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We consider the Quasilocal Quark Model of Nambu-Jona-Lasinio type as effective theory of non-perturbative QCD 

with scalar-pseudoscalar four-quark interaction with derivatives in fields at finite quark chemical potential. In the 
presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence 
the composite meson states are generated. For special configurations of coupling constants, the dynamical CP-violation 
in the pseudoscalar sector can appear as a result of complexity of dynamical mass function generated at some value of 
quark density.   

 
1. Introduction 

 
Quark models with local four-quark interaction are widely applied for the description of low-energy 

phenomena in QCD in the hadronization regime (see, e.g., reviews [1] and references therein). The local 
four-fermion interaction is involved to induce the Dynamical Chiral Symmetry Breaking (DCSB) due to 
strong attraction in the scalar channel. As a consequence, the dynamical quark mass dynM  is created, as well 
as an isospin multiplet of pions, massless in the chiral limit, and a massive scalar meson with mass 

 arise. However it is known from the experiment [2] that there are series of meson states with 
equal quantum numbers and heavier masses which traditionally are called "radial excitations" following an 
analogy with non-relativistic potential models. In order to describe the physics of those resonances at 
intermediate energies one can extend the quark model with local interaction of Nambu-Jona-Lasinio (NJL) 
type [3] taking into account higher-dimensional quark operators with derivatives, i.e. quasilocal quark 
interactions [4 - 12]. For sufficiently strong couplings the new operators promote the formation of additional 
meson states. Such a quasilocal approach (see also [13 - 16]) represents a systematic extension of the NJL 
model, where the low-energy gluon effects are hidden in the coupling constants. The alternative schemes 
including the condensates of low-energy gluons can be found in [11]. A distinguished feature of these 
models is that they naturally reproduce [8, 9, 14] the Chiral Symmetry Restoration (CSR) at high 
energies [17]. Due to this property such models can be successfully matched to QCD sum rules [8, 9, 14], i.e. 
they reproduce more dynamics typical for real QCD than usual NJL-type models.  

dyn2m Mσ =

It seemed to be the general feature for the quark models of NJL-type that, when being symmetry of the 
quark lagrangian, the CP-parity remains a good quantum number after DCSB. However, it happens that for 
particular combination of four-fermion coupling constants in the Quasilocal Quark Model (QQM), the CP-
parity can be broken dynamically together with the chiral symmetry [18]. For simple two-channel 
pseudoscalar QQM this situation was considered in [18] at zero quark densities. On a particular plane in the 
coupling constant space the complex solution for the dynamical mass function was found, which yields the 
CP-parity breaking in meson sector. It means that in such a plane there exist heavy scalar states which can 
decay into two or three pions. On the other hand, as we know, the study of QCD and NJL-type models at 
nonzero temperature and quark chemical potential are of high importance to understand a wide range of 
different physical phenomena, from heavy-ion-collision experiments to neutron stars and cosmology. This 
has led to varios theoretical investigations of the phase diagram of QCD at finite quark-chemical potentials 
and temperatures (see, e.g., [19]). There are arguments for the possibility of CP-violation in the strong 
interactions at different external conditions in theories with local interactions [20].  

In this paper we will focus on the problem of possible dynamical generation of CP-breaking in the strong 
interactions within QQM. The paper is organized as follows. In Section 2 we present at finite quark densities 
two-channel QQM with scalar-pseudoscalar self-interaction. The mass spectrum of meson states is derived in 
Section 3 in the large-log approximation. The physics behind the model is discussed in Section 4. We 
conclude in Section 5.  
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2. Quasilocal Quark Model with chemical potential 
 

The quasilocal approach of [5] (see also[7, 21, 22]) represents a systematic extension of the NJL model 
[3] towards the complete effective action of QCD where many-fermion vertices with derivatives are 
incorporated with the manifest chiral symmetry of interaction, motivated by the soft momentum expansion of 
the perturbative QCD effective action. For sufficiently strong couplings, the new operators promote the 
formation of additional scalar and pseudoscalar states. These models allow an extension of the linear σ  
model provided by the NJL model, with the pion being a broken symmetry partner of the lightest scalar 
meson just as before, and with excited pions and scalar particles coming in pairs. In particular, when only 
scalar and pseudoscalar color-singlet channels are examined and dynamical quark mass is supposed to be 
sufficiently smaller than the DCSB cutoff one may derive the minimal two-channel lagrangian of the 
QQM [5, 7] where we have added the chemical potential µ   

