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Abstract

A particle in a particle accelerator can often be considered a Hamilto-
nian system, and when that is the case, its motion obeys the constraints
of the Symplectic Condition. This tutorial monograph derives the condi-
tion from the requirement that a canonical transformation must yield a
new Hamiltonian system from an old one. It then explains some of the
consequences of symplecticity and discusses examples of its applications,
touching on symplectic matrices, phase space and Liouville’s Theorem,
Lagrange and Poisson brackets, Lie algebra, Lie operators and Lie trans-
formations, symplectic maps and symplectic integrators.
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The motions of any Hamiltonian system obey a constraint called the sym-
plectic condition or—more succinctly if less euphoniously—symplecticity. The
same constraint applies to the motions of the system, of course, regardless of the
mathematical formulation of the dynamical problem (Newtonian, Lagrangian
etc.), but the Hamiltonian formulation leads more expeditiously to a general
expression of the symplectic condition than other formulations do, so it offers
a clearer and more straightforward pedagogical setting. Symplecticity has im-
portant consequences for beam physics. Probably the most commonly cited
is the conservation of the density of system points in phase space—Liouville’s
Theorem—but that is only one of many consequences. This monograph is an
exploration of symplecticity, its mathematical origins and some of its conse-
quences.

A particle in an accelerator or a beam-transport system can frequently be
considered a Hamiltonian system,i.e., a system obeying Hamilton’s equations
of motion applied to the Hamiltonian for a charged particle in a given electro-
magnetic field. Of course, that is an approximation that ignores synchrotron
radiation, particle-particle interactions and a number of other effects, and the
approximation will not be permissible if, for example, the particle’s radiation
or the particle interactions are strong enough to affect the motion appreciably.
Nonetheless, the approximation is often good enough, and it finds widespread
use in beam physics.

In the following pages, we first develop Hamilton’s equations in their sym-
plectic (matrix) form. Then after introducing canonical transformations in
terms of generating functions, we derive the symplectic condition, which con-
stitutes a set of constraints on the Jacobian matrix of any canonical transfor-
mation. The symplectic condition is a necessary and sufficient condition for a
transformation to be canonical; therefore it supplies a direct test of any transfor-
mation between related sets of dynamic variables to determine whether or not
the transformation is canonical. By building up the motion of a Hamiltonian
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system from a series of infinitesimal motions, we can show that the motions
of any Hamiltonian system are themselves canonical transformations from the
initial conditions to the final state of motion. (This fact underlies the Hamilton-
Jacobi method of solution.) Consequently, the motions of Hamiltonian systems
are canonical transformations, and the symplectic condition applies to their Ja-
cobian matrices. Specifically, the motions of beam particles must be symplectic.

Viewed as a purely mathematical statement, the symplectic condition de-
fines a set of symplectic matrices, and we discuss some of the mathematical
properties of these matrices. Then returning to physics, we discuss the restric-
tions on physical dimensions in canonical transformations. We discuss phase
space, emphasizing that it is a space in which the state of an entire Hamiltonian
is represented by a single point, and we the use of the phase space for a single
particle to characterize a beam as a swarm of points.

In beam dynamics we often expand the particle motions as Taylor series
in the initial values of the coordinates and momenta, and frequently, we can
attain sufficient accuracy even if we discard all but the linear terms and express
the result as a “transport matrix.” That matrix is the Jacobian matrix of the
solution, and thus the transport matrix is symplectic.

Lie algebraic structures have proved to be powerful tools in developing meth-
ods of finding the motions of Hamiltonian systems, especially when the systems
are highly non-linear. We introduce the elements of this approach in the last
two sections.

We conclude with an appendix devoted to the derivation of the the Hamilto-
nian for non-interacting particles moving in a given electromagnetic guide-field.

The topics chosen are those that caught the writer’s interest as he studied
symplecticity to explain the subject to himself. The references reflect the main
published sources he studied, which were greatly augmented by very pleasant
and illuminating discussions with Alex Chao and Ron Ruth.

A list of the main notational styles used is included for the reader’s conve-
nience in the following table.
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NOTATION

ȧ An overhead dot denotes total differentiation with respect to time: da/dt.
a′ A prime denotes total differentiation with respect to s: da/ds.
A Bold-face Roman typeface denotes a vector.
â An overhead caret denotes a unit vector.
A Bold-face san serif typeface denotes a matrix.
Ã A tilde denotes a transposed matrix: Ãij = Aji.
|A| The determinant of the elements of a matrix.
S A constant rearranging matrix. See (4) and (5).
∂f/∂x Differentiation of a function by a column matrix. See (8).
/x/ The physical dimensions of x.
{u, v} Lagrange brackets. See (112).
[u, v] Poisson brackets. See (117).
:f : Lie operator associated with the function f . See (134).
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1 The Symplectic Form of Hamilton’s Equations
of Motion

Hamilton’s equations of motion can be written in a compact matrix formulation,
and recasting them in that way is a good first step to introduce the study of
symplecticity.[1] We begin with the equations themselves, which are normally
written

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
, k = 1, 2, · · · , N , (1)

where overhead dots denote total differentiation with respect to time. These
equations carry the implicit understanding that time is the independent vari-
able. It is possible under certain circumstances to interchange the role of inde-
pendent variable between time and one of the coordinates or momenta so that
the latter can be treated as the independent variable, and time can be treated
as a coordinate. The essential requirement for the feasibility of this procedure
is that the variable chosen to replace time as independent variable must vary
monotonically and smoothly with time. In particle-beam dynamics this inter-
change is customarily made between time and the longitudinal coordinate of
the particle, called s, which is promoted to the status of independent variable,
time becoming the third coordinate. This change of variables, its justification,
and the derivation of the resulting Hamiltonian and equations of motion are
discussed fully in the appendix. The resulting equations of motion, generalized
to N degrees of freedom, are

q′k =
∂H
∂pk

, p′k = − ∂H
∂qk

, k = 1, 2, · · · , N , (2)

where primes denote total differentiation with respect to s, and the cursive H
denotes the Hamiltonian in which s, the longitudinal coordinate, is the indepen-
dent variable. We shall take (2) as our fundamental equations of motion, and
we shall always treat s as the independent variable unless we state otherwise.

To cast these equations in matrix form, we first define x, a column matrix
of the canonical variables, indicated by a bold sans serif typeface, with (x)i =
q(i+1)/2 for odd i, (x)i = pi/2 for even i, and with i ranging from 1 to 2N . It
looks like this:

x =



q1
p1

q2
...
qN
pN

 . (3)

The arrangement of this matrix has been chosen to accord with typical usage
in accelerator beam dynamics—more on this subject at the end of the section.

Hamilton’s equations of motion equate q′ to derivatives of H with respect
to p, and they equate p′ to negative derivatives with respect to q. In order to
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express the equations in terms of x, a “rearranging matrix” is needed. To help
construct the rearranging matrix, we introduce an antisymmetric two-by-two
constant matrix, s.

s =
(

0 1
−1 0

)
(4)

The rearranging matrix, which we shall denote by a capital S, can be constructed
of s and the null matrix by placing s-matrix partitions along the diagonal up to
the desired dimension and null matrix partitions everywhere else to form a 2N
by 2N matrix.

S =


s 0 · · · 0
0 s · · · · · ·
· · · · · · · · · · · ·
0 · · · · · · s

 (5)

It is a very simple, sparse, square, even-dimensioned, antisymmetric matrix with
only one entry in each row and one entry in each column. S-matrices have the
following obvious properties:

S−1 = S̃ = −S, S2 = −I , |S| = 1, (6)

where the tilde denotes the transposed matrix, I is the identity matrix of ap-
propriate order and |A| signifies the determinant of the matrix A.

Using the matrix S, we can now write Hamilton’s equations of motion in
compact form in terms of the column matrix x.

x′ = S
∂H
∂x

, (7)

where we define the derivative of a scalar function, f , with respect to the column
matrix x as another column matrix according to(

∂f

∂x

)
i

≡ ∂f

∂xi
. (8)

Equation 7 is called the symplectic form of Hamilton’s canonical equations of
motion. The term, “symplectic,” comes from the Greek συµπλεκτικos which,
according to the Oxford English Dictionary, means twining, plaited together or
copulative.

It is important to reëmphasize that the form of the matrix S was dictated
entirely by the arbitrary organization of the column matrix x. Our choice—
alternating coordinates and momenta—although usually used in beam dynam-
ics, differs from the usual practice in classical mechanics textbooks of grouping
the coordinates together at the top and the momenta at the bottom. In the
latter case, the matrix S, is replaced by another, often called J, which has a
different form:

J =
(

0 I
−I 0

)
, (9)

where I is the unit matrix. Of course, these are merely notational differences;
the dynamics are the same.
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2 Canonical Transformations

In Hamiltonian mechanics the state of a system with N degrees of freedom is
specified in terms of 2N variables—the canonically conjugate coordinates and
momenta—and its evolution is described by the variation with s of those vari-
ables. One may choose the coordinates and momenta to use for a particular
system to suit the symmetries of the system or according to habit. As simple
examples, one might think of cartesian or spherical coordinates, each with ap-
propriate conjugate momenta, to describe the motion of a particle. A canonical
transformation is a set of equations that relates one of these sets to another,
say a “new” set of 2N canonical variables, the Q’s and P ’s, and an “old” set,
the q’s and p’s. It may optionally involve also the independent variable s. Sup-
posing we had found the motion of the system in terms of the old variables
q1(s), q2(s), · · · , p(N−1)(s), pN (s), we could use the transformation equations to
describe the motion in terms of the new variables.

The transformations may be written[1]

Qk = Qk(q, p, s) , Pk = Pk(q, p, s) , k = 1, 2, · · · , N , (10)

2N equations in all. Here and subsequently the argument list notation (q, p, s)
symbolizes the full list (q1, p1, · · · , qN , pN , s). In the special case that the trans-
formation (10) does not depend explicitly on the independent variable, it is
designated a restricted canonical transformation. The old set of variables obeys
(2), and since the new set is canonical, there must exist a corresponding new
Hamiltonian, call it K(Q,P, s), such that

Q′
k =

∂K

∂Pk
, P ′

k = − ∂K

∂Qk
, k = 1, 2, · · · , N , (11)

Furthermore the function K must somehow be produced from the old Hamilto-
nian by the process of the transformation itself by a scheme that is independent
of the system under consideration. In other words the process of canonical trans-
formation includes more than transforming the canonical variables; it includes
transforming the Hamiltonian.

A common method of making a canonical transformation is through the
agency of a generating function, an arbitrary but well-behaved function of the
generalized coordinates, the canonical momenta, and the independent variable.[1]
The coordinates and the momenta of the generating function may not come from
the same side of the transformation, i.e., some must come from the old variables
and some from the new, but the selection must be such as to specify the state of
the system completely. Four combinations are used in four kinds of generating
functions numbered one through four:

F1(q,Q, s) , F2(q, P, s) , F3(p,Q, s) , F4(p, P, s) . (12)

These arguments assume that the transformation can be uniquely inverted, but
transformations with that property are the only ones that are useful for our pur-
poses. The corresponding canonical transformations are given by the following
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four sets of equations.

pk = +
∂F1

∂qk
, Pk = − ∂F1

∂Qk
, K = H +

∂F1

∂s
, (13)

pk = +
∂F2

∂qk
, Qk = +

∂F2

∂Pk
, K = H +

∂F2

∂s
, (14)

qk = −∂F3

∂pk
, Pk = − ∂F3

∂Qk
, K = H +

∂F3

∂s
, (15)

qk = −∂F4

∂pk
, Qk = +

∂F4

∂Pk
, K = H +

∂F4

∂s
. (16)

These recipes produce strictly canonical transformations as they are defined in
(50). There is a type of transformation, called a scale transformation, that
satisfies the requirements that the transformation equations take the form (10)
and that a new Hamiltonian is obeyed by the system, but scale transformations
are not usually admitted as canonical transformations. More is said about scale
transformations in Section 3 and in Reference [1]. The formulae above cannot
produce scale transformations.

A few examples will be useful in fixing the idea and the application of the
generating-function method in mind.

Example 1—The beam-dynamical Hamiltonian H given in equation (228)
in the appendix is expressed in terms of the canonical variables x, Px, y, Py , t
and −H , where t is the time and H is the total energy of the particle. A more
useful set of variables for beam dynamics replaces time and energy with their
increments from the time and energy of the reference particle. As an example of
the generating-function procedure we shall transform to that set. The new time
coordinate is τ = t − t0(s), where t0(s) is the schedule of the progress of the
reference particle along the reference trajectory, and the conjugate momentum
(an energy) is −ε = −H+H0 where H0(s) is the energy of the reference particle.
Both t0(s) and H0(s) are given a priori. The time-difference variable measures
the lead or lag in the arrival at s of the particle in question relative to that of
the reference particle. To summarize, the old variables q, p are t,−H and the
new variables Q,P are τ,−ε. Using a generating function of the third type,

F3 = (H −H0) (t0(s) + τ) , (17)

the transformation equations are

t=− ∂F3

∂(−H)
= t0 + τ, (18)

−ε=−∂F3

∂τ
= −H +H0 . (19)

The new Hamiltonian becomes

K(x, Px, y, Py, τ,−ε) = H +
∂F3

∂s
= −(1 + hx)Ψ +

ε

v0
, (20)
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where

Ψ =

√(
H0 + ε− eΦ

c

)2

− (Px − eAx)2 − (Py − eAy)2 −m2c2 + eAs . (21)

In the result, all occurrences of t are replaced by t0 + τ and all occurrences of H
by H0 + ε. The variables of both H and K are canonical, i.e., they form sets of
canonically conjugate pairs. That qualifies either set to form the dimensions of a
single-particle phase space in terms of which some important general principles,
such as Liouville’s Theorem, can be asserted.

