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1 Introduction

1.1 Negative Energy

Considering the theory of relativity [41], it is a consequence of causality that
no matter or information may travel at speeds faster than the speed of light.
This is classically enforced by the stipulation of the ‘dominant energy con-
dition’, which in particular entails that all macroscopic matter should have
a positive energy density, when measured by any timelike observers. Such
pointwise energy conditions are an important feature of general relativity,
being integral for example to the proof of singularity theorems (e.g.[34]).

It is a long known and curious feature of quantum field theory, however,
that negative energy densities are allowed to exist under some conditions [9].
This violates any of the classical pointwise energy conditions of relativity
theory. Although such a negative energy density has not been directly mea-
sured, there is strong experimental evidence of their existence, most notably
from the Casimir effect [6].

In response to this it was proposed that energy densities in quantum fields
may obey time averaged versions of the classical energy conditions [45], for
example the ‘averaged weak energy condition’ proposes that∫ ∞

−∞
Tµνv

µvν dτ ≥ 0, (1.1)

where the average is taken over a timelike geodesic with tangent vector vµ, τ
is proper time and Tµν is the stress-energy tensor. It has indeed been shown
that this condition is obeyed by free scalar fields in Minkowski spacetime [30].
However, this condition too can be violated in flat spacetime with boundaries
[6] or compact spatial dimensions [30]. It is also violated in certain curved
spacetimes [46]. An example of the construction of a ‘squeezed vacuum state’
which has a negative expected energy density can be seen in section 5, giving
proof of the theoretical existence of negative energy densities.

Much interest has been taken in the possible macroscopic effects that
could result if arbitrarily negative quantum energy densities are allowed to
exist for extended periods of time. It has been shown that the effects could
include several exotic and surprising results. For example, Alcubierre [1]
proposed a hypothetical warp drive which would allow someone from Earth
to travel to distant galaxies and back in less then the time taken for a pulse
of light to complete the same journey. Other proposed phenomena include
traversable wormholes, violations of the second law of thermodynamics and
the possible construction of time machines. An expanded account of these
proposals can be found in an article by Ford and Roman [23].
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This report is concerned with the derivation of bounds one can find in
quantum field theory on the magnitude and duration of negative energy
densities, which severely limit the possibility that most of these proposed
constructions are physically realistic. For example, it has been shown that the
production of the warp drive of Alcubierre would require a wildly unrealistic
amount of energy [38].

1.2 Quantum Inequalities

The bounds in question which will be focused on here have become known as
‘quantum inequalities’, and those discussed here in particular are often called
quantum weak energy inequalities. The idea of quantum inequalities was first
put forward by Ford [20], where he used thermodynamical considerations to
derive a lower bound not on the energy density but on the energy flux.
Following from this more work by Ford, in collaboration with Roman, led
to further bounds being derived on the magnitude and duration of negative
energy densities [21][22].

These types of lower bounds involve integrating the expected energy den-
sity against a ‘smearing function’ which is smooth, vanishes at infinity and
integrates to unity. The resulting bounds in four-dimensional flat spacetime
are of the form ∫ ∞

−∞
f(t)〈T00〉ψ dt ≥ −

C

t40
, (1.2)

where f is the sampling function in question, t0 is a choice of ‘sampling time’,
C is a constant depending on f and 〈T00〉ψ is the expected energy density in
the state ψ. By looking at the form of this bound it is clear that in the limit
t0 → ∞ this reduces to something resembling the averaged weak energy
condition and in the limit t0 → 0 it appears that the energy density can
be arbitrarily negative. This implies that quantum inequalities restrict the
magnitude of negative energy over extended periods of time. It would also
seem to suggest that if the existence of some negative energy occurs it must
be eventually cancelled out by at least an equal amount of positive energy
appearing in the same region in the future.

The inequalities derived by Ford and Roman employed the use of a spe-
cific sampling function. Other bounds derived by Fewster, with Eveson [17],
and Flanagan [19] gave bounds valid for arbitrary smooth and compactly
supported sampling functions. Allowing for functions of compact support
has the benefit of allowing for a more local analysis. The bound given by
Flanagan is valid only in the specific case of a massless scalar field in two
dimensions, and is claimed to be optimal. Further work generalised some
of these results to be valid in static curved spacetimes for static observers
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[36][11]. The result of [11] was then generalised further by Fewster [14] to give
a bound valid for all timelike observers in any globally hyperbolic spacetime.
This will be the main focus of this report.

More on the progress of quantum inequalities can be found in summaries
by Roman [42] and Fewster [15], and references therein. This report is con-
cerned only with quantum inequalities in scalar fields, but it should be noted
that similar bounds have also been shown to exist for Dirac [12][47] and
Electromagnetic [22][35] fields.

1.3 Aims

The main interest of this report is the derivation of the general worldline
quantum inequality given by Fewster [14]. The aim is to give an account of
the approach and methods required for the proof of this inequality, showing
how this is more rigorous and general than previous derivations. This will
involve some exploration into an algebraic approach to quantum field theory
and a branch of mathematical analysis known as ‘microlocal analysis’. The
inequality considered reduces to those in [11] and [17] in the cases of static
and Minkowski spacetimes. However this result has the advantage of being
valid in any globally hyperbolic curved spacetime of dimension n ≥ 2, which
is the largest class of spacetimes such that the Klein-Gordon field is well posed
[49]. This inequality also has the advantage over those derived by Ford and
Roman that it is valid for arbitrary smooth and compactly supported test
functions, which means it can be used to study more localised effects.

In static curved spacetimes there exists a prescription to construct a
Klein-Gordon quantum field theory on a preferred Hilbert space represen-
tation, by decomposing the field by means of mode functions. This is the
usual approach to quantum field theory, as is well covered in [3]. This ap-
proach is analogous to the usual approach to quantum field theory in flat
spacetime [4][44][24]. This is also the prescription adopted in the derivation
of previous quantum inequalities in curved spacetimes [11][36].

However, in a general curved spacetime such a prescription does not exist
[49]. Therefore to prove a quantum inequality in such a general setting re-
quires the adoption of a different approach to quantum field theory. This is
achieved by taking an algebraic approach, in which all states can be consid-
ered on an equal footing, without the initial need to construct a Hilbert space.
A comprehensive review of this approach in flat spacetime is given by Haag
[25]. Wald [49] gives an introduction to the subject in curved spacetimes, as
well as detailing why this approach is needed for a rigorous theory.

The algebraic formulation required to prove this inequality for the Klein-
Gordon field will be described in section 2. Following this, some results from
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the theory of distributions and microlocal analysis will be described. These
techniques are required to perform a rigorous analysis on the algebraically
formulated quantum field theory, in order to derive a lower bound for the
time-smeared expected energy density. Several of these ideas will be ex-
plained without a complete accompanying proof, due to considerations of
length and mathematical difficulty. In all cases the proofs can be found in
the text by Hörmander [27], which provides the most complete treatment of
this subject. The Hadamard condition [50] will then be stated in terms of
microlocal analysis [40]. This is a condition that it is assumed that states
should obey in order to be considered physical.

In section 3 it will be shown how to formulate a quantum energy density
in this setting, using a point-splitting technique [32]. It will then be demon-
strated how some of the techniques of microlocal analysis described in the
previous section can be applied to the resulting object to analyse some of its
properties.

The focus in section 4 will then shift back to the motivating topic of
quantum inequalities, where it will be shown how these techniques are applied
to derive the actual inequality, which is of the form∫

dτ (g(τ))2〈: T :〉ω(τ, τ ′) ≥ −
∫ ∞

0

dα

π
[(g, g)〈T 〉ω0 ]

∧(−α, α). (1.3)

In the above 〈: T :〉ω denotes the expected energy for a state ω, normal
ordered with respect to an arbitrary state ω0; g is an arbitrary test function,
and ∧ denotes the Fourier transform, which is defined in section 2.

After showing how the inequality is derived it will be compared to related
results in section 5, in particular the optimal bound given by Flanagan [19].
A sketch of how this bound is proved will be given, before the result is
compared with the reduced form of the inequality above. These will also be
compared with the corresponding bound of Ford and Roman [21].

2 Setting and Tools

2.1 Spacetime

A general, n-dimensional, curved spacetime can be represented by a Lorentzian
manifold (M, g), defined through the specification of a Lorentz metric gab on
a differentiable, n-dimensional manifold M [41]. A manifold is a topological
space which has the same local structure as Rn. A definition and discussion
of some of the properties of manifolds can be found in the opening chapter
of [28], and some elaboration will be given in the following sections of this
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report. The convention will be taken that a Lorentzian metric is one with
signature +− · · ·−. Note that some authors use a different sign convention,
for example in [49].

Central to previous derivations of quantum inequalities in curved space-
time was the additional condition that the spacetimes in question be static
[11][36][37]. The result derived here is valid for more general curved space-
times, being restricted only to spacetimes which are ‘globally hyperbolic’.
Note that to impose this condition it is required that a spacetime be time-
orientable. A causal curve is defined as a curve for which the tangent vector
is either null or timelike at all points, and a Cauchy surface is defined as any
subset of M which is intersected by every inextensible causal curve exactly
once. A spacetime is then said to be globally hyperbolic if it admits a Cauchy
surface. This condition ensures that causality holds on M , in the sense that
no closed timelike curves exist.

