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Preface & Overview

Bulk Locality Breakdown:
Burning Black Holes & Precarious Precursors

This thesis is an exposition of some of the research that I carried out during my

doctoral studies. Broadly speaking, my research focused on how fundamental sub-

jects such as general relativity, thermodynamics and quantum information appear

to be connected. Various connections exist, manifested notably in black holes,

holography, and the AdS/CFT correspondence in particular. All three of these

related subjects will be touched upon in this work, with locality playing an inter-

connecting role. In what follows, I will briefly summarize and motivate the central

elements in this thesis.

Introduction

To begin with, I will set the stage by providing some background information in

chapter 1 on a level that should be accessible to readers holding a master in the-

oretical physics. The introduction contains two main parts, the first of which is

focused on black holes. These fascinating objects have been studied for over 50

years, and form an excellent playground for theorists to study properties of (quan-

tum) gravity. I will explain that black holes radiate and can be attributed various

thermodynamical properties, such as a temperature and an entropy. Thereafter, I

will discuss the thermodynamical stabilities of black holes, since it will be relevant

for chapter 2.

The second part of the introduction is about holography and in particular the

AdS/CFT correspondence. I will explain how black hole entropy leads to the

holographic principle, and motivate how theoretical physicists could come up with

this remarkable duality between string theory and conformal field theory living in

one dimension less. Then I will proceed to discuss various aspects of AdS/CFT,

especially concepts such as HKLL reconstruction and bulk locality, as they will be

frequently used in chapters 3, 4 and 5.
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Preface

I think it is fair to say that while AdS/CFT has been one of the most powerful

tools in theoretical physics in the last 20 years, many parts of this duality are still

poorly understood. In particular an understanding of core aspects of the duality

related to reconstructing bulk physics from boundary data, and the miraculous

property of (sub-AdS scale) locality, is still lacking. It is in these two areas that I

have tried to make progress with my research, therefore, I will spend a significant

part of this thesis explaining the problems and outlining my contributions.

Burning Black Holes

Almost 40 years after Hawking showed that black holes have a temperature and

radiate, it is clear that they still keep many secrets until this very day. A famous

consequence of Hawking’s result is the information paradox: collapsing a pure

state into a black hole and letting it evaporate seems to lead to a mixed state of

thermal radiation, which cannot happen in a unitary theory. Various resolutions

have been proposed: from the pragmatic black hole complementarity to more

exotic (Planck-sized) remnants, large modifications of (semi-)classical gravity, or

even soft hair. Although none of these suggestions seem completely satisfactory,

I do think that holography (and more specifically, AdS/CFT) suggests that black

hole evaporation is unitary, although it is far from clear how that would work from

a bulk point of view.

In 2012 a new thought experiment surfaced, involving an observer falling into

an evaporating black hole. Some older information paradox-like ingredients were

repackaged in a sharper paradox: it was pointed that there is a trilemma between

unitary black hole formation and evaporation, locality, and the equivalence prin-

ciple. Some theoretical physicists gave up the latter, suggesting that an infalling

observer experiences a ‘firewall’ instead of a smooth event horizon. Others pro-

posed drastic violations of locality, such as ER=EPR that involves tiny wormholes

connecting the interior of the black hole with the exterior. The firewall paradox is

puzzling, because common sense says that doing low energy effective field theory

in a weakly curved region of spacetime (such as the event horizon of a large black

hole) should give perfectly accurate results. It is unclear why quantum gravity

effects would suddenly be important in this particular problem.

In chapter 2, I will elaborate on this important problem in modern theoretical

physics. First, I will discuss the paradox in detail, and continue by disproving

the paradox at the level of s-wave Hawking quanta. I will geometrically show

that the paradox generically can not be posed in the causal patch of an infalling

observer, suggesting that no physical observer ever witnesses a violation of the laws

of physics. While this may not be enough to settle the debate, it requires a more
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careful formulation of the paradox. In particular, it seems that the holographic

versions that appeared later seem quite robust to the causal patch arguments I

will make. They necessitate a detailed study of bulk reconstruction (in particular

near or even behind the black hole horizon) and sub-AdS scale locality, a topic

which I will address extensively later in this thesis.

A complete understanding of this paradox remains elusive until this very day, with

various conflicting proposals dividing the community. Further research is needed,

and I am a strong proponent that a better understanding will lead to fundamental

insights in the properties of bulk locality and quantum gravity.

Precarious Precursors

The rest of this thesis will focus on bulk reconstruction and locality in AdS/CFT,

and consists of chapters 3, 4 and 5. One of my favorite diagnostics are precursors:

non-local operators in the CFT that are dual to a local bulk field in the appropriate

limit. As the title suggests, precursors often have surprising and even paradoxical

properties since bulk locality is a highly non-trivial property of AdS/CFT. That

is why I find it interesting to study them, since it leads to a better understanding

of AdS/CFT and, eventually, quantum gravity.

In chapter 3, I will discuss some of the puzzles associated to precursors. I will

explain that different precursors can be dual to the same bulk field, but bulk

locality implies that these different precursors can not be equal as true operators.

I will introduce a simple holographic toy model to study the redundant way in

which local bulk operators are encoded in the CFT. This redundancy can be

tracked to an ambiguity in the smearing function on one hand, but equivalently

can be understood using the language of quantum error correction on the other

hand. Interestingly, I will show using the two aforementioned approaches that this

ambiguity can be used to localize the information of the bulk field in a particular

region of the CFT, e.g. a Rindler wedge, provided that bulk field is contained in

the corresponding bulk wedge.

Next, in chapter 4, I will dive deeper in the ambiguity that many non-local opera-

tors in the CFT seem to be dual to the same local bulk operator. I will recast this

problem in the language of BRST symmetry, and make a conjecture relating two

precursors corresponding to the same bulk operator. As a check, I will re-derive an

earlier expression of a precursor ambiguity that appeared in the literature, which

exactly translates into the smearing function ambiguity used in the toy model of

chapter 3. The results suggest that precursors are related to the underlying gauge

symmetry of the field theory. Once this ambiguity between precursors is under-

stood, I will show that this ambiguity contains enough freedom to localize the bulk
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information in the CFT, order by order in 1/N . This suggests that the procedure

I explicitly undertook in chapter 3 to leading order in 1/N , could be carried out

order by order in 1/N .

Thereafter, in chapter 5, I discuss the broader issue of bulk locality in AdS3/CFT2

in detail, and focus on the question which CFTs have local bulk duals. In order to

make some progress on this rather grand question, I will explore the breakdown of

sub-AdS scale locality in the same toy model that I introduced in chapter 3. While

the model is not modular invariant, it has the right low- and high energy density of

states to be dual to Einstein gravity coupled to matter in AdS3. Surprisingly, non-

local effects seem to emerge at order 1/N due to the presence of an infinite tower

of higher spins in the bulk. This leads me to formulate a conjecture about the

spectrum of modular invariant CFT2’s in order to have local bulk duals, however,

an explicit proof is still lacking.

Finally, I will wrap up in chapter 6 by summarizing and concluding the material

presented in this thesis. Doing so, I will try at the same time to provide an outlook

of which problems remain, and what would constitute some interesting next steps

of research.

The thesis will end with a few mandatory parts: the bibliography, a short outline of

my contributions to the publications on which this thesis is based, and a popular-

scientific summary in Dutch. I will finish by acknowledging everyone that made it

possible to complete this thesis.

Before continuing, a final word on writing style is in order. Throughout the thesis,

I will refrain from using the pronoun ‘I’, but rather use the pronoun ‘we’ when

talking about ideas and the research performed during my studies. This is not only

more conventional in the field when writing papers, but also indicates better the

way in which my research was performed, which was always in close collaboration

with my colleagues.
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1
Introduction

1.1 20th Century Physics

The beginning of the last century gave birth to two cornerstones of modern physics.

First of all, the foundations of quantum mechanics were established, describing

physics on (sub)atomic scales. At the same time, Einstein developed his theory

of special and general relativity, reformulating the laws of gravity which govern

physics on much larger scales. The combination of quantum mechanics with the

principles of special relativity ultimately gave rise to the development of quantum

field theory. This new theoretical framework, together with the experimental

advancement of particle accelerators, led to one of the greatest triumphs in modern

physics: the Standard Model of particle physics. It provides us with a unified

description of the fundamental particles and three out of four forces in nature: the

strong, weak and electromagnetic interaction.

General relativity however, describing gravity – the fourth and weakest force in

nature – remains a separate subject that has not yet been incorporated in our

theory of fundamental interactions. Surprisingly maybe, that did yet not result in a

mismatch between experiments and theoretical predictions. This is due to gravity’s

weakness compared to the other three fundamental interactions; neglecting gravity

at the typical energies one produces nowadays with particle accelerators is an

excellent approximation. As everyone who ever lifted a paperclip by holding a

magnet over it knows: even though gravity is omnipresent, it can be overcome

rather easily. Nonetheless in very high energy situations, such as black holes or

early universe physics, the gravitational force can have a strength comparable to

elementary particle interactions, and both frameworks need to be combined in a

more general theory: a quantum theory incorporating gravity, that reduces to the

Standard Model and general relativity in the appropriate limit.

The absence of gravity is not the only reason why the Standard Model is not the

end of our work. First of all, the Standard Model contains at least 19 free param-
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1. Introduction

eters, which is not only aesthetically unpleasant, but also leaves a lot of questions

unanswered. There are also more technical indications that one gets into trouble

when applying gravity at high energies: Einstein’s gravity is non-renormalizable,

which means that at small scales it contains divergences that require an infinite

number of counterterms. We typically interpret this as a breakdown of our current

theory, and a signal that a more general theory will have to take over.

These shortcomings motivated people to look for a ‘better’ theory: a proper quan-

tum theory that contains the Standard Model as well as gravity. Out of the many

candidates that have been formulated, it seems that string theory emerged as one

of the most promising and successful candidates. The fundamental constituents

of string theory are not particles, but one dimensional objects localized in space-

time: ‘strings’. These strings can vibrate, and the various vibrational modes are

interpreted as different particles. Originally, string theory was developed in the

60’s as an attempt to explain asymptotic freedom present in the the strong inter-

action. However, the appearance of a massless spin-2 particle in the closed string

spectrum made theorists realize that theory’s true potential did not lie in a theory

of hadrons, but in a quantum theory of gravity where the massless spin-2 particle

could play the prominent role of the graviton.

From then on, string theory has gone through several developments. Particularly

important milestones were the incorporation of supersymmetry in the theory, and

the discovery of D-branes with their associated fluxes. This means that string

theory is not only a theory of strings, but rather a more general theory of higher-

dimensional extended objects. Together with supersymmetry, a way of relating

bosonic and fermionic degrees of freedom with each other, it can be used to produce

Standard Model-like features. That made theorists hopeful that one day, string

theory should be capable of describing gravity together with all the elementary

particles and their interactions.

Studying string theory turned out to be a vast but fruitful task, leading to a

plethora of phenomena much richer then one could have imagined 50 years ago: it

includes the counting of black hole microstates and connections with mathematics

such as moonshine, as well as more phenomenologically oriented fields such as

building cosmological models and looking for Standard Model-like solutions in one

of string theory’s 10500 vacua.

Last but not least, string theory is helping us understand the features a respectable

theory of quantum gravity should have, in particular by providing us with one of

the most remarkable and powerful dualities in theoretical physics: the AdS/CFT

correspondence. This non-perturbative definition of quantum gravity in AdS in

terms of a CFT, gives us a unique opportunity to study quantum gravity. Since

it will play a central role in this thesis, it will be introduced in section 1.3.

2



1.2. Black Holes

1.2 Black Holes

1.2.1 From Einstein to Hawking and Bekenstein

Soon after Einstein published his theory of general relativity [7], Schwarzschild

found the first nontrivial exact solution of Einstein’s field equations [8]. It was

only many years later until physicists started to understand its various mysterious

properties. The spherically symmetric solution is singular at one point (the origin),

but has an event horizon, where effectively time and space switch roles. Behind

this event horizon, the gravitational force is so strong that not even light can

escape, hence it was given the name black hole. It was later understood that these

solutions are the natural end-products when very massive stars collapse under

their own weight. Since black holes are in some sense nature’s most dense objects,

they are a perfect playground for theorists to study how the gravitational force

works on various energy scales.

In the early 70s, many similarities between black hole physics and thermodynamics

were discovered. In 1971 Hawking showed that the area of the event horizon can

not decrease [9]. This remarkable result got known as the second law of black

hole mechanics, due to its similarity with the second law of thermodynamics.

Continuing in this spirit, in 1973 Bekenstein suggested in [10] that a black hole

can be attributed an entropy, which is proportional to its event horizon. A year

later, Hawking showed in [11] that black holes emit thermal radiation and he

computed the temperature of a black hole that a far away observer would measure.

Using thermodynamic relations, he confirmed Bekensteins’s conjecture and fixed

the constant of proportionality:

SBH =
ABH

4

kBc
3

~G
. (1.1)

Let us make a few comments on this important formula.

1. It contains Boltzmann’s constant kB (thermodynamics), the speed of light

c (relativity), Planck’s constant ~ (quantum mechanics) and Newton’s con-

stant G (gravity)! All the fundamental domains in physics seem to be hiding

behind what may well be the most beautiful formula in theoretical physics.

2. The entropy associated to the black hole horizon is based purely on thermo-

dynamical arguments. Boltzmann taught us that entropy has an underly-

ing statistical explanation; it counts the number of microstates. An obvious

question arises: is it possible to count ‘black hole microstates’ and give a sta-

tistical interpretation to this formula? The answer seems affirmative. Stro-

minger and Vafa famously derived in [12] the Bekenstein-Hawking entropy

3



1. Introduction

relation (1.1) for a class of five-dimensional extremal black holes in string

theory. In this case, the counting of microstates is a counting of geometric

degrees of freedom, that tells us in how many ways one can wrap D-branes

around the extra dimensions. An explanation on the level of microstates for

black hole entropy, can be considered as one of the great successes of string

theory, and is still the subject of ongoing research.

3. Another striking feature of this formula is its universality. It seems to apply

to a whole zoo of black holes, irrespective if they are rotating or charged.

Gibbons and Hawking showed in [13] that it even applies to cosmological

horizons, such as the one in the static patch of de Sitter space. It is un-

clear whether there exists a statistical explanation for that entropy, since

the cosmological horizon is observer dependent.

4. Finally, it is remarkable that the entropy of nature’s most dense objects is

not proportional to the volume, but rather scales like the area enclosing the

volume. This will lead us to the holographic principle in section 1.3.

1.2.2 Thermodynamic Stability of Black Holes

The fact that black holes have thermodynamical properties is surprising, and

strongly suggests an underlying microscopic description. In this section we will

discuss the thermodynamics of various black hole solutions, and in particular show

that some solutions are unstable with respect to evaporation. This will be impor-

tant for chapter 2, where we will investigate a paradox that comes with black hole

evaporation.

To keep things from being cluttered, the black hole metrics in D spacetime dimen-

sions we will consider are all of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2. (1.2)

Black Holes in Flat Space

Consider a Schwarzschild black hole in flat space. The metric is of the form (1.2)

with

f(r) = 1−
(rh
r

)D−3

. (1.3)

While this metric looks singular at the horizon r = rh, one can show that it is

perfectly regular by changing to Kruskal coordinates, as the equivalence principle

requires: a freely falling observer should not experience anything when he crosses

the horizon of a large (such that tidal effects can be ignored) black hole.
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1.2. Black Holes

A simple way of showing that an observer at fixed radius is accelerating and ob-

serves a black hole as thermally radiating, is by invoking the equivalence principle

which implies that the near-horizon region of a black hole is well approximated by

the Minkowski vacuum. Writing the Minkowski vacuum as a Rindler decomposi-

tion gives

|0〉 =
⊗
ω,k

√
1− e−2πω

∑
n

e−πωn|n〉L ⊗ |n〉R. (1.4)

Tracing over the |n〉L modes representing the interior of the black hole (which the

hovering observer cannot access) leads to a thermal density matrix.

The temperature of the Schwarzschild solution (1.2) can be computed using a neat

trick: send t→ iτ and do an expansion near the horizon r = rh. A conical defect

in the resulting Euclidean metric can be avoided by imposing the right periodicity

in the new imaginary time variable τ ∼ τ + β, which in turn gets interpreted as

the inverse temperature via β = T−1:

ds2 = ρ2

(
d

(
f ′(rh)τ

2

))2

+ dρ2 ⇒ f ′(rh)

2
τ ∼ f ′(rh)

2
τ + 2π

⇔ τ ∼ τ +
4π

f ′(rh)

(1.5)

from which we can conclude that

T =
1

β
=
f ′(rh)

4π
. (1.6)

For a Schwarzschild black hole in four dimensions we have that rh = 2GM , which

gives the following temperature an observer at rest at infinity would measure:

T =
1

8πGM
. (1.7)

We define the heat capacity as

C =
∂E

∂T
=
∂M

∂T
(1.8)

where we have used that dM = dE. In particular, notice that the temperature

vs. mass curve of a Schwarzschild black hole (sketched in figure 1.1(a)) is mono-

tonically decreasing. This means that the heat capacity is negative, therefore

black holes in flat space are thermodynamically unstable: they become hotter and

smaller until they are completely evaporated. For the curious reader: collaps-

ing the earth will give a black hole that is roughly 2 centimeters in size, has a

temperature of 0.02 Kelvin and a lifetime of 5 · 1050 years!
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(a) Four-dimensional Flat Space
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0.6
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(b) Four-dimensional AdS

Figure 1.1: Plotting the black hole temperature vs. mass. G and LAdS have been set to one.

Black Holes in AdS

Putting a black hole in Anti-de Sitter space (a vacuum solution of the Einstein

equations with negative cosmological constant) leads to a much richer thermody-

namic structure. This is because the negative cosmological constant effectively

acts as a box. In particular, we will see that that there is an important distinction

between the microcanonical and canonical ensemble, as well as between AdS3 and

higher dimensional versions of AdS, since gravity in three dimensions is topological

(meaning that there are no propagating degrees of freedom in the metric).

Three-Dimensional AdS

Even though gravity in AdS3 is topological, there exists a black hole solution called

the BTZ black hole [14]. When it does not have any electric charge or angular

momentum, it is of the form (1.2) with

f(r) =
r2 − r2

h

L2
AdS

. (1.9)

We can immediately see that the BTZ black hole always has positive heat capacity,

hence it is (locally) thermodynamically stable. For completeness, we note that

there is a mass gap in AdS3, meaning that if we take rh → 0 we don’t recover

empty AdS, but a conical defect.

In what follows, we will focus on D > 3. The metric of a black hole in AdSD with

D > 3 is of the form (1.2) with

f(r) = 1− GM

rD−3
+

r2

L2
AdS

. (1.10)

The temperature vs mass curve can be found in figure 1.1(b).
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1.2. Black Holes

Canonical Ensemble

For a given T (sufficiently large such that black solutions exist), we can see there

are two black hole solutions M1 < M2. Only the heavier one has positive heat

capacity and is stable. The smaller one will just keep absorbing energy until it

becomes the heavier one. We can also see that there exists a critical temperature

T0. Below that temperature black holes can not exist and the space is filled with

thermal radiation. When we start increasing the temperature T > T0, black hole

solutions exist, however, they do not dominate the ensemble (i.e. have lower free

energy then the state with thermal radiation) until the temperature reaches a

critical value THP, called the Hawking-Page temperature [15]. When we increase

the temperature even further, stable radiation solutions will cease to exist and

always form a large black hole.

Microcanonical Ensemble

In the microcanonical ensemble we have to keep the total energy (mass) fixed. To

see whether the black hole or radiation phase dominates, one has to maximize the

entropy. A particular important result is that small black holes, even though they

have negative heat capacity, can coexist peacefully with some thermal radiation in

AdS, and hence are stable with respect to evaporation. On a more personal note:

the question of how black holes with negative heat capacity can be stable, often

led to confusion between me and my colleagues, and I vividly recall spending a

few lunches debating this topic. So, let us set this straight once and for all.

We will demonstrate this surprising fact using a small black hole in AdS4+1
1 (up

to O(1) numerical factors), that is rh � LAdS. If this condition is obeyed, we have

that

r2
h ≈ GM. (1.11)

Consider a system of a small black hole with energy E1 = M1, and some thermal

gas with energy E −E1, where we keep the total energy E = M fixed. This gives

SBH =
A

4G
∝ r3

h

G
=

(GM1)
3
2

G
=
√
GM

3
2

1 . (1.12)

We know that the energy and entropy of a thermal photon gas in 5D goes like

Egas ∝ V T 5 ⇒ Sgas ∝ V T 4 = V

(
Egas

V

) 4
5

= (LAdSEgas)
4
5 (1.13)

hence

Stotal ≈
√
GM

3
2

1 + L
4
5

AdS (M −M1)
4
5 . (1.14)

1With AdS/CFT in the back of mind, we could consider a small black hole in AdS5 × S5

which initially is uniform over the S5. That is, however, unstable to localising on the the S5 due

to Gregory-Laflamme instability. In this case, one should consider a 10-dimensional small black

hole. Nonetheless, the qualitative results that we obtain in this section remain true.
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1. Introduction

This entropy reaches a maximum for M1 ∈ [0,M ], implying that there exist a sta-

ble equilibrium between the black hole and some thermal radiation. Extremizing

the entropy yields

∂Stotal

∂M1
= 0⇒ 3

2

√
GM1 −

4

5
L

4
5 (M −M1)

−1
5 = 0 (1.15)

which we can rewrite as (neglecting O(1) coefficients)

1

TBH
− 1

Tgas
= 0⇒ TBH = Tgas (1.16)

since the temperature of a 5D Schwarzschild black hole ∝ (GM)
−1
2 and the tem-

perature of our 5D photon gas is ∝ (Egas/V )
1
5 . Notice that the black hole has

negative heat capacity, as we expect from the flat space result. Since the entropy

needs to obtain a maximum:

∂2S

∂M2
1

< 0⇒ − 1

T 2
BH

C−1
BH +

1

T 2
gas

∂Tgas

∂M1
= − 1

T 2
BH

C−1
BH −

1

T 2
gas

C−1
gas < 0 (1.17)

where we’ve defined the heat capacity

C ≡ ∂E

∂T
. (1.18)

Note the sign change in front of the heat capacity of the gas, because it is defined by

differentiating wrt to M −M1 instead of M1. At equilibrium we have TBH = Tgas,

so the equation reduces to

−C−1
BH − C−1

gas < 0. (1.19)

Since the black hole heat capacity is negative, we have at equilibrium

|Cgas| < |CBH|. (1.20)

Imagine the small 5D black hole in AdS in equilibrium with some thermal gas at

temperature Teq, with CBH < 0 and Cgas > 0 while |CBH| > |Cgas|. Consider a

fluctuation where the black hole loses some mass and radiates a small amount of

energy δE > 0 in the photon gas. Due to the condition on the heat capacities, we

see that Teq < TBH < Tgas, that is, both the black hole and the gas increases its

temperature (energy is of course always conserved, since the increase in the energy

of the gas gets compensated by the decrease in energy of the black hole), but the

temperature increase of the gas is larger then the one in the black hole. Because

of this difference in temperature, some energy δE will flow back from the gas into

the black hole, lowering both temperatures back to the equilibrium temperature

Teq. The case for a fluctuation where both the black hole and gas cool down, is

completely similar.
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1.3. Holography & AdS/CFT

Notice that in the case the gas is coupled to an infinite heat bath at temperature

T , as is the case in the canonical ensemble, black holes with a negative heat

capacity can never be stable. One can see this by considering a black hole at

temperature T . When the black hole radiates some energy δE in the gas, it will

increase its temperature with respect to the gas: TBH > Tgas. Because the black

hole temperature is higher, it wants to deposit more energy in the gas, making it

hotter and hotter, rendering the solution unstable.

This concludes the brief introduction on black holes and their thermodynamic sta-

bilities. In chapter 2 we will revisit evaporating black holes and the information

paradox, and show that the equivalence principle, unitarity and locality seem to

be inconsistent for an infalling observer. Before doing that, we will try to provide a

pedagogical introduction to some aspects of holography and the AdS/CFT corre-

spondence, building on a way it was presented by the author in [16]. In particular,

we will elaborate on things like bulk reconstruction and locality in AdS/CFT, as

it will play a prominent role in chapters 3, 4 and 5.

1.3 Holography & AdS/CFT

Our starting point this time will again be the remarkable and, at the same time,

the very first formula in this thesis (1.1):

SBH =
ABH

4G
(1.21)

which tells us that the Bekenstein-Hawking entropy of a black hole is proportional

to the area of its event horizon. Note that we’ve set c = kB = ~ = 1 and will

continue to do so.

It was Bekenstein himself who concluded from this that the maximal amount of

entropy contained in a certain volume of space is proportional to the area that

encloses the volume. To see this, consider a region V that has more entropy than a

black hole of the same size, but has less energy. By adding some matter, we could

collapse it to a black hole and decrease its entropy, thereby violating the second

law. It was ’t Hooft that took this idea a step further in [17], and conjectured that

any physical theory in a volume V can be described by a set of degrees of freedom

(1 per Planck area) residing on the surface enclosing V . This idea got known as

the ‘holographic principle’, and was further developed by Susskind in [18], who

argued that string theory should obey the holographic principle as well.
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1. Introduction

1.3.1 Towards AdS/CFT

Over the years various developments culminated in 1997, where Maldacena made

an extraordinary conjecture [19]: he claimed that a particular string theory is dual

(i.e. equivalent) to a gauge theory living in one dimension less. More precisely,

Type IIB string theory on AdS5 ⊗ S5

⇔ (1.22)

d = 4, N = 4, SU(N) super-Yang-Mills theory.

This is a particular realization of the holographic principle, since the gravitational

theory is completely captured by a field theory living on its boundary. It became

famous under the name AdS/CFT correspondence. AdS stands for Anti-de Sitter

space, a vacuum solution of Einstein’s field equations with negative cosmological

constant. CFT stands for conformal field theory: a (quantum) field theory where

the usual Poincaré symmetry group has been extended to include scale transfor-

mations and inversion (the conformal group). It is a very nontrivial statement: it

relates a string theory – which contains gravity – and a gauge theory – which does

not contain gravity – living in different dimensions and spaces.

String Theory and the N →∞ Limit of Gauge Theory

We will start by arguing why string theory could be dual to a gauge theory. This

kind of argument was first given by ’t Hooft in [20], but in a rather different context.

The problem at interest was the strong interaction. This is described by a SU(3)

Yang-Mills theory, and while it has a nice perturbative description at high energies,

it gets strongly coupled at low energies (i.e. it is asymptotically free). However,

it appeared that approximating the strong interaction by taking the large N limit

(doing ‘planar QCD’), we can make reasonably accurate predictions. ’t Hooft’s

hope was that, while the gauge theory description is useful at high energies, he

could construct and use the string theory dual (which is weakly coupled in the

N →∞ limit) to make predictions at low energies.

To start, consider a non-Abelian SU(N) gauge theory with coupling constant gYM.