Example 2—Another instructive example of the generating-function method
of making canonical transformations is one that transforms the relativistic Hamil-
tonian for a charged particle from cartesian coordinates (in which it is usually
expressed) to the curvilinear coordinates of beam dynamics.[2] See the appendix
in which the coordinates are defined and in which we derive the same beam dy-
namical Hamiltonian by a different procedure which is more perspicuous but
more laborious.

We begin with the familiar form of the Hamiltonian in cartesian coordinates
with time as the independent variable,

H(r,p, t) = c
√

(p− eA)2 +m2c2 + eΦ , (22)

The old coordinates are the cartesian coordinates and the corresponding con-
jugate momenta are the cartesian components of the kinetic momentum plus
the corresponding components of the vector potential (times the charge). The
new variables are x, y, s as defined at the beginning of the appendix and their
conjugate momenta. We choose again a generating function of the third type:

F3 = −p · [r0(s) + x̂(s)x + ŷ(s)y] , (23)

where p is the conjugate momentum vector in the cartesian system and the other
quantities are defined at the beginning of the appendix where the curvilinear
coordinate system is discussed. The transformations, (15), give the results

r(s) = r0(s) + x̂(s)x+ ŷ(s)y , (24)

the desired relation between old and new coordinates, and

Px = p · x̂ , Py = p · ŷ , Ps = p · ŝ(1 + hx) , (25)

for the new momenta. Since the generating function has no explicit time depen-
dence, the transformations are of the restricted variety, and K = H with the
new variables substituted according to (25). The transformed Hamiltonian is

K = c

√
(Px − eAx)2 + (Py − eAy)2 +

(
Ps

1 + hx
− eAs

)2

+m2c2 + eΦ

(26)
the same as (222) of the appendix.
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Both of the preceding examples have a noteworthy characteristic: The gen-
erating functions (17) and (23) are real functions of real variables and therefore
generate transformations from real variables to real variables. No such restric-
tion is placed on generating functions by the theory. Indeed, complex generating
functions and the resulting complex transformations are useful in some contexts,
but when they are used, supplementary rules must be carried along to translate
the results into real, physical variables. The point to remember is that the the-
ory of canonical transformations does not prohibit or eliminate complex results;
that is left to the practitioner.

The transformation between old and new variables in Example 1 is intrin-
sically unique, because it is linear. A description of the system in terms of the
old variables (t,−H) defines a single, unique description in the new variables
(τ,−ε) and vice versa. In other words, these transformations are one-to-one
mappings. The generating-function method does not guarantee this property.
While the generating function must possess continuous second derivatives to be
useful, it is otherwise utterly arbitrary.[1] Consequently it is entirely possible to
define a generating function with benign behavior in every respect except that
of securing uniqueness of the mathematical transformations it generates. Indeed
generating functions of higher degree ordinarily do not automatically generate
one-to-one mappings.

If the transformation Qk = Qk(q, p, s), Pk = Pk(q, p, s) is non-linear, i.e., is
composed of non-linear functions of (q, p), then a single point in (q, p)-space may
correspond mathematically to multiple points in (Q,P )-space, and vice versa.
Such cases often arise in non-linear beam dynamics, a field of vigorous activity,
and recipes must be used in these cases to select the inverse transformation that
leads back to the original point. Example 3 explicates these methods.

Example 3—As a simple yet practical example consider the generating
function F2(q, P ) = P (q + aq2) which generates the following “forward” trans-
formation from the q-p phase space to the Q-P phase space.

Q = q + aq2, P = p/(1 + 2aq). (27)

Clearly these expressions map one point in q-p phase space to a single point in
Q-P phase space. But what of the inverted relations? The coordinate q is a
solution of the quadratic equation aq2 + q−Q = 0, which has two distinct roots
that generate two distinct “backward” transformations which we can label with
a and b.

qa = (−1 +
√

1 + 4aQ)/2a, pa = P
√

1 + 4aQ, (28)

qb = (−1 −√
1 + 4aQ)/2a, pb = −P

√
1 + 4aQ. (29)

Let us consider the forward transformation of the point q = 0, p = 0. It
transforms to the point Q = 0, P = 0 in the Q-P phase space, and only
the “a” transformation carries this point back to the point q = 0, p = 0 as
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required. Thus we must eliminate the “b” transformation and choose the “a”
transformation as the proper backward transformation.

Canonical transformations possess the group property; they form a group.
A group is a set of abstract elements with a law of combination to form a
product such that (a) products obey the associative law, (b) every product of
two elements and the square of each element is a member of the set, (c) the
set contains the unit element which, combined in a product with any other
element in either order, yields the other element itself, and (d) every element
has an inverse, also a member of the set, so that the product of the element
with its inverse yields the unit element. For canonical transformations, each
transformation (q, p) −→ (Q,P ) as a whole is an element, and the product op-
eration is called composition. It is the successive application of two transforma-
tions, (q, p) −→ (Q,P ) followed by (Q,P ) −→ (Q̄, P̄ ) which can be abbreviated
(q, p) −→ (Q,P ) −→ (Q̄, P̄ ). Since the variables (Q̄, P̄ ) obey a Hamiltonian,
the transformation (q, p) −→ (Q̄, P̄ ) is canonical and thus a member of the set.
A tripartite product does not depend on the order in which the transformations
are carried out, so the associative law applies. The identity transformation ex-
ists trivially. And finally, the inverse of the transformation (q, p) −→ (Q,P ) is
simply the inversion of it (Q,P ) −→ (q, p). We say that canonical transforma-
tions form a group under composition, a group of infinite extent. Anticipating
the next section, we may note that to every canonical transformation there be-
longs a square Jacobian matrix; we shall find that those Jacobian matrices also
form an infinite group.

3 The Symplectic Condition

Canonical transformations are most often introduced in the context of generat-
ing function theory as we have done in the preceding section. Starting from a
description of the motion in terms of one set of canonical variables, one writes
down a generating function and then carries out the manipulations prescribed
in the theory, whereby one arrives at a new set of canonical variables and a new
Hamiltonian. The transformation is guaranteed to be canonical. The generat-
ing function method is a constructive method. On the other hand, suppose we
are confronted a priori with an arbitrary transformation which may or may not
be canonical. How can we find out whether it is or is not? Using generating
function theory we could only depend on the deus ex machina while guessing
at generating functions and trying them. If we found one that generated the
transformation in question, we would have proved that the transformation is
canonical, but if we failed to find one we could not thereby prove that the ap-
propriate generating function does not exist—only that we had not found it. In
other words, to test an arbitrary transformation we need an analytic method
rather than a constructive one. The symplectic condition answers this need.

Stated in words, the symplectic condition requires that the Jacobian matrix
of any canonical transformation be a symplectic matrix, which in turn means
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that the Jacobean matrix must satisfy a certain equation involving only the
Jacobian matrix and the rearranging matrix, S, introduced at the beginning
of the monograph. The Jacobian matrix is a matrix of derivatives of the new
coordinates relative to the old ones, similar in form to the well-known Jacobian
determinant. It is not unreasonable that it should be constrained by a condition
that selects only canonical transformations from all possible transformations.

Again letting the old variables be designated q and p and the new ones Q
and P , a general transformation between them would be expressed

Qi =Qi(q, p, s) , (30)
Pi =Pi(q, p, s) , (31)

or as the inverted relationship

qi =qi(Q,P, s) , (32)
pi=pi(Q,P, s) , (33)

where the coordinate and momentum symbols in the argument lists are meant
to imply the whole sets. To repeat, the motion of the system in terms of the
old coordinates and momenta obeys Hamilton’s equations of motion,

q′i =
∂H
∂pi

, p′i = −∂H
∂qi

. (34)

If the transformation is canonical, there exists some function, K(Q,P, s) such
that the equations of motion in the new coordinates are

Q′
i =

∂K

∂Pi
, P ′

i = − ∂K

∂Qi
, (35)

and such thatK is arrived at from the old Hamiltonian H through the procedure
of the transformation.

Returning to matrix notation and letting

X =


Q1

P1

Q2

P2
...

 , (36)

the reciprocal transformations (30), (31) and (32), (33) take the forms

X = X(x, s) and x = x(X, s) , (37)

simply symbolizing the fact that the elements of X are functions of the elements
of x etc. If the transformation is canonical, in addition to (7) we have also

X′ = S
∂K

∂X
, (38)
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and we may take the existence of a function K(X, s) such that these are the
equations of motion as the touchstone of a canonical transformation. The fact
that ∂2K/∂xi∂xj = ∂2K/∂xj∂xi must hold for any i and j turns out to impose
strong constraints on the Jacobian matrix of the transformation.

The total derivative of X with respect to s is given by

X′ =
∂X

∂x
x′ +

∂X

∂s
= MS

∂H
∂x

+
∂X

∂s
, (39)

where we have introduced M, the Jacobian matrix of the first of the transfor-
mations (37) with respect to the components of x:

Mij =
(
∂X

∂x

)
ij

≡ ∂Xi

∂xj
. (40)

Combining (38) and (39) we obtain

∂K

∂X
= S̃

(
MS

∂H
∂x

+
∂X

∂s

)
. (41)

Then using the Jacobian relation

∂K

∂x
= M̃

∂K

∂X
, (42)

we arrive at the column-matrix equation

∂K

∂x
= M̃SMS̃

∂H
∂x

+ M̃S̃
∂X

∂s
. (43)

This matrix equation represents a set of 2N equations of the form

∂K

∂xj
= aj +

2N∑
k=1

bjk
∂H
∂xk

, (44)

where a and b are given by

a = M̃S̃

(
∂X

∂s

)
and b = M̃SMS̃ , (45)

a column matrix and a 2N -by-2N matrix respectively. These matrices depend
only on the transformation, not on the Hamiltonian. In other words, they are
independent of the system under consideration. Equations (44) are simultane-
ously satisfied if the transformation is canonical.

In order to be a Hamiltonian, K must be a simple scalar function for which
∂2K/∂xi∂xj = ∂2K/∂xj∂xi for any i and j.[3] From this condition we determine
that (

∂aj

∂xi
− ∂ai

∂xj

)
+

2N∑
k=1

(
∂bjk

∂xi
− ∂bik
∂xj

)
∂H
∂xk

+ cij = 0 (46)
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for any function H whatever, where

cij =
2N∑
k=1

(
bjk

∂2H
∂xi∂xk

− bik
∂2H

∂xj∂xk

)
, (47)

The condition means that, for any i and j :

1. The first parenthetical expression in (46) must vanish.

2. The sum in the second term of (46) must vanish, but since the partial
derivatives are independent, their coefficients (the parentheses) must in-
dividually vanish.

∂bjk

∂xi
=
∂bik
∂xj

3. The sum cij must vanish. In order to deduce the implications of that
requirement, let us first consider the case i �= j. In compiling the sum
there will be a term (

bjj
∂2H
∂xi∂xj

− bij
∂2H
∂x2

j

)
when k = j and a term (

bji
∂2H
∂x2

i

− bii
∂2H
∂xj∂xi

)
when k = i. These are the only terms in the sum in which the mixed
derivative ∂2H/∂xi∂xj appears, and the coefficient of that derivative must
vanish. These terms are also the only ones in which the second deriva-
tives with respect to the particular variables xi and xj appear, and their
coefficients must also vanish. Therefore

bij = 0 , bii = bjj , for all i �= j (48)

For completeness we note that all the cii vanish identically.

It follows that b is diagonal and all the diagonal elements are equal; in other
words, b is a multiple of the unit matrix: b = λ(x, s) I. Then from Point
(2) above we deduce that the function is independent of the coordinates and
momenta and is therefore a function of s alone. The deduction goes as follows.
The condition requires that each diagonal element bkk depend only upon on the
variable bearing the same index xk; but the diagonal elements must all be the
same; therefore they may depend on none of the canonical variables, only on the
independent variable: λ = λ(s). But it is possible to show from the definitions
of a and b, (45), that ∂bij/∂s = ∂aj/∂xi − ∂ai/∂xj . Therefore ∂bij/∂s = 0 and
λ is merely a constant. We conclude that M̃SMS̃ = λI which leads to the most
general statement of the result:

M̃SM = λS . (49)

We may call this equality (with Goldstein[1]) the extended symplectic condition.
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The terms “canonical transformation” and “symplectic condition” as we have
used them—and indeed as most authors use them—allow only transformations
for which λ = 1, so the equation,

M̃SM = S , (50)

expresses the symplectic condition. It is a constraint upon the Jacobian matrix
of a canonical transformation. In fact, it is a necessary and sufficient condition
for all canonical transformations.[1] If a transformation satisfies the symplectic
condition, it is canonical, and if a transformation is canonical, it satisfies the
symplectic condition. The symplectic condition provides us with a direct test
of canonicality of a transformation.

Along with the symplectic condition we get the following conditions on the
new Hamiltonian: applying b = I to (43), we get a set of simultaneous partial
differential equations.

∂K

∂x
=
∂H
∂x

− M̃S
∂X

∂s
, (51)

relating the new Hamiltonian K to the old Hamiltonian H and the given canoni-
cal transformation X(x, s). If the transformation (37) has no explicit s-dependence,
the second term on the right vanishes, and we can satisfy the conditions by
choosing K = H, just as we do in the generating-function method when the gen-
erating function has no explicit s-dependence. Otherwise, we have to augment
H by the quantity −M̃S(∂X/∂s) to produce K. If we define the augmentation
as ∆, so that K = H + ∆, then

∆ = −M̃S(∂X/∂s), (52)

and we emphasize the important fact that the augmentation of the Hamiltonian
depends only on the canonical transformation itself and not on the Hamiltonian.

For the sake of reminding ourselves of the meaning of the Jacobian matrix,
it is illuminating to write it out in terms of the canonical variables themselves:

M =


∂Q1/∂q1 ∂Q1/∂p1 ∂Q1/∂q2 · · ·
∂P1/∂q1 ∂P1/∂p1 ∂P1/∂q2 · · ·
∂Q2/∂q1 ∂Q2/∂p1 ∂Q2/∂q2 · · ·

· · · · · · · · · · · ·

 . (53)

Symplecticity constrains these derivatives, which are, in general, functions of
the canonical coordinates xi and of s. Therefore the symplectic condition must
be read like this: M̃(x, s)SM(x, s) = S. It requires each of the elements of the
product matrix on the left to be a constant for all values of the xi’s and s. In the
special case that the transformation X(x, s) is linear in the xi’s, the Jacobian
matrix of the transformation is independent of the xi’s, but it still may depend
on s.

