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ABSTRACT 

We discuss the anomalies present in broken scale invariance trace identities 

which result from assuming that products of hadronic currents have a canonical 

singularity structure at short distances. The analysis is performed qualitatively 

in configuration space and quantitatively in momentum space. Canonical anoma- 

lies are found in trace identities involving two electromagnetic currents, or two 

axial currents or their divergences. There are related canonical anomalies in 

trace identities involving three or four currents. They can be represented by 

the anomalous trace equation 

h anomalous 
eA (x) = ei (x) + -E- Fi F-Y 

32~~ ‘-lv l 

where F1 =(j&- i F j k F 
w PV dvFp+hijk ~1 v with the Ffi external fields coupled to 

the SU(3) X SU(3) currents, and hijk the structure constants of SU(3)xSU(3). The 

electromagnetic current trace anomaly is related to the high energy cross section 

-+ ee dy- hadrons, and via POT to the coupling of a scalar meson to photons. 

These are connected by 

where F. is defined by < 0 IS: I(T > = rnzFc. The axial current anomalies are 

related to the high energy cross sections e-3,@-Fp) -L hadrons: they do not 

affect previous estimates of the 07~~ coupling made using broken scale invari- 

ance and POT. 

-l- 



I. INTRODUCTION 

The general consequences of exact and approximate symmetries of field 

theories can be expressed in terms of Ward identities relating different Green’s 

functions. Considerable attention has been paid to the Ward identities associated 

with the SU(3) x SU(3) current algebra and, more recently, to the trace and 

conformal identities associated with scale invariance. 192 It is however well 

known that in perturbation theory Ward identities may acquire anomalies, 

because of singularities which render naive manipulations invalid. Adler 

succeeded in understanding the axial current anomaly in the context of pertur- 

bation theory, 3 and Callan and Symanzik used perturbation theory to demonstrate 

the existence of anomalies in the trace identities of scale invariance. 4,5 

However, it is not at all clear that perturbation theory is relevant to the 

physics of the hadronic currents and the hadronic stress-tensor. On the s 
contrary, the logarithmic corrections which are found in perturbation theory 

to violate scaling in deep inelastic electron scattering seem either to be absent 

from the data or to be small.’ So we have the question: which of the results 

of perturbation theory should be believed? In particular, do the anomalies 

which occur in perturbation theory actually occur in the Ward identities of 

hadronic physics ? 

One framework for answering the latter question has been provided by 

Wilson,’ who showed that the axial current anomalies can be regarded as con- 

sequences of the short-distance singularity structure of current products. If 

one has a model for such short-distance behavior, one can deduce what anoma- 

lies exist, and how they are inter-related. The deep inelastic scattering 

experiments suggest that the light-cone singularities of current commutators 

resemble those of a canonically manipulated field theory with charged fermions 
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and uncharged boson gluons. 7 It is natural to extend this model to other short 

distance singularities of current products, including disconnected parts. What 

Ward identity anomalies occur in such a canonical model? 

As pointed out by Wilson, ’ the axial current anomaly does occur in such a 

canonical model, so it might be called a “canonical anomaly, *’ to distinguish it 

from other anomalies which appear in perturbation theory and reflect deviations 

from canonical short-distance behavior. An interesting question is whether 

there are also canonical anomalies among the Ward identities of broken scale 

invarance . The Callan-Symanzik anomalies4 are associated with the fact that 

in perturbation theory canonical singularities are modified by logarithmic 

factors: accordingly their presence is excluded by the assumption of canonical 

singularity structure. However, there are other anomalies in trace identities: 

for example, there is one in the trace identity involving Green’s functions with 

two electromagnetic currents. 5 It will be shown that this and certain other 

anomalies are to be expected on the basis of canonical singularity structure, 899 

i.e., that they are canonical anomalies in trace identities. 

In this paper we first discuss, on the basis of Wilson’s simple power 

counting arguments, 1 what trace identities are vulnerable to anomalies, 

showing in particular that the trace identity for two electromagnetic currents 

may be expected to break down. We then calculate the anomalies in this trace 

identity and that involving two axial currents or axial current divergences 

using a model for short-distance singularities based on fundamental fermion 

and boson fields (“partons”). 10 

The calculations are performed in momentum space’: Since the anomalies 

are determined by the short-distance singularity structure, all models with the 

same behavior in this region have the same anomalies. Further, lowest order 
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perturbation theory graphs have the canonical singularity structure. Hence 

the anomalies found on inserting lowest order graphs into the trace identities 

will be the same as those which would obtain in the real world if the postulated 

canonical singularity structure is correct. And it is easier to calculate some 

simple Feynman graphs then perform the configuration space analysis. It is 

emphasized that the use of perturbation theory is just an algorithm, and in the 

theoretical context outlined above higher order calculations are meaningless. 

We also study the trace identities involving more than two currents. 

Canonical anomalies appear in trace identities involving three or four currents, 

and are related by current algebra to the two current anomalies. A compact 

representation for all the canonical trace anomalies is the equation 

h anomalous 
eh (x) = e!Jx)+-R- Fi WV 

3~~~ Pu i 

where “FL z&e 
PV PV 

dVF; +h 
ijk 

Fj Fk 
p V’ 

with the FL external fields coupled to 

the SU(3) x SU(3) currents, and h ijk the structure constants of SU(3) xSU(3). R 

is related to the charges of the fundamental constituent fields 

spin 3 spin 0 

The phenomenological consequences of these anomalies are then discussed. 

The OL-Jh-Jp anomaly is shown to be proportional to the coefficient of l/q2 

in the high energy total cross section e-e - y - hadrons, and the 0: -Al -A; 

anomaly is connected with the high energy cross sections e ve 6 up) - hadrons. 

These applications just require the trace 0; of the hadronic energy-momentum 

tensor to be rrsoftrt as postulated in theories of broken scale invariance. If it 

is further assumed (PCDCll or POT12 ) that there is a scalar meson (T that 
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dominates matrix elements of BP 
cr ’ 

then the anomalous trace identities can be 

used to study its couplings to photons and to pions. 

The coupling to photons is found to be proportional to the anomaly and hence 

to the total cross section e+e- - y - hadrons: 

R 
g = 

(WY 12r2Fcr 

where 
+- 

R ~ lim g(e e - y - hadrons) , 

S-W ofe’e- --t y - P+P-) 

the coupling gayy is defined by the Lagrangian 

Jz&/= e2 aF FPv -Tgqy pv ’ 

(1.1) 

(1.2) 

(1.3) 

where F 
PV 

is the electromagnetic field, CY = e2/4, is the fine structure constant, 

and Fois the scale analogue of the pion decay constant FX, estimated to be of 

order 150 MeV. The important point is that g 
m7-Y 

is thus predicted to be rather 

small, provided that R is of order unity or smaller. In the model for short- 

distance and light-cone behavior based on three triplets of fractionally charged 

quarks, which is so far consistent7 with experiment, R would have the value 2. 

