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Introduction

The primary goals of the BABAR experiment are the detection of CP violation (CPV)
in the B meson system, the precise measurement of some of the elements of the CKM
matrix and the measurement of the rates of rare B meson decays. At present, BABAR has
achieved major successes:

• the discovery, in neutral B decays, of direct and mixing-induced CP violation

• accurate measurements of the magnitudes of the CKM matrix elements |Vcb| and
|Vub|

• a precise measurement of the CKM parameter β ≡ arg
[

−VcdV ∗
cb

VtdV ∗
tb

]

• a first measurement of the CKM parameters α ≡ arg
[

− VtdV ∗
tb

VudV ∗
ub

]

, γ ≡ arg
[

−VudV ∗
ub

VcdV ∗
cb

]

• the observation of several rare B decays and the discovery of new particles (in the
charmed and charmonium mesons spectroscopy)

However, the physics program of BABAR is not yet complete. Two of the key elements of
this program that still need to be achieved are

• the observation of direct CP violation in charged B decays, which would constitute
the first evidence of direct CPV in a charged meson decay

• the precise measurement of α and γ, which are necessary ingredients for a stringent
test of the Standard Model predictions in the quark electroweak sector.

A possibility for the discovery of direct CP violation in charged B decays would be the
observation of a non-vanishing rate asymmetry in the Cabibbo-suppressed decay B− →
D0K−,1 with the D0 decaying to either a CP -even or a CP -odd eigenstate. This class of
decays can also provide theoretically-clean information on γ.

Goal of the analysis

The subject of the work presented in this thesis is the reconstruction, in a data sample
of (231.8± 2.6)× 106 charged B meson decays collected by the BABAR experiment during
the years 1999-2004, of the Cabibbo-suppressed B− → D0K− decays, along with the
Cabibbo-allowed B− → D0π− decays, with the D0 decaying to CP -even (K+K−, π+π−),
CP -odd (K0

S
π0, K0

S
φ, K0

S
ω) 2 and non-CP flavor (K−π+) eigenstates. The goal is the

measurement of the two direct CP asymmetries

ACP± ≡ B(B− → D0
CP±K

−) − B(B+ → D0
CP±K

+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)
(1)

and the two ratios of charge averaged branching fractions

R± ≡
B(B−→D0

CP±K−)+B(B+→D0
CP±K+)

B(B−→D0
CP±

π−)+B(B+→D0
CP±

π+)

B(B−→D0K−)+B(B+→D0K+)

B(B−→D0π−)+B(B+→D0π+)

(2)

1Charge conjugation is implied here and throughout the text unless otherwise stated
2K0

S, π0, φ and ω mesons are reconstructed through the decays K0
S → π+π−, π0 → γγ, φ → K+K−,

ω → π+π−π0

7



where D0
CP± = D0±D0

√
2

are (neglecting the tiny D0–D0 mixing) the two CP -eigenstates of

the neutral D0 meson system. A significant deviation of either ACP+ or ACP− from zero
would provide evidence for direct CP violation in the corresponding B → D0

CPK decay,
since B+ → D0

CPK
+ is the CP -conjugate of the B− → D0

CPK
− process. Moreover, an

accurate measurement of the four observables {R±, ACP±} would allow – in the Standard
Model framework – to extract γ in a theoretically clean way, together with two hadronic
unknowns rB and δB (respectively the magnitude of the ratio of the B− → D0K− and
B− → D0K− amplitudes and their strong phase difference). In fact the observables
{R±, ACP±} are expressed in terms of {γ, rB, δB} through the relations:

R± ≈ RCP± = 1 + r2B ± 2rB cos δB cos γ (3)

ACP± =
±2rB sin δB sin γ

1 + r2B ± 2rB cos δB cos γ
. (4)

where we have defined the branching fraction ratio:

RCP± ≡ B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)

B(B− → D0K−) + B(B+ → D0K+)
(5)

and the approximate equality RCP± ≈ R± follows from the exact cancellation of D0π
phase-space factors in the double ratio R± and from the approximationA(B+→D0

CP±π
+)

≈ A(B− → D0
CP±π

−) ≈ 1√
2
A(B− → D0π−), where a term rB × |VusVcd/VudVcs| is

neglected. The ratio rB – which involves the ratio of CKM factors |VubVcs/VcbVus| ≈
0.4−0.5 and a probably comparable color-suppression factor [1] – is expected from theory
to be rB ≈ 0.1 − 0.2 [1]. This (crude) estimation is confirmed by recent experimental
determinations from the BABAR and Belle experiments:

rB = 0.12 ± 0.09 BABAR [2]

rB = 0.21 ± 0.09 Belle [3],

and suggests that the approximation R± ≈ RCP± is valid to order rB × tan2 θC ≈ 0.5 −
1.0%, where θC is the Cabibbo angle (tan θC ≈ 0.22). The phase δB (0 ≤ δB < 360◦) is
unknown from the theory, and recent experimental determinations from BABAR and Belle
favor a value (modulo 180◦) between 90◦ and 180◦:

δB mod 180◦ = 114◦ ± 55◦ BABAR [2]

δB mod 180◦ = 157◦ ± 30◦ Belle [3].