 

0( )QQM Iq i qγ µ= ∂/ + +L L ; 
 

2

52
1

1 ( ) ( ) ( ) ( )
4

I a
kl k l k l

k lf c

a qf s q qf s q qf s q qf s q
N N

τ γ τ γ
, =

5
a⎡ ⎤= − .⎣ ⎦Λ ∑L                      (1) 

 

Here  represents a symmetric matrix of real coupling constants and kla ( )kf s ,  are the 
polynomial formfactors specifying the quasilocal (in momentum space) interaction. These formfactors are 
orthogonal on the unit interval  

2 2s ≡ −∂ /Λ

 
1

0
( ) ( )k l klf s f s ds δ= .∫                                                                   (2) 

 
The results of calculations do not depend on a concrete choice of formfactors in the large-log 

approximation. Our choice is  
 

1 2( ) 2 3 ( ) 3f s s f s s= − , = − .                                                              (3) 
 

As this model interpolates the low-energy QCD action it is supplied with the cutoff  GeV which 
bounds virtual quark momenta in quark loops. We restrict ourselves with consideration of two-flavor case, 
thus 

1Λ ∼

aτ  denote Pauli matrices.  
For strong four-fermion coupling constants 28kl kla π δ∼  Lagrangian (1) reveals the phenomenon of 

dynamical chiral symmetry breaking. This phenomenon can be described with the help of the effective 
potential for the attractive scalar channel where scalar mesons arise as composite states. Indeed its non-trivial 
minimum gives rise to a dynamical quark mass and the perturbative fluctuations around this minimum 
characterize the mass spectrum of meson states. To derive the required effective potential one should 
bosonize the quark action, i.e. incorporate auxiliary bosonic variables ( )k kiqf s qσ ∼ , 5( )a a

k kqf s qπ τ γ∼ , and 
integrate out fermionic degrees of freedom. At the first step we introduce the bosonic variables in two 
channels  

 
2 2

2 1 1
5

1 1

( )a a a a
I k k k f c k kl l k kl

k k l

L iq i f s q N N a a lσ γ π τ σ σ π π− −⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

= , =

= + + Λ +∑ ∑ ⎞
⎟
⎠
.                             (4) 

 
Let us parametrize the matrix of coupling constants in a close vicinity of tricritical point  

 

2 1 2
28 kl

kl kl klaπ δ− ∆
= − , | ∆ | Λ

Λ
� .                                                          (5) 

 
The last inequality turns out to be equivalent to requirement for the dynamical mass to be essentially less 
than the cut-off.  

The dynamical mass function (for the time being we denote k kσσ ≡ ) is ( ) ( )k kM s fσ= s . Since the 
collective variables kσ  are complex functions, the dynamic mass is complex as well. However, by the global 
chiral rotation ( ) ( ) iM s M s e consω ω→ , = t , we can ensure fulfilment of the condition 0Im 0M

σ
=  (here 
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and further ). In this case, the following parametrization of the solutions of the stationary-state 
equations is valid  

0 (0)M M≡

 

1 21 2
2 Re

3
kki ξσ σ σσ σ σ= , = − , ≡ .                                               (6) 

 
In hermitian quark Lagrangian the imaginary part of the dynamical mass corresponds to the pseudoscalar 
mass. In the present analysis we identify the imaginary part of dynamical mass with v.e.v. of 0π -meson,  
 

02 .
3
ξ π=                                                                              (7) 

 
As we will see the condensation of this meson can happen at some conditions.  

The appearance of chemical potential results in the following modification of quark propagator[23]  
 

02 ( ) ( p )
2p F

p

p Mi i p E p
p M i p M i E

πδ
ε ε

+
→ − − Θ − | |

− + − +
,

2 2)

                     (8) 

 

where  is the energy and 2 2 1(p )pE M /= + 2 2 1(Fp Mµ /= −  is the Fermi momentum which is related to the 
baryon density ρ  as follows  
 

3
29

c f
F

N N
pρ

π
= .                                                                   (9) 

 
After performing the Wick rotation (further analysis we carry out in the Euclidean space) and integrating 

out the quark fields one comes to the bosonic effective action eff ( a
k kS )σ π,  which is defined from the 

regularized vacuum functional  
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,                              (10) 

 
and therefrom, for constant meson variables, to the effective potential  
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Here we have introduced the notation σ  for the combination  
 