A useful type of transformation called the scale transformation can always
be used to transform a system satisfying the extended symplectic condition (49)
into one satisfying (50):

Qi = µqi, Pi = νpi, K = µνH , (54)
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where µ and ν are constants, i.e., independent of the canonical variables and of
the independent variable, and µν = λ. Indeed we may consider that we ruled
out these transformations in setting λ equal to one in order to reach (50).

Example 4—In Example 1, Sec. 2, we developed the Hamiltonian for a
beam particle in terms of the canonical variable set, x, Px, y, Py, τ and −ε.
Another widely used set of variables is one called the “Transport variables,”
so-called because this set is used in a computer program for beam-transport
design called Transport.[4] Here is a case in which we have, on one hand, the
set of variables above, that we know to be canonical and, on the other hand, a
set given to us solely in terms of the transformation between the two sets. Are
the Transport variables a canonical set? Answering this question is an excellent
task for the symplectic condition. The Transport variables are

x : The horizontal coordinate, same as x.
x′ : The horizontal slope of the particle’s trajectory.
y : The vertical coordinate, same as y.
y′ : The vertical slope of the particle’s trajectory.
� : The longitudinal separation from the reference particle.
δ : The fractional momentum deviation from the reference particle.

With the help of the symplectic condition we can test whether the trans-
formation to these variables is canonical, and therefore whether these variables
form a canonical set. The transverse Transport variables, which we have sym-
bolized by a typewriter font to distinguish them from the standard variables,
are related to the canonical variables above by the following relations.

x=x (55)

x′=
∂K

∂Px
(56)

y=y (57)

y′=
∂K

∂Py
(58)

where K is the Hamiltonian, (20). The transverse momenta are supplanted
by the transverse slopes x′ and y′. Quite naturally the question arises, do
these variables form canonical pairs? Is x′ canonically conjugate to x, and is y′

canonically conjugate to y? Since these variables are used primarily in linearized
treatments of beam dynamics, let us expand K to second order, and let us omit
accelerating sections from consideration and confine ourselves to beam transport
magnets that can be characterized by purely longitudinal vector potentials so
that Ax = Ay = 0. Also let us symbolize the second-order Taylor expansion (in
x and y) of As(x, y, s) by S(x, y, s). The Hamiltonian then takes the form,

K2nd = −p0 +
P 2

x

2p0
+
P 2

y

2p0
+
m2ε2

2p3
0

− H0hxε

p0c2
+ eS(x, y, s) . (59)
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From this Hamiltonian we find the new canonical momenta.

x′=
Px

p0
, (60)

y′=
Py

p0
. (61)

The transformations of the longitudinal variables are given by

� = −vτ = −cτ
√

1 −
(

mc2

H0 + ε

)2

, (62)

δ =
p− p0

p0
=

1
p0

√(
H0 + ε

c

)2

−m2c2 − 1 . (63)

Summarizing the transformation: the transverse coordinates do not change; the
new transverse momenta are mere constant scalings of the old momenta; and
the new longitudinal variables depend only on the old longitudinal variables.
The new variable � is negatively proportional to the old variable τ because
τ is negative when the particle in question leads the reference particle, i.e.,
arrives earlier. For this transformation, the Jacobian matrix is very sparse. We
can partition it into two-by-two submatrices, and only the submatrices on the
diagonal are non-zero; the Jacobian matrix is a block-diagonal matrix.

M =

Mx O O
O My O
O O Ms

 , (64)

where the submatrices are

Mx = My =
(

1 0
0 1/p0

)
, Ms =

(−v (m2c6τ)/v(H0 + ε)3

0 −1/(vp0)

)
(65)

For a matrix like (64), the symplectic condition reduces to the requirement
that the determinants of the submatrices each be unity. In fact, the three
determinants are equal, but their common value is not unity, it is 1/p0. The
transformation, therefore, is not strictly canonical.

It can, however, be considered an extended canonical transformation. For
extended transformations, the determinants of the diagonal submatrices are
merely required to be constants, but all three determinants must be the same
constant. That criterion is satisfied: the determinants are all 1/p0. Then, since
we are considering only beam transport in magnets, and p0, the momentum of
the reference particle, is constant in magnets, we may in fact regard the trans-
formation to Transport variables to be an extended canonical transformation.
Indeed we might have noted at the outset that the transformation from Px to x′

(for example) changes the dimensions of the momentum from kinetic momen-
tum to unity, so the appearance of a constant with the dimensions of momentum
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was inevitable. To summarize: the set {x, x′, y, y′, �, δ} is “extended canonical”
in transport systems in which the momentum of the particle is constant.

Of course, we have reached these results on the basis of the linearized Hamil-
tonian (59), having dodged the exact Hamiltonian (20) at the outset. On the
basis of the exact Hamiltonian, the relationships between the set {x, x′, y, y′, �, δ}
and the “old” canonical variable set, {x, Px, y, Pt, τ ,−ε} are not so simple as
those we found with the approximate Hamiltonian, and the transformation is
not canonical or even extended canonical.

Also in this example, by taking p0 to be constant, we have excluded accelerat-
ing systems like rf cavities and traveling-wave accelerators, in which the momen-
tum of the reference particle is not constant. The transformation to Transport
variables in those regions is not canonical, even on the basis of the linearized
Hamiltonian. One consequence of that fact is that Liouville’s Theorem (which
is discussed in Section 8) does not hold for the Transport variables in such re-
gions, and the phenomenon generally called “adiabatic damping” takes place. In
adiabatic damping, acceleration of the reference particle is accompanied by an
increase in the density of particle points in the transverse pseudo-phase planes
(x, x′) and (y, y′).

Example 5—In the preceding example, the transformations of the variables
involved only the old and the new canonical variables; they did not depend
explicitly on the independent variable s. In that case the new Hamiltonian was
simply the old Hamiltonian re-expressed in terms of new variables instead of the
old ones, and we had no need to use the formula (51), which comes into play
only when the transformations depend explicitly on the independent variable.
Now let us construct a simple example in which the transformations do depend
on the independent variable, and for the sake of familiarity, let us temporarily
take the independent variable to be time. Equation (51) will be valid for this
case with the simple substitution of t for s.

We don’t need a very elaborate system to illustrate the method. Let us con-
sider motion in one degree of freedom along the x-axis. Let x be the coordinate
of a particle of mass m in a stationary (inertial) coordinate system S1, and let
ξ be the coordinate in a relatively moving system S2 which coincides with S1

at t = 0 but which is accelerating to the right at rate a so that the coordinate
of a point x in S1 is related to the coordinate of the same point in S2 by the
equation,

x = ξ + at2/2. (66)

The non-relativistic Hamiltonian of a free particle in the S1 system is

H =
p2

x

2m
, (67)

where px = mẋ. Now suppose we are given ex cathedra the following transfor-
mation.

ξ = x− at2/2, pξ = px. (68)
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The questions are: is this transformation canonical, and if it is, what is the new
Hamiltonian K for a free particle?

First, we must form the Jacobian matrix, M = (∂X/∂x), of the transforma-
tion.

x =
(
x
px

)
and X =

(
ξ
pξ

)
=
(
x− at2/2

px

)
.

The Jacobian turns out to be the unit matrix, M = I, so the transformation
is symplectic, and therefore canonical. That being the case, we turn to the
prescription (51) for the new Hamiltonian,

∂K

∂x
=
∂H

∂x
− M̃S

∂X

∂t
, (69)

in which we have replaced s with t. If now we let K = H + F , the partial
differential equations we have to solve are simplified to

∂F

∂x
= −M̃S

∂X

∂t
= −S

∂X

∂t
. (70)

Differentiating the transformation equations with respect to time, we find

∂X

∂t
=
(−at

0

)
, (71)

and then combining the last two equations we arrive at the partial differential
equation for F .

∂F

∂px
= −at, (72)

with the solution,
F = −atpx. (73)

Then adding F to H and using the transformation to express the result in terms
of the new variables, we arrive at the new Hamiltonian,

K =
p2

ξ

2m
− atpξ. (74)

The equations of motion in the accelerated frame S2 are

ξ̇ =
pξ

2m
− at and ṗξ = 0. (75)

The canonical momentum in the accelerated system is constant at its initial
value, and the particle is uniformly accelerated at rate −a. The solution for
the coordinate is ξ = (pξ0/m)t − at2/2. Viewed in the inertial system S1,
x = (px0/m)t, which is the correct motion for a free particle.

Before leaving the subject of the symplectic condition, one further important
fact needs to be discussed, and we state the fact before proving it: the solutions
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of Hamilton’s equations of motion—the motions of Hamiltonian systems—are
themselves canonical transformations and therefore obey the symplectic condi-
tion.

For any system, the Hamiltonian is a function of the canonical coordinates
and momenta and the independent variable (and no other variables), so appli-
cation of the equations of motion leads to a system of 2N differential equations
of the form

ϕ′
i = fi(ϕ1, ϕ2, . . . , ϕ2N , s) , i = 1, 2, . . . , 2N (76)

with initial conditions ϕi(0) = y0i which specify a single point in phase space.
If the functions fi are well-behaved, we know from the theory of differential
equations that this system has a unique solution set,

ϕi(s; y01, y02, · · · , y02N ) , i = 1, 2, . . . , 2N , (77)

determined by the initial conditions.[6] In the 2N -dimensional space of the vari-
ables, the solution describes a curve parametrized by s that passes through the
point specified by the initial conditions, and each different initial point defines
a different curve.

Casting the statements of the preceding paragraph in terms of x, our vector
of canonical variables defined in (3), the solution (77) takes the form x(s) =
x(s; x0). Clearly we may regard any such functional relation as an s-dependent
transformation: x0 is transformed to x(s). But is it a canonical transforma-
tion? The answer is, yes, and to prove it we shall construct an infinitesimal
transformation. Consider the motion of a system from s0 to s0 + δs. In the
infinitesimal interval δs the coordinates and momenta change by the increments
q′δs and p′δs, so if Q and P denote the “new” values (at s0 + δs), we can
consider the motion a transformation and write it Qk = qk + (∂H/∂pk)δs and
Pk = pk − (∂H/∂qk)δs or in matrix form

X = x + S
∂H
∂x

δs , (78)

where x and X are defined in (3) and (36). Since this is an infinitesimal transfor-
mation, results should retain terms only to first order in δs. We can determine
whether (78) is a canonical transformation by computing its Jacobian matrix
and testing it against the symplectic condition (50).

M =
∂X

∂x
= I + S

∂2H
∂x∂x

δs , (79)

where the second derivatives,(
∂2H
∂x∂x

)
kj

=
∂2H

∂xk∂xj
, (80)

form a symmetric matrix. Applying the symplectic test,

M̃SM =
(

I − ∂2H
∂x∂x

Sδs

)
S

(
I + S

∂2H
∂x∂x

δs

)
= S (81)
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to first order in δs, and we conclude that the infinitesimal transformation (78)
is a canonical transformation.

On the basis of that finding, and recognizing that we can build up the motion
over a finite interval from s0 to s by adding up or integrating infinitesimal trans-
formations, we conclude that the evolution with s of the solution from its initial
value x0 to the present value is itself an s-dependent canonical transformation,
x(x0, s). This conclusion will not surprise students of the Hamilton-Jacobi tech-
nique of solving the equations of motion, because that technique is based on
finding just such canonical transformations. It is however an important and
powerful result. It means that if we have found a solution to the equations
of motion, X(x0, s), where the elements of x0 are the initial conditions, the
Jacobian, (∂X/∂x0), must satisfy the symplectic condition.

4 Symplectic Matrices

In a purely mathematical sense, (50) defines a set of even-dimensioned square
matrices which form a group (called appropriately the symplectic group) just as
the associated canonical transformations form a group. Since for every canonical
transformation, there exists a corresponding symplectic (Jacobian) matrix, the
group property of the canonical transformations implies the group property of
the matrices. However it is straightforward to demonstrate the group properties
of the matrices directly by verifying that they satisfy the following conditions.

1. Multiplication is associative: (M1M2)M3 = M1(M2M3), true for matrices
in general.

2. Every product of two elements and the square of each element is a member
of the set.

(M̃1M2)S(M1M2) = M̃2M̃1SM1M2 = S

3. The set contains the unit element. The unit matrix is symplectic.

4. Every element has an inverse such that M−1M = I. Since their determi-
nants do not vanish, all symplectic matrices have inverses.

The symplectic condition (50) constitutes a fairly substantial set of con-
straints, one of the most important of which concerns the determinant of the
matrix. Since the determinant of the product of two square matrices of equal
dimension is equal to the product of their determinants, the square of the de-
terminant of a symplectic matrix, and therefore of the Jacobian matrix of a
canonical transformation, is equal to unity.

|M|2 = 1 (82)

Symplectic matrices also obey the following relations.

M−1 = −SM̃S , MSM̃ = S (83)
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Equation (82) is a main factor in demonstrating Liouville’s Theorem, to which
we shall turn in Section 6. Although this constraint allows the determinant to
be either +1 or -1, we are interested in the former case, because as we saw in
the preceding section, he evolution of the motion of a Hamiltonian system from
some starting point s0 to some other point sf is itself a canonical transformation.
Clearly such transformations must approach identity as sf approaches s0, and
the determinant of M must be unity. We shall assume from this point forward
that

|M| = 1 . (84)

For a two-by-two symplectic matrix, the determinant condition is the sole con-
straint; it completely determines the symplecticity of the matrix. In other
words, for a single degree of freedom, uncoupled to any other, the determinant
condition is equivalent to the symplectic condition.

