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Based on a study of the analytic running coupling obtained from the perturbation theory results up to

four-loop order, the QCD “synthetic” running coupling αsyn is built. In so doing the perturbative time-like

discontinuity is preserved and nonperturbative contributions not only remove the nonphysical singularities of

the perturbation theory in the infrared region but also decrease very rapidly in the ultraviolet region. In the

framework of the approach, on the one hand, the running coupling is enhanced at zero and, on the other hand,

the dynamical gluon mass mg arises. Fixing the parameter σ corresponding to the string tension parameter

of the string models and normalization, say, at Mτ completely define the synthetic running coupling. In

this case the dynamical gluon mass appears to be fixed and the higher loop stabilization property of mg is

observed. For σ = (0.42 GeV)2 and αsyn(M
2
τ ) = 0.33 ±0.01 it is obtained that mg = (530 ±80) MeV.

1 Introduction

We describe the running coupling constant (the invariant charge) of QCD in which on the basis
of the perturbative study up to four-loop order the attempt has been undertaken to include the
nonperturbative contributions in such a way that nonphysical singularities of the perturbation
theory in the infrared region be cancelled and the essentials of the QCD dynamics for all energy
scales accumulated in its framework.

Doing that it seems notably attractive, on the theoretical grounds of the analytic running cou-
pling αan(Q

2) of QCD, to build the running coupling including additional nonperturbative terms.
We will consider a variation of such couplings, the “synthetic” running coupling αsyn(Q

2), which
on the practical grounds of the perturbation theory successfully used for description of the region
of large Q2, contains the nonperturbative terms, determining the main features of QCD in low Q2

region without the dramatic changes of this qualitatively different regimes.

The analytic approach in QFT was formulated late in the 50s in Refs. [1] and [2] for QED and
other theories. For QCD the analytic approach was applied in [3–7]. The analyticity requirement,
which follows from the general principles of QFT, enables one to resolve the difficulties connected
with nonphysical singularities of the perturbation theory in the infrared region. In the “analytically
improved” running coupling this singularities are canceled out by the nonperturbative contributions.
In the ultraviolet region the nonperturbative contributions rapidly decrease and the perturbative
contributions are decisive. Nonetheless, the behavior of the nonperturbative contributions in the
ultraviolet region originating from the procedure is of a considerable interest. Their behavior appears
to be important in the construction of the synthetic running coupling.
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Whereas for the one-loop case a separation of the analytic running coupling into the pertur-
bative and the nonperturbative components and behavior of the nonperturbative component are
obvious, for the multi-loop analytic running coupling this is not the case. For the two-loop case such
separation in an explicit form and study of the nonperturbative component of the analytic running
coupling was made in Ref. [8], for the three-loop case it was made in [9,10], and for the four-loop case
it was made in [11, 12]. The nonperturbative contributions in the analytic running coupling were
extracted explicitly and their expansion in powers of Λ2/Q2 was obtained. The effective method of
the precise calculation of the analytic running coupling was developed on a basis of this expansion.

It is known [3] that the analytic running coupling is finite at zero. In Refs. [11] and [12] it
was shown that the finiteness of the analytic coupling at zero was a consequence of the asymptotic
freedom property of the initial perturbation theory, αn−loopan (0) = 4π/b0 ' 1.396. The running
coupling is finite at zero in case of “freezing” of the interaction [13], which is appealing with respect to
the phenomenology. However, with such infrared behavior of the running coupling the description of
the confinement and the dynamical breaking of the chiral symmetry is not immediate. The behavior
of the running coupling αV ∼ 1/Q2 at Q2 → 0 in the so-called V-scheme of the renormalization
corresponds to the linear confining quark-antiquark static potential with the universal string tension
parameter σ. In QCD the static potential is defined in an explicit gauge invariant form through the
vacuum expectation value of the Wilson loop. The synthetic running coupling under consideration
also belongs to the singular type couplings, αsyn ∼ 1/Q2 at Q2 → 0, and yet it has an additional
motivation related to the study of the nonperturbative contributions at Q2 →∞.