In the analysis presented in this thesis B− → D0K− decays are reconstructed together
with the Cabibbo-allowed B− → D0π− decays with the same D0 final states. While
B− → D0

(CP±)π
− decays are not very interesting by themselves, since the expected CP

asymmetries in these channels are at most at the 1% level and γ could be extracted from
only the B− → D0

(CP±)K
− branching fractions and CP asymmetries, their reconstruction

is useful for four reasons:

• it provides a way to estimate possible charge asymmetries in the detector (the CP
asymmetry is expected to be zero in this channel) which could potentially bias the
measurement of ACP±;

• since the kinematics of B− → D0
CP±π

− and B− → D0
CP±K

− decays are very
similar, the former – with a branching fraction ≈ 12 times larger than the latter –
are an abundant and excellent control sample;

• for the reasons explained above, the process B− → D0
CP±π

− gives a significant
contribution to the background for the process B− → D0

CP±K
− and must therefore

be well understood;

8



• normalizing the branching fraction of B → D0
(CP±)K to that of B → D0

(CP±)π
and measuring R± instead of RCP± leads to a cancellation of many systematic
uncertainties (like, for instance, the ones connected to the number of B mesons in
the original data sample and to the branching fractions of the D0 and its instable
daughters) and therefore can be useful to obtain more precise results.

The separate measurement of the B− → D0K− and B− → D0π− rates and asymmetries
is performed through a maximum likelihood fit that exploits the particle identification
(PID) information of the prompt particle provided by BABAR’s excellent PID system, along
with a few kinematical variables which characterize the decay of the B meson and are
reconstructed by means of BABAR charged particle tracking system and its electromagnetic
calorimeter.

9



Status of the measurement of B(B → D0
(CP±)K) and

ACP (B → D0
(CP±)K)

At present, three experiments, CLEO, Belle and BABAR, have detected the Cabibbo-
suppressed decay B− → D0K− with D0 decaying to Cabibbo-allowed non-CP flavor
eigenstates. In all three experiments, B mesons are originated in the decays Υ (4S) →
BB of the vector resonance Υ (4S) = (bb̄) produced in e+e− collisions at a center-of-mass
(CM) energy

√
s = m(Υ (4S))c2 = 10.58 GeV. In CLEO, installed at the Cornell Electron

Storage Ring (CESR), electrons and positrons have the same energy in the laboratory
frame; in Belle (at the KEKB facility) and BABAR (at the SLAC PEP-II e+e− storage
ring), BB pairs are produced in collisions where electrons are ≈ 3 times more energetic
than positrons. The total number of B± mesons collected by CLEO, in the years 1999-
2001, is 15.4× 106; the number of B± collected by BABAR and Belle until the end of year
2004 is 15–20 times larger, and should reach about one billion by 2008. For this reason
KEKB and PEP-II are usually referred to as “B-factories”. The measured branching
fraction ratio between the B− → D0K− and the B− → D0π− processes is:

B(B− → D0K−)/B(B− → D0π−) = (9.9+1.4
−1.2

+0.7
−0.6) × 10−2 CLEO [4]

B(B− → D0K−)/B(B− → D0π−) = (7.7 ± 0.5 ± 0.6)× 10−2 Belle [5]

B(B− → D0K−)/B(B− → D0π−) = (8.31 ± 0.35 ± 0.20)× 10−2
BABAR [6]

The weighted average of the BABAR, Belle and CLEO measurements is:

B(B− → D0K−)/B(B− → D0π−) = (8.19 ± 0.28)%,

The CLEO measurement is based on the whole CLEO data sample (15.4 million B±

mesons collected in the years 1990-2001); the D0 candidates are reconstructed in the
decay modes K−π+, K−π+π+π−, K−π+π0. The Belle result is based on a sample of 85.4
million B± mesons collected in the years 1999-2002; the D0 candidates are reconstructed
in the K−π+ decay mode. The BABAR measurement is based on a sample of 88.8 million
B± mesons collected in the years 1999-2002; the D0 candidates are reconstructed in the
decay modes K−π+, K−π+π+π−, K−π+π0.

In the case of D0 decaying to CP eigenstates, the expected branching fraction ratios
and CP asymmetries depend – as anticipated in the Introduction – on the value of three
quantities γ, rB and δB through the relations

B(B− → D0
CP±K

−)

B(B− → D0
CP±π

−)
≈ RCP±

B(B− → D0K−)

B(B− → D0π−)

= (1 + r2B ± 2rB cos δB cos γ)
B(B− → D0K−)

B(B− → D0π−)

ACP± =
±2rB sin δB sin γ

1 + r2B ± 2rB cos δB cos γ

where in principle γ and δB are angles which lie in the range [0, 360]◦, and rB is a positive
quantity. Theoretical estimates [1] and recent experimental determinations [2, 3] for rB
are in the range 0.1 – 0.2, and γ is expected to be, from indirect constraints and if the
Standard Model is correct, around 60◦ [7, 8]. In Figure 1 are shown the expected values
of RCP± and ACP± as a function of δ for γ = 60◦ and for different values of rB in the
range 0.05-0.20. In the rB = 0.15 case RCP± varies between 0.87 and 1.17 depending on
the value of δB, and CP asymmetries are expected to be at most ±24%.