For matrices of higher order than two, the symplectic condition implies more
constraints among the matrix elements than the one expressed by (82). It turns
out that the number of independent matrix elements in a symplectic matrix of
order 2N is N(2N+1), so the number of constraints among the (2N)2 elements
is

number of constraints : N(2N − 1) (85)

The assertion that there are N(2N + 1) independent elements in the matrix
rests on the following considerations.[5] We first define the exponential matrix
and the logarithm of a matrix by analogy with the corresponding functions.

exp(A) =
∞∑

n=0

An/n! , log(A) = −
∞∑

n=1

(I − A)n

n
(86)

where A is a square matrix. Clearly these functions are also square matrices of
the same order as their arguments. Since (̃An) = (Ã)n, we have ˜expA = exp Ã
in view of which it can be shown that any real symplectic matrix M sufficiently
near the identity can be written

M = exp(SAs) , (87)

where As is a real symmetric matrix and S is of the same order as As. For
matrices near the identity, this establishes a one-to-one relationship between
real symplectic matrices and real symmetric matrices. Since a real symmetric
matrix of order 2N hasN(2N+1) independent elements, so has a real symplectic
matrix sufficiently near the identity. To put it in terms of constraints, the
number of constraints created by the symplectic condition is, as stated above,
4N2 − N(2N + 1) = N(2N − 1): for one degree of freedom, one constraint;
for two, six constraints; for three, fifteen constraints; etc. Finally, although
these conclusions apply only to matrices “sufficiently close to the identity” (and
which therefore have determinants of unity), those matrices form a group, and
the group can be extended to a global group by repeatedly multiplying those
already obtained. Consequently (85) applies to all symplectic matrices with
determinant plus unity—those of primary interest to beam dynamicists.
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Another way of representing symplectic matrices in exponential form is
through polar decomposition. Any real nonsingular matrix A can be written
uniquely in the form A = PO, where P is real positive definite symmetric ma-
trix, and O is a real orthogonal matrix. (An orthogonal matrix is one that obeys
ÕO = I.) The uniqueness of the decomposition implies that to a given matrix
A, there corresponds only one P and only one O. Thus we can express M in
polar terms.

M = PO. (88)

Applying the symplectic condition and appealing to the uniqueness of the de-
composition, we can show that both P and O are themselves symplectic.

As a consequence, it turns out that O and P can be written

O = exp(SAc
s), P = exp(SAa

s), (89)

where Ac
s is a real symmetric matrix that commutes with As, and Aa

s is a real
symmetric matrix that anticommutes with As.

Ac
sS − SAc

s = 0, Aa
sS + SAa

s = 0, (90)

Any symmetric matrix S can be decomposed into a sum of such commuting and
anticommuting matrices, S = Ac

s + Aa
s , as follows.

Ac
s = (S − S−1SS)/2, Aa

s = (S + S−1SS)/2. (91)

The conclusion is that any symplectic matrix can be written in the form

M = exp(SAa
s) exp(SAc

s), (92)

where As is a real symmetric matrix.
In beam dynamics, we are primarily interested in real coordinate systems,

and the Jacobian matrices of transformations between real systems are real
matrices. Consequently the symplectic matrices we deal with are also real, and
the eigenvalues of real, symplectic matrices form quite a restricted set.[5] The
eigenvalues are the roots of the characteristic polynomial,

P (λ) = |M − λI| , (93)

a polynomial whose degree is equal to the dimension of M (2N). The charac-
teristic equation is

P (λ) = 0. (94)

We observe immediately that λ = 0 cannot be a root. This equation has 2N
roots, and the product of the roots is equal to the constant term of the polyno-
mial.

λ1λ2 · · ·λ2N = P (0) = det(M) = 1 (95)

Either the eigenvalues are real or they occur in complex conjugate pairs. Ap-
pealing only to the properties of symplectic matrices, it can also be shown that

λ−NP (λ) = λNP (1/λ) , (96)
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with the consequence that if λ is a root, so is its reciprocal 1/λ, and furthermore,
these roots have the same multiplicities. If either +1 or -1 is a root, then that
root has even multiplicity. To reiterate, the properties of the eigenvalues of real,
symplectic matrices are the following.

1. They are real or they occur in complex conjugate pairs.

2. They occur in reciprocal pairs, each member of a pair having the same
multiplicity.

3. If either +1 or -1 is an eigenvalue, it has even multiplicity.

These properties have important consequences in particle beam dynamics, espe-
cially for the stability of the motions in storage rings. Considering only trans-
verse motion (x and y), the four eigenvalues must lie on the unit circle, because
if any eigenvalue lies off it, there must be two such eigenvalues, one of which
lies outside the unit circle and represents unstable motion. This is a very gen-
eral conclusion and it applies whether there is coupling or not. For a thorough
explanation of the case of linear optics with coupling see Reference [2].

5 Dimensions in Canonical Transformations

We now have three ways of knowing that the set of coordinates and momenta
(P,Q) are canonically conjugate:

1. If we begin with a Lagrangian couched in a generalized coordinate system
in which the coordinates are the Q’s, and we define the momenta according
to Pk = ∂L/∂Q̇k and the Hamiltonian by H =

∑
k PkQ̇k − L following

the standard prescription, then we can be sure that the Q’s and P ’s are
canonically conjugate. In other words, we have created the canonical
momentum from its basic definition.

2. Starting with a canonical description of the system in terms of a set of
canonically conjugate variables (q, p), if we carry out a canonical trans-
formation via the generating-function formalism described in Section 2
to a new set (Q,P ), we may be sure the latter set is canonically conju-
gate. We go from one set of canonical variables to another via a canonical
transformation.

3. Given a transformation Q = Q(q, p, s), P = P (q, p, s), if the Jacobian
matrix M (defined in (36) and (40)) satisfies the symplectic condition
M̃SM = S, then the Q’s and P ’s are canonically conjugate. This proce-
dure uses the direct condition.

What do these methods imply about the dimensional properties of canonical
transformations?

In the case of method 1 the implications are clear. The Lagrangian function
L is understood by definition to have the dimensions of energy, so the conjugate
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momenta have the dimensions of energy divided by the generalized velocity, the
time rate of change of the variable in question. We have had no need to consider
the independent variable of the Lagrangian to be anything but time.

Method 2 however might not be so restrictive. Let us introduce the following
notation for dimensions: /x/ means “the dimensions of x.” Consulting (13),
(14), (15) and (16), we derive the following rules about dimensions.

/qk//pk/ = /Qk//Pk/ = /F/ = /H//s/ (97)

For any degree of freedom, the product of the coordinate dimensions and the
momentum dimensions must be the same before and after the transformation;
moreover that product must be equal to the product of the dimensions of the
Hamiltonian (ordinarily, energy) and length. For example, for a single degree
of freedom of a particle, for which q = x, the cartesian coordinate, and p = mẋ,
The product of the dimensions is ml2/t, a momentum times a length. In the
appendix we learn that H has the dimensions of a linear momentum, so /qp/ =
/Hs/. In this case, the implication is that a canonical transformation will
necessarily lead to variables, the product of whose dimensions will be momentum
times length.

In Section 8, we shall express the symplectic condition in terms of the funda-
mental Lagrange and Poisson brackets, and from those, it will be immediately
clear that method 3. leads to the same rules as those expressed in (97).

For the extended symplectic condition (49), M̃SM = λS, the rules are less
strict, as we might expect.

/Qk//Pk/ = /λ//qk//pk/ (98)

Freer changes of dimension are tolerated, but restrictions remain. We saw an
instance of such restrictions in the example at the end of Section 3, in which
the transformations (x, Px) → (x, x′), (y, Py) → (y, y′) and (τ,−ε) → (�, δ) are
independent of each other so that the Jacobian matrix (64) is block diagonal.
In that case, each transformation obeys (98), but note that λ must be the same
in all three cases.

The identity transformation, Qk = qk, Pk = pk for all k, is generated by
either F2 =

∑
k qkPk or F3 = −∑k pkQk, and these functions, both of the first

degree in each variable, obviously satisfy the rule (97). But what of algebraic
terms of higher degree as generating functions, terms of the form aqm

k P
n
k for

example? In such terms, the constant coefficient a can be given appropriate
dimensions to adjust the dimensions of the whole term to satisfy the rule.

6 Phase Space and Liouville’s Theorem

The concept of phase space was introduced by J. W. Gibbs around the turn of
the twentieth century to characterize the full dynamical state of a mechanical
system such as a confined gas. For a system of N particles (each having no
internal degrees of freedom), Gibbs’ phase space has 6N dimensions, one for
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each of the six canonically conjugate coordinates and momenta of each particle.
Thus a system of 1010 particles is described by a single point in a phase space
of 6 × 1010 dimensions, and each distinct point specifies a distinct dynamical
state or “phase” of the system. The Hamiltonian of the system involves the
coordinates and momenta of all the particles, and it dictates the motion of that
single phase point in the phase space.

In Gibbs’ phase space a collection of points, called an ensemble, represents
a collection of possible states of the total system; and the distributions of such
points as they move through phase space are used in probabilistic calculations
in statistical mechanics. The Hamiltonian may include terms that account for
interactions between the particles of the system—collision terms in a gas, for
example. But it is important to remember that different points in Gibbs’ phase
space represent different possible realizations of the whole system, and that the
points, being purely mathematical objects, do not in any sense “interact.”

In the preceding section, we observed that the solution (77) of the equations
of motion describes a trajectory in phase space which passes through the point
defined by the initial conditions, and that furthermore that trajectory, and
therefore that solution, is unique. Since each system trajectory is unique and
distinct, different trajectories do not cross; they have no common points. To
prove that assertion, suppose two trajectories did intersect so that they had
at least one point in common. Then considering that common point as an
initial condition, it must lead to at least two different trajectories from the same
initial conditions—two different solutions from the same initial conditions. That
cannot happen, because the solution is unique. Therefore the trajectories do
not intersect.

Liouville’s theorem states that in any system governed by a Hamiltonian,
the density of system points surrounding a particular system point in phase
space must remain constant as the independent variable evolves. As the system
evolves, the “particular system point” moves through phase space, so the the-
orem refers to the density in a chunk of volume moving through phase space.
The proof of the theorem depends upon the symplecticity of the trajectories.

Although originally applied to Gibbs’ phase space in which the Hamiltonian
depends on all 6N dynamic variables, the same reasoning can be applied to any
phase space in which the motions of all the individual points are governed by
the same Hamiltonian. An example is a phase space of six dimensions in which
each of N non-interacting particles of a beam is represented by a different point.
Each particle obeys a Hamiltonian of the same form expressed in terms of the
six canonical variables of that particle. In this phase space, a given particle
point is surrounded by a swarm of particle points representing particles physi-
cally near the given particle. Each of these particles moves in accordance with
Hamilton’s equations applied a Hamiltonian of the same form, and as we saw
in Section 7, the motions are canonical transformations from the initial values
of the coordinates and momenta to the present values, and these trajectories in
phase space are symplectic.

Now consider a small region (a volume in the six-dimensional phase space)
surrounding the given particle point, and imagine that the volume is bounded
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by a surface made of points that move (like the given point) in accordance with
the common Hamiltonian. Some number of actual particle points lies inside the
volume, and since the points cannot leave the volume without intersecting the
wall points, they cannot leave the volume: the number of points in the volume
remains fixed.

The “walls” of the region may twist and change shape, of course, but as we
learned in Section 4, the Jacobian determinant of a symplectic transformation
is equal to one, and that fact ensures that the volume of the region will be pre-
served.1 Therefore the density of points in the vicinity of the given point—each
representing a different particle—is a constant. The theorem may be considered
a consequence of the symplectic condition in that we appeal in its proof to the
constancy of the Jacobian determinant, in turn a consequence of symplecticity.

In the physics of particle beams, this kind of six-dimensional space spanned
by the canonically conjugate coordinates and momenta of a single particle is
commonly called phase space, although that usage is at variance with the Gibb-
sian usage in statistical mechanics described above. In this phase space a beam
is represented by a multiplicity of particle points, whose motions through the
phase space are governed by the Hamiltonians of the individual particles. Now
in the case of non-interacting particles, the Hamiltonians of all of the particles
are of the same form and are expressed in term of the six dimensions of the
phase space, so the reasoning of Liouville’s theorem applies. If the particles do
not interact, the particle points representing different particles and the points
bounding the volume all move in accordance with the same Hamiltonian, so the
density of particle points in the neighborhood of a particular particle remains
constant.

This is an important result. The distribution of a beam in the beam dy-
namical phase space is typified by its compactness in at least some dimensions,
a consequence of the highly organized nature of a beam, and the preservation
of the density within the distribution is often of crucial importance in beam
physics.

Clearly if the motions of the beam particles are governed by the Hamiltonian
derived in the appendix which takes no account of mutual interactions among
the particles, this reasoning applies. But what if the particles interact? If
the interactions are represented in the Hamiltonian for each particle by a sum
of terms in the canonical variables of all the other particles, the Hamiltonian
has 2N variables, and the corresponding phase space has 2N dimensions. A
single point in that phase space specifies the state of the whole system—all N
particles—and we are back to a Gibbsian phase space. We cannot interpret
multiple points as representing the physical density of particles in the beam.

If the beam particles emit appreciable radiation, the Hamiltonian must have
1transformation between N functions of N or more variables such as Uk =

Uk(u1, u2, . . . , uN , s) and its inverse transformation uk = uk(U1, U2, . . . , uN , s) both assumed
to be single-valued; infinitesimal volumes in the spaces of the two sets of variables are related
by

dU1dU1 . . . dUN = |det(M)|du1du2 . . . duN

where the vertical lines mean “the absolute value.”
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canonical variables representing the degrees of freedom of the electromagnetic
field, and the corresponding symplectic condition involves those variables as well
as the particle coordinates. Again there is no “Liouville theorem.”

