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Abstract 

We report on the design and implementation of a Data Ac­
quisition System for experimental setups within the Physics 
Research Division of the Superconducting Super Collider. The 
design of the system is driven by the requirements of flexibility, 
modularity, portability, and safety. We emphasize off the shelf 
hard- and software such as Motorola 68040 [1] and RISC based 
processors, standard data links, and accepted packages such as 
X-windows and the real-time operating system VxWorks. We 
discuss both the quantitative and qualitative performance of our 
system and conclude with a brief review of current research 
and development in areas such as slow controls and Data­
Machine Independence. 

I. INTRODUCTION AND REQUIREMENTS 

Some setups used to test prototypes for new generations of 
High Energy Physics detectors have reached a size and com­
plexity comparable to present day experiments. Channel count, 
data volume, and a wide variety of front-end and data collection 
electronics set a high standard for the Data Acquisition (DAQ) 
with which the prototypes are read out. Furthermore, test beam 
time is becoming an increasingly scarce resource, thus demand­
ing highly efficient use of available time. Therefore, the Data 
Acquisition System employed has to fulfill several require­
ments: 

Performance: It should be possible to read up to order 
10000 channels of non-zero suppressed front-end electronics 
with a frequency ranging from 100 Hz to several kHz, resulting 
in an average sustained throughput requirement from the front­
end modules to the data logger of up to 2 MByte/s. The total 
bandwidth in the data collection stage might be an order of 
magnitude higher. Thus enough on-line processing power for 
data filtering should be available on demand. 

Modularity: The strategic components of the system 
should work together in a plug and play fashion. This guaran­
tees better configurability and adaptation to particular experi­
mental requirements and allows to develop and commission 
components of the system in isolation. For example, software to 
drive front-end modules can be created without having to know 

1 Operated by the Universities Research Association, Inc .• for the U. S. 

Department of Energy under Contract No. DE-AC35-89ER40486. 

about the rest of the acquisition chain. 

Partitioning: It is desirable that the data acquisition has the 
ability to read concurrently several subsystems in isolation. For 
example, a subdetector can be calibrated while taking data with 
the other detector components. 

Scalability: The DAQ should grow with the requirements of the 
experiment. For example, for small setups one read-out pro­
cessor might suffice while bigger experiments require more 
bandwidth and on-line processing power. The transition from 
single to multi processing should be as transparent and easy for 
the DAQ user as possible. 

Cost: The system cost of the acquisition system should 
scale linearly with the overall test setup requirements. This also 
means that the threshold cost necessary for reading out the first 
channel of detector should be kept as low as possible. 

Standard: Where possible, the DAQ should utilize indus­
try standards such as IEEE, ANSI and POSIX. Hardware 
should be produced and distributed by established manufactur­
ers rather than in-house whenever possible. Some of the 
benefits of this approach are reduced cost, availability of com­
ponents, and a widespread knowledge base throughout the HEP 
community and beyond. 

Safety: Users of a particular experimental setup should not 
have to touch DAQ software. This requires that the read-out 
system follows a layered architecture, where most of the em­
bedded code and the data transport layers are well confined. If 
a component of the read-out fails, the read-out should, depend­
ing on the error condition, either stop gracefully or should have 
enough built-in fITe walls to allow data taking to continue, al­
beit with some reduced performance. 

Control and Monitoring: The DAQ should be controlled 
by a centralized and uniform environment that interacts with 
the user in an intuitive, e.g. graphical, way. Run configuration, 
start/stop/pauselresume interaction, event dumps and event dis­
plays, alarm conditions, and system performance has to execute 
from within this central framework. Enough handles to user 
callable functions for on-line analysis should exist. Monitoring 
should be available simultaneously to several users with the 
proper privileges. The monitoring environment should be sim­
ply the run control with the control functions disabled. Moni­
toring of the experiment should be available not only on-site 
but also from remote locations and there should be no degra­
dation in the real-time performance of the DAQ when monitors 
are active. Furthermore, an accurate history, recording active 



user interactions with the acquisition system and alarm condi­
tions together with time stamps, should be kept. 