For rnoz 700 MeV and I?@ - OTT) = 400 MeV, for example, we get I? (o +yy) ES 

.2 R2 keV. This small oyy coupling means that in the two-photon process, 
ff ee - e*e* f hadrons, such a scalar isoscalar dipion resonance would make a 

small contribution to the cross section, over an order of magnitude smaller than 

the Born approximation cross section for y-y - 7rr. (Of course, by Watson’s 

theorem, the resonance would nevertheless be detectable in the s-wave phase 

shift. ) 
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Other estimates13’ l4 of gVr have tended to be considerably larger; if these 

turn out to be experimentally valid, and e+e- - y - hadrons scales as l/q2 

with a coefficient of order unity so that (1.1) is badly violated, this would be 

good evidence against the utility of the PCDC” or POT12 hypothesis. This is 

a test of PCDC or POT analogous to the use of Crewther’s relation* for 

w. --yy) as a test of PCAC. ” It is a more limited test, since it can only be 

used to disprove PCDC or POT: If gqr is indeed given by (1.1) with R N O(l), 

then it will probably be too small to separate from the nonresonant background 

in m/ - 7r7r. 

The 8: - dAA’-dvAV trace anomaly was neglected by previous authors 11,12 

in scale invariance calculations of a large value for P(o - n@. We find that their 

results are unaffected by the anomaly. 16 

, 
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II. ANALYSIS IN CONFIGURATION SPACE 

Naively we expect a simple Ward identity to relate the vertex function 

Apv (p, -p) = $d4x d4y eip’ y < T* S;(x) Jcl&) Jv(0)>ti (2.1) 

to the vacuum polarization tensor 

II@,-p) E i J- 
4 ipqx d xe <T* J,jx) JvW>a 

When 8”” is the “improved” stress energy tensor of Callan, Coleman, and 

Jackiw , 17 its trace is 

(2.3) 

where DC”(x) is the dilation current. Hereafter we will often write 0; z 8 . The 

integrated dilation charge, D(xo) E Jd3x D”(- o x,x ), defines the scale dimension 

d of a field $ by the commutation relation 

1 -wo), G 6+, x0)] = -i(x*2)+d) @I(X) (2.4) 

If we use Eq. (2.3) in Eq. (2. l), integrate by parts, and neglect any possible 

complications due to the presence of surface terms, then the resulting expression 

may be evaluated using the equal time commutation relation (2.4). Assuming 

asymptotic scale invariance, the scale dimension of both space and time compo- 

nents of J” is three, and we obtain the trace identity, 

A,,cP, -P) = (2-P. $) npv (p, -p) (2.5) 

We will show below that relation (2.5) actually fails in any theory possessing 

asymptotic scale invariance as proposed by Wilson. ’ To understand why the 

argument leading to (2.5) breaks down, we shall extend Wilson’s analysis of 

the axial vector anomaly to the case under consideration here. Wilson’s analysis 

offers qualitative insight into how Ward identity anomalies arise from a 
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configuration space point of view. It provides a necessary, though not sufficient, 

criterion for the existence of canonical anomalies. We will see that the integra- 

tion by parts may give rise to nontrivial surface terms in the derivation of Ward 

identities involving three or more operators of sufficiently large scale dimension. 

The anomalies are just these nontrivial surface contributions. 

Consider first a Ward identity which relates a two-point function to a one- 

point function, e. g. , 

f d4x <T* 8 (x) $(0)>Q = id < $(0)>Q (2.6) 

Equation (2.6) is obtained by the same argument which led to (2.5). The equal 

time commutator (2.4) arises when we integrate by parts and the derivative d 
I-L 

acts on the step functions 19 (t) which appear in the definition of the time-ordered 

product, 18 i. e. , 

T*e (4 e (0) = e (x0) e w e(o) + e t-x,) e to) e w . 

Since we are concerned with possible complications due to surface terms 

at the origin, where the operator product is singular, we shall follow a more 

careful procedure to obtain (2.6). We write the left-hand side of (2.6) as 

JL;+lmdxo/dh e(x)+(O) +I-’ dxos d3x $(O) e(x) . (2.7) 

E -.-co 

Following Wilson, ’ we simplify the analysis by adopting a Euclidean space-time 

metric, O(4), so that the light-cone singularity collapses to the origin. Then 

the ix&grands in (2.7) are finite and unambiguous as long as we keep E > 0, and 

we may study in a well-defined way their behavior as E - O+. Now when we use 

Eq. (2.3) and integrate by parts, we find just the contribution of the surface at 

rte and&m. In the absence of massless scalar particles, the surfaces at *a, 
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cannot contribute. From the surfaces at the origin we find 

lim {-D(E) WI + W W-E)} 
E--*0+ 

(2.8) 

which is just the equal-time commutator (2.4)) and we obtain precisely the 

relation (2.6). The more careful analysis has in this case only confirmed the 

usual result. Thus Wilson’s analysis shows that canonical anomalies cannot 

occur in Ward identities involving products of only two operators. 

But let us now consider the three-point function (2.1). Before we can 

proceed with the configuration space analysis, we must make a simple kine- 

maticalobservation. Equations (2.1) and (2.2) must have the gauge invariant forms, 

Apv (P, -P) = (PIP, - gpvp2) A(p2) (2.9) 

JJpv (P, -P) = ‘pPPV - gpvP2) ryp2) 

The naive Ward identity (5) is then 

(2.10) 

(2.11) 

Now concentrate on the case when the currents are on the photon mass shell, 

p2=o. Then we can write 

A(0) = 2 
J 

d4xd4y yc”y” eeip’ y < T* B (x) J$) JV (0)>Q (2.12) 

Notice that because of gauge invariance, the short-distance singularity has been 

softened by two powers of y . This is just the configuration space analogue of the 

fact well known in perturbation theory that one power of convergence is gained 

for each gauge invariant vertex. 

We now define the integrand in (2.12) by again adopting the O(4) metric and 

excluding the singularities with the restrictions 

IX,l/E ; lY,l~ 6 ; 1x0-Y(jl 1 7 . (2.13) 
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We use Eq. (2.3) and integrate by parts, with the result 

A(O) = &if” dyofd3y eipey?yv <Wo+v) J,$4 Jv (0) 
! 6 

- JpW 

+ J&Y) 

- J&Y, 

DtY()-q ) Jv (0) 

Dt E) Jv (0) 

Jv 09 W-E) >a 

+ f -’ dye Jd3y eip’y~~ <D(E) Jv (0) JPCy) 
--co 

- Jv (0) “(4 Jp 0 

+ Jv (0) D(Y~+v ) Jp Or) 

- Jv (0) J&Y) D(Y~-~‘D 
1 

(2.14) 

First consider the integrand when ly, I is large, i.e., I y. I >> E ,6,~. Then 

the terms combine in pairs to form equal-time commutators, as in the example 

of the two-point function considered above. This is what we expect from the 

naive manipulations which yield (2.5) and (2.12). 