In the limit where N becomes very large, ‘t Hooft showed that it is useful to

introduce an effective coupling constant λ ≡ g2
YMN , from now on called the ‘t

Hooft coupling. In a gauge theory, typical problems at hand are computing the

partition function and correlation functions. In the limit where gYM is sufficiently

small, we can write down a perturbative expansion for these correlators in terms of

Feynman graphs. It is possible to supply the Feynman graphs with an additional

structure: the double line or fat graph notation [21]. Expanding the correlators

using Wick’s theorem yields various contractions, which tell us how to connect the

10



1.3. Holography & AdS/CFT

fat graphs. This way, we get connected diagrams and can associate a genus to

each graph, as is depicted in figure 1.2. For a given genus g, the graphs can be

organized as an expansion in the ‘t Hooft coupling λ. Schematically:

logZ =
∑

genus g

N2−2g
∞∑
i=1

λifi(...) (1.23)

It becomes clear why the large N limit is sometimes called the planar limit: graphs

organize themselves in groups depending on the topology. The higher the genus

of the graph, the more it becomes suppressed. Large N limits can thereby greatly

simply our life, since we only have to take the planar diagrams into account. Fur-

thermore, if λ is sufficiently small, we can describe the gauge theory perturbatively

in λ.

Figure 1.2: A planar diagram (genus 0, i.e. it can be drawn on a sphere without crossing any

lines) on the left and a non-planar diagram (genus 1, i.e. it can be drawn on a

torus without crossing any lines) on the right. The right diagram will be suppressed

relative to the planar one by a factor 1/N2.

To see what this has to do with string theory, consider the scattering of four

closed strings. String theory allows us to calculate the S-matrix of this process

perturbatively. This has to be done by summing over all possible world sheet

topologies, as is represented in figure 1.3. Schematically:

S-matrix =
∑

genus g

g2g−2
s Fg(α

′)[...] (1.24)

where gs is the string coupling and α′ = l2s .

+ + + ...

Figure 1.3: Sum over topologies in the scattering of four closed strings.
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The similarities between the two perturbative expansions are striking. In particu-

lar, we would suspect gs ∝ 1
N : taking the large N (planar) limit corresponds with

a weakly coupled string theory, i.e. we only take the worldsheets without holes

into account.

Maldacena’s Decoupling Argument

We will now present a simple argument that should lead us to the AdS/CFT

correspondence (1.3.1).

Consider a stack of N D3-branes. We can regard them as hyperplanes in flat

space, where the endpoints of open strings can propagate on. We call this the

‘open string’ description. On the other hand, we can also regard them as (black)

branes emitting closed strings, the ‘closed string’ description. In particular, they

will emit gravitons since they can be found in the closed string spectrum, which

will deform the background. Both viewpoints should be equivalent: they are a

different description of the same system. This equivalence is also known as open-

closed duality in string theory, and is illustrated in figure 1.4.

Figure 1.4: Cartoon picture of open-closed duality. We can view the brane as an hypersurface

where the endpoints of open strings can end and propagate on (red). On the other

hand, we can cut the string worldsheet differently, and regard the branes as if they

were emitting closed strings (blue). Time directions are denoted by the arrows.

First, consider the open string description. The endpoints of open strings realize

a (supersymmetric) U(1) gauge theory on the brane’s worldvolume. Since we are

considering a stack of N D3-branes, the endpoints of the string can start and

end on N different branes and in total there are N2 possibilities. The lowest

excitation modes are massless when the branes are coincident, and via the Chan-
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1.3. Holography & AdS/CFT

Paton mechanism one can see that they carry the appropriate charges to enhance

the U(1)N symmetry to a (supersymmetric) SU(N) symmetry.

In this open string description, the action describing the brane’s dynamics looks

schematically as follows

S = Sbrane + Sinteraction + Sbulk. (1.25)

• Sbrane contains the d = 4, N = 4 super-Yang-Mills (dimensional reduction

of d = 10, N = 1 SYM) in lowest order, plus stringy corrections which are

O(α′) and higher.

• Sinteraction couples the brane and the bulk, and does only contains terms

which are O(α′) and higher.

• Sbulk contains type IIB supergravity in lowest order, plus stringy corrections

which are O(α′) and higher.

We can now take a low energy limit α′ → 0 to obtain

• Sbrane → d = 4, N = 4 SU(N) super-Yang-Mills

• Sinteraction → 0

• Sbulk → type IIB supergravity

and we see that the dynamics on the brane and in the bulk decouple.

Let us take another, but equivalent, viewpoint: the closed string (gravitational)

description. We regard the stack of branes as massive objects, deforming the

geometry. The following metric is a solution of the type IIB supergravity equations

of motion, and describes a stack of N coincident D3-branes:

ds2 =
1√
H(r)

ηµνdxµdxν +
√
H(r)(dr2 + r2dΩ2

5) (1.26)

H(r) = 1 +
L4

AdS

r4
L4

AdS = 4πα′2gsN r =
√
yaya. (1.27)

Here µ, ν = 0, ..., 3, a = 4, ..., 9 and r measures the distance transverse to the

branes. Note that H(r) is an harmonic function of the coordinates transverse to

the brane. We can take two interesting limits:

• r →∞: ds2 → 10D flat Minkowski space

• r → 0: ds2 → r2

L2
AdS

ηµνdxµdxν +
L2

AdSdr2

r2 + L2
AdSdΩ2

5 = AdS5 ⊗ S5
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Now take the low energy limit for an observer at r = ∞. There are two types

of low energy excitations, as illustrated in figure 1.5. First of all, there are the

massless modes surrounding the observer: this is regular type IIB supergravity.

Nearby the stack of branes however, any excitation will be low energy with respect

to our far away observer since this excitation has to climb out of the gravitational

well and gets redshifted. This redshift will be huge for excitations very close to

the brane, since we can read off from the metric: δEproper = LAdS

r δE∞. Thereby,

the full string theory (and not only the massless modes) will be low energy with

respect to this observer and it decouples from the free type IIB supergravity which

surrounds the observer in D = 10 flat space.

Figure 1.5: Geometry of a stack of D3-branes which interpolates between AdS5 ⊗ S5 near the

branes, and flat space far away from the branes.

Let us summarize what we have found. Taking the low energy limit in the open

string (‘gauge theory’) description resulted in a d = 4, N = 4 SU(N) SYM near

the branes, decoupled from D = 10 type IIB SUGRA at infinity. On the other

hand, taking the low energy limit in the closed string (‘gravitation’) description,

resulted in full type IIB string theory on AdS5 ⊗ S5 near the branes, decoupled

from D = 10 type II SUGRA at infinity. Both theories at r = 0 and r = ∞
decouple, but the open and closed string descriptions should be equivalent.

This finally motivates the AdS/CFT correspondence (1.3.1): Type IIB string the-

ory on an AdS5 ⊗ S5 background, should correspond with d = 4, N = 4 SU(N)

super-Yang-Mills theory.
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1.3. Holography & AdS/CFT

1.3.2 Symmetries

Claiming that two theories are equivalent with each other, requires at least a

complete match of the symmetries. On the gravitational side, we can embed AdS5

in 6-dimensional pseudo-Euclidean space with metric diag(− + + + +−) as the

hyperboloid

−x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − x2

5 = −L2
AdS. (1.28)

The isometry group of AdS5 is therefore SO(4, 2). The isometry group of S5 is

given by SO(6).

Let us try to see how these symmetries manifest themselves on the gauge theory

side. Since d = 4, N = 4 SYM can be obtained by dimensional reduction of

d = 10, N = 1 SYM, we get the following Lagrangian [22]:

L = Tr{1

2
FµνF

µν + 2λ̄αγµDµPLλα +DµX
iDµXi

+ gYM

(
(Cαβ)iλ̄αPL[Xi, λβ ] + h.c.

)
+
g2

YM

2

∑
i,j

[Xi, Xj ]2}
(1.29)

containing the gauge potential Aµ, four chiral fermion fields PLχ
α, and six scalars

Xi (originating from dimensional reduction of the d = 10 vector). The C matrices

are gamma matrices for SO(6). The first symmetry of the theory is manifest:

rotating the six scalars among each other. It is a SO(6) symmetry and corresponds

with the R-symmetry of the theory.

The other symmetry of the theory is a conformal symmetry. This happens because

the gauge theory is not only invariant under Poincaré transformations, but also

under inversion xµ → x′µ = xµ/x
2 and scale transformations xµ → x′µ = λxµ. All

transformations combine in what is known as the conformal group, which is given

by SO(4, 2) in four dimensions. Therefore, we have checked that the (bosonic)

symmetries of the theories match.

However, d = 4, N = 4 SYM has another remarkable property: it remains con-

formal at quantum level. This is rather special, since quantizing a field theory

typically leads to divergences, which one has to solve by introducing a cutoff in

the theory and renormalizing it. But introducing such a (energy) scale µ in the

theory, manifestly breaks conformal invariance. Renormalization typically leads to

a ‘running’ coupling constant gYM when varying the energy scale µ. This running

is captured in the beta function of the theory, which satisfies the renormalization

group equation:

µ
∂gYM

∂µ
= β(gYM). (1.30)
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It has been shown that the beta function of d = 4, N = 4 SYM vanishes at all

loops, and the theory has a superconformal SU(2, 2|4) symmetry at quantum level.

A more detailed analysis of the superstring theory in AdS5 ⊗ S5 shows that the

fermionic symmetries also match. We conclude that there is a complete match

of symmetries. Furthermore, one can also show there is a match between the

spectrum of IIB fields on AdS5 ⊗ S5, and operators in the dual field theory [23].

1.3.3 Weak vs. Strong Coupling

The brane description of the gauge theory relates the string coupling constant

gs and gauge theory coupling gYM with each other. Summarizing the various

parameters of interest:

Gauge Theory String Theory

g2
YM gs = g2

YM/4π

λ = g2
YMN λ = L4

AdS/α
′2 = L4

AdS/l
4
s

(1.31)

Most of the time we work in the useful ’t Hooft limit where N →∞ and g2
YM → 0

while λ is kept fixed. This corresponds with planar N = 4 SYM. Or equivalently

on the string theory side: gs → 0 while λ is kept fixed which corresponds with

‘free’ string theory.

We can now distinguish two interesting regimes. The first one is taking λ → 0.

This means that the gauge theory simplifies and becomes perturbative planar

SYM, but on the string theory side we see that LAdS � ls: the AdS length

scale becomes small compared with the string length scale, and the supergravity

approximation of string theory breaks down. This is the tensionless limit of string

theory, where all the stringy modes become important and there is no classical

geometric picture of the bulk anymore. On the other hand, we can take λ → ∞.

This means that LAdS � ls: we are taking the point limit of strings. In this limit,

the geometry is classical and we can safely use the supergravity approximation

to string theory. Since gs was assumed to be very small, quantum effects are

suppressed and we can do classical (tree-like) supergravity. The gauge theory side

however, gets strongly coupled.

This shows that the AdS/CFT correspondence can be very powerful: when it

becomes ‘difficult’ to do a calculation at one side of the duality, we can go to the

other side where the problem becomes ‘easy’. For example, it allows us to make

predictions about strongly coupled SYM by doing supergravity, and vice versa.

The downside is that it becomes very hard to prove these statements, since one

should do the calculation on both sides of the duality and see whether they agree.
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1.3. Holography & AdS/CFT

1.3.4 Dictionary

We showed that, depending on the problem, it is beneficial to work on a particular

‘side’ of the duality. To do so, we want to be able to translate string theory

problems into gauge theory ones, and vice versa. This can be done, if we have a

precise correspondence between the observables at our disposition: a dictionary.

Two dictionaries exist: the ‘differentiate’ dictionary, initiated by Witten, Gubser,

Klebanov and Polyakov in [24, 25], and the ‘extrapolate’ dictionary, first used

in [26], and stated explicitly by Banks, Horowitz, Douglas and Martinec in [27].

There is a 1:1 correspondence between fields in the bulk and operators in the CFT.

As an example, one can derive a relation between the mass m of a scalar field Φ in

the bulk, and the scaling dimension ∆ of the corresponding dual operator in the

CFT. In AdSd+1 we have that

∆± =
1

2

(
d±

√
d2 + 4m2L2

AdS

)
. (1.32)

Usually only the solution ∆ = ∆+ is admissible, but for masses in the Breitenlohner-

Freedman window
−d2

4
< m2 <

−d2

4
+ 1 (1.33)

both ∆− and ∆+ are allowed [28].

Unitarity of the CFT requires ∆ to be real and positive, so it is interesting to note

that this implies that negative masses are allowed as long as

m2 ≥ −d2

4L2
AdS

. (1.34)

Intriguingly, this result was already known ten years before the AdS/CFT corre-

spondence, by analyzing particle states in AdS [29]. Particles are always classified

in irreducible representations of the symmetry group of the theory. As was men-

tioned before, for the case of AdS5 this symmetry group is given by SO(4, 2), which

has maximal compact subgroup SO(4) ⊗ SO(2). ∆ can be viewed as the lowest

eigenvalue of the SO(2) generator, and demanding unitary representations of the

AdS group leads exactly to the same stability bound.

Differentiate Dictionary

Consider Poincaré AdS5:

ds2 =
L2

AdS

z2

(
dz2 + ηµνdxµdxν

)
. (1.35)
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The boundary of this space is at z → 0 and is given by four dimensional Minkowski

space, up to a conformal factor. We can now write

Φ0(~x) = Φ(~x, z)
∣∣∣
z=0

. (1.36)

We interpret the boundary value Φ0 as a source for the CFT operator O, that has

the same symmetry representations as the bulk field Φ. Consider the generating

function ZO[Φ0] for correlation functions of O, which can be obtained by adding

the term ∫
d4x Φ0(~x)O(~x) (1.37)

to the N = 4 Lagrangian. We have that

〈O(x1) · · · O(xn)〉 =
δn

δΦ0(x1) · · · δΦ0(xn)
ZO[Φ0]

∣∣∣
Φ0=0

. (1.38)

Witten argued that

ZO[Φ0]CFT = 〈e
∫

d4x Φ0(~x)O(~x)〉CFT = Zstring[Φ(~x, z)]
∣∣∣
Φ(0,~x)=Φ0

. (1.39)

The right hand side is the string (or, in the appropriate limit, supergravity) par-

tition function with the boundary condition that the bulk scalar takes the value

Φ0 on the AdS boundary. The left hand side is the generating functional for

correlators of the operator O in the CFT.

Extrapolate Dictionary

The second dictionary, as the name suggests, consists of taking bulk fields and

extrapolating them to the boundary.

lim
z→0

z−∆Φ(x, z) = O(x). (1.40)

In this limit they vanish, but extracting the leading behavior gives the dual oper-

ator. In this sense, the extrapolate dictionary relates a field close to the boundary

to a local CFT operator. We can use this to compute bulk correlators and pull

them to the boundary. Extracting the leading behavior gives the correlators of

the dual operators:

〈O(x1) · · · O(xn)〉CFT = lim
z→0

z−n∆〈Φ(x1, z) · · ·Φ(xn, z)〉bulk. (1.41)

In this dictionary, the crucial step is to extrapolate bulk fields to the boundary

and write them as (smeared) CFT operators. We will explore this in detail in the

next section 1.3.5.
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1.3. Holography & AdS/CFT

Both dictionaries were proved to be equivalent by Harlow and Stanford in [30].

They showed that

δ

δβ(x1)
· · · δ

δβ(xn)
Zbulk[β]]

∣∣∣
β=0
∼ lim
z→0

z−n∆〈Φ(x1, z) · · ·Φ(xn, z)〉bulk (1.42)

where β is the coefficient of the non-normalizable mode (i.e. putting the boundary

condition Φ ∼ zd−∆+β when z → 0).

1.3.5 HKLL Reconstruction

One of the central problems in AdS/CFT is to reconstruct bulk physics from

boundary data. In the large N limit, we expect the bulk to be classical and

composed of local bulk fields on a fixed, curved background. An important series

of works came from the authors Hamilton, Kabat, Lifschytz and Lowe, and is

known as the HKLL prescription [31–41].

We saw in (1.40) that a bulk field Φ, in the limit that it goes to the boundary, is

dual to a local CFT operator O. A natural question to ask is how we can relate

a local bulk field which is a finite distance in the bulk to a CFT operator. At

leading order in 1/N , HKLL proposed that

Φ(X) =

∫
ddx K(X|x)O(x) (1.43)

for an appropriate smearing function K(X|x). Note that with capital X we denote

a point in the AdSd+1, while with a small x we denote a point on the boundary

CFTd. One can see that if the smearing function K satisfies a free Klein-Gordon

equation, so will the bulk field Φ:

(�−m2)Φ = 0⇔ (�−m2)K(X|x) = 0 (1.44)

where � acts on the bulk coordinates X. In the case where K exists and can be

computed, its support on the boundary gives a measure for what region in the

CFT contains the information of the local bulk field Φ(X). One way of computing

the smearing function is by expanding the bulk field Φ in orthogonal solutions of

the Klein-Gordon equation Φk [42]:

Φ(X) =

∫
dk akΦk(X) + h.c. (1.45)

Now take the bulk point X to the boundary and define φk ≡ z−∆Φk which gives

O(x) =

∫
dk akφk(x) + h.c. (1.46)
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If the φk are orthogonal, we can invert this equation and write

ak =

∫
dx O(x)φ∗k(x). (1.47)

Plugging back in yields

Φ(X) =

∫
dk

(∫
dx O(x)φ∗k(x)

)
Φk(X) + h.c. (1.48)

Provided we can interchange the integrals, this finally gives

Φ(X) =

∫
dx K(X|x)O(x) (1.49)

where

K(X|x) =

∫
dk Φk(X)φ∗k(x) + h.c. (1.50)

The smearing function K can be computed this way for the case of Poincaré or

global AdS. Interestingly, the smearing function K is not unique, a property which

we will explore in chapter 3. In the case when there is an horizon present (such

as Rindler AdS or black hole solution), the integral of momenta does not converge

and there is no (position space representation of the) smearing function.

At order 1/N , the bulk field Φ will satisfy an interacting wave equation that

can be perturbatively solved. Expand the bulk field as Φ = Φ(0) + 1
NΦ(1). The

leading part will satisfy the free wave equation and can be reconstructed using

the techniques described above. At order 1
N , the bulk field satisfies an interacting

wave equation (�−m2)Φ(1) =
(
Φ(0)

)2
which can be solved by putting

Φ(1)(X) =

∫
dd+1X ′G(X|X ′)Φ(0)(X ′)Φ(0)(X ′) (1.51)

where G is a bulk-to-bulk propagator (Green’s function) that satisfies

(�−m2)G(X|X ′) =
1√
|g|
δd+1(X −X ′). (1.52)

We can in principle reconstruct the interacting bulk field order by order in 1/N in

the CFT. The first order correction to the HKLL formula (1.43) is now given by:

Φ(1)(X) =

∫
ddx

∫
ddx′ K̃(X|x, x′)O(x)O(x′) (1.53)

where

K̃(X|x, x′) ≡
∫

dd+1X ′
√
|g|G(X|X ′)K(X ′|x)K(X ′|x′). (1.54)
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1.3.6 Bulk Locality

One of the core aspects of holography is the emergence of spacetime and the

reconstruction of (local) bulk physics from CFT data. As we will see in chapter 2,

locality plays an important role in the firewall paradox, and its status in quantum

gravity remains unclear. Since the AdS/CFT correspondence provides us with a

definition of quantum gravity, we can hope that this duality will shed some light

on the possible breakdown of locality. However, bulk locality and reconstruction,

while crucial in AdS/CFT, still remains poorly understood after more then 15

years.

When doing QFT on a fixed background (no dynamical gravity), by locality we

usually mean that operators which are spacelike separated commute:

[O(x),O(y)] = 0 ∀(x− y)2 > 0. (1.55)

When we add gravity to the mix, i.e. we add diffeomorphisms to our ‘ordinary’

gauge symmetries, an object such as Φ(X) is not gauge invariant anymore, and for

example would need to be dressed by a gravitational Wilson line in order to make

it gauge invariant. This is usually summed up in the common lore that there are no

gauge invariant local observables in a theory of quantum gravity. This is the case

for string theory, that will be manifestly non-local on length scales comparable to

the string length ls. However, based on the expectations from our everyday real

world which include gravity and is perceived to be local, we would want a good

candidate of quantum gravity to be local in the right regime. Since the AdS/CFT

correspondence provides us with an unique window on quantum gravity, we are

interested in studying questions related to how local bulk physics emerges from

the CFT, or which CFTs will have local bulk duals.

A particularly mysterious property of AdS/CFT is that of sub-AdS scale locality.

Consider two bulk wavepackets that are separated a distance l in the radial (i.e.

the emergent) direction denoted by the coordinate r. From a local bulk point of

view, these excitation should not interact. While both of them have the same

position in the CFT, they will have different energies since

E ∼ r

L2
AdS

. (1.56)

It should be clear that if they are separated sufficiently far from each other in the

bulk, their energies will differ a lot, and they will not interact with each other by

locality in the RG-flow. However, this heuristic argument will start to break down

when
δE

E
=
δr

r
= O(1). (1.57)
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If we use that the AdS metric in the radial direction looks like ds2 = L2
AdSdr2/r2,

we see that bulk locality is not guaranteed anymore by having different energies

when the two wave packets are separated a distance l ∼ LAdS. This means that

bulk locality on scales much larger than LAdS is a rather trivial property, but on

scales smaller than LAdS, it becomes very nontrivial. However, we can make the

AdS radius as large as we want, in particular much larger then the string length

ls. But we would want a realistic theory of quantum gravity to be local at scales

much smaller then LAdS, up to ls for example.

In [43], the authors argued for a criterion that a CFT needs to satisfy in order

to be local below sub-AdS length scales. Consider a string excitation in AdS4+1,

which will have a mass on the order of 1/ls. The conformal dimension of the dual

operator satisfies

∆(∆− 4) = m2L2
AdS ∼

(
LAdS

ls

)2

=
√
λ (1.58)

where λ is the ’t Hooft coupling. To have local physics below the AdS scale we

want λ� 1, and this means that all operators dual to stringy excitations will have

parametrically large dimensions. Based on these observations, the authors in [43]

motivated the conjecture that any CFT which has a large N expansion2, and in

which all single trace operators of spin > 2 have large ∆, will have a bulk dual

with sub-AdS scale locality. This criterion is often summarized as the requirement

of having a sparse spectrum. We will elaborate further on criteria for bulk locality

in chapter 5.

In the same paper, an intuitive diagnostic for bulk locality was proposed. Consider

a four-point function in the (Lorentzian) CFT, where the four insertions are placed

in such a way that they are not on each other’s boundary lightcones, but the four

bulk lightcones intersect in a point (see figure 1.6). In this setup, we can think of

it as a 2→ 2 scattering process in the bulk. In a local bulk theory, the four-point

function in the CFT will have particular singularities. From the CFT point of

view this is a rather mysterious property: changing one of the insertions slightly

will cause a dramatic fall-off of the four-point function. On the other hand, from

the bulk point of view this makes complete sense: the singularity is caused by

the interaction of the two scattering particles. Two short comments are in order.

First of all, the two- and three-point functions in a CFT are fixed by conformal

invariance, while the four-point function contains dynamical information (it will

depend on the OPE coefficients). It makes good sense that a diagnostic for bulk

locality should depend on this information.

2In order for a CFT to have a holographic dual, it needs enough degrees of freedom to make

up the holographic dimension, so large N (central charge) is always an assumption.
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x1

x2

x3

x4

Figure 1.6: Four CFT insertions that are not lightlike separated in the CFT, but whose bulk

lightcones intersect in a point.

Secondly, if we would take weakly coupled N = 4 SYM, there would be no such

singularity (a weaker singularity will be present), rather, the real singularity will

emerge in the strong coupling limit λ→∞. That makes sense, since it is only in

this regime that we would expect the bulk theory to be local.

This concludes the introduction to holography and AdS/CFT. We will pick it back

up in chapters 3, 4 and 5, where we will study issues related to bulk reconstruction

and locality using precursor puzzles and holographic toy models. The AdS/CFT

conjecture has, as the name implies, not yet been formally proven. However, the

evidence is overwhelming and it is fair to say that it made holography one of the

most valuable and interesting tools in theoretical high energy physics for the last

20 years.
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2
Firewalls

This chapter is based on the paper [1].

In the introduction we saw that black holes radiate and have interesting thermo-

dynamical properties. While our current understanding of black holes advanced

a lot over the past decades, some issues, in particular the ones involving black

hole evaporation, remain poorly understood. In this chapter, we will address the

recent firewall paradox that involves an observer falling into an old black hole.

It states that the observer must see a violation of either unitarity, locality, or the

equivalence principle. Motivated by this remarkable conflict, we analyze the causal

structure of black hole spacetimes in order to determine whether all the necessary

ingredients for the paradox fit within a single observer’s causal patch. We partic-

ularly focus on the question of whether the interior partner modes of the outgoing

Hawking quanta can, in principle, be measured by an infalling observer. Since the

relevant modes are spread over the entire sphere, we answer a simple geometrical

question: can any observer see an entire sphere behind the horizon?

We find that for all static black holes in 3+1 and higher dimensions, with any value

of the cosmological constant, no single observer can see both the early Hawking

radiation and the interior modes. We present a detailed description of the causal

patch geometry of the Schwarzschild black hole in 3+1 dimensions, where an in-

falling observer comes closest to being able to measure the relevant modes.

2.1 Introduction

In 2012, Almheiri, Marolf, Polchinski and Sully (AMPS) [44] identified a remark-

able conflict between some fundamental physical principles. Consider an ‘old’

black hole – one that has already emitted more than half of the Hawking quanta –

and focus on the emission of the next Hawking quanta H. We expect the following

three statements to be true.
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1. For a large black hole, the spatial curvature at the event horizon is small, so

we expect low energy effective field theory should suffice to describe physics

in the region near the horizon (we definitely do not expect quantum gravity

to be necessary). The equivalence principle says that the region near the

horizon should look locally like the Minkowski vacuum. In particular, an

infalling observer should not experience anything special when he crosses the

event horizon, which requires H to be strongly entangled with its ‘partner

mode’ P behind the horizon (see figure 2.1).

2. The black hole can be formed by collapsing a pure state, and unitarity re-

quires the final state (some radiation) to end up in a pure state as well.

When the black hole starts evaporating, the Hawking radiation becomes

more and more mixed. When the black hole emitted approximately half of

its Hawking quanta however, unitarity requires the Hawking quanta that are

subsequently emitted to purify the earlier radiation, in order for the total

entanglement entropy to go back to zero when the black hole has completely

evaporated. This requires that H is strongly entangled with the radiation

R that has already been emitted. It is often visually represented as a kink

in the Page-curve (which plots the entanglement entropy of the black hole

with the radiation over time), named in honor of its inventor [45,46].

3. Locality of the (gravitational) theory dictates that P and H can not phys-

ically influence each other, because commutators of spacelike separated ob-

servables should vanish.

The AMPS paper noted that the above three statements are inconsistent. To see

this, consider the strong subadditivity property of entanglement (Von Neumann)

entropy. This says

SPHR + SH ≤ SPH + SHR (2.1)

where SX is the entanglement entropy of subsystem X with everything else. Since

we just argued that the mode H is (close to) maximally entangled with two differ-

ent subsystems P and R, the RHS of this inequality is (close to) zero. Since SH
will be order one due to its entanglement, one of the aforementioned assumptions

must be wrong.

