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Abstract

We deploy Shannon’s information entropy to the distribution of branching fractions in a particle decay. 
This serves to quantify how important a given new reported decay channel is, from the point of view of the 
information that it adds to the already known ones. Because the entropy is additive, one can subdivide the 
set of channels and discuss, for example, how much information the discovery of a new decay branching 
would add; or subdivide the decay distribution down to the level of individual quantum states (which can 
be quickly counted by the phase space). We illustrate the concept with some examples of experimentally 
known particle decay distributions.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Shannon entropy [1] has found applications in all data-intensive fields of science; a recent 
review [2] with focus on heavy ion collisions provides an ample reference list and we refer 
the interested reader there. This information entropy measures the uncertainty associated with 
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a random variable, or when ignoring the value taken by the variable, of the average missing 
information content.

The decay width of an unstable particle can be decomposed into a sum over the partial widths 
for each of its possible decay channels, � = ∑

�j . We can also characterize the decay by the 
branching ratios BRj = �j/�, and as their sum is unity 

∑
j BRj := ∑

j �j /� = 1, they provide 
a probability distribution for the various decay channels (j = 1, . . . , N ).

This makes the information entropy of particle decay distributions a well posed observable to 
compute1

S = −
∑
j

BRj logBRj ≥ 0 (1)

and we will evaluate it with actual data from meson and gauge boson decays, all taken from [3].
The maximum value of the entropy (for a decay distribution with a fixed number of channels) 

is reached when they are all equally likely, that is, BRj = 1
N

(because 
∑N

j=1 BRj = 1 and 
BRi = BRj for all i, j in this case). Then,

S � −
N∑

i=j

BRj log(BRj )

= −
N∑

i=1

1

N
log(

1

N
) = log(N) (2)

The minimum value is simply 0 and is reached when one channel concentrates all the prob-
ability, BR1 � 1, BRj � 0, j > 1. Thus, we are looking at a variable S ∈ (0, logN) that 
characterises how disordered the decay products are, or namely, how difficult it is to predict 
the particular outcome of one decay event.

One can define the “information” function as the negative of the logarithm of the branching ra-
tio, that is, Ij := − logBRj . The entropy is then the average of that function over the distribution 
of decay channels,

〈Ij 〉 = −
∑
j

BRj logBRj = S . (3)

Interpreting Ij as the information obtained when a given particle decay proceeds through chan-
nel j (a quantity associated to a given decay), S is then the average information in the distribution 
of the random decay process (a quantity associated to all the decays, that is, to the decaying par-
ticle itself).

Shannon entropy has been used before in other contexts in particle physics. Early ones con-
centrated in the information entropy produced upon parton splittings (e.g. in jet emission) [4,5]. 
The concept has also been applied to study various fragment ratios after a heavy ion collision [6].

Early-on after the Higgs boson discovery, d’Enterria [7] observed that the Higgs sits in the 
window of maximum entropy of its decay distribution: were it heavier, around 200 GeV, above 
the WW and ZZ threshold, these two vector-boson channels would dominate the decay, with the 

1 The quantity of Eq. (1) is named entropy in analogy to the Gibbs mixing entropy, the increase in thermodynamic 
entropy S = kB ln� obtained upon mixing two gases totalling N molecules, with partial molar fractions x1 and x2,

S = −kBN {x1 ln(x1) + x2 ln(x2)}
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Fig. 1. Shannon entropy for the decay distribution of the χc1(1p) charmonium as function of the number of channels 
included. Channels are added from left to right in order of decreasing branching fractions. (A further plot that assesses 
the effect of removing radiative decays from the distribution can be found in [11].)

rest of the Standard Model having much smaller branching fractions (and thus, the entropy being 
way smaller). As it is, at 125 GeV these boson channels are kinematically closed, and this makes 
the width small but the entropy large (as all the allowed Standard Model decays have to share a 
small portion of the decay).

Alves, Dias and da Silva [8] then introduced a “Maximum entropy principle” elevating that 
observation about the Higgs to a more general principle, to try to predict the hypothetical axion 
mass [9,10].

Even if the principle does not hold as a law of nature, the observation about the Higgs is sound 
and intriguing, and helps understand why its discovery happened so late in the development of 
high energy physics.

In this article and in two companion proceedings publications [11,12] we present numerous 
examples of computing the Shannon entropy of decaying mesons of multiple quark-flavour com-
positions, and of decaying electroweak bosons, and explore several new features of this variable 
and two related ones.