Next consider the region for which ly, I 2 6. If the first two terms are to 

associate unambiguously into an equal-time commutator, the products must be 

evaluated in the order 

(D(Y~*~) J&Y)) Jv (0) - (J&Y) DOIO-O Jv (0) (2.15) 

So the operator must be defined by taking the limit 7 - 0 before 6-0, i. e. , we 

must have 6 >>q. In the region of integration defined by 

yo=6>>q , (2.16) 

the two terms in (2.15) become an equal-time commutator. Similarly the third 

and fourth terms combine to form an equal-time commutator in the region 

yoE6>> E . (2.17) 
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So with the choice d >>,rl, E all terms become equal-time commutators. 

the limits1g r] - 0 and E + 0 and using Eq. (2.4), we find 

. elp’ Y Y%” (6fy- 6) <J&y) Jv (0)>G 

+ /6”o/d3y eipwyflyv (6+y. f) <Jv (0) JP(y)>Q 
I 

Integrating by parts once more, we find 

A(0) = -2p 2 + rI(p2) 
ap 1 p2=o 

+ As(O) 

where As(O) is the surface term, 

Taking 

(2.18) 

(2.19) 

(2.20) 

Comparing (2.19) with the naive trace identity (2.11) we see that As(O) is 

the anomalous contribution. To see whether As(O) may be nonzero, we use the 

assumption of scale invariance at short distances, according to,which the product 

of two currents has a c-number singularity proportional to 6 -6 . Since the 

numerator of the integrand is proportional to 06, we see it is indeed possible 

that As(O) may make a finite, nonvanishing contribution to the trace identity. 

The reader who studies Wilson’s configuration space analysis’ of the V-V-A 

anomaly3 will find that the V-V-A anomaly arises in a different way from the 

trace anomaly, The V-V-A anomaly comes from the region of configuration 

space where the three currents are all “pinching” against each other, to give a 

Kg singularity. We have just seen that the trace anomaly is due to the 6 -6 

singularity of the two electromagnetic currents alone, 
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The configuration space analysis gives a simple necessary condition for 

decidingwhether other scale invariance Ward identities have canonical anoma- 

lies. Consider a vertex consisting of 8, and n currents Ji 
‘i 

As in (2.12) the quantities which may have anomalous surface term contribu- 

tions are of the form 

A n 4 = 
pl...pn V1.JJr J- ’ d Yi jgYtl<T* (B fOJiil JiifYi)>, (2.21) 

i=l 

where the factors y 
7 

correspond to momenta in the anomalies. Carrying 

through the analysis as before, we exclude the regions I yp I 2 tSi, 

l yp-yy I 1 qij from the integrations in Eq. (2.21). As before we may take 

the limits qij -L 0 and pick up equal time commutator terms. The’ anomalies 

are then proportional to sums of quantities of forms analogous to Eq, (2.20): 

These quantities may have nonzero terms coming from the surfaces lyy I = 6i 

if (counting powers of the y’, 

4n-4+r-3n< 0 - 

Since r 1 0, this condition reduces to n 5 4. In other words, there may be 

canonical anomalies in trace identities involving not more than four currents. 

The two current anomalies will be discussed in Sections III and IV, three and 

four current anomalies in Section V. 
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I 

III. MOMENTUM SPACE ANALYSIS OF TRACE IDENTITY 

FOR TWO ELECTROMAGNETIC CURRENTS 

The configuration space analysis suggests that the naive Ward identity may 

fail provided there is scale invariance at short distances and the currents have 

dimension three. Any model satisfying those conditions must be examined in 

detail to determine whether an anomalous contribution is indeed present and find 

its value. This is particularly simple in the class of models which assume that 

the leading short distance and light cone singularities of products of hadronic 

currents are given by simple canonical theories. These models are popular 

because they seem to provide a correct zeroth-order picture of scaling in deep- 

inelastic electron scattering. 7 

Consider a model in which the fundamental constituents are a collection of 

spin l/2 fields +(x) corresponding to particles of charge eQi and mass mi. The 

electromagnetic current is 

J’(X) = C Qi $ i(X) F$Ji(X) 
i 

and the trace of the stress-tensor is 

e 00 = C 
i 

“i $itx) +tx) ’ 

(3.1) 

Our configuration space analysis has shown that the possible ‘Vanomalous’f 

contribution to the naive Ward identity, (2.5), arises from the leading singu- 

larity when the space-time interval between the two electromagnetic currents 

approaches zero. Then all we have to do is calculate both sides of (2.5) at the 

canonical level, which means that we calculate the lowest order triangle and 

vacuum polarization diagrams (Fig. 1) D Any difference between the left- and 

right-hand sides is then due to canonical singularities, which according to our 

hypothesis are the same as those in nature. 
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Let us make one thing perfectly clear: This procedure does not imply any 

commitment to the view that perturbation theory is a reliable guide to the 

physics of hadronic currents. We are certainly not asserting that the hadronic 

Green’s functions A’” and II’” are equal to their canonical counterparts A:” 

and 11” c which are given by lowest order perturbation theory. Rather we are 

asserting, on the basis of the hypothesis of canonical singularities and the con- 

figuration space analysis of Section II, that the hadronic anomaly is equal to the 

canonical anomaly, i. e. , that 

A” (.P, -p) - (2-p+) ti” (p, -p) = A?@, -p) - (2-p+) II;‘@, -p) (3.3) 

So our assumptions simply require that we evaluate A and II in lowest 
I-JV PV 

order perturbation theory, with Jp and 0 given by (3.1) and (3.2). The lowest 

order diagrams are shown in Fig. 1. The triangle diagrams have a superficial 

linear divergence but are in fact finite because of the two gauge invariant 

vertices. A straightforward calculation gives 

m2 
Apv(p -p)=-- 

c ’ ni (p’“p” -svp2) c QF $ (rnf Ai-1) 
i P 

where the subscript “c” stands for “canonical1 and Ai is given by 

p”-k&czy- 

Ai@2) = JpT&2 log p2+ &q&2 ’ 
i i 

(3.4) 

(3.5) 

The term -%CrnF$’ is discardedbecause it violates gauge invariance. It cannot 

be compensakd by adding a term proportional to Em:% , since this would 
i P 

introduce a spurious photon pole. The vacuum polarization diagram has a 

superficial quadratic divergence, which is reduced to an actual logarithmic 

- 14 - 



I 

divergence by gauge invariance. We have just the standard resu.lt2’ 

JfV@ -p) = l @pp”-g~vp2) * 
c ’ 127r2 . dz .2(1-z) log (3.6) 

where A is the cutoff energy. The quantity which appears on the right-hand 

side of the Ward identity (2.5) is then found to be 

(2-P-&) l$%,-p) = --+ $%v-gcL?)2)* 

m? 
. -t Qf+-$- (mfAi-1) 

P 1 
(3.7) 