Since D0 decays to CP eigenstates are Cabibbo suppressed, with branching fractions
of the order of 10−3, and reconstruction efficiencies are typically between 10 and 30%,

10
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Figure 1: Expected values of RCP± and ACP± as a function of δ for γ = 60◦ and different
values of rB.

to measure RCP± and ACP± a huge number of charged B mesons must be collected.
Therefore the measurement of RCP± and ACP± is precluded to the CLEO experiment,
while it is possible with the large data sample accumulated up to now by the B factories,
and will be refined in the next three years as long as this data sample will be increased
by a factor ≈ 4. Prior to the analysis presented in this thesis, a measurement of RCP+

and ACP+, with D0
CP+ decaying to the CP -even eigenstates K−K+ and π−π+, has been

performed both by Belle and BABAR:

RCP+ = 1.21 ± 0.25 ± 0.14

ACP+ = 0.06 ± 0.19 ± 0.04 Belle [5]

RCP+ = 1.06 ± 0.20 ± 0.06

ACP+ = 0.07 ± 0.17 ± 0.06 BABAR [6]
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while B → D0
CP−K decays have been reconstructed only by Belle:

RCP− = 1.41 ± 0.27 ± 0.15

ACP− = −0.19± 0.17 ± 0.06 Belle [5]

The data sample used for these analyses are the same as those used to measure the
ratio B(B− → D0K−)/B(B− → D0π−). BABAR finds, on a sample of 88.8 million B±,
44.3± 9.0± 3.3 B → D0

CP+[K+K−]K candidates and 24.2± 7.2+1.6
−2.5 B → D0

CP+[π+π−]K
candidates. Belle reconstructs the D0

CP−in the CP -odd channels K0
S
π0, K0

S
φ, K0

S
ω, K0

S
η,

K0
S
η′, with K0

S
→ π+π−, π0 → γγ, φ → K+K−, ω → π+π−π0, η → γγ, η′ → η π+π−.

They find, on a sample of 85.4 million B± mesons, 52 B → D0
CP−K

± candidates. The
yields are not quoted separately for the various decay modes of the D0

CP−, but – taking
into account the branching fractions of the decay processes that are involved – the K0

S
η

and K0
S
η′ modes are expected to give a negligible contribution to the total signal yield.

An updated measurement has been presented by the Belle Collaboration at ICHEP’04,
based on a sample of 274 million BB events; the preliminary results are [9]:

RCP+ = 0.98 ± 0.18 ± 0.10

ACP+ = 0.07 ± 0.14 ± 0.06

RCP− = 1.29 ± 0.16 ± 0.08

ACP− = −0.11± 0.14 ± 0.05

No evidence for direct CP violation is found from the measured values of ACP±.
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Outline of the manuscript

In Chapter 1 an overview on CP violation, in general and in B meson decays, is
presented. In particular, direct CP violation is described in Section 1.4.1. The main,
most promising methods for the extraction of γ are reviewed, together with the current
experimental information that we have (Section 1.7).

The general structure of the BABAR detector and the performances of its subsystems
are described in Chapter 2.

In Chapter 3 the selection of the B− → D0h− (h = K,π) candidates is discussed in
details.

In Chapter 4 the fit technique used to extract the signal yields of B− → D0K− and
B− → D0π− and the quantities RCP± and ACP± is presented. In the same Chapter the
results are detailed, with the inclusion of the systematic uncertainties.
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Chapter 1

Theoretical review

1.1 Why B physics?

The Standard Model (SM) of strong and electroweak interactions of quark and leptons [10]
has so far been able to accommodate, in a simple and elegant way, the experimental data
collected in the past years. It must be noted, however, that whereas the gauge sector of
the electroweak interactions has been tested to a very high precision in the 1990s, the
study of flavor-changing and CP -violating transitions has not reached the same level of
accuracy.

In the Standard Model with three quark generations, flavor changing transitions and
in particular CP violation (CPV) can in principle be accommodated with the well-known
CKM mechanism [11], just requiring that CP is not imposed as a symmetry of the la-
grangian. Several stringent tests of the flavor and CP sector of the SM can be obtained
from the measurement of B mesons decays, where a multitude of CP -odd effects are
expected, with non negligible size and – in some cases – with very clean and accurate
predictions by the theory.

In the last decade two experiments, BABAR [12] and Belle [13], have been built at
the so-called “B Factories” to extensively study B (= Bu,d) meson decays and make
enough independent CP violation measurements to overconstrain the theory:1 eventually
either those measurements will be consistent with the Standard Model, where all CP
violation effects in nature are described in terms of a single phase parameter, or – in the
most exciting case – there will not be any set of CKM parameters consistent with all
measurements, thus opening the way for a new physics theory beyond the SM.