7 Linear Approximations

The properties of typical beam transport systems and the beams they transport
often suggest using linear approximations in computing the motions—linear in
the coordinates and their derivatives and in the energy deviation from that of the
reference particle. The efficacy of these approximations rests on the following
considerations.

1. The position variables of a particle are small in comparison to some scale
distance characteristic of the physical dimensions of a magnet or an ac-
celerating cavity. In a quadrupole magnet, for example, the scale distance
is determined by the degree to which the field dependence on transverse
coordinates departs from the desired linear dependence. It depends on the
quality of the quadrupole. In good quadrupoles, the distance is typically
many meters. In accelerating cavities, the scale distance of the electric and
magnetic fields is of the order of the free-space wavelength corresponding
to the operating frequency.

2. The ratio of the horizontal coordinate to the bending radius is very small
compared to unity, or in the terms defined in the appendix, hx� 1 where
h is the reciprocal of the reference trajectory’s bending radius.

3. The derivatives x′ and y′ are very small compared to unity. This is assured
by the nature of particle beams, in which the transverse velocities are much
smaller than the longitudinal ones.

4. The energy of a particle deviates only slightly from the energy of the
reference particle.

In fact linear approximations yield descriptions of the particle motion quite
accurate enough for many purposes in accelerator physics. Moreover, results
of higher accuracy are often obtained by perturbation techniques which employ
the linear approximation as their point of departure.

There are several ways of “linearizing” the dynamical problem. Beginning
with the exact Hamiltonian, (a) we might linearize the Hamiltonian itself, i.e.,
expand it in a Taylor series in the six canonical variables and truncate the series
appropriately; or (b) we might first apply Hamilton’s equations of motion to
the exact Hamiltonian and then linearize the resulting differential equations;
or, finally, (c) we might find the exact solution for the exact Hamiltonian and
then linearize that solution. We can see quickly that the first two procedures
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lead to the same result by expanding the Hamiltonian as follows.

H =
6∑

k=1

hkxk +
1
2

6∑
j=1

hkjxkxj

+G(x) (99)

where x is defined in (3), hk = (∂H/∂xk)0, hkj = hjk =
(
∂2H/∂xk∂xj

)
0

and
the function G embodies the remainder of the terms of the expansion. The
constant term is omitted, since it does not affect the equations of motion; it
only sets the zero point of the momentum scale. Applying the equations of
motion we get expressions like

x′1 = h2 +
6∑

j=1

h2jxj + ∂G/∂x2 , (100)

x′2 =−h1 −
6∑

j=1

h1jxj − ∂G/∂x1 , (101)

and so forth. But we can see immediately that the leading terms on the right in
these equations of motion must be zero, for the equations apply to any particle
including the reference particle. Since we have chosen the trajectory of the
reference particle as the longitudinal axis, all coordinates and all slopes for the
reference particle are zero, and it follows that h1 = h2 = · · · = 0. Consequently
the linearized forms of the Hamiltonian and the equations of motion are the
following.

H =
1
2

6∑
k=1

6∑
j=1

hkjxkxj (102)

x′1 =
6∑

j=1

h2jxj , (103)

x′2 =−
6∑

j=1

h1jxj , (104)

It clearly made no difference whether we dropped the term G in the Hamiltonian
or its derivatives in the equations of motion; we get the same linearized equations
of motion. It is worth noting, by the way, that the theory of linear differential
equations assures us that the solutions of (103) and (104) are linear in the initial
values of the variables.

It is natural now to ask, do we also get the same answer if we linearize the
exact solution, case (c)? To answer the question, we must first clarify what is
meant by “linearizing” it. The exact solution is not a function of the canonical
variables per se. Rather it is a function of the initial values of those variables
and of s, and when we speak of expanding it, we mean expanding it in the initial
conditions. So the question becomes this: If the solutions are expanded in the
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initial conditions, is the linear approximation of the exact solution of the exact
equations of motion the same as the exact solution of the linearized equations
of motion? The answer is: yes. To demonstrate why, we note first that the
expansion of the equations of motion can be cast in matrix form.

x′ = Vx + higher order terms , (105)

where the matrix V is given by

V =

 h21 h22 · · ·
−h11 −h12 · · ·
· · · · · · · · ·

 . (106)

The elements of V are functions of s. To expand the solution in the initial
conditions, we designate the initial values by the letter z: z1 = x1(0), z2 =
x2(0), etc., and form them into a column matrix so that the initial value of x is
z. A Taylor expansion gives

x = Rz + higher order terms , (107)

where the elements of R, a square matrix, are functions of s. No leading constant
term appears because the reference particle, for which z = 0, follows the s-axis.
Combining (105) and (107) and collecting terms, we obtain

(R′ − VR)z + higher order terms = 0 , (108)

an equation which must be satisfied for any arbitrary choices of the zk’s. It is
immediately evident that

x = Rz (109)

is the linear approximation to the exact solution with R satisfying the linear
differential equation,

R′ = VR , (110)

with the initial condition R(0) = I. Clearly it is also true that (109) is the exact
solution of the linearized equations of motion x′ = Vx, so we conclude that all
three methods of linearizing the problem yield the same solution, and moreover,
the linearized solution satisfies the symplectic condition since it is the exact
solution of a Hamiltonian, viz., (102).

The Jacobian matrix of the linear approximation is simply the matrix we
have called R,

M =
∂x

∂z
= R , (111)

so R is a symplectic matrix.

8 Lagrange and Poisson Brackets

The symplectic condition (50) is closely related to the fundamental Lagrange
brackets. Both Lagrange brackets and the more useful Poisson brackets are
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canonical invariants ; that is, they are invariant under canonical transforma-
tions.2 Consider a set of 2N well-behaved functions u(q, p), v(q, p), w(q, p), · · ·
of a set of canonical variables, where the expression (q, p) symbolizes the whole
argument list (q1, p1, q2, p2, · · · , qN , pN). In principle, these relations can be
inverted to give the 2N canonical variables in terms of u, v, etc. Then the
definition of the Lagrange bracket {u, v} of u and v is

{u, v}qp =
N∑

i=1

(
∂qi
∂u

∂pi

∂v
− ∂pi

∂u

∂qi
∂v

)
. (112)

The Lagrange brackets are antisymmetric in their arguments

{u, v}qp = − {v, u}qp,

and of course {u, u} = 0. If {u, v}qp is evaluated in another system (Q,P )
related by a canonical transformation to (q, p), it yields the same result:

{u, v}QP = {u, v}qp,

so it makes no difference in what system it is calculated. Let us consider the
Lagrange brackets of the set of coordinates (Q,P ):

{Qm, Pn}qp =
N∑

i=1

(
∂qi
∂Qm

∂pi

∂Pn
− ∂pi

∂Qm

∂qi
∂Pn

)
. (113)

Thanks to the invariance of the Lagrange brackets, these brackets can equally
well be evaluated in the (QP ) system where the calculation is trivial. The result
is given the special name, fundamental Lagrange brackets, and their values are
as follows.

{Qm, Qn} = 0, {Pm, Pn} = 0, {Qm, Pn} = − {Pn, Qm} = δmn. (114)

Since the subscripts are immaterial, we omit them. These equations give the
fixed values of the fundamental Lagrange brackets in any system of canonical
coordinates whatsoever.

We can cast the fundamental Lagrange brackets in a symplectic matrix form
as follows. If M is taken to be the Jacobian matrix of the transformation
q1 = q1(Q,P, s), p1 = p1(Q,P, s), · · ·, i.e.,

M11 =
∂q1
∂Q1

, M12 =
∂q1
∂P1

, M13 =
∂q1
∂Q2

, · · ·

the inverse transformation to that referred to in (53), then by straightforward
2Goldstein remarks in his Second Edition (1980) [1] that the Lagrange brackets are now

”mainly of historical interest,” although they served as an introduction to Poisson brackets in
the first edition (1951).



31

multiplication,

M̃SM =


{Q1, Q1} {Q1, P1} {Q1, Q2} · · · · · ·
{P1, Q1} {P1, P1} {P1, Q2} · · · · · ·
{Q2, Q1} {Q2, P1} {Q2, Q2} · · · · · ·

· · · · · · · · · · · · · · ·
· · · · · · · · · {PN , QN} {PN , PN}

 . (115)

Since the brackets are invariant, we need not specify system in which they were
evaluated, i.e., {Q1, Q1} = {Q1, Q1}qp = {Q1, Q1}QP etc. If we evaluate them
in the (QP ) system—the system in which the matrix elements are just the
fundamental Lagrange brackets—we find the matrix equation,

M̃SM = S . (116)

We discover that the symplectic condition is the matrix form of the fundamental
Lagrange brackets.

We can proceed similarly with the Poisson brackets:

[u, v]qp =
N∑

i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
. (117)

These have very similar properties to the Lagrange brackets. They are canonical
invariants and they are antisymmetric in the arguments. The fundamental Pois-
son brackets are defined the same way as the fundamental Lagrange brackets
are:

[qm, qn] = 0, [pm, pn] = 0, [qm, pn] = − [pn, qm] = δmn. (118)

If we reverse the order of the matrix product on the left of (115), forming
the product MSM̃, we find that the elements of the product matrix are the
Poisson brackets of q and p in the (QP ) system, arranged as in (115). If we
then evaluate in the (qp) system, where the elements become the fundamental
Poisson brackets, we get

MSM̃ = S ,

which we learned in Section 4 is equivalent to the symplectic condition. In other
words, if we form a square 2N × 2N matrix of the Poisson brackets,

[q1, q1] [q1, p1] [q1, q2] · · · · · ·
[p1, q1] [p1, p1] [p1, q2] · · · · · ·
[q2, q1] [q2, p1] [q2, q2] · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · [pN , qN ] [pN , pN ]

 = MSM̃ = S, (119)

it is equal to the constant matrix S in any canonically related system of vari-
ables.

Having established the symplectic condition in Section 3 as a necessary and
sufficient condition for a canonical transformation, we may consider that the
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fundamental Lagrange brackets and Poisson brackets follow from it. Conversely,
if we consider the fundamental brackets as given, they lead immediately to the
symplectic condition.

Poisson brackets are quite useful in studying the dynamics of Hamiltonian
systems. For example, Hamilton’s equations of motion can be written in terms
of Poisson brackets, and Poisson brackets are critical components of the Lie
algebraic structure of Hamiltonian mechanics. Consequently, we list here some
of their algebraic properties.
They obey a distributive law.

[(af + bg), h] = a[f, h] + b[g, h]. (120)

They are antisymmetric in the arguments.

[f, g] = −[g, f ]. (121)

They obey the Jacobi identity.

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (122)

Finally, the Poisson brackets satisfy a product rule analogous to that for differ-
entiation.

[f, gh] = [f, g]h+ g[f, h]. (123)

It is sometimes useful to express Poisson brackets in terms of the x’s, the
elements of the column vector x.

[f, g] =
∑

i

∑
j

(
∂f

∂xi
(S)ij

∂g

∂xj

)
. (124)

The fundamental Poisson brackets become

[xi, xj ] = (S)ij . (125)

9 Lie Algebra, Lie Operators and Lie Transfor-

mations

In this section and the next we shall exploit the canonical invariance of Poisson
brackets using Lie algebraic structures to devise new methods of finding the
motions of Hamiltonian systems. The development in these sections follows the
lines of parts of Reference [5] which will serve as a comprehensive reference and
elaboration for the ideas presented here.

Most of us were introduced to algebra in high school as the manipulation of
symbols (x and y) according to the rules for addition, subtraction, multiplication
and division of real numbers. In modern mathematics, the term “algebra”
has taken on a more general and more abstract meaning. Where the most
elementary algebra applies to the set of real numbers, an algebra can refer
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in general to any appropriate set of mathematical objects together with an
appropriate set of operations. Thus we can talk about an algebra of matrices
or an algebra of the rotations of a solid body for example.

The algebras in which we are interested are linear algebras which deal with
generalized vectors in linear vector spaces.1 An algebraA over a field of numbers
F is defined as a linear vector space, with a multiplication law defined whereby
any two vectors yield a product vector. The product, however it is defined, must
satisfy three distributive conditions. Indicating multiplication by the symbol •,
to every ordered pair of elements x, y belonging to A, there must correspond a
third unique element of A denoted by x • y and called the product of x and y.

(cx) • y = x • cy = c(x • y) (126)

(x+ y) • z = x • z + y • z (127)

x • (y + z) = x • y + x • z (128)

for any x, y, z in A and c in F. Note that associativity, (x • y) • z = x • (y • z),
while allowed, is not required.

We may pause here and note that linear vector space of ordinary vectors
with the scalar product defined as the multiplication law, v•u = v ·u, does not
qualify as an algebra, because the product is not a member of the set of vectors.
However, if we replace the scalar product with the vector (cross) product as the
multiplication law, v • u = v × u, we do get an algebra, and interestingly, the
algebra we get is a Lie algebra!

A Lie algebra is an algebra, as defined above, in which the multiplicative
rule (Lie product) satisfies, in addition to (126), (127) and (128), two further
properties.

1. Antisymmetry
x • y = −y • x. (129)

1In general, a non-empty set, the elements of which are called vectors, forms a linear vector
space over a field F if addition and multiplication by elements of F of vectors and of vectors
are defined and satisfy the following 10 postulates.

1. The sum V1 + V2 of any two vectors is a uniquely defined vector in the set.

2. Addition of vectors is commutative: V1 + V2 = V2 + V1.

3. Addition of vectors is associative: (V1 + V2) + V3 = V1 + (V2 + V3).

4. There is a zero vector 0 such that V + 0 = V for all V in the set.

5. Every vector V has a unique negative −V such that V + (−V) = 0.

6. For every element c of F and any vector V in the set the product cV is a uniquely
defined vector in the set.

7. c(V1 + V2) = cV1 + cV2.

8. (c1 + c2)V = c1V + c2V.

9. c1(c2V) = (c1c2)V.

10. 1V = V.