2.2 Quantum Field Theory in Curved Spacetime

The theory of quantum fields in curved spacetime should be thought of as
a semi-classical theory, in which the effects of gravity are incorporated by
formulating quantum field theory against the classical backdrop of general
relativity. The inequality we are interested in concerns the Klein-Gordon
scalar field. The classical Klein-Gordon field equation in curved spacetime is
given by

(gαβ∇α∇β +m2 + ξR)φ = 0, (2.1)

where gαβ is the metric tensor, ∇α is the derivative operator with respect to
the metric (see e.g. [41]), m > 0 is the mass of the field φ and the term ξR
represents the coupling between the scalar and gravitational fields. The ξ in
this term is a constant and R is the Ricci scalar, representing curvature. In
this derivation, however, only the simplest case shall be considered, in which
ξ = 0. This is known as minimal coupling. Inequalities have also been found
for the non-minimally coupled case [18].

This field can be quantised in a standard manner [3], which runs analo-
gously to the case of Minkowski spacetime [44]. This involves constructing
a Hilbert space on which one can represent possible states of the quantum
system. One then represents observables as operators which act upon these
states. A quantum theory can then be represented by (H , Vi) where H is a
Hilbert space and the Vi are a collection of operators representing the theory.

We say that two constructions (H , Vi) and (H ′, V ′i ) are unitarily equiv-
alent if a unitary map U : H →H ′ exists such that U−1V ′i U = Vi for each
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i. In this case each state ψ in H will be physically equivalent to the state
Uψ in H ′, meaning that the two constructions yield physically equivalent
quantum theories.

Wald shows [49] how for the Klein-Gordon field, choosing a Hilbert space
representation is equivalent to the specification of an inner product µ on the
space of solutions, which satisfies certain conditions. It is also shown how
different choices of µ can give rise to theories which are unitarily inequivalent.
This is not an issue in Minkowski spacetime, where a preferred Hilbert space
can be naturally chosen as the choice of ‘positive frequency solutions’ [44].

Indeed, as also shown in [49], one can also choose a preferred Hilbert space
representation for those curved spacetimes which are static. This is because
of the fact that static spacetimes admit a timelike Killing vector, with a
prescription for choosing a space of positive frequency solutions with respect
to the corresponding ‘Killing time’. In this case the usual prescription for
quantisation can be applied, as detailed in [3], and using this setting quantum
inequalities such as that in [11] can be derived for static spacetimes only.

In a general curved spacetime however, considering what has been said
above, it appears that by attempting to follow the usual approach to quan-
tisation one is led into ambiguity. Luckily, these apparent problems can be
averted by taking an algebraic approach to quantum field theory.

2.3 Advanced Minus Retarded Solution

This section will describe how to construct the unique advanced minus re-
tarded solution to the Klein-Gordon equation, which will be an important
construction when we come to investigate the algebraic relations obeyed by
the observables on the field. Firstly, we define set of test functions [27] on
(M, g) to be the set of all complex valued, smooth and compactly supported
functions on M , denoted by C∞0 (M). A function is said to be smooth if it is
continuous and partial derivatives of the function exist to all orders and are
also continuous. The support of a function is defined to be the closure of the
set on which the function is not identically equal to zero. If the support is a
compact set then the function is said to be compactly supported.

Now, as our spacetime is time-orientable and has a well defined causal
structure due to global hyperbolicity it is possible to define retarded and
advanced solutions E±f to the Klein-Gordon equation with source f, for
each f in C∞0 (M), as follows:

(gαβ∇α∇β +m2)(E±f) = f, (2.2)

where the advanced solution E−f = 0 outside of the causal past of the
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support of f , and the retarded solution E+f = 0 outside of the causal future
of the support of f .

Now if we define the ‘advanced minus retarded solution’ E by E = E−−
E+ we have that Ef is a solution to the source free Klein-Gordon equation
for each f in C∞0 (M), hence we have created in E a linear map from the space
of test functions into the space of solutions. A similar definition is given in
[49], with opposite signs for the solutions due to the different convention used
for the signature of the metric, and in [8] where instead the retarded minus
advanced solution is used as E.

2.4 Algebraic Formulation

By formulating a quantum field theory algebraically, the aim is to try to
understand the algebraic relations obeyed by the operators on the field sep-
arately from the difficulty of forming a specific Hilbert space representation
for the theory. This can be viewed, in a way, as the reverse of the usual
quantisation procedure.

Usually, a quantum theory is specified by first representing states as vec-
tors, or more generally ‘density matrices’, on a Hilbert space. Observables
are then represented as operators on these states. In the algebraic construc-
tion however, we construct an algebra on a set of objects representing the
observables and states then act as maps from these observables to the real
numbers, in correspondence to taking expectation values.

This allows all states to be considered on an equal footing, without intro-
ducing a preferred representation. An extensive introduction to this approach
in Minkowski spacetime is given by Haag [25]. We will take the approach of
constructing a ∗-algebra on the set of ‘smeared field operators’, labelled by
{φ(f) : f ∈ C∞0 (M)}. There are other ways of constructing an algebra on
the Klein-Gordon field, such as using the Weyl algebra outlined in [49] or the
∗-algebra described in [2], which is similar to algebra used here. We use the
construction briefly outlined in [14].

A ∗-algebra is defined over a ∗-ring. An associative ring R is a ∗- ring if
it is equipped with an operation ∗ : R→ R satisfying the properties:

• (a+ b)∗ = a∗ + b∗

• (ab)∗ = b∗a∗

• (a∗)∗ = a

• 1∗ = 1
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for all a, b in R, where 1 denotes the identity. A ∗-algebra is then defined
as a ∗-ring which is an associative algebra over R, inheriting the ∗ operation
from R.

Our algebra will be constructed over the complex numbers, C. The re-
lations we want the ‘smeared field operators’ to obey will now be explored.
This is done using ideas from references [49][8][14][2][50], adapted to suit our
conventions and uses. Classical observables correspond to functions on the
phase space for the Klein-Gordon field, where points in phase space are given
by pairs of functions θ and π on a spacelike Cauchy surface Σt0 . Each point
in phase space then corresponds to a unique solution to the Klein-Gordon
equation, and we can define a natural bilinear form Ω : S × S → R on the
space of real solutions, S given by

Ω(ϕ1, ϕ2) =

∫
Σt0

θ1(x)π2(x)− π1(x)θ2(x) (2.3)

where ϕ1 and ϕ2 are real solutions corresponding to phase space points
(θ1, π1) and (θ2, π2) respectively. Here, Ω is clearly antisymmetric and is
also ‘nondegenerate’, meaning that Ω(ϕ1, ϕ2) = 0 for all ϕ1 in S if and only
if ϕ2 = 0.

Through this construction we can define a linear map Ω(ϕ, ·) : S → R for
each ϕ in S. Since these are linear functions on the space of solutions we can
think of them as representing observables, and we can identify them with
the smeared fields, through φ(f) = Ω(Ef, ·) where E is the advanced minus
retarded solution. This is possible because of the fact that every solution ϕ
in S can be written in the form ϕ = Ef for some f in C∞0 (M). A proof of
this in the case of flat spacetimes is given in [49]; for a proof adapted to the
case of globally hyperbolic curved spacetimes see appendix A.

By making this identification we have a convenient way to derive the
relations that we want the smeared fields φ(f) to obey, by exploring the
properties of Ω. We also have the correspondence Ω(Ef, ϕ) =

∫
dVgfϕ for

any solution ϕ (see Lemma A.1 in [8]), where Vg is the volume element
associated with the metric. This shows why, in a Hilbert space representation
of a quantum theory where ϕ becomes a field operator, we interpret φ(f) as
the field ‘smeared out’ by f over its support.

We can now use Ω to identify the properties we expect the smeared fields
to satisfy. Firstly, Ω is clearly linear. Also, as we permit complex smearing
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functions, we have

Ω(Ef, ϕ)∗ =

(∫
dVg fϕ

)∗
=

(∫
dVg (Re(f) + iIm(f))ϕ

)∗
=

∫
dVg (Re(f)− iIm(f))ϕ

=

∫
dVg f̄ϕ

= Ω(Ef̄, ϕ), (2.4)

for any ϕ in S and f in C∞0 (M), where f̄ denotes complex conjugation and
∗ denotes Hermitian conjugation. We also have Ω((gαβ∇α∇β +m2)f, ·) = 0
for any f in C∞0 (M). To see this let ϕ be any solution in S and let h =
gαβ∇α∇β + m2)f , for any f in C∞0 (M). Then note that E−h = E+h = f ,
so that Eh = 0. Hence we have

Ω(Eh, ϕ) = Ω(0, ϕ)

= 0. (2.5)

Now, if we take ϕ1 and ϕ2 in S and denote Ω(ϕ1, ·) and Ω(ϕ2, ·) by F (θ, π)
and G(θ, π) respectively, we then have the Poisson bracket relation:

{F,G} =

∫
Σt0

δF

δθ

δG

δπ
− δF

δπ

δG

δθ
, (2.6)

where θ and π are phase space functions. Then to calculate, for example δF
δθ

,
we see from equation 2.3 that

δF

δθ
(x) =

δ

δθ
(x)

∫
Σt0

θ1(x′)π(x′)− π1(x′)θ(x′)

= −
∫

Σt0

π1(x′)
δθ(x′)

δθ(x)

= −
∫

Σt0

π1(x′)δ(x′ − x)

= −π1(x). (2.7)

Similarly we have

δF

δπ
= θ1,

δG

δθ
= −π2,

δG

δπ
= θ2. (2.8)
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Then putting these into equation 2.6 we find

{F,G}(θ, φ) =

∫
Σt0

θ1π2 − π1θ2

= Ω(ϕ1, ϕ2). (2.9)

Now if we write ϕ1 and ϕ2 in the form Ef and Eg respectively, we have

{Ω(Ef, ·),Ω(Eg, ·)} = Ω(Ef,Eg)

=

∫
dVg fEg

= E(f, g), (2.10)

where we now write E(f, g) ≡
∫
dVg fEg for all f and g in C∞0 (M). Then in a

quantum theory we could expect the φ(f) to obey a corresponding canonical
commutator relation.