1.2 CP violation in the Standard Model. The CKM

matrix and the Unitarity Triangle

In quantum field theories CP violation is directly connected with the presence, in the
Lagrangian, of one or more complex coupling constants whose phases cannot be removed
by means of a suitable phase redefinition of the fields in the theory. [15]

In the Standard Model based on SU(2)L × U(1) gauge symmetry, CP violation in
weak processes arises from a single irremovable complex phase in the mixing matrix for
quarks, which governs the charged W gauge boson interaction with the quarks: this is
called the Cabibbo-Kobayashi-Maskawa (CKM) mechanism [11]. Such charged current

1An extensive description of B physics and of the wide experimental program of the B-factories is
contained in [14]
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weak interaction can be written as:2

LW = − g√
2

(
ū c̄ t̄

)

L
γµV





d
s
b





L

W+
µ + h.c., (1.1)

where g is the SU(2)L coupling constant,3 Wµ is the W boson field operator, and {u, c, t}L

and {d, s, b}L are the left-handed quark field flavor eigenstates, with charges Q = 2/3 and
Q = −1/3 respectively. The matrix of the couplings, called Cabibbo-Kobayashi-Maskawa

(CKM) matrix,

V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 , (1.2)

is in principle a unitary, 3 × 3 matrix, thus depending on nine parameters, three real
angles and six phases. The number of phases can be reduced to one by a redefinition of
the phases of the quark fields.4 An explicit parameterization in terms of three mixing
angles θ12, θ13, θ23 and a phase δ, with a particular quark fields phase convention, is the
so-called “standard parameterization” [16]:

V =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.3)

where cij ≡ cos θij and sij ≡ sin θij , 0 ≤ θij ≤ π/2, and 0 ≤ δ ≤ 2π.
Experimentally one can gain information on the magnitudes of the CKM matrix ele-

ments from several tree-level constraints.5 When taking into account these measurements
and the constraints from unitarity in a global fit, one can determine confidence intervals
for the moduli of each of the nine CKM elements.6 The 1σ (68%) confidence limits from
such a global fit are [7]:

|Vij | =





0.97399+0.00046
−0.00046 0.2265+0.0020

−0.0020 0.00379+0.00025
−0.00023

0.2264+0.0020
−0.0020 0.97316+0.00046

−0.00047 0.0411+0.0013
−0.0006

0.00807+0.00045
−0.00035 0.0405+0.0013

−0.0006 0.999147+0.000024
−0.000057



 (1.4)

and a well-defined hierarchy in the mixing angles appears:







s12 = 0.2265 +0.0020
−0.0020

s23 = 0.0411 +0.0013
−0.0006

s13 = 0.00379 +0.00025
−0.00023

=⇒ θ13 ≪ θ23 ≪ θ12 (1.5)

This corresponds to a hierarchy in the strengths of the charged-current quark-level pro-
cesses, and is exploited in the so-called “Wolfenstein parameterization” of the CKM ma-
trix [17]. This is an approximation of the standard parameterization in terms of four real

2Summation over quark colors is not explicitly indicated.
3g is connected to the Fermi constant GF and the mass MW of the W boson through the relation

GF = g2

8M2
W

.

4In the general case of N quark generations, the mixing matrix would consist of (N − 1)2 physical
parameters, N(N − 1)/2 angles and (N − 1)(N − 2)/2 complex phases. N=3 is therefore the minimum
number of quark generations that is necessary in the Standard Model to accomodate CP violation.

5For a review see for instance chapter 11 (“The Cabibbo-Kobayashi-Maskawa quark-mixing matrix”)
of [16].

6Different fitting methods exist in the literature which differ in the statistical methods used to deal
with theoretical errors: the CKMfitter group [7] advocates a frequentist approach, while the UTfit col-
laboration [8] chooses a bayesian approach. However, the different fitting methods, it they use the same
input parameters, give essentially the same result.
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quantities, (λ,A, ρ̄, η̄), with λ = sin θC = |Vus| = (0.2265± 0.0020) playing the rôle of the
expansion parameter. These parameters are related to those of (1.3) through:

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3

1 − λ2/2
(ρ̄− iη̄) . (1.6)

From these relations the Wolfenstein representation of V is easily derived:

V =

0

B

@

1 −
λ2

2
+ O(λ4) λ + O(λ7) Aλ3(1 + λ2

2
)(ρ̄ − iη̄) + O(λ7)

−λ + O(λ5) 1 −
λ2

2
+ O(λ4) Aλ2 + O(λ8)

Aλ3(1 − ρ̄ − iη̄) + O(λ7) −Aλ2[1 −
λ2

2
+ λ2(ρ̄ + iη̄)] + O(λ6) 1 + O(λ4)

1

C

A

(1.7)

Since V is a 3 × 3 unitary matrix (V V † = V †V = 1), a set of 12 equations hold, 6
expressing the normalization conditions of the rows and columns, and 6 expressing the
fact that the hermitian product of each pair of different columns or rows must vanish.
Of particular relevance is the relation:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.8)

which can be rewritten – after dividing by VcdV
∗
cb – in the following way, which is inde-

pendent of the phase convention chosen for the quark fields:

VudV
∗
ub

VcdV ∗
cb

+ 1 +
VtdV

∗
tb

VcdV ∗
cb

= 0. (1.9)

This relation requires that the sum of three complex quantities vanishes and can therefore
be represented in the complex plane as a triangle, called “Unitarity Triangle”. Its sides are
all of comparable magnitude, O(1).7 As shown in Figure 1.1, two vertices have coordinates
(0,0) e (1,0) and the coordinates of the third vertex (apex) in terms of the Wolfenstein
parameters are – if we neglect terms of order λ4 – simply given by (ρ̄, η̄). The lengths of