2
1 1 2

2 3 3
3

2
2σ σ σ σ σ= + + .                                                          (12) 

The conditions on extremum of the effective potential, the mass-gap equations,  
 

 195



2
3 3 2 2 3

11 1 12 2 1 1 1 2 1 2 22
1

2
2 2 222

1 1 11 1 2
1 1

2 2 2 1
12 1 22 2 1 2 1 1 2 2 2

159 15 3 9 316 ln
4 4 4 4 4

8 ( 2 ) 4 4 ln 1
2 43

1 3 5 3 6 3 3 3
4 3

σ σ σ σ σ σ σ σ σ
σ

σ µξ σ σ µ σ µ µ σ σ
σ σ

σσ σ σ σ σ σ σ σ ξ σ

µ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Λ
∆ + ∆ = − − + + +

⎛ ⎞+ + + Θ − − − + −⎜ ⎟
⎝ ⎠

∆ + ∆ = − − + + + +

,

2
22 3

4
σξ ξ ξ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

∆ = + .

                   (13) 

 
The critical values of the coupling constants correspond to the cancellation of contributions quadratic in the 
momentum cutoff , i.e. Λ kl kla δ= . Equations (13) allow to find certain relations between the components of 
dynamic mass function and (reduced) coupling constants kl∆ . In practice, one uses the v.e.v.’s of scalar 
fields as input parameters, in particular, 1 dyn2 250 400Mσ = = ÷  MeV, and determines the required kl∆ . But 
in order to classify the solutions we will follow the inverse procedure, i.e. we will keep the parameters kl∆  as 
inputs. We suppose a scale (the reason will be explained below) 22 (1)∆ =O , then the condition of 
selfconsistency of Eqs. (13) is , 12 (1)∆ =O 2

2
0

11 (ln )
M
Λ∆ =O .  

Consider 0µ = .  
For the real solutions ( 0ξ = ) several phases are possible.  
1) Gross-Neveu (GN) phase  
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The expression for 2σ  is very lengthy, but it is evident that there is a solution which behaves as 

1 2 constσ σ/ =  at 1 0σ → . This solution delivers minimum to the effective potential for , de22 0∆ < t 0∆ < .  
2) Anomalous phase  
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This solution corresponds to minimum of potential for - 22 0∆ > , 22 123 3 0∆ − ∆ ≠ .  
3) Solutions (14) and (15) are not valid when 22 123 3 0∆ − ∆ =  or 22 0∆ =  or . In these 

cases one has the so-called transitional, singular, and special solutions correspondingly. They were analyzed 
(for a different choice of formfactors) in [7]. We will consider further only the special phase where one has  

12 22 0∆ = ∆ =

 

( )2
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2 11 1
1
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∆ σ= , =
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.                                                     (16) 

The complex solutions to Eqs. (13) with 0ξ ≠  are as follows.  
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The axial part of the mass function  
 

2 22

3 4
σξ ∆

= − .                                                                    (17) 

 
The second v.e.v.  
 

12 22
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1

3(3 3 )3
12

σ σ
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and the solution for 1σ  is  
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−
                                                           (19) 

 
Consider 0µ ≠  and the normal (GN) phase. The exact expressions for v.e.v.’s as functions of chemical 

potential are very cumbersome. We will be interested in the behaviour near the point of phase transition only. 
In the vicinity of this point the asymptotics are as follows  

 
2 2

2 cr 12
1

222 2

11
4ln lnµ µ

µ µ
2 1σ σ

Λ Λ

⎡ ⎤⎛ ⎞− ∆ σ+ , −⎢ ⎥⎜ ⎟⎜ ⎟ ∆⎢ ⎥⎝ ⎠⎣ ⎦
� O ,�                                (20) 

 
where the critical value of chemical potential is  
 

2
cr

22

det
8

µ ∆
= .

∆
                                                                       (21) 

 
In the special phase the qualitative behavior is the same up to the factor in the second relation of (20), 

2 1 3σ σ= / .  
In the anomalous phase the asymptotics at large µ  are completely different  
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In order to guarantee the negative sign of quark condensate in the model,  
 

2

12 ( 3
8

cNqq 2 )σ σ
π
Λ

− −� ,                                                      (23) 

 
the v.e.v. 2σ  must be negative. Since 2σ  tends to a constant value in this scenario, the phase transition 
cannot be reached in the anomalous phase.  