2. Unknown decay channels

In practice, many particles have complicated and multibody decays, so one does not always 
know the entire decay distribution. In that case, 

∑N
j=1 BRj < 1 (with BRj < 1). The discovery 

of new channels brings the sum closer to one, and the entropy increases. Nevertheless, if ad-
ditional channels have a small branching fraction, their contribution to the entropy turns out to 
be negligible, and the entropy saturates. This can be seen in Figs. 1 and 2. The error bars are 
computed from the experimental �BRj uncertainties, and have been added linearly and not in 
quadrature, as determining different branching fractions of the same particle are often two very 
correlated measurements.

The first obvious approximation that we can perform is to bunch all unknown decay channels 
in just one with branching ratio equal to the missing part to reach 1 from the already known 
branching ratios at hand. The entropy is then, as a particular case of Eq. (1)

S = −
∑

jknown

BRj logBRj

−
(

1 −
∑

jknown

BRj

)
log

(
1 −

∑
jknown

BRj

)
. (4)
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Fig. 2. Shannon entropy for the decay distribution of mesons ω(782) and ϒ(3s) (that can decay through the strong 
force), and for the � baryon (that decays weakly). The OX axis shows the number of channels included; the OY axis, 
the resulting entropy. (A further plot showing the effect of removing the ϒ(3s) radiative decay channels can be found 
in [11].)

In view of Eq. (6) below, this formula must underestimate the true entropy. As a way to 
estimate the error incurred, one could use perhaps the Kullback–Leibler divergence. This states 
that the difference between the entropy and its estimate is given by

S(BR1, . . . ,BRM) − S(BR1, . . . ,BRN,1 −
N∑

j=1

BRj ) =

−
M∑

k=N+1

BRk log

(
BRk∑N

j=1 BRj

)
(5)

where N of the M channels are known and the number M can be obtained from other considera-
tions (for example, by studying which channels are open given phase space and conservation 
laws). The BRk , N + 1 ≤ k ≤ M are the unknown branching ratios and 

∑M
j=N+1 BRj =

1 − ∑N
j=1 BRj . For the purpose of the uncertainty estimate, they can be taken equal to each 

other, say BRk = 1−∑N
j=1 BRj

M−N
.

We will not pursue these theoretical error estimates any further, but content ourselves with 
propagating the experimental uncertainty BRj ± �BRj to the entropy.

As seen in Figs. 1, 2 and 3, the entropy increases monotonously upon adding more channels, 
but saturates into what seems at most logarithmic growth (which matches expectations from 
max(S) = logN ). The second plot of Fig. 3 displays the entropy of certain kaon resonance decays 
not in terms of the number of channels included, but in terms of the sum of the branching ratios 
accounted up to the given channel, so the axis of abscissae ends at precisely 1.

3. Entropy additivity and phase space

There is a difficulty in analysing a given hadron decay chain: at which stage to count the final 
products. Does one have to descend all the way to stable particles, p, e and ν? Is it sufficient 
to stay at the level of particles unable to decay strongly, so that π , K , etc. are considered final 
products? Or should one stop right away at the level of unstable hadron resonances with short 
lifetimes characteristic of the strong force of order 10−23 seconds?

Fig. 4 shows an exercise where we study the decay of several excited kaons through another 
intermediate kaon and down to final products that are stable under the strong force, considering 
as an example the various subchannels to which the K∗ resonance decays to, i.e.



JID:NUPHB AID:14320 /FLA [m1+; v1.283; Prn:10/04/2018; 15:24] P.5 (1-15)

P. Carrasco Millán et al. / Nuclear Physics B ••• (••••) •••–••• 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
Fig. 3. Shannon entropy for the decay product distribution of kaons. Top: S as function of the number of channels 
included (in order of decreasing branching fraction), analogous to Figs. 1 and 2. Bottom: S as function of the percentage 
of the width accounted for the channels included (the seen channels correspond to the few points to the left of the top 
plot). Error bars are now not included for visibility. Further plots concentrating on K∗

2 (1430) have been presented in [11].

K1(1400) → K∗(892)π →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Kπ)±π

(Kπ)0π

(K0γ )π

(K±γ )π .