The difference between (3.4) and (3.7) is the anomaly. The Ward identity with 

the anomalous contribution included is then 

AC”” @ -p) = (2-p , \ 
rP (PI -p) - L R@pV -cvp2) 

67r2 
(3.8) 

where we have defined 

R=xQ; . (3.9) 
i 

If we allow for the possibility that the currents have both spin 0 and spin l/2 

constituents, then (3.8) is still correct with 

RG c Q; + $ c Qf (3.10) 
spin l/2 spin 0 

However we will not discuss the case of spin 0 fields in the rest of the paper, 

as experimental evidence from deep inelastic scattering favors a model with 

fermions predominating. The phenomenological consequences of the anomaly 

(3.8) are discussed in Sections VI and VII. 
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IV. TRACE IDENTITIES INVOLVING TWO AXIAL CURRENTS 

We now discuss the canonical trace anomalies involving the two-point 

functions <T* AI(x) Ai(0)>fl , <T*Al(x) #Ai(0)>Q and <T* alAi 8pAL(0)>Q, 

where At indicate positively and negatively charged AS=0 axial currents. We 

will use the following notation for Green’s functions: 

,J...JA...AD...D 
%’ * l pm+r 

x (T* e(o) ; Jp (xi) ; 
i=l i 

“IT’ Al* (xi) 
i=m+l i i=m+r+l 

8 Acl (“3 > 
i a 

and 

x <T* : Jp 
m-l-r 

n: A (x.) 12. . 
i=l i 

(xi) 
i=m+ 1 cli ’ i=m+r+l 

8AP (x~)>~ 
i 

21 It has been pointed out by several authors that in lowest order perturbation theory 

there are no anomalies in current algebra Ward identities involving triple and 

double products of quark bilinears, except for the A V V and A A A anomalies. 
I.Lhv P A v 

This is because the Green’s functions are ambiguous, and polynomials can be 

added to make the Ward identities be satisfied. For the same reason, there are 

no canonical anomalies in these current algebra Ward identities, and in particular 
A+A- those relating A hi , g’D-, and AD+D-: 

-iph A’$~-@, s) = AF)+A-(p, s) + RF+A-(_q, s) (4* 1) 
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and 

p aD”A- -iq 
cc 

(p,q) = AD+D-@,q) + iIDfD-(p,-p) 

+ rr0?-,-P,P+4) 

where we have introduced the field o(x) defined by 

$A$ t) = -in@, t) 1 

(4.2) 

As noted in Section II, Wilson’s arguments’ indicate that Ward identities relating 

two-point Green’s functions and vacuum expectation values of fields are free of 

anomalies: 

h A+A- 
-iP 5, ~ D+A-tP, -P) (P,-P) = lip 

iq” IIv D+A-(q, -q) = nD+D-(q, -9) + <o(o)>n 

(4.3) 

(4.4) 

We shall use these Ward identities (4.1)-(4.4) to connect the canonical trace 

anomalies involving the Green’s functions appearing in them. 

A+A- and A+A-. The form of Consider first the trace identity relating L& %P 

the anomaly as a function of momentum is constrained by Wilson’s short- 

distance power counting arguments. Since 

<T*A;(x) A;(0)>fi diverges as - CP when x-6-O , 

only its zeroth, first and second moments with respect to space-time coor- 

dinates can give anomalous surface terms when integrated over d4x as in (2.20). 

As in the Vh-Vv case discussed earlier, the second moments determine terms 

in the anomaly of second-order in the field momenta: constant terms in the 

anomaly are determined by the zeroth moment. Hence the anomalous trace 
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identity must take the form: 

A$A-(p, -p) = (2 - p-6) $+A (p, -p)+(Ap2+B)ghv+C~x~v (4.5) 

where A, B and C are parameters to be determined. 

D+A- Similarly, the trace identity involving A 
I-L (P,-P) and rf 

D+A- 
IJ (P, -P) has 

only an anomaly of first order in the field momentum, which is proportional 

to the integral of a first moment of <T* aXA: Ai(0)>G 

A;+A-(p,-p) = (2-p. 6) n;+A-@,-p) + DpP (4.6) 

where D is another parameter to be determined. 22 

Analogously, the anomaly in the trace identity relating the D+D-tP, -P) A 
+ - 

and I 7DD (p, -p) may contain constant and quadratic terms 

AD+D-@, -p) = \2-p. $) IID +D- 
(P, -P) + Ep2 + F (4.7) 

First we note that broken scale invariance implies that at short distances 

(large momenta) the axial current is asymptotically conserved. Hence we 

deduce that in Eq. (4.5) A+C=O. Then, multiplying (4.5) by iph and using the 

Ward identities (4.1) and (4.3) we get 

AF’A-@, -p) =72 - p* f) nF’A‘(p, -p) - ipcL B (4.8) 

Comparing Eqs. (4.6) and (4.8) we see that D=-iB: note also that A+CfO would 

have been inconsistent with the linear form of the anomaly in Eq. (4.6). 

Similarly using Eqs. (4.2)) (4.4) and (4.6) we deduce that 

AD+D-(p, -p) = (2 -p* 6) BD+D-(p, -p) + iDp2 (4.9) 

Comparing Eqs . (4.7) and (4.9) we deduce that E=iD, F=O . 23 
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Thus the anomalies in Eqs . (4.5) - (4.7) contain just 2 independent param- 

eters, A and B, which are to be determined from the canonical model of short- 

distance behavior. By chiral and SU(3) symmetry at short distances the leading 

anomaly A is related to the anomaly in the trace identity: 

A=& 
81r~ 

(4.10) 

By explicit calculation of the asymptotic behavior of the $A: - dV Ai Green’s 

function we deduce 

1 2 

E=-7zimi 
(4. 11) 

where the mi are the masses of the fundamental fermion fields contributing to 

the axial current. Inserting expressions (4.10) and (4.11) into the anomalous 

trace identities (4.5), (4.6), (4.7) using the relations between parameters 

obtained above, we obtain the final expressions: 

AF+A-(p, -p) = (2-p’ f) II:+~-(~, -p) + i 3 zirnf 

AD+D-@,-P) = (8-Po$) IID+D-(p, -p) -5 Zirnf 

(4.13) 

(4.14) 

The phenomenological implications of these anomalies for high energy cross 

sections and (via POT) for couplings of a scalar isoscalar meson are discussed 

in Sections V1andVI.L 
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V. CANONICAL TRACE ANOMALIES WITH MORE THAN TWO CURRENTS 

In this section we discuss canonical anomalies for Green’s functions in- 

volving more than two currents. The naive trace identity for a Green’s function 

consisting of m currents and n-m divergences is 22 

AJ.. . J D.. . D 
Pl...P, (PI. * * p,)= 

n-l 
C p:d 
i=l l “Pi 

(5.1) 

where the notation is defined in Section IV. 24 From the discussion in Section II 

we know that canonical anomalies are possible for n=3 and n=4. 