Slow Controls: The Data Acquisition has to provide reli­
able mechanisms for setting and monitoring environmental data 
such as high voltages, temperatures and pressures. Interactions 
with the trigger system should also be supported. 

Flexibility: Tests for prototyping detectors require fre­
quent changes in configuration. The DAQ has to have features 
supporting such changes in run configuration by saving and re­
storing previous or predefined setups. During the initialization 
phase for a new run, the connectivity and consistency of the run 
parameters should be checked and errors have to be reported 
and logged in a comprehensible way. 

Portability: We expect to use this acquisition system in 
several different geographical locations. Thus the DAQ should 
be small in size and component count so that it can be easily 
moved, installed, and maintained at remote sites. 

We have built a Data Acquisition System for Physics Re­
search which strives to implement the above requirements. In 
the remaining chapters of this article, we describe the architec­
ture of the system, give a listing of the hardware and software 
components used today, report on the performance, and con­
clude by mentioning future enhancements to the system. 

II. SYSTEM ARCHITECTURE 

The layout of the acquisition system is given in Fig. 1. Its 
centerpiece is the DAQ-crate in standard 6U VME. This crate 
holds one or more Front-End Processors (PEP) that communi­
cates with the Front-End Crates (FEC), an Event Builder (EB), 
a unit for I/O of control and trigger signals (10), and a State 
Machine (StM), which steers the read-out from the ensemble of 
read-out channels to a more complex data structure containing 
data and data description, i.e. a raw-data event. The Front-end 
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Fig. I. prDAQ System Layout. EB denotes Event Builder; 
StM, State Machine; FEP, Front End Processor; 10, 110 
module; FEI, Front End Interface; FEC, Front End Crate. 

Processor interacts with the Front-end Crates via Front-End In­
terfaces (PEl) . A group of Front-end Crates that is interfaced to 
one Front-end Interface forms a read-out Branch and several 
such branches can be accessed in parallel. Usually each branch 
is composed of crates of one bus type, such as CAMAC, VME 
or VXI. All processors (PEP, EB, and StM) are remotely reach­
able via TCP/IP. The control and monitoring interface, in short 
User Interface (UI), resides in the Event Builder and can be 
brought up on any terminal that has X-windows capabilities. 
Other monitors can execute the same User Interface with its 
control options disabled. Low level debugging and monitoring 
can be done directly on the target processor. 

The prDAQ provides mechanisms for distributed applica­
tions to request services, enabling remote clients to access live 
data. 

The Event Builder has one or more SCSI controllers sup­
porting disk and tape arrays. The formatted events are stored 
first on disk and later, once the data file has reached a certain 
size, streamed to 8 mm tape. 

At several stages of the read-out there are provisions for 
callouts to user routines. For instance, users can synchronize 
their analysis package with the start/stop sequence. In most 
cases, data are on disk before they are accessed by the user by 
means of a small library of functions that walk behind the write 
pointer of the read-out task, although there are provisions for 
monitoring data fragments as they fly by. 

For high bandwidth applications that employ several 
Front-End Processors, arbitration and self-synchronization can 
become a bottleneck. The time spent in resolving deadlock sit­
uations can become significant and as a result, dead time 
increases fast. In such situations a State Machine can be 
utilized. It can receive control signals from Front-end Proces­
sors, the Event Builder, Front-end Interfaces, the User Inter­
face, and the trigger system. It determines whether all required 
signals for a specific state of the read-out arrived in time, and 
sends control signals back to specified DAQ components. This 
cycle of receiving inputs, determining the next state and send­
ing outputs is called a state transition. In fact, every conceivable 
type of read-out can be described as a sequence of such state 
transitions, called a state table. If a time-out condition occurs, 
the system can react in a predetermined way - a time-out trig­
gers just another state transition - and thus indefinite deadlocks 
can be avoided. In addition, The State Machine records the 
fraction of time the DAQ was in each state, the frequency with 
which each state was visited, and which input or time-out 
caused the transition. This gives an easy and reliable mecha­
nism to debug the system and to improve its performance. It 
measures system deadtime and allows for easy reconfiguration 
of the read-out sequence in a multiprocessor environment. 