The main methods of nonperturbative study of the Green’s functions in QCD and the running
coupling which can be built out of these functions are solving the Dyson–Schwinger (DS) equations
and lattice calculations of the functional integrals. In Ref. [14] a summary of the results of such recent
studies is given, which can be supplemented with papers [15–17] where analytic methods were used
and [18] with the lattice stimulation results. The variety of the results for the behavior of αs(Q

2) in
the infrared region is connected with an intrinsic for the gauge theories vertex dependence [14] of the
definitions of the running coupling when the mass dependent subtraction schemes in the momentum
space used, and different truncation methods applied to close the DS equations. Besides, solving the
closed integral equations (or systems of equations) requires, as a rule, the simplifying assumptions
quite often breaking the gauge symmetry and the pure technical approximations. It is not surprising,
than, that the results of the infrared behavior study of αs differ greatly from one another and should
not be compared literally. Let us note the review papers [19–21] of the investigations on the IR
behavior of the Green’s functions, the running coupling in QCD, and their applications in the hadron
physics.

The possibility of the singular behavior αs ∼ 1/Q2 at Q2 → 0 which we consider has been
studied in a number of papers. In particular, in Ref. [22] the infrared behavior of the gluon Green’s
functions was studied by the analytical calculations of the corresponding Feynman integrals of the
DS equation for the gluon propagator in the ghost-free axial gauge where the running coupling
was defined by the full gluon propagator. It was shown that the singular behavior of the gluon
propagator of the form D(Q) ∼ 1/(Q2)2 at Q2 → 0 was possible but it is essential to give up the
commonly used approximation of the three-gluon vertex function by its longitudinal part and to
take into account the transverse part of the three-gluon vertex function of a definite form.

This paper is organized as follows. In Section 2 the one-loop synthetic running coupling model
of QCD for all Q2 is considered. In Section 3 we study the analytic running coupling for the
standard perturbation theory approximations up to four-loop order and its separation into the
perturbative and the nonperturbative components. In Section 4 the synthetic running coupling with
the nonperturbative contributions suppressed at large Q2 is build on the basis of the analytic running
coupling. Setting the parameters of the synthetic running coupling is made. In the concluding
section the main results are summarized and some remarks made.
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2 One-loop synthetic running coupling of QCD

Let us consider the following additive modification of the one-loop running coupling of QCD by
means of the nonperturbative pole type terms 1

α(1)syn(Q
2) =

4π

b0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2
+
cΛ2

Q2
+
(1− c)Λ2

Q2 +m2g

]

, (1)

where

m2g =
Λ2

c− 1
. (2)

Here Q2 is the Euclidean momentum squared, constant b0 = 11− 2nf/3 (nf is the number of active
quark flavors), Λ is the dimensional parameter of the one-loop model (1), c is the dimensionless
parameter of this model (it is convenient to introduce the dimensional parameter Λ1 =

√
cΛ),

c ∈ (1,+∞). The parameter Λ can be fixed, for example, by the normalization condition at large
Q2, whereas the parameter c of the model, as can be seen further, describes the relation between
the parameter ΛQCD and the string tension parameter σ of the string models

2. It stands to reason
that for the realistic definition of the parameters ΛQCD, σ and their connection it is necessary to go
out of the one-loop approximation.
The first term of Eq. (1) is the solution of the renormalization group equation for the QCD

running coupling αs(Q
2)

Q2
∂αs(Q

2)

∂Q2
= β(αs) (3)

in the one-loop approximation, β(αs) ' −β0α2s, β0 = b0/4π. Introducing the renormalization
invariant parameter Λ (the integration constant of the differential equation) we obtain

α(1)s (Q
2) =

4π

b0

1

ln(Q2/Λ2)
, (4)

where a nonphysical singularity (the Landau pole) at Q2 = Λ2 is presented. The vanishing of
expression (4) for Q2 → ∞ corresponds to the remarkable property of asymptotic freedom [30]
of non-Abelian gauge theories, while the growth of αs (to some critical value or to infinity) with
decreasing Q2 can be connected with the confinement problem.
The pole terms in Eq. (1) are nonperturbative, Λ2 ' μ2 exp {−4π/b0αs(μ2)}. The sum of the

first two terms in Eq. (1) is an analytic function in the complex Q2-plane with a cut from 0 to −∞,

α(1)an (Q
2) =

4π

b0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2

]

. (5)

This function can be presented by the dispersion relation

α(1)an (Q
2) =

∞∫

0

dσ ρ̃(1)(σ)

σ +Q2
, (6)

where the function ρ̃(1)(σ) is called the one-loop spectral density

ρ̃(1)(σ) =
4π

b0

1

ln2(σ/Λ2) + π2
. (7)

1This one-loop model was considered in Refs. [23–25] and finally formulated in Ref. [26] with determination of the
parameters from the minimality condition of the nonperturbative vacuum energy density.

