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We consider the Quasilocal Quark Model of Nambu-Jona-Lasinio type as effective theory of non-perturbative QCD
with scalar-pseudoscalar four-quark interaction with derivatives in fields at finite quark chemical potential. In the
presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence
the composite meson states are generated. For special configurations of coupling constants, the dynamical CP-violation
in the pseudoscalar sector can appear as a result of complexity of dynamical mass function generated at some value of
quark density.

1. Introduction

Quark models with local four-quark interaction are widely applied for the description of low-energy
phenomena in QCD in the hadronization regime (see, e.g., reviews [1] and references therein). The local
four-fermion interaction is involved to induce the Dynamical Chiral Symmetry Breaking (DCSB) due to
strong attraction in the scalar channel. As a consequence, the dynamical quark mass M, is created, as well

as an isospin multiplet of pions, massless in the chiral limit, and a massive scalar meson with mass
m, =2M,, arise. However it is known from the experiment [2] that there are series of meson states with

equal quantum numbers and heavier masses which traditionally are called "radial excitations" following an
analogy with non-relativistic potential models. In order to describe the physics of those resonances at
intermediate energies one can extend the quark model with local interaction of Nambu-Jona-Lasinio (NJL)
type [3] taking into account higher-dimensional quark operators with derivatives, i.e. quasilocal quark
interactions [4 - 12]. For sufficiently strong couplings the new operators promote the formation of additional
meson states. Such a quasilocal approach (see also [13 - 16]) represents a systematic extension of the NJL
model, where the low-energy gluon effects are hidden in the coupling constants. The alternative schemes
including the condensates of low-energy gluons can be found in[11]. A distinguished feature of these
models is that they naturally reproduce [8, 9, 14] the Chiral Symmetry Restoration (CSR) at high
energies [17]. Due to this property such models can be successfully matched to QCD sum rules [8, 9, 14], i.e.
they reproduce more dynamics typical for real QCD than usual NJL-type models.

It seemed to be the general feature for the quark models of NJL-type that, when being symmetry of the
quark lagrangian, the CP-parity remains a good quantum number after DCSB. However, it happens that for
particular combination of four-fermion coupling constants in the Quasilocal Quark Model (QQM), the CP-
parity can be broken dynamically together with the chiral symmetry [18]. For simple two-channel
pseudoscalar QQM this situation was considered in [18] at zero quark densities. On a particular plane in the
coupling constant space the complex solution for the dynamical mass function was found, which yields the
CP-parity breaking in meson sector. It means that in such a plane there exist heavy scalar states which can
decay into two or three pions. On the other hand, as we know, the study of QCD and NJL-type models at
nonzero temperature and quark chemical potential are of high importance to understand a wide range of
different physical phenomena, from heavy-ion-collision experiments to neutron stars and cosmology. This
has led to varios theoretical investigations of the phase diagram of QCD at finite quark-chemical potentials
and temperatures (see, e.g., [19]). There are arguments for the possibility of CP-violation in the strong
interactions at different external conditions in theories with local interactions [20].

In this paper we will focus on the problem of possible dynamical generation of CP-breaking in the strong
interactions within QQM. The paper is organized as follows. In Section 2 we present at finite quark densities
two-channel QQM with scalar-pseudoscalar self-interaction. The mass spectrum of meson states is derived in
Section 3 in the large-log approximation. The physics behind the model is discussed in Section 4. We
conclude in Section 5.
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2. Quasilocal Quark Model with chemical potential

The quasilocal approach of [5] (see also[7, 21, 22]) represents a systematic extension of the NJL model
[3] towards the complete effective action of QCD where many-fermion vertices with derivatives are
incorporated with the manifest chiral symmetry of interaction, motivated by the soft momentum expansion of
the perturbative QCD effective action. For sufficiently strong couplings, the new operators promote the
formation of additional scalar and pseudoscalar states. These models allow an extension of the linear o
model provided by the NJL model, with the pion being a broken symmetry partner of the lightest scalar
meson just as before, and with excited pions and scalar particles coming in pairs. In particular, when only
scalar and pseudoscalar color-singlet channels are examined and dynamical quark mass is supposed to be
sufficiently smaller than the DCSB cutoff one may derive the minimal two-channel lagrangian of the
QQM [5, 7] where we have added the chemical potential x