In the three current case, power counting indicates that a canonical anomaly 

may be of zeroth or first order in the current momenta. Since we must form 

a tensor with three Lorentz indices, it must in fact be linear in the momenta: 

2 
+ c aa w 

a=l c1vn.d ‘a (5.2) 

where 

a 
y.w 7-w =A”g g 

pv 7-w +B”g g pr VW 
+Cag g +D” E 

pw VT p TW (5.3) 

with Aa, B”, C”, Da constants and a=l, 2. (The dependence of A”, etc. on i, j 

and k has been suppressed in the notation. ) 

We now consider the constraints imposed by chiral symmetry. Contract 

(5.3) with p; : 

(5.4) 
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We now insert the chiral Ward identities 

J.J.J D.J.J 
* P -ipI 11,:; k(~,,~2,~3) = Au: j k@,,~2,~3) 

D.J.J 
’ ’ 

JmJk 
+%T k(-~2-~3, ~29~3) + i hijm A,, ,. @I+P~,P~) 

+ih (5.5) 

J.J.J D.J.J 
-ipF” II 1 pi; k@I*P2’P3) = lIv: j k@I,P2,P3) 

+ih.. II JmJk 
ijm VT (-P3,P3) + i hikm “>zrn(P29 -p2) 

(5.6) 

into (5.4). It has been shown 
21 that in lowest order perturbation theory, 

Eq. (5.5) does not have an anomaly: therefore by the reasoning of Sections II 

and III, Eq, (5.5) has no canonical anomaly. Equation (5.6) may also have a 

canonical anomaly3 quadratic in momentum, but it would not contribute to (5.4) 

because of the factor (2 -$~a*$) ’ We have therefore suppressed this 

anomaly in writing (5.6). Substituting now into (5.4) we find 

ADiJjJk JmJk J.J 

VT (PI,P2,P3) + i $jm A~~ (Pl+P2,P3) + i h-ikm Av 7 J m@2, PI+P3) 

= (l- ilpa$-) “~Jkb,,P,,P,) 

J J 
nmk 

ijm VT t-p39 p3) + i hikm”~~(P2’ -P2’ 3 

2 
-i Co” PWPc” a=l PVTu a 1 

(50 7) 
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To get relations between the anomalies in (5.7) we must now use the trace 

identities 

ADi JjJk 
VT @,tP2IP3) = @1*P2,P3) + YgvT (5.8) 

AJmJk 

+ ‘mkgvT (5.9) 

AJjJm 
vT @2,Pl+P3) = (2-P2*4) n:>(P2,-P2J 

+R 871.2 “jm 
2 

gv~p2-p2vp23- ) 
+ E. pgv7 

(5.10) 

By power counting and Lorentz invariance, (5.8) may have a canonical 

anomaly Y gv T, where y is a constant. As shown in the previous sections, 

(5.9) and (5.10) may also have canonical anomalies, quadratic and constant in 

the momenta: the former are related to (3.8)) the latter are denoted by emk, E. . 
P 

Substituting (5.8), (5.9), and (5.10) into (5.7), we find 

2 
-i C Qa 

a=l 
p”pc” = i hijk 

PVTW a 1 3 [gV T(p:-p;)- ‘3VP3T+ bVp27j 

+ (Y’G) gvT 

where 

From (5.11) we see that 

y++=o 
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and that 

D2=0 

Analogous arguments using the Ward identities obtained by contracting on pi 

allow us to conclude that 

Al= ’ 1 -ZB =h.. A 
‘Jk gT2 ’ D1=O . 

Thus we have the following form for the canonical anomalies in the three 

current trace identity, (5.2): 

h.. -e&s 
vk gn2 

+a P ,UT IV - gV Tp$- ‘/.UJ ‘27 + g/slTp2V - 2gV Tp$ 1 (5.12) 

Also, the anomalies in trace identities for A 
DJJ 
PV 

are determined by those for 

ADJ 
I-L * 

However, we pursue these anomalies no further here. 

We now discuss trace identities involving four currents, which by power 

counting may have canonical anomalies of zeroth order in momentum: 

J.J.J J 
A ’ I k m(PI,P2*P3,P4) = /JVTW 

(- f-lpa’ $-) n~;~Jmb,,p,,P‘f,p,, 

+a! (5.13) 
pv rw 

where o! TV 7w is of the form of Eq. (5.3) . Contracting with -ip; we have 

J.J.J J 
* P ilkm 

-“I ApVTU (PI,P~YP~$P~) = - (l- ilpa*$--) ip: n~,~@l,P2,P3,P4) 

. IJ 
- l o&7wpl 

(5.13) 

Because of the results obtained in lowest order perturbation theory 
21 and the 

J.J.J J llkm 
discussion of sections II and III, the chiral Ward identity for p: Apv Tw 
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does not have a canonical anomaly. There could3 be an anomaly of first 
J. J.J J 

order in momenta in the chiral Ward identity for pc” II 
1 jkm 

vanish in (5.13) because of the factor (1- $lpa.~~~Ther~~~~s~ 

use chiral Ward identities free of anomalies to evalite (5.14). 

is 

ADiJjJkJm 
D.J.J J 

VTW 
(p,, &$?3’,?4) + 112, ;; k m(-p2-p3-P4, P‘J’ &$ P,) 

JnJkJm 
J.J J 

+ih.. A 
1Jn VTW 

@1+p2,~3,~4) + i hfkn AvjTz m~2,~l+~3,~41 

J.J J 
Jkn 

+ i himn Av 7w 
(P2, P3YPl+P4) 

3 
= c p .--C- 

a=1 a apa 
RDiJjJkJm 

VT0 (Pl,P2’P3*P4) 
\ 

JnJkJm 
J.J J 

+ih.. II 
1P 

vTo @l+p2lP3*P4) + i hikn nvj.ri mCI?2*Pl+P3,p4) 

J.J J 
d- 

+ihimnnvTw 
1 (P2,P3SPl+P4) \ -i cu~vTwP~ (5 0 14) 

D.J.J J 
By power counting, 

rjkm 
the trace identity for Au Tw may have a canonical 

anomaly of zeroth order in momentum, but this is forbidden by the Lorentz 

tensor structure. The left-hand side of (5.14) may be evaluated using the 

canonical anomalies (5.12). The result is that 

R 
oll.lV Tu = s,2 [ g/WgTILI @iknhjnm - himnhjkn) 

+g vwgpr @ imnhjkn - hijnhknm’ 

+g v 7gp~ @ij$knIn - hiknhjnm )I 
(5.16) 
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Thus the canonical trace anomalies for three and four currents are directly 

related by current algebra, independently of chiral anomalies, to the two 

current trace anomalies. 