Gathering these results, we are now in a position to state the relations
we wish to impose on the objects φ(f) as follows:

Q1 Hermiticity: φ(f)∗ = φ(f̄) for all f in C∞0 (M)

Q2 Complex linearity: φ(f + λg) = φ(f) + λφ(g) for all f, g in C∞0 (M) and
all λ in C

Q3 Field equation: φ((gαβ∇α∇β +m2)f) = 0 for all f in C∞0 (M)

Q4 Canonical commutation relations (CCR): [φ(f), φ(g)] = iE(f, g)1I for all
f and g in C∞0 (M),

where 1I denotes the identity. In particular it is the relation Q4 that makes
sure that the resulting objects represent a quantum theory rather than clas-
sical observables. This also means that although we can not write the objects
φ(f) in an explicit form, we do have an explicit representation for the com-
mutator of any two such objects.

We will now construct an algebra to incorporate these relations. This
is done in the same way as in [14], by first taking the natural free, unital
∗-algebra over C generated by the set {φ(f) : f ∈ C∞0 (M)}. To elaborate
on these terms, a unital algebra is an algebra containing an identity, which
is satisfied here by 1I. By a free algebra we mean one consisting of all finite
polynomials of the objects φ(f), the φ(f)∗ and 1I. We call this algebra A.

The relations Q1-Q4 are then enforced by using them to define a quotient
of A. To do this we first construct a ∗-ideal, consisting of all elements of the
form ABC where A and C are any members of A and B takes the form of
any one of the following:
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1. φ(λ1f + λ2g)− λ1φ(f)− λ2φ(g)

2. φ(f)∗ − φ(f̄)

3. φ((gαβ∇α∇β +m2)f)

4. φ(f)φ(g)− φ(g)φ(f)− iE(f, g)1I

for all f and g in C∞0 (M), λ1, λ2 in C. We call the resulting subset I. Then
for any A in A and B in I we have that both AB and BA are in I, so I
satisfies the definition of an ideal.

Now, for the properties Q1-Q4 to be satisfied, we would like for any
element of I to act as zero. This is exactly what we achieve by taking the
quotient A/I. This is done by defining the equivalence relation A ∼ B if and
only if A− B is in I, for all A and B in A. The quotient A/I then consists
of the resulting equivalence classes [A] = A+I for each A in A. We suppress
the equivalence class notation and denote the quotient algebra by A(M, g).
This is now our desired construction, ensuring that the relations Q1-Q4 are
satisfied.

Having constructed a satisfactory algebra on the objects representing ob-
servables in quantum field theory, the next step is to define states. We define
these as linear maps, or functionals, ω : A(M, g)→ C from the algebra onto
the underlying space C. The states are then required to satisfy the normal-
isation condition ω(1I) = 1 and also the positivity condition ω(A∗A) ≥ 0
for all A in A(M, g). As previously mentioned, the action of a state on
an observable can be thought of as corresponding to taking an expectation
value, so this condition corresponds to the positivity of expectation values
for products of operators with their adjoints.

Having defined an algebra of observables on the Klein-Gordon field and a
notion of states, the next step will be to consider which states are considered
to be allowable in the theory. An important feature in the analysis of quan-
tum field theories is the n-point functions of states. The n-point function for
a state ω is defined by

ωn(f1, . . . , fn) = ω(φ(f1) · · ·φ(fn)) (2.11)

for all f1, . . . , fn in C∞0 (M). In particular for the purposes of this report we
will want to consider the properties of a states two-point function:

ω2(f, g) = ω(φ(f)φ(g)), (2.12)

for all f and g in C∞0 (M).
The proof of the quantum inequality in section 4 will require the use of

the fact that every two-point function shares a common anti-symmetric part.
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To see that this is true, let f and g be in C∞0 (M) and note that from the
commutation relation Q4 we have that

1

2
φ(f)φ(g) =

1

2
φ(g)φ(f) +

i

2
E(f, g)1I , (2.13)

so that adding 1
2
φ(f)φ(g) to each side gives

ω2(f, g) =
1

2
(ω2(f, g) + ω2(g, f)) +

i

2
E(f, g)1I . (2.14)

Further, since
E(f, g) = Ω(Ef,Eg) (2.15)

it follows from the anti-symmetry of Ω that the imaginary part of 2.14 is anti-
symmetric, so clearly every two-point function has a real symmetric part and
a common anti-symmetric part.

2.5 Distributions

The aim of the following material will be to give conditions on which states
will be considered to be physically ‘allowable’. These will be those states
which have what is called a globally Hadamard two-point function. We will
start by making the restriction to states for which the two-point function is
a distribution, which will be defined shortly. Some results from microlocal
analysis will then be given. Microlocal analysis is a tool used to describe the
singularity structure of distributions. The definitive text on these techniques
is by Hörmander [27]. The material presented here is mainly drawn from
ideas in that reference along with [13].

Firstly, a distribution on Rn is defined as a linear map u : C∞0 (Rn)→ C
such that u is linear and satisfies the continuity condition that for every
compact subset K ⊂ Rn there exist constants C and k such that

|u(φ)| ≤ C
∑
|α|≤k

sup
K
|Dαφ|, (2.16)

for all φ in C∞0 (K), where Dα denotes some partial differential operator of
order |α|. The set of all distributions is then denoted by D ′(Rn).

We can now define some simple operations on distributions. We can take
linear combinations by defining

(λ1u+ λ2v)(f) = λ1u(f) + λ2v(f), (2.17)
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for all λ1 and λ2 in C, u and v in D ′(Rn) and f in C∞0 (Rn). This satisfies
the continuity condition, since if u is in D ′(Rn) and satisfies 2.16 for some
C1 and k1, and if λ is a constant, then

|λu(φ)| ≤ C ′1
∑
|α|≤k1

sup
K
|Dαφ|, (2.18)

where C ′1 = |λ|C1. Also, if v is another distribution in D ′(Rn), satisfying
2.16 for some C2 and k2, we have that

|u(φ) + v(φ)| ≤ |u(φ)|+ |v(φ)|
≤ (C1 + C2)

∑
|α|≤k

sup
K
|Dαφ|, (2.19)

where k = min{k1, k2}. Therefore we have that λ1u+ λ2v is in D ′(Rn).
Also, for any u in D ′(Rn) we can define multiplication by a smooth func-

tion χ in C∞(R) by
(χu)(f) = u(χf), (2.20)

for all f in C∞0 (Rn). Then we have that χf is in C∞0 (Rn) so that 2.16 is
trivially satisfied and χu is in D ′(Rn).

We can also define the derivative of u with respect to a differential oper-
ator Dα of order |α| by

(Dαu)(f) = (−1)|α|u(Dαf), (2.21)

for all f in C∞0 (Rn). This definition is designed to ensure that integration
by parts holds true. It can again be shown that 2.16 is satisfied for this
definition.

In particular, we can construct a distribution associated with any locally
integrable function on Rn. To see this, let F be locally integrable on Rn.
That is, F is integrable over any compact subset of Rn. The distribution
associated with F is then defined by

F (f) =

∫
F (x)f(x) dnx, (2.22)

for any f in C∞0 (Rn) and where, in following a common abuse of notation, the
distribution associated with F has also been denoted by F . A notable feature
of this construction is that while the function F may not be differentiable,
the distribution F is always infinitely differentiable, in the distributional
sense defined above. This can easily be seen by the fact that one can simply
integrate by parts and use the fact that any compactly supported f vanishes
at infinity.
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In order to carry out the analysis needed for our purposes this defini-
tion must be extended to one for distributions on a more general manifold.
In order to achieve this some elaboration will be needed on the structure
of manifolds. As mentioned in 2.1, n-dimensional manifolds look locally like
Rn. More specifically, each point x in an n-dimensional manifold has a neigh-
bourhood Xκ which is homeomorphic to an open subset of Rn [28]. We then
call the pair (Xκ, κ) a ‘chart’, where κ denotes the homeomorphism.

If a collection of charts comprises a covering of X, that is X ⊂ ∪Xκ,
then this collection is called an ‘atlas’. In the case where two charts (Xκ, κ)
and (Xκ′ , κ

′) are overlapping, so that Xκ∩Xκ′ 6= ∅, we can construct what is
known as a ‘transition function’ ϑ : κ(Xκ∩Xκ′)→ κ′(Xκ∩Xκ′) between open
subsets of Rn. The transition function is required to be smooth and is defined
by ϑ = κ′ ◦ κ−1. An object defined on overlapping charts will then have two
different ‘chart expressions’. We then say that a manifold X is ‘smooth’ if
there is a C∞ structure on X. That is, a collection F of homeomorphisms κ
from open sets Xκ ⊂ X onto open subsets of Rn satisfying the properties:

1. ϑ : κ(Xκ ∩Xκ′)→ κ′(Xκ ∩Xκ′) is smooth, for all κ, κ′ in F .