LM =q(i0+y,a+ L

—_— Z a, | af, (8)qdf,(s)a - af, (s)z°y5qdf,(s)z°r.q |- (1)
TN NA? A

Here a, represents a symmetric matrix of real coupling constants and f (s), s=-0°/A’ are the

polynomial formfactors specifying the quasilocal (in momentum space) interaction. These formfactors are
orthogonal on the unit interval

[ fu(o) fi(s)ds =4, )

The results of calculations do not depend on a concrete choice of formfactors in the large-log
approximation. Our choice is

f(s)=2-3s,  f,(5)=—/3s. (3)

As this model interpolates the low-energy QCD action it is supplied with the cutoff A ~1 GeV which
bounds virtual quark momenta in quark loops. We restrict ourselves with consideration of two-flavor case,
thus 7% denote Pauli matrices.

For strong four-fermion coupling constants a,, ~87°5, Lagrangian (1) reveals the phenomenon of
dynamical chiral symmetry breaking. This phenomenon can be described with the help of the effective
potential for the attractive scalar channel where scalar mesons arise as composite states. Indeed its non-trivial
minimum gives rise to a dynamical quark mass and the perturbative fluctuations around this minimum
characterize the mass spectrum of meson states. To derive the required effective potential one should
bosonize the quark action, i.e. incorporate auxiliary bosonic variables o, ~ igf,(s)q, z{ ~af,(s)z"y,q, and
integrate out fermionic degrees of freedom. At the first step we introduce the bosonic variables in two
channels

2 2
L =Y iq(o, +irmit® | £ ()a+ NN A (68,0, + 78,7 ). (4)
k=1

k,I=1
Let us parametrize the matrix of coupling constants in a close vicinity of tricritical point

A
87°a, =0, —A—kz', | A, < A% (5)
The last inequality turns out to be equivalent to requirement for the dynamical mass to be essentially less
than the cut-off.

The dynamical mass function (for the time being we denote &y =o0,) is M(S)=5f,(s). Since the
collective variables & are complex functions, the dynamic mass is complex as well. However, by the global

12}

chiral rotation M (S) - M(s)e'”, @ =const, we can ensure fulfilment of the condition Im< > =0 (here
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and further M =M (0)). In this case, the following parametrization of the solutions of the stationary-state
equations is valid

2¢&

G1=0,, 62=O'2—|$, o, =Regy. (6)

In hermitian quark Lagrangian the imaginary part of the dynamical mass corresponds to the pseudoscalar
mass. In the present analysis we identify the imaginary part of dynamical mass with v.e.v. of 7°-meson,

%:(H). (7

As we will see the condensation of this meson can happen at some conditions.
The appearance of chemical potential results in the following modification of quark propagator[23]

i N i
p-M +ie p-M +ig

M
~275(p" - E)O(pe [P D, (®)

p

1/2

where E = (p> + M?)"? is the energy and p. = (z° —M?)"? is the Fermi momentum which is related to the

baryon density o as follows

P:- )

After performing the Wick rotation (further analysis we carry out in the Euclidean space) and integrating
out the quark fields one comes to the bosonic effective action S, (o,,7;) which is defined from the
regularized vacuum functional

Z"(0y,m) = exp(=Syp) = <exp<—fd4x£)> — exp

qq

—fd“xveff} (10)

and therefrom, for constant meson variables, to the effective potential

N N 2 4 A1
V= 8;[ 2f {_k'zl 0,0\, —(ﬁ;)zAzz—§A22§2+8014[1n4o_]2 +5J—

159 4 53 9 L, N3

9
— 0! -—=00,+~0/0; +——0,0, +—0, +
8 2 4 2 8

(11

%5(7:; )2+§(7Z§ )4)+5§2+2§4+§,u4+

+4J it —4o]
+40(u—20,) yaf./y2—4af—%(y2—405)3/2—4a;‘1n” ;’ GI} +o[lnA}

0,

Here we have introduced the notation & for the combination

_ L, 283

o =0, +TG]G2+3O'22. (12)

The conditions on extremum of the effective potential, the mass-gap equations,
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(13)
o

A120'| +A220'2 =—%[UI —\/50'2][5\/5612 —|-6o'lo'2 +3\/§o-22j_,’_é;2 \/§+3O'2

b

A22§ = 35

o
—+
R

The critical values of the coupling constants correspond to the cancellation of contributions quadratic in the
momentum cutoff A, i.e. a, = J,, . Equations (13) allow to find certain relations between the components of

dynamic mass function and (reduced) coupling constants A, . In practice, one uses the v.e.v.’s of scalar

fields as input parameters, in particular, 2o, = M, =250+400 MeV, and determines the required A,,. But

dyn
in order to classify the solutions we will follow the inverse procedure, i.e. we will keep the parameters A,, as
inputs. We suppose a scale (the reason will be explained below) A,, =d(1), then the condition of
selfconsistency of Eqs. (13)is A,, =2(1), A, = (Q(In,\j—z2 .