2The approximations of QCD which take no account of the effects connected with masses of the heavy quarks
contain only one dimensional parameter. For example, it is ΛQCD for large Q

2 or the string tension parameter σ
which is adequate for low Q2. In the potential models the connection of this parameters is studied in description of
the bound states of the heavy quarks [27–29].
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The last equation can be obtained by the analytic continuation of αs into the Minkowski space

Q2 → −σ − i0 and calculation of the imaginary part ρ̃(1)(σ) = 1
π=α

(1)
s (−σ − i0). For real Q2 > 0

function (5) is positive monotone decreasing function with maximum at zero α
(1)
an (0) = 4π/b0. The

second nonperturbative term in Eq. (5) does not contribute to the imaginary part of α
(1)
an (Q2) in

going to the Minkowski space, so that ρ̃(1)(σ) = 1
π=α

(1)
an (−σ−i0). The synthetic running coupling (1)

can also be presented in the form of the dispersion relation

α(1)syn(Q
2) =

∞∫

−0

dσ ρ̃
(1)
syn(σ)

σ +Q2
. (8)

The function ρ̃
(1)
syn(σ) will be called the one-loop spectral density for the synthetic running coupling.

It contains additional terms in the form of the delta functions,

ρ̃(1)syn(σ) = ρ̃
(1)(σ) +

4π

b0

[
cΛ2δ(σ) + (1− c)Λ2δ(σ −m2g)

]
. (9)

Introducing two pole terms at Q2 = 0 and Q2 = −m2g < 0 does not change the analyticity domain
of the analytic running coupling (5). In Eq. (9) for the spectral density the additional terms in
the form of two δ-functions localized at σ = 0 and σ = m2g > 0 emerged (in comparison with
expression (7) of the perturbative origin).

Let us bring equation (1) for α
(1)
syn(Q2) to the explicit renormalization invariant form. It can be

done without solving the differential renormalization group equations. Writing the normalization

condition for α
(1)
syn(Q2) we obtain an equation for the required dependence of the parameter Λ2 on

the values α
(1)
syn(μ2) and μ2 of the form

α(1)syn(μ
2) =

4π

b0

[
1

ln(μ2/Λ2)
+

Λ2

Λ2 − μ2
+
cΛ2

μ2
+
(1− c)Λ2

μ2 +m2g

]

. (10)

From dimensional considerations

Λ2 = μ2 exp{−ϕ
(
a(μ2)

)
}, (11)

where a(μ2) = (b0/4π)α
(1)
syn(μ2). Then for ϕ(a) we have a transcendental equation

a =
1

ϕ(a)
+

1

1− eϕ(a)
+ ce−ϕ(a) −

(c− 1)2

1 + (c− 1)eϕ(a)
. (12)

The function ϕ(a) has the behavior ϕ(a) ' 1/a → +∞ as a → +0 for all values of c. This
behavior corresponds to the perturbative region. The behavior of this solution at a → +∞ is
ϕ(a) ' − ln(a/c) → −∞. The beta function βsyn(αsyn) for the synthetic running coupling can be
found by the equation which is analogous to the equation (3),

Q2
∂αsyn(Q

2)

∂Q2
= βsyn(αsyn). (13)

Differentiating the running coupling (1) with the use of equations (11) and (12), we obtain

βsyn(αsyn) =
4π

b0

{

−a+
1

ϕ(a)
−

1

ϕ2(a)
+

1

(1− eϕ(a))2

−
(c− 1)2

(1 + (c− 1)eϕ(a))2

} ∣∣
∣
∣
∣
a=b0αsyn/4π

. (14)
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Therefore, using the behavior of function ϕ(a) as a→ 0 and ∞, we find the asymptotic behavior

βsyn(αsyn) ' −
b0
4π
α2syn + o(α

2
syn), αsyn → 0, (15)

βsyn(αsyn) ' −αsyn −
4π

b0
c(c− 2) + o(1), αsyn →∞. (16)

Doing the corresponding expansions we make sure that the singularity of the β-function (14) at
ϕ → 0 is apparent. We also make sure that for all αsyn > 0 the function βsyn(αsyn) is negatively
defined.
Let us write the last three terms of the synthetic running coupling (1), taking into account (2),

in the form

αnpt (1)syn (Q2) =
4π

b0

[
Λ2

Λ2 −Q2
+
cΛ2

Q2
+
(1− c)Λ2

Q2 +m2g

]