In the CP-breaking phase the relation for 2σ  is fixed by Eq. (18). Out of the hyperplane 12 223 3 0∆ − ∆ =  
we can not reach the phase transition as 2σ  becomes infinite in this point. However, 1σ  degreases in 
response to increasing the chemical potential according to the law  
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2 21
2 11 12 22 12
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16 2ln 3
µ µ σ

µ µ σ
σ

Λ
+ −

∆ + ∆ − ∆ − −
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−
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It must be noticed that if we are in the CP-breaking phase than, as it follows from Eqs. (17) and (18), at 

small enough value of 1σ  we go out this phase as 0σ > . Only at the hyperplane 12 223 3 0∆ − ∆ =  it is 
possible to reach the phase transition being in the CP-breaking phase. More precisely, the CP-breaking phase 
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exists between the values of v.e.v. 1σ   
 

2 12 22 12 22 12 22
1 1 2

5( 3 ) (4 3 3 )( 3 2 )
( )

24
σ ,

− ∆ − ∆ ∆ − ∆ ∆ − ∆
= .

∓
                       (25) 

 

The CP-breaking phase appears either at 12 0∆ < , 22 0∆ >  or at 12 0∆ > , 4 3
22 123∆ > ∆ . At the hyperplane 

12 223 3 0∆ − ∆ =  (the transitional phase) the point of phase transition, 1 0σ = , and way out of CP-breaking 
phase coincide.  

In each of the considered regions, four collective states arise: two scalar and two pseudoscalar for real 
solutions, and one pseudoscalar and three with mixed P-parity, generally speaking, for a complex solutions. 
Their spectra are analyzed in the next section.  

 
3. Mass spectrum 

 
The spectrum of the excitations is determined by the matrix of the second variation of the effective action. 

Let us divide that matrix into a constant part B̂  (independent of the momentum p ) and a kinetic part 2Âp  
which appears to be quadratic in momentum in the large-log approximation  
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For the two-channel model discussed in the previous section, the kinetic-energy matrix 2Âp  looks as 
follows  
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The matrices of constant parts take the following form  
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The spectrum of the collective excitations is determined from the equation  
 

2ˆ ˆdet( ) 0Ap B+ = ,                                                                (35) 
 

which represents the condition of simultaneous diagonalization of the matrices Â  and B̂ . The minimum 
condition (positiveness of the second variation) for the Euclidean momenta ( ) leads to the existence of 
solutions in the region , i.e., for physical values of the particle masses. Below we present the mass 
spectra for different regions in the vicinity of the tricritical point. Usually the corresponding expressions are 
very cumbersome. For the sake of simplicity we present many of them in the large-log approximation.  

2 0p >
2 0p ≤

First of all, everywhere one has the Goldstone boson  
 

0mπ = .                                                                        (36) 
 

Consider the case 0ξ = . Due to existence of exact solution (36), one can obtain a compact expression for 
the mass of π ′ -meson  
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where quantity 2ξ  is given by Eq. (17). Nevertheless, it is often convenient to present an approximate 
relation for mπ ′  in order to compare with other masses.  

In the GN phase one has  
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where k lσ σ  denotes different combinations of v.e.v.’s for 1 2k l, = , .  
Spectrum in the anomalous phase  
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and mπ ′  is given by Eq. (37).  
In the special phase one has  
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The case 0ξ ≠ .  
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σ ξσ ξ

µ

′

⎛ ⎞
⎜ ⎟
⎜= ∆ − ∆ − + ,

Λ⎜ ⎟∆⎜ ⎟
⎝ ⎠

O ⎟                                               (47) 

 

2 2
2 2 2 2 1

22 22 1 2

22 2 2

4 4 8
3 3 ln ln

4 4

mσ
σ ξσ ξ

µ µ

′

⎛ ⎞ ⎛
⎜ ⎟ ⎜ ∆⎜ ⎟ ⎜= ∆ + ∆ − + + .

Λ⎜ ⎟ ⎜∆⎜ ⎟ ⎜
⎝ ⎠ ⎝

O O 22
2

⎞
⎟
⎟

Λ ⎟
⎟
⎠

                                  (48) 

 

In the expressions above v.e.v. 1σ  can be fixed by a value of dynamical mass, 0 2M 1σ= . Other 
parameters are free but subject to mass-gap equations (13). The properties of obtained mass spectra are 
discuseed in the next Section.  