III. SYSTEM COMPONENTS 

This section describes the main components of prDAQ 
that are being used as of June 1993. Currently implemented 
processors, links and system software will be discussed. Where 
appropriate, we include performance numbers. 



A. Processors 

The two main processing elements in the DAQ-crate are 
the Front-end Processor (FEP) and the Event Builder (EB). 
The optional State Machine (StM) executes on a FEP 
architecture. 

A.l Front-end Processor (FEP) 

The requirements for the PEP are low-cost, options for 
SCSI-II and Ethernet, and a VME interface which includes at 
least DMA BLK. The PEP must be able to execute a preempt­
able kernel. The MVME162 [2] series of single board comput­
ers (SBC) has proven to be cost effective. This VME board 
contains a MC68LC040 embedded controller running at 25 
MHz delivering 27 MIPS. The MVME162-13 includes 512 kB 
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Fig. 2. MVME-162 VME read/write timings for D32 pro­
grammed 110 by the CPU and the DMA processor, DMA 
Block transfers, and DMA VME-D64. The slave system is 
another MVME 162 . 

SRAM, 4 MB DRAM, 1 MB Flash, SCSI-II and Ethernet in­
terfaces, 2 serial 110, global control status registers for inter­
processor communications, and a VME interface with 032, 
032/BLK and D64/BLK DMA. By supporting slave DMA 
transfers, Front-end modules in VME can quickly move data to 
the FEP and master DMA transfers enable the PEP to transpar­
ently push data into the EB. Figure 2 shows various VME 
timings for the MVME162. For a more complete discussion on 
VME performance see reference [3]. 

A.2. Event Builder (EB) 

The EB has to run a UNIX kernel that supports standard 
devices and a windowing environment. There should exist an 
efficient mechanism to transfer data across the VME backplane. 
SCSI-II should be fully implemented. Two different SPARC 
processor based VME boards are currently used in prDAQ. 

The first is the Themis Computer SPARC 2LC [4] which 
is based on the Fujitsu SPARCset. The SPARC 2LC achieves 
29 MIPS at 40 MHz. The device includes a DMA Controller 

which delivers 5.7 MByte/s for reads (7.5 MByte/s for writes) 
from (to) external memory but unfortunately does not yet sup­
port system software for VME slave access. The SCSI interface 
is only SCSI-I compliant and the SunOS 4.1.2 is a special ver­
sion of Suns operating system and shows some incompatibilities. 

As of today the EB of choice is the SPARC-2CE [5] pro­
duced by Force Computers. This SBC contains a 40 MHz 
SPARC 32-bit RISC processor chip with 16 (soon 32) MBytes 
of DRAM. The board features two Sbus expansion slots and a 
VMEbus interface that includes master and slave capabilities 
and VMEbus interrupt handling. One serious drawback of the 
board is that it does not support DMA transfers, limiting it to 
programmed writes and reads to/from VME memory at 4.8 and 
4.4 MByte/s, respectively. The board runs standard Solaris, the 
most widely supported UNIX implementation available today. 
There is a SCSI-II interface that does not perform at SCSI-II 
speeds. Data transfer rates to disk are in the range of 2 Mbyte/s. 
The total throughput from disk on one SCSI controller to an 
array of four 8mm tape drives (Exabyte 8500) is 1.4 MByte/s. 

We expect that new SBC SPARC technology will soon 
provide better DMA engines, faster processors, and SCSI-II 
conformance. 

B. Links 

The following gives a short description of the intercon­
nects currently supported by this DAQ system. Adding new 
links has little impact on overall implementation. 

It should be noted that the Front-end modules can reside in 
the DAQ-crate. In this configuration no special link is needed. 

The Jorway Model 73A SCSI bus CAMAC controller [6] 
interfaces a CAMAC crate to any host computer supporting the 
SCSI-II specification, ANSI standard X3.131. The device 
achieves the maximum rate permitted by the CAMAC specifi­
cations of 1 Mtransfers/s. The overhead to execute one CAM­
AC command, due to SCSI protocol, is about 240 I!s [7]. Since 
the controller uses the SCSI bus, it provides a standard interface 
to existing device drivers. All 24-bit transfers are automatically 
longword aligned with the benefit of reducing software 
overhead. Generally, other controllers need an extra VME 
module to interface to the crate while the Jorway-73A can be 
connected to a standard SCSI port of the host computer. This 
reduces cost and extra VME activity is eliminated. Single­
ended SCSI is employed, allowing a maximum bus length of 
six meters. 