In our case, F is the field of scalars.
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2. The Jacobi condition

x • (y • z) + y • (z • x) + z • (x • y) = 0. (130)

Any algebra that satisfies these five conditions is a Lie algebra. An example of a
Lie algebra, as remarked above, is the set of all 3-vectors with the multiplication
rule chosen to be the cross product. The antisymmetry in the exchange of
operands is obvious, and the Jacobi condition can be shown to be satisfied by
using the “BAC to CAB” expansion of the vector triple product.

The properties of Poisson brackets enumerated in the preceding section in-
clude both antisymmetry in the arguments and obedience to the Jacobi identity,
facts which suggest that Poisson brackets might be used as the multiplication
rule to define a Lie algebra. If that is to be done, the arguments of the Poisson
brackets—functions f, g . . . of the canonical variables q, p, t—must form a linear
vector space. Applying the criteria listed in the footnote on the preceding page,
we find that these functions do indeed qualify as the vectors of a linear vector
space. Thus we define the Lie product of any two such ordered functions f and
g to be the Poisson bracket of those functions,

f • g = [f, g], (131)

and, according to (120) through (122), (129) and (130), the conditions for a Lie
algebra are satisfied. The set of all functions of the variables q, p, t, together
with (131) forms a Lie algebra which is called the Poisson bracket Lie algebra
of dynamical variables.

It is also possible to define a Lie algebra of symplectic matrices. In order to
do so, we recall that any real symplectic matrix sufficiently near the identity can
be expressed via the exponential function in terms of a small real symmetric
matrix As. [See (87) in Section 4.]

M = exp(SAs). (132)

Conversely, every small real symmetric matrix As generates a real symplectic
matrix via this equation, so at least for symplectic matrices near the identity,
we have established a one-to-one correspondence between the symplectic matrix
M and a particular symmetric matrix.

The set of matrices (SAs) fulfills all the requirements to constitute a linear
vector field. Now if we define Lie multiplication of two matrices A and B, in
that order, to be their commutator,

A • B = AB − BA, (133)

then the set of matrices (SAs) meets the conditions (129) and (130) and forms
a Lie algebra.

For small As1 and As2, the product exp(SAs1) exp(SAs2), yields another
matrix, exp(SAs3), whose argument matrix SAs3 belongs to the same Lie group.
From that fact and the fact, already known to us, that symplectic matrices form
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a group, we can conclude that these symplectic matrices near the identity form
a Lie group, i.e., a group that obeys a Lie algebra. It can be shown that this
group may be extended to form a global group and, therefore, that symplectic
matrices themselves form a Lie group.

Now we turn to the subject of Lie operators. As we have just seen, the
use of Poisson brackets to define Lie multiplication is a cornerstone of the Lie
algebra of dynamic variables. In order to exploit the Lie algebra, it is profitable
to define an operator formalism to express Poisson brackets. Let f(x, t) and
g(x, t) be functions of the canonical variables, x1, x2 · · ·x2N and t. The Lie
operator associated with the function f will be denoted by enclosing f between
two colons thus, :f :, and its action is defined in terms of Poisson brackets by
the rule

:f : g = [f, g]. (134)

Powers of the operator :f : are defined as nested Poisson brackets,

:f :2g = [f, [f, g]], :f :3g = [f, [f, [f, g]]], . . . (135)

and :f : to the zero power is defined to be the identity operator,

:f :0g = g. (136)

Because of the distributive properties of Poisson brackets, a Lie operator and
its powers are linear operators, and a linear combination of two Lie operators
is a Lie operator.

a:f : + b:g: = :(af + bg): , (137)

the constants a and b being scalars. These properties qualify the set of Lie
operators as a linear vector space.

The product rule for Poisson brackets (123), applies to a Lie operator.

:f :(gh) = (:f :g)h+ g(:f :h). (138)

Moreover a rule of the same structure applies to Poisson brackets, i.e.,

:f :[g, h] = [:f :g, h] + [g, :f :h]. (139)

This rule follows from the Jacobi identity for Poisson brackets.
Building on the Lie operator and its properties we can now introduce Lie

transformations. As in the case of the matrix exponential function, we refer
to the exponential series, and define the Lie transformation associated with f
operating on g as follows.

exp (:f :) g =
∞∑

n=0

1
n!

:f :n g. (140)

The expanding this definition, we get

exp (:f :) g = g + [f, g] + [f, [f, g]]/2! + · · · . (141)
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In consequence of the product rule for Lie operators (138), the Lie transforma-
tion exp (:f :) has the property

exp (:f :)(gh) = [exp (:f :)g] [exp (:f :)h]. (142)

A Lie transformation acting on the product of two functions is exactly equivalent
to the product of the results of the transformation acting on each function
separately. The action of a Lie transformation on a function g(x) is to perform
a Lie transformation on its arguments.

exp (:f :) g(x) = g(exp (:f :)x). (143)

And finally, an important property of Lie operators is the following.

exp (:f :) [g, h] = [exp (:f :) g, exp (:f :) h]. (144)

This property is useful in dealing with symplectic maps.

10 Symplectic Maps

A canonical transformation from one set of canonical variables x1, · · ·x2N to a
new set of canonical variables x1, · · ·x2N is called a mapping or simply a map,
and we shall denote it by M. The expression,

M : x→ x(x, t), (145)

symbolizes what the mapping does. So a canonical transformation is a mapping,
and the Jacobian matrix M(x, t) of the transformation is the Jacobian matrix
of the map.

(M)ab(x, t) =
∂xa

∂xb
. (146)

The map M is said to be symplectic—just as the transformation is—if its
Jacobian matrix is a symplectic matrix.

M̃SM = S or MSM̃ = S. (147)

As we emphasized in Section 3, while M depends on x and t, the combinations
M̃SM and MSM̃ must be independent of both x and t—they must be constant.
A symplectic map must have very special properties. As we found in Section
8, The fundamental Poisson brackets are invariants of the transformation and
their invariance is a sufficient condition to establish that the transformation is
canonical.

[xa, xb] = (MSM̃)ab = (S)ab = [xa, xb]. (148)

So a necessary and sufficient condition for a map M to be symplectic is that
it preserve the fundamental Poisson brackets. This statement is equivalent, in
turn, to the condition that M must preserve the Poisson bracket Lie algebra of
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all dynamic variables. Symplectic maps and canonical transformations are the
same things.

Now turning to the group properties of the map M, we add the supposition
that the map has a unique inverse M−1.

M−1 : x→ x. (149)

That is, the inverse transformation sends us back exactly where we started. An
increment in x is given by dx = M dx, and since the Jacobian matrix M is
symplectic, and has an inverse M−1, we can write

dx = M−1 dx. (150)

In view of (149) then, it is clear that the Jacobian matrix of M−1 is M−1.
Moreover, since M is symplectic, we know that its inverse M−1 is also symplectic
and that therefore M−1 is also a symplectic map.

Next if M(1) and M(2) are symplectic mappings that carry x to x and x to
x̂ respectively

M(1) : x→ x and M(2) : x→ x̂, (151)

then their product M = M(1)M(2) sends x to x̂ and the Jacobian matrix of
the composite mapping M is the product of the Jacobian matrices of the two
mappings

M = M(1)M(2). (152)

Furthermore since M is a symplectic matrix, the composite mapping M is also
a symplectic map.

Finally, it is also obvious that the identity matrix and the corresponding
identity mapping are symplectic. We conclude that the set of all symplectic
maps is a group. This comes as no surprise, since we learned in Section 2
that canonical transformations form a group under composition, and there is a
one-to-one correspondence between canonical transformations and maps.

At this point, we introduce the concept of Hamiltonian flow. By adding
a time axis to (Gibbsian) phase space, thus creating a Euclidean space with
2N +1 dimensions, we construct a state space. In this state space, the set of all
trajectories x1(t), · · ·x2N (t) is called a Hamiltonian flow.

If H(x, t) is the Hamiltonian for some dynamical system, and x(0) denotes
a set of initial conditions at some initial time t(0), and if x(f) denotes the coor-
dinates at some later time t(f) of the trajectory with the initial conditions x(0),
then the mapping M from x(0) to x(f) obtained by following the Hamiltonian
flow specified by H(x, t),

M : x(0) → x(f), (153)

is symplectic. This finding has the same content as the conclusion reached in
Section 3 that the motions of Hamiltonian systems are themselves canonical
transformations.

Returning to the Lie transformation, we shall show the important fact that
Lie transformations generate symplectic maps and any symplectic map can be
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generated by a Lie transformation. Consider the Lie transformation exp (:f :),
where f(x, t) can be any function, and define a map M as an operator,

M = exp (:f :) . (154)

That is, M operates on x to produces new variables x(x, t) by the rule,

xa(x, t) = M x = exp (:f :) xa, a = 1, 2, . . .2n. (155)

The Poisson brackets of various x’s with each other are

[xa, xb]=[exp (:f :) xa, exp (:f :) xb]
=exp (:f :) [xa, xb] (156)
=exp (:f :) (S)ab = (S)ab.

The fundamental Poisson brackets are preserved, so M is a symplectic map:
every Lie transformation generates a symplectic map.

An important and useful feature of the symplectic map generated by the Lie
transformation exp (:f :) is that the argument f is an invariant function of the
map.

f(x, t) = f(x, t). (157)

This follows from the fact that the action of a Lie transformation on a function
of the dynamic variables is to perform a Lie transformation on its arguments,
so that

exp (:f :) f(x, t) = f(exp (:f :) x) = f(x, t). (158)

Also
exp (:f :) f(x, t) = f + [f, f ] + · · · = f(x, t), (159)

and (157) is proven.
Applying the symplectic map exp (−:f :) to both sides of (155) above,

exp (−:f :) xa(x, t) = exp (−:f :) exp (:f :) xa , (160)

and using the properties of Lie operators and the definition of the Lie trans-
formation, we can show that the product exp (−:f :) exp (:f :) results in a net
identity operation, just as e−xex = 1. Consequently, the inverse mapping is

xa = exp (−:f :) xa, (161)

or in other words,
M−1 = exp (−:f :), (162)

and as we already know, its Jacobian matrix is M−1, which is a symplectic
matrix.

The next question that arises is this: can any given symplectic map M
whatever be written in exponential form? The answer lies in the Factorization
theorem. The proof of the theorem involves the concepts we have explored, but
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the mathematics involved is beyond the scope of this monograph, so we just
state the theorem.

Factorization theorem— Let M be an analytic symplectic mapping which
maps the origin into itself. That is, the relationship between the x’s and the x’s
is assumed to be expressible in a power series of the form

xa =
∑

b

Lab xb + higher order terms in x. (163)

Then the map M can be written as a product of Lie transformations,

M = exp (:f c
2 :) exp (:fa

2 :) exp (:f3:) exp (:f4:) · · · , (164)

where the functions fm are homogeneous polynomials of degree m in the variables
x1 · · ·x2n. In particular, the polynomials f c

2 and fa
2 are quadratic polynomials

of the form,

f c
2 =−1

2

∑
i

∑
j

Ac
ij xi xj , (165)

fa
2 =−1

2

∑
i

∑
j

Aa
ij , xi xj , (166)

where Ac
ij and Aa

ij are the elements of real symmetric matrices which commute
and anticommute with S respectively.

AcS − SAc = 0, AaS + SAa = 0. (167)

We had seen that all Lie transformations generate symplectic maps, and
the Factorization theorem tells us that all symplectic maps can be expressed
in terms of Lie transformations. This important theorem opens a new door
to finding solutions to Hamilton’s equations of motion, because, as we have
learned, the solutions of Hamilton’s equations are symplectic maps.

There are two particular features of the factored product representation
(164) that merit emphasis. First, if the product (164) is truncated at any point,
the result of the truncation is still a symplectic map, because each term in the
product is a symplectic map. Furthermore, if we drop all of the factors beyond
exp (:fm:) for some particular m, then the power series expansion (163) for the
truncated map agrees with the exact map through terms of degree (m−1). The
truncated map provides a symplectic approximation to the exact map.

Second, if the product (164) is factored into two partial products, the first
involving only the quadratic polynomials and the second involving cubic and
higher degree polynomials,

M = M� Mn�, (168)

where

M� = exp (:f c
2 :) exp (:fa

2 :) and Mn� = exp (:f3:) exp (:f4:) · · · , (169)
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it can be shown that retaining only M� leads in beam dynamics to the linear
approximation for M. The remaining factors Mn� then represent the non-linear
effects in the beam dynamical system, such as chromaticity and non-linear guide
fields.

The Factorization theorem tells us that the map we are seeking can be
written as a product of Lie transformations, but it does not tell us explicitly
how to find the transformations. Finding the Lie transformations for particular
Hamiltonians is the subject of a whole field of study. For examples of this work
the reader is directed to Reference [5].

The General Map for a “Time-independent” Hamiltonian

In the frequently encountered case in beam dynamics that the Hamiltonian
does not depend explicitly on the independent variable, whether it be time or
the longitudinal coordinate s, we can write a general formula for the map M
as a single Lie transformation formed in terms of the Hamiltonian. Taking t as
the independent variable, the map for this Hamiltonian flow carries the system
from its state at t0 to that at tf .

M : x(t0) → x(tf ), (170)

where, of course, x symbolizes the canonical variables x1 · · ·x2N , and the oper-
ator M is

M = exp{−(tf − t0) :H:}. (171)

For proof we first expand the transformation.

x(tf ) =
∞∑

n=0

1
n!

(tf − t0)n (: −H:)n x. (172)

Then we compare this expression with the Taylor expansion of x(tf ).

x(tf ) = x(t0) +
∞∑

n=1

1
n!

(tf − t0)n

(
dnx

dtn

)
t0

. (173)

If the Hamiltonian does not depend on the time,

dx

dt
= [x,H ] = [−H,x] = : −H: x,

d2x

dt2
= [−H, ẋ] = [−H, [−H,x]] +

∂

∂t
[−H,x] = (: −H:)2 x,

dnx

dtn
= (: −H:)n x, (174)

and (172) is proven.