2. ∪Xκ = X.

3. Any homeomorphism κ′ from an open subset X ′ ⊂ X to an open subset
of Rn, such that the map κ′ ◦κ−1 : κ(Xκ ∩Xκ′)→ κ′(Xκ ∩Xκ′) and its
inverse are smooth for all κ in F , is also in F .

Now using this structure we can define distributions on a smooth mani-
fold. From this point if (Xκ, κ) is a chart on an n-dimensional manifold X
the notation X̃κ will be used to denote the image of Xκ in Rn, under the
action of κ. Now to define a distribution, let X be a smooth manifold. Then
for any chart κ on X let uκ be a distribution on X̃. Then if for every κ and
κ′ we have that

uκ′ = uκ ◦ (κ ◦ κ′−1) on κ′(Xκ ∩Xκ′), (2.23)

we say that the family of local representatives uκ defines a distribution u on
X. The u referred to is such that uκ = u ◦ κ−1 for each κ. It can be shown
(Theorem 6.3.4 in [27]) that this definition is a consistent one, and agrees
with the definition in Rn.

Now in order to produce an example of a distribution on a manifold X
analogous to that given in Rn we require the existence of a smooth density
ρX on X. We can define a density through the way that its expressions on
different charts depend on the transition function ϑ [16]. A density ρ with

15



chart expressions ρκ and ρκ′ satisfies the transformation law:

ρκ′(ϑ(x))|detDϑ(x)| = ρκ(x), (2.24)

for all x in U ∩ U ′, where Dϑ(x) denotes the derivative of ϑ at x and det
denotes the determinant.

This is important for constructing distributions on a manifold because
of the integration properties of densities. It follows from the transformation
law that for any density ρ supported on U ∩ U ′ we have∫

κ(U)

ρκ(x) dnx =

∫
κ′(U)

ρκ′(x
′) dnx′, (2.25)

so that for a density ρ supported on U we can make the definition:∫
U

ρ =

∫
κ(U)

ρκ(x) dnx. (2.26)

Then if X is a smooth manifold with a smooth density ρX we can define a
distribution on X for any smooth function F by

F (f) =

∫
ρ(x)f(x)F (x) dnx, (2.27)

for any f in C∞0 (X).
In particular we can always make this definition on a spacetime (M, g)

using the natural density defined on M by |detg| 12 .

2.6 Wave-front Sets

Now that a definition of distributions has been given, we can begin to look
at the techniques used to analyse their singularity structure. This will be
done through looking at the ‘wave-front set’. Again the techniques presented
here can be found detailed in [27] and the material in [13] has aided this
presentation. The conventions taken will follow those in [14].

The main motivation here for considering the wave-front set is because
of the relation to the Hadamard condition which we will look to impose on
states. The techniques discussed here are also important for other reasons.
For example, the product of two distributions is not always well defined,
and the wave-front set provides information on when distributions can be
multiplied together. These techniques can also be applied invaluably to the
analysis of partial differential equations. To begin with the wave-front set
will be defined for distributions on Rn, then this definition will be related to
smooth manifolds and the Hadamard condition will be stated.
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We want to know where a distribution is singular, so it makes sense that
we begin by defining where a distribution is supported. Since distributions
act on a space of functions, we can not achieve this by considering the ‘value’
of distributions at points on Rn. However, it makes more sense to say that a
distribution u vanishes on a neighbourhood if u(f) = 0 for all f supported
on that neighbourhood. With this in mind we define the support of a distri-
bution u by:

suppu = Rn\{x ∈ Rn : ∃ a neighbourhood X of x, s.t. u(f) = 0 ∀ f ∈ C∞0 (X)}.
(2.28)

This way we can still interpret the support of a distribution u being the
smallest space of all closed subsets where u does not vanish, which is exactly
analogous to how the support of a function is defined. Note that from this
and 2.20 it follows that for any f in C∞0 (Rn) and u in D ′(Rn) we have
supp fu ⊂ supp f .

Now to try to understand where distributions have singular behaviour
we must first give a definition of what it means for a distribution to be
‘smooth’. We do this by appealing to the properties of functions, and defining
a distribution u to be smooth at any point having a neighbourhood where we
can identify u with a smooth function. Specifically, given a distribution u in
D ′(Rn), we say that u is smooth at a point x in Rn if there is a neighbourhood
X of x and a smooth function F in C∞(X) such that

u(f) = F (f) =

∫
F (x)f(x) dnx, (2.29)

for all f in C∞0 (X). Following this definition we can define the ‘singular
support’ of a distribution u, denoted sing suppu, to be the complement of
the set of points on which u is smooth. Since u is zero outside of the sup-
port of u this definition means that u is smooth everywhere outside of its
singular support, and therefore all of the singularities are contained within
the singular support.

We can gain further understanding about the singular structure of dis-
tributions by studying the Fourier transform. We will define the Fourier
transform for distributions which are of compact support. First we use the
notation ek(x) = eik·x. For a compactly supported distribution u in D ′(Rn)
we then define its Fourier transform by

û(k) = u(ek), (2.30)

where this notation is really a shorthand for u(χek) for some χ in C∞0 (Rn)
which is equal to unity everywhere on the support of u. For this definition
the Fourier transform yields an analytic function of k.

17



Again we can appeal to the example of the distribution generated by
a smooth function, now assumed to have compact support. Then if F in
D ′(Rn) is the distribution corresponding to the function F , now assumed to
be in C∞0 (Rn), its Fourier transform is given by

F̂ (k) =

∫
F (x)eik·x dnx, (2.31)

and it is clear that this corresponds to the Fourier transform of F when
viewed as a function (taking the convention that the form above does in fact
define the Fourier transform for a function).

The link between Fourier transforms and singularities is that for com-
pactly supported distributions u there is a correspondence between u being
smooth and the Fourier transform of u being ‘rapidly decreasing’. We define
a cone V ⊂ Rn to be a subset of Rn such that for any k in V we have that
λk is in V , for every λ ≥ 0. We then define û(k) to be of rapid decrease in
V if there exists some constant CN in R such that

|û(k)| ≤ CN |1 + |k||−N , (2.32)

for each N in N, where |k| denotes the Euclidean norm of k. If a vector k
in Rn has a conical neighbourhood such that the above definition is satisfied
then we call k a direction of rapid decay for u.

It is a well known result in classical Fourier analysis that the Fourier
transform of a test function decays rapidly in all directions as k →∞ [43]. We
can then apply this result to compact distributions if they are generated by a
smooth function. There is also an even stronger result from Hörmander [27]
(Theorem 7.3.1) that the converse holds. To be precise, if u is a distribution
in D ′(Rn) with compact support and if its Fourier transform û decays rapidly
in all directions, then u can be identified with some function F in C∞0 (Rn).
The slightly technical proof of this result will not be given here.

This relationship between smoothness and the rapid decay of the Fourier
transform lets us make the interpretation that all of the singularities of a com-
pactly supported distribution u correspond to those ‘frequencies’ for which
the Fourier transform is not rapidly decaying. We can then define the ‘sin-
gular directions’ associated with the singularities of a distribution in a sim-
ilar manner to how the singular support is constructed. That is, for any
compactly supported distribution u in D ′(Rn) we define the set of singular
directions Σ(u) of u to be the complement in Rn\0 of the set of directions in
which û decays rapidly.

The set of singular directions provides us with a global notion of the di-
rections that are associated with the occurrence of singularities. For the task
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of defining the wave-front set, a more local version of this will be required.
Crucial to extracting such information is that it can also be shown that for
any f in C∞0 (Rn) and u in D ′(Rn):

Σ(fu) ⊂ Σ(u). (2.33)

This means that no new singular directions can be created by multiplying a
compact distribution by a test function. This property allows us to localise
the information about singular directions to the extent that we can find the
singular directions relating to a single point. Localisation can be achieved
by multiplying a distribution u by a test function f . Then since the support
of fu is no larger than the support of f we can take the limit of the support
of f to a single point {x} to find information about the singular directions
associated with that point. This is what is achieved by defining the set of
singular directions of u in D ′(Rn) for a point x in Rn by

Σx(u) =
⋂

f∈C∞0 (Rn)
f(x)6=0

Σ(fu). (2.34)

In this definition it has not been necessary to impose that u is of compact
support, as it is always multiplied by compactly supported functions. A
consequence of this definition is that we can now see that a distribution u is
only smooth at a point x if Σx(u) = ∅.

This is finally all of the information needed to define the wave-front set,
which is essentially a compact way of expressing this information. For a
distribution u in D ′(Rn) we define the wave-front set of u by

WF(u) = {(x, k) ∈ Rn × (Rn\{0}) : k ∈ Σx(u)} (2.35)

We can see that this now contains all of the information we could expect to
gain about the singularities of u; their positions x along with a corresponding
momentum k.