For access to instrumentation, the National Instruments 
GPIB-1014 [8] is supported. This VME module interfaces the 
VMEbus to at most 15 GPIB based devices with a total cable 
length of up to 20 meters. 

As more and more Front-end modules exist in the 
VMElVXI bus standards, links between these crates and the 
DAQ are needed. The short distance solution opted for thus far 



has been the National Instruments MXlbus [9]. For long dis­
tance applications we use the Systran Corporation Scramnet 
[10]. 

The MXlbus from National Instruments provides a com­
mon bus to network multiple VMENXI chassis. It extends 
VME, including interrupt propagation in a manner that is trans­
parent to the application. Each device (VME, SUN, PC, 
Macintosh or Instrument) is a frame on the MXIbus network. 
Each frame has its own local bus such as NuBus, SBus, VME­
bus and a common bus that links the frames together. The MXI 
boards have dual circuity that interacts with both the local and 
common bus. In our setup we use one and four meter cables. 
Data throughput (D32) from a MVME162 in one crate to mem­
ory in a second crate is 3.03 MByte/s (read) and 3.23 MByte/s 
(write) respectively [11]. In situations where FEC's are in 
VME and data filtering at the branch level reduces the event 
frequency significantly, the PEP can sit in the PEC with the 
advantage of reduced throughput requirements at the Event 
Builder. MXI technology makes this change in configuration 
transparent. 

The Shared Common RAM Network (SCRAMNet) from 
Systran Corporation provides a distributed networking 
scheme that is fast, reliable and with rigidly predictable timings 
[12]. SCRAMNet is based on a replicated, shared-memory 
networking concept. From 128 kByte to 2 MByte of reflective 
memory is shared amongst the various VME chassis. SCRAM­
Net adapter boards exist for most popular platforms. A dual 
link fiber optical cable supports distances of up to 300 meters 
and theoretically 150 Mbitls transmission rates. A long link 
converter can be used for distances up to 4000 meters. The 
node to node data throughput varies with the number of nodes 
on the network and the cable length between nodes. For a three 
node network with 30 meter cables between nodes it is in the 
order of 2-3 MByte/s. In burst mode data throughput in the 
order of 6 MByte/s between two nodes are achieved. 

C. Software 

Our architecture features two sets of unique and clearly 
distinct software environments. On one hand the PEP needs to 
provide deterministic and predictable timing in all execution 
paths; the application must be able to control all aspects of task 
management, such as priority and scheduling. On the other 
hand, the EB must provide friendly interfaces for tasks like run 
control, data storage and analysis. For the PEP we currently 
use the VxWorks 5.1 [13] preemptable kernel running on 
MVME162 single board computers. The external interrupt la­
tency is 6-8 IlS. Dispatching a task from the interrupt service 
routine requires 41ls [14]. For the EB we currently use SunOS 
4.1.2 running on the SPARC 2 based Force 2CE and Themis 
SUN2LC cards. Both kernels provide the services one expects 
from modem technology, including networking (TCPIIP), in­
terprocess communication schemes (pipes, shared memory, 
queue, semaphores), interrupt handling, and are compatible 
with the computing environment at the SSC Laboratory. By 

using these kernels and the clear division between real-time 
versus non real-time, we have been able to rapidly move from 
the conceptional design of projects to the delivery of opera­
tional systems. 

D. Stand-alone Development Environment 

It is impractical that every user has to acquire expertise in 
Unix, the C language, and the VxWorks operating system be­
fore developing new components such as device drivers for 
front-end modules. For these users we offer the LabView [15] 
environment from National Instruments. LabView 3.0 runs in­
terchangeably on Macintosh, MS-Windows, and Solaris. A 
GPIB, SCSI, VME (for the EB boards) and MXI library inter­
faces the computer of choice with CAMAC, VMENXI, and 
GPIB devices. After prototyping work in LabView is complet­
ed it is straight forward to translate the code to C and integrate 
it with the rest of the DAQ. 