One could argue that the essential conflict stated here was in some sense already

present in Hawking’s original work [47] and the information paradox that comes

with it. This says that collapsing a pure state in a black hole and letting it

evaporate will lead to final state consisting of mixed thermal radiation, which can

not happen under unitary time evolution. Some time later, the problem was stated

in terms of entanglement by [48, 49]. Before the work of AMPS, the information

paradox could be addressed by invoking black hole complementarity (BHC) [50–
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54]. In a nutshell, BHC simply states that no observer ever witnesses a violation

of any physical law. Observers who remain outside the black hole have access to

H and R and can thus confirm the unitarity of black hole evaporation, while an

infalling observer has access to H and P and can verify the equivalence principle.

The key innovation of AMPS was to consider the causal patch of an observer

who falls into an old black hole. Such an observer would seem to have access to

all 3 ingredients necessary for the paradox. If that’s the case, then BHC is no

longer sufficient to resolve the information paradox. That explains why it is useful

to study the geometrical limitations of a causal patch, such as those proposed

in [55,56].

H

P

R

Figure 2.1: Penrose diagram of a Schwarzschild black hole depicting the near-horizon Hawking

mode H, its behind-the-horizon partner P , and the early radiation R.

In the rest of this chapter we therefore ask a simple geometric question: can any

single observer see the entire sphere behind the horizon? This seems a very relevant

question because the simplest and most robust version of the paradox requires that

the s-wave Hawking quantum H actually escapes from the black hole.

Consider a massless free Klein-Gordon field on top of a four dimensional static and

spherically symmetric black hole background, such as the one considered in (1.2).
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The wave equation for the field can be rewritten in terms of a Schrödinger-like

problem with effective potential

Vl(r) = f(r)

[
l(l + 1)

r2
+
f ′(r)
r

]
(2.2)

which is plotted in figure 2.2. We see that there is an angular momentum barrier

(present even for modes with l = 0), that effectively confines the Hawking radiation

in a thermal atmosphere between r = 2GM and r = 3GM , sometimes called ‘the

zone’. Due to this barrier, Hawking radiation that escapes to infinity occurs almost

exclusively in modes with low angular momentum l. That is why we focus on the

s-wave firewall, i.e. H should be spread over the entire sphere near the horizon.

This means that its entangled partner mode P is also spread over the entire sphere.

Therefore, an observer who cannot see the entire behind-the-horizon sphere will

have difficulties recognizing the entanglement between these two modes.

l=0

l=1

l=2

3 4 5 6
r

V(r)

Figure 2.2: Effective potential Vl(r) for a massless scalar field vs. a radial Schwarzschild coor-

dinate in units of GM .

We analyze this question for static black holes in all dimensions, in spacetimes

with positive, negative, and zero cosmological constant. For static black holes in

asymptotically Minkowski spacetime, an infalling observer cannot receive signals

from the entire sphere behind the horizon before hitting the singularity. The most

interesting case is 3+1 dimensions, where an observer can see nearly the entire

sphere, but it comes with an important caveat: there is a tradeoff between the

radial and angular extent of the causal patch, as we will describe in section 2.3.

In higher dimensions, less than half the sphere fits within one causal patch.

Adding a negative cosmological constant decreases the region that is causally ac-

cessible; for large black holes in asymptotically Anti-de Sitter spacetime, in 3+1

and higher dimensions, an infalling observer can only see a small fraction of the

horizon sphere, with physical size of order the AdS radius. This result is poten-

tially important for the AdS version of the firewall paradox [57, 58], which some
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consider to be the most robust against the concerns of computation time [59] and

back-reaction [60]. Since an infalling observer can only see sub-AdS scales near the

horizon, the subtle issue of reconstructing these modes from CFT data can play

an important role in the firewall paradox [42, 61, 62]. Interestingly, as we learned

in section 1.3.6, it is on these sub-AdS scales that reconstruction and locality is

not well understood.

Adding a positive cosmological constant increases the angular size of the causal

patch. However, we show that once the cosmological constant is large enough to

allow an observer to collect information from the entire sphere, the information

contained in the Hawking radiation cannot fit within the cosmological horizon. In

other words, as the cosmological constant is increased, an infalling observer begins

to be able to measure P but loses the ability to measure R.

These geometrical results motivate a possible resolution of the firewall paradox:

even for an old black hole, some degrees of freedom that are smeared over the

entire sphere in the near-horizon zone are entangled with the early radiation, while

localized modes in the near-horizon zone are entangled with their partners behind

the horizon. This would then avoid an observable conflict between the equivalence

principle and unitarity.

Some firewall-related cases and issues will not addressed in this thesis. BTZ black

holes is one of them: it seems than an infalling observer can collect a sufficient

amount of information. However, we saw that these black holes are quite different

from their higher-dimensional relatives. For example, they do not emit Hawking

radiation. Rotating black holes are another issue. In this case, there is no spherical

symmetry, so it is less obvious which sphere must be contained within the causal

patch in order to formulate the paradox. The last issue concerns black hole mining

[63]: inserting a device such as a string that collects radiation from deep in the

zone and transports it to the exterior. This could, in principle, give access to

modes with high l, which according to AMPS should also be entangled with the

early radiation. Since it is not clear how this process would work, and it will most

probably disrupt the entanglement structure, we will not consider this case any

further.

The rest of this chapter is organized as follows: in section 2.2 we discuss results for

various static black holes, except for Schwarzschild black holes in 3+1 dimensions,

which we treat separately in section 2.3. The reason for this separation is that

with the exception of the latter, it is clear that the geometry of the causal patch

alone offers an escape from the firewall paradox. In the case of (3+1)-dimensional

Schwarzschild black holes however, a more detailed analysis is required. Then, in

section 2.4, we discuss the consequences for entropy and information in the context

of the casual patch considerations in the D = 3 + 1 Schwarzschild background.
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2.2 Static Black Holes in Higher Dimensions

In this section, we consider arbitrary dimensional static black holes in spacetimes

with positive, negative, and zero cosmological constant. We postpone a detailed

discussion of the critical (3 + 1)-dimensional static black hole in flat space to the

next section, as the geometry of the causal patch, and its implications for the

firewall discussion, are more subtle in this case. In what follows, we’ve set the

gravitational constant G = 1.

2.2.1 Black Holes in Asymptotically Minkowski Spacetime

To address the question of how much of the sphere an infalling observer can see, we

need to calculate the maximum angle a light ray can travel between the horizon

and the singularity. For static black holes in D > 3 spacetime dimensions, the

metric is of the form (1.2):

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2 (2.3)

where

f(r) =

[
1−

(r−
r

)D−3
] [

1−
(r+

r

)D−3
]

(2.4)

with

r± =
1

2

(
rh ±

√
r2
h − 4r2

Q

)
. (2.5)

Here r+ and r− are the radii of the outer and inner horizons, respectively; the

parameter rQ is determined by the charge of the black hole. For uncharged black

holes, rQ = 0 and the above reduces to the Schwarzschild solution (r− → 0,

r+ → rh). For the Reissner-Nordstrom solution (Q2 > 0), the inner horizon

is believed to be unstable to perturbations, so the natural question is how far

light rays can travel between the outer horizon and inner horizon in the angular

direction.

Inside the outer horizon, the r and t coordinates switch roles, such that r is

temporal and t is spatial. Hence to move the maximum distance along the sphere,

the ray should not move in the t direction. Therefore the null ray that travels the

maximal angle satisfies

r2dθ2 = − dr2

f(r)
(2.6)
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and the angle is given by

∆θ =

∫ r+

r−

dr

r
√
−f(r)

=
π

D − 3
. (2.7)

Thus for higher-dimensional black holes, it is impossible for a single observer to

see the entire horizon, and hence no paradox can result. For the limiting case

D = 4, there is at most just enough time for the information to be collected at a

point (but no time for it to be processed), which we investigate in more detail in

section 2.3. If the same property holds for all black holes, it suggests a principle:

a freely falling observer cannot access the entire horizon sphere, and therefore

cannot measure modes of definite angular momentum.

2.2.2 Black Holes in de Sitter

In this section we will show that introducing a positive cosmological constant

increases the visible angle ∆θ, allowing the infalling observer to fit the entire

infalling sphere inside the causal diamond. However, at the same time the cosmo-

logical horizon moves closer to the black hole. Interestingly, we find that by the

time the cosmological constant is large enough to allow the infalling observer to

see the entire sphere, the cosmological horizon is too small to allow for the early

radiation to be collected.

3+1 dimensions

Introducing a positive cosmological constant will change the metric so that now

f(r) = 1− M

r
− r2

L2
dS

(2.8)

where M is the black hole mass and L2
dS ≡ 3/Λ. We want to know how this affects

the angle computed above: will putting black holes in de Sitter space allow the

infalling observer to see the entire horizon sphere?

Using again (2.7) for the angle, we get

∆θ =

∫ rh

0

dr

r
√
−1 + M

r + r2

b2

= LdS

∫ rh

0

dr
√
r
√

(r − r1)(r − r2)(r − r3)
(2.9)

where the ri are the 3 roots of the equation f(r) = 0. If we assume that M <

Mc ≡ 2LdS

3
√

3
, these three roots are the black hole horizon rh, the cosmological

horizon rc, and a third negative root r3 = −rh − rc. Defining a dimensionless
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variable u = r/rh and rearranging gives

∆θ = LdS

∫ 1

0

du√
u− u2

√
rc(rc + rh)− r2

h(u+ u2)
. (2.10)

Note that in the limit that the dS radius is much bigger than the black hole,

rc ≈ LdS and the second factor approaches 1, giving the flat space result.

We would like to approximate the formula for rh � rc. First we use that the

product of the 3 roots is
∏
i ri = −ML2

dS, so

rc(rc + rh) =
ML2

dS

rh
(2.11)

so that

∆θ =

∫ 1

0

du

√
u− u2

√
M
rh
− r2h

L2
dS

(u+ u2)

. (2.12)

Now, perturbatively solving (2.8) for rh and taking the limit where rh ≈M yields

M

rh
= 1− M2

L2
dS

+ . . . (2.13)

so that finally the integral of interest is

∆θ ≈
∫ 1

0

du

√
u− u2

√
1− r2h

L2
dS

(1 + u+ u2)

≈ π +
15π

16

r2
h

L2
dS

. (2.14)

A nice way to summarize this result is to write it in terms of the entropy of the

two horizons:

∆θ = π +
15π

16

SBH

SdS
. (2.15)

This shows that in principle an observer inside has access to the entire horizon

sphere in some location. Now suppose that we want to collect the information at

least a Planck distance from the singularity – then instead of integrating all the

way to r = 0 we should integrate to the location r = rp where∫ rP

0

dr√
−f(r)

≈
∫ rP

0

dr

√
r

M
=

2

3

r
3/2
P√
M
≡ lP (2.16)

so that rP =
(

3
2

)2/3
l
2/3
P M1/3, giving a lower cutoff on the u integral of uP =

rP /rh ≈
(

3
2

)2/3 ( lP
M

)2/3
, where we used that rh ≈ M . This corrects the angle by

about ∫ uP

0

du√
u

= 2
√
uP ≈ 121/3π1/6S

−1/6
BH . (2.17)
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So overall, the angular distance that light can travel behind the horizon of a

Schwarzschild black hole in de Sitter space before reaching regions of Planckian

curvature is

∆θ = π +
15π

16

SBH

SdS
− 121/3π1/6S

−1/6
BH (2.18)

and, at this level of analysis, we can see the entire horizon as long as

SdS < S
7/6
BH (2.19)

where we have neglected order one factors. However, the amount of information

that can be stored inside the horizon in any ordinary system is [64]

SR < S
3/4
dS . (2.20)

Since we need to be able to collect a number of bits comparable to the black

hole entropy, SR ∼ SBH. Therefore, the combined constraints on the size of the

cosmological horizon give

S
4/3
BH < SdS < S

7/6
BH . (2.21)

But since SdS is larger than one, S
4/3
BH > S

7/6
BH , so the combined inequality cannot

be satisfied.

Therefore, whenever the cosmological constant is large enough to allow the infalling

observer to see the partner modes behind the horizon, the AMPS paradox cannot

be constructed for another reason: the Hawking radiation will not fit inside the

cosmological horizon.

Higher dimensions

For dS black holes in higher dimensions, (2.20) becomes SR < S
(D−1)/D
dS . This

means that for black holes whose radiation can be collected within the causal

patch, the cosmological horizon rc is much larger than the black hole horizon rh.

In this limit, the higher-order corrections to the flat space result ∆θ = π
D−3 are

small, so they do not change the conclusion that the observer is missing an order

one fraction of the sphere. Therefore, as long as SR fits inside the cosmological

horizon, the infalling observer cannot see the entire horizon sphere.

2.2.3 Black holes in Anti-de Sitter

We will work in general D-dimensional spacetime, where D > 3. The metric

function for an AdS black hole is given by

f(r) = 1 +
r2

L2
AdS

− RD−3
S

rD−3
(2.22)
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where for AdS we have L2
AdS ≡ −3/Λ > 0. The relevant integral is

∆θ =

∫ rh

0

dr

r
√
−f(r)

. (2.23)

For a large black hole with horizon radius much larger than the AdS radius, it is

important to ask how large the part of the horizon is that fits inside one causal

patch: is it many AdS radii, or not? Taking the large black hole limit, we get

∆θ ≈
∫ rh

0

dr

r

√
RD−3
S

rD−3 − r2

L2
AdS

(2.24)

=

∫ rh

0

dr

R
D−3

2

S r
5−D

2

√
1− rD−1

RD−3
S L2

AdS

. (2.25)

In the L2
AdS � r2

h limit we can use that rD−1
h ≈ RD−3

S L2
AdS and change variables

to get the dependence on parameters outside the integral, giving

∆θ =
LAdS

rh

∫ 1

0

du
u
D−5

2√
1− uD−1

∼ LAdS

rh
(2.26)

where the integral can be evaluated exactly to give an O(1) number for D = 4

which is monotonically decreasing with increasing D. This shows that for a big

black hole in AdS, only a small fraction of the horizon fits inside the causal patch

of an infalling observer. The corresponding physical length along the horizon that

fits in one causal patch is

∆x ∼ LAdS. (2.27)

We can conclude that an observer falling into a large AdS-Schwarzschild black

hole1 in a D-dimensional spacetime has access to only a small part of the horizon,

with physical size of order one AdS radius.

This fact may have important consequences for the AdS/CFT version of the fire-

wall argument [58]. Existing techniques for mapping bulk to boundary fail when

applied to fields localized to less than one AdS radius in the near-horizon re-

gion [61]. Ultraviolet divergences in the CFT prevent the HKLL construction

from working on these scales [35]. It is very intriguing that the arguments for a

firewall in AdS black holes must focus on phenomena within a single AdS radius.

It is precisely in this regime that the AdS/CFT duality is not well-understood,

and there are obstacles to reconstructing bulk physics from the CFT.

1We saw that these black holes are thermodynamically stable, so they never get ‘old’. In this

case, different arguments for a firewall then the ones presented in section 2.1 can be made [57].
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2.3. Black Holes in 3+1 Dimensions

2.3 Black Holes in 3+1 Dimensions

As indicated by (2.7), for 3+1 dimensional black holes in asymptotically Minkowski

spacetime, an infalling observer can see the entire sphere just as he hits the sin-

gularity. This case calls for a more detailed analysis of the causal patch.

A full analysis requires the inclusion of both interior and exterior s-wave partners,

and thus we must identify a spacelike slice that crosses the horizon of the black

hole. We want to know about the physics of observers who fall in to the black hole

from infinity. The Gullstrand-Painlevé (GP, a.k.a. ‘rain-frame’) coordinates are

ideally suited for such purposes: the GP time variable T is the proper time along

the worldline of observers falling into the black hole, starting from rest at infinity.

The slices of constant T are orthogonal to such observers. Therefore, analyzing

the entanglement in this frame is directly relevant to the question of whether such

infalling observers detect any violation of the equivalence principle.

The GP coordinates are defined as follows [65]: beginning with the Schwarzschild

metric, define a new coordinate

T = t+ rh

2

√
r

rh
+ log

∣∣∣∣∣∣
√

r
rh
− 1√

r
rh

+ 1

∣∣∣∣∣∣
 (2.28)

called the Gullstrand-Painlevé time, with which the metric may be rewritten

ds2 = −fdT 2 + 2

√
rh
r

dTdr + dr2 + r2dΩ2 (2.29)

which has the appeal of being regular at r = rh. Another nice feature that is

apparent from the metric is that constant T -slices are spatially flat. See figure 2.3

for a depiction of the constant T slices.

We want to determine the causal structure, so we need the equation for null

geodesics in these coordinates. The conserved quantities for the GP metric are

E = fṪ −
√
rh
r
ṙ (2.30)

l = r2θ̇ (2.31)

where the dot denotes differentiation with respect to some affine parameter. By

using the second of these to replace θ̇ in the null geodesic equation ds2 = 0, and

using the resulting expression for Ṫ in (2.30), one obtains a third conservation

expression:

E2 = ṙ2 +
f

r2
l2 (2.32)
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Figure 2.3: Schwarzschild black hole in Gullstrand-Painlevé coordinates, with singularity at

r = 0 (red), showing constant r slices (green), and constant T slices (orange). The

vertical and horizontal axes are Kruskal-Szekeres time and radius, respectively, while

the Schwarzschild radius has been set to r = 1.

which we may use to eliminate the affine parameter and obtain an expression for

the angular distance traversed by an arbitrary null geodesic:

θ̇

ṙ
=

dθ

dr
=⇒ ∆θ =

∫ r′

0

±dr√
ε2r4 + r2f

(2.33)

where ε ≡ E
l , and the ± sign selects the polar direction in which the null ray

travels. Note the fundamental difference between this expression and (2.7): our

null rays are no longer constrained to move along constant Schwarzschild t-slices

in the black hole interior.

Similarly, we obtain an expression for the Gullstrand-Painlevé time difference cor-

responding to (2.33):

Ṫ

ṙ
=

dT

dr
=⇒ ∆T =

∫ r′

0

1

f

(√
rh
r
± εr√

ε2r2 − f

)
dr . (2.34)

Henceforth we will absorb the ± sign in our expressions for ∆T into ε by allowing

the latter to take negative values.

Now we would like to determine which part of the constant time surface fits within

a single causal patch. We fix a single observer, who determines the causal patch,

just above the singularity at Schwarzschild time t = 0, at the north pole of the

sphere, θ = 0. This observer will collect measurements transmitted to her from
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2.3. Black Holes in 3+1 Dimensions

an infalling distributed measuring device; say, a ring of probes spread around the

horizon. At some specified GP time T , the probes will perform a measurement of

the interior s-wave and transmit this information to the observer to be collected

for analysis. The intersection of the observer’s past light cone with this T -slice

determines the causal patch under consideration (see figure 2.4.)

The Schwarzschild time of the observer (t = 0) intersects this T -slice at r = r0.

We wish to know the geometry of this causal patch as a function of the choice of T

(equivalent to considering observers who fall in at different Schwarzschild times),

which requires numerically evaluating (2.33) along the T -slice.

-0.2 0.2 0.4 0.6 0.8 1.0
ρ

-0.2

0.2

0.4

0.6

0.8

1.0

τ

Figure 2.4: Past light-cone (bold blue) of an observer hovering just above the singularity at

(t, r) ≈ (0, 0). The interior and exterior radial null rays (left and right cone sides,

respectively) intersect the T -slice at rε→∞, rε→−∞, respectively. The geometry of

the patch is determined by evaluating ∆θ along the T -slice for the null rays between

these two radial extremes.

Performing this evaluation requires a specification of ε. For each point in the

causal patch, there intersects in principle an infinite number of possible null rays,

parameterized by ε, only one of which will have the correct trajectory to be col-

lected by the observer. Furthermore, this value of ε is dependent on the upper

limit of integration, i.e. on the r-position along the T -slice: ε = 0 corresponds to

l → ∞, for which (2.33) reduces to (2.7), while ε → ±∞ corresponds to radial

null rays with l = 0, whose intersections with the T -slice give the minimal (at

r = rε→∞) and maximal (r = rε→−∞) radii of the casual patch.

The distance between the observer and our chosen T -slice, denoted T∗, is given by

∆T = T∗ − T (r = 0, t = 0) = T∗. Thus we may numerically obtain the values of

ε for radii along T = T∗ by finding the root of T∗ −∆T (ε), where ∆T (ε) is given
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by (2.34), with ε as the free parameter. With these values of ε in hand, we may

proceed to the numerical evaluation of (2.33). Results are shown in figure 2.5.

As |∆T | is increased, the observer sees less of the interior and more of the exterior

of the black hole. This is consistent with an inspection of the geometry in figure

2.4: as T∗ becomes more and more negative, rε→∞ approaches the horizon radius,

while rε→−∞ increases without bound; conversely, as T∗ approaches t = 0, both

rε→∞ and rε→−∞ shrink, allowing the observer to see more of the black hole

interior at the cost of her external view.

In order to try to fit all the ingredients necessary for the firewall paradox inside

a single causal patch, we wish to examine a causal patch that contains both an

outgoing Hawking quantum and its interior partner mode. Hence for our purposes,

the regime of interest is when |∆T | becomes large, which allows the observer

to maximize both her internal and external angular visibility, and hence affords

the best chance of measuring both an outgoing s-wave and its entangled interior

partner. However, as pointed out in [55], the wavelength of the interior mode may

pose some difficulty to fitting it inside such a patch. In particular, because of the

aforementioned trade-off between angular and radial depth visibility, it may not

be possible to keep the wavelength of the interior mode above the Planck scale

while effecting sufficient angular resolution.

For |∆T | sufficiently large to close the exterior visibility region, the exclusion region

resembles a raindrop (see figure 2.6). In the limit of large |∆T |, rε→∞ approaches

rh, and the radial depth available to interior s-wave modes vanishes. Since the

energy is ∼ λ−1, this places a lower limit on the energy of the measurable modes,

namely E & (rh − rε→∞)−1.

Although an analytical expression for the droplet geometry is not available, it is

possible to obtain an approximation in the large |∆T | limit, where the droplet

begins to look like that in figure 2.6 for |∆T | = 3. By approximating (2.33) and

(2.34) in the small-ε limit, we find:

∆θ ≈ π − 2
√

1− r + ε2 (2.35)

∆T ≈ 2
√
r + 2 log

(
1−√r

ε+
√

1− r + ε2

)
+ 2 log

(
ε+

√
1− ε2

)
. (2.36)

Note that ∆T < 0 (consistent with an infalling observer, since we integrated

outwards from the singularity r = 0).

These results can be plotted against the numerical exclusion region (i.e. the droplet)

by solving (2.36) for ε, and substituting the result into (2.35) to obtain an expres-

38



2.3. Black Holes in 3+1 Dimensions

(a) |∆T | = 0.1 (b) |∆T | = 0.5

(c) |∆T | = 1 (d) |∆T | = 2

Figure 2.5: Causal patch geometry for several values of ∆T . The shaded region depicts the

portion of the spacelike T -slice (as r(θ)) visible to the observer. The concentric

rings show the horizon rh = 1 (yellow), rε→−∞ (green), r0 (red), and rε→∞ (blue).

(Note that the axes are rescaled between images). Increasing |∆T | corresponds to

selecting a T -slice closer to the past horizon in figure 2.4.
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(a) |∆T | = 2 (b) |∆T | = 3

Figure 2.6: Rain in the rain-frame: close-up of exclusion regions. The pointed end of the rain-

drop diminishes, and the droplet approaches a circular region with radius r → rh,

in the limit of large ∆T .

sion for ∆θ(r). We find:

∆θ ≈ π − 2

√
(−1 + r +

√
r sinh (∆T/2−√r) + cosh (∆T/2−√r))2

2− r − 2
√
r sinh (∆T/2−√r)− 2 cosh (∆T/2−√r) . (2.37)

Two example cases which serve to demonstrate the validity of this result are shown

in figure 2.7.

We may obtain a more aesthetically pleasing approximation to (2.36) by expanding

in the near-horizon region. We find:

π −∆θ ≈
√
h+

1− r√
h

(2.38)

where
√
h ≡ 2e∆T/2−1 (2.39)

our choice of the notation ‘
√
h’ will become clear shortly. The accuracy of (2.38)

is comparable to (2.37) near the horizon (and hence also on the tip for sufficiently

large |∆T |), but cannot be used along the rest of the droplet body.

At the horizon itself (r = 1), the second term in (2.38) vanishes and we obtain an

approximation for the angular width of the droplet tip at the Schwarzschild radius

as a function of GP time:

π −∆θ ≈
√
h = 2e∆T/2−1. (2.40)
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2.3. Black Holes in 3+1 Dimensions

(a) |∆T | = 3 (b) |∆T | = 5

Figure 2.7: r(θ) (thick black curve), determined by (2.37), plotted against the droplet for |∆T | =
3 (left) and 5 (right), showing improvement as |∆T | is increased. The concentric

circles are rh (red) and rε→∞ (blue). The tick marks in the left image are due to a

rendering glitch.

Two other droplet parameters are of interest: the height of the tip above the

horizon, and the depth of the antipodal point within. The former is defined by

∆θ = π, hence ε =
√
r − 1 and (2.36) becomes

∆T ≈ 2
√
r + 2 log

(
1−√r√
r − 1

)
(2.41)

where we have discarded the negligible third term. Defining the height of the tip

h ≡ r − 1 > 0, and expanding around h = 0, we find

∆T ≈ 2 +
h

2
− log(4) + log(h). (2.42)

We may then drop the term linear in h relative to the log, and solve:

h ≈ 4e∆T−2 (2.43)

cf. (2.39). To obtain a similar expression for the depth of the antipodal point

requires a formula valid in the limit ε→∞. One can show that

lim
ε→∞

∆T = 2
√
r + r + 2 log

(
1−√r

)
. (2.44)

Defining the depth d ≡ 1− r > 0 and expanding, we find:

∆T ≈ 3− 3

2
d− log(4) + 2 log(d). (2.45)
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As before, we drop the linear d term and solve:

d ≈ 2e(∆T−3)/2 = e−1/2
√
h. (2.46)

We summarize our results for the droplet parameters in figure 2.8.

width:
√
h

height: h

depth: e−1/2
√
h

h
e−1/2

√
h

√
h

Figure 2.8: Sketch of a heavily distorted droplet (blue) against the horizon rh = 1 (red) with

parameters of interest labelled. Note that distances are not to scale, although the

height is indeed less than the width for h� 1 (|∆T | large).

2.4 Entropy and Information

Having obtained a geometric picture of the infalling observer’s causal patch in the

case of Schwarzschild black holes in 3 + 1 dimensions, we now wish to ask what

this implies for the AMPS paradox. We appear to have a trade-off between the

energy scale of the measurable modes and the angular resolution of the horizon.

What can we then conclude about the entanglement of the partner modes?

For an infalling observer, the entanglement entropy across the horizon may be

thought of as being organized into localized Bell pairs, each of which contains a

single bit of entanglement entropy [66]. Consider the total number of bits within

the dropletm = θ2
missing/λ

2, out of a totalN = 1/λ2 bits distributed over the entire

circle. The wavelength of measurable quanta is limited by the distance between

the droplet and the horizon, which for partner modes must be equal inside and

outside the black hole. If we take λ ≤ h with ∆θmissing ∼
√
h, that implies

m =
(∆θmissing)

2

λ

(
1

λ

)
∼ h

λ

√
N =⇒ m &

√
N (2.47)
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since λ ≤ h. Thus we find that an observer focussing on modes with λ ≤ h is

always missing at least about
√
N out of N bits. Insofar as N is proportional to

λ−2, only high energy modes stand a chance of reducing the missing fraction to

the point where collection of sufficient information is possible. Another obvious

though important consequence is that, since one cannot speak of trans-Planckian

modes in the absence of a full theory of quantum gravity, m will never be zero:

even the most determined observer is missing at least one bit.