=
4π

b0

cΛ6

Q2(Λ2 −Q2)(Λ2 + (c− 1)Q2)
. (17)

For a→ +0, according to equation (12) the function φ(a) ' 1/a, thus for Λ2 from equation (11) we
obtain Λ2 ' μ2 exp (−1/a) at αsyn(μ2) = (4π/b0)a→ +0 so expression (17) must be considered as a
nonperturbative component of the synthetic running coupling. The behavior of the nonperturbative
“tail” at large Q2 is the following:

αnpt (1)syn (Q2) = −
4π

b0

[
c

c− 1
Λ6

Q6

]

+O

(
Λ8

Q8

)

. (18)

As seen from Eq. (18), the nonperturbative contributions of the synthetic running coupling decreases
at large Q2 substantively faster than that of the analytic running coupling (5).
Hence the one-loop synthetic running coupling of QCD has the following interesting properties:

(i) By the construction, as a function of Q2, it has an analytic structure corresponding to the
causality; that is, it is a holomorphic function in the complex Q2-plane with a cut along the
negative real semiaxis.

(ii) As a function of its value αsyn(μ
2) at the normalization point μ2, it has an essential singularity

at the origin; the asymptotic expansion of its nonperturbative part in αsyn(μ
2) for αsyn(μ

2)→
+0 is equal to zero, which ensures conformity to the initial perturbation theory.

(iii) In the ultraviolet region, it coincides with the usual result of perturbation theory (with renor-
malization invariance taken into account) apart from fast decreasing power terms. The non-
perturbative component behaves as ∼ 1/(Q2)3 when Q2 →∞.

(iv) In the infrared region the synthetic running coupling does not have nonphysical singularities of
the perturbation theory. There is the mass term and the singular at the origin term responsible
for the confinement of quarks.

As it will be evident from the subsequent considerations, all these properties are valid for the
two-, three- and four-loop synthetic running coupling. It is significant that for the one-loop case we
have not only representation (8), but for one thing, the nonperturbative contributions are extracted
from the synthetic running coupling in the explicit form

α(1)syn(Q
2) = αpt (1)(Q2) + αnpt (1)syn (Q2) (19)

and for another, for the nonperturbative contributions, a simple formula is on hand. The case c = 2
is the particular one from the symmetry considerations,

αnpt (1)syn (Q2) =
4π

b0

[
Λ2

Λ2 −Q2
+
2Λ2

Q2
−

Λ2

Λ2 +Q2

]

=
4π

b0

2Λ2

Q2
Λ4

Λ4 −Q4
, (20)
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for which the nonperturbative component is the odd function of Q2,

αnpt (1)syn (−Q2) = −αnpt (1)syn (Q2) . (21)

Here, in the ultraviolet expansion as well as in the infrared expansion there are no terms of the even
powers of Q2. In particular, the infrared expansion does not have the Coulomb’s mode.

Indicate for completeness two boundary cases for the values c ∈ (1,+∞) considered. The first
case is c = 1, for which

αnpt (1)syn (Q2) =
4π

b0

Λ4

Q2(Λ2 −Q2)
,

and the nonperturbative component decreases at infinity not so fast as in expression (18). The
second one is c =∞ for which

αnpt (1)syn (Q2) =
4π

b0

Λ6

Q4(Λ2 −Q2)
,

and the singularity in the infrared region is stronger, α
(1)
syn(Q2) ∼ 1/(Q2)2, Q2 → 0.

3 Multi-loop analytic running coupling of QCD

For the multi-loop case the renormalization group equation (3) for the QCD running coupling αs(Q
2)

is of the form

Q2
∂αs(Q

2)

∂Q2
= β(αs) = −β0α

2
s − β1α

3
s − β2α

4
s − β3α

5
s +O(α

6
s) . (22)

The coefficients β0, β1 do not depend on the renormalization scheme choice, whereas the next
coefficients do depend on this choice. For the numerical calculations we use its values within the
MS-scheme.