A key property of the wave-front set that is important to the proof of the
inequality of interest is that the wave-front set does not expand under the
action of partial differential operators with smooth coefficients. The slightly
lengthy proof of this result, including some elaboration on the similar proof
given in [27], is detailed in appendix B. Of course to analyse states on a
curved spacetime the definition of the wave-front set will have to be related
to smooth manifolds, for which we will need to study its transformation
properties.
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2.7 More Properties of the Wave-Front Set and the
Hadamard Condition

We will now relate the wave-front set to smooth manifolds. For this we
will continue to use material that can be found in [27]. The Hadamard
condition [49][50] will then be stated, in terms of the wave-front set [40][29][5].
In order to consistently define the wave-front set for smooth manifolds we
need to understand how it translates onto different coordinate systems. In
preparation, we first look at some of the structures relating to manifolds.
Again, for an elaboration on these structures refer to Jöst [28]. As before,
definitions will be given in Rn before relating these to general n-dimensional
manifolds.

To begin with we define the tangent space at a point x0 in an open subset
X ⊂ Rn as the space {x0}×Ex0 , where Ex0 is the set of all tangent vectors at
the point x0. This is denoted by Tx0(X). If one thinks of tangent vectors as
directional derivatives, the space Ex0 is defined as the n-dimensional vector
space spanned by the basis of partial derivatives with respect to the coordi-
nates of Rn, evaluated at x0. Then if we have another open subset X ′ ⊂ Rn

and a differentiable map f : X → X ′ it is possible to define a linear map, or
‘derivative’, Df(xo) : Tx0(X) → Tf(x0)(X

′), induced by f , for any x0 in X.
The action on a vector v in E is then given by:

Df(x0) : v = vi
∂

∂xi
7→ vi

∂f j

∂xi
(x0)

∂

∂f j
, (2.36)

where the xi are coordinates in Rn. In particular the v transform as vectors
under coordinate changes.

We then define the ‘tangent bundle’ T (X) of an open subset X ⊂ Rn to
be the collection of all the tangent spaces of X. That is;

T (X) =
⋃
x∈X

{x} × Ex0 . (2.37)

We can then define induced maps between tangent bundles in the same way
as for tangent spaces. The definition of the tangent space at a point p in an
n-dimensional, differentiable manifold M requires a little more work. First
let (Xκ, κ) be a chart in M with p in Xκ. We then say that the tangent
space Tp(Xκ) has the chart representation Tκ(p)(X̃κ) for the chart κ. Then
if (Xκ′ , κ

′) is another chart containing p, we have that the transition map ϑ
induces a vector space isomorphism:

Dϑ(κ(p)) : κ(Xκ ∩Xκ′)→ κ′(Xκ ∩Xκ′), (2.38)
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where ϑ = κ′ ◦ κ−1. For a point p in M we now consider the set

{(κ, v) : (κ,Xκ) a chart with p ∈ Xκ, v ∈ Tκ(p)(X̃κ)}. (2.39)

Then for members of this set we define an equivalence relation by (κ, v) ∼
(κ′, v′) if and only if v′ = D(κ′ ◦κ−1)v, and the resulting space of equivalence
classes is what we call the tangent space to M at p. We then define the
tangent bundle in the same way as in the case of Rn.

The tangent bundle is a particular example from a wider class of construc-
tions known as ‘vector bundles’, where in this case the ‘fibers’ are tangent
spaces. More details can be found in [28]. What we are really interested in is
actually the cotangent bundle, as it will turn out that the wave-front set is a
subset of this particular construction. Firstly, we define the cotangent space
at any point x in a manifold M to be the dual space to the tangent space.
By the dual space we mean the space of all linear maps from Tx(M) to M .
Therefore we have that the elements of the cotangent space are covectors,
and we denote the resulting space by T ∗x (M). We then define the cotangent
bundle to be the disjoint union over M of cotangent spaces, that is

T ∗(M) =
⋃
x∈M

{x} × T ∗x (M). (2.40)

As mentioned, the wave-front set is a subset of the cotangent bundle, so
where we referred earlier to the vector k we really should have been calling
it a covector. In particular this tells us how elements of the wave-front set
behave under transformations, and so the wave-front set of a distribution on
a manifold can be defined in terms of charts. Then if (Xκ, κ) is a chart in X,
using the transformation properties of covectors we can define κ∗WF(u◦κ−1)
by

κ∗WF(u ◦ κ−1) = {(x, (Dκ(x))tk) : (κ(x), k) ∈WF(u ◦ κ−1)}, (2.41)

where (Dκ(x))t denotes the transpose of the derivative of κ. Then κ∗ ‘pulls
back’ the wave-front set of u ◦ κ−1 in Rn onto X. Then we set WF(u) =
κ∗WF(u ◦ κ−1) to give a definition which is independent of the choice of
chart.

The wave-front set can now be used to state the Hadamard condition
on the two-point functions of states. The Hadamard condition essentially
allows one to appropriate those states which can be thought of as ‘physical’.
It arises from considerations of how to define the stress-energy tensor for
quantum fields in curved spacetime [48]. It has already been stated that
states are distributions, and that products of distributions are not guaranteed

21



to be well defined. Indeed, the two point function ω2(φ(x), φ(x′)) is not well
defined at the point x′ = x [49], which is why the Hadamard condition is
required.

After some work on the subject and under several considerations, the
Hadamard condition was derived explicitly [50] in a more complicated form
than that which will be given here. It has since been shown, originally by
Radzikowski, that this is equivalent to a condition on the wave-front sets of
two-point functions of states [40][5]. If x and x′ are two points separated by
a null geodesic γ, where k is cotangent to γ at x, k′ is cotangent to γ at x′

and k′ is the parallel transport of k along γ, then we denote this relation by
(x, k) ∼ (x′, k′). Now we can state the Hadamard condition simply by saying
that a state ω is Hadamard if and only if

WF(ω2) = {(x, k;x′,−k′) : (x, k) ∼ (x′, k′), k is future pointing}. (2.42)

Where x′ = x we take the convention that (x, k) ∼ (x, k′) if and only if k = k′

is null. On general distributions, this condition is known as the ‘microlocal
spectral condition’. We will use the result, as outlined in [14], that the two-
point functions of any Hadamard states share a common singular part.

One advantage to this formulation over the original exposition of the
Hadamard condition is that the statement itself is more compact. Also with
the condition in this form, techniques of microlocal analysis can be used to
derive results in quantum field theory, such as quantum inequalities.

2.8 Some Results Concerning Pullbacks

We have already seen one example of a pullback κ∗ on the wavefront set
in the previous section. In the following sections we will need to use some
technical results on the properties of pullbacks on manifolds, which will be
given here. If ϕ is a smooth map between manifolds ϕ : X → Y then we
can define an induced map ϕ∗ from D ′(Y ) to D ′(X) called a pullback of
distributions. Under certain conditions this can always defined uniquely in
such a way that it is of the form ϕ∗u = u ◦ ϕ for any u in D ′(Y ) where u is
associated with a continuous function. We will need to use this result in the
following section. Specifically, define the set of normals for ϕ to be

Nϕ = {(ϕ(x), k) ∈ T ∗(X) : (Dϕ(x))t = 0}, (2.43)

for all x in X. Then if u is in D ′(Y ) and Nϕ ∩WF(u) = ∅ the pullback can
be uniquely defined, and takes the form given above if u is associated with
a continuous function. This is the result of theorem 2.5.11’ in [26]. This
theorem also says that

WF(ϕ∗u) ⊂ ϕ∗WF(u) = {(x, (Dϕ(x))tk) : (ϕ(x), k) ∈WF(u)}. (2.44)
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A distribution u on D ′(X×X) is said to be of ‘positive type’ if u(f̄ , f) ≥ 0
for every f in C∞0 (X). In particular the two-point function ω2 is a distribution
of positive type, following from the positivity condition on states mentioned
in 2.4. Now let γ : X → Y be smooth and let ϕ : X ×X → Y × Y be given
by ϕ(·, ·) = (γ(·), γ(·)). We have that if X and Y are endowed with smooth
positive densities ρX and ρY then for any u in D ′(Y × Y ) of positive type
with Nϕ∩WF(u) = ∅, ϕ∗u is also of positive type in D ′(X ×X). This is the
result from theorem 2.2 in [14] and will also be needed in the next section.
The proof of this result requires the use of what is called the ‘Hörmander
pseudo-topology’, the details of which will not be gone into here.

3 Energy Density

In Minkowski spacetime, or indeed static curved spacetimes, we can quantise
the stress-energy tensor with little effort as it is simply a case of substitut-
ing expressions for the quantum field operators into the expression for the
classical stress-energy tensor. The resulting divergent expression for energy
density can then be used to define a finite quantity through a normal ordering
procedure to subtract the expectation value in the vacuum state. This is the
prescription used in previous derivations of quantum inequalities [11][36][37].

In the present case, neither of these methods is available. Without an
explicit expression of φ to substitute into the expression for Tab we will have
to find another way to quantise the energy density. Once this is achieved,
there is no preferred vacuum state in this formulation, so this will not be a
valid way to achieve a finite expression. The classical stress-energy tensor
corresponding to the Klein-Gordon field is given by

Tab = ∇aφ∇bφ− 1
2
gabg

cd∇cφ∇dφ+ 1
2
m2φ2gab. (3.1)

We seek to define a quantised version of the energy density T00. This will be
achieved by following the same procedure as in [14].

