive viewing and PostScript
file production may be extended by the Openlnventor and Fukui Renderer elements

of the toolkit respectively.

G40penGLXm widget wrapper classes

As the Geant4 visualization interface evolves and new features are added, then so
may this new functionality be implemented in the G4OpenGL drivers. The widget
wrapper classes have been designed specifically to ease the implementation of new
features into the Geant4 OpenGLXm drivers and ensure that a consistent interface

is presented to the Geant4 OpenGLXm user.

9.3 EMC Parameterization

The power of Geant4 as a simulation tool was demonstrated by the study of the
development of electromagnetic showers in CsI(Tl). The study suggested that a
profitable route for interception of e* and v may be to parameterize the containment
of some fraction of total shower energy, and generate a pattern of energy depositions
based on a set of contiguous volumes within the containment. It is essential that the
correlation between these energy depositions be treated properly. The application

of this method lies outside the scope of this thesis.

I The ability interactively to select and operate on some element of a visualized model.



Appendix A

Introduction to UML

The unified modeling language was conceived in 1994 by Grady Booch and James
Rumbaugh at Rational Software Corporation and was an attempt to create a single
formalism for describing program flows and relations out of the best features of the

two major formalisms of the time, namely the Booch method and OMT! method.

The UML is able to describe both static and dynamic views of business and soft-
ware models at all stages of development. The use of UML in this report extends
only as far as the presentation of static class diagrams (class diagrams) and so the
interpretation and meaning of some aspects of these is described briefly below. The
discussion is intended as an aid to understanding rather than a tutorial on the class
diagram and its uses. A fuller description of the capabilities of UML can be found

in many dedicated texts including [6].

One feature of the Rational Rose CASE modeling tool is the ability to reverse
engineer existing code. This is the process of being able to examine a piece of
code and produce UML diagrams from its analysis. Although much of the power

of a CASE tool is in its application at the modeling stage of software design, its

Object Modeling Technique.
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facility for the visualization of (complex) hand written? object relationships can be

an invaluable tool for the dissemination of software architecture information.

A.1 The UML class diagram

A class diagram is a model of the static relationships between classes in a system.
No program flows, states of objects or collaborations between objects are shown by

a class diagram.

A.1.1 The representation of the class

A class in the class diagram is represented by a rectangle, which may be split into
three areas to accomodate the class name, class attributes, and class operations. Each
attribute or operation can be classified as public (+), protected (#), or private (-).
The attributes (data members) are represented as the attribute name, followed by
a colon and then the attribute type. The attribute type can be an intrinsic data
type, or any user defined data type or class, and may be followed by a default value.
An operation (member function or method) is followed by the round-bracketed list
of arguments to that operation, and by a colon and return type (if the return type
is non-void). The intrinsic data types available to different languages vary, so the
UML designer may either avoid the use of intrinsic data types, or bind the UML

design to a particular language at this stage.

Operations and attributes may be included or excluded from the class diagram when
using the Rational Rose CASE tool. In order to simplify the class diagrams in this
report, all class diagrams have attributes excluded, and all but the class diagram of

the G40penGLXm widget wrappers (figure 4.7) have the operations excluded.

%i.e. written without the use of a CASE modeling tool.
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class name

+attributel : int=0
-attribute? : char*

+opl()
+op2 (argl:int=0)
-0p3() : double

Figure A.1: The representation of the class in UML

A.1.2 Generalization

The concept of inheritance in UML is more usually referred to as generalization and
is depicted by an arrow with a hollow closed head leading from the sub-class to the
super-class (daughter to parent). Caution must be exercised with generalization if
the UML design is to remain unbound to any particular language. Although C++
allows multiple inheritance (such as is used by the G/OpenGLStoredX View class in
the Geant4 OpenGL drivers) some other OO languages (such as Java) do not (a

Java class may ertends no more than one other Java class).

A.1.3 Aggregation

Aggregation is a term used to describe the composition of some element of a model
in terms of other elements of the model. There are two types of aggregation: shared

aggregation and composition aggregation.



APPENDIX A. INTRODUCTION TO UML 108

super-class name

attributes

operations

sub-class name

attributes

operations

Figure A.2: Generalization in UML. The super-class is abstract.

Shared aggregation

Shared aggregation can be thought of as a contains a b. Shared aggregation is not
exclusive, so bs may be shared by many as. To represent shared aggregation, a line
joins classes a and b, and a hollow diamond terminates the line at a. A multiplicity
(or cardinality) may be indicated at each end of the line, referring to which ever
class the multiplicity is nearer. The multiplicity states how many (or what range
of) objects of the given type may be aggregated with an object of the type given by
the class at the other end of the aggregation line.

Shared aggregation may be implemented in C++ by having pointers as data mem-
bers. The aggregated object may be modified once it has become part of the aggre-
gating object, and that modification be propagated through to the instance of the

class.



APPENDIX A. INTRODUCTION TO UML 109

Composition aggregation

Composition aggregation is a refinement of shared aggregation which implies that an
a exclusively contains a particular b. This may be implemented in C++ by having
an actual data member rather than a pointer. When a data member is aggregated
by value to an instance of a class, a local copy of the object is made, and destroyed

when the instance of the class is destroyed.

class name a class name b
attributes 1 | attributes
operations operations

Figure A.3: Shared aggregation in UML. Here, class_ name_a contains exactly one
class_name_b, although this class_name_b may be shared by many instances of

class_name_a. Composition aggregation is represented by a filled diamond.

A filled diamond may be used to express composition aggregation. The filled diamod
may replace any hollow diamond with a multiplicity of one. An important distinction
between shared and composition aggregation is that when aggregation is shared,
instances of the aggregated classes (parts) may exist independently of the instances
of the owner class (whole). For example individual simulation steps may or may not
be reconstructed to form a track. When aggregation is by composition, the instances
of the parts have lifespans which may not exceed that of the whole. Such behaviour is
demonstrated by the Functionality object that forms part of a G4 VGraphicsSystem
object. The Functionality relates specifically to the G4 VGraphicsSystem, and there
would be little gained in making it available without a G4 VGraphicsSystem.



Appendix B

Parameters for BaBar EMC

shower data runs

The data collected from the Geant4 simulations performed in respect of the attempt
to parameterize electromagnetic showers in CsI(Tl) were done so via the use of a

model with the following properties.

Atomic number (Z) | 7.3

Atomic mass (A) 14.610 g/mole

Density (p) 1.205x107% g/em?

Temperature (T) 293K

Pressure (P) 1 atmosphere
Magnetic field (B) | 0 Tesla
Electric field (E) 0V/m

Table B.1: Properties of the ‘world volume’ described to Geant4 for the simulation

of electromagnetic shower data.
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Atomic number (Z) | 54.023

Atomic mass (A) 129.969 g/mole

Density (p) 4.51 g/em?

Temperature (7T) 293K

Pressure (P) 1 atmosphere
Magnetic field (B) | 0 Tesla
Electric field (E) 0V/m

Table B.2: Properties of the CsI(T1) crystal described to Geant4 for the simulation

of electromagnetic shower data.

The CsI(T1) crystal was a cylinder of radius and half-length 60cm. The cylinder was
positioned with its axis parallel to the z — axis of world coordinate space, and one
planar-face perpendicular to the z — azis at z=0.0cm. e*, v were fired parallel to

the z — azis into the crystal from the coordinates (0.0, 0.0,0.0) in world space.
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