The entropy of the secondary decay chain (lines shown with hollow symbols) is quite different 
from that of the primary decay chain alone (only lines), since the secondary particles can decay 
through several channels, so a decision needs to be taken so as to how much to descend in the de-
cay tree. For most applications in the strong interactions, when clear resonances can be identified 
one should stay at the first level (e.g. discount ρπ from a given πππ branching fraction).



JID:NUPHB AID:14320 /FLA [m1+; v1.283; Prn:10/04/2018; 15:24] P.6 (1-15)

6 P. Carrasco Millán et al. / Nuclear Physics B ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
Fig. 4. Shannon entropy for the decay distribution of several kaon excitations, counting only primary decays to particles 
that are themselves unstable, or following the decay chain one more step to include secondary decays. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Nevertheless, it is worth recalling a basic property of Shannon entropy,2 namely its additivity.
If each of the branching ratios at the first level, BRj , counts the joint probability of routing the 

decay into certain subchannels j1, j2, . . . , jmj
, the entropy at the second level, which includes 

all subchannels, can be obtained from the entropy at the first level in terms of the BRj and the 
entropy of each subdivision as follows,3

S = S(BR1,BR2, . . . ,BRN) +
N∑

j=1

BRjS

(
BRj1

BRj

, . . . ,
BRjmj

BRj

)
. (6)

The first function is the entropy at the higher level (where the subchannels are all bunched 
in one) and the second is a sum, over each of the primary channels, of the entropy within each 
of them weighted with its overall probability BRj . That second term explains the difference 
between the lines with and without symbols in Fig. 4.

Quite surprisingly, the decay entropies are not always so different. This is highlighted by the 
decay entropy of the J/ψ in Fig. 5. In that case, the entropy accumulated when describing the 
decay in terms of intermediate quarks and gluons is similar to that accumulated when employing 
the identified final state hadrons. The later one is a bit larger, consistently with Eq. (6), but the 
experimental errors propagated from the uncertainty in the branching fractions are much larger 
than the difference.

As a matter of principle, the lowest level to which one can descend in a decay chain is that of 
individual quantum states, to which we turn next.

2 This is a property that can be used to uniquely determine the entropy function, together with continuity and with 
monotonicity for the particular BRj ∝ 1/j branching fraction distribution, which leads to a 

∑
j BRj logBRj formula.

3 The second term is familiar from the usual thermodynamic entropy: if any molecule can be in two gas volumes 1 
and 2 with probabilities p and 1 − p, the gas entropy satisfies S(1 ∪ 2) = pS(1) + (1 − p)S(2) + S(p, 1 − p), where 
S(p, 1 − p) = −p logp − (1 − p) log(1 − p).
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Fig. 5. Shannon entropy for the decay distribution of the J/ψ charmonium into final states (where the hadron species 
are enumerated) and into intermediate states (where the description is kept at the level of quarks and gluons). Within the 
experimental errors, it is not easy to ascertain the difference between the two entropies.

3.1. Entropy in terms of phase space

The partial decay width can be written in terms of the invariant Feynman amplitude

d�i→f = 1

2Mi

|M|2dρ (7)

and the Lorentz Invariant Phase Space

dρ = (8)

(2π)4δ(3)

⎛
⎝ n∑

f =1

−→
pf − −→

Pi

⎞
⎠ δ

⎛
⎝ n∑

f =1

Ef − Ei

⎞
⎠ n∏

f =1

dpf

(2π)32Ef

which counts the number of available quantum states (thus, the decay distribution cannot be 
subdivided any further). Restricting ourselves to two-body decay channels, the integrated phase 
space is

ρ(E) = (2π)4

(2π)6

∫ ∫
d3p1

2E1

d3p2

2E2
δ(

−→
p 1 + −→

p 2 − −→
P )δ(E1 + E2 − E) (9)

that, with centre of mass kinematics, yields the well-known relation

ρ(E) = 1

4π

[(E2 − (m2 − m1)
2)(E2 − (m2 + m1)

2)] 1
2

2E2 . (10)

We plot the entropy for the decay distribution of the electroweak Z boson against the accu-
mulated phase-space in Fig. 6 (the case of the W boson has also been analysed and reported in 
[11]).