We may also compute the entropy associated with this missing area. Computing

the solid angle in the small h approximation, we find

Amissing ≈ π(
√
h)2r2

h =⇒ (2.48)

Smissing =
Amissing

4l2P
≈ πhr2

h

4l2P
(2.49)

Via (2.43), this can be written as

Smissing ≈
πr2
h

l2P
e∆T−2. (2.50)

Thus, an observer who wishes to measure a mode with wavelength of order λ ∼
h ≈ 4e∆T−2 does so at an entropy cost given by (2.50), which we may think of as

the entropy associated with the missing
√
N bits.

A natural question is precisely how much of the horizon area – equivalently, how

many bits m – the infalling observer can afford to lose before measurement of the

ingoing Hawking mode becomes impossible. Questions of reconstructing informa-

tion from some subset of bits are considered in quantum information theory in the

context of (k, n) threshold schemes [67], in which a quantum ‘secret’ is divided

into n shares such that any k ≤ n of those shares can be used to reconstruct the

original secret, but any k−1 or fewer cannot. The authors of [67,68] demonstrated

that the only general constraint on such threshold schemes is due to monogamy:

one must have n < 2k else the quantum no-cloning theorem is violated.

Consider, as above, an s-wave immediately behind the horizon with an outgoing

partner mode directly outside, with the entanglement information distributed in N

localized Bell pairs. Further suppose that the information necessary to reconstruct

the entangled state is encoded in a (k, n) threshold scheme (n = N). The question

at hand is then: what is the value of k needed to reconstruct the state?

If reconstruction requires the full N bits (k = n = N), then our results imply that

doing so is impossible, since one reaches the Planck scale in wavelength before the

missing number of bits m → 0. Conversely, if the information can be retrieved

from some sufficiently large fraction N−m
N , then the infalling observer may still

43



2. Firewalls

be able to reconstruct high energy modes. In the absence of a precise statement

about how black holes encode their secrets, the general bounds k ≤ n < 2k are

not sufficiently strict to rule-out the possibility that an infalling observer could

reconstruct the state despite missing a large number of bits.

However, this still involves a trade-off between the energy scale of the measurable

modes and the angular occlusion. It may be that one can only have sufficient

angular resolution for modes whose energy exceeds some critical value, λ−1
crit, in

which case the O(1) corrections to modes as was claimed by AMPS, would only be

detectable for very high-energy modes indeed. More work is needed to determine

precisely how small the fraction m/N need be.
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3
Localizing Precursors in

AdS/CFT

This chapter is based on the paper [2].

In this chapter we will investigate a puzzling aspect of the AdS/CFT correspon-

dence: a single bulk operator can be mapped to multiple different boundary oper-

ators, or precursors. By improving upon a recent model [69], we will demonstrate

explicitly how this ambiguity arises in a simple model of the field theory. In

particular, we will utilize the freedom in the smearing function used in the bulk-

boundary mapping, and explicitly show how this freedom can be used to localize

the precursor in different spatial regions. Later, in chapter 4, we will explain how

this freedom connects with boundary gauge invariance. We will also show how the

ambiguity can be understood in terms of quantum error correction, by appealing

to the entanglement present in the CFT. The concordance of these two approaches

suggests that gauge invariance and entanglement in the boundary field theory are

intimately connected to the reconstruction of local operators in the dual spacetime.

3.1 Introduction

In AdS/CFT, much interest has focused on the emergence of the bulk spacetime

from boundary CFT data, but a complete understanding of bulk locality remains

elusive. We saw in section 1.3.5 that the HKLL construction allows us to write

the boundary dual of a local bulk field Φ located a finite distance z away from the

boundary as an integral of the corresponding local CFT operator O over space

and time:

Φ(t, x, z) =

∫
dx′dt′K (t, x, z|x′, t′)O (x′, t′) +O(1/N) (3.1)

where the kernel K is called the smearing function. In the cases where K exists

and can be computed, its support on the boundary is a measure for what subregion
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of the boundary stores the information of a given bulk point.

A perplexing feature of this procedure is that there is a freedom in choosing the

smearing function K, allowing for a family of different CFT operators correspond-

ing to a given bulk operator. As we will explain later, this can be understood

because the dual operator does not have support on a complete set of Fourier

modes. These different CFT operators, when evolved back to one time, can even

have support in different spatial regions of the CFT (see figure 3.1). We refer to

these CFT operators as ‘precursors’, because in general they contain information

about bulk events before signals from these events have had time to reach the

boundary [70–72].

A

X

B

Figure 3.1: Global AdS3, showing the light-cone for a bulk point x, which defines a spacelike sep-

arated region on the boundary (shaded red). The corresponding non-local boundary

operator is defined à la (3.1) as an integral over this region. The local CFT operators

can be time-evolved to a single Cauchy slice. This is illustrated schematically for

points A and B, where we’ve indicated the null lines on the boundary. In our model,

the boundary operators factorize along the light-cone directions, and are trivially

evolved to bilocals at the t = 0 Cauchy slice (blue).

Almheiri, Dong, and Harlow [73] pointed out that these different CFT operators

cannot be really equal as operators. To see this, consider a precursor corresponding

to a bulk point in the middle of AdS. Bulk locality requires this operator to

commute with all local operators in the CFT on a fixed time slice containing the

bulk point. But an operator which commutes with all local operators (at a fixed

time) must be proportional to the identity. This follows from Schur’s lemma for

QFT on a lattice, and in the continuum it is known as the time-slice axiom [74].
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B

(a) The field Φ(B) can be re-

constructed on the boundary of

the shaded wedge, since it is con-

tained in it.

B

(b) The field Φ(B) can not be re-

constructed on the boundary of

any of the three shaded wedges,

but it can be reconstructed on the

union of any two out of three.

Figure 3.2: Time slice of global AdS with a bulk point B, and boundary regions with their

corresponding causal wedges (blue, shaded).

It is believed to be a fundamental property of physically relevant quantum field

theories [75]. From this they concluded that bulk locality can not be respected at

the level of the algebra of operators.

Another precursor puzzle is what we will call in this thesis the precursor ‘ambi-

guity’: a local bulk field can correspond with many different precursors. To see

this, it is sufficient to note that a we can use the HKLL construction (in empty

AdS) of a local bulk field in a particular region of the boundary as long as it is

contained in the corresponding Rindler wedge. Have a look at figure 3.2(a). Since

there are many different Rindler wedges containing the same bulk field, we run

in a problem. A more interesting example is depicted in figure 3.2(b), where the

boundary is divided in three regions. We see that none of the three regions can

reconstruct the bulk field, but any two out of three regions can. This property is

very reminiscent of (quantum) error correction.

To resolve the aforementioned conundrums, the authors proposed that the dif-

ferent CFT operators (corresponding with a local bulk field) are only equivalent

when acting on a certain subclass of states (the ‘code subspace’), casting the bulk

reconstruction problem in the language of quantum error correction (QEC) and

quantum secret sharing [67, 68], in which increasing radial depth into the bulk is

interpreted as improved resilience of the boundary theory against local quantum

erasures. This idea has been beautifully implemented in several tensor network

models [76–78].
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Subsequently, Mintun, Polchinski, and Rosenhaus (MPR) [69] argued that the

structure of QEC emerges naturally when one considers the gauge invariance of

the boundary field theory. MPR reconciles the representation of a local bulk

operator by a number of different CFT operators by pointing out that an operator

can be modified by a ‘pure-gauge’ contribution that changes its support on the

boundary without changing its action on physical states. This suggests that the

emergence of local operators in the dual spacetime may be deeply connected with

gauge symmetries in the CFT. We will further explore this interesting connection

in chapter 4, where we will derive and generalize the results of MPR using the

BRST formalism.

In this chapter, we will clarify the relationship between quantum error correction,

gauge freedom, and the localization of precursors, in the context of an explicit

holographic toy model in AdS3/CFT2. We will first point out a shortcoming of

the MPR model: the particular boundary conditions specified by MPR lead to a

theory with no bulk dynamics. This difficulty is easily fixed by choosing different

boundary conditions, and we revise their model of the CFT accordingly in section

3.2. We show that with these revisions, the model provides a nice, tractable model

for understanding the CFT encoding of bulk information, including such issues as

the role of quantum error correction.

We show in section 3.3 that the known ambiguity in the choice of smearing function

arises from the gauge freedom in the N →∞ limit, and explicitly show how to use

this freedom to localize the precursor in different spatial regions. We begin with

a standard representation of a local bulk operator spread over the entire CFT,

as illustrated in figure 3.1, and show that the gauge freedom allows us to localize

the precursor within a single boundary Rindler wedge. This result agrees with

the claims of MPR, but now in a model with genuine bulk dynamics. We find

that this localization procedure works when the bulk field is located inside the

corresponding entanglement wedge1, consistent with general expectations for bulk

reconstruction. This result is independent of the weakly coupled CFT model, and

relies only on the freedom in the choice of smearing function.

In section 3.4, we take a quantum error correction approach to localizing the

precursor in a boundary region A: we use the entanglement of the ground state

to map operators acting on the complement Ā into operators acting on A. We

point out how this procedure can fail, and show that it is successful when the

above condition is satisfied: the bulk point must lie in the entanglement wedge

corresponding to the boundary region under consideration.

1For most of this work, the entanglement and causal wedges agree, and we use the terms

interchangeably. We will discuss the crucial difference between them in chapter 6.
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3.2. Toy Model of the AdS/CFT Correspondence

3.2 Toy Model of the AdS/CFT Correspondence

In this section, we describe the MPR model [69] along with our improvements. In

the former, the CFT consists of N free massless scalars φi in d = 1+1 dimensions,

where i is a global O(N) index. The global O(N) symmetry is not gauged, but

we take it as a simple model for the gauge invariance of the full theory, so ‘gauge

invariant’ operators are defined to be operators that are invariant under global

O(N) transformations. MPR considers a massless bulk field Φ in AdS3, and from

the two possible consistent quantization schemes we discussed in section 1.3.4,

∆± =
d

2
±
√
d

2
+m2 (3.2)

they choose boundary conditions such that the bulk field is dual to a ∆− = 0

operator, which they take to be φiφ
i.

The choice ∆ = 0 is unfortunate for a number of related reasons. From the

CFT point of view, ∆ = 0 saturates the unitarity bound. In any dimension, an

operator O saturating the unitarity bound must obey the boundary equation of

motion �O = 0, meaning that it acts like a free field on the boundary. From the

bulk point of view, when we impose the boundary condition Φ ∝ z∆− as z → 0,

with ∆− = 0, there are no solutions to the bulk equation of motion except for the

special modes satisfying the boundary wave equation. Therefore, this field does not

have true bulk dynamics and is not a good setting to discuss bulk reconstruction;

see [79] for a more detailed discussion of the ∆ = 0 limit.

This problem is easily fixed: we simply choose the other boundary condition Φ→
z2 (∆+ = 2), and take the boundary operator dual to the bulk field to be

O = ∂µφ
i∂µφi (3.3)

where the φi are free massless scalar fields as in the MPR model. Strictly speaking,

this is also a poor model for perturbative bulk physics, since the CFT is weakly

coupled. However, at the level of two-point functions it suffices to capture the

salient features. This improved model is almost identical to [72], which in turn

was closely related to [70].

In the following we suppress the O(N) index i and use light-cone coordinates

x± = t± x in the boundary, so we can write simply

O = ∂+φ∂−φ . (3.4)

We expand the CFT field φ in terms of creation and annihilation operators as

φ(x+, x−) =

∫
dν+

ν+
αν+e

−iν+x+ +

∫
dν−
ν−

α̃ν−e
−iν−x− (3.5)
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3. Localizing Precursors in AdS/CFT

where α and α̃ correspond to the right and left movers, respectively. This then

yields a simple formula for the primary operator O,

O(x+, x−) = −
∫

dν+dν−e
−i(ν+x++ν−x−)αν+ α̃ν− . (3.6)

In the large N limit, as is explained in [69] and we will derive in chapter 4, the

global O(N) gauge invariance includes the freedom to add LijAij to any operator

within correlation functions, where Lij is the generator of global O(N) transfor-

mations and Aij is any operator in the adjoint. This translates to the freedom of

adding αν+ α̃ν− as long as ν+ν− < 0. One can check it annihilates the vacuum in

both directions, so it can be freely added within two-point functions.

3.3 Localizing the Precursor via Gauge Freedom

The aforementioned freedom appears distinct from the freedom in the choice of

smearing function, but we will show that they are in fact identical. We will then

show explicitly how this freedom can be used to localize the precursor within

a given boundary region, in an effort to make more precise the role that gauge

invariance plays in the localization and non-uniqueness of boundary data.

The precursor for a local bulk field Φ is defined with support on the entire boundary

by (3.1), in the N →∞ limit,

Φ(t, x, z) =

∫
dx′dt′K (t, x, z|x′, t′)O (x′, t′) . (3.7)

The smearing function K in Poincaré-AdS3 for a field with conformal dimension

∆ = 2 is given by [31]

K(t, x, z|t′, x′) = log

( |z2 + (x− x′)2 − (t− t′)2|
2z

)
≡ K. (3.8)

The ambiguity in the smearing function consists of the freedom to add a function

δK which in Fourier space satisfies ν+ν− < 0. This can be understood from the

fact that satsifying the bulk wave equation, �Φ = 0, in global AdS implies that

modes with frequency ω and boundary momentum κ satisfying ω2 < κ2 (or in

light-cone coordinates, ν+ν− < 0) are disallowed. Since the dual operator has no

support on the space of these modes:
∫

d2x O δK = 0.

Focusing on a particular Fourier mode, the change in the smearing function is

δK(x+, x−) = ei(ν+x++ν−x−) . (3.9)
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3.3. Localizing the Precursor via Gauge Freedom

The corresponding change in the precursor is therefore

δΦ =

∫
dx+dx−e

i(ν+x++ν−x−)O . (3.10)

Plugging in the expansion for the field in terms of creation and annihilation oper-

ators (3.6) then gives

δΦ = −
∫

dx+dx−e
i(ν+x++ν−x−)

∫
dν+

′dν−
′e−i(ν+

′x++ν−
′x−)αν+′ α̃ν−′ . (3.11)

The spatial integrals can be performed, yielding

δΦ = −αν+ α̃ν− . (3.12)

This demonstrates that the freedom identified in MPR corresponds precisely to

the freedom in the choice of smearing function. In this narrow sense, we will refer

to the function δK satisfying ν+ν− < 0 as ‘pure gauge’ henceforth.

We are now prepared to demonstrate that this freedom in the smearing function

can be used to localize the precursor to within a single boundary Rindler wedge.

In Poincaré light cone coordinates, the metric for Rindler-AdS3 is

ds2 =
−dx+dx− + dz2

z2
(3.13)

which naturally leads to a bulk Rindler horizon at x+ = x− = 0. This horizon

defines the bulk Rindler or causal wedge, and our aim is to localize the precursor

for a given field in this wedge within the corresponding boundary region. This

requires finding the most general pure-gauge function δK that we can add such

that the new smearing function, K̂ = K+δK, only has support within that region.

To proceed, we need to know how the pure-gauge mode functions (that is, the

Poincaré modes with ν+ν− < 0) look in the various Rindler wedges. This can be

done by studying the analyticity of the mode functions in the complex plane.

It is convenient to work in terms of the Rindler modes2

x
iω+

+ x
iω−
− (3.14)

where x± are the Poincaré light-cone coordinates, as above. The Rindler plane is

sketched in figure 3.3. The above Rindler modes (3.14) are then defined as-is in

the northern quadrant, where x+ > 0, x− > 0. We would then like to know what

this looks like in the remaining three quadrants. However, getting there requires

navigating the branch cuts at x+ = 0 and/or x− = 0.

2In fact, working in terms of the Rindler modes is more than a convenience, it is a necessity,

because the resulting smearing function can only be written in Fourier space; it cannot be

transformed to position space.
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x+x−

x
iω+

+ x
iω−
−

|x+|iω+x
iω−
− e±πω+

|x+|iω+ |x−|iω−e±π(ω+−ω−)

x
iω+

+ |x−|iω−e∓πω−

N

S

EW

Figure 3.3: Rindler plane in light cone coordinates, indicating the phase changes in the mode

functions (3.14) when crossing the branch cuts at x± = 0. The sign choice is

arbitrary, but must be consistent across all four quadrants in order to obtain a

pure-gauge Poincaré mode. We refer to these quadrants throughout as the northern

(N), southern (S), eastern (E), and western (W) wedges.

Consider moving into the western wedge. We have a choice of contour upon

crossing the branch cut at x+ = 0. Suppose we take the function to be analytic

in the lower-half complex x+ plane. Then the transformation from the northern

wedge (x+ > 0) across x+ = 0 into the western wedge (x+ < 0), is x+ → |x+|e−iπ,

where the minus sign in the exponential corresponds to our choice of contour. The

Rindler mode changes as

x
iω+

+ x
iω−
− → |x+|iω+x

iω−
− eπω+ . (3.15)

Since we chose x+ to be analytic in the lower half-plane, our mode is a superpo-

sition of positive frequency Poincaré modes ν+ > 0.3 Had we made the opposite

choice for the analyticity of the function, we would take the opposite sign of ν+.

Hence the general transformation across the x+ = 0 branch cut into the western

wedge is

x
iω+

+ x
iω−
− → |x+|iω+x

iω−
− e±πω+ (N→W) (3.16)

where the upper sign is for ν+ > 0, lower for ν+ < 0. From this relation one

immediately writes down the transformation from the northern quadrant across

x− = 0 into the east (x− < 0):

x
iω+

+ x
iω−
− → x

iω+

+ |x−|iω−e∓πω− (N→ E) (3.17)

3Any function f(x) built out of positive frequency Fourier modes (that is e−iνx with ν > 0)

must be analytic in the lower half of the complex x-plane, and vice versa.
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where the upper sign is for ν− < 0, lower for ν− > 0. Similarly, the transformation

of the precursor into the southern quadrant, with two branch crossings, is

x
iω+

+ x
iω−
− → |x+|iω+ |x−|iω−e±πω+∓πω− (N→ S) . (3.18)

The crucial fact is that the above, with a consistent sign choice (upper or lower),

corresponds to a pure-gauge function in Poincaré, since we have ν+ν− < 0 by

construction. The nice feature of this method is that we’re guaranteed this without

having to explicitly work with Poincaré modes, where the meaning of ν+ν− < 0

in the various quadrants is not readily visualized.

From this analyticity analysis, we can immediately write down the general form

of the pure-gauge function δK:

δK =

∫
dω+dω−

(
cω+ω−f

upper
ω+ω− + dω+ω−f

lower
ω+ω−

)
(3.19)

with, from (3.16), (3.17), and (3.18),

fω+ω− = x
iω+

+ x
iω−
− Θ(x+)Θ(x−) + |x+|iω+x

iω−
− e±πω+Θ(−x+)Θ(x−)

+ x
iω+

+ |x−|iω−e∓πω−Θ(x+)Θ(−x−) (3.20)

+ |x+|iω+ |x−|iω−e±πω+∓πω−Θ(−x+)Θ(−x−) .

The labels ‘upper and ‘lower’ on the functions f in (3.19) indicate choosing the

upper or lower signs in the exponentials in (3.20), and the coefficients c and d are

undetermined functions of the momenta.

We may extract from this general expression the pure-gauge function in momentum

space, δK̃, in each of the four quadrants:

δK̃N = c+ d

δK̃W = eπω+c+ e−πω+d

δK̃S = eπ(ω+−ω−)c+ e−π(ω+−ω−)d

δK̃E = e−πω−c+ eπω−d

(3.21)

where we have suppressed the ω± subscripts on c and d to minimize clutter.

In order to localize support for the precursor within a single Rindler wedge, we

must choose the coefficients c and d such that ˆ̃K = K̃ + δK̃ is zero in the other

three regions. Let us attempt to localize the precursor in the east, so that only
ˆ̃KE 6= 0. Then the coefficients must be chosen such that

δK̃N = −K̃N δK̃W = −K̃W and δK̃S = −K̃S (3.22)
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where K̃X with X ∈ {E,N,W, S} is the Fourier transform of the smearing function

(3.8) in the specified wedge,

K̃X (ω+, ω−) ≡
∫∫

X

dx+dx−K(0, a, z|x+, x−)|x+|−iω+−1|x−|−iω−−1 . (3.23)

We have chosen the bulk field to be located at time t = 0, radial coordinate z, and

a distance a into the eastern wedge of the bulk.

At a glance, the system (3.22) appears overdetermined, as we have three equations

and only two unknown functions of the momenta, c and d. However, we shall find

that the system does indeed have a consistent solution, provided that the bulk

point lies within the bulk extension (the causal or entanglement wedge) of the

boundary Rindler wedge in which we attempt to localize the smearing function,

in this case the east. We shall return to this requirement below.

In the course of solving this system, we rely on the following relations between the

Fourier transforms of the smearing function, which we prove in appendix 3.A:

K̃N = cosh(πω+)K̃W

K̃S = cosh(πω−)K̃W (3.24)

K̃E = cosh (π(ω+ − ω−)) K̃W

Note that the singularities in the smearing function (3.8), which occur when the

argument of the logarithm is zero, do not extend into the western quadrant. This is

a consequence of the fact that we chose the bulk point to be in the eastern Rindler

wedge. The benefit of these relations is that they allow us to rewrite everything

in terms of the Fourier transform K̃W , which is well-defined.

With the relations (3.24) in hand, one can show that the system (3.22) is solved

by

c = −1

2
e−πω+K̃W

d = −1

2
eπω+K̃W

(3.25)

and therefore that the only non-zero portion of the momentum space smearing

function, ˆ̃KE , is

ˆ̃KE ≡ K̃E + δK̃E = cosh (π(ω+ − ω−)) K̃W +
(
e−πω−c+ eπω−d

)
= −2 sinh(πω+) sinh(πω−)K̃W .

(3.26)

It then remains to obtain an explicit expression for K̃W , which we can do by

computing the Fourier transform of (3.8) in the western Rindler wedge. The
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integration is performed in appendix 3.B. Substituting the result into (3.26), we

have

ˆ̃KE = −2π2
(z
a

)2

a−i(ω++ω−)
2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
(3.27)

which is consistent with results found in the literature [32]. We therefore find that

the smeared bulk operator (3.7) at t = 0, x = a > 0, and radial distance z, with

support localized entirely within the eastern Rindler wedge, is given by

Φ(0, a, z) =− 2π2
(z
a

)2
∫

dω+dω−a
−i(ω++ω−)

×2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
ÕEω+,ω−

(3.28)

where ÕEω+,ω− is the momentum-space boundary operator, with support in the

eastern wedge. We will write this explicitly in Rindler modes (cf. the Poincaré

expression (3.6)) in the next section, but forgo unnecessary details here.

The action of the precursor (3.28) is UV-sensitive, and only well-defined when

acting on an appropriate subclass of states. As we show explicitly in appendix

3.C, its vacuum two-point function reproduces the correct bulk correlator in the

near-horizon limit.

As mentioned previously, a condition on the success of our procedure is that the

bulk point be located in the entanglement wedge of the boundary region in which

we attempt to localize the precursor. A natural question to ask is whether the

gauge freedom in the smearing function can still be used to reconstruct a bulk

point located outside the entanglement wedge. As we placed our bulk point in the

eastern wedge, this would amount to trying to set the smearing function to zero

in the eastern quadrant instead of the western quadrant as we did above. The set

of conditions on the pure-gauge function δK̃ is then

δK̃N = −K̃N δK̃E = −K̃E and δK̃S = −K̃S . (3.29)

One can simply check that the overdetermined system of equations (3.21), (3.24)

and (3.29) is now inconsistent: there no longer exists a solution for c and d. Hence

we conclude that our model is consistent with the current understanding of bulk

reconstruction, namely that it succeeds when the bulk point is inside – and fails

when the point is outside – the causal/entanglement wedge. We shall comment

more on this in the outlook, and elaborate on the distinction between the two

types of bulk wedges, but first we turn to an alternative approach of localizing the

bulk field, appealing instead to the entanglement structure in the CFT.
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3.4 Localizing the Precursor via Entanglement

In this section we will present an alternative method for localizing the precursor.

As before, our starting point is the smeared operator in Poincaré coordinates (3.7),

which has non-zero support on the entire boundary and can be time-evolved to a

bilocal at t = 0. Instead of using the gauge freedom to manipulate the support of

the smearing function K however, we will now use entanglement in the field theory

to map all bilocal operators into the eastern Rindler wedge. We will explicitly show

that this gives the same result as that obtained in the previous section, thereby

establishing that the freedom in the smearing function from gauge invariance can

be equivalently understood from an entanglement perspective.

In (3.5), we expanded the CFT field φ in terms of Poincaré modes. We may

equivalently write the mode expansion in terms of Rindler creation (ω < 0) and

annihilation (ω > 0) operators βω± with left- and right-moving4 Rindler momenta

ω±. These satisfy

[βω± , βω′± ] = ω±δ(ω± + ω′±) and β†ω± = β−ω± . (3.30)

In light-cone coordinates x± ≡ t ± x, the Rindler expansion of the field in the

eastern and western wedges (cf. figure 3.3) is, respectively,

φE(t, x) =

∫ +∞

−∞

dω+

ω+
βEω+
|x+|−iω+ +

∫ +∞

−∞

dω−
ω−

βEω− |x−|iω− (3.31)

φW (t, x) =

∫ +∞

−∞

dω+

ω+
βWω+
|x+|iω+ +

∫ +∞

−∞

dω−
ω−

βWω− |x−|−iω− (3.32)

where the Rindler mode functions are chosen such that they are positive frequency

with respect to Rindler time, which we take to run upwards in both the eastern

and western wedge. The light cone derivatives are

∂+φ
E = −i

∫ +∞

−∞
dω+β

E
ω+
|x+|−iω+−1

∂−φ
E = i

∫ +∞

−∞
dω−β

E
ω− |x−|iω−−1

(3.33)

∂+φ
W = i

∫ +∞

−∞
dω+β

W
ω+
|x+|iω+−1

∂−φ
W = −i

∫ +∞

−∞
dω−β

W
ω− |x−|−iω−−1

(3.34)

4In this section, to avoid clutter, we denote right movers by βω+ and left movers by βω− ,

with no tilde on the left movers. Left and right movers commute.
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and are manifestly purely left/right-moving. As a consequence, their time evolu-

tion becomes trivial:
∂+φ(t, x) = ∂+φ(0, x+ t)

∂−φ(t, x) = ∂−φ(0, x− t) .
(3.35)

This was to be expected, since φ satisfies the 1+1-dimensional wave equation �φ =

0. This factorization along the null directions allows us to write the precursor, for

a bulk operator shifted a distance a into the east, as a bilocal at t = 0:

Φ(t = 0, x = a > 0, z) =

∫
dx+dx−K(0, a, z|x+, x−)

× ∂+φ(0, x+)∂−φ(0,−x−)

(3.36)

where the smearing function (3.8), in light-cone coordinates, is

K(0, a, z|x+, x−) = log

( |z2 − (x+ − a)(x− + a)|
2z

)
≡ K . (3.37)

Using (3.33) and (3.34), we can explicitly decompose the integral (3.36) over all

four wedges:

Φ(0, a, z) =−
∫∫

N

dx+dx−

∫∫
dω+dω−K|x+|−iω+−1|x−|−iω−−1βEω+

βWω−

−
∫∫

S

dx+dx−

∫∫
dω+dω−K|x+|iω+−1|x−|iω−−1βEω−β

W
ω+

+

∫∫
E

dx+dx−

∫∫
dω+dω−K|x+|−iω+−1|x−|iω−−1βEω−β

E
ω+

+

∫∫
W

dx+dx−

∫∫
dω+dω−K|x+|iω+−1|x−|−iω−−1βWω−β

W
ω+

.