Example 6—To follow the process of generating symplectic maps using Lie
transformations, let us apply the method to the case of particle motion through
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an ideal quadrupole magnet. As our starting point we choose the second-order
Taylor expansion of the Hamiltonian (58) in Section 3:

K2nd = −p0 +
P 2

x

2p0
+
P 2

y

2p0
+
m2ε2

2p3
0

− H0hxε

p0c2
+ eS(x, y, s),

where s is the independent variable, the canonical variables are x, Px, y, Py, τ
and −ε, and S(x, y, s) is the longitudinal component of the vector potential, the
other two components being zero. For a quadrupole magnet, S = G(y2 −x2)/2,
where G is the magnetic field gradient (∂By/∂x). For simplicity we consider
a particle at the design energy, so ε = 0, and we shall ignore longitudinal (τ)
motion. We are left with the Hamiltonian,

H = −p0 +
P 2

x

2p0
+
P 2

y

2p0
+
eG

2
(y2 − x2). (175)

Since this Hamiltonian contains no linear terms in the canonical coordinates,
the map for the Hamiltonian flow maps the origin onto itself.

The Hamiltonian does not depend on the independent variable s, so (172)
applies and the map is given by the the formula,

M = exp{−(sf − s0):H:} = exp{−L:H:}, (176)

where L is the length of the quadrupole, and the transformations are

xf = (Mx)i, Pxf = (MPx)i, yf = (My)i, Pyf = (MPy)i.

where the subscripts i and f label the initial and final values respectively. Let
us expand the first of these.

xf =

( ∞∑
n=0

1
n!

:(−LH):n x

)
i

. (177)

For organizing the evaluation of this series, it is helpful to define a set of auxiliary
quantities:

αm = : − LH:m−1 x, m = 1, 2, . . . (178)

In terms of these quantities, the series for x may be written

xf =

( ∞∑
m=1

αm

(m− 1)!

)
i

, (179)

and a systematic calculation can be carried out, evaluating first α1, then α2 and
so on in terms of the recurrence relation,

αm+1 = : − LH:αm. (180)
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We begin the evaluation with α1 and continue with the recurrence relation.

α1 = : − LH:0 x = x

α2 = : − LH:α1 = LPx/p0

α3 = : − LH:α2 = L2eGx/p0

α4 = : − LH:α3 = L3eGPx/p
2
0

etc.

The resulting series is

xf = xi +
LPxi

p0
+
L2eGxi

2 p0
+
L3eGPxi

6 p0
2

+
L4e2G2 xi

24 p0
2

+
L5e2G2Pxi

120 p0
3

+
L6e3G3 xi

720 p0
3

+ · · · (181)

We can then identify the resulting terms that are even in L with the first
terms of the series for the hyperbolic cosine and those that are odd in L with
the leading terms of the series for the hyperbolic sine as they appear in the
following expression,

xf = xi cosh

(√
eG

po
L

)
+
Pxi

p0

√
po

eG
sinh

(√
eG

po
L

)
, (182)

which of course is the x-part of the correct map for a quadrupole magnet in the
case that the quantity eG is positive.

We note that if the sign of eG were reversed (eG → −eG), the new depen-
dence on y and Py would be the same as the previous dependence on x and Px.
In other words, the roles of x and y would be reversed. Therefore the y-part of
the quadrupole map must be the same series as (181) but with the sign of eG
reversed. That series corresponds to the expression,

yf = yi cos

(√
eG

po
L

)
+
Pyi

p0

√
po

eG
sin

(√
eG

po
L

)
. (183)

We can obtain the series for Px by evaluating the α’s and summing the series
(179) as we did above. Then we can use the role-reversal argument to get Py,
and the quadrupole map is complete.

In fact the formula (172) for the general map for a time-independent Hamil-
tonian is even more useful than it might at first appear, because a system that
has a time-dependent Hamiltonian with N degrees of freedom can be described
by a different Hamiltonian with (N + 1) degrees of freedom, which is time-
independent and to which, therefore, the formula applies. This maneuver is
accomplished as follows.
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Suppose we have system with N degrees of freedom described by the time-
dependent Hamiltonian H(q, p, t) where as usual q and p symbolize the whole
sets of canonical coordinates and momenta. We define a new Hamiltonian,

H+ = H(q, p, qN+1) + pN+1. (184)

We have extended the phase space to include an additional coordinate qN+1

and its canonically conjugate momentum pN+1, modified the Hamiltonian by
the addition of the term pN+1 and substituted the new coordinate qN+1 for
time. The equation of motion for the new coordinate is

q̇N+1 =
∂H+

∂pN+1
= 1, (185)

which, when integrated gives

qN+1(t) = t. (186)

As we shall see, we need not concern ourselves with the equation of motion for
pN+1. The remaining equations of motion—those for the original N degrees of
freedom—are exactly as they were before, except that qN+1 appears in place of t.
Clearly since qN+1(t) duplicates the flow of time, the solutions to these equations
behave exactly like those of Hamilton’s equations of motion for H(q, p, t). The
equation of motion for pN+1 tells us nothing further about the system we are
interested in, and we may therefore ignore it. Symplecticity applies to the whole
system of (N + 1) degrees of freedom, but it also applies to the original system
governed by H .

Since H+ is explicitly time-independent, the map for the system can be
generated by the Lie transformation,

M = exp{−(tf − t0) :H+:}, (187)

in which the complete set of canonical coordinates for the system include qN+1

and pN+1.

Example 7—To see how this technique works in a simple case, consider a
particle of unit mass under the influence of a force that increases linearly with
time; a one-dimensional Hamiltonian for such a system is

H = p2/2 − qt, (188)

where q is the coordinate of the particle. Hamilton’s equations of motion yield
the solutions,

q(t) = q0 + p0t+ t3/6, p(t) = p0 + t2/2. (189)

The extended Hamiltonian for the system is the following.

H+ = p2
1/2 + q1q2 + p2. (190)
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The Lie transformations are easily calculated finite sums:

q1(t) = q1(0) + p1(0)t+ t3/6, p1(t) = p1(0) + t2/2, (191)

in agreement with the foregoing solution. Of course, q2(t) = t, and a map is
generated for p2, but it is of no interest to us.

The Lie-transformation method is not difficult to carry out on a simple prob-
lem like that of the quadrupole, especially with the help of a computer algebra
program like Maple or Mathematica, and the computation is straightforward.
However its real power lies beyond these simple problems. The Hamiltonian
equations of motion for the quadrupole are linear and can be easily solved. But
what of beam-transport elements with higher-order fields for which the equa-
tions of motion are non-linear and become rapidly less tractable as the non-
linearity becomes stronger? For these elements, the Lie-transformation method
retains the same systematic, formulaic procedure, even if the mathematical ma-
nipulations themselves become more complicated.

A great advantage of the Lie transformation comes into play when the mo-
tion can be determined only to an approximation. In that case, if the Lie
transformation can be factored into a product of Lie transformations, as in the
Factorization theorem, then the product can be truncated and the truncated
product generates a symplectic approximation to the true map.

11 Symplectic Integration

In predicting or analyzing the behavior of a beam in an accelerator or storage
ring—and especially in a costly machine yet to be built—we are often forced
to use numerical integration to trace particles through complex electromagnetic
fields that do not admit of analytic solution. Since we frequently have to rely on
the long-term results of these integrations, the build-up of errors in the numerical
integration steps becomes very important. It is not possible to eliminate all the
errors, of course, because each step is intrinsically an approximation; however it
is possible to eliminate one class of errors: that due to asymplecticity. Generally
asymplectic or non-Hamiltonian integration steps display long-term damping
or antidamping with concomitant concentration or dilution of particle-point
density in phase space. We can eliminate those effects by making each step
symplectic.

One method of creating symplectic steps is a “building-block” approach.
to illustrate the method, consider the an idealized pendulum governed by the
Hamiltonian,

H(x, p) = p2/2 + cosx. (192)

(The mass of the bob is unity and the length of the pendulum is 1/g so that
mlg = 1.) The system has one degree of freedom with angle coordinate x and
canonical momentum p. The equations of motion are

ẋ = p, ṗ = sinx. (193)



45

π

−π
0 2π

π

−π
0 2π

h=0.2 h=0.2

p p

x x

Figure 1: Phase-space trajectories for the pendulum generated by the building-
block integrator (left) and a second-order Runge-Kutta integrator (right) of
comparable computational cost. The time-step h and the initial conditions are
the same for the two plots.

To construct an integration step, consider a short interval of time of duration
h. The general approach is to concentrate the effect of the force (sinx) in an
infinitesimal instant at the center of the interval, and let the pendulum rotate
freely during the first and last halves of the interval. We cut the interval h
into two parts—building blocks—of duration h/2 each, during which we ignore
the action of gravity so that the effective Hamiltonian is just Heff = p2/2;
we call these blocks “drifts.” Between these two parts the force of gravity
is considered to change the momentum impulsively (instantaneously) by an
amount that approximates the change that would take place in the entire interval
h in the exact solution. This block is called an “impulse.”

∆p =
∫ h

0

sinx(t)dt ≈ h sin(x0 + hp0/2).

This is the final building block. Labeling the initial values of the coordinates
x0 and p0, the transformations are these:

t → t+ h/2 : x1 = x0 + hp0/2, p1 = p0, (194)

Impulse : x2 = x1, p2 = p1 + h sinx1, (195)

t+ h/2 → t+ h : x3 = x2 + hp2/2, p3 = p2, (196)
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Since each of these is manifestly symplectic, the transformation through the
whole interval is symplectic, and we may regard the composite transformation
from (x0, p0) to (x3, p3) as a symplectic integration step for the system.

We can visualize the advantage of a symplectic integrator over an asym-
plectic integrator by comparing the phase-space trajectories generated by the
two integrators for the same system with the same initial conditions. Figure
1 shows the comparison. On the left are trajectories for the pendulum calcu-
lated by the building-block integrator, and on the right those calculated by a
second-order Runge-Kutta integrator of comparable computational cost to that
of the building-block integrator. The time-step for the two examples is the same,
h = 0.2; the period for small-amplitude motion is 2π; so the time-step is about
one thirtieth of the small-amplitude period. The integrations extend over 1000
steps.

While the symplectic integrator gives a faithful representation of the pendu-
lum’s motion, the Runge-Kutta integrator shows anti-damping behavior, which
manifests itself in an outward spiraling of the phase trajectories, creating bands
instead of lines in the plot. This behavior is non-Hamiltonian; it clearly im-
plies that Liouville’s Theorem is not obeyed by the solutions generated by the
Runge-Kutta integrator. A numerical-integration step is a map, so the phase-
space plots of Figure 1 depict iterations of the map. If the iterations lead to a
closed contour in phase space, the interior area of the contour is preserved since
the integrator is a symplectic map.

In the case of the pendulum we are mapping a non-linear Hamiltonian sys-
tem. In the left-hand plot of Figure 1, some typical features of such systems
exhibit themselves: a region of stable motion—bounded in phase-space—exists,
centered on the point (π, 0); The region of bounded motion is delimited by a
separatrix, which appears dashed in the plot; and regions of unbounded motion,
corresponding to monotonic increase or decrease of x lie beyond the separatrix.
The phase space is divided into regions of different behavior. Another feature
that is typical of non-linear Hamiltonian systems is chaotic motion, a feature
that is not visibly present in the plot. Chaotic motion can be made to appear
in the motions generated by the building-block integrator simply by increasing
the time step h, and thus increasing the effects of non-linearity on the map.

Figure 2 shows the result of increasing h by a factor of five, from 0.2, shown
on the left, to 1.0, shown on the right. The stable trajectories are distorted
somewhat, and the separatrix, if it exists at all, is contracted. Chaotic motion
arises at larger amplitudes. The h = 1.0 map still produces stable, undamped
motion at small amplitudes, which is not the case with the asymplectic Runge-
Kutta step even at small amplitudes.

The building-block approach to constructing symplectic integrators may be
used to construct more accurate integration steps by using more building blocks
of the same sort, however care must be exercised in constructing them to assure
that they are more accurate. Such integrators are guaranteed to be symplectic,
but they are not guaranteed to be accurate.

There are other methods of constructing symplectic integrators. One method,
which we shall call Ruth’s method[7], that approaches the problem with a strat-
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Figure 2: The effect of increasing the time step h is to distort the stable tra-
jectories and to introduce chaotic motion in the vicinity of the separatrix and
beyond. The plot on the left is the same as that of Figure 1. The plot on
the right shows the phase-space trajectories generated by the building-block
integrator for the same initial conditions but with a time step of 1.0.
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egy that is a little reminiscent of the Hamilton-Jacobi method of solving Hamil-
ton’s equations. The strategy is to seek a solution to Hamilton’s equations
by finding a canonical transformation that transforms the Hamiltonian to an
appropriate form. In the Hamilton-Jacobi method one tries to transform the
Hamiltonian to zero. In Ruth’s method the goal is to transform the Hamiltonian
almost to zero.

Numerical integration steps are approximations that take advantage of the
smallness of the step in the independent variable—t in the case of the pendu-
lum. In Ruth’s method we consider the transformed Hamiltonian as a power
series in the time-step h and measure the merit of the transformation in terms
of the lowest power of h that appears in the transformed Hamiltonian. In fact,
the procedure is to make several successive transformations, each one of which
eliminates the lowest remaining power of h in the resulting Hamiltonian. The
result is that for a given step h, the Hamiltonian gets nearer zero in each trans-
formation.

The rationale for this scheme, as it is in the Hamilton-Jacobi scheme, is the
following. As we have already learned, the solutions of Hamilton’s equations
are themselves canonical transformations. Thus if the Hamiltonian is H(x, p, t)
and the solutions are x(x0, p0, t) and p(x0, p0, t), x0 and p0 being the initial
conditions, we may think of the solutions as transformations carrying the sys-
tem from the initial conditions to the state at time t. Conversely the inverse
transformations carry the system from the state at t to the initial conditions,
which are constants.