In fact it is possible to use the generating functional formalism 3,25 to 

obtain a compact representation of all the canonical trace anomalies which are 

due to the leading singularities in the current products. We introduce the functional 

Z = CT* (exp isd4x (J”,cx)Ff(x) + 0 (x)S(x)))>, (5.17) 

where the J;(x) are SU(3) x SU(3) currents, 8 (x) the trace of the hadronic 

energy-momentum tensor, F;(x) external vector fields, and S(x) an external 

scalar field. The functional derivatives of Z with respect to the external fields, 

evaluated with the external fields equal to zero, are the current Green’s functions of 

the theory, The connected Green’s functions are generated by a functional 

W: exp iW = Z. The canonical trace identities (5’ 1) may be generated by the 

following procedure: 

1) apply to W the operator 

2) apply n operators 

-i 6 

6tiaiCxiJ 
(i=l ,...n) 

to SW 

3) set the external fields S(x), FE(x)=0 

4) 
n-l 

multiply the result by exp i x xi. pi and integrate with respect 
i=l 

to x and xi, i=l, . . . n-l, setting xn= 0. 
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The resulting expression is the usual trace identity for n SU(3) x SU(3) 
a. 

currents J ’ 
Pi 

with momenta p. . 
l/J 

To obtain the canonical anomalies we replace 

the hadronic trace in expression (5.17) for Z by the anomalous trace equation 

8 anomalous (x) = 8 (x) + JL wi 32a2 Fpv wqv (x) (5.18) 

where “F1 iv (x) = dPF: (x) - au F:(x) 4 hijk FL(x) F:(x) the hijk being SU(3) xSU(3) 

structure constants. 24 The expression (5.18) is analogous to the representa- 

tions written down by previous authors 
3,25 for the axial current anomalies. 

Note that it has a chiral invariant form, as expected from the fact that the 

higher anomalies are short distance effects and are related by current algebra 

to the two current anomalies, and are not affected by axial anomalies. 
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VI. PHENOMENOLOGICAL APPLICATIONS OF TRACE ANOMALIES 

AT HIGH ENERGIES 

In this section are discussed the phenomenological implications of the 

anomalous trace identities (3.8) and (4.12) - (4.14) at high energies. One of 

the basic assumptions of broken scale invariance is that the energy-momentum 

tensor trace is llsoftll. This means that it is composed of operators with scale 

dimension less than 4 - generalized mass terms.’ Masses are generally supposed 

to be negligible in certain kinematic regions of certain processes, notably in 

high energy processes involving very virtual currents, and deep inelastic scat- 

tering experiments support this supposition. Thus in the present case, it is 

expected that as lp2 I - m , 

Apv (P, -P) << Q, (P, -P) 

This expectation is borne out to all orders in perturbation theory, where it 

follows from Zimmermannf s extension of Weinberg’s theorem to the Minkowski 

region of momentum space. 26 Thus for large lp2 I 

(2-P. g> rJpv (P, -P) e -z- (p p -g p2) 
GT2 I-L v pv (6.1) 

Using Eq. (6.1) we find’ that as p2 --*CO , 

Rclv (P, -P) * $vP2-P~Pv) 
[ 
+ log P2+ c (6.2) 
12n I 

where c is an unknown constant. From (6.2) we find that II 
PV 

has asymptotically 

the absorptive part 

J e +ipmx <o 1 C J,W, Jv (0) IO> d4x = @p,p2-pppv 1 
(6.3) 
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This is the same asymptotic behavior of the absorptive part as has previously 

been deduced from the parton model, 27 and from assuming canonical short- 

distance behavior for the disconnected part of the current commutator7: 

II J&x,, JvW 1 - -iR (g (6.4) 
xP 

-0 37r3 lJv 
x2 - 2xpxv) E (x0) 6”‘(X2) + . . . 

The absorptive part of I.I is related to the total cross section for 
PV 

-+ e e --L y -+ hadrons 

o(e -+ e -. y - hadrons) = $ s,ipox<O I [;(x),f(O)] IO> d4x 

47rcY2 R F=:- 
3P2 

using Eq. (6.3). This means that as p2 - *: 

a{e -+ e - y - hadrons) N_ R 

a(e-e+ - Y - P-P+) 

Preliminary indications from Frascati and CEA for q2 > 4 GeV2 are consistent - 

with R - O(l), and are consistent with a model of three triplets of fractionally 

charged quarks, which gives R=2. 9,28 

The fact that using the softness of Ocl 
P 

and the anomaly (3.8) we recover 

the results of canonical manipulations of current commutators emphasizes the 
29 

canonical nature of the anomaly. If the anomaly were absent, one would have 

flpv tP9 -P) - (gpvP2 - PcIPv) c 

2 asp -CO, so that the absorptive part would be’ o (p2), and c(e-et -+ y - hadrons) 

would fall faster than l/p2, in contrast with canonical expectations. 27 

The close relationship between the trace anomaly and the asymptotic cross 

section for e+e- -) y -hadrons is also very clear in configuration space. The 
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details of the configuration space calculation are given by Crewther, 8 but the 

major qualitative features are evident in the analysis of Section II. In 

Section II we saw that the anomaly is determined by the coefficient of the sixth 

order singularity of < =(x) Jv (0)>Q as x - 0. This leading singularity deter- 

mines the leading asymptotic behavior in p2 of the Fourier transform 

J- d4x eipox <f(x) J,(0)>Q 

which is in turn proportional to a(e+e- - y - hadrons). The connection is 

familiar to students of equal-time commutators: the E -6 singularity is just 

the quadratically divergent c-number Schwinger term, which is well known 

to determine the asymptotic behavior of o(e+e- - y - hadrons). 

The situation in field algebra 30 models with regard to the trace anomaly 

deserves comment. In a simple field algebra model, the space components of 

the electromagnetic currents have dimension 1, and the simple WilsonI argu- 

ments yield no anomaly. The lowest order graphs, corresponding in momentum 

space to the canonical calculation, are indicated in Fig. 2, and they trans- 

parently yield no anomaly. This is consistent with canonical manipulations of 

the current commutator. In a simple field algebra model this.is less singular 

than xm6 and a(e-e+ -+ y -. hadrons) falls faster than l/s. In fact at the canonical 

level one has 

i J cdPax <T*(JCI(X) JvcO,,>fi a ~Pv~2-pPpv) p2 

P2 -mf+ie 
(6.5) 

where mv is the mass of the vector meson field. Equation (6.5) has an 

absorptive part CC 6 (p2-mz). In a field algebra with strong interactions there 

will also be higher order graphs like those of Fig. 3, with internal loops. It 

is clear that these graphs will yield anomalies, which will however be of the 
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Callan-Symanzik type,being proportional to dlIPv/8g where g is a hadronic 

coupling constant, e.g., zZint = g pP F p$. Such graphs correspond to the 

breakdown of canonical manipulations. 