Figure 1.1: The (rescaled) Unitarity Triangle.

the two complex sides are

Rb ≡
∣
∣
∣
∣

VudVub

VcdVcb

∣
∣
∣
∣
=
√

ρ̄2 + η̄2 =
1 − λ2/2 + O(λ4)

λ

∣
∣
∣
∣

Vub

Vcb

∣
∣
∣
∣
, (1.10)

Rt ≡
∣
∣
∣
∣

VtdVtb

VcdVcb

∣
∣
∣
∣
=
√

(1 − ρ̄)2 + η̄2 =
1 + O(λ4)

λ

∣
∣
∣
∣

Vtd

Vcb

∣
∣
∣
∣
. (1.11)

7There exist five other “unitarity triangles”, corresponding to the remaining unitarity relations between
the columns or the rows of the CKM matrix. However, one is, to order λ3, identical to the Unitarity
Triangle, while in the other four one side is a factor O(λ2) or O(λ4) shorter than the other two and
therefore measurements related to these triangles are experimentally very challenging.
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The three angles, denoted by α, β and γ, are

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

(1.12)

The special relevance of the Unitarity Triangle is due to the fact that there are a certain
number of Bu,d meson decays which are expected to have rates and CP -violating effects
that can be measured at the B factories experiments, and from which we can gain redun-
dant information on the angles and sides of the triangle, thus allowing us to perform a
stringent test of the CKM sector of the Standard Model. Information on the lengths of
the sides comes from:

• the values of |Vub| and |Vcb|, measured in inclusive or exclusive semileptonic B →
Xu,clνl decays (l = e, µ), which constrain Rb ≡

√

ρ̄2 + η̄2 (Rb ∝ |Vub/Vcb|). This
corresponds in the (ρ̄, η̄) plane to a circle centered in (0,0) with radius Rb.

• the value of ∆Md, the mass difference of the two mass eigenstates of the neu-
tral Bd meson system, measured in B0–B0 oscillations, which constrain Rt ≡
√

(1 − ρ̄)2 + η̄2. This corresponds in the (ρ̄, η̄) plane to a circle centered in (1,0)
with radius Rt.

Information on the angles α, β and γ can be obtained from the measurement of CP -
violating Bu and Bd decays as described in Sections 1.5, 1.6 and 1.7. Additional con-
straints on the sides of the Unitarity Triangle are provided by non B-factory experiments,
and consist of the measured value of the indirect CP violation parameter εK of the neutral
Kaon system, and the quantity ∆Ms, analogous of ∆Md for the neutral Bs system, mea-
sured by LEP and CDF in neutral Bs oscillations. The former constrains the quantity
η̄ [(1 − ρ̄) + P ], where P is a constant which depends on A, λ, and the ratios mc/mW

and mt/mW between the masses of the charm and top quarks and that of the W boson.
This constraint corresponds to a hyperbola in the (ρ̄, η̄) plane. The latter provides an
additional constraint on Rt.

A few comments are in order:

• to relate the experimental observables to the CKM parameters, or equivalently to ρ̄
and η̄, one needs some theoretical input. Typically hadronic matrix elements of the
weak interaction Hamiltonian, originally expressed in terms of quark fields, need to
be evaluated, thus introducing a theoretical uncertainty.

• the experimental quantities themselves have a limited precision due to the finite
statistics and the systematic uncertainties that affect the measurements. Therefore,
the constraints have a finite precision, that improves in time as soon as updated
measurements and more refined theoretical estimates are available.

In Figure 1.2 one can see the constraints, in the (ρ̄, η̄) plane, from the current mea-
surements of |Vub|/|Vcb|, ∆Md and ∆Ms, ε, and the angles α, β and γ, together with the
3σ allowed region for the apex of the Unitarity Triangle obtained from a combined fit
to these constraints [7]. With the present experimental and theoretical information the
Standard Model is therefore consistent with data, and the following predictions (at 95%
C.L.) can be made (in the context of the SM)[7]:

A = 0.801+0.060
−0.035 (1.13)

ρ̄ = 0.204+0.120
−0.093 (1.14)

η̄ = 0.340+0.056
−0.055 (1.15)

α = (93.1+22.4
−18.5)

◦ (1.16)

β = (23.1+3.1
−2.6)

◦ (1.17)

γ = (58.2+15.6
−20.3)

◦ (1.18)
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Figure 1.2: Constraints (at 68% and 95% C.L.) on the position of the apex of the Unitarity
Triangle in the (ρ̄, η̄) plane from the measured values of |Vcb|, |Vub|, ∆Md, ∆Ms, ε, sin 2β.
The combined 3σ allowed contour is also shown.

1.3 The system of Bu,d mesons

The light B ≡ Bu,d mesons consist of four states with the following valence quark content:

B+ = ub̄, B0 = db̄, (1.19)

B− = ūb, B0 = d̄b (1.20)

They are pseudoscalar 0− mesons, with masses around 5279 MeV/c2 (mB+ = 5279.0 ±
0.5 MeV/c2, mB0 = 5279.4 ± 0.5 MeV/c2) and mean lives of the order of 1.6 ps (τB+ =
1.671±0.018 ps, τB0 = 1.536±0.014 ps). B mesons are copiously produced in present B-
factory experiments from decays of the vector resonance Υ (4S) = bb produced in e+e− col-
lisions: in fact, the Υ (4S), whose massm and width Γ arem = (10.5800±0.0035) GeV/c2,
Γ = (20 ± 4) MeV, is just above threshold for BB production and decays with the same
probability > 48% into B+B− and B0B0. The neutral B system, like the neutral K
system, exhibits some peculiar features which we summarize here [14].