(3.38)

We may write this more succinctly in terms of the Fourier transform (3.23), paying

careful attention to the signs of the momenta:

Φ(0, a, z) =

∫∫
dω+dω−

(
−K̃N (ω+, ω−)βEω+

βWω− − K̃S (−ω+,−ω−)βWω+
βEω−

+K̃E (ω+,−ω−)βEω+
βEω− + K̃W (−ω+, ω−)βWω+

βWω−

)
. (3.39)

3.4.1 Mapping the Precursor into the Eastern Rindler Wedge

From the expression (3.39), one sees that upon time-evolving the boundary oper-

ator O = ∂+φ∂−φ to the t = 0 Cauchy slice, one or both parts of the resulting

bilocal may have support in the western wedge (indicated by βW ). We now demon-

strate that the entanglement present in the Minkowski vacuum can be used to map

these parts into the east. The set-up is illustrated schematically in figure 3.4.
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x

A

B

C

Figure 3.4: Left: t = 0 Cauchy slice, with a bulk point x displaced slightly into the eastern

Rindler wedge (shaded). Right: time-evolution of local boundary operators to bilo-

cals at t = 0. The dashed axes show the light-cone of the bulk point; the future and

past singularities in the smearing function are indicated by the dotted lines. Point

A falls entirely within the eastern wedge, while one leg of B, and both legs of C,

must be mapped into the east using using the entanglement of the Rindler vacuum.

Note that with the bulk point as shown, at most one singular leg must be mapped,

but this potential divergence is exactly cancelled by a decaying exponential arising

from (3.40), so the resulting expression remains well-defined.

The key observation is that acting on the Minkowski vacuum with a Rindler op-

erator, we have

βWω± |0〉 = e−πω±βE−ω± |0〉 (3.40)

which one can see by writing |0〉 ∝⊗ω

∑
n e
−πωn|n〉W ⊗ |n〉E . We shall use this

fact to write (3.39) entirely in terms of operators in the eastern wedge, βE . For

this mapping between western and eastern operators to succeed, we require only

that both their left- and right-action on the vacuum state agree,

Φ|0〉 = OE |0〉 and 〈0|Φ = 〈0|OE (3.41)

which is enough to ensure that 2-pt correlators are preserved. Our strategy is to

satisfy the left equation by construction, and then check whether the right equation

is also satisfied.

Performing this mapping allows us to write (3.39) as

Φ(0, a, z)|0〉 =

∫∫
dω+dω−

(
−K̃N (ω+, ω−)βEω+

βE−ω−e
−πω−

−K̃S (−ω+,−ω−)βE−ω+
βEω−e

−πω+

+K̃E (ω+,−ω−)βEω+
βEω−

+K̃W (−ω+, ω−)βE−ω+
βE−ω−e

−π(ω++ω−)
)
|0〉.

(3.42)
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Substituting the relations (3.24) gives

Φ(0, a, z)|0〉 =

∫∫
dω+dω−

(
− cosh(πω+)e−πω− − cosh(πω−)eπω+

+ cosh(π(ω+ − ω−)) + eπ(ω+−ω−)
)
K̃W (ω+, ω−)βEω+

βE−ω− |0〉
(3.43)

which can be simplified to

Φ(0, a, z)|0〉 = −2

∫∫
dω+dω− sinh(πω+) sinh(πω−)K̃W (ω+, ω−)βEω+

βE−ω− |0〉.

Plugging in in the explicit form of K̃W , (3.68), we find

Φ|0〉 =− 2π2
(z
a

)2
∫

dω+dω−a
−i(ω++ω−)

2F1

(
1 + iω+, 1 + iω−, 2,−

z2

a2

)
βEω+

βE−ω− |0〉 .
(3.44)

which is precisely (3.28), with ÕEω+,ω− = βEω+
βE−ω− . One can check that this

operator Φ satisfies the condition (3.41). This demonstrates that the entanglement

structure of Minkowski space can be used to localize the precursor entirely within

a single Rindler wedge, thus providing an alternative realization of the approach

based on gauge freedom discussed above.

3.4.2 Mapping the Precursor in the ‘Wrong’ Rindler Wedge

To further explore this link between precursors and entanglement, let us now ask

what happens if we instead attempt to map the bilocal operator into the western

wedge. Since our bulk point is located in the east, we would naively expect this to

fail, as this would correspond to reconstructing the bulk operator located outside

the causal/entanglement wedge (cf. the end of section 3.3). Hence we refer to this

as mapping the precursor into the wrong wedge.

The set-up is illustrated in figure 3.5. Following the same procedure as in the

previous subsection, one obtains

Φ(0, a, z)|0〉 = −2

∫
dω+dω−e

π(ω−−ω+) sinh(πω+) sinh(πω−)

K̃W (ω+, ω−)βW−ω+
βWω− |0〉

∝
∫

dω+dω−a
−i(ω−+ω+)eπ(ω−−ω+)

2F1

(
1 + iω+, 1 + iω−, 2,−

z2

x2

)
βW−ω+

βWω− |0〉 .

(3.45)
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x

A

B

C

Figure 3.5: Left: t = 0 Cauchy slice, with a bulk point x displaced slightly into east as before,

but reconstruction attempted in the western (wrong) wedge Rindler wedge (shaded).

Right: time-evolution of local boundary operators to bilocals at t = 0. Note that

while A and B can be mapped without difficulty, as discussed in the previous section,

there are now points like C with two divergent legs, both of which must be mapped

into the western wedge. This is one more exponential in momentum than we are

capable of taming, and thus localization of the associated bulk point fails.

But upon conjugating (3.45), and taking ω± → −ω± under the integral, we find

Φ†|0〉 ∝
∫

dω+dω−a
−i(ω−+ω+)e−π(ω−−ω+)

2F1(1 + iω+, 1 + iω−, 2,−
z2

x2
)βW−ω+

βWω− |0〉
(3.46)

in clear violation of the condition (3.41). Thus our entanglement mapping condi-

tion fails when the bulk operator lies in the complement of the selected boundary

region.

The importance of this condition was recently emphasized in [80], who phrased it

as the requirement of hermiticity. In particular, they proved that in order to satisfy

(3.41), the field Φ must lie within the bulk entanglement wedge of the boundary

region that contains the operator O. Our model may therefore be taken as an

explicit demonstration of this principle. Specifically, if one attempts to localize

the boundary representation of a bulk operator in the complement, the resulting

operator will be non-hermitian. In order to construct a well-defined precursor, the

localization must be attempted within the entanglement wedge that includes the

bulk field in question.

One can see that the wrong-wedge operator (3.45) is manifestly ill-behaved when

acting on the Minkowski vacuum: in the limit ω+ � 1 and ω− � −1, we have

two Rindler creation operators acting on |0〉, with a coefficient which grows ex-

ponentially. This means we create a state which is highly UV-sensitive (note the
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singular legs that must be mapped in figure 3.5). Indeed, one can show that the

two-point function 〈0|ΦΦ†|0〉 diverges using the wrong-wedge operator Φ. The fact

that UV-divergences occur in the same circumstance as when hermiticity is lost is

suggestive, but we have not found a clear conceptual link between the two.

3.A Relating Fourier Transforms of the Smear-

ing Function

In this appendix, we will prove the relations (3.24):

K̃N (ω+, ω−) = cosh(πω+)K̃W (ω+, ω−)

K̃S (ω+, ω−) = cosh(πω−)K̃W (ω+, ω−)

K̃E (ω+, ω−) = cosh (π(ω+ − ω−)) K̃W (ω+, ω−)

(3.47)

where the Fourier transform of the smearing function, K̃W , is given by (3.23), with

K written in light-cone coordinates as in (3.37):

K̃W (ω+, ω−) =

∫ 0

−∞
dx+

∫ ∞
0

dx− log

( |z2 − (x+ − a)(x− + a)|
2z

)
|x+|−iω+−1|x−|−iω−−1

=

∫ ∞
0

dx+

∫ ∞
0

dx− log

( |z2 + (x+ + a)(x− + a)|
2z

)
(3.48)

|x+|−iω+−1|x−|−iω−−1

=

∫ ∞
−∞

du

∫ ∞
−∞

dv log

( |z2 + (eu + a)(ev + a)|
2z

)
e−iω+ue−iω−v

where in the last step we’ve made the change of variables x+ = eu, x− = ev. Note

that the logarithm does not become singular in the western quadrant, as we shifted

the bulk point into the east (cf. figure 3.4). For convenience, we may rescale the

zero mode to remove the constant factor in the denominator of the argument of the

logarithm. Hence, suppressing the ω+ and ω− subscripts, the explicit expression

for δK in each of the four wedges may be written

K̃W =

∫ ∞
−∞

du

∫ ∞
−∞

dv log
(
|z2 + (eu + a)(ev + a)|

)
e−iω+ue−iω−v (3.49)

K̃N =

∫ ∞
−∞

du

∫ ∞
−∞

dv log
(
|z2 − (eu − a)(ev + a)|

)
e−iω+ue−iω−v (3.50)

K̃E =

∫ ∞
−∞

du

∫ ∞
−∞

dv log
(
|z2 + (eu − a)(ev − a)|

)
e−iω+ue−iω−v (3.51)
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K̃S =

∫ ∞
−∞

du

∫ ∞
−∞

dv log
(
|z2 − (eu + a)(ev − a)|

)
e−iω+ue−iω−v. (3.52)

Let us begin by relating K̃W and K̃N . Define the function f(u) for u ∈ C as5

f(u) ≡
∫ ∞
−∞

dv log
(
z2 + (eu + a)(ev + a)

)
e−iω+ue−iω−v . (3.53)

Note that integrating f over the real u-axis gives K̃W (since a > 0), while inte-

grating f(u± iπ) is of the same basic form as K̃N ,

f(u± iπ) = e±πω+

∫ ∞
−∞

dv log
(
z2 − (eu − a)(ev + a)

)
e−iω+ue−iω−v (3.54)

up to a factor of e±πω+ , and ambiguities due to the singularities in the logarithm.

In particular, the argument of the log is negative when z2 < (eu − a) (ev + a), so

there is a branch point at

u∗ = log

(
z2

ev + a
+ a

)
(3.55)

and branch cuts running horizontally at u ± iπ for u > u∗. Now, imagine a

rectangular contour in the complex u-plane running from −∞ to∞ along the real

axis, and then back the other way along u ± iπ (that is, just inside the complex

region prescribed by the branch cuts). Since we enclose no poles, the total contour

integral vanishes, and we may write

0 =

∫ ∞
−∞

du (f(u)− f(u± iπ)) +

∫ ∞±iπ
∞

duf(u) +

∫ −∞
−∞±iπ

duf(u) (3.56)

where the last two terms are the vertical side contributions for the function evalu-

ated at u→ ±∞ from the real axis to ±iπ. One takes the upper signs in (3.56) for

the contour in the upper half-plane, which runs counter-clockwise, and the lower

signs for the clockwise contour in the lower half. We then observe that the side

contributions can be made to vanish by suitably deforming the contour off the real

axis. Hence, dropping these terms and writing the above expression in terms of

K̃, we have

0 = K̃W − e±πω+K̃N − e±πω+

∫ ∞
u∗

du

∫ ∞
−∞

dv (±iπ) e−iω+ue−iω−v (3.57)

where we’ve taken the principle value of the complex logarithm in (3.54), log(x) =

log |x| ± iπ, where the upper/lower sign corresponds to approaching the negative

5For simplicity we included the v-integral in the definition of f . For the reader worried about

its convergence, the following contour argument can still be made, relating the v-integrands, by

defining f(u) ≡ e−iω−v log
(
z2 + (eu + a)(ev + a)

)
e−iω+u for fixed v.
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real axis from the upper/lower half-plane, respectively (i.e., our choice of contour).

By a linear combination of the two equations in (3.57), the third term on the r.h.s.

cancels, and one obtains

K̃N = cosh(πω+)K̃W (3.58)

which is the desired result. Similarly, one can show

K̃S = cosh(πω−)K̃W . (3.59)

The derivation of the third relation, between K̃W and K̃E , follows a similar contour

argument, but requires a slight change of coordinates. In particular, we first write

(3.51) as

K̃E =

∫ ∞
−∞

dt

∫ ∞
−∞

dx log
(
|z2 + (et+x − a)(et−x − a)|

)
e−iωte−ikx (3.60)

where we defined ω ≡ ω+ +ω− and k ≡ ω− −ω+, and similarly for K̃W . We then

define a function g(x) for x ∈ C,

g(x) ≡
∫ ∞
−∞

dt log
(
z2 + (et+x − a)(et−x − a)

)
e−iωte−ikx (3.61)

which will be related to (3.60) upon integrating along the x-axis, and observe that

the integral of

g(x± iπ) ≡
∫ ∞
−∞

dt log
(
z2 + (et+x + a)(et−x + a)

)
e−iωte−ikxe±πk (3.62)

yields K̃W .

We can now apply essentially the same argument as before. The argument of the

logarithm in (3.60) is negative when z2 + a2 + e2t < 2aet coshx, implying branch

points at

x∗ = ± cosh−1

(
z2 + a2 + e2t

2aet

)
. (3.63)

We choose the branch cuts running out horizontally to infinity. The integration

contours are then restricted to the rectangular region between the x-axis and x±iπ,

given an expression analogous to (3.56). Analytically continuing the logarithm to

complex values as above, and dropping the side contributions, we have

0 = K̃E − e±πkK̃W +

(∫ −x∗
−∞

dx+

∫ ∞
x∗

dx

)∫ ∞
−∞

dt(±iπ)e−iωte−ikx . (3.64)

Taking a linear combination of these two equations, we obtain

K̃E = cosh(π(ω− − ω+))K̃W (3.65)

as desired.

63



3. Localizing Precursors in AdS/CFT

3.B Evaluating the Smearing Function

In this appendix we evaluate the Fourier integral of the smearing function in the

western Rindler wedge, K̃W (3.49),

K̃W =

∫ ∞
−∞

du

∫ ∞
−∞

dv log
(
z2 + (eu + a)(ev + a)

)
e−iω+ue−iω−v (3.66)

where the argument of the log is always positive by virtue of our having shifted

the bulk point into the east, as described in the main text. Integrating by parts

twice, this becomes

K̃W = − 1

ω+ω−
e−iω+ue−iω−v ln

(
z2 + (eu + a) (ev + a)

) ∣∣∣∣∞
u,v=−∞

+
1

ω+ω−

∫ ∞
−∞

due−iω+ue−iω−v
eu (ev + a)

z2 + (eu + a) (ev + a)

∣∣∣∣∞
v=−∞

+
1

ω+ω−

∫ ∞
−∞

dve−iω+ue−iω−v
(eu + a) ev

z2 + (eu + a) (ev + a)

∣∣∣∣∞
u=−∞

− z2

ω+ω−

∫ ∞
−∞

dudve−iω+ue−iω−v
eu+v

(z2 + (eu + a) (ev + a))
2 .

(3.67)

The first three (boundary) terms can be made to vanish by a suitable contour

deformation. The remaining double integral (the fourth term) can be evaluated

to yield

K̃W =− π2
(z
a

)2

a−i(ω++ω−) csch(πω+) csch(πω−)

×2F1(1 + iω+, 1 + iω−, 2,
−z2

a2
) .

(3.68)

3.C Computing the Two-Point Function

As an extra check of our formalism, we include an explicit calculation of the two-

point function, and show that it reduces to the correct AdS2+1 correlator in the

near-horizon limit. This will serve as a diagnostic of whether our expression for

the bulk field constructed from boundary data entirely in the eastern wedge, (3.44)

Φ(0, a, z) =− 2π2
(z
a

)2
∫

dω+dω−a
−i(ω++ω−)

×2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
βEω+

βE−ω−

(3.69)
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is well-defined. Here βEω± are the Rindler creation (ω < 0) and annihilation (ω > 0)

operators in the eastern wedge, as defined in the main text. Since we work entirely

in the eastern wedge in what follows, we shall henceforth suppress the superscript

E to minimize clutter. Inside the two-point function, we will have left/right moving

Rindler operators acting on the Minkowski vacuum. As the left- and right-movers

commute, the four-β correlator is

〈0|βω+
β−ω−βω′+β−ω′− |0〉 =δ(ω+ + ω′+)δ(ω− + ω′−)

×
(

ω+

1− e−2πω+

)(
ω−

e2πω− − 1

)
.

(3.70)

The bulk two-point function we seek to examine is therefore written explicitly as

〈Φ(a1, z1)Φ(a2, z2)〉 =4π4

(
z1z2

a1a2

)2 ∫ ∞
−∞

dω+dω−dω′+dω′−δ(ω+ + ω′+)δ(ω− + ω′−)

×a−i(ω++ω−)
1 a

−i(ω′++ω′−)
2

(
ω+

1− e−2πω+

)( −ω−
1− e2πω−

)
×2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
×2F1

(
1 + iω′+, 1 + iω′−, 2,

−z2
2

a2
2

)
.

By virtue of the delta functions, the integrals over primed frequencies are trivial:

〈Φ(a1, z1)Φ(a2, z2)〉 =π4

(
z1z2

a1a2

)2 ∫ ∞
−∞

dω+dω−

(
a1

a2

)−i(ω++ω−)

×ω+ω− (coth(πω+) + 1) (coth(πω−)− 1)

×2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
×2F1

(
1− iω+, 1− iω−, 2,

−z2
2

a2
2

)
.

(3.71)

Unfortunately, we have not succeeded in evaluating the remaining integrals exactly.

However, we can investigate the behaviour in the near-horizon limit, equivalent to

taking z1/a1, z2/a2 → ∞. To avoid subtleties associated with the branch cut at

infinity, we first performing a z → 1/z transform,

F (a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF (a, a− c+ 1, a− b+ 1, 1/z)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) (−z)−bF (b, b− c+ 1,−a+ b+ 1, 1/z)

(3.72)

which allows us to expand in the limit where the fourth argument of the hypergeo-

metric function vanishes. Applying this to the product of hypergeometric functions
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in (3.71), and then expanding around z/a→∞ yields, to first order,

2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
2F1

(
1− iω+, 1− iω−, 2,

−z2
2

a2
2

)(
a1a2

z1z2

)−2

=

[(
z2

a2

)2iω− Γ (i(ω− − ω+))

Γ(1 + iω−)Γ(1− iω+)
+

(
z2

a2

)2iω+ Γ (−i(ω− − ω+))

Γ(1− iω−)Γ(1 + iω+)

]

×
[(

z1

a1

)−2iω+ Γ (i(ω− − ω+))

Γ(1 + iω−)Γ(1− iω+)
+

(
z1

a1

)−2iω− Γ (−i(ω− − ω+))

Γ(1− iω−)Γ(1 + iω+)

]
.

Without loss of generality, we shall assume z2 > z1. Substutiting this expansion

into the two point function yields

〈0|Φ(0, a1, z1)Φ(0, a2, z2)|0〉 =

∫
dω+

∫
dω−(U + L) (3.73)

where we’ve defined

U ≡ ω−ω+e
π(ω+−ω−)csch(πω−)csch(πω+)

(
a1

a2

)−i(ω−+ω+)

×


(
z21
a21

)−iω−
Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)
+

(
z21
a21

)−iω+

Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)


×


(
z22
a22

)iω−
Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)


(3.74)

L ≡ ω−ω+e
π(ω+−ω−)csch(πω−)csch(πω+)

(
a1

a2

)−i(ω−+ω+)

×


(
z21
a21

)−iω−
Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)
+

(
z21
a21

)−iω+

Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)


×


(
z22
a22

)iω+

Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)

 .

(3.75)

We will first perform the integral over ω−, by viewing U and L as functions on

the complex ω−-plane. One can then easily show the following:

• U and L have simple poles at ω− = ω+ ± ni, for n ∈ Z.

• |U(iω−)| → 0 and |L(−iω−)| → 0 in the limit ω− � 1.
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• U + L has no poles on the real ω− axis.

With these properties in hand, the integral can be performed via the residue

theorem, where we close the contour in the upper/lower half-plane for U/L, re-

spectively:

〈ΦΦ〉 =

∫
dω+

∫
dω−(U + L) (3.76)

=

∫
dω+2πi

[
−Res(L, ω+) +

∞∑
n=1

(Res(U, ω+ + ni)− Res(L, ω+ − ni))
]

≈
∫

dω+
−2

π

(
z1

z2

)−2iω+
(

2 log

(
a2

z2

)
+ 2γ + ψ(iω+) + ψ(−iω+)

)
where ψ(z) = Γ′(z)/Γ(z) and γ = −ψ(1). In evaluating the residues we used that

zi/ai � 1 for i = 1, 2.

The integral over ω+ is evaluated in a similar fashion. Viewing the integrand as

a function in the complex ω+-plane, one can see that it is well behaved on the

real axis, and goes to zero at +i∞. Closing the integration contour in the upper

half-plane, the residue theorem yields

〈ΦΦ〉 ≈
∫

dω+
−2

π

(
z1

z2

)−2iω+
(

2 log

(
a2

z2

)
+ 2γ + ψ(iω+) + ψ(−iω+)

)
= 2πi

∞∑
n=1

(−2iz2n
1

πz2n
2

)
∝ z2

1

z2
2 − z2

1

(3.77)

which one can recognise as the correct two-point function for a massless scalar in

AdS2+1, i.e.

〈Φ(0, a1, z1)Φ(0, a2, z2)〉 =
1

eS sinh(S)
∝ z2

1

z2
2 − z2

1

(3.78)

where the geodesic distance S in the near-horizon limit is given by S = log (z2/z1).
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4
QEC from BRST

This chapter is based on the paper [4].

In chapter 3 we saw that bulk information in the CFT is ambiguous, because

there are multiple non-local operators in the CFT equal to the same local bulk

operator. In this chapter we will do three things. First of all, we will recast this

ambiguity in the language of BRST symmetry, and conjecture that in the large

N limit, the difference between two precursors is a BRST exact and ghost-free

term. Second, using the BRST formalism and working in a simple model with

global symmetries, we will re-derive a precursor ambiguity appearing in earlier

work. Finally, we will show within this model that this BRST ambiguity has the

right number of parameters to explain the freedom to localize precursors within

the boundary of an entanglement wedge order by order in the large N expansion.

4.1 Introduction

The AdS/CFT correspondence is the most precise non-perturbative definition of

quantum gravity. A central problem is how local bulk physics emerges from CFT

data. As we saw before, this question has been studied extensively and is rea-

sonably well-understood at large N , for small perturbations around vacuum AdS.

In this limit, a bulk field Φ at a point X is defined by integrating a local CFT

operator O over the boundary with an appropriate smearing function K:

Φ(X) =

∫
dtdd−1x K(X|t, x)O(x) +O

(
1

N

)
. (4.1)

This CFT operator can subsequently be time evolved to a single time slice using

the CFT Hamiltonian, which gives a non-local operator P in the CFT correspond-

ing with the field Φ(X) in the bulk. As the reader can recall from the previous

chapter 3, this type of operator is called a precursor [70–72].
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The study of precursors is fundamental to understanding a concrete realization

of holography. There are several unresolved questions one can ask, such as how

to construct precursors that correspond to bulk fields near or behind a black hole

horizon. Here we focus on two particular puzzles that are related to each other,

and were previously mentioned in chapter 3. At large N , bulk locality requires the

precursor to commute with all local CFT operators at a fixed time, while basic

properties of quantum field theory demand that only trivial operators can commute

with all local operators at a given time [73]. Another is that a local bulk operator

corresponds with many different precursors with different spatial support in the

CFT, because the bulk field can be reconstructed in a particular spatial region of

the CFT as long as it is contained in the corresponding entanglement wedge of

that region.

Both of these apparent paradoxes can be resolved by requiring that different pre-

cursors are not equivalent as true CFT operators [73]. In particular, the difference

between two precursors corresponding to the same bulk field seems to have no

clear physical meaning, and must act trivially on some class of states. In what

follows, we will refer to this perplexing feature as the ‘precursor ambiguity’.

In [73] and [69] some progress was made in giving a guiding principle for construct-

ing the ambiguity between two precursors corresponding to the same bulk field.

The former approach recasts the AdS/CFT dictionary in the language of quantum

error correction (QEC). From this viewpoint, the ambiguity is an operator which

acts trivially in the code subspace of QEC, which in this case is naturally thought

of as the space of states corresponding to low energy excitations of the bulk. The

latter work, on the other hand, proposed that gauge symmetry in the CFT can

give a prescription to construct the precursor ambiguity. Moreover, they claimed

that the code subspace is the full space of gauge invariant states.

Inspired by these works, we showed in chapter 3 how bulk information can be

localized in the CFT by using boundary gauge invariance on one hand, and entan-

glement in the other. In this chapter, we will explore the former in greater detail,

and explain how boundary gauge invariance can play an important role relating

different precursors (corresponding to the same bulk point) to each other. We start

in section 4.2 by proposing the language of BRST symmetry as a tool for making

the precursor ambiguity concrete. In section 4.3, we show that this approach nicely

reduces to an already identified precursor ambiguity in the presence of a global

SO(N) symmetry [69]. Furthermore, it has the added benefit that it generalizes

to arbitrary gauge theories at any N . In section 4.4 we show in the toy model

of chapter 3 how this precursor ambiguity has the right number of parameters to

enable us to localize precursors in the boundary of the entanglement wedge order

by order in 1/N .
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4.2 Proposal: Precursor Ambiguities from BRST

In most of the known examples of holography, the boundary theory has some

gauge symmetry. The presence of these ‘unphysical’ degrees of freedom renders the

naive path integral for gauge theories divergent. One approach to deal with these

problems while covariantly quantizing the gauge theory is the BRST formalism

[81, 82]. The rough idea is to replace the original gauge symmetry with a global

symmetry, by enlarging the theory and introducing additional fields. This new

rigid symmetry, the BRST symmetry, will still be present after fixing the gauge.

Since the generator of the BRST symmetry QBRST is nilpotent of order two, we

can construct its cohomology which will describe the gauge invariant observables

of the original theory.

We propose that the natural framework to understand precursor ambiguities is

the language of BRST symmetry. In particular, we claim that if P1 and P2 are

two precursors in the large N limit corresponding with the same local bulk field

Φ(X), then P1 − P2 = O where

• O is BRST exact: O = {QBRST, Õ}
• O does not contain any (anti-)ghosts.

By construction this leaves any correlation function of gauge invariant operators

in arbitrary physical states invariant

〈O1 · · · Oi · · · On〉 = 〈O1 · · · (Oi + {QBRST, Õ}) · · · On〉 (4.2)

since [QBRST,Oi] = 0 for a gauge invariant operator Oi, and QBRST|ψ〉 = 0 for a

gauge invariant state |ψ〉.
As an example, we will show in the next section 4.3 that in the case of N free

scalars with a global SO(N) symmetry, we can reproduce the results of [69]. That

means, there exists an operator Õ such that

{QBRST, Õ} ∼ LijAij (4.3)

where Lij is the generator of the SO(N) symmetry, and Aij is any operator in the

adjoint.