Let us write down the solution of equation (22) for αs(Q
2) at L = ln(Q2/Λ2)→∞ in the form

of the standard expansion in inverse powers of the logarithms

αs(Q
2) =

1

β0L

{

1−
β1

β20L
lnL +

β21
β40L

2

[

ln2 L− lnL− 1 +
β0β2

β21

]

−
β31
β60L

3

[

ln3 L−
5

2
ln2 L−

(

2−
3β0β2
β21

)

lnL +
1

2
−
β20β3

2β31

]

+O

(
1

L4

)}

. (23)

The sum of the terms of Eq. (23) up to 1/Ln order (n = 1, 2, 3, 4) will be referred to further on
by the n-loop perturbative component of the running coupling and denoted as αpt(Q2). It can be
written in the form

αpt(Q2) =
4π

b0
a(x), (24)

a(x) =
1

lnx
− b
ln(lnx)

ln2 x
+ b2

[
ln2(lnx)

ln3 x
−
ln(lnx)

ln3 x
+
κ

ln3 x

]

−b3
[
ln3(lnx)

ln4 x
−
5

2

ln2(lnx)

ln4 x
+ (3κ+ 1)

ln(lnx)

ln4 x
+
κ̄

ln4 x

]

. (25)

Here x = Q2/Λ2 and the coefficients

b =
β1

β20
, κ = −1 +

β0β2

β21
, κ̄ =

1

2
−
β20β3

2β31
. (26)
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The values of b0, b, κ, κ̄ depend on nf . Within the standard picture of matching the solutions at
heavy quark thresholds the parameter Λ becomes dependent on nf

3.
The analytic running coupling is defined through the dispersion relation

aan(x) =
1

π

∞∫

0

dσ

x+ σ
ρ(σ), (27)

where the spectral density ρ(σ) = =aan(−σ − i0). The analytic approach suggests 4 that
=aan(−σ − i0) = =a(−σ − i0). The corresponding spectral density ρ(σ) is shown in Fig. 1.

Fig. 1. The spectral density of the analytic running coupling up to four loop order.

As a result from function a(x) of the form (25) with nonphysical singularities on the positive
real semiaxis of the complex plane x = Q2/Λ2 we come to the function aan(x) of the form (27),
which is a single-valued analytic function in the complex plane x with a cut from 0 to −∞ (with a
standard definition of the cuts of the logarithmic function). In Refs. [11,12] up to four-loop order the
separation of the analytic running coupling into the perturbative and nonperturbative components
was obtained,

αan(Q
2) = αpt(Q2) + αnptan (Q

2). (28)

In Eq. (28) we take αpt(Q2) as the initial (in our case the standard) solution of the renormalization
group equation up to four-loop order and αnptan (Q2) appears to arise additionally as a result of the
procedure. The following expansion was obtained in the power series

αnptan (Q
2) =

4π

b0

∞∑

n=1

cn

(
Λ2

Q2

)n
, (29)

where the coefficients cn were defined by the beta function coefficients. Note the important prop-
erties of expansion (29) such as the higher loop stability of the coefficient of the leading term and
the slow increase of the coefficients cn with number n.

3In perturbation theory the parameter Λ depends also on the renormalization scheme choice.
4This is precisely the variant of the “analytic improvement” procedure which we consider. The running coupling

obtained in this way we call the analytic running coupling.
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4 Multi-loop synthetic running coupling of QCD

The one-loop synthetic running coupling can be naturally extended to the multi-loop cases. Thus
modify the analytic running coupling introducing two additional nonperturbative terms, the singular
at zero term of the form ∼ 1/Q2 and the mass term of the form ∼ 1/(Q2 +m2g). As a result, we
come to the expression

αsyn(Q
2) = αan(Q

2) +
4π

b0

[
cΛ2

Q2
−

dΛ2

Q2 +m2g

]

, (30)

containing, besides Λ, three subsidiary parameters: c, d and mg (mg ≡ mΛΛ), which are assumed
to be nonzero. We will define this parameters in the following way. At large Q2 (Q2 > Λ2), using
expansion (29), we can find

αsyn(Q
2) = αpt(Q2) +

4π

b0

[

(c1 + c− d)
Λ2

Q2
+ (c2 + dm

2
Λ)

(
Λ2

Q2

)2
+ (c3 − dm

4
Λ)

(
Λ2

Q2

)3]

+O

((
Λ2

Q2

)4)

. (31)

Demand the nonperturbative contributions to be minimal at large Q2, i.e. the terms of the form
∼ 1/Q2, ∼ 1/(Q2)2 to be absent in Eq. (31) 5. Then two of three parameters are fixed by the
following equations

d = c+ c1, m
2
Λ = −c2/(c+ c1). (32)