It is clear that by an argument analogous to that of the previous section 

the quadratic anomaly in Eq. (4.12) is related to the experimentally inaccessible 

cross sections for e-F e+ hadrons and ,x-F The inter- 
P 

-. hadrons at high energies. 

esting anomaly (4.14) is related to the structure functions corresponding to the 

nonconserved parts of the currents. These should be relatively suppressed 

by a power of p2, and furthermore appear experimentally multiplied by lepton 

masses. Hence their observability is regrettably minimal. 
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VII. PHENOMENOLOGICAL APPLICATIONS OF TRACE ANOMALIES 

AT LOW ENERGIES 

In this section we consider low energy implications of the trace anomalies 

(3.8) and (4.12) - (4.14)) when used in conjunction with POT, starting with the 

electromagnetic current case. We introduce two form factors WI and W2 for 

*Q$L P): 

+$q’P) = (-qkPp+g*q’P) WI(9,P) + (q~qp-g,ps2)(pPP,-g p2)W2(q,p) 

so that 

where 

(7.2) 

(7.3) 

Since II(q2) is nonsingular at q2=0, we deduce, comparing (7.1) - (7.3) that 

W1(O, 0) = R/67c2, W1(q, -q), (q#O) and W2(q, -9) being unknown and arbitrary. 

In the spirit of POT it is assumed that W1 and W2 are maximally smooth 

apart from poles in r 2 = (q+pj2 due to a scalar meson (T (dilaton). In fact 

the maximally smooth coupling for ayy implies 

WI(9,P) = c 
m:- tq+P) 2 

W2(q,p) = 0 
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for some constant c. From Eq. (7.4) we see that c = mzR/67r2. c is pro- 

portional to the o yy coupling: c = 2g,yymiFU where guy7 is defined by the 

interaction Lagrangian (FPV is the electromagnetic field): 

gTY = 
e2 cr-5’ Fpv 

-3-g,rr pv 

and the decay constant F, is defined by 

Thus we estimate that 

R 1 
g CYY =&q (7.5) 

(see also Refs. 8 and 9). This can be compared with the broken scale invari- 

ance estimatell’ l2 
m2 (3 

g UmT = q-- (7.6) 

where gonn is defined by 

2 
(77r7r 

= gm+Gz 

The ratio of coupling constants is independent of the parameter Fo, and so 

less theoretically uncertain 

g 32, R 
g o-7Tlr 6 r2m2 c 

(7.7) 

On the other hand the quantity closer to measurement in the process yy -~7r 

is the product 
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The prediction (7.5) for the oyy coupling constant deserves a certain 

number of comments: 

(a) Essentially the same coupling was obtained by Schwinger, 31 who 

performed a lowest order perturbation theory calculation analogous to that of 

Steinberger , 32 to evaluate the rate for a scalar meson to decay into two photons 

via a fermion loop. Since the trace identities had not at that time been for- 

mulated, the result did not strike him as anomalous. 

(b) If we set R=O then we recover the prediction g =0 of Kleinert, 

Staunton and Weisz , 33 who explicitly ignored anomalies. Kleinert, Staunton 

and Weisz also indicated ways of obtaining g o?ry= 0 in the absence of the anomaly, 

but as they pointed out, such a result requires nonmaximal smoothness for the 

A vertex. 
PV 

Equation (7.5) seems to be the legitimate prediction of broken 

scale invariance and POT for g 
QYY” 

(c) Our prediction for the om/ coupling seems considerably smaller than 

most other estimates in the literature. 13 Two a priori unknown constants 

appear in (7.5). As discussed in Section II, R is expected to be of order 1, and 

we have a preference (not inconsistent with experiment) for the three fractionally- 

charged triplet value R = 2. The decay constant F. can be estimated if we 

identify cr with the apparent scalar isoscalar dipion resonance E (700). 34 Using 

the broken scale invariance estimate ‘19 l2 (7.6) for gorr and estimating 

r (E - n7r) N 400 MeV we find Fa w 150 MeV. This value is not inconsistent 

with the POT estimate 

MN 
gCTNm’“r 

where 9 - = UN3 gGNB (T 3) z,!J, and the sketchy experimental information on ggNm : 

however, any value for Fo between 100 MeV and 200 MeV is certainly respectable. 
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Taking FU = 150 MeV we find 35 

rtc - 2-Y) w0.2R2 keV (7.9) 

which compares with other theoretical estimates 13,14* . 

Sarker : 6 keV 

Bramon and Greco: 6 keV 

Schrempp-Otto, Schrempp and Walsh: 22 keV 

Lyth3? < 1 keV 

The first three of these estimates use finite energy sum rules or pole dominance 

of dispersion relations. Neither our estimate nor the others should probably be 

regarded as better than order of magnitude values: everybody treats the scalar 

meson in the narrow resonance approximation, which is likely to be bad for the 

c (700) meson (l?e m 400 MeV), quite apart from the conjectural quality of the 

particle’s existence. 

However, if R is of the size suggested by theoretical prejudice, our 

estimate (7.9) does seem significantly smaller than most others 13: if the E (700) 

were so weakly coupled then its cross section would be more than an order of 

magnitude smaller than the Born term. Recall, however, that by Watson’s 

theorem, even if the E (700) meson were weakly coupled to yy the m/ - 7r7r 

amplitude will still have the standard 7r7r phase shift, so that the meson would 

still be observable. 

There seems to be no reason why the eyy coupling should not be small: 

the implications of unitarity for the process ?/“y - 7rlr7~ have been studied by 

Carlson and Tung 37 and by Lyth 14 with a view to getting information on the eyy 

coupling. Both papers write down Omnes-type solutions: Lyth allows 

terms in the left-hand cut in addition to the pion Born term, and concludes that 
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the eyy coupling is not completely constrained. His calculations in fact 

assume elasticity, and that any scalar isoscalar resonance is narrow, however 

his order of magnitude estimate of an upper bound for g 
CYY’ 

based on the likely 

magnitude of the left-hand cut, is encouragingly close to our parish (ballpark). 

We now turn to the anomalies (4.12) - (4.14) involving axial currents. 

Several previous authors 11,12,38 have used these Ward identities, neglecting 

anomalies, in conjunction with POT, to make predictions on scalar meson 

couplings to pions in particular. We study whether these results are affected 

by taking anomalies into account - they seem not to be changed but our argu- 

12,38 ments are not watertight. A common discussion of the u 7r7r coupling 

proceeds somewhat as follows. The O~-a’A~-dVA~ Green’s function is given 

the following low energy parameterization: 

AD+D-b,qj N A+B@ 2+q2) + Cr2 

(m2,-p2) (m2,-q2) (mt-r2) 
(7.10) 

where r=p-tq is the momentum associated with 19:. Using the chiral low energy 

theorem (4.2) and single particle dominance we obtain 

AD+D-(p, 0) = - .D+D-@, -p) + fI@(-p,p) 

F2m4 3F2m2m2 ?r T + ?rTr@ =- 
mi-p2 mz-p2 

Using a naive trace identity and single particle dominance we obtain 

2Ftrnt (mi-2p2) 
= 

(m2,_p212 

(7.11) 

(7.12) 
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Comparing these expressions with the parameterization (7.10) we see that 

A = 2F2m6m2 7r 7r CT” B = -2F2m4m2 T 7r CT’ C = F2”,(m”,- m:) 

which yields an on mass-shell g7rr coupling (7.6). 