To begin with we need to give the definition of another example of a
vector bundle, called the ‘normal bundle’. First, if N is a submanifold of a
manifold M equipped with a metric h, dimN < dimM , then we define the
normal space at x in N [28] by

T⊥x = {v ∈ Tx(M) : 〈v, w〉 = 0,∀w ∈ Tx(N)}, (3.2)

where 〈·, ·〉 denotes the usual scalar product induced by h [31]. The normal
bundle is then the disjoint union of these spaces over all x in N . We can now
define a ‘tubular neighbourhood’ [33].
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First let N ⊂ M be a submanifold with dimN < dimM , and denote the
normal bundle of N by T⊥(N). Then an open set Ω ⊂ M containing N is
called a tubular neighbourhood of N in M if there is an open neighbourhood
Z of the zero section of T⊥(N) and a diffeomorphism f : Z → Ω such that
f(0x) = x for any zero vector 0x in T⊥(N) corresponding to x in N .

In (M, g) we let γ be some smooth, timelike curve and let Γ be a tubu-
lar neighbourhood of γ. We can now define an orthonormal frame in Γ,
{va0 , . . . , van−1}, where the vaµ are mutually orthonormal with respect to the
scalar product, so that gab = ηµνvaµv

b
ν . Here η is the usual Minkowski met-

ric, or the matrix diag[1,−1, · · · ,−1]. We choose this frame such that on
γ, va0 is equal to the four-velocity γ̇(τ) ≡ u(τ) of the trajectory. The clas-
sical energy density as measured by an observer along γ is then given by
ua(τ)ub(τ)Tab(γ(τ)), which will be denoted by T (τ).

Now looking at the middle term of 3.1 on γ we can substitute in the
expression for gab to get:

− 1
2
gabg

cd∇cφ∇dφ = −1
2
gabη

cdvecv
f
d∇eφ∇fφ

= −1
2
gabv

c
0v
d
0∇cφ∇dφ+ 1

2

n−1∑
µ=1

gabv
c
µv

d
µ∇cφ∇dφ.(3.3)

We also have that on γ;

uaubgab = va0v
b
0ηµνv

µ
av

ν
b

= ηµνδ
µ
0 δ

ν
0

= 1. (3.4)

Now putting this together we can write T (τ):

T (τ) = va0v
b
0∇aφ∇bφ− 1

2
va0v

b
0∇aφ∇bφ+ 1

2

(
n−1∑
µ=1

vaµv
b
µ∇aφ∇bφ

)
+ 1

2
m2φ2

= 1
2

(
n−1∑
µ=0

vaµv
b
µ

)
∇aφ∇bφ+ 1

2
m2φ2. (3.5)

We now employ what is known as a point splitting technique to write this
as a bi-scalar field, allowing us to quantise using the two-point function. We
write the expression

T (τ, τ ′) = 1
2

(
n−1∑
µ=0

vaµ(γ(τ))vb
′

µ (γ(τ ′))

)
∇aφ|γ(τ)∇b′φ|γ(τ ′)+

1
2
m2φ(γ(τ))φ(γ(τ ′)),

(3.6)
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where we can clearly obtain T (τ) by taking τ ′ = τ in the above. Here we
have used point-splitting only on the energy density. Similar techniques can
be employed to try to obtain a quantised expression for the stress-energy
tensor, which are discussed in [32].

The energy density has now been written in a form which can easily be
quantised. First let ω be any state on A(M, g) which obeys the Hadamard
condition. We then define the bidistribution 〈T 〉ω by

〈T 〉ω = 1
2

n−1∑
µ=0

ϕ∗
(

(vaµ∇a, v
b′

µ∇b′)ω2

)
+ 1

2
m2ϕ∗ω2. (3.7)

Here we have that ϕ∗ denotes the pullback from M ×M to R2 induced by
the smooth function ϕ : R2 → M ×M defined as ϕ(τ, τ ′) = (γ(τ), γ(τ ′)).
Therefore we have that 〈T 〉ω is defined on R2. To check whether the pullback
ϕ∗ is well defined it is necessary to find the set of normals for ϕ. We start
by calculating the Jacobian:

Dϕ(τ, τ ′) =


∂γ1

∂τ
∂γ1

∂τ ′

...
...

∂γn−1

∂τ
∂γn−1

∂τ ′

 , (3.8)

so that we have

(Dϕ(τ, τ ′))t(k, k′) =

[
∂γ1

∂τ
· · · ∂γn−1

∂τ
∂γ1

∂τ ′
· · · ∂γn−1

∂τ ′

] k1 k′1
...

...
kn−1 k′n−1


= (γ̇a(τ)ka, γ̇

b′(τ ′)k′b′), (3.9)

where (k, k′) is in T ∗(γ(τ),γ(τ ′))(M ×M). That is, (Dϕ(τ, τ ′))t is a linear map

onto R2 such that

(Dϕ(τ, τ ′))t(k, k′) = (ua(τ)ka, u
b′(τ ′)k′b′). (3.10)

Then from this equation it follows that the set of normals for ϕ is given by

Nϕ = {(γ(τ), k; γ(τ ′), k′) : kau
a(τ) = k′b′u

b′(τ ′) = 0}. (3.11)

Now it would clearly be the case that 〈T 〉ω would not be well defined were
the pullback ϕ∗ω2 not well defined.

We have that the pullback is defined well if Nϕ ∩WF(ω2) = ∅. If a point
(x, k;x′, k′) is in this intersection we have that x = γ(τ) and x′ = γ(τ ′) for
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some τ and τ ′. We then have that k and k′ are only in WF(ω2) if they are
both null. Furthermore, we require that kau

a(τ) = 0 and k′b′u
b′(τ ′) = 0,

where ua(τ) and ub
′
(τ ′) are non-zero timelike velocities. Since this condition

cannot be fulfilled by any (non-zero) null vectors [41], it follows that the
intersection is indeed empty, and so ϕ∗(ω2) is well defined. What’s more,
due to the fact that wave-front sets cannot be added to under the action of
partial differential operators, it can also be concluded from this argument
that the other terms in 〈T 〉ω are well defined.

From comments in the previous sections and the fact that ω2 is of positive
type, it follows that ϕ∗ω2 is also of positive type. The other terms in the
expression for the quantised energy density are of the form

ϕ∗((vaµ∇a, v
b′

µ∇b′)ω2). (3.12)

Then since

(vaµ∇a, v
b′

µ∇b′)ω2(f̄ , f) = ω2(∇a(vaµf),∇b′(v
b′

µ f)) (3.13)

and this is positive because of ω2 being of positive type, it follows that all
of the terms of the quantised energy density are of positive type. Therefore
〈T 〉ω is of positive type.

To prove the inequality in the next section it will also be necessary to
know about the behaviour of the product of the Fourier transform of 〈T 〉ω
with a smooth function. Everything needed can be found from the wave-front
set. Firstly, it follows from equation 2.44 that if (τ, ξ; τ ′,−ξ′) is in WF(ϕ∗ω2)
then (τ, ξ; τ ′,−ξ′) is in WF(ω2), so

(ξ,−ξ) = (Dϕ(τ, τ ′))t(k,−k′)
= (ua(τ)ka,−ub

′
(τ ′)k′b′). (3.14)

Also from equations 2.42 and 2.44 it follows that

(γ(τ), k) ∼ (γ(τ ′),−k′), (3.15)

where k and k′ are future pointing. It then follows from the fact that k and
k′ are required to be future pointing and the velocities ua are future pointing
that ξ must be positive. This is as much as is required.

From proposition 8.1.3. in [27] the projection of the wave-front set onto
the second variable gives the set of singular directions. If we let g be any
function in C∞0 (Rn) it then follows from the non-expansion of the wave-front
set under multiplication by smooth functions that

WF(g〈T 〉ω) ⊂WF(〈T 〉ω). (3.16)
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Hence, by the preceding comments

Σ(g〈T 〉ω) ⊂ Σ(〈T 〉ω) ⊂ {(ξ,−ξ′) : ξ, ξ′ > 0}. (3.17)

If we then denote the Fourier transform of g〈T 〉ω by

[g〈T 〉ω]∧(−α, α), (3.18)

it then follows from 3.17 that this decays rapidly in all directions as α→ +∞.

4 Proof of the Inequality

The techniques and results that have been described thus far can now be put
to use in the context of the main motivation of this report; that is, the proof
of a quantum inequality. The aim of this section is to describe how to prove
that the inequality∫

dτ (g(τ))2〈: T :〉ω(τ, τ ′) ≥ −
∫ ∞

0

dα

π
[(g, g)〈T 〉ω0 ]

∧(−α, α) (4.1)

holds for all real g in C∞0 (R). In the above, 〈: T :〉ω is the normal-ordered
energy density in the state ω with respect to the state ω0, where both are
Hadamard.

In the usual Hilbert space formulation of quantum field theory normal
ordering is conventionally employed to define a finite expected energy density
for any state ψ by subtracting the expected energy density for the vacuum
state [3], so one defines

〈: T00 :〉ψ = 〈ψ|T00|ψ〉 − 〈0|T00|0〉. (4.2)

Obviously in the present formulation there is no state which can be picked
out as a preferred vacuum state, so to overcome this problem we take the
logical step of employing normal ordering of the energy density for a state
ω with respect to an arbitrary state ω0 to achieve a finite expression for the
energy density; that is

〈: T :〉ω = 〈T 〉ω − 〈T 〉ω0 . (4.3)

To prove the result it is required to show three things. It has to be shown
that 〈: T :〉ω is smooth and that the inequality holds. Then it must be shown
that the integral on the right converges to a finite limit, so that the result
is more than trivial. To begin with it follows quite straightforwardly that
〈: T :〉ω is smooth. It was mentioned in 2.7 that all Hadamard two-point
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functions have the same singular structure, so it follows that ω2 − ω
(0)
2 is

smooth, and then from the definition of the energy density we have that
〈: T :〉ω is smooth.