Note that while the BRST ambiguity is well-defined for any gauge theory and

even at finite N , the notion of bulk locality only makes sense perturbatively in

1/N . In order to connect the abstract BRST ambiguity to concrete equivalences

between different CFT operators, we need to make use of the large N expansion.

In particular, the precursor ambiguity we find, should only be valid within states

where the number of excitations is small compared to N .
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4.3 BRST Symmetry of N Real Scalars

In this section we will apply the BRST formalism to a theory of N real scalars.

The Lagrangian for this gauge theory in the covariant gauge is given by

L = −1

4
(F aµν)2 − 1

2
DµφiDµφi +

ξ

2
(Ba)2 −Ba∂µAaµ − ∂µc̄a(Dµc)

a (4.4)

where the auxiliary field Ba can be integrated out using ξBa = ∂µAaµ. We take

the φi in the fundamental representation of SO(N), while the ghost ca, anti-ghost

c̄a and the gauge field Aaµ are in the adjoint. The (anti-)ghosts are scalar fermion

fields. The covariant derivatives are given by

(Dµc)
a = ∂µc

a + gfabcAbµc
c (4.5)

and

(Dµφ)i = ∂µφ
i − igAaµ(T a)ijφ

j . (4.6)

Note that Dµφ
i is real since the matrices (T a)ij are purely imaginary for SO(N).

The field strength F is given by

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (4.7)

Consider the following BRST transformations:

δBA
a
µ = ε(Dµc)

a

δBφ
i = igεca(T a)ijφ

j

δBc
a = −1

2
gεfabccbcc

δBc̄
a = εBa

δBB
a = 0

(4.8)

where ε is a constant Grassmann parameter. The Lagrangian (4.4) is invariant

under the these transformations, up to a total derivative:

δBL = −ε ∂µ (Ba(Dµc)
a) . (4.9)

4.3.1 The BRST Charge

In order to compute the BRST charge, we start by constructing the Noether

current associated to this symmetry. Taking the boundary term into account, we

get

Jµ =
∑
α

δL
δ(∂µΦα)

δBΦα +Ba(Dµc)a (4.10)
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where the sum runs over all possible fields in the Lagrangian, and we use left

differentiation when dealing with fermionic variables. The BRST charge is then

defined via

QBRST =

∫
dd−1x J0. (4.11)

Let’s start by computing the variations and defining the conjugate momenta

δL
δ(∂µφi)

= −Dµφi Πi ≡ −D0φi

[φi(x),Πj(y)] = δijδ(d−1)(x− y)

(4.12)

δL
δ(∂µca)

= (∂µc̄)a πac ≡ (∂0c̄)a

{ca(x), πbc(y)} = δabδ(d−1)(x− y)

(4.13)

δL
δ(∂µc̄a)

= −(Dµc)a πac̄ ≡ −(D0c)a

{c̄a(x), πbc̄(y)} = δabδ(d−1)(x− y)

(4.14)

and finally for the gauge field

δL
δ(∂µAaν)

= −Fµν,a − ηµνBa Πν,a ≡ −F 0ν,a − η0νBa

[Aaµ(x),Πν,b(y)] = δνµδ
ab δ(d−1)(x− y).

(4.15)

That gives the following Noether current

Jµ = (−Fµν,a − ηµνBa) (Dνc)
a − igDµφica(T a)ijφ

j

− 1

2
g(∂µc̄a)fabccbcc.

(4.16)

The BRST charge is then given by

QBRST =

∫
dd−1x Πν,a(Dνc)

a + igΠica(T a)ijφ
j − 1

2
gfabcπac c

bcc

=

∫
dd−1x Π0,aπac̄ + Πi,a(∂ic)

a − gfabcΠi,cAbic
a

+ igΠica(T a)ijφ
j − 1

2
gfabcπac c

bcc.

(4.17)

We can define the generators of the SO(N) symmetry, using the Noether currents

associated with the gauge transformations. The current has two contributions,

one from the Yang-Mills parts F 2 and one from the matter part (Dφ)2:

Jamatter ≡ iΠi(T a)ijφ
j Jagauge ≡ fabcΠi,bAci

Ja ≡
(
Jamatter + Jagauge

)
.

(4.18)
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This finally leads to the the BRST charge:

QBRST =

∫
dd−1x

(
gcaJa − 1

2
gfabcπac c

bcc + Π0,aπac̄ + Πi,a(∂ic)
a

)
. (4.19)

The charge generates the BRST transformations (4.8) on the fields via

δBΦα = ε[Φα, QBRST]±. (4.20)

Using this, we can derive the BRST transformations of the conjugate momenta:

δBΠ0,a = 0

δBΠj,k = −gεfkabcaΠj,b

δBΠk = −igεcaΠi(T a)ik

δBπ
a
c̄ = 0

δBπ
b
c = gεJb − ε∂iΠi,b − gεf bdeπdc ce

(4.21)

and one can verify, using the Jacobi identity and [T a, T b] = ifabcT c, that QBRST

is nilpotent when acting on the fields and their conjugate momenta, as it should.

4.3.2 Reduction to a Global SO(N) Symmetry

In order to connect with previous work on precursors [69], we are interested in

degrading the SO(N) gauge symmetry to an ordinary global symmetry. One crude

way of accomplishing this, is by setting the gauge fields Aaµ = 0. In this case, the

ghosts become quantum mechanical (position independent) and the BRST charge

reduces to

QBRST =

∫
dd−1x gcaJa − 1

2
gfabcπac c

bcc

Ja = iΠi(T a)ijφ
j

(4.22)

where the global SO(N) generator is given by La =
∫

dd−1xJa(x).

Now consider an operator Oa in the adjoint, and compute the anti-commutator of

the BRST charge with πac Oa:

{QBRST, π
d
cOd} =

∫
dd−1x g{caJa, πdcOd} −

1

2
gfabc{πac cbcc, πdcOd}

= g

∫
dd−1x OaJa = gLaOa

(4.23)

where we used that the generator of global SO(N) transformations rotates the

operator O as [Ja,Ob] = fabcOc. This expression is BRST exact by construction,

and ghost-free. Adding this to a CFT operator will have no effect whatsoever

within correlation functions in physical states. It is exactly the precursor ambiguity

found in [69].
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4.4 Localizing Precursors in a Toy Model

In the previous section, we computed the ambiguous part of the precursors as

a BRST exact and ghost-free operator. This ambiguity can be viewed as the

redundant, quantum error correcting part of the precursors. Once it has been

identified, the physical information contained in the precursors should become

clear. In this section we will study the particular ambiguity (4.23) in a holographic

toy model. We will show that this ambiguity has the same structure as an HKLL

series, and that it seems to contain enough freedom to localize bulk information

in a particular region of the CFT by setting the smearing function to zero in that

region. This hints that the procedure we did – localizing bulk information using

smearing function ambiguities – to leading order in 1/N in the last chapter, can

be carried out order by order in 1/N .

4.4.1 The Model

The model will look familiar to the readers of chapter 3, and is a CFT containing

N free scalar fields in 1 + 1 spacetime dimensions:

L =

N∑
i=1

−1

2
∂µ φ

i ∂µ φi. (4.24)

There is a ∆ = 2 primary operator O = ∂µφ
i ∂µφi which we take to be dual to a

massless scalar Φ in AdS2+1.

Following (4.23), we know that the precursor ambiguity is given by LijAij where

Aij is any operator in the adjoint of SO(N) and Lij is the generator of global

SO(N) transformations. Note that we do not gauge the SO(N) transformations in

this model, but only keep the global part of the SO(N) transformations by setting

Aaµ = 0 in the full gauge theory discussed in section 4.3. One can think of the

global symmetry being present as a toy model for the full gauge theory.

Expanding the boundary fields φi in terms of left/right-moving creation and an-

nihilation modes, one can compute the generator of global rotations

Lij =

∫
dk

2 k

(
α†[ik α

j]
k + α̃†[ik α̃

j]
k

)
(4.25)

where the tilde denotes a right-moving polarization of the creation or annihilation

modes and any zero mode contributions are left out. If there is no confusion what

momentum a given mode has, we will omit the subscript k.
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4.4.2 Precursor Localization Perturbatively in 1/N

The bulk field Φ in global AdS3 can be constructed at large N by smearing

quadratic operators of the form O ∼ αkα̃k′ over a particular region of the CFT:

Φ(X) =

∫
d2xK1(X|x)O(x) +O

(
1√
N

)
(4.26)

where the smearing function K obeys the bulk free wave equation

�AdS3
K1(X|x) = 0. (4.27)

This procedure correctly reproduces the bulk two-point function. The precursor

can be obtained from (4.26) by time evolving the CFT operator to a single time

slice. Extending the HKLL procedure perturbatively in 1/N will look schemati-

cally as follows [35,83]:

Φ(X) =

∫
d2x K1(X|x)O(x)

+
1√
N

∫∫
d2x d2x′K2(X|x, x′)O(x)O(x′) +O

(
1

N

) (4.28)

where the expansion parameter is 1/
√
N instead of 1/N because we are dealing

with a vector-like theory [84].

In chapter 3 it was shown that, at leading order in 1/N , the spatial support of the

smearing function K1 (and hence the information of the bulk field) can be localized

in a particular Rindler wedge of the CFT due to an ambiguity in the smearing

function. This freedom can be understood by noting that the term α†ik1 α̃
i
k2

can

be added to O within two-point functions since it annihilates the vacuum in both

directions. While this two-parameter family of freedom is enough to localize the

bulk field at leading order in N , one can see that it generically will be insufficient to

set K2 to zero in particular region, because this requires a four-parameter family of

freedom. Since changing the smearing function corresponds with picking a different

precursor, we would like to identify the aforementioned freedom in the smearing

function with the precursor ambiguity. In what follows, we will explain how the

precursor ambiguity LijAij has enough freedom to localize bulk information order

by order in 1/N .

Start by considering the following quadratic (adjoint) operator

Aij2 ≡ α†ik1 α̃
j
k2
. (4.29)

We showed that a possible ambiguity of the precursor is given by Lij Aij2 . Normal
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ordering yields

1

N
3
2

Lij Aij2 =
1

N
3
2

∫
dk

2 k

(
α†[ik α

j]
k + α̃†[ik α̃

j]
k

)
α†ik1 α̃

j
k2

=
(1−N)

N
3
2

α†ik1 α̃
i
k2 +

1√
N

α†ik1 L
ij α̃jk2

N

∼ O +
1√
N
OO

(4.30)

where O denotes an operator quadratic in the α’s and normalized by 1/
√
N such

that it is O(1) in N -scaling. Note that the LHS of (4.30), by construction, is zero

in physical states (and hence can be added to the precursor without changing any

of its correlation functions).

The piece quadratic in the α′s in (4.30) is exactly the ambiguity needed to localize

the precursor in the CFT to leading order in N , as was shown in detail in chapter

3. One can now also see that one generically needs a four-parameter ambiguity

if we want to be able to set K2 in (4.28) to zero in certain regions. Even though

the term OO/
√
N in (4.30) has the right structure to fit in the HKLL series, it

does not have enough freedom to set K2 to zero (it has only 2 free parameters,

while we need 4). It can be done, however, by constructing a new operator which

annihilates SO(N)-invariant states and is quartic in the α’s:

Aij4 ≡ Aij2 −
1

N
Aij2 α†mk3 αmk4 . (4.31)

The ambiguity in the precursor to order 1√
N

is then given by Lij Aij4 . Normal

ordering yields

Lij Aij4 = Lij Aij2 + T4 + T6 (4.32)

where

T4 = α† ik1 α
† i
k3
α̃mk2 α

m
k4 − α

† i
k3
α̃ik2 α

†m
k1

αmk4 + (1−N)α† ik1 α̃
i
k2 α

†m
k3

αmk4 (4.33)

T6 = α† ik α† ik1 α
†m
k3

α̃jk2 α
j
k α

m
k4 − α

† j
k α† ik1 α

†m
k3

α̃jk2 α
i
k α

m
k4

+ α̃† ik α† ik1 α
†m
k3

α̃jk2 α̃
j
k α

m
k4 − α̃

† j
k α† ik1 α

†m
k3

α̃jk2 α̃
i
k α

m
k4

(4.34)

and repeated momenta are integrated over appropriately. By T4 we denote the

ambiguity to quartic order in Lij Aij4 and similarly with T6 to hexic order. As

before, T4 and T6 scale the same with respect to N in any gauge invariant state.

Also they do not contribute in three-point functions of the bulk field.

Again we find that all the terms nicely arrange themselves in the right structure

of an HKLL series:
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1

N
3
2

LijAij4 ∼ O +
1√
N
OO +

1

N
OOO (4.35)

where O schematically denotes an operator quadratic in the α’s and normalized

by 1/
√
N such that it is O(1) in N -scaling. The main difference with LijAij2 is

that the term quartic in the α’s now gets a new contribution from T4, which does

have four independent parameters, and hence in principle has enough freedom to

localize the smearing function K2.

Doing so also introduced a term like α6. The connected piece of this will be down

in 1/N relative to α4. If T4 fixes the ambiguity at order 1/
√
N , T6 will contribute

towards fixing it at order 1/N . Thus, continuing this reasoning and choosing an

improved operator Aij , we will be able to fix the ambiguity in the precursor to

any order in 1/N perturbatively.

We can now summarize how this recursive procedure works to localize bulk infor-

mation order by order in N . When the operator we want to smear Aij2 is quadratic,

the ambiguity in the precursor to the quadratic order is given by (1−N)α†ik1 α̃
j
k2

.

These modes are labeled by two different momenta. Since we are working in two

spacetime dimensions, they are able to fix all the ambiguity in the precursor up

to quadratic level.

But fixing the quadratic level, introduces a quartic piece: α†ik1 L
ij α̃jk2 . This piece

has insufficient freedom to localize the precursor up to 1/
√
N corrections. To fix

the ambiguity to the quartic level, one introduces a quartic ambiguity LijAij4 . This

gives a piece T4 which has four independent momenta and hence can now fix any

ambiguity in the precursor up to quartic order. However, doing so also introduced

a hexic piece T6. This hexic term makes the precursor ambiguous to order six. We

can repeat the procedure, smear a different Aij and then fix the ambiguity in the

precursor up to order six.

Surprisingly, each term at a higher order is 1√
N

relative to the current order.

Hence, this procedure can be carried out order by order in 1√
N

and thus fixes all

the ambiguity in the interacting HKLL series in this toy model. While it is not

explicitly demonstrated in this thesis, we would expect similar story to hold for

matter fields are in the adjoint.

One should note that, while the quadratic and quartic piece in the ambiguity

(4.30) (and similarly for the quartic and hexic piece in the ambiguity (4.35)) have

the correct ‘naive’ N -scaling (α ∼ N
1
4 ) to be arranged in an HKLL series, their

real N -scaling is the same. This means that neither term in (4.30) or (4.35) is

small compared to the other. For clarity, we will elaborate on this a bit more in

the next section 4.4.3.
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4.4.3 N-Scaling

Within physical states, both terms on the RHS of (4.30) will be equal and opposite.

In particular, they must have the same N -scaling (in contrary to what was claimed

in [69]), even though naive N -counting would suggest otherwise. In order to

explicitly see that both terms have the same N -scaling in SO(N)-invariant states,

we pick the following three states and label the operators as follows:

States Operators

|ψ′1〉 = 1√
N
α†mk3 α

†m
k4
|0〉 O1 = α†ik1 L

ij α̃jk2/N
3
2

|ψ′′1 〉 = 1√
N
α̃†mk3 α̃

†m
k4
|0〉 O2 = α†ik1 α̃

i
k2
/
√
N

|ψ2〉 = 1√
N
α̃†mk5 α

†m
k6
|0〉

In order to assign a N -scaling to O2, one could check its two-point function.

However, since this operator has vanishing two-point functions, we investigate the

three-point function and find that it goes like 1/
√
N . This justifies us to call

assign an O(1) N -scaling to O2. We will estimate the size of O1 and O2 in the

subspace spanned by the three states above. Let us denote the matrix elements of

an arbitrary operator O in the above subspace as

O =

〈ψ′1|O|ψ′1〉 〈ψ′1|O|ψ′′1 〉 〈ψ′1|O|ψ2〉
〈ψ′′1 |O|ψ′1〉 〈ψ′′1 |O|ψ′′1 〉 〈ψ′′1 |O|ψ2〉
〈ψ2|O|ψ′1〉 〈ψ2|O|ψ′′1 〉 〈ψ2|O|ψ2〉

 .

Then we get the following matrix elements for O1 and O2

O1 =
1√
N

0 0 1

0 0 0

0 1 0

 O2 =
1√
N

0 0 1

0 0 0

0 1 0

 . (4.36)

We can see that both the pieces in Lij Aij2 scale in the same way with respect to

N , as expected. Naively, one could expect the part quartic in the α’s to be down

to part quadratic in the α’s by a factor 1/
√
N . For these particular operators that

doesn’t happen, because the disconnected piece in O1 enhances its N -scaling.

Applying similar arguments to (4.35), we conclude T6 must have the same N -

scaling as T4. Again, the reason why this does not agree with naive N -scaling, is

due to the contribution from the disconnected piece in T6.
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5
Sub-AdS Scale Locality in

AdS3/CFT2

This chapter is based on the paper [3].

In this chapter, we investigate sub-AdS scale locality in our familiar weakly coupled

toy model of the AdS3/CFT2 correspondence. We will find that this simple model

has the correct density of states at low and high energies to be dual to Einstein

gravity coupled to matter in AdS3. The bulk correlation functions also have the

correct behavior at leading order in the large N expansion, but deviations appear

at order 1/N . We will interpret this as evidence for non-locality of the theory,

which is consistent with the presence of an infinite tower of massless higher spin

fields. Our analysis leads to the conjecture that any large N CFT2 that is both

modular invariant, and exhibits the correct low-energy density of states, is dual to

a gravitational theory with sub-AdS scale locality.

5.1 Introduction

The AdS/CFT correspondence has enabled tremendous progress in our under-

standing of quantum gravity. However, many important questions remain unan-

swered. Which CFTs are dual to bulk theories of Einstein gravity, with or without

matter fields? What is the simplest CFT that reproduces the basic features of Ein-

stein gravity? How does sub-AdS scale locality emerge in AdS/CFT? The goal of

the present chapter is to address these questions in the context of an explicit toy

model.

We will focus on AdS3/CFT2, where it is simplest to obtain precise answers to

these rather grand questions. Indeed, the AdS3/CFT2 duality is a particularly

constrained example of holography. Einstein gravity is topological in three di-

mensions, so there are no propagating gravitons. Additionally, two-dimensional
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CFTs are highly constrained by the presence of the additional Virasoro symmetry.

Nevertheless, many important features of quantum gravity, for example aspects of

black hole physics, are still captured in three-dimensional gravity. The more con-

strained 3-dimensional framework thus provides a tractable environment amenable

to precise results, while yielding insights that generalize to higher dimensions.

We will investigate the question of sub-AdS scale locality, by exploring the detailed

properties of an explicit toy model for holography. The model, originally intro-

duced in [69] and refined in chapter 3, consists of N massless free bosons restricted

to the singlet sector of the global O(N) symmetry. This model can be thought

of as the two-dimensional version of the GKPY duality [84,85]. The theory has a

scalar operator O dual to a massless scalar field in the bulk, defined as

O = ∂φI ∂̄φI . (5.1)

The model was used to explicitly show how one can localize bulk operators within

a given spatial region in chapter 3, where the connection between freedom in the

smearing function and quantum error correction was investigated. In chapter 4

we explained the precursor ambiguity using gauge invariance and BRST. In this

chapter, we investigate more refined properties of the model, including its spectrum

and 1/N effects in correlation functions. We will show that the density of states

is given by

ρ (∆) ∼


exp

(
γ∆

2
3

)
1� ∆ . N

exp

(
2π

√
N

3
∆

)
∆� N .

(5.2)

The high energy spectrum is given by the Cardy formula. This is actually surpris-

ing, since the theory is not modular invariant. The projection to O(N) singlets

breaks modular invariance, and hence Cardy’s formula does not a priori apply.

However, we will argue – based on an explicit proof for SO(3) – that this projec-

tion is only a subleading effect at energies much larger than N . Note that because

modular invariance is broken, the regime of validity of the Cardy formula does not

extend to ∆ ∼ N even though the growth of the low energy spectrum (5.2) satisfies

the sparseness criterion. In the intermediate range, the spectrum will interpolate

smoothly between the two regimes in (5.2).

The low-energy spectrum is compatible with a local quantum field theory in AdS3.

However, the spectrum contains an infinite tower of higher spin fields which ulti-

mately cause the breakdown of sub-AdS scale locality. We will demonstrate this

breakdown from properties of the Lorentzian four-point function of the operator

O. In particular, there is no divergence at order O(1/N) when the boundary

points form a bulk Landau diagram [43,86–89]. Furthermore, the bulk theory is a
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Vasiliev higher spin theory [90], and the effective Lagrangian contains interactions

with an unbounded number of derivatives. In fact, it turns out that this model

is equivalent to a sector of the coset models described in [91, 92], with a W(e)
∞

symmetry at λ = 1.

Our model demonstrates that the ‘locality criterium’ on the spectrum (mentioned

below in section 5.2), is actually not a sufficient condition for sub-AdS scale locality.

However, the model was constructed by taking a modular invariant theory and

projecting out many states. The result is manifestly not modular invariant, and

restoring it with the addition of twisted sectors would completely destroy the

sparseness of the low lying states. This was shown in a similar context in [93]. Our

theory can therefore not satisfy both the locality criterion and modular invariance

simultaneously. We believe that these arguments extend beyond our specific toy

model, which will lead us to formulate a conjecture about sub-AdS scale locality.

5.2 Some Criteria for Bulk Locality

In the strongest interpretation of the AdS/CFT correspondence, every two dimen-

sional CFT is dual to a theory of quantum gravity in AdS3. In some sense, the

CFT defines the theory of quantum gravity in the bulk. The CFT data, namely

the full set of correlation functions, can be interpreted as scattering amplitudes in

the dual theory. The central charge is given by the AdS radius in Planck units [94],

c =
3LAdS

2GN
. (5.3)

However, a generic CFT will not correspond to a theory of weakly coupled gravity.

Rather, there exists a set of conditions the field theory must satisfy in order for

it to have a well-behaved geometric dual. Identifying this list of necessary and/or

sufficient conditions has been the focus of much recent effort [43,95–101]. Here we

briefly summarize the important constraints that will be relevant to the present

work. We start with the weakest assumption, and incrementally carve out a smaller

and smaller subset of the space of all two-dimensional CFTs.

1. The large N criterion. First, the relation (5.3) makes it clear that a weakly

coupled gravitational theory requires large central charge. In particular, the

large N limit in the CFT corresponds with the semi-classical limit of the

gravitational theory. Since the central charge is a measure for the degrees

of freedom in the CFT, this criterion heuristically says that the CFT needs

sufficient degrees of freedom in order to be able to make up the holographic

(radial direction). Furthermore, if we want to be able to dial the gravitational
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coupling constant, we need a family of two dimensional CFT’s labelled by a

parameter N such that c ∼ N . However, as we will explicitly show later in

this chapter, large central charge is insufficient to have bulk locality, which

brings us to the next criterion.

2. The convergence criterion. To obtain a sensible semi-classical limit,

further constraints must be imposed. Chief among them is the requirement

that the spectrum of the theory remains well-defined in the large N limit

[99–101]. Specifically, we require that the density of states ρN (∆) remains

finite in the N →∞ limit at fixed energy ∆:

lim
N→∞

≡ ρ∞(∆) <∞ for any finite, fixed ∆. (5.4)

This criterion can be seen as demanding that perturbation theory remains

valid in the bulk, since the latter requires a finite number of bulk fields at

every given energy. It is important to note that this is only a criterion on

the perturbative spectrum of the gravitational theory, and therefore it says

nothing about black holes; as N → ∞, the energy ∆ of the lightest black

hole diverges.

This criterion explains why N free bosons, free fermions, or any theory that

is a direct product, cannot be a good holographic theory. To see this, note

that free bosons have N operators at dimension ∆ = 1 hence it will fail to

satisfy this criterion. If we want this theory to be a ‘good’ holographic dual,

most of the states have to be projected out. This can be done by orbifolding,

or by considering a gauge theory. It should come as no surprise that most

of the holographic dualities we know, involve gauge theories.

3. The sparseness criterion. The phase structure of Einstein gravity in AdS3

is such that there are two saddle points that dominate the finite tempera-

ture partition function at low and high temperature: thermal AdS and the

BTZ black hole. These saddles exchange dominance in the Hawking-Page

phase transition at the self-dual temperature β = 2π such that the partition

function reads

logZ(β) =
c

12
max

(
β,

4π2

β

)
+O(c0) (5.5)

where we take c ∼ N . In [97], it was shown that in order for a CFT to

reproduce this phase structure in the large N limit, the density of light

operators must be bounded by

ρ(∆) . exp (2π∆) for ∆ ≤ c

12
. (5.6)

We refer to this as the sparseness criterion. It was also shown in [97] that

a CFT which satisfies this sparseness condition (and is modular invariant)
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will have an extended Cardy regime (which is usually only valid for ∆� c)

in the limit of large central charge:

ρ(∆) = exp

(
2π

√
c

3

(
∆− c

12

))
for ∆ ≥ c

12
. (5.7)

This extended Cardy formula reproduces the Bekenstein-Hawking formula

for the entropy of the BTZ black hole as soon as it dominates the canonical

ensemble.

Note, however, that this sparseness constraint is rather weak. It corresponds

to a Hagedorn growth typical of string theories in which the string and AdS

scales are equal. Thus it allows for theories that are drastically different from

Einstein gravity (such as symmetric product orbifolds), and in particular

theories that are non-local on sub-AdS scales. The fact that such string

theories can reproduce the phase structure of Einstein gravity is a peculiarity

of AdS3 (see [102] for a discussion of higher dimensions). It is therefore

necessary to impose a stronger constraint on the CFT in order to ensure

that we recover a bulk dual that is local on sub-AdS scales, which motivates

the fourth and final criterion on our list.

4. The locality criterion. If the perturbative sector of the bulk theory is to

behave as a local quantum field theory in AdS, then the CFT must satisfy

the following condition on the density of states:

ρ(∆) ∼ exp
(
γ∆

D−1
D

)
for 1� ∆� N (5.8)

where γ is some order-one coefficient, and D is a (positive) integer with a

natural interpretation: it is the total number of bulk dimensions whose sizes

are comparable to the AdS radius. The free energy resulting from such a

density of states will be compatible with bulk thermodynamics of a local

quantum field theory in D dimensions, namely F ∝ VDT
D+1, with a pro-

portionality constant that depends on γ. This criterion is therefore necessary

to reproduce the correct bulk thermodynamics at low temperatures.