The OY axis should now be considered as arbitrarily normalised, as we are still plotting 
the entropy S(BR1, . . . , BRN) out terms correcting for the internal entropy of each channel. 
Nevertheless, the OX axis is now scaled with the correct phase space for each of the included 
two-body decays. There is not much qualitative difference at this point (a vertical stretching of 
the entropy function if we took into account the internal entropy), so we will continue plotting 
entropy at an aggregate level channel by channel.
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Fig. 6. Entropy as function of the accumulated phase space 
∑N

j=1 ρj upon including successive decay two-body channels 
of the electroweak Z boson, ordered from larger to smaller branching fraction.

4. Information value of discovering a new decay channel

We wish to propose a simple criterion to quantify what information the discovery of a new 
branching fraction provides to the knowledge of a particle decay (purely from the statistical 
point of view, without entering to judge whether that decay may be showing the violation of 
an approximate symmetry, or be a golden mode for certain observables or any other qualitative 
effects that need to be judged on a case by case basis).

The first obvious effect is that of Eq. (2). Having observed that the maximum entropy grows as 
the log of the number of channels, if all were equally weighted, the actual importance of a new 
channel can be obtained by studying the separation of the entropy from this maximum value. 
Therefore, we propose two possible measures of this added information. One is the normalized 
entropy increment, defined by

�S(N)

� log(N)
:= S(N + 1) − S(N)

log(N + 1) − log(N)
(11)

that is plotted in Fig. 7, where we show how this normalized entropy increment would evolve 
upon sequentially including (eventually, discovering) the represented decay channels of the Z
boson. (N increases by one every time a new channel is added to the list.)

In the figure we see that the discovery of decay channels 5, 6 and 7 would then be less signif-
icant, from the point of view of information theory, than the discovery of one of the channels 1 
through 4.

Another possibility is to employ a certain “degree of likeness” (to the maximum possible 
entropy) which can be simply defined by S(N)

log(N)
∈ (0, 1). Its increment upon adding one new 

channel would then be

� := S(N + 1)

log(N + 1)
− S(N)

log(N)
. (12)

A positive � means that the entropy of distribution steps closer to the maximum possible value 
of S upon introducing the new channel; this can happen when the new channel has a branching 
fraction similar to the ones already known. If � is negative, the entropy decreases relative to 



JID:NUPHB AID:14320 /FLA [m1+; v1.283; Prn:10/04/2018; 15:24] P.9 (1-15)

P. Carrasco Millán et al. / Nuclear Physics B ••• (••••) •••–••• 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
Fig. 7. Increase of the normalized entropy for the decay distribution of the Z boson as function of the number of channels.

Fig. 8. Change in the degree of likeness � upon discovering each new channel (so that the last unknown channel splits 
off part of its probability to that new known one, and N increases by one unit) for the Z boson.

its maximum possible value, and the new channel is very dissimilar from the others (typically 
smaller). This function, applied to the same decay distribution of the Z boson as in Fig. 7 is 
plotted in Fig. 8.

We can ascertain once more in this figure that channels 5, 6 and 7 contribute less to the entropy 
because their branching fractions are much smaller than those of the channels included earlier.

5. Base of the logarithm

The base of the logarithm in Eq. (1) provides a mean to compare different decay chains. Very 
often in computer science, logk is taken with k = 2 so that information is measured in bits. Our 
entropy here has been rather presented in nats by employing the natural logarithm. An interesting 
additional choice is to use k = N , the actual number of channels needed to describe the particle’s 
decay. (For small N it is worth noting that, since we are usually packaging an unspecified number 
of unknown channels into an additional one, we will rather use k = N + 1.)

This choice of scaling the base with N has an advantage to compare the entropy of decay 
distributions for different particles associated, not to the number of channels, but rather to the 
inhomogeneity of the decay product distribution among them. This comes about because the 
maximum possible value of the entropy is then logN N = 1 (or, being precise, logN+1(N + 1) =
1) and one can then obviously compare two particles on the same scale.
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Fig. 9. Shannon entropy for the decay product distribution of two example flavour-singlet f mesons against the number 
of channels included in the decay (analogous to Fig. 2). The base of the logarithm is here chosen to be N + 1, the number 
of decay channels included.

The comparison is even more telling if both particles have the same number of relevant decay 
channels. This is approximately the case for instance for the pair of f1(1285), an axial JPC =
1++ meson, and its multiplet partner f2(1270), a tensor 2++ meson. This last one has a decay 
very much dominated by ππ (85%) while the former has the probability more distributed among 
the ηππ , 4π , KK̄π and a0(980)π channels, the rest being minor. Fig. 9 shows the data; in both 
cases the entropy has its maximum possible value at 1.