Now it will be shown that the inequality of the above form can be de-
rived. To begin with we can write the LHS in terms of two variables by
introducing the delta distribution into the integrand. We can then express
this by integrating over another variable, so we have∫

dτ (g(τ))2〈: T :〉ω(τ, τ) =

∫
dτdτ ′ g(τ)g(τ ′)〈: T :〉ω(τ, τ ′)δ(τ − τ ′) (4.4)

=

∫ ∞
−∞

dα

2π

∫
dτdτ ′ g(τ)g(τ ′)e−iα(τ−τ ′)〈: T :〉ω(τ, τ ′).

Then writing gα(τ) = g(τ)eiατ we can write this as∫ ∞
−∞

dα

2π
〈: T :〉ω(g−α, gα). (4.5)

Using the fact that all two-point functions are formed of a common anti-
symmetric part together with a real symmetric part, as shown in 2.4, it
follows that 〈: T :〉ω is symmetric; hence the integrand is symmetric in α.
This means that the integral can be written as∫ ∞

0

dα

π
〈: T :〉ω(g−α, gα). (4.6)

Now since g is real, it follows that g−α = ḡα. Then we can use the fact that
〈T 〉ω is of positive type to write this as an inequality so that we have∫

dτ (g(τ))2〈: T :〉ω(τ, τ ′) ≥ −
∫ ∞

0

dα

π
〈T 〉ω0(ḡα, gα). (4.7)

This can be compared to the derivation of the inequality seen in [11], where
the inequality in that case stems from the fact that the product of an opera-
tor with its adjoint is positive. This gives an idea of how a more sophisticated
approach was required to prove an inequality in more general curved space-
times.

It now remains to show that the integral on the right hand side converges,
and in that case this is indeed a valid quantum inequality. This can be
achieved by a simple re-writing of the integrand:

〈T 〉ω0(ḡα, gα) = 〈T 〉ω0((g, g)e(−α,α))

= [(g, g)〈T 〉ω0 ](e(−α,α)). (4.8)
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Then by the definition of the Fourier transform for distributions this can now
be written as

[(g, g)〈T 〉ω0 ]
∧(−α, α). (4.9)

It now follows that this does indeed converge to a finite limit when integrated
over α from 0 to ∞, as a result of the comment at the end of the previous
section. This completes the proof that the inequality 4.1 is valid.

5 Other Results: An Optimal Bound

5.1 Sketch of the Proof

It should be noted that the bound in the previous section is not shown
to be an optimal one. Furthermore, as mentioned in [14], the bound may
depend on the choice of frame used to define the split-point energy density.
There is a case where a Klein-Gordon quantum inequality has been shown
to be a sharp bound, proved by Flanagan [19] for the case of a massless
two-dimensional field in Minkowski spacetime. This is also a bound valid for
arbitrary smooth and compactly supported test functions. Unfortunately the
proof uses features specifically related to the two-dimensional massless field,
which means that a generalisation of the bound given to higher dimensional
cases is not possible. A sketch of the proof will be given, which should
illustrate this point and show how other methods can be used to derive
quantum inequalities.

First let ED(g) and EF (g) denote respectively the energy density and
energy flux, smeared by the test function g with respect to time. The proof
in [19] actually places a bound on the energy flux, as it is shown that in two
dimensions min〈ED(g)〉 = 2 min〈EF (g)〉, where the minimum is taken over
all states. Another feature of two-dimensional spacetimes is that there is only
two spatial directions, and therefore the quantum theory can be split into
the left moving and right moving components, by introducing the coordinates
u = t + x and v = t − x. The field operator φ̂(x, t) can then be written as
φ̂R(v) + φ̂L(u), where these represent the right and left moving sectors of the
theory, respectively. It is already clear at this stage that this proof cannot
be replicated in higher dimensions.

As the energy flux is only positive in two dimensions for right moving
excitations it follows that

min〈ED(g)〉 = 2 min〈ER(g)〉, (5.1)

where ER(g) denotes the smearing of the right moving energy flux by g. This
means that by finding a bound on the time smeared right moving energy flux
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one also has a bound on the time smeared energy density (and indeed the
space smeared energy density, by symmetry in two-dimensional Minkowski
spacetime). The smeared temporal average of the right moving energy flux
is then given explicitly by

ER(g) =

∫
dv g(v)Tvv(v), (5.2)

where of course Tab is the (normal ordered) stress-energy tensor. Here an
idea of the proof using Hilbert space representations of the theory is given,
but it should be noted that this is made rigorous in [19] by generalising the
same argument in an algebraic formulation.

The right moving field operator can be expanded in the usual way [44] as

φ̂R(v) =
1√
2π

∫ ∞
0

dω
1√
2ω

[e−iωvâω + eiωvâ†ω], (5.3)

where â† and â are the creation and annihilation operators. Now a coordinate
transformation v → V can be defined by V = f(v) where f is a monotonically
increasing bijection from R onto itself. An expansion of the right moving
field can then be given in terms of this new coordinate, though still having
its argument in terms of the v coordinate, by

φ̂R(v) = φ̂R(f−1(V )) =
1√
2π

∫ ∞
0

dω
1√
2ω

[e−iωV b̂ω + eiωV b̂†ω]. (5.4)

It follows that since f is bijective, the creation and annihilation operators
used in the two expansions will be members of the same algebra, and can
therefore be written as linear combinations of one another. Assume, then,
that there is a unitary operator U such that

UâωU
† = b̂ω. (5.5)

A key point in the proof is that such an operator will not exist in all cases,
and this is where the argument is made more rigorous in an algebraic set-
ting. However, the main structure of the proof in that case is essentially the
same, so in this sketch we assume that such a U exists. We then have that
U †φ̂R(v)U = φ̂(f(v)) by the expansion given in terms of V .

The next part of the proof uses the Hadamard condition in the form
given in [50]. Using this condition the right moving component of the normal
ordered stress-energy tensor can be written in a split-point form as

lim
v′→v

∂v′∂v[φ̂
R(v′)φ̂R(v)−H(v − v′)]. (5.6)
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This follows from the fact that in the u and v coordinates the non-vanishing
terms of the stress-energy tensor are Tvv = (∂vφ̂

R)2 and Tuu = (∂uφ̂
L)2. Then

on normal ordering of these terms, H is the distribution that is subtracted,
where H has the same singular structure as any of the states in the theory.
Here H is given by

H(∆v) = − 1

4π
[ln |∆v|+ πiΘ(−∆v)], (5.7)

where Θ denotes the Heaviside step function.
It follows that

U †TvvU = lim
v′→v

∂v′∂v[φ̂R(f(v′))φ̂R(f(v))−H(v − v′)], (5.8)

and writing ∂
∂v

= dV
dv

∂
∂V

= V ′(v)∂V , we have that this is equal to

lim
v′→v

V ′(v)2∂V ∂V ′φ̂
R(V ′)φ̂R(V )− ∂v′∂vH(v − v′)

= lim
v′→v

V ′(v)2∂V ∂V ′ [φ̂
R(V ′)φ̂R(V )−H(V − V ′)] + ∂v′∂vH(V − V ′)− ∂v′∂vH(v − v′)

= V ′(v)2 : (∂V φ̂
R(V ))2 : −∆(v)

= V ′(v)2Tvv(V )−∆(v), (5.9)

where ∆(v) now denotes limv′→v ∂v∂v′ [H(v − v′) − H(f(v) − f(v′))], and
: · : denotes normal ordering. It can then be calculated directly from the
expression given for H that ∆(v) can be written as

∆(v) = − 1

12π

√
V ′(v)

(
1√
V ′(v)

)′′
, (5.10)

where dash denotes the derivative with respect to v.
Now set the coordinate V to be such that g(v)′(V ) = 1 for some test

function g. Then if we integrate the expression on the right of equation 5.9
against g we find that

U †ER(g)U =

∫
dV TV V (V )−

∫
dv g(v)∆(v), (5.11)

as dv = dV
dv
dv. We then have that the first term on the right hand side is just

the Hamiltonian HR, so that

U †ER(g)U = HR − I, (5.12)
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where I = − 1
12π

∫
dv
√
g(v)(

√
g(v))′′, following from 5.10. Then integrating

by parts it is found that

I = − 1

12π

{
1

2

[
g′(v)√
g(v)

(√
g(v)

)′′]∞
−∞

− 1

2

∫
dv

g′(v)√
g(v)

(√
g(v)

)′}

= − 1

12π

{
−1

4

∫
dv

g′(v)2

g(v)

}
=

1

48π

∫
dv

g′(v)2

g(v)
, (5.13)

where it is assumed that g′, since g is a test function, vanishes at infinity.
This argument has now provided a lower bound, since we know that

the Hamiltonian is a positive operator, and its least possible eigenvalue is
therefore zero. Hence this shows that

min〈ER(g)〉 ≥ −I. (5.14)