Consider ¢=0.

For the real solutions (£ =0) several phases are possible.

1) Gross-Neveu (GN) phase

ocl=—U1_|1+0 —12 . 14
1
161n—$2 1n—h//:2

The expression for o, is very lengthy, but it is evident that there is a solution which behaves as
o,/o, =const at o, — 0. This solution delivers minimum to the effective potential for A,, <0, detA<O0.
2) Anomalous phase

2 _ A12/23(A22 — 3\/§A12)2/3 1
0, = N\2/3 1+O A ||
12(31n47) n

Mg

(15)

Mg

4 1
0'22 =§A22 1+0[1nl/—3/\2} .

This solution corresponds to minimum of potential for- A,, >0, A,, — 3\/§A12 #0.

3) Solutions (14) and (15) are not valid when A,, —3\/§A12 =0 or A,,=0 or A,=A,, =0. In these

cases one has the so-called transitional, singular, and special solutions correspondingly. They were analyzed
(for a different choice of formfactors) in [7]. We will consider further only the special phase where one has

2 _ Au
1_16(1 A2 _1039)’
N — 35
M2 384)

The complex solutions to Eqgs. (13) with & # 0 are as follows.

(o} o, =

(16)

sl
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The axial part of the mass function
_
gtz ——°4 . (17)

The second v.e.v.

0, = 3oy + PR~ 0a) (18)
120,
and the solution for o, is
0.12 — Ay +2\/§A12 —Ay ) (19)

16(1n}: -3)
Consider x##0 and the normal (GN) phase. The exact expressions for v.e.v.’s as functions of chemical

potential are very cumbersome. We will be interested in the behaviour near the point of phase transition only.
In the vicinity of this point the asymptotics are as follows

2 2
41n,; Inf A,,

where the critical value of chemical potential is

, detA

/’lCr 8A22

. 1)

In the special phase the qualitative behavior is the same up to the factor in the second relation of (20),
o, =0,/ V3.
In the anomalous phase the asymptotics at large x are completely different

B DN (€ TV 5 (22)
9 243 11
In order to guarantee the negative sign of quark condensate in the model,
_ N A’
(do) =-—5- (0= o), (23)

the v.e.v. o, must be negative. Since o, tends to a constant value in this scenario, the phase transition
cannot be reached in the anomalous phase.

In the CP-breaking phase the relation for o, is fixed by Eq. (18). Out of the hyperplane 3\/§A12 -A,,=0
we can not reach the phase transition as o, becomes infinite in this point. However, o, degreases in
response to increasing the chemical potential according to the law

2 A +2\/§A12 -A, _%ﬂ\lﬂz _40-12
o, = . (24)
A
16(2ln#+m 3)

It must be noticed that if we are in the CP-breaking phase than, as it follows from Egs. (17) and (18), at

small enough value of o, we go out this phase as & >0. Only at the hyperplane 3\/§A12 -A,=01itis
possible to reach the phase transition being in the CP-breaking phase. More precisely, the CP-breaking phase
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exists between the values of v.e.v. o,

_5(\/§A12 B Azz) + \/(4\/§A12 - 3A22 )(\/§A12 - 2A22)

(0_12)1,2 = 24

(25)

The CP-breaking phase appears either at A, <0, A, >0 orat A,>0, A,, > %Au. At the hyperplane

3\/§A12 —A,, =0 (the transitional phase) the point of phase transition, o, =0, and way out of CP-breaking

phase coincide.

In each of the considered regions, four collective states arise: two scalar and two pseudoscalar for real
solutions, and one pseudoscalar and three with mixed P-parity, generally speaking, for a complex solutions.
Their spectra are analyzed in the next section.