Lab View provides the capability to develop a complete 
data acquisition environment at low rate without real-time 
requirements. This makes it useful for most slow control 
applications. 

IV. IMPLEMENTATION 

This section discusses the implementation of the prDAQ 
using the above mentioned components. 

A. The User Interface (UI) 

The prDAQ currently takes advantage of the OPENLOOK 
Graphical User Interface (GUI) application environment pro­
vided by SunOS. An additional non-graphical interface is 
available for dumb terminals. Figure 3 shows the three compo­
nents that comprise the UI. It allows the user to configure, 
control and monitor the data acquisition run. Using UNIX in­
terprocess communication mechanisms of message queues and 
shared memory, multiple user's (even from remote machines) 
may have a GUI hooked to the prDAQ but only one user is al­
lowed to be operator of the run. 

e RUN CONFIGURATION) 

• Branch Definitions 
• Branch Assignments 
• Execution Flow 
• Data Logging Parameters 

( RUN CONTROL) ( RUN MONITOR) 

• Start / Stop • EventDump 
• Pause / Continue • Branch Monitoring 
• Comment Insertion • System Alarms 

• Statistics 
Fig. 3. User Interface/Graphical User Interface Components. 



A.I Run Configuration 

The prDAQ configuration follows four steps: Description 
of the read-out branches, assignment of branches to FEP's, 
specifying the execution flow and setting the data logging 
parameters. 

The CED provides a hierarchical description of the system 
that correlates with the data stream at run-time. The data 
stream consists of a series of events. Each event has a header 
followed by a set of group data and the end-of-event (EOE) 
word. The event header is 16 bytes containing event size, event 
number, DAQ mask, trigger mask, run number, date and time. 
The EOE word is is 4 bytes long and is used to verify data 
integrity. A group represents a set of one or more front end 
modules of the same type inside one FEC connected to the 
same subdetector type; it is made up of group header and data. 
The group header is 8 bytes long and includes group data size, 
mask, subsystem and crate number, module type, starting mod­
ule and total number of modules in the group. The group data 
is variable length and 4 byte aligned. The CED output is a 
branch definition file that describes all the groups in the Front­
end crates (FEC) linked to a given Front-end Interface (FEI). 
The CED provides a method of creating and editing the branch 
definition files. Crate and module types can be selected 
interactively. Figure 4 shows a window of the GUI CED dis­
playing a CAMAC crate. The modules may be inserted or 
removed. The CED allows to configure which modules and 

Fig. 4. Crate Editor Window for CAMAC. 

crates are active during the run. The event format and a pre­
dicted read-out time may be previewed after defining a branch. 

The GUI assignment panel provides a mechanism to link 
the branch definition files, FEP and trigger type. This assign­
ment step associates one FEP with one or more read-out 
branches and the active trigger types for that branch. The read­
out branch is described by the branch definition file, the FEP 
identification number is stored as part of the the boot parame­
ters, and the trigger type is user defined. 

The execution flow is specified through the state machine 
table. See section D below for more details. 
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The data logging parameters are configured by specifying 
whether data should be saved to disk and/or tape. Options allow 
to set file size, software zero suppression and whether the disk 
file should be removed after copying it to tape. 

A.2 Run Control 

From the prDAQ run control panel (Fig. 5), the user can 
start/stop and pause/continue a run. The start of a run initializes 
all Front-end Processors and Front-end Crates. Pausing a run 
simply disables triggers. Terminating a run disables all triggers 
and flushes all the buffers to disk and tape. At any time ASCII 
comments may be injected into the data stream thus tying the 
log book to the data. 

A.3 Monitoring 

The GUI enables the operator and other users to monitor 
system alarms, event frequency and dead time from the control 
panel (Fig. 5). The current event format can be displayed. The 
event dump mechanism can be invoked at the EB for fully as­
sembled events or at the FEP for event fragments. 