The inverse transformations transform the HamiltonianH , according to (51),
to a transformed Hamiltonian K(x0, p0, t) in which the transformed canonical
coordinates and momenta are constants. Then since ẋ0 = 0 and ṗ0 = 0, K must
be independent of x0 and p0 and may be chosen to be zero. In summary the
inverse of the solution transforms the Hamiltonian to zero.3

Now starting again with the Hamiltonian H(x, p, t), suppose we have found
not the solution but a canonical transformation that transforms the Hamiltonian
to the form,

K =
∞∑

n=k

an(X,P )tn = ak(X,P )tk + ak+1(X,P )tk+1 · · · . (197)

Hamilton’s equations of motion for this system are

Ẋ =
∞∑

n=k

(
∂an

∂P

)
tn, Ṗ = −

∞∑
n=k

(
∂an

∂X

)
tn. (198)

Integrating with respect to time we get the solutions,

X = X0 + O(tk+1), P = P0 −O(tk+1). (199)
3In fact the Hamiltonian may be any function of t, but such a function has no effect on

the equations of motion, and may be discarded.
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Therefore the original canonical transformation differs from the exact solution
only in the (k + 1)th order and higher in the time.

In the case of the Ruth integrator, the successive transformations are de-
signed to eliminate successively higher powers of t in the transformed Hamilto-
nian, and therefore to give progressively higher accuracy. And at every step the
result is a symplectic transformation. The composition of the transformations
may be thought of as carrying the system from the state at some time t + h
backward in time to the state t. To create the desired approximation to the
solution itself, we use the inverse of this transformation as the integration step.

To find the appropriate canonical transformations to transform the Hamil-
tonian to the desired form, the generating-function method is used. For an
explanation of the method the reader is referred to Reference [7]. To complete
our discussion we give the second order (two transformations) integration step
for a Hamiltonian of the form

H(x, p) =
p2

2
+ V (x, t).

Designating the time step h, the initial conditions of the motion (x0, p0, t0) and
the state of motion at the end of the step (x, p, t), the transformations are

p1 = p0, x1 = x0 + hp1/2,
p = p1 + hf(x1, t0 + h/2), x = x1 + hp/2, (200)

where f(x, t) = −∂V/∂x. Interestingly this result coincides exactly for the
pendulum (192) with that of the building-block method described earlier in this
section.

12 Appendix: The Hamiltonian Formulation For

Beam Dynamics

In this appendix we derive the Hamiltonian for non-interacting beam particles
moving in the given electromagnetic fields of the accelerator. This Hamiltonian
involves only the three degrees of freedom possessed by the charged particle.

The coordinate system we use is a curvilinear system based on the motion
of an ideal particle called the “reference particle” which follows what we shall
call the “reference trajectory” through the system. The reference trajectory is
a curve in space consisting in general of a succession of straight segments and
curved segments, and it may be an open curve as it is in a beam transport line
or linear accelerator, or a closed curve as it is in a storage ring or synchrotron.
Examples are shown in Figure 3. Letting the variable s measure the distance
along the reference trajectory from some chosen origin, the reference trajectory
is traced out by the vector r0(s) whose own origin is an arbitrary point in the
laboratory system. To every value of s there corresponds a r0.

We denote the curvature of the reference trajectory by h(s); its magnitude is
the reciprocal of the local bending radius of the reference trajectory. We make
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Figure 3: The curvilinear coordinate system. The origin of the r-coordinates is an
arbitrary point O in the laboratory system. The origin of the curvilinear x-y-s system
is chosen for convenience and does not coincide with that of the r-system.

the important restriction that the local reference trajectory must lie in a fixed
plane—locally, the reference trajectory undergoes no torsion. This constraint is
not unduly restrictive in practise, because the coordinate system can be rotated
about the reference trajectory at any point, defining a new fixed plane for the
next local segment of the reference trajectory.

We may think of the motion of the reference particle as defining the reference
trajectory, its path being specified by the vector function, r0(s), and its schedule
along the path as a scalar function t0(s). This characterization implies s to be
the independent variable. On the other hand, beginning on a more traditional
note and acknowledging the special status of time as independent variable in
classical mechanics, we could specify instead r0(t), the time-dependent trajec-
tory of the reference particle. Having done so, we could extract s(t) for the
reference particle and invert it to find t0(s) and from that r0(s) = r0(t0(s)).
Note that we can be sure that the inversion of s(t) will lead to a single-valued
t0(s), because s(t) is always a smooth, monotonic function of t in particle beams.

The motion of a general particle, given by the position vector r(s), is de-
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scribed relative to the reference trajectory. This is done by establishing a local
coordinate system whose longitudinal axis is formed by the reference trajectory
itself. The variable s is the longitudinal coordinate; it increases in the direction
of the motion of the reference particle. The value of the longitudinal coordinate
of a general particle is the perpendicular projection on the s-axis of the parti-
cle’s position. The other two coordinates are perpendicular to the s-axis and
to each other, forming a right-handed orthogonal set. They are called x and y
with corresponding unit vectors, x̂ and ŷ. The unit vectors form a right-handed
system. See Figure 2.

x̂= ŷ × ŝ

ŷ= ŝ× x̂ (201)
ŝ= x̂ × ŷ ,

where ŝ = dr0/ds.
Wherever the reference trajectory is curved, the plane of bending is well

defined. The coordinate x always lies in the bending plane where a bending
plane exists. In other portions of the system, where the reference trajectory
is straight, the x-direction may be chosen for convenience. Once x-direction is
established, however that is done, the y-direction is uniquely defined by (201).
The transverse (xy) coordinate system has its origin at the point where a plane
perpendicular to the reference trajectory and containing the particle is pierced
by the reference trajectory. It moves along with the particle. See Figure 2.

In terms of these coordinates the position vector of a general particle is given
by

r = r0(s) + x̂(s)x(s) + ŷy(s) , (202)

where r0(s), x̂(s), ŷ are given a priori and x, y are to be determined by solving
the equations of motion. The derivatives of the unit vectors are

x̂′= ŝh (203)
ŷ′=0 (204)
ŝ′=−x̂h , (205)

where primes denote total differentiation with respect to s. The magnitudes of
the tangent vectors in this coordinate system are∣∣∣∣ ∂r∂x

∣∣∣∣ = 1 ,
∣∣∣∣∂r∂y

∣∣∣∣ = 1 ,
∣∣∣∣∂r∂s

∣∣∣∣ = 1 + hx , (206)

so the vector differential operations—gradient, divergence, curl and Laplacian—
are the following.

grad ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+

ŝ
1 + hx

∂ψ

∂s
, (207)

div A =
1

1 + hx

∂

∂x
[(1 + hx)Ax] +

∂Ay

∂y
+

1
1 + hx

∂As

∂s
, (208)
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curl A =

x̂
{
∂As

∂y
− 1

1 + hx

∂Ay

∂s

}
+

ŷ
1 + hx

{
∂Ax

∂s
− ∂

∂x
[(1 + hx)As]

}
+ ŝ

{
∂Ay

∂x
− ∂Ax

∂y

}
,

(209)
div (grad ψ) =

1
1 + hx

{
∂

∂x

[
(1 + hx)

∂ψ

∂x

]
+

∂

∂y

[
(1 + hx)

∂ψ

∂y

]
+

∂

∂s

[
1

1 + hx

∂ψ

∂s

]}
, (210)

where ψ and A are a scalar function and a vector function respectively.
In classical mechanics, whether in the Newtonian formulation or the Hamil-

tonian formulation, time occupies a special role as the inherently independent
variable, with the consequence that the description of the motion of a general
particle is ordinarily expressed by the three coordinate functions x(t), y(t), and
s(t). The corresponding velocities are ẋ(t), ẏ(t), and ṡ(t). (Overhead dots denote
total differentiation with respect to time.) In the case of a particle in a beam,
the longitudinal velocity ṡ never drops to zero or reverses. In other words, the
variable s(t) increases monotonically with time, ṡ > 0, and consequently we
may invert s(t) to obtain a unique t(s) which will itself be monotonic in s. This
fact opens the door to treating s as the independent variable in beam dynamics
and considering t as a coordinate depending on s. This procedure is convenient
in beam dynamics, so it customary to describe the motion of a beam particle in
terms of the three functions x(s), y(s) and t(s). The corresponding “velocities”
are x′(s), y′(s) and t′(s).

To derive the Hamiltonian formulation for particle beam dynamics, we begin
with the relativistic Lagrangian for a charged particle moving in an electromag-
netic field. The field is prescribed by its vector and scalar potentials Φ and A
which are related to the electromagnetic fields by the MKS equations

E = −grad Φ − ∂A/∂t , B = curl A . (211)

The Lagrangian is

L(r,v, t) = −mc2
√

1 − (v/c)2 − e [Φ(r, t) − v · A(r, t)] , (212)

in which r is the physical position vector and v is the physical velocity. In our
coordinate system, the velocity is

v = x̂ẋ+ ŷẏ + ŝ(1 + hx)ṡ , (213)

where ẋ, ẏ and ṡ are the generalized velocities. The vector potential is just

A = x̂Ax + ŷAy + ŝAs , (214)

where Ax = (x̂ ·A) and so on. The canonical momenta are

Px =
∂L

∂ẋ
=

mẋ√
1 − (v/c)2

+ eAx
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Py =
∂L

∂ẏ
=

mẏ√
1 − (v/c)2

+ eAy (215)

Ps =
∂L

∂ṡ
=
m(1 + hx)2ṡ√

1 − (v/c)2
+ e(1 + hx)As .

(In this section we denote the canonical coordinates and momenta by capital
Q’s and P’s rather than lower case ones, because we reserve the lower case p
for the kinetic momentum and its components. Of course Q1 = x, Q2 = y and
Q3 = s.) The Hamiltonian is to be formed from the Lagrangian, the generalized
coordinates and the canonical momenta according to the prescription,

H =
∑

k

PkQ̇k − L . (216)

with all appearances of the generalized velocities removed by substituting their
values in terms of the canonical momenta. The generalized velocities appear in
(215) both explicitly and through the physical velocity v, so it is convenient to
write the mechanical momentum vector p in terms of the canonical momenta.

p =
mv√

1 − (v/c)2
= x̂(Px − eAx) + ŷ(Py − eAy) + ŝ

(
Ps

1 + hx
− eAs

)
, (217)

from which we find
v =

± cp√
p2 +m2c2

. (218)

Choosing the positive sign so that a positive velocity corresponds to a positive
momentum, we get the generalized velocities in terms of the canonical momenta.

ẋ=(Px − eAx)
c√

p2 +m2c2
(219)

ẏ=(Py − eAy)
c√

p2 +m2c2
(220)

ṡ=
(

Ps

1 + hx
− eAs

)
c

(1 + hx)
√
p2 +m2c2

(221)

Now we can carry out (216) and arrive at the Hamiltonian for our coordinate
system, but still a Hamiltonian for which time is the independent variable.4

H = c

√
(Px − eAx)2 + (Py − eAy)2 +

(
Ps

1 + hx
− eAs

)2

+m2c2 + eΦ

(222)
4Note that in the curvilinear coordinate system of beam dynamics, the Hamiltonian cannot

be written in the oft-quoted vectorial form, c[(P − eA)2 + m2c2]1/2 + eΦ , which is valid
only in cartesian coordinates.
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The Hamiltonian equations of motion are

ẋ =
∂H

∂Px
, ẏ =

∂H

∂Py
, ṡ =

∂H

∂Ps
, (223)

Ṗx = −∂H
∂x

, Ṗy = −∂H
∂y

, Ṗs = −∂H
∂s

, (224)

and from these it follows that the total time derivative of the Hamiltonian is
Ḣ = ∂H/∂t.

The next step is to change the independent variable from t to s. This
cannot be done unless s is a monotonic function of t so that t(s) is a single-
valued function. In beam dynamics, the dominant velocity is normally in the s-
direction, and the s-motion never reverses. Consequently we are safe in making
the change. To accomplish it we make repeated use of the third equation of
(223) in the following procedure. Combining it with the first of those equations,
we write

x′ =
ẋ

ṡ
=
(
∂H

∂Px

)
Ps

/(
∂H

∂Ps

)
Px

= −
(
∂Ps

∂Px

)
H

. (225)

In the rightmost expression of this equation, Ps is considered as that function
of the variable pairs (x, Px), (y, Py) and (t,H) obtained by solving (222) for Ps.
All variables unmentioned in the subscripts of the partial derivatives are held
constant in the differentiations. We apply the same kind of operation to all but
the last equations in each column of (223). To complete the change of variables,
we apply it to Ḣ to obtain

H ′ = −∂Ps

∂t
, (226)

and note that
t′ =

1
ṡ

=
∂Ps

∂H
. (227)

The result is a Hamiltonian system of equations in which the pair (s,−Ps)
become the independent variable and the Hamiltonian respectively,

H = −Ps(x, Px, y, Py, t,−H) = −(1 + hx)Ψ , (228)

where

Ψ =

√(
H − eΦ

c

)2

− (Px − eAx)2 − (Py − eAy)2 −m2c2 + eAs (229)

and the pair (t,−H) become a new canonical coordinate-momentum pair whose
evolution is to be found, along with that of the other pairs by solving the
following new equations of motion.

x′ =
∂H
∂Px

, y′ =
∂H
∂Py

, t′ =
∂H

∂(−H)
, (230)

P ′
x = −∂H

∂x
, P ′

y = −∂H
∂y

, −H ′ = −∂H
∂t

. (231)
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We note that we can identify the value of the original Hamiltonian, and therefore
the meaning of the symbol H , from (215) and (222), as the total energy of the
particle.

H =
√
p2c2 +m2c4 + eΦ . (232)

The last of the equations of motion gives the rate of change of the energy.
We call shall often refer to the generalized coordinates and the conjugate

momenta as the “q’s” and “p’s” as they are usually referred to in textbooks. In
these terms, q1 = x, p1 = Px, q2 = y, p2 = Py, q3 = t and p3 = −H .
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