3. Mass spectrum

The spectrum of the excitations is determined by the matrix of the second variation of the effective action.
Let us divide that matrix into a constant part B (independent of the momentum p ) and a kinetic part Ap2
which appears to be quadratic in momentum in the large-log approximation

52 Seff — N c

5o (P (p) B P F BT,
k |

528eff — Nc (
o (p)om(p') 87’

P’ + B SV (p+p), (26)

52 Seff _ N c

5(7 (p)é‘ﬂ' (pr) - 872'2 (A(OIW p2 + Bﬁﬂ)5(4)(p+ p,)
k |

For the two-channel model discussed in the previous section, the kinetic-energy matrix Ap® looks as
follows

A 15 B

8SIn— ——— N
on oo (nr) MU+ \/m 2 2
{ = O’ | = . (27)
R 3

2 2

The matrices of constant parts take the following form

2
B =-2A,,+320; 1nA—2 +12807 In

A
40, TR YTt

(28)
—%of —15\/50102 +%O'22 +2&7,
1 2
BY =-2A,, —5—*/553 +90,0, +£022 +£§2, (29)
2 2 3
By =-24, +%6, (30)
A1
B =-2A, +3207 In 157 —igaf - 5\/5010'2 +§022 +6&7, (31)
1

198



53 NE)

BY =24, -= =0 +30,0, +70§ +2:/382, (32)
- 3_

B22 = _2A22 +EO-, (33)

=50, + \/50'2 \/§01+O'2
By =-2¢& . (34)

\/50'] +0, O'1+3\/§O'2

The spectrum of the collective excitations is determined from the equation

det(Ap* +B) =0, (35)

which represents the condition of simultaneous diagonalization of the matrices A and B. The minimum
condition (positiveness of the second variation) for the Euclidean momenta ( p*> > 0) leads to the existence of

solutions in the region p*> <0, i.e., for physical values of the particle masses. Below we present the mass

spectra for different regions in the vicinity of the tricritical point. Usually the corresponding expressions are
very cumbersome. For the sake of simplicity we present many of them in the large-log approximation.
First of all, everywhere one has the Goldstone boson

m_=0. (36)

Consider the case & =0. Due to existence of exact solution (36), one can obtain a compact expression for
the mass of 7' -meson

(o, _\/50-2)2

52
A
4o In——vou-—1
1[ prp —do) J

where quantity &* is given by Eq. (17). Nevertheless, it is often convenient to present an approximate

m2 =—|4-

T

37

relation for m_, in order to compare with other masses.

In the GN phase one has
m2 =1602 +O “A“ : (38)
In
4/12
2 — OO0 Ay
m,=——A,+5+0 +0| —2|, (39)
T 22 2 2
A A
In—— Inln——
4u 4u
m=—2A +35+0| %0 _ | o| B2 _| (40)
o 3 22 A2 AZ
Inln—— Inln——
4u 4u

where 0,0, denotes different combinations of v.e.v.’s for k,I =1,2.
Spectrum in the anomalous phase
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m? 1667 + 0| —Z0_ | 0| Bz _| (1)
o 1 A2 A2
Inln—— Inln—
4u 4u
m =3A, 10| 29| o B | (42)
3 22 2 AZ
ln4 5 ln4 5
and m_, is given by Eq. (37).
In the special phase one has
o_2
m2 =807 + 0| —- |, (43)
o 1 AZ
In-——
4u
2
m, =362 0| < : (44)
T 1 AZ
In——
4u
02
m’ =160] + O — (45)
o 1 AZ
In-—
4u
The case £#0.
2
m =160+ 0| 22|10 01|, (46)
o 1 AZ A2
In-— In-—
4u 4u

2 £2
mjzéAzz—%«/A;—Safgz +O LAZ , (47)

A In

22 47/12
4 4 252 A
m§,=§A22+?/A§2—80-12§2+(7 ij\z +0| =2 | (48)
A ln— 1n4 5
U

In the expressions above v.e.v. o, can be fixed by a value of dynamical mass, M =20,. Other

parameters are free but subject to mass-gap equations (13). The properties of obtained mass spectra are
discuseed in the next Section.

4. Dynamical CP-violation

Now we will relate our model to the real physics. As the value of dynamical mass M, is about 0.3 GeV,
we should have o, = M /2 ~0.15 GeV. Typical masses of the first scalar and pseudoscalar radial excitations
are about 1.3 GeV. As follows from Egs. (39), (40), and (12) we should then have a large (compared to o, )
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negative A,, or/and large o,. In[14] the scaling of reduced couplings was chosen to be A, = (Q(Ina—z).