A.4 On-line AnalYSis 

The prDAQ provides application entries for user packages. 
At the level of the FEP events can be rejected or flagged. The 
full event is available at the EB level. User packages can stay 
synchronized with the data acquisition through start-runlstop­
run scripts, that are executed at the beginning and end of each 
run. Also a library of routines is provided to trail the current 
data file remotely over NFS. 

B. Branch read-out 

Each FEP is responsible for reading at least one branch of 
Front-end Crates. The branch task executing on each FEP polls 
on a local register waiting for a signal from the state machine. 
If it is a trigger signal, the trigger type is determined before 
jumping to the appropriate read routines. If the trigger type 
does not require access to FEC in the branch, the FEP generates 
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Fig. 6. This graph shows the data flow through the event 
builder and data logger process. SM = Shared Memory in 
the EB. 4 FEP's write into Buf(fer) number I while the EB 
reads Buf #2, builds the final event and transports it to SM 
#2. 

a null event, i.e. a data structure containing only a header and 
EOE marker. A double buffer is employed; while the branch 
task fills one buffer with event data, the other buffer is pushed 
to the EB via VME transfers. The FEP acknowledges comple­
tion of requests from the state machine. 

Currently we work with up to four FEP's in the DAQ­
crate. The total throughput from all PEP's to an EB that has no 
DMA controller, the Force 2CE, is 9.6 MByte/s (6.76 MByte/s 
for one FEP). We expect the corresponding numbers for an EB 
with DMA and slave capability to be around 16 MByte/s and 10 
MByte/s, respectively [3]. 

In smaller applications with a single FEP a state machine 
is not required. The execution flow is synchronized internally. 

C. Event Building and Data Logging 

Three tasks execute in the EB along with the UIIGUI com­
ponents; the event builder, the data logger, and the tape logger. 
These three processes run synchronously using the UNIX in­
terprocess communication mechanisms of shared memory and 
semaphores. Currently the event builder process works in a 
double buffer scheme. The EB has 1 MByte of VME slave 
memory. This is non-cached memory used by the FEP to de­
liver event fragments. This memory is divided into two buffers. 
The event builder process builds one buffer while the other 
buffer is being filled from VME (Fig. 6). It inspects the data 
fragments previously assembled by the FEP. In case more than 
one FEP is in the read-out, the EB process checks the event 
fragments for consistency, strips their headers and builds a 
new, final event. 

The data logger process is also double buffered. While one 
buffer is being filled by merged event fragments, the other buff­
er is transferred to disk by the data logger process. 

The tape logger process unblocks when the data file on 

disk reaches a configurable maximum size and dumps the file 
to tape. 

D. State Machine and Carrier 

For applications demanding bandwidth that can not be met 
with a single FEP, a state machine is used to synchronize trig­
ger signals, multiple PEP's and the EB. The implementation of 
the state machine was inspired by the successful use of the con­
cept in the UAI experiment at CERN [16]. 

There are two types of transitions, input and time-out 
transitions. The state machine uses a 32 bit register to deter­
mine if an input transition is needed. Once a valid input pattern 
is found, a transition occurs that sets a 32 bit output register as 
specified by a user supplied program, called the state table. The 
state machine records the presence of invalid input signals, the 
frequency with which each transition is visited, and the time the 
system is in each state with a resolution of one J..IS. 

As many programmable timers as needed are multiplexed 
out of the real clock. Each software timer has a time-out value 
and can be started,stopped or reset to zero during transitions. 
The system updates and checks the active software timers. If 
one active timer has exceeded its limit and the current state 
contains a time-out transition on that timer, a state change 
occurs. 

To describe the sequence of action of the system, the pro­
grammer uses a state machine definition language to formulate 
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Fig. 7. A system with three states. The code fragments in 
Fig. 8 and Fig. 9 define and specify the execution of this 
system for state A and B. 

a state table that contains two parts. The definition section de­
fines all state names, input register bit names, output register bit 
names and software timers. 

In Fig. 7, we give an example of a state diagram with three 
states. State A has one input transition, 11, pointing to state B. 
State B contains two input transitions, 12 and 13, and one time­
out transition, TI. 