Due to the presence of flavor-non-conserving weak processes that can connect B0 and
B0 states, the effective Hamiltonian of the B0B0 system8 is not diagonal in the {B0, B0}
base:

Heff =

(
H0 H12

H21 H0

)

= M − i

2
Γ =

(
M0 M12

M∗
12 M0

)

− i

2

(
Γ0 Γ12

Γ∗
12 Γ0

)

(1.21)

8Here and throughout the text we assume CPT conservation, that implies H11 = H22
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Therefore the flavor eigenstates are not the same as the mass eigenstates and can undergo
particle-antiparticle mixing. The mass and lifetime eigenstates are:

BL =
pB0 + qB0

√

|p|2 + |q|2
, BH =

pB0 − qB0

√

|p|2 + |q|2
, (1.22)

with p and q complex parameters. We denote their masses with mL,H and their widths
ΓL,H , where we assume BL to be the lightest of the two. We have:

Md ≡ (mH +mL)/2 = M0, Γd ≡ (ΓH + ΓL)/2 = Γ0 (1.23)

The evaluation of the Standard Model amplitudes for the |∆B| = 2 process B0 ↔ B0,
determined at quark level by box (bd̄) ↔ (b̄d) diagrams, leads to [19]:

∆Md ≡ mH −mL

2
≈ 2|M12| (1.24)

∆Γd ≡ ΓH − ΓL

2
≈ −2|Γ12| (1.25)

∣
∣
∣
∣

Γ12

M12

∣
∣
∣
∣

= O
(
m2

b

m2
t

)

≪ 1 (1.26)

q

p
≈ e−2iβ (1.27)

where in the last line the same quark field phase convention adopted for the standard
parameterization of the CKM matrix has been used, and we have also made the phase
choice CP (B0) = B0. We see that:

• ∆Γd < 0, therefore the heaviest mass eigenstate has longer lifetime than that of the
light state;

• |∆Γd|/∆Md = O(10−2) ≪ 1. Since ∆Md/Γd has been measured to be (0.771 ±
0.012), then |∆Γd|/Γd = O(10−2) ≪ 1.

• q
p ≈ e−2iβ is almost a pure phase. The expected deviation of |q/p| from 1 is

∣
∣
∣
q
p

∣
∣
∣−1 ≈

5 × 10−4 [19].

Since the B0 and B0 are not the eigenstates of the hamiltonian (1.21), then a state
which, at (proper) time t = 0, is a pure B0, evolves at time t into a state B0(t) which is
a linear superposition of B0 and B0, and similarly a state which is a pure B0 at t = 0
evolves at time t into a mixed state B0(t):

B0(t) = g+(t)B0 +
q

p
g−(t)B0 (1.28)

B0(t) = g+(t)B0 +
p

q
g−(t)B0 (1.29)

where the functions g+(t) and g−(t), if we neglect ∆Γd/Γd, are:

g+(t) = e−iMdte−Γdt/2 cos

(
∆Mdt

2

)

(1.30)

g−(t) = e−iMdte−Γdt/2i sin

(
∆Mdt

2

)

(1.31)

A peculiarity of the B factories is that the B0B0 pair originated from the e+e− →
Υ (4S) → B0B0 process is produced in a coherent L = 1 state

S(t = 0) =
B0B0 −B0B0

√
2

(1.32)
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The time evolution of the two B mesons is then such that at any time, until one particle
decays, there is exactly one B0 and one B0:

S(t) = e−2iMdte−ΓdtB
0B0 −B0B0

√
2

(1.33)

As soon as one of the two B mesons decays to a final state that is accessible only to B0

or B0, for instance a semileptonic decay into Xlν (for example, D∗lν),9 the other follows
a time evolution given by Eqs. (1.28) or (1.29), where t is now the difference between its
proper time and the decay instant of the former B.

1.4 CP violation in B decays

It is possible to distinguish – in a manner which does not depend on a specific theory –
three ways in which CP violation can show up in B (as well as K) meson decays:

• CP violation in decay, also called direct CP violation;

• CP violation in mixing, also referred to as indirect CP violation;

• CP violation in the interference between decays with and without mixing, sometimes
abbreviated to CP violation in the interference between mixing and decay.

1.4.1 CP violation in decay

CP violation in decay, or direct CPV, takes place when the amplitude Af = 〈f |H |B〉
for a decay B → f and the amplitude Āf̄ = 〈f̄ |H |B〉 for its CP conjugate B → f̄ have
different magnitudes: ∣

∣
∣
∣
∣

Āf̄

Af

∣
∣
∣
∣
∣
6= 1. (1.34)

Indeed, if we write B = eiφCP (B)CP (B) and f̄ = eiφCP (f)CP (f), then we have:

〈f̄ |H |B〉 = ei(φCP (B)−φCP (f))〈f |(CP )H(CP )|B〉 (1.35)

and CP invariance implies that the Hamiltonian commutes with the CP operator, thus
leading to 〈f̄ |H |B〉 = ei(φCP (B)−φCP (f))〈f |H |B〉.