Then the first term in the r.h.s. of Eqgs. (39) and (40) is dominant in the large-log approximation. As it
directly seen, this scenario naturally reproduces CSR in radial excitations: (masses)” are equal in the first
logarithmic approximation, next-to-leading corrections appear due to DCSB. As A,, <0 this scenario is
realized in the GN phase. When one reaches the phase transition, the masses of excited states do not change
drastically in comparison with their values at ¢ =0 since the reduced couplings A, do not depend on .

Let us consider another possibility. Suppose that at =0 the sign of r.h.s. of Eq. (17) is negative.
Switching on the chemical potential it may happen that at certain point cfz (Hcpy) = 0. Needless to say that
to make this case possible one has to assume the scaling A,, = (1). That is why such a scaling was chosen
in this paper. After this point &> becomes positive and we can enter the CP-breaking phase with mass
spectrum (46) - (48)! As was shown above (see Egs. (24) and (25)) at some other point g, > fp, We

inevitably leave this phase. The solutions smoothly conform to each other in these points,

m’ =160;, m_ =0, ma,ngzz. (49)

2

Thus, the 7' -meson mass is the order parameter for the beginning and the end of CP-breaking phase. As &
is a positive quantity (see its definition (12)) it is evident from Eq. (17) that such a scenario may be realized
only when A,, >0. As was discussed above, in this case the minimum of effective potential is given by

anomalous solution. Therefore, one can enter the CP-breaking phase only from anomalous one. In addition,
from Egs. (15), (17), and (22) follows that in this case &” =0 in the first log approximation, i.e. the change
of phase turns out to be a (?(1/log) effect. For the same reason the 7' -meson is logarithmically lighter than

its chiral partner o’ .

The last and quite unusual scenario, which we would like to mention, is given by the special phase. In this
case the point of phase transition and that of CP-breaking coincide if the latter happens. All states become
massless in that point.

5. Conclusions

The present analysis is rather qualitative, we do not expect to describe quantitatively such higly
complicated phenomenon as possible dynamical CP-breaking within the present simple toy-model. Indeed,
the effect might appear only in the next-to-leading approximation. In this order there are contributions from
some higher dimensional vertices in effective Lagrangian which were not taken into account. Moreover, we
have not included the vector isoscalar interaction. As is known [24] the zero-component of the corresponding
vector field acquires a nonzero v.e.v. which shifts the chemical potential. The mass-gap equations are then
supplemented by a relation between the bare chemical potential and the renormalized one, with all other
quantities being functions of only latter one (we briefly sketch the procedure in Appendix). This can result in
the change of character of phase transition (it can become discontinuous) and in a shift of absolute value of
critical chemical potential. These topics, however, are not the subject of our analysis. What we pretend to
demonstrate are some general conditions which could lead to the phenomenon of dynamical CP-breaking.
The omitted vertices in the effective Lagrangian seem not affecting our conclusions. First of all, according to
our analysis, the CP-breaking phase cannot be reached starting from the Gross-Neveu phase. In our opinion,
this is the reason why such an effect cannot appear within usual NJL-type models. The considered model has
several additional phases with unusual scalings of masses. We have shown that in some of these phases the
dynamical CP-breaking, in principle, could appear. A common feature of the spectrum in these phases is that
one should have a rather light radial excitations, especially in the pseudoscalar channel (say, in the special

phase m_, = ma,/x/g ). A possible existence of such light pseudoscalar meson is still excluded neither by

experiment nor by relativistic potential quark models (see, e.g., [25]. An interesting consequence of our
analysis is that the existence of this state and the CP-violation in QCD could be tightly related. A further
development of this subject will be presented elsewhere.
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Appendix: inclusion of vector isoscalar interaction

Let us include vector isoscalar interaction in the minimal way (i.e. without derivatives in the vertices).
Interaction part of Lagrangian will be

2
=N Az > a,[ A ()aT($)a - T ()7 7T ()7°7:a |+
k,I=1

(50)

G . .
+———iy,qqiy, .
N N_A’ qty, 97,9

After introduction of auxiliary bosonic variables, o, ~ igf,(s)q, z{ ~@f,(s)z%y,q,and v, ~Ty,q, one has