Figure 8 shows a fragment of the definition section for this 
example. 

The second part of a state program describes the execution 



DSTATE(A) 
DSTATE(B) 
DINPUT(start; 0) 
DINPUT(stop; 1) 
DINPUT(more; 2) 
DOUTPUT(flag,O) 
DTIMER(too_long; 1000) 

# define state A 
# define state B 
# define input bit 0 as 'start' 
# define input bit 1 as 'go' 
# define input bit 2 as 'more' 
# define output bit 0 as 'flag' 
# timeout at 1 millisecond 

Fig. 8. An example of a fragment for the Definition section 
of a State Table. 

flow. Figure 9 shows states A and B in the state machine 
language. Note that in Fig. 9 some parameters are left out for 
clarity and state C is not coded. In real life state "A" could be 
associated with START_RUN, and state "B" with 
"WAIT_FOR_ TRIGGER ". If B sees "more", it propagates a 
"flag" to the outside world, updates statistics and returns to 

STATE(A) 

INPUT(start) 
TSTART(too_long) 
NEXTSTATE(B) 

STATE(B) 

INPUT(stop) 
TRESET(too_long) 
NEXTSTATE(A) 

INPUT(more) 
OUTPUT(flag) 
NEXTSTATE(B) 

TIMEOUT(too_long) 
NEXTSTATE(C) 

# if the 'start' bit is set, 
# start the timer 
# transition to state B 

# if the 'stop' bit is set 
# stop and set the soft timer to zerc 
# go to state A 

# if the 'more' bit is set 
# input 'more' to somebody else 
# transition to myself 

# if the 'too_long' timer reached its 
# limit; move to state C 

Fig. 9. Code fragment for the execution flow of the state 
diagram in Fig. 7. The corresponding definition section can 
be found in Fig. 8. State C is not shown. 

itself. Signal "stop" returns the system to an infinite wait on 
"start", and finally, if there was no trigger for 1 ms a transition 
to state "C" happens. 

The state table language has provisions to execute custom 
code at specific places in the execution flow. 

The state machine language is translated to "C" code that 
is compiled and loaded into the target, currently a MVME167 
[17] running VxWorks 5.1. 

The performance of the state machine is as follows: The 
latency between detection of a valid input pattern and sending 
of the specified outputs is 3 ils, followed by 10 ils before the 
next state is reached. 

In the current implementation a software carrier using the 
VME protocol sets the input register and sends the output 
pattern. This adds between 25 ils and 80 ils per transition, re­
sulting in substantial additional system deadtime. We are in the 
design phase of a hardware carrier that will almost eliminate 
this overhead. The 110 lines of the hardware carrier will be in-

Fig. 10. The five stage (A to E) pipeline ofprDAQ. 

dividually programmable and at least one line will be able to 
cause a reset or will interrupt the local bus of the processor. 

E. DataFlow 

This section summarizes the data flow of the entire sys­
tem, depicted in Fig. 10. Currently a double buffered scheme 
can be used throughout prDAQ, resulting in concurrent execu­
tion of the five data links (A to E in Fig. 10) in the system. 

To double-buffer link E we make use of one of the Sbus 
expansion slots on the EB to install another SCSI-II controller. 
The EB now has two disks with at least two drives with half the 
tape drives and one disk being paired together on each SCSI-II 
port. 

The EB also has a pair of double buffers. One exists in 
shared memory and the other in the non-cached (slave memory) 
region ofthe board. In Fig. 10 we can follow the five stages of 
the prDAQ data flow. In the first stage of the pipeline (A) data 
is read from PEC to PEP. Next (B) the event fragments are 
pushed from PEP to Slave Memory of the EB. Following (C) 
where the events fragments from slave memory are assembled 
into complete events in shared memory, events are written from 
Shared Memory to disk (D). In the last stage of the pipeline (E), 
event files are copied from disk to tape. 

Whenever a stage transfer completes, a buffer, disk or tape 
swap occurs. 