The parameter Λ1 =
√
cΛ will be considered as fixed. The coefficients cn < 0, therefore the absence

of tachion condition is Λ < Λ1/
√
−c1. With a given number of loops the free parameter of the

synthetic running coupling is only one parameter Λ. Then taking into account Eq. (32) we have

αsyn(Q
2) = αpt(Q2) +

4π

b0

[

c3 −
c22Λ

2

Λ21 + c1Λ
2

](
Λ2

Q2

)3
+O

((
Q2
)−4)

. (33)

As seen from Eq. (33), the leading power nonperturbative term decreases rapidly at Q2 → ∞ and
in the absence of the tachion is negative 6. For the dynamical gluon mass from Eqs. (32) we obtain

mg = Λ

√
−c2Λ2

Λ21 + c1Λ
2
. (34)

Let us turn to the interpretation of the parameter Λ1 which describes the value of the singular
term. As it has already been noted, the behavior of the running coupling of the form αV ∼ 1/Q2 at
Q2 → 0 in the V-scheme corresponds to the linear confining quark-antiquark static potential which
is defined by the vacuum expectation value of the Wilson loop. We set up a correspondence of the
potential and the running coupling using the equation (to compare with Refs. [31] and [27])

V (r) = −
4

3

∫
dnq

(2π)n
exp (iqr)

4παV(q
2)

q2

∣
∣
∣
∣
∣
n=3

, (35)

where αV(q
2) is defined as an effective charge, which is the renormalization scheme independent

and gauge invariant quantity. The color factor corresponds to the SU(Nc) group, Nc = 3. Let us
assume that in the infrared region

αV(q
2) '

3

2

σ

q2
, q2 → 0. (36)

5This condition corresponds to the principle of minimality of the nonperturbative contributions in the perturbative
ultraviolet region [24,25].

6The nonperturbative “tail” of the running coupling αsyn(Q
2) as a whole turns out to be negative at large Q2.
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Then the integral over three dimensional momentum space in Eq. (35) formally diverges at the
origin. We define this integral introducing the dimensional regularization. After integration over
the n-dimensional Euclidean momentum space we put n = 3. Then as the divergences do not
occur, the transition to the n-dimensional integration provides not only the regularization but the
definition of the divergent integral for the case n = 3. As a result, for the infrared behavior of the
effective charge (36) the behavior of the potential at large distances is as follows:

V (r) ' σr, r →∞, (37)

where σ ≡ a2 is the string tension parameter. Let us define the parameter Λ1 of the synthetic
running coupling αsyn from the correspondence of the singular at zero term in Eq. (30) to the
infrared behavior (36) of the running coupling αV. Then

3

2
σ =

4π

b0
Λ21, Λ

2
1 = cΛ

2. (38)

Therefore, if the string tension parameter is given, the parameter Λ1 can be specified by Eq. (38).
Then with a ' 0.42 GeV, b0 = 9 we obtain 7 Λ1 ' 435 MeV. The parameter Λ (as well as the
parameter c) can be fixed by the normalization condition, and the synthetic running coupling will
be fixed completely.
Consider the dependence of the dynamical gluon mass on Λ for different number of loops of the

initial perturbation theory approximation.
In Fig. 2 the dynamical gluon mass mg(Λ) is shown for one – four cases. Up to 400 MeV the

curves do not diverge too much and at Λ = 375 MeV mg ' 0.6 GeV.

Fig. 2. The dynamical gluon mass mg as a function of Λ for different number of loops of the initial pertur-
bation theory approximation.

We normalize the running couplings αsyn(Q
2), αan(Q

2) and αpt(Q2) at the τ -lepton mass by [33,
34] α(M2τ ) = 0.33, Mτ = 1.777 GeV. For this normalization condition the values of the parameters
Λ, the dynamical gluon mass mg and the parameters c, d are given in Table 1. Point to two things.
The parameters Λsyn and Λpt are close in value whereas the parameters Λan are considerably larger.

7The string tension parameter σ = (0.42 GeV)2 in particular, in the relativistic string model with massive quarks
at the ends of the string [32]. Then the slope of Regge trajectories α′ = 1/(2πσ) ' 0.90 GeV−2.
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This is a consequence of conditions (32) which give the fast decrease of the nonperturbative terms
of αsyn(Q

2) at large Q2. For all quantities considered the one-loop case turns out to be exceptional,
and then the stabilization is observed with the number of loops of the initial perturbation theory
approximation.