2 2
£ = Z iG(O'k + iysﬁfra] f (s)q+N;N.A’ Z [okaglo] -|—7rkaal;17z,aJ+

k=1 k,1=1

(51)
. N N_A>
+iqiy, v, g+———V2.
4G,
Fine-tuning of couplings is extended to
_ A 4z’ 4A,
87°a, =0, _A_kzl’ G - 1- I |AA, [ A (52)

\

At u>20, the zero-component of vector field, v,, acquires a non-zero v.e.v. due to the second term in

modified propagator (8). The effect can be taken into account by shifting the chemical potential. Its
renormalized value g, isthen g, = u—v,, which will enter all formulas instead of z. Performing the Wick

rotation and calculating v.e.v. V, one has finally
2 3/2
Hy =,U+A—(ﬂr2—4012J . (53)

This relation has to be added to mass-gap equations (13). The parameter A, can be fixed from the mass
of vector particle in our model. If we identify this particle with @ -meson, one obtains

m? = 2iv2 . (54)
1n72
MO
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i

JAHAMUYECKOE CP-HAPYHIEHUE B KBA3UJ/IOKAJIBHBIX KBAPKOBBIX MOJEJIAX ITPHU
HEHYJEBOM KBAPKOBOM XUMHWYECKOM IOTEHIHUAJIE

A. A. Anapnanos, B. A. Auapunanos, C. C. Aponun

PaccMOTpeHa KBa3HIIOKalbHAs KBapKoBas Mojenb Turma Ham6y-Mona-Jlasunbo B kadectBe SPMEKTHBHON TEOPHH
HenepTypOaTuBHOM KX/ co cKanspHBIM-TICEBIOCKAIPHBIM YETHIPEXKBAPKOBEIM B3aMMOJEHCTBHEM, BKIIIOYAIOIIEM
MPOM3BOJIHBIC W NP KOHEYHOM XMMHYECKOM IoTeHnuane. [Ipn 1ocTaTouyHO CHIBHOM B3aMMOJCHCTBHM B CKAJISIPHOM
KaHajJle TPOUCXOIWUT CHOHTAaHHOE HApyIIEHWE KHUPAJIbHOW CHMMETPUH H, KaK CJIEACTBHE, 00pa3yeTcsi COCTaBHOE
CKaJIsipHOE cocTosiHue. IIpu criennanbHOM BbIOOpPE KOHCTAHT CBSI3M M HEKOTOPOM 3HAa4YEHHWU KBApKOBOH IIOTHOCTH, B
TMICEBJIOCKAIISIPHOM CEKTOpe MOKeT mosBuTcs (aza ¢ CP-HapymieHueM, Kak pe3ylbTaT KOMIIEKCHOCTH AWHAMUYECKOMH
MacCoOBOM (DyHKIIHH.

JUHAMIYHE CP-IIOPYIIEHHSA B KBA3IJIOKAJIBHUX KBAPKOBUX MOJEJISAX ITPH
HEHYJIBOBOMY KBAPKOBOMY XIMIYHOMY ITOTEHIIAJII

O. A. Anapianos, B. A. Anapianos, C. C. Aponin

PO3rJISIHYTO KBa3ijoKanbHy KBapkoBy Mozenb Turmy Ham6y-Mona-Jlasinbo sk e(eKkTHBHY Teopiio HemepTypOa-
tuBHOI KX/I 13 cKanspHOIO-TICEBAOCKAIAPHOIO YOTHPHUKBAPKOBOIO B3aEMOIIEI0, 1[0 BKIIIOYAE MOX1/HI i IPH CKIHUCHOMY
xiMiyHOMY noTeHiati. [Ipu gocTaTHRO CHITBbHIN B3a€EMOJIIT B CKAJIIPHOMY KaHalll BiIOYBa€ThCS CIIOHTaHHE MOPYIIEHHS
KipaJbHOI CUMETpIi 1, SIK HACIiJIOK, YTBOPIOETHCS CKIAICHUH CKainspHUi craH. [Ipu criemianbHOMYy BHOOpPI KOHCTaHT
3B’s13Ky 1 IEBHOMY 3HAU€HHI KBAPKOBOI I'YCTHHH B MCEBJOCKAISIPHOMY CEKTOpPi MOe 3’siBuTHCS (aza i3 CP-nopyien-
HSIM, SIK pe3yJIbTaT KOMIUIEKCHOCTI IMHaMI4HOi MacoBoi (GyHKIil.
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