F. Fault Tolerance/Error Detection 

The prDAQ notifies the U! about problems during initial­
ization of FEC's and of bad events during the run. Alarm 
conditions are printed in one of three areas of the Control Panel 
of the GU! (real-time, system control, and messagelcontrollists 
in Fig.5) and can be acknowledged (cleared) by the user. In 
addition, the UI is continuously updated about system dead 
time, event number at the EB, and average read-out rate. Pro­
cesses running on the Event Builder (EB) check for any VO 
bound errors, for example during tape and disk access, and find 
event format inconsistencies. Fault tolerance is provided 
through heavy use of multitasking. If a non-mission critical 
task crashes, i.e., a monitor or the UI, the current run continues. 
For a read-out with more than one FEI and trigger type a fatal 
error in a component of a particular read-out branch terminates 
only the read-out of the trigger tied to that branch and does not 
stop the run. This mechanism is used as a fire-wall to contain 
problems inside the smallest possible region of the system. The 
State Machine keeps track about vital system parameters. For 
example, the number of events rejected by FEP's or the EB can 
be determined by the number of times the CLEAR_EVENT 
state was visited. In a similar fashion, buffer bottlenecks can be 
detected by the number of visits and time spent at the 
BUFFER_FULL state. 

The FEP provides a mechanism to examine the last event 
rejected. In the event of critical errors the system shuts down, 
attempts to flush all buffers and closes files. A log file is pro­
vided with run statistics and operator interactions. 

The prDAQ system is self sufficient: If the connection to 
the outside computing world breaks (usually due to some net­
work problem), the systems and application programs are 
loadable from eprom or local disk. A terminal connected to the 
EB can be used as operator console. 

V. RESEARCH AND DEVELOPMENT 

In several areas we have mounted a research and develop­
ment effort with the goal to improve and augment the present 
DAQ system. What follows is a summary of some of the 
activities: 

Inter-processor communication: It is evident that even the 
upcoming revisions of the VME specifications (VME64 and 
SSBL T) cannot satisfy future increased requirements on the 
sustained data throughput on the VME backplane. Therefore 
we explore the possibilities opened up by a variety of high 
speed front panel communication links (combined with mas­
sive compute power) such as the Hydra SBC from Ariel Corp. 
[18] based on the Texas Instruments TMS32OC40 DSP, and the 
DS-links used by the T9000 Transputer from Inmos [19]. These 
links can off-load VME traffic to the Event Builder (and their 
CPU's could be the EBffrigger) but would keep the DAQ sys­
tem still in a single crate configuration. 

Data Machine Independence [20]: There are still differ­
ences in internal data representations implemented in different 

computer architectures. We have evaluated several widely 
available packages such as XDR and ASN.l for their useful­
ness in real-time applications and plan to devise a scheme that 
unifies data representations for user level applications. 

Slow Controls: Together with the Accelerator Divisions at 
the SSCL we work on projects [21] that use the Experimental 
Physics and Industrial Control System [22], in short EPICS, 
developed originally at LAMPF and selected as the Accelerator 
Control System for the SSC complex. EPICS became a candi­
date for slow controls used by SSC detectors and we evaluate 
its functionality as the control component for prDAQ. 

Other activities: We are in the process of recoding the 
graphics of prDAQ using portable GU! development systems 
such as XVT from XVT Software Inc. [23J. That should allow 
us to run the UI of prDAQ on a wide variety of graphics 
platforms. We experiment with an early version of Microsoft 
Windows-NT as a possible candidate for a replacement of 
UNIX. 

VII. SUMMARY, CONCLUSIONS, OU1LOOK 

We have developed a Data Acquisition system for SSC 
detector prototypes (prDAQ). The architecture emphasizes per­
formance and scalability, modularity, and flexibility. To keep 
the cost and complexity of the system inside reasonable bounds 
and increase its reliability we place all components of prDAQ 
into a single VME crate and use the backplane for data 
exchange. That limits the bandwidth to the Event Builder to 
order ten MBytels, which is sufficient for the read-out of fore­
seeable detector prototypes. However, we expect to overcome 
the bandwidth limitation by employing front panel communi­
cation channels for high speed transfers and more powerful 
processing elements for event building and software triggering. 
That should make prDAQ useful for high bandwidth physics 
experiments. 
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