For direct CP violation to take place in a process B → f an essential condition is that
at least two interfering amplitudes, with different weak (CP violating) and strong (CP
conserving) phases, contribute to it. In that case in fact:

Af =
∑

i

|Ai|ei(δi+φi), (1.36)

where φi are the weak phases and δi are the strong ones. Thus:

Āf̄ = ei(φCP (B)−φCP (f))
∑

i

|Ai|ei(δi−φi) (1.37)

and
|Af |2 − |Āf̄ |2 = −2

∑

i,j

|Ai||Aj | sin(φi − φj) sin(δi − δj), (1.38)

9In this case the charge of the lepton uniquely identifies the flavor of the B at the instant t1 when it
decayed (such a decay is called “flavor-tagging” as it allows to identify the flavor of the B). Suppose for
instance that a D∗+l−ν̄ final state is observed: in this eventuality the decaying B is a B0. Due to the
coherence of the B0B0 pair, therefore, at the same instant t1 the other B must have opposite flavor: it is
a B0.
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which is different from zero if at least two amplitudes Ai and Aj have φi 6= φj as well as
δi 6= δj , modulo π. In the simplest case of two amplitudes A1 and A2, then |Af |2−|Āf̄ |2 =
−4|A1||A2| sin(φ1−φ2) sin(δ1−δ2) and it is straightforward to compute the partial widths
asymmetry:

|Āf̄ |2 − |Af |2
|Āf̄ |2 + |Af |2

=
2|A1||A2| sin(φ1 − φ2) sin(δ1 − δ2)

|A1|2 + |A2|2 + 2|A1||A2| cos(φ1 − φ2) cos(δ1 − δ2)
(1.39)

The asymmetry is larger the more the two interfering amplitudes A1, A2 are comparable
in magnitude.

Any rate asymmetry in charged B decays of the form:

Adir
CP =

Γ(B− → f) − Γ(B+ → f̄)

Γ(B− → f) + Γ(B+ → f̄)
6= 0, (1.40)

would be a clear signature of direct CP violation, since:

Adir
CP =

|Āf̄/Af |2 − 1

|Āf̄/Af |2 + 1
(1.41)

At present, all rate asymmetries measured in several different charged B (and K) decays
have been found consistent with zero.

In neutral B decays direct CPV can be searched in rate asymmetries of decays to final
states f that are self-tagging, i.e. are only accessible to either B0 or B0 but not to both.10

Following this method BABAR has observed, for the first time, direct CP violation in the
B meson system, measuring the rate asymmetry for the B0 → K+π− decay [22]:

Γ(B0 → K−π+) − Γ(B0 → K+π−)

Γ(B0 → K−π+) + Γ(B0 → K+π−)
= −0.133± 0.030(stat)± 0.009(syst) (1.42)

Another way to measure direct CPV in neutral B decays, as discussed in Section 1.4.3,
is from the time-dependent rates of the processes B0(t) → f , B0(t) → f̄ , B0(t) → f and
B0(t) → f̄ , where f and f̄ are final states accessible both to B0 and B0 (typically,
f = ±f̄ is a CP eigenstate) and for which the amplitudes A(B0 → f) and A(B0 → f)
have comparable magnitudes.

1.4.2 CP violation in mixing

CP violation in mixing can only take place in the neutral system and occurs when the
mass eigenstates BL,H are not CP eigenstates. This is equivalent to require that q/p is
not a pure phase: ∣

∣
∣
∣

q

p

∣
∣
∣
∣
6= 1. (1.43)

Since the SM predicts |q/p| − 1 ≈ 5 × 10−4, CP violation effects in neutral B mixing are
expected to be very small. A clear indication of CP violation in B0–B0 mixing would be
a non-zero time-dependent asymmetry, for instance in semileptonic decays, of the form:

Asl(t) =
Γ(B0(t) → ℓ+νX) − Γ(B0(t) → ℓ−νX)

Γ(B0(t) → ℓ+νX) + Γ(B0(t) → ℓ−νX)
=

1 − |q/p|4
1 + |q/p|4 . (1.44)

However, this asymmetry is expected to be of the order of 10−3 and therefore tiny: if
(|q/p| − 1) ≡ h ≈ 5 × 10−4, then

1 − |q/p|4
1 + |q/p|4 ≈ 1 − (1 + 4h)

2
= −2h ≈ −10−3 (1.45)

10The observed asymmetries must be significantly greater than ≈ 10−3, otherwise they could arise
purely from CP violation in mixing.
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The current experimental constraints from the B-factories are below the 10−2 level:

|q/p| = 0.998 ± 0.006(stat)± 0.007(syst) (BABAR [23]) (1.46)

|q/p| = 1.0006± 0.0030(stat)± 0.0028(syst) (Belle [24]) (1.47)

The world average, from measurements at LEP, CLEO, BABAR and Belle, is

|q/p| = 1.0013± 0.0034 [18] (1.48)

1.4.3 CP violation in the interference between decay and mixing

CP violation in the interference between decay and mixing can arise in decays of neutral
B mesons to final states f and f̄ which are accessible to both B0 and B0, due to the
interference between the “unmixed” B0 → f and the “two-step” B0 → B0 → f processes.
It shows up as a difference between the time-dependent probabilities P (B0(t) → f) and
P (B0(t) → f̄).