As shown in Section IV, the trace identity (7.12) has an anomaly in models 

with a fundamental fermion structure, however we can still find two ways of 

deriving (7.6). Neither of these is particularly swasivious, which is why we 

sketch them both, 

(a) The parameterization (7.7) is inconsistent with the anomalous Ward 

identity (4.14): the simplest consistent parameterization for the 0 L-ah<-auki; 

vertex is 

A’ + B’(p2+q2) + C!‘r2 

(mz-p2)(m2,-q2)(mz-r2) 
+ D’ t Et (p2+q2) +Ffr2 (7.13) 

where we have allowed a contact term quadratic in the field momenta. In the 

single particle dominance approximation the anomalous trace identity becomes: 

*D+D- 
(P, -P) = 

2Ftm%(mi-2p2) 

Using (7.14) and the non-anomalous 21 chiral Ward identity (7.11) we find 

(7.14) 

Al = 2F2m6m2 7r 7r (T’ 

D’=O, 

B1 = -2F2m4m2 7T 7T (7“ C’ = F~m~(m~-m2J 

E’= _- 

When we go to the mass shell, the contact terms do not contribute to the 

coupling constant, and as A=A1 etc., the same on mass-shell coupling (7.6) 

is found as before. 
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The parameterization (7.13) is not the only one that could be chosen. 

However other choices seem either to have a larger number of parameters, 

which are hence not all determined by the Ward identities so that no prediction 

can be obtained, or else are not consistent with all the low energy theorems. 

(b) Alternatively Crewther’s method’l of obtaining the (T~VT coupling 

could be used. In this derivation, only 8 and one of the axial divergences are 

taken off the hadronic mass shell, and (7.6) is obtained from a resulting trace 

identity. According to Wilson’s analysis’ (see also Section II) anomalies can 

only arise if three or more fields are taken off mass shell in deriving low 

energy theorems. Hence Crewther’s method is not subject to anomalies, and 

his derivation of (7.6) not affected. 

- 37 - 



VIII. DISCUSSION 

We have discussed which anomalies arise in the trace identities of broken 

scale invariance if canonical behavior of strong interactions is assumed. We 

have also discussed the phenomenological relevance of these anomalies to high 

energy processes, and via POT to the couplings of a scalar isoscalar meson g. 

In particular we obtain a connection 

1 -+ 
g = lim a(e e -y * hadrons) 

CYY 127r2F 2 CT p &co a(e-e+ - Y - P-P+) 
(8-l) 

between the two-photon coupling of such a meson and asymptotic e-e+ annihila- 

tion cross sections. 

Apart from the phenomenological testing of broken scale invariance, 

canonical singularity structure and POT via Eq. (8. l), there remain several 

interesting open theoretical questions. There is the question of what canonical 

anomalies are present in conformal Ward identities, and whether they are 

simply related to the canonical trace anomalies. 10 The answer to this question 

may provide clues to the significant problem of what are the conformal analogues 

of the Callan-Symanzik anomalies. 4 As concerns the applications of the 

anomalies, there might be other ways of measuring the axial trace anomalies 

(4.12), (4.13), and (4.14) which would shed light on the question of the quark 

“mass”. Finally, in our low energy applications of the trace anomaly (3.8) 

using POT we treated the (T particle in a simple pole approximation. It may 

be possible to take into account finite width effects and unitarity, as has been 

done by other authors studying the isoscalar 7~7~ s-wave. 14,37,39 
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APPENDIX 

TRACE ANOMALY IN HIGHER ORDERS OF PERTURBATION THEORY 

From the point of view adopted in this paper - asymptotic scale invariance 

realized by canonical behavior at short distances - the trace anomaly and the 

V-V-A anomaly are due to similar physical phenomena and are equally likely 

to be realized in nature. However, if we choose to study products of currents 

from the perspective of perturbation theory, then there is an important 

distinction between the two anomalies. The axial vector anomaly has the 

remarkable property that it is not modified by higher order corrections, 3 

i.e., the value of the anomaly computed from the simple triangle graph is 

actually exact to all orders. This property is not shared by the trace anomaly. 

This difference between the two anomalies is easily understood in a 

qualitative way. It is possible to define a regulator which leaves chiral sym- 

metry invariant, e.g., Pauli-Villars regulators chosen in chiral singlets. 

Then the usual chiral Ward identities are still valid in the regulated theory. 

This condition makes it possible to prove the nonrenormalizability theorem 

for the axial vector Ward identity. But in the case of the trace anomaly, the 

underlying scale symmetry is violently broken by the large mass which is 

introduced in the regulator. The usual scale invariance Ward identities are 

modified by new terms depending on the regulator mass. As we take the 

regulator mass to infinity, these extra terms give rise to higher order cor- 

rections to the trace anomaly. 40 

We now calculate the leading radiative correction to the trace anomaly in 

fermion electrodynamics. The anomalous trace identity for the fourth order 
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quantities has the form 

A;; (p) = (2-p. $) I$; (p) + d4+pPpv -gPp2) 

This form is dictated by the following requirements: 

(A. 1) 

(1) The anomaly must be a polynomial in p because the absorptive 

parts of A andII 
PV FLU 

are regular and therefore satisfy the 

nonanomalous trace identity. 

(2) Dylan’s version of Weinberg’s theorem26 fixes the degree of the 

polynomial as quadratic. 

(3) Gauge invariance. 

We can easily calculate C (4) by using Weinberg’s theorem. According to 

the theorem, in the deep Euclidean region A ($ (p) diverges at most like p while 

II(4)@) diverges like p2 (4) 
w 

0 Therefore the leading divergence of II 
ruv 

must be 

cancelled by the anomaly. Where 

(4) IIpv (P) = (PI*Pv-gpvP2) lI(4+P2) 

we have 

- 2p2 -E n(4+p2)r c (4) 
ap2 

. 
P -c0 

For large momenta II (4) is given by 41 

d4)(p2) z+(G+ 5) +$) 
so that 

C(4)=-@ a2 -- 
3= 27r2 

(A. 2) 

(A. 3) 

(A. 4) 

(A. 5) 

The second order term obtained here is seen to agree with the result of the 

calculation of Section III. 
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We emphasize once again that from our point of view the presence of high 

order perturbation theory corrections is irrelevant when considering the trace 

anomaly in hadronic physics. This is because we invoke the hypothesis that 

the leading singularities of products of hadronic currents are given by canonical 

models, so that only the canonical singularities (which may be calculated from 

lowest order diagrams) are relevant. 
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FIGURE CAPTIONS 

1. Lowest order contributions to AhV and IIhv in models with fundamental 

constituent fields, These graphs are denoted q, and fI?A, in the text. 

2. Lowest order canonical contributions to %v hv and II in a field algebra 

model: vector meson propagators are denoted --- . 

3. Next to lowest order contributions to %V and fIhv in a field algebra 

model with interactions. 
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