One may wonder, after carving out this subspace of field theories, whether these

four criteria are in fact sufficient to ensure locality on sub-AdS scales. In this

chapter we will show that they are not, by investigating sub-AdS scale locality

in our weakly coupled toy model. Despite its simplicity, our model reproduces

a surprising number of the desired features of a theory dual to Einstein gravity

coupled to matter in AdS3. This includes the correct density of states at both

low and high energies, as well as the correct bulk correlation functions at leading

order in the large N expansion. Non-local effects seem to emerge at order 1/N .

However, a deeper pathology of our toy model is the lack of modular invariance;
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indeed, any attempt to restore modular invariance would drastically change the

properties of the low lying spectrum, and hence displace us beyond the subspace

of holographic CFT’s we so carefully circumscribed above. For this reason, we are

led to the following conjecture:

Sub-AdS Locality Conjecture:

In the large N limit, every CFT2 that satisfies the locality criterion, and has mod-

ular invariance, is dual to a bulk gravitational theory with sub-AdS scale locality.

The evidence for this conjecture is essentially experimental, based largely on our

intuition with orbifold CFTs. The basic reasoning is as follows: starting from a

large N theory with a global symmetry and many low lying states, one can try to

project out states until the bound (5.8) is satisfied. In order to preserve modular

invariance, twisted sectors must be added in proportion to the severity of the

projection. In [99,101], it was shown that for any orbifold by a permutation group

G ⊆ SN , the locality criterion cannot be satisfied. This leaves the possibility

that a projection by a bigger group such as O(N) could achieve this criterion.

However, although this works for the untwisted sector, modular invariance forces

the inclusion of so many twisted sectors that the spectrum grows even faster than

Hagedorn [93,103]. None of the existent orbifold constructions seem to work, even

for non-discrete groups.

Of course, the absence of known counterexamples does not constitute a proof

of our conjecture, though it would be interesting to try to construct one. In

this line of thought, the CFT data that could most likely be used to prove (or

disprove) our conjecture are the OPE coefficients, as they contain the dynamical

information of the CFT that, for example, could be translated as a diagnostic

for bulk locality using singularities of the four-point functions. Upon imposing

(5.8) and demanding modular invariance, one could try to constrain the OPE

coefficients using bootstrap techniques along the lines of [96,98,104]. It would also

be interesting to understand how our conjecture relates to other criteria, such as

the gap in the operator dimensions discussed in section 1.3.6 of the introduction.

We will not attempt to tackle these questions in this thesis, but instead focus on

the properties and consequences of this particular model.

The remainder of this chapter is organized as follows: in section 5.3, we discuss

properties of the spectrum of our toy model at both low and high energies. In

section 5.4, we comment on bulk locality in our toy model, using properties of

correlation functions at leading and subleading order in the 1/N expansion. We

computed (analytically up to level 4, and numerically for higher levels) explicit

expressions for the first few single-trace primaries at finite N , which are collected

in appendix 5.A.
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5.3 The Holographic Toy Model Revisited

5.3.1 The Model

The model we consider was defined in chapter 3 as a refinement of an earlier

version proposed in [69]. We will summarize it quickly for convenience. The CFT

consists of N free massless scalars in two dimensions. The Lagrangian is

L = ∂µφ
I∂µφI (5.9)

where the scalars φI transform in the fundamental representation of a global O(N)

symmetry. The Hilbert space of such a theory is given by

HN = H⊗N (5.10)

where H is the Hilbert space of a single free boson. We wish to consider the

subspace of states that are invariant under the O(N) symmetry, namely the singlet

sector. Therefore the relevant Hilbert space is

Hsinglet = H⊗N/O(N) . (5.11)

It is important to specify the procedure by which we impose such a constraint.

In general field theories, the way to do so with local dynamics is by gauging the

symmetry. This will enforce Gauss’ Law and project to the singlet sector. However,

preserving conformal invariance in the process is more subtle.

In two dimensions, there is a very natural way to enforce a singlet constraint while

preserving conformal invariance: orbifolding. The orbifolding procedure (which is

usually done for a discrete group) enforces the singlet constraint, but also adds

new operators to the theory from the twisted sectors. Indeed, a CFT2 orbifold

should really be thought of as a discrete gauge theory in two dimensions, where the

twisted sectors are the degrees of freedom arising from the holonomies of the gauge

field. Note that the inclusion of the twisted sector states comes from demanding

that the theory is modular invariant on the torus. Projecting to the singlet sector

without adding twisted sectors manifestly breaks modular invariance.

Throughout this chapter we will only consider the untwisted sector, which is tanta-

mount to imposing the singlet constraint by hand. As a consequence, our theory

will not be modular invariant. This has some important ramifications, some of

which we address when we discuss the high energy spectrum below. That said,

we wish to emphasize that the singlet sector nonetheless retains many desirable

properties. For example, the sector is closed: only singlet operators appear in the

OPE of any two singlet operators. This implies in particular that the four-point

function of any singlet operators obeys the crossing relations.
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5.3.2 Spectrum of Primaries

In this section, we describe the spectrum of singlet operators in our CFT. We will

be particularly interested in the single-trace Virasoro primaries, since every such

operator is dual to a new bulk field, while multi-trace primaries correspond to

multi-particle states.

In both the holomorphic and anti-holomorphic sectors, the spectrum of the theory

is characterized by the appearance of one new single trace Virasoro primary at

every even level h, h̄ ≥ 4. The general expression for these operators may be

written as [105]

W s(z) =
2s−3s!

(2s− 3)!!

s−1∑
l=1

(−1)l

s− 1

(
s− 1

l

)(
s− 1

s− l

)
∂lφI∂s−lφI +O

(
1

N

)
. (5.12)

Note that these operators are not exactly single trace, but their multi-trace compo-

nents are suppressed by powers of 1/N . We give explicit expressions to all orders

in 1/N for the holomorphic primaries up to level 8 in appendix 5.A, and indeed

find that the multi-trace components are always suppressed by higher powers of

N . These fields correspond to conserved higher spin currents that couple to mass-

less higher-spin fields in the bulk, and have been shown to generate a non-linear

W(e)
∞ [λ = 1] algebra [105]. In the (anti-)holomorphic sector there is only one W(e)

∞
primary, the identity, which generates all the Virasoro primaries.

In the mixed sector, the theory contains one single-trace scalar operator O =

∂φI∂φI with dimension (h, h̄) = (1, 1). This operator is also a W(e)
∞ primary, and

naturally induces an infinite tower of multi-trace W∞ primary operators (corre-

sponding to multi-particle states in the bulk) given schematically by

Okni,n̄i =:
∑
ni,n̄i

an1...nkn̄1...n̄k∂
n1∂

n̄1O ∂n2∂
n̄2O · · · ∂nk∂n̄kO : +O

(
1

N

)
(5.13)

for an appropriate choice of coefficients ani,n̄i . A generic choice of these coefficient

will not lead to a primary, since the global descendants of the lower dimensional

operators must be subtracted out. Along with their global and W∞ descendants,

the operators (5.13) generate the entire spectrum of the theory in the limitN →∞.

At finite N , there are new primary operators that appear at ∆ = N . These will

play an important role when we discuss the high energy part of the spectrum.

It is worth mentioning that we do not include zero modes. The standard vertex

operators eik
IφI are not invariant under the O(N) symmetry and are thus projected

out. However, this still allows for operators of the form eλφ
IφI . We will not

consider such operators, and instead implicitly further project to states that are

invariant under ISO(N) symmetries φI → RIJφJ + CI .
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5.3.3 Density of States

Low Energies: 1� ∆� N

We first compute the asymptotic density of perturbative states, i.e., states whose

energy is parametrically smaller than N . States whose energy scales with N are

typically associated to non-perturbative objects such as a black holes, and will be

the focus of the next sub-section.

We will consider free bosons on the cylinder, where the excitations are given by

oscillators aI−j . The index j denotes the energy of the oscillator, hence a single-

oscillator state would have h = j. In order to compute the density of perturbative

states ρ(∆), we consider n < N oscillators aI , each in the fundamental represen-

tation of O(N). The singlet constraint forces us to contract all indices to form an

invariant state. If n is even, this can be done in (n − 1)!! different ways, while

if n is odd, the singlet constraint implies ρ(∆) = 0. The density of states for an

n-oscillator state can therefore be estimated as

ρn(∆) ∼ (n− 1)!! · 1

n!

∫ ∆

0

d∆1 . . .

∫ ∆

0

d∆n δ

(
∆−

∑
i

∆i

)
(5.14)

= (n− 1)!!
∆n−1

n!(n− 1)!
=

∆n−1

n!(n− 2)!!
(5.15)

where the factor of 1/n! in (5.14) approximates the number of ways of distributing

the energy ∆ over n oscillators. The total density of states is then

ρ(∆) ∼
∆∑
n=1

2nρn(∆)

ρn(∆) ≈ en log ∆− 3
2n logn for n� 1

(5.16)

where the factor of 2n accounts for the inclusion of both left- and right-movers.

We may evaluate this sum by performing a saddle-point approximation on n. The

dominant saddle is at n0 = (2∆)
2
3 e−1, which yields

ρ(∆) ∼ eγ∆
2
3 , 1� ∆� N . (5.17)

Note that, in addition to the saddle point, we made two other approximations

in the course of obtaining this result: the factor of 2n from the choice of a or ā,

and the double factorial (n − 1)!! from pair contractions. These two factors are

only exact when all the oscillators have different momenta, otherwise one should

include an appropriate symmetrization factor. Our approximations thus yield an

overcounting of the total number of states, but those are subdominant in the
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regime under consideration. This is the reason for the undetermined coefficient γ

in (5.17), which cannot be determined from this analysis.

It is however possible to express the perturbative partition function analytically.

The contribution of the W(e)
∞ identity character gives [92]

Zhigher spins =
∏
s∈2N∗

∏
n≥s

1

|1− qn|2 ≡ |M
e(q)|2 , (5.18)

where Me is the modified MacMahon function. The contribution of our real scalar

field with conformal dimension one, including all its multi-trace operators and

global descendants, was shown in [106] to be

Zscalar =

∞∏
l,l′=0

1

1− q1+lq̄1+l′
. (5.19)

The total perturbative partition function is therefore given by [91]

Z(q, q̄) = (qq̄)−
c
24 |Me(q)|2

∞∏
l,l′=0

1

1− q1+lq̄1+l′
(5.20)

from which the appropriate coefficient could in principle be extracted. In prac-

tice, this requires knowledge of the asymptotics of the modified MacMahon func-

tion. However, the asymptotics of the coefficient of qn in the standard MacMa-

hon function, where the product is over all (i.e. odd and even) spins, is known

to be ρ(n) ∼ e3ζ(3)(n/2)2/3 , and one expects a similar formula for the growth of

the modified MacMahon function, but with different numerical factors. Thus, in

conjunction with the upper bound on the density of states derived above, this

demonstrates that our theory satisfies the locality criterion. We now turn to the

density of high energy states.

Asymptotically High Energies: 1� N � ∆

Here we will show that the density of states at asymptotically high energies ∆� N

has a Cardy growth. We will do this by showing that the density of states in this

regime has the same leading asymptotics as the product theory and the correction

is only polynomial in the energy. We will show that

e2π
√

N
3 ∆ ∼ ρproduct(∆) ≥ ρsinglet(∆) ≥ ρproduct(∆)

∆p
, ∆� N (5.21)

for some power p.

Before embarking on the proof, some general comments are in order. The result

(5.21) may seem surprising since it implies that the Cardy formula also holds
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asymptotically in the singlet theory, even though the theory is not modular invari-

ant. This is a consequence of the nature of the projection, which preserves certain

properties of the full theory even though modular invariance is lost. To see this,

consider an orbifold by a discrete group G. The singlet sector (equivalently, the

untwisted sector) partition function is given by

ZN (q, q̄) =
1

|G|
∑
g∈G

TrH⊗N
[
g qL0−c/24q̄L̄0−c̄/24

]
. (5.22)

A lower bound to the density of states can be obtained by only considering the

term in this sum where the group element g is the identity

ZN (q, q̄) =
1

|G| TrH⊗N
[
qL0−c/24q̄L̄0−c̄/24

]
=

1

|G|Z(q, q̄)N (5.23)

where Z is the partition function of one free boson. For any discrete group, |G|
is a finite number, and will constitute only a small correction for sufficiently large

temperatures. Performing an inverse Laplace transform to obtain the density of

states, we find that the growth is Cardy up to some subleading correction from |G|.
Since an upper bound to the density of states is given by considering the product

theory, which has Cardy growth, this shows that for any discrete orbifold, even the

non-modular invariant singlet theory still has a Cardy growth. Unfortunately, such

an argument fails for projections by continuous groups. However, the analogue of

the correction coming from |G| can still be calculated in our O(N) example. It is

no longer constant in the energy, but it is still subleading compared to the Cardy

growth.

The proof of (5.21) proceeds as follows. A generic state will be of the form

an1
−1a

n2
−2 · · · ank−k|0〉 (5.24)

with energy ∆ =
∑k
i=1 i · ni. Since we can take the energy to be arbitrarily

large, many of the oscillators will have the same momenta and must therefore be

appropriately symmetrized. Hence in order to estimate the number of singlets at

a given energy ∆, we must find the multiplicity of the trivial representation in

Sym(n1)⊗ · · · ⊗ Sym(nk) (5.25)

where Sym(n1) denotes the symmetric tensor product of n1 fundamentals.

Since this is a rather cumbersome counting problem, we will do the explicit com-

putation for SO(3). The argument for general N will be very similar and only the

power p of the supression in (5.21) will change.
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Figure 5.1: Distribution of the number of states per jz for Sym(12) and Sym(13)

Proof for SO(3)

Consider the symmetric product of n fundamentals of SO(3). The generating

function for the number of states at a given jz in the symmetric tensor product

Sym(n) is given by

z(x, n) =

n∑
jz=−n

(# states)xjz =

 m/2∑
i=−m/2

x2i

( n∑
i=−n

xi

)

m =
⌊n

2

⌋
and n =

⌈n
2

⌉
.

(5.26)

The states form a triangular distribution which is symmetric around jz = 0. The

total number of states is (n+1)(n+2)
2 , and the variance is given by n(n+3)

6 . See

figures 5.1(a) and 5.1(b) for examples of this distribution at even and odd n.

Now, when tensoring together Sym(n1)⊗· · ·⊗Sym(nk), we know that the angular

momentum in the z-direction is additive:

jTotal
z =

k∑
i=1

jiz . (5.27)

This enables us to extract the number of singlets with the following formula:

# singlets =
(
# states with jTotal

z = 0
)
−
(
# states with jTotal

z = 1
)
. (5.28)

This expression can be understood by observing that any irrep of SO(3) with spin

strictly greater than zero has one state with jz = 0 for each state with jz = 1.

Hence any difference between the two must come from a spin zero singlet. For

example, one can see from figures 5.1(a) and 5.1(b) that Sym(12) has 1 singlet,

while Sym(13) has none.
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The distribution of jTotal
z can be obtained using the central limit theorem. We

view the jiz as independent discrete random variables with mean 0 and variance

σ2
i . jTotal

z has mean zero and variance σ2
Total =

∑k
i=1 σ

2
i . Note that σ2

Total → ∞
as k →∞. Since there exists a constant A such that |jiz| ≤ A for all i, the central

limit theorem implies that jTotal
z is approximately Gaussian. More precisely, for

a < b:

lim
n→∞

P

(
a <

jTotal
z

σTotal
< b

)
=

1√
2π

∫ b

a

dx e−
x2

2 . (5.29)

This implies that in the regime of very large energies, where we sum over a large

number of jiz, we can approximate the distribution of jTotal
z by

P (jTotal
z ) ≈ 1√

2πσ
e−

(jTotal
z )2

2σ2 (5.30)

with variance

σ2 =
∑
i

σ2
i =

∑
i

ni(ni + 3)

6

≤
∑
i

n2
i ≤

(∑
i

i · ni
)2

≤ ∆2.

(5.31)

Note that this distribution is normalized, so that P
(
jTotal
z = 0

)
− P

(
jTotal
z = 1

)
gives the ratio of singlets to the total number of states in the product theory. In

the large E limit, we may take σ arbitrarily large to obtain

P (jTotal
z = 0)− P (jTotal

z = 1) ≈ 1√
2πσ

(
1

2σ2

)
=

1√
8πσ3

≥ 1√
8π∆3

(5.32)

and hence we conclude

ρproduct(∆) ≥ ρsinglet(∆) ≥ ρproduct(∆)

∆3
. (5.33)

5.4 Bulk Locality in the Toy Model

5.4.1 Locality and Reconstruction

In this section, we review how bulk locality emerges in the model, and probe the

breakdown thereof. We shall work in Lorentzian signature in the CFT. The field

theory contains an operator O = ∂+φ
I∂−φI with conformal dimension ∆ = 2,
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which is dual to a massless scalar Φ in AdS3. In chapter 3, this holographic toy

model was used to investigate bulk locality and reconstruction of Φ in the large

N limit. At leading order in 1/N , the bulk field is free, and can be reconstructed

on the boundary by integrating the CFT operator against a suitable smearing

function

Φ(X) =

∫
dxdt K(X|x, t)O(x, t) +O(

1

N
) . (5.34)

This prescription correctly reproduces the bulk two-point function from the CFT.

We now demonstrate explicitly how bulk locality emerges at large N in this model.

Expanding the bulk field Φ into mode functions in Poincaré AdS3, we have

Φ(t, x, z) =

∫
dωdk (αωk gωk(t, z, x) + h.c.) . (5.35)

A local bulk field should satisfy the equal-time commutation relations

[Φ(x, z),Φ(x′, z′)] = [Π(x, z),Π(x′, z′)] = 0

[Φ(x, z),Π(x′, z′)] ∼ δ(x− x′)δ(z − z′)
(5.36)

which in turn require

[αωk, αω′k′ ] = [α†ωk, α
†
ω′k′ ] = 0 (5.37)

[αωk, α
†
ω′k′ ] ∼ δ(ω − ω′)δ(k − k′) . (5.38)

Via the extrapolate dictionary, we can relate the bulk creation and annihilation op-

erators above to the those in the CFT by demanding that limz→0 z
−∆Φ(t, x, z)↔

∂+φ
I∂−φI . This implies

αωk ∼
aIω+kã

I
ω−k√
N

=
aIω+

ãIω−√
N

(5.39)

where the a’s are the left- and right-moving Fourier modes of the boundary fields

φI . Equation (5.39) is essentially the statement that a bulk particle corresponds

to a pair of left- and right-moving excitations in the CFT. Note that ω± < 0

corresponds to a creation operator, and that a†ω± = a−ω± . Translating the bulk

commutation relations (5.37) and (5.38) into the CFT using [aIω, a
J
ω′ ] = ωδ(ω +

ω′)δIJ yields

1

N
[aIω+

ãIω− , a
J
ω′+
ãJω′− ] = ω+ω−δ(ω+ + ω′+)δ(ω− + ω′−) (5.40)

+
1

N

(
ω−a

I
ω′+
aIω+

δ(ω− + ω′−) + ω+ã
I
ω′−
ãIω−δ(ω+ + ω′+)

)
which becomes local whenN is large (i.e., when the last two terms can be dropped).
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x1

x2

x3

x4

Figure 5.2: Four CFT insertions that are not lightlike separated in the CFT, but whose bulk

lightcones intersect in a point.

5.4.2 3- and 4-point Correlation Functions

At next-to-leading order in 1/N , we expect the bulk dual of our CFT to be non-

local, despite having the density of states of a local quantum field theory in 2 + 1-

dimensions. As detailed in section 5.3.2, the bulk contains massless higher spin

fields, which strongly suggests locality violation since the effective Lagrangian will

be unbounded in the number of derivatives. To quantify the non-locality, we

calculate the 3- and 4-point functions of our primary field O. As explained in

the introduction 1.3.6, the 4-point functions provide a strong test of bulk locality

[43, 86–89]. Any theory with a nontrivial S-matrix in the flat space limit must

have certain lightcone singularities in the 4-point function. These singularities

arise when the bulk interaction point is lightlike connected to all 4 boundary

points, none of which are lightlike separated in the boundary theory; see figure

5.2. Such singularities do not occur in a CFT at finite N , but they can appear in

the large N limit.

The 3-point function of the operator O is zero,

〈OOO〉 = 0 . (5.41)

This is easily seen since each O contains one left-mover and one right-mover, so

the 3-point function contains 3 left-movers. Since the boundary theory is free, the

vacuum expectation value of an odd number of left-movers is zero.

The 4-point function contains a factorized piece, which dominates at large N , and

a subleading connected piece. Defining the operator O with a normalization that
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makes the 2-point function order one in N-scaling,

O =
1√
N
∂+φ

I∂−φ
I (5.42)

the 4-point function is

〈O(x1)O(x2)O(x3)O(x4)〉 =
1

N2
〈∂+φ

I(x1)∂−φ
I(x1)∂+φ

J(x2)∂−φ
J(x2)

×∂+φ
K(x3)∂−φ

K(x3)∂+φ
L(x4)∂−φ

L(x4)〉.
(5.43)

We can then use the fact that

〈∂+φ
I(x1)∂+φ

J(x2)〉 =
δIJ

(x+
1 − x+

2 )2

〈∂+φ
I(x1)∂−φ

J(x2)〉 = 0

(5.44)

to obtain

〈O(x1)O(x2)O(x3)O(x4)〉 = disconnected

+
1

N

1

(x+
1 − x+

2 )2(x−1 − x−3 )2(x−2 − x−4 )2(x+
3 − x+

4 )2
+ permutations

(5.45)

where, with our normalization conventions, the disconnected piece is of order N0.

Examining this expression for the full 4-point function, it is clear that singularities

arise only when some pair of points are lightlike separated on the boundary, such

that they have the same value of x+ or x−. There are no additional singularities,

which would appear if the bulk theory were truly described by Einstein gravity

coupled to matter. This leaves us with two non-exclusive possibilities: the bulk

theory is either non-local or has a trivial S-matrix in the flat-space limit1. There

is some evidence for the latter on general grounds so we cannot conclude directly

from the singularity structure that the bulk theory is non-local. However, we have

found above that the bulk theory contains an infinite tower of massless higher-spin

fields, indicating that it is non-local in the sense that the Lagrangian contains an

arbitrarily large number of derivatives. It would be interesting to better quantify

the degree of non-locality in the bulk (see for example [112]), and to determine

whether the commutators can be corrected order-by-order in 1/N . We will not

address these questions any further in this thesis.

1Determining the space of permissible field redefinitions that reveals the S-matrix to be trivial

despite the presence of interaction terms is an open area of research. We will not attempt to

address the issue here, but refer the reader to the higher-spin literature, e.g. [107–112].
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5.A Holomorphic Primaries

Here we give explicit expressions for the holomorphic Virasoro primaries at finite

N , up to h = 8. We will work on the cylinder and discuss primary states. The com-

parison with the operators on the plane can be performed via the state-operator

correspondence; e.g., the spin 4 operator is given in [105]. To see that our states

are single-trace in the large N limit, some care is needed in the estimation of the

magnitude of a given term. Terms with more oscillators naturally weigh more

since they have several sums. Each oscillator carries an effective weight of N1/4,

which follows from considering any normalized state,

Na1....ak|0〉 ∼ N−k/4a1....ak|0〉 . (5.46)

The states below are given up to an overall normalization.

There is one new primary at h = 4:

W4 = aI−1a
I
−3 − 3

4a
I
−2a

I
−2 − 3

2(N+2)a
I
−1a

I
−1a

J
−1a

J
−1 . (5.47)

At h = 6, there is also one new primary given by

W6 = aI−1a
I
−5 − 5

2a
I
−2a

I
−4 +

5

3
aI−3a

I
−3 + 5(8N+7)

4(N−1)(N+2)a
I
−1a

I
−1a

J
−2a

J
−2 (5.48)

+ 5(N−16)
4(N−1)(N+2)a

I
−1a

J
−1a

I
−2a

J
−2 − 15

N+2a
I
−1a

J
−1a

J
−1a

I
−3

+ 15
(N+2)(N+4)a

I
−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1 .

There are 2 new primaries at h = 8. An orthogonal basis can be chosen such that

one of these becomes single-trace at large N , while the other remains multi-trace.

The former may be written:

W8 =− N+2
28 aI−1a

I
−7 + N+2

8 aI−2a
I
−6 − N+2

4 aI−3a
I
−5 (5.49)

+ 5(N+2)
32 aI−4a

I
−4 + aI−1a

J
−1a

J
−1a

I
−5 − 45

32a
I
−2a

I
−2a

I
−2a

J
−2

− 4N+3
2(N−1)a

I
−1a

I
−1a

J
−2a

J
−4 + 5(3N+8)

12(N−1)a
I
−1a

I
−1a

J
−3a

J
−3 − N−8

2(N−1)a
I
−1a

J
−1a

J
−2a

I
−4

− 28−N
4(N−1)a

I
−1a

J
−2a

I
−2a

J
−3 − 5(5N+6)

12(N−1)a
I
−1a

J
−1a

I
−3a

J
−3 + 14N+13

4(N−1) a
I
−1a

J
−2a

J
−2a

I
−3

− 5
4(N−1)a

I
−1a

I
−1a

J
−1a

J
−1a

K
−2a

K
−2 + 5

4(N−1)a
I
−1a

J
−1a

K
−1a

K
−1a

I
−2a

J
−2 .

Similarly, there are 3 new primaries at h = 10, only one of which will be single-trace

at large N . And there are 6 new primaries at h = 12, only one of which is single-

trace at large N . For their explicit form, we refer the reader to the appendices in

the paper [3].
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6
Conclusions & Outlook

In this final chapter we will wrap up and summarize the results we have obtained

throughout this thesis, providing some concluding remarks and discussing a few

unresolved questions.

6.1 Burning Black Holes

Black holes are one of the favorite tools of a theorist to study the properties of

(quantum) gravity, e.g. by studying black hole thermodynamics and microstate

counting. Their main use in this thesis, however, is to learn about another puz-

zling aspect due to the fact that black holes emit Hawking radiation: the firewall

paradox. This states that there seems to be a conflict between three basic postu-

lates that we took for granted in a regime where we thought we could trust our

theory, i.e. doing low energy effective field theory on a weakly curved background:

• unitarity: black hole formation and evaporation is a unitary process.

• locality: operators that are spacelike separated commute.

• the equivalence principle: a freely falling observer does not experience any-

thing special at the horizon.

Resolving this conflict should teach us about quantum gravity, and in particular

whether and why quantum gravity corrections would suddenly be important in

this low energy regime.

We took a pragmatic step towards resolving the firewall paradox in chapter 2,

where we have shown that for static black holes in 3 + 1 and higher dimensions,

there does not exist a causal patch that contains all the ingredients necessary to

construct the firewall paradox at the level of s-wave Hawking quanta (which is the

predominant form of Hawking radiation due to the angular momentum barrier).

In that case black hole complementarity can come to the rescue, since no single

observer would be able to see the violation of any physical law.
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A possible exception to this principle arises when considering the Schwarzschild

black hole in 3+1 dimensions, and we presented a detailed analysis of the infalling

geometry for this case. Our results indicate that the infalling observer is always

missing some finite amount of information about the s-wave. Though it remains to

show precisely how much angular resolution the observer can afford to lose before

reconstruction of the partner mode becomes impossible in principle, our analysis

suggests that it is at best difficult in practice. We focused on the situation for

s-waves, as this version of the firewall paradox is the simplest and most robust in

our view. Although it would be interesting to consider the consequences for high-l

modes, this requires a more thorough understanding of the degree to which black

hole mining disrupts the entanglement of the quantum state. A more detailed

analysis of localization of partner modes may shed more light on this direction.