Importantly in this argument it can also be shown that this lower bound
is attained. If we let |0V 〉 be the vacuum state in the V coordinate, given
by |0V 〉 = U |0〉 then looking back to equation 5.9 it is clear that this state
annihilates the first term on the right hand side, and so it follows that

〈ER(g)〉0V = −I. (5.15)

Hence it can be concluded that the bound is indeed sharp. The state |0V 〉
provides an example of a theoretically existing state which admits a negative
value for its expected energy density. Then using the relationship given by
5.1, it follows that this proves the existence of the sharp quantum inequality

min〈ED(g)〉 = − 1

24π

∫
dt
g′(t)2

g(t)
. (5.16)

5.2 Comparison

It should be noted that the bound 4.1 as proved here is not totally guaranteed
to be valid for a massless, two-dimensional field (see footnote 1 in [14]).
However, it is quite reasonable to assume and can be proved that it is valid,
so we make this assumption and will look at how it compares in this case
with the optimum bound. In particular, we will employ the test function
used by Ford and Roman in their quantum inequalities [21][22] to see how
both of the bounds considered here compare to those inequalities as well.
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It is shown in the introduction of [14] how the inequality 4.1 reduces to
the bound derived in [11] in the case of a static observer in a static spacetime.
From this point we denote the weighted energy density by ρ, that is

ρ =

∫ ∞
−∞

dt 〈: Tµνuµuν :〉g(t), (5.17)

for a smearing function g. Then in a static spacetime for a static observer
the inequality 4.1 reduces to

ρ ≥ − 1

π

∫ ∞
0

dω
∑
λ

(
ω2
λ

|gtt|
+

1

4
∇i∇i

)
|Uλ|2|ĝ1/2(ω + ωλ)|2. (5.18)

In the above, the scalar field φ is assumed to be able to be expanded by a set
of mode functions fλ(t, x) = Uλ(x)e−iωλt. Then φ =

∑
λ(aλfλ + a†λf

∗
λ), where

a and a† are the creation and annihilation operators. This is the ‘usual’
formulation of quantum field theory, as comprehensively covered in [3].

In a massless scalar field theory in (n+ 1)-dimensional Minkowski space-
time, which is the case we are interested in for this comparison, the field can
be expanded in terms of modes Uk, where

Uk(x) =
1

[(2π)n2|k|]1/2
eik.x, (5.19)

with the momentum vectors ki such that −∞ < ki <∞ [44][4][24]. We then
have that

|Uk|2 = UkUk

=
1

(2π)n2|k|
(5.20)

and gtt = 1. Then substituting these into 5.18 yields:

ρ ≥ − 1

2π

∫ ∞
0

dω

∫
dnk

(2π)n
|k|(ĝ1/2(ω + |k|))2. (5.21)

We then have that the only term in the integrand dependent on k is |k|,
the length of k. Therefore writing |k| = r we can evaluate the integral over
n− 1 angular directions, to obtain

ρ ≥ −Cn
2π

∫ ∞
0

dω

∫ ∞
0

dr rn(ĝ1/2(ω + r))1/2, (5.22)

where Cn is the area of the unit (n− 1)-sphere divided by 2π:

Cn =
1

2n−1π
n
2 Γ(1

2
n)
. (5.23)
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This can then be written in a simpler form by making the change of variables
u = ω + r and v = r to give

ρ ≥ −Cn
2π

∫ ∞
0

du (ĝ1/2(u))1/2

∫ u

0

dv vn

= − Cn
2π(n+ 1)

∫ ∞
0

du (ĝ1/2(u))1/2un+1. (5.24)

Now substituting in the value n = 1, as this is the case we are interested
in here, we have

ρ ≥ − 1

4π2

∫ ∞
0

du (ĝ1/2(u))1/2

= − 1

8π2

∫ ∞
−∞

du (ĝ1/2(u))1/2 (5.25)

where the convention has been taken that C1 = 1
π
. Then the symmetry in u

of the integrand has been used to write this as an integral over all of R. By
differentiating the Fourier transform, in the conventions used here, it can be
seen that

ĝ1/2
′
(u) = −iu

∫ ∞
0

g1/2(t)e−iut dt, (5.26)

so that

(ĝ1/2
′
(u))2 = u2ĝ1/2(u). (5.27)

Then with the application of Parseval’s theorem [39], again under these con-
ventions, it follows that

2π

∫ ∞
−∞

dt (g1/2′(t))2 =

∫ ∞
−∞

du u2(ĝ1/2(u)), (5.28)

from which it follows that

ρ ≥ − 1

4π

∫ ∞
∞

dt (g1/2′(t))2

= − 1

16π

∫ ∞
−∞

dt
g′(t)2

g(t)
. (5.29)

This is now in the same form as the bound 5.16, so a direct comparison can
be made. It is seen that this bound is a factor of 3

2
weaker than the optimal

bound for a massless field in two-dimensional flat spacetime.
We can now put the Lorentzian sampling function employed by Ford and

Roman into either of these bounds to see how both compare to the result
given in [21]. The Lorentzian function is given by

g(t) =
t0

π(t2 + t20)
, (5.30)
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For a sampling time of t0. Putting this into 5.29 gives

ρ ≥ − 1

16π

∫ ∞
−∞

dt
4t2t0

π(t2 + t20)3
, (5.31)

and upon evaluating the integral it is found that

ρ ≥ − 1

32πt20
. (5.32)

It can be seen that in comparison with the bound derived by Ford and Roman
[21] this result is stronger by a factor of four when the same sampling function
is employed. By extension, the optimal bound given by Flanagan is a factor
of six stronger than that in [21] in the case of this sampling function.

6 Concluding Remarks

This report focused on exploring the techniques which were required to de-
rive the inequality proved by Fewster [14], which was a more general version
of a previous bound [11]. The argument explained here resulted in an in-
equality that not only held in a wider class of spacetimes and for all timelike
observers, it also used a more mathematically rigorous environment to derive
this bound. The result is not only an inequality which is more general, it
is also valid for a well defined and large class of states; all of those which
are globally Hadamard. For the derivation given in [11] it was reasonable to
assume that the result was valid for a large class of states, but nothing in
that derivation provided a specific condition on which states these are.

Generally when it comes to physical theories, one tends to associate mak-
ing a result more mathematically rigorous with adding extra conditions,
therefore narrowing the scope of the result in question. This particular result
is an interesting example that this does not necessarily have to be the case,
as here the argument has at the same time been made not only more rigorous
but also more general.

It was mentioned in the introduction that classical energy conditions
are an important feature of proofs of the singularity theorems; recent re-
search relating to quantum inequalities involves using quantum inequality
style bounds to prove analogous results to the classical singularity theorems
that are compatible with quantum theory [10].
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A Appendix A

It will be shown here that any solution ϕ to the Klein-Gordon equation can
be written in the form ϕ = Ef for some f in C∞0 (M), where E represents
the advanced minus retarded solution detailed in 2.3. (cf. Lemma 3.2.1 in
[49])

Proof. First impose onM a ‘slicing’ by spacelike Cauchy surfaces, Σt, labelled
by some ‘time’ parameter t (see prop.2.6 in [7]). Then let ϕ be a real solution
to the Klein Gordon equation and χ be some smooth function on spacetime
such that χ = 0 for t < 0 and χ = 1 for t > 1, and define the function f by:

f = −(gαβ∇α∇β +m2)(χϕ). (A.1)

We see that f is compactly supported on the region 0 ≤ t ≤ 1, and f is
smooth because we have imposed that χ is smooth. Also, we can write the
advanced and retarded solutions E− = (1−χ)ϕ and E+ = −χϕ. We can see
that these are solutions to the Klein-Gordon equation with source f and have
support satisfying the correct definitions. Then we have (E− −E+)(f) = ϕ,
so Ef = ϕ.

B Appendix B

Here it will be shown that the wave-front set of any distribution u in D ′(Rn)
is not expanded by the action upon u of any partial differential operator with
smooth coefficients.

Proof. To see this let u be in D ′(Rn). Then take functions χ and χ1 in C∞0
such that χ is equal to one near to x and χ1 is equal to one on a neighbourhood
of the support of χ, where x is a point in Rn. Then since χ(x) 6= 0, it follows
from the definition in 2.34 that

Σx(D
αu) ⊂ Σ(χDαu). (B.1)

Further, from the fact that χ1 is equal to one everywhere on the support of
χ, hence also of χDαu, we have

Σ(χDαu) = Σ(χDαχ1u)

⊂ Σ(Dαχ1u). (B.2)

The second line follows from the non-expansion of the set of singular direc-
tions under the action of smooth functions, using the fact that χ is smooth.
Also, if k /∈ Σχ1u then k /∈ ΣDαχ1u, since for each j we have

∂̂
αj
j χ1u(k) = (ikj)

αj χ̂1u(k), (B.3)
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by lemma 7.1.3 in [27]. Hence we have that

ΣDαχ1u ⊂ Σχ1u. (B.4)

It is shown in proposition 8.1.3 in [27] that, as one would expect, the pro-
jection of the wave-front set onto the second variable is the set of singular
directions. Therefore to complete the proof we just take the limit of the
support of χ1 to {x} and this gives us that

ΣxD
αu ⊂ Σxu, (B.5)

for all x in Rn. As the set of singular directions is also not expanded under
the action of smooth functions, it follows that the wave-front set cannot be
expanded under the action of any partial differential operators with smooth,
possibly non-constant, coefficients.
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