Table 1. The parameters Λpt (MeV), Λan (MeV), Λsyn (MeV), the dynamical gluon mass mg (MeV) and
the parameters c, d on the number of loops. The number of active quark flavors nf = 3, Λ1 = 435
MeV. The normalization condition is α(M2τ ) = 0.33, Mτ = 1.777 GeV.

1-loop 2-loop 3-loop 4-loop

Λpt 214.25 395.10 364.19 357.32

Λan 254.51 636.02 523.86 535.54

Λsyn 214.26 397.10 365.26 358.70

mg 121.14 648.09 461.66 526.57

c 4.1282 1.2018 1.4204 1.4728

d 3.1282 0.5358 0.7706 0.7447

5 Conclusions

In the construction of the QCD analytic running coupling (27) the nonphysical singularities of the
perturbation theory in the infrared region disappear and in the ultraviolet region the nonperturba-
tive power corrections arise decreasing rapidly at large Q2, in comparison with the main perturbative
component. However, when considering the nonperturbative quantities it may happens that the de-
crease of the nonperturbative contributions is not fast enough for the consistent definition of these
quantities. In the synthetic running coupling it is proposed to provide the highest possible sup-
pression of the nonperturbative contributions at large Q2 by means of a minimal number of the
pole type terms. The parameters characterizing the additional nonperturbative terms have clear
physical meaning and take the reasonable values. The running coupling (1) built on the basis of the
analytic running coupling (5) is called the one-loop synthetic running coupling because it contain
the parameters related to the ultraviolet region as well as to the infrared region. We introduce the
singular at zero term of the form ∼ 1/Q2 which corresponds to the linear quark confinement and the
mass term of the form ∼ 1/(Q2 +m2g) with the parameter m

2
g corresponding to the non-vanishing

dynamical gluon mass. We impose the condition of the fastest decrease of the nonperturbative com-

ponent at large Q2 and receive the running coupling model of form (1). The model α
(1)
syn(Q2) has

two independent parameters, the dimensional parameter Λ and dimensionless parameter c which
defines the value of the singular term.

In Section 2 the one-loop model of the synthetic running coupling and its nonperturbative com-
ponent properties for c ∈ (1,+∞) are considered. A study of the multi-loop analytic running
coupling and its nonperturbative component provide a possibility of natural generalization of the
synthetic running coupling model to the multi-loop cases. The multi-loop synthetic running cou-
pling (30) as the one-loop model is made by introducing two additional nonperturbative terms of the
form ∼ 1/Q2 and ∼ 1/(Q2+m2g). The minimality principle of the nonperturbative contributions in
the perturbative region leads to two equations (32) for the introduced nonperturbative parameters.

As a result, the synthetic running coupling has two independent parameters. First, the parameter
Λ which owing to highly fast decrease of the nonperturbative contributions at large Q2 practically
coincides with the parameter ΛQCD in the region of application of the perturbative solutions. Second,
the dimensionless parameter c (or the dimensional parameter Λ1 =

√
cΛ) determining the value of

the singular term. Correlating this parameter responsible for the infrared enhancement by Eqs. (38)
with the string tension parameter σ of the string models, we arrive at the dynamical gluon mass as
a function of the parameter Λ defined by Eq. (34).
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The corresponding dependencies for 1–4-loop cases are given in Fig. 1 with Λ1 = 435 MeV
(that is σ1/2 = 0.42 GeV). The normalization completely defines the synthetic running coupling
and for α(M2τ ) = 0.33 the values of the parameters are shown in Table 1. The parameter mg in
Eq. (34) for Λ < Λ1/

√
−c1 is real, and the synthetic running coupling αsyn(Q2) in Eq. (30) is a

holomorphic function in the complex plane Q2 with a cut along the real negative semiaxis. Thus
the synthetic running coupling of QCD αsyn(Q

2) has the properties outlined in Section 2 for the
one-loop synthetic running coupling model.

As seen in Table 1 the parameters of the synthetic running coupling fixed in such a way show the
higher loop stabilization with the one-loop case excluded. In particular, the dynamical gluon mass
mg can be estimated as 400–600 MeV. For σ = (0.42 GeV)

2 and αsyn(M
2
τ ) = 0.32, 0.33, 0.34 it is

obtained that mg = 453, 527, 613 MeV (for 4-loop case). Hence the string parameter identification
of the parameter of the synthetic running coupling defining the value of the singular term results in
the consistent values for the other parameters considered.
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