 
4. Dynamical CP-violation 

 
Now we will relate our model to the real physics. As the value of dynamical mass 0M  is about 0.3 GeV, 

we should have 1 0 2 0 15Mσ = / ≈ .  GeV. Typical masses of the first scalar and pseudoscalar radial excitations 
are about 1.3 GeV. As follows from Eqs. (39), (40), and (12) we should then have a large (compared to 1σ ) 
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negative  or/and large 22∆ 2σ . In [14] the scaling of reduced couplings was chosen to be 2

2
0

(ln )ik M
Λ∆ =O . 

Then the first term in the r.h.s. of Eqs. (39) and (40) is dominant in the large-log approximation. As it 
directly seen, this scenario naturally reproduces CSR in radial excitations: (masses)  are equal in the first 
logarithmic approximation, next-to-leading corrections appear due to DCSB. As  this scenario is 
realized in the GN phase. When one reaches the phase transition, the masses of excited states do not change 
drastically in comparison with their values at 

2

22 0∆ <

0µ =  since the reduced couplings  do not depend on ik∆ µ .  
Let us consider another possibility. Suppose that at 0µ =  the sign of r.h.s. of Eq. (17) is negative. 

Switching on the chemical potential it may happen that at certain point . Needless to say that 
to make this case possible one has to assume the scaling 

2
CP 1( )ξ µ , = 0

22 (1)∆ =O . That is why such a scaling was chosen 
in this paper. After this point 2ξ  becomes positive and we can enter the CP-breaking phase with mass 
spectrum (46) - (48)! As was shown above (see Eqs. (24) and (25)) at some other point CP 2 CP 1µ µ, ,>  we 
inevitably leave this phase. The solutions smoothly conform to each other in these points,  

 
2 2 2

1
816 0
3

m m mσ π σσ ′ ′ 22, = , ∆ .� �                                              (49) 

 
Thus, the π ′ -meson mass is the order parameter for the beginning and the end of CP-breaking phase. As σ  
is a positive quantity (see its definition (12)) it is evident from Eq. (17) that such a scenario may be realized 
only when . As was discussed above, in this case the minimum of effective potential is given by 
anomalous solution. Therefore, one can enter the CP-breaking phase only from anomalous one. In addition, 
from Eqs. (15), (17), and (22) follows that in this case  in the first log approximation, i.e. the change 
of phase turns out to be a  effect. For the same reason the 

22 0∆ >

2 0ξ �
(1 log)/O π ′ -meson is logarithmically lighter than 

its chiral partner σ ′ .  
The last and quite unusual scenario, which we would like to mention, is given by the special phase. In this 

case the point of phase transition and that of CP-breaking coincide if the latter happens. All states become 
massless in that point.  

 
5. Conclusions 

 
The present analysis is rather qualitative, we do not expect to describe quantitatively such higly 

complicated phenomenon as possible dynamical CP-breaking within the present simple toy-model. Indeed, 
the effect might appear only in the next-to-leading approximation. In this order there are contributions from 
some higher dimensional vertices in effective Lagrangian which were not taken into account. Moreover, we 
have not included the vector isoscalar interaction. As is known [24] the zero-component of the corresponding 
vector field acquires a nonzero v.e.v. which shifts the chemical potential. The mass-gap equations are then 
supplemented by a relation between the bare chemical potential and the renormalized one, with all other 
quantities being functions of only latter one (we briefly sketch the procedure in Appendix). This can result in 
the change of character of phase transition (it can become discontinuous) and in a shift of absolute value of 
critical chemical potential. These topics, however, are not the subject of our analysis. What we pretend to 
demonstrate are some general conditions which could lead to the phenomenon of dynamical CP-breaking. 
The omitted vertices in the effective Lagrangian seem not affecting our conclusions. First of all, according to 
our analysis, the CP-breaking phase cannot be reached starting from the Gross-Neveu phase. In our opinion, 
this is the reason why such an effect cannot appear within usual NJL-type models. The considered model has 
several additional phases with unusual scalings of masses. We have shown that in some of these phases the 
dynamical CP-breaking, in principle, could appear. A common feature of the spectrum in these phases is that 
one should have a rather light radial excitations, especially in the pseudoscalar channel (say, in the special 
phase 6m mπ σ′ ′/� ). A possible existence of such light pseudoscalar meson is still excluded neither by 
experiment nor by relativistic potential quark models (see, e.g., [25]. An interesting consequence of our 
analysis is that the existence of this state and the CP-violation in QCD could be tightly related. A further 
development of this subject will be presented elsewhere.  
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Appendix: inclusion of vector isoscalar interaction 
 