We conclude that for static black holes in 3 + 1 and higher dimensions, black hole

complementarity is sufficient to evade at least the simplest version of the firewall

paradox. While this is not enough to settle the debate, it necessitates a more

careful formulation of the paradox. In particular, two classes of proposed resolu-

tions are worth mentioning. First of all, instead of giving up on the equivalence

principle like AMPS did, it has been suggested that a violation of locality can

also provide an outcome for firewalls, effectively violating the assumption that P

and R are independent in figure 2.1. The challenge is to explain why tiny non-

localities could conspire to have rather large effects; or why they are important

to solve the firewall problem, but can be neglected when doing all other physics

problems. A proposal that makes use of a rather dramatic violation of locality is

known under the name ER=EPR [113], and suggests that entanglement is caused

by tiny wormholes, that in this case connect the interior of the black hole with

the exterior. Although a cute proposal, one may wonder whether entanglement (a

quantum mechanical property) can really by explained using wormholes. It would

be interesting to see whether further evidence can be found or not.

Secondly there is a class of holographic arguments, making a case that typical CFT

states dual to a black hole, will contain firewalls [57, 58]. They seem quite robust

and not sensitive to the causal patch arguments made in chapter 2. An advantage

of the holographic description is that black hole evaporation is manifestly unitary

in the CFT, although it is far from clear how this happens from the bulk point

of view. Various holographically inspired resolutions have been proposed, some

of the most interesting ones suggesting a state-dependent way of doing AdS/CFT

in order to avoid firewalls by reconstructing bulk fields near (or even behind) the

horizon [114–118]. There is no doubt that, in order to settle these issues and

ultimately understand quantum gravity, a detailed study of the bulk-boundary

mapping and (sub-AdS scale) locality in AdS/CFT is required. These questions

brought us to the chapters 3, 4 and 5 in this thesis.
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6.2 Precarious Precursors

The AdS/CFT correspondence turned out to be an exciting laboratory, radically

and rapidly changing the décor of modern high energy theory research. It maps

the strongly coupled phase of a gauge theory to a particularly well understood

low energy limit of string theory (supergravity), and vice versa. Since AdS/CFT

is a duality between the full string theory and gauge theory, it should provide

hints for dealing with string theories and gauge theories well beyond perturbative

regimes. Therefore, holography allows us to explore gauge and string theories in

ways which were inaccessible before. This exploration takes place from two point

of views. First of all from a fundamental viewpoint, where AdS/CFT provides a

non-perturbative definition of quantum gravity in AdS in terms of an holographi-

cally dual CFT living on the boundary. Secondly from a more phenomenological

viewpoint, where new developments like AdS/QCD (which predicted the universal

viscosity to entropy ratio for a large class of strongly interacting field theories [119])

or AdS/CMT (which provides a stringy description of strongly coupled condensed

matter systems such as superconductors or superfluids) gave rise to entire new

fields of theoretical physics.

In order to make ‘practical’ use of the correspondence, a dictionary for translating

gauge theory problems into string theory ones (and vice versa) is necessary. A

central problem is how to reconstruct gravitational bulk physics from boundary

data. We saw that the boundary duals of local operators deep in the bulk have

highly non-local representations in the CFT, known as precursors. Following the

HKLL construction, these can be localized to the boundary region of an AdS-

Rindler wedge that contains the bulk field. This immediately raises the question

of redundant boundary duals: a bulk field that falls within multiple boundary

wedges must have multiple, different boundary representations. We are therefore

left with the problem of how inequivalent precursors can all give rise to the same

bulk operator.

In chapter 3, we addressed this question using an improved version of the holo-

graphic toy model in [69]. There it was argued that the non-uniqueness of pre-

cursors is a simple consequence of boundary gauge invariance, an idea on which

we elaborated later in chapter 4. We provided an explicit demonstration of this

proposal, explained how boundary gauge invariance leads to an ambiguity in the

smearing function, and used the ambiguity to localize precursors within a single

Rindler wedge. This supports the claim that gauge invariance may be deeply con-

nected to the emergence of the dual spacetime [4, 69]. In section 3.3, this was

accomplished without any mention of boundary entanglement. Rather, it relied

only on the freedom to add unphysical modes to the precursor.
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In contrast, entanglement is essential for a quantum error correction scheme to suc-

ceed [73]. Indeed, it has been postulated that the entanglement between boundary

regions plays a crucial role in the emergence of the bulk spacetime, and there are

reasons to believe that the entanglement – as opposed to the causal – wedge is

the more natural bulk dual for holographic reconstruction [80, 120–126]. In the

interest of further exploring the link between entanglement and localization, we

showed explicitly in section 3.4 that the entanglement between boundary Rindler

wedges can likewise be used to localize the bulk information to within a single

region, provided that the bulk point is contained in the particular Rindler wedge,

in complete agreement with the previous approach based on ambiguities in the

smearing function.

Our model may also be useful for diagnosing proposals for the description of op-

erators behind the black hole horizon, such as [117,127], since the bulk spacetime

we considered does have a Rindler horizon. In addition, it may clarify subtleties in

the CFT operators dual to bulk fields outside the black hole horizon, which have

the same properties as our Rindler precursors.

It is interesting to ask whether our model continues to agree with expectations

about the full AdS/CFT correspondence when we consider more complicated

boundary regions, such as disconnected intervals. The analogous set-up for a

disconnected boundary region is shown in figure 6.1. The shaded region is the

entanglement wedge for the given, disconnected boundary region. When this re-

gion becomes sufficiently large, the bulk minimal surface transitions to the new

global minimum, whereupon the entanglement wedge suddenly includes the bulk

point [5, 128]. The question we wish to ask is whether our model generalizes to

agree with the corresponding reconstruction prescription. Specifically, can the pre-

cursor corresponding to a bulk point within the shaded bulk region be localized

within the (disconnected) boundary of this region?

Generalizing our results to multiple, disconnected boundary regions requires either

an explicit formula for the pure-gauge smearing function δK, or a general prescrip-

tion for when a particular bilocal can be mapped into a given wedge. We cannot

present a general solution, but instead comment on what one might expect given

the obtained results, in the interest of comparing them with reconstruction pro-

posals involving the entanglement wedge [80] and quantum error correction [73].

Näıvely generalizing our results for the case of a single boundary region, we would

suspect that the precursor cannot be mapped to a healthy operator within the

boundary wedge, if some bilocals that are evolved back from the lightcone sin-

gularity, have both points outside the CFT region under interest. This simple

criterion would imply that our simple model fails to reproduce the expected re-

sult, namely that bulk operators in the entanglement wedge can be mapped to
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x x

Figure 6.1: Time slice of global AdS, with the entanglement wedge for a disconnected region

(shaded). If the region is sufficiently small (left), the bulk point labelled x will

not be included, and hence the shaded boundary region contains no information

about it. However, as the boundary region is increased, the bulk minimal surfaces

that define the entanglement wedge eventually transition to a new global minimum

(right), whereupon the shaded boundary region abruptly gains information about

the given bulk point. Intuitively, one needs ‘enough’ of the boundary to reconstruct

the bulk.

precursors in the corresponding boundary region. It should perhaps not be too

surprising that our weakly-coupled model does not have enough features to re-

produce the entanglement wedge reconstruction, because expectations about the

entanglement wedge are based on the Ryu-Takayanagi (RT) formula for the en-

tanglement entropy. It is known that a simple free field model on the boundary

will not reproduce the correct RT formula for the entanglement entropy of mul-

tiple intervals [129]. Thus, while our model appears to generalize naturally to

disconnected causal wedges, there is no obvious generalization that would cor-

rectly reproduce the entanglement wedge prescription. Understanding precisely

how the entanglement structure, or the gauge freedom, conspires to produce lo-

calized precursors describing the interior of the entanglement wedge of general

boundary regions, would be very illuminating.

In chapter 4 we focused on the paradoxical property that different precursors can

correspond to the same bulk field. In particular, the difference between two such

precursors, while it is a nontrivial operator in the CFT, does not seem to have any

physical meaning in the bulk. We conjectured that, in the large N limit, such an

operator is BRST exact and ghost-free, and showed that by construction it can

be freely added to operators inside physical correlation functions. That is exactly

the property we would want a precursor ambiguity to have. This constitutes

preliminary evidence that precursors are related to the underlying gauge symmetry

of the field theory. To support our claim, we re-derived the precursor ambiguity

in the same, simple holographic toy model that was used in chapter 3 to modify

the spatial support of the smearing function.
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Several interesting follow-up directions remain to be explored. One could for

example study precursors in the toy model in nontrivial states (such as thermal

states), but more importantly, one would like to generalize the construction to a

proper gauge theory with local gauge invariance. Perhaps the simplest example of

a field theoretic precursor ambiguity is to consider the dual of the bulk operator

one obtains by integrating a bulk field over a symmetric minimal surface. Such

operators were studied in [130, 131], and to lowest order in the 1/N expansion in

the field theory they are given by appropriately smearing the boundary value of

the bulk scalar over the causal diamond (defined using the boundary of the bulk

minimal surface). There are two equivalent choices of causal diamonds for a given

symmetric minimal surface. Together, they contain a full Cauchy slice for the field

theory. Hence, there are two inequivalent boundary representations of the same

bulk operator, and the difference between these two is an example of a precursor

ambiguity. We would therefore like to conjecture that there exists an operator Y

such that this difference is given by {Y,QBRST}. It would be very interesting to

try and construct such an operator Y .

Finally, in chapter 5, we discussed the broader issue of bulk locality in AdS3/CFT2.

Dissecting the toy model used in chapter 3 showed the presence of an infinite tower

of higher spins in the bulk. While this typically gives rise to a non-local theory (in

the sense that the bulk Lagrangian will contain an infinite number of derivatives),

surprisingly, a detailed analysis showed that it has the right low- and high energy

density of states to be dual to a local gravitational theory in the bulk. However,

because the model is pathological – it is not modular invariant due to projecting

out all states which are not SO(N) singlets – we were led to conjecture that at

large N all CFT2’s that have a density of states which is bounded by that of a

local QFT in D-dimensions (cf. the locality criterion discussed in section 5.2) and

are modular invariant, will be dual to a gravitational bulk theory with sub-AdS

scale locality.

Evidence for this is largely circumstantial, and based on the absence of a counterex-

ample and our intuition with orbifold CFT’s that restoring modular invariance

requires a drastic modification of the spectrum, violating the locality criterion.

A lot of future work remains to be done to completely understand which CFTs

have local bulk duals. To prove the conjecture one would have to impose modular

invariance and the constraint on the density of states, and try to translate this

to conditions on the OPE coefficients, perhaps using bootstrap-like techniques.

Since the OPE’s define the CFT (together with its spectrum) and contain all the

dynamical information, we would expect them to play a key role. It would also

be interesting to understand how our conjecture relates to other criteria, such

as the Lorentzian four-point function and the gap in the operator dimensions as

explained in the introduction.
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The mystery of why and how the CFT organizes its degrees of freedom in such

a way to give rise to a bulk theory with (sub-AdS scale) locality, remains a – for

me personally, probably the – great miracle of AdS/CFT. Although progress has

been made, more research is necessary to fully apprehend what this tells us about

quantum gravity. Theoretical physicists are determined to do what is needed,

and a better understanding of the laws of nature will ultimately and inevitably

follow. Whether that would require jumping in burning black holes, dealing with

precarious precursors, or studying further aspects of gauge/gravity duality.
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Samenvatting

Bulk-Lokaliteit Gebroken:
Gloeiende Zwarte Gaten & Precaire Precursoren

Deze thesis tracht een overzicht te geven van een deel van het onderzoek dat

ik verricht heb tijdens mijn doctoraatsstudies in Amsterdam. Mijn onderzoek

spitst zich toe op hoe fundamentele onderwerpen zoals algemene relativiteitsthe-

orie, thermodynamica en kwantummechanica aan elkaar gerelateerd blijken. Er

bestaan verschillende connecties, die tot uiting komen in zwarte gaten, holografie,

en de AdS/CFT correspondentie in het bijzonder. In deze samenvatting zal ik dan

ook proberen een korte valoriserende introductie te geven tot deze onderwerpen,

en tegelijkertijd mijn wetenschappelijke bijdrage bondig toe te lichten.

Introductie

In het begin van vorige eeuw werden de fundamenten van de kwantummechanica

gelegd, een theorie die kleine deeltjes zoals moleculen en atomen beschrijft. Het

combineren van de kwantummechanica met de principes van een andere ontdekking

uit het begin van vorige eeuw – de speciale relativiteitstheorie – leidde tot een van

de grootste triomfen uit de 20e eeuwse natuurkunde: het standaardmodel van de

deeltjesfysica. Deze theorie geeft ons één enkele beschrijving van alle waargenomen

fundamentele deeltjes, samen met drie van de vier natuurkrachten: de sterke-,

zwakke-, en elektromagnetische kracht. Het standaardmodel werd onderworpen

aan verschillende experimenten, en blijkt keer op keer stand te houden, tot op de

kleinste afmetingen die waargenomen kunnen worden met behulp van de huidige

deeltjesversnellers.

De vierde – en misschien wel bekendste – kracht wordt niet beschreven door het

standaardmodel: de zwaartekracht. Deze kracht, die beschreven wordt door Ein-

steins algemene relativiteitstheorie, is verantwoordelijk voor het beschrijven van

grote, massieve deeltjes zoals planeten die rond de zon draaien. Hoewel zwaarte-
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kracht niet in het standaardmodel opgenomen is, heeft dit verrassend genoeg nooit

tot discrepanties geleid in experimenten met deeltjesversnellers. Dit komt omdat

zwaartekracht de zwakste van de vier fundamentele krachten is, zoals iedereen die

ooit een paperclip met een magneet optilde, zelf heeft kunnen ondervinden.

Ondanks dat zwaartekracht de zwakste is van de vier, is het de enige kracht die

werkt op grote afstanden (van macroscopische tot zelfs kosmologische schaal), en

dus alomtegenwoordig is in de typische situaties van ons dagelijkse leven. Daarom

is het bestuderen van de zwaartekracht toch uiterst interessant. Een manier om

de zwaartekracht te bestuderen, is door te kijken wat er gebeurt als ze zeer sterk

is, wat bereikt kan worden door objecten heel zwaar te maken. Wat blijkt dan?

Het is niet mogelijk om de dichtheid van een object onbeperkt te laten toenemen.

Wanneer een object voldoende massief wordt, stort het in elkaar onder druk van

zijn eigen gewicht en vormt het één van de meest fascinerende objecten uit de

natuurkunde: zwarte gaten. Merk op dat zwarte gaten niet louter een theoretisch

begrip zijn, maar ook door astronomen waargenomen worden in ons universum.

Het zijn namelijk de eindproducten van zware, uitdovende sterren wanneer deze

op het einde van hun leven in elkaar storten.

Het ontbreken van zwaartekracht in het standaardmodel is niet de enige reden

waarom het werk van natuurkundigen nog niet vervolledigd is. Het standaard-

model bevat namelijk verschillende onbepaalde parameters (zoals de massa’s van

elementaire deeltjes) die niet door de theorie verklaard worden. Bovendien is onze

huidige beschrijving van de zwaartekracht – de algemene relativiteitstheorie – on-

volledig: in situaties waarin de zwaartekracht heel sterk is (zoals in het centrum

van zwarte gaten) of toegepast moet worden op heel kleine (kwantummechanische)

afstanden zoals bij het begin van ons universum, loopt de beschrijving helemaal

mis. In het wilde weg toepassen van algemene relativiteitstheorie op kleine afstan-

den is inconsistent. Dit alles blijft theoretisch natuurkundigen motiveren om te

zoeken naar een ‘betere’ theorie: een kwantummechanische theorie van de zwaar-

tekracht, die liefst ook nog de interactie met drie andere fundamentele krachten

beschrijft. Zo een goede ‘geünificeerde’ theorie moet dus zowel het standaardmodel

als de algemene relativiteitstheorie bevatten.

Een van de meest veelbelovende kandidaten voor zo’n alomvattende theorie is de

snaartheorie. De fundamentele bouwstenen van deze theorie zijn geen deeltjes,

maar wel trillende, uitgestrekte objecten: snaren en membranen. De verschillende

trillingswijzen van een snaar kunnen worden gëınterpreteerd als fundamentele deel-

tjes. In het bijzonder kan worden aangetoond dat onder deze deeltjes zich het zoge-

naamde ‘graviton’ bevindt, dat de zwaartekracht veroorzaakt. Bovendien kunnen

de membranen gebruikt worden om modellen in snaartheorie te bouwen die de-

zelfde eigenschappen als het standaardmodel vertonen. Dit stemt natuurkundigen
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hoopvol dat snaartheorie zowel het standaardmodel, als een kwantumtheorie van

de zwaartekracht kan beschrijven.

Het bestuderen van snaartheorie heeft reeds tot ettelijke successen in natuur-

en wiskunde geleid. Daarenboven, en bijzonder relevant voor deze thesis, heeft

snaartheorie geleid tot een van de meest merkwaardige en krachtige ideeën in de

theoretische natuurkunde: de AdS/CFT correspondentie. Hierover wordt verder

uitgeweid in de sectie ‘precaire precursoren’.

Gloeiende Zwarte Gaten

Een zwart gat kan voorgesteld worden als een bol, waarbij het oppervlak van de

bol overeenkomt met de horizon van het zwarte gat. Eenmaal hier voorbij, is de

zwaartekracht zo sterk dat er geen weg meer terug is. Zelfs licht kan niet meer

ontsnappen aan de zwaartekracht wanneer het binnen de horizon van het zwarte

gat komt, vandaar de naam: zwart gat. Eenmaal binnen de horizon eindigt alles

onvermijdelijk in het centrum van de bol, waar de ‘singulariteit’ van het zwarte

gat zich bevindt: een punt waar de massadichtheid oneindig wordt. In de buurt

van de singulariteit is de zwaartekracht zo sterk dat de algemene relativiteitsthe-

orie geen correcte beschrijving meer geeft, en een theorie van kwantumgravitatie

noodzakelijk is om te verklaren wat er gebeurt.

In de jaren 70 werd verrassend genoeg duidelijk dat zwarte gaten toch niet zo

zwart zijn: Hawking toonde aan dat zwarte gaten een temperatuur hebben, en

thermische straling uitzenden. Dit impliceert dat een zwart gat langzaam energie

verliest en kleiner wordt: het verdampt. Het gaf aanleiding tot de ‘informatie

paradox’: gooi een object in een zwart gat en wacht tot het zwarte gat volledig

verdampt is. Het eindresultaat is een hoopje thermische straling die geen enkele

informatie meer over dat object bevat. Dit mag banaal lijken, maar signaleert een

fundamenteel probleem met tijdsevolutie van de onderliggende theorie.

In 2012 ontstond een nieuwe, gerelateerde paradox. Er werd voor verdampende

zwarte gaten pijnlijk aangetoond dat drie fundamentele natuurkundige principes

onderling inconsistent zijn. Eerst en vooral is er het equivalentie principe waarop

de algemene relativiteitstheorie gebaseerd is. Dit zegt dat een waarnemer in vrije

val altijd hetzelfde observeert, ongeacht of hij hier op aarde valt, of hij nu door

de horizon van een zwart gat valt. Ten tweede zijn er de wetten van de kwan-

tummechanica, en ten derde het principe van de lokaliteit, wat zegt dat processen

die voldoende ver van elkaar verwijderd zijn, elkaar niet kunnen bëınvloeden. Het

feit dat deze drie principes inconsistent zouden zijn wanneer toegepast op een

verdampend zwart gat, kwam als een shock.
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Sommige natuurkundigen besloten dan maar het equivalentie principe op te geven,

en concludeerden dat een waarnemer in vrije val nooit de binnenkant van een zwart

gat zal zien, maar verbrand wordt op de horizon door een muur van hoge energie

deeltjes. Deze paradox werd dan ook toepasselijk de ‘firewall’ paradox gedoopt.

Dit brengt ons naar de inhoud van één van mijn onderzoeken. In hoofdstuk 2 van

deze thesis heb ik geprobeerd de firewall paradox te ontkrachten, door te laten zien

dat een waarnemer die in een zwart gat valt, onmogelijk alle drie principes kan

meten om de paradox te kunnen construeren. Dit heb ik meetkundig aangetoond

voor een grote klasse zwarte gaten in verschillende ruimtes en dimensies. Het

geeft een pragmatische uitweg voor de paradox: als een waarnemer niet in de

mogelijkheid verkeert om alle drie principes te verifiëren, kan deze dus niet tot de

conclusie komen dat ze onderling inconsistent zijn. Dit maakt dat er geen reden is

om van het equivalentie principe af te stappen, en de waarnemer kan dus zonder

problemen door de horizon van een zwart gat vallen.

Echter, dit is geen sluitend bewijs om de firewall paradox voorgoed op te bergen.

Hoewel het onderzoek suggereert dat voor een grote klasse zwarte gaten het niet

mogelijk is om de paradox waar te nemen, zijn er andere, in het bijzonder holo-

grafische (verder hierover meer) argumenten voor firewalls die robuust blijken te

zijn tegen de meetkundige argumenten die ik gemaakt heb. Verder onderzoek is

nodig, en ik ben ervan overtuigd dat een sluitende resolutie van deze paradox tot

diepere inzichten in kwantumgravitatie zal leiden.

Precaire Precursoren

Zwarte gaten zijn thermodynamische objecten; ze worden niet alleen gekarakteri-

seerd door temperatuur, maar ook door entropie: een grootheid die de hoeveel-

heid informatie meet. Het bijzondere is dat zwarte gaten een entropie hebben die

gegeven wordt door hun oppervlakte, en niet door hun volume (zoals men zou

verwachten bij een gas of andere familiaire vorm van materie). In zekere zin be-

tekent dit dat alle informatie van het zwarte gat, zich op de horizon (de rand)

ervan bevindt. Dit fascinerende gegeven kan worden beschouwd als gevolg van

het holografisch principe, wat stelt dat elke gravitationele theorie in een bepaald

volume beschreven kan worden door een andere theorie, die leeft op het oppervlak

dat dat volume omsluit. Dit merkwaardig principe wordt door theoretisch natuur-

kundigen beschouwd als één van de eigenschappen die een kwantummechanische

theorie van de zwaartekracht zal hebben.

Al snel werd vermoed dat ook snaartheorie holografisch is, en het onderzoek culmi-

neerde in 1997 met een van de grootste successen uit de snaartheorie: een concrete
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realisatie van het holografisch principe, genaamd de Anti-de Sitter/Conforme vel-

den (Field) Theorie correspondentie. AdS is een negatief gekromde ruimte uit de

algemene relativiteitstheorie, en CFT een bijzonder symmetrische, kwantumme-

chanische deeltjestheorie. AdS/CFT is een dualiteit (m.a.w. equivalentie) tussen

twee totaal verschillende theorieën: enerzijds is er snaartheorie die leeft in AdS,

en anderzijds is er de CFT die leeft op de rand van de AdS ruimte. Hiermee wordt

nu ook duidelijk waarom dit een voorbeeld van het holografisch principe genoemd

wordt: de gravitationele snaartheorie in AdS (ook wel de bulk genoemd), is exact

gelijk aan een niet-gravitationele theorie die op de rand leeft!

AdS/CFT is zonder twijfel een van de grootste doorbraken in de theoretische

natuurkunde van de afgelopen 20 jaar. De kracht van AdS/CFT zit hem in het

feit dat het mogelijk is om een (vaak moeilijk) snaartheorie probleem in AdS te

vertalen naar een ander, equivalent probleem in de CFT, dat meestal gemakkelijker

op te lossen valt; en omgekeerd natuurlijk ook. Wat ik zelf het meest interessant

vind, is dat AdS/CFT ons zo een unieke blik op snaartheorie in AdS biedt, dat

toelaat kwantummechanische aspecten van zwaartekracht te bestuderen, door deze

te vertalen naar een equivalent probleem in de CFT. Deze vertaling is verre van

triviaal, en vraagt als het ware een woordenboek om het ene probleem in het andere

om te schrijven. Hoewel zo’n vertaling cruciaal is voor de verdere ontwikkeling van

AdS/CFT, zijn nog vele aspecten onbegrepen. Het is dan ook hier dat ik in mijn

onderzoek een bijdrage geleverd heb, zoals uiteengezet in hoofdstukken 3, 4 en 5.

Een van mijn favoriete objecten om te bestuderen in AdS/CFT zijn de zogenaamde

precursoren: een ingewikkeld en vaak niet-lokaal object in de CFT dat, wanneer

het vertaald wordt naar de AdS bulk, eenvoudigweg overeenkomt met één lokaal

punt. Net omdat de CFT op de rand van AdS leeft, is het interessant om te

onderzoeken hoe verschillende punten in de bulk, die gescheiden leven in deze

‘extra’ dimensie weg van rand, in de CFT gereconstrueerd worden. Dit vertaalt

zich in dat precursoren vaak heel verrassende en zelfs paradoxale eigenschappen

hebben, zoals de titel al doet vermoeden. In het bijzonder, indien deze punten

in de bulk voldoende ver van elkaar verwijderd zijn, zouden deze niet met elkaar

mogen interageren, iets wat lokaliteit in de bulk genoemd wordt. Het bestaan van

lokaliteit in de bulk is een, voor mij misschien wel het, mirakel van AdS/CFT, en

zonder twijfel een van de minst begrepen maar meest fascinerende aspecten van

de correspondentie.

Aangezien alle informatie van een punt in de gravitationele bulk bevat zit in de

precursor, heb ik onderzocht hoe en waar in de CFT deze informatie gecodeerd

wordt. Ik heb aangetoond dat precursoren niet uniek zijn (d.w.z. meerdere pre-

cursoren kunnen met hetzelfde punt in AdS corresponderen), en laat zien dat het

gebrek aan uniciteit gebruikt kan worden om informatie in een bepaalde regio van
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de CFT te lokaliseren. Vervolgens poneer ik ook een vermoeden dat precursoren

die met eenzelfde bulk punt corresponderen, relateert aan de onderliggende sym-

metrieën in de CFT. Dit is verrassend, aangezien voorheen gedacht werd dat deze

symmetrieën (ijksymmetrie in het bijzonder) geen fysische rol spelen in AdS/CFT.

Tenslotte stel ik de vraag welke eigenschappen een CFT moet hebben, om ‘goede’,

lokale gravitationele theorieën te beschrijven, zoals Einsteins zwaartekrachtstheo-

rie waarin we lijken te leven. Dit is geen eenvoudige vraag, en om vooruitgang te

maken heb ik een simpel model van de AdS/CFT correspondentie bestudeerd. Dit

liet me toe om de kenmerken bloot te leggen van dergelijke holografische CFTs.

De AdS/CFT correspondentie heeft het bestuderen van kwantumgravitatie fun-

damenteel veranderd, en maakte van holografie een van de meest waardevolle en

interessante ideeën uit de theoretische natuurkunde in de afgelopen 20 jaar. Het

onderzoeksveld breidt zich snel uit en focust zich niet enkel op kwantumgravitatie,

maar omvat nu ook deelgebieden die holografie (en snaartheorie in het bijzon-

der) gebruiken om meer te leren over kernfysica en de theorie van gecondenseerde

materie zoals supergeleiders en -flüıda.
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