As a second example, Fig. 10 shows the entropy of the decay distribution of the φ meson, also 
normalised to 1 by choosing logN BRj instead of the natural logarithm.

6. Further observations and outlook

Fig. 11 plots, for the light, unflavoured mesons (η, ω, φ, etc.) the entropy against the maximum 
of the branching fractions BRj for the various decay channels of each.

There is a clear anticorrelation between the two variables: the entropy (lack of predictivity 
about any one particular decay) is much larger when there is no dominant decay branching frac-
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Fig. 10. Shannon entropy for the decay product distribution of the φ meson (analogous to Fig. 3 but here the base of 
the logarithm is chosen to be N + 1). Top: S as function of the number of channels included (in order of decreasing 
branching fraction). Bottom: S as function of the percentage of the width accounted for.

Fig. 11. We show the clear anticorrelation between the information entropy S and the maximum value of the branching 
fractions (for the light, hidden-flavour mesons). The entropy is obviously very small if one certain channel dominates the 
decay.



JID:NUPHB AID:14320 /FLA [m1+; v1.283; Prn:10/04/2018; 15:24] P.12 (1-15)

12 P. Carrasco Millán et al. / Nuclear Physics B ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
Fig. 12. Entropy for the vector J/ψ (top plot) and axial vector χc1 (bottom plot) charmonia, against the accumulated 
branching ratio accounted for.

tion, as should be evident to the reader. Thus, it is more informative to discover a new decay 
channel when none carries a fraction close to unity of the total decays.

A further observation is that, not uncommonly, the branching fractions are ordered in a geo-
metric hierarchy BR0, BR1 = f BR0, . . . , BRN = f NBR0 with f < 1 (this is typically seen in 
entropy functions that grow quickly for the very first channels and saturate almost immediately; 
a plot for such a distribution with f = 1/2 has been relegated to the proceedings in [11]). This 
statement is reflected in the following approximation,4

S = −BR0

N∑
j=0

f j (j logf + logBR0) . (13)

4 In an extreme, idealized case, N → ∞ and BR0
∑∞

j=0 f j = BR0
1−f

= 1, so that f and BR0 are not independent; but 
this is not the case in practical examples that only approximately follow this rule and where not all channels are known.
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Fig. 13. Same as in Fig. 12 but plotted as a function of the number of channels instead of the accumulated branching 
fraction. Because many channels have commensurable branching fractions, S grows approximately linearly with the 
number of channels until 

∑
i BRi starts being a sizeable fraction of 1. The characteristic logN behaviour is visible 

following that linear regime.

It converges quickly for many particles (typically those with few open strong-decay channels) 
but f does depend on the particle in question.

Mesons that contain heavy quarks but low excitation number do not fall in this category. 
Instead, they possess many channels (with light valence quarks only) that have similar branching 
ratios. Then the entropy function grows linearly with the number of channels and many of them 
are required to start saturating it. This is best visible in Figs. 12 and 13, especially the second 
one (entropy against the number of channels).

For those two low-lying charmonia, about half of the total width is accounted for. Each new 
channel, of a size similar to those previously known, increases the entropy practically in propor-
tion to its branching fraction (Fig. 12). The characteristic logN growth of the entropy is however 
visible if we plot the same data against the number of channels instead of the branching fraction 
accounted for (Fig. 13).
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To conclude, we have found that Shannon’s entropy is an interesting tool to ascertain the 
relative importance of different decays. Taking into account the sheer size of the particle physics 
decay data collected by the community and ordered by the Particle Data Group, this and other 
methods of information theory find a rich field of applicability.

As we have seen in numerous examples, the generic behaviour of the entropy of the distribu-
tion against the number of channels is a linear increase for the first few, larger ones, followed by 
a saturation well below the entropy’s maximum for N channels, logN .

We have discussed how to compare different particles, using the logarithm of base N is fair 
as it normalises the maximum entropy to unity. We have also discussed simple derived functions 
that help quantify the amount of entropy that a given decay channel adds to the distribution after 
its discovery.

And finally, we have shown the anticorrelation between the entropy and the maximum branch-
ing fraction of any decay channel. Shannon’s entropy is maximized by particles that decay more 
or less equally through their decay channels (perhaps because the decaying particle is below the 
threshold of the channel it couples more strongly to).
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