Let us include vector isoscalar interaction in the minimal way (i.e. without derivatives in the vertices). 
Interaction part of Lagrangian will be  

 
2

5 52
1

2

1 ( ) ( ) ( ) ( )
4

I a
kl k l k l

k lf c

v

f c

a qf s q qf s q qf s q qf s q
N N

G qi qqi q
N N ν ν

τ γ τ γ

γ γ

, =

a⎡ ⎤= − +⎣ ⎦Λ

+ .
Λ

∑L

                  (50) 

 

After introduction of auxiliary bosonic variables, ( )k kiqf s qσ ∼ , 5( )a a
k kqf s qπ τ γ∼ , and v q qν νγ∼ , one has  

 
2 2

2 1 1
5

1 1

2
2

( )

4

a a a a
I k k k f c k kl l k kl

k k l

f c

v

iq i f s q N N a a

N Niqi v q v
Gν ν ν

σ γ π τ σ σ π π

γ

− −⎛ ⎞ ⎛
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⎝ ⎠ ⎝

= , =

= + + Λ +
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⎞
⎟
⎠
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                     (51) 

 

Fine-tuning of couplings is extended to  
 

2
2 1 2

2 2

4 48 1
3

kl v
kl kl kl v

v

a
G
ππ δ− ∆ ∆

= − , = − , | ∆ ,∆ | Λ
Λ Λ

� .                              (52) 

 

At 12µ σ>  the zero-component of vector field, , acquires a non-zero v.e.v. due to the second term in 
modified propagator (8). The effect can be taken into account by shifting the chemical potential. Its 
renormalized value 

0v

rµ  is then 0r vµ µ= − , which will enter all formulas instead of µ . Performing the Wick 
rotation and calculating v.e.v.  one has finally  0v

 

3 22 2
1

2 4r r
v

µ µ µ σ
/⎛

⎜
⎝

⎞
⎟
⎠

= + −
∆

.                                                              (53) 

 

This relation has to be added to mass-gap equations (13). The parameter  can be fixed from the mass 
of vector particle in our model. If we identify this particle with 

v∆
ω -meson, one obtains  

 

2
2

2
0

2

ln

vm

M

ω
∆

= − .
Λ

                                                                      (54) 
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ДИНАМИЧЕСКОЕ  CP-НАРУШЕНИЕ  В  КВАЗИЛОКАЛЬНЫХ  КВАРКОВЫХ  МОДЕЛЯХ  ПРИ 

НЕНУЛЕВОМ  КВАРКОВОМ  ХИМИЧЕСКОМ  ПОТЕНЦИАЛЕ 
 

А. А. Андрианов, В. А. Андрианов, С. С. Афонин  
 

Рассмотрена квазилокальная кварковая модель типа Намбу-Йона-Лазиньо в качестве эффективной теории 
непертурбативной КХД со скалярным-псевдоскалярным четырехкварковым взаимодействием, включающем 
производные и при конечном химическом потенциале. При достаточно сильном взаимодействии в скалярном 
канале происходит спонтанное нарушение киральной симметрии и, как следствие, образуется составное 
скалярное состояние. При специальном выборе констант связи и некотором значении кварковой плотности, в 
псевдоскалярном секторе может появится фаза с CP-нарушением, как результат комплексности динамической 
массовой функции. 
 

ДИНАМІЧНЕ  CP-ПОРУШЕННЯ  В  КВАЗІЛОКАЛЬНИХ  КВАРКОВИХ  МОДЕЛЯХ  ПРИ 
НЕНУЛЬОВОМУ  КВАРКОВОМУ  ХІМІЧНОМУ  ПОТЕНЦІАЛІ 

 
О. А. Андріанов, В. А. Андріанов, С. С. Афонін  

 
Розглянуто квазілокальну кваркову модель типу Намбу-Йона-Лазіньо як ефективну теорію непертурба-

тивної КХД із скалярною-псевдоскалярною чотирикварковою взаємодією, що включає похідні і при скінченому 
хімічному потенціалі. При достатньо сильній взаємодії в скалярному каналі відбувається спонтанне порушення 
кіральної симетрії і, як наслідок, утворюється складений скалярний стан. При спеціальному виборі констант 
зв’язку і певному значенні кваркової густини в псевдоскалярному секторі може з’явитися фаза із CP-порушен-
ням, як результат комплексності динамічної масової функції. 
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