At the B-factories this can be studied by exploiting the coherence of the B0B0 system:
a neutral B, which we denote by Breco, is reconstructed in the f or f̄ final state of interest
(let us denote with treco the proper time of the Breco when it decays), while the other
neutral B (which we call Btag) is reconstructed (typically only partially) in a final state
ftag which unambiguously identifies the flavor of Btag at the instant ttag of its decay. Due
to B0B0 coherence, the flavor of the Breco at time ttag is therefore also identified, it is
opposite to the Btag flavor: if Btag = B0 then Breco(ttag) = B0 and the time-dependent
rate Nf (t ≡ trec − ttag) ≡ N(Breco(t) → f,Btag = B0) is proportional to the probability
P (B0(t) → f). If, on the other hand, Btag = B0 then Breco(ttag) = B0 and the time-
dependent rate Nf̄(t) ≡ N(Breco(t) → f̄ , Btag = B0) is proportional to the probability

P (B0(t) → f̄).
The simplest case is when f is a CP eigenstate, f̄ = CPf = ±f ≡ ηCP

f f . In this case,
let us define the quantity:

λf ≡ q

p

Āf

Af
= ηCP

f

q

p

Āf̄

Af
(1.49)

where Af ≡ A(B0 → f) and Āf ≡ A(B0 → f) are the amplitudes for the decays of B0

and B0 into the final state f . The time-dependent CP asymmetry, defined as:

Af
CP (t) ≡ Γ(B0(t) → f) − Γ(B0(t) → f)

Γ(B0(t) → f) + Γ(B0(t) → f)
(1.50)

is given by:
Af

CP (t) = −Cf cos(∆Mdt) + Sf sin(∆Mdt) (1.51)

with

Cf ≡ 1 − |λf |2
1 + |λf |2

≈
|Af |2 − |Āf̄ |2
|Af |2 + |Āf̄ |2

(1.52)

and

Sf ≡ 2Imλf

|λf |2 + 1
(1.53)

The observable Cf measures (neglecting CPV in mixing, i.e. assuming |q/p| = 1), direct
CP violation in the decay B0 → f . However, also in the case when CP is not violated
in decay or in mixing, the time-dependent CP asymmetry can still be different from
zero due to the presence of the Sf sin(∆Mdt) term: this term gives the so-called CP
violation in interference between decay with and without mixing, also known as “mixing-
induced CP violation”. The (phase-convention independent) condition for CPV to occur
in interference is:

Imλf 6= 0 (1.54)
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1.5 Measurement of the angle β

The angle β of the Unitarity Triangle can be accurately measured from the time-dependent
CP asymmetry (1.50) in the “golden modes” f = (cc̄)K0, such as J/ψK0

S
, ψ(2S)K0

S
,

χc1K
0
S
, ηcK

0
S

(CP -odd) and J/ψK0
L

(CP -even). These decays, as shown in Figure 1.3,
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Figure 1.3: Feynman diagrams contributing to the B0 → J/ψKS decay amplitude. The
dashed lines in the penguin topology (on the right) represent a colour-singlet exchange.

originate from b̄→ c̄cs̄ quark-level decays and receive contribution from tree and penguin
topologies. The total B0 → (cc̄)K0 amplitude is therefore

Af = TV ∗
cbVcs + PuV

∗
ubVus + PcV

∗
cbVcs + PtV

∗
tbVts (1.55)

where we have explicitly written the CKM elements relevant to the tree (T ) and the
u, c, t-mediated penguin (Pu,c,t) amplitudes. Taking into account the relation V ∗

tbVts =
−V ∗

cbVcs −V ∗
ubVus which follows from the unitarity of the CKM matrix, grouping together

terms with the same weak phase, and using the definition of γ in (1.12), the amplitude
becomes:

Af = (T + Pc − Pt)V
∗
cbVcs

[

1 +
Pu − Pt

T + Pc − Pt

V ∗
ubVus

V ∗
cbVcs

]

(1.56)

≈ (T + Pc − Pt)V
∗
cbVcs

[
1 + λ2aeiδeiγ

]
(1.57)

where

aeiδ ≡ Rb
Pu − Pt

T + Pc − Pt
(1.58)

is a hadronic parameter which measures the relative strength of the penguin and tree
contributions. The B0 amplitude is:

Āf = ηCP
f Āf̄ ≈ ηCP

f (T + Pc − Pt)VcbV
∗
cs

[
1 + λ2aeiδe−iγ

]
(1.59)

and the parameter λf defined in (1.49) is:

λf ≈ ηCP
f e−2iβ 1 + λ2aeiδeiγ

1 + λ2aeiδe−iγ
(1.60)

The quantity aeiδ can only be estimated with large hadronic uncertainties; however, it
enters the amplitude in a doubly Cabibbo-suppressed way, λ2 = 0.0513±0.0005, therefore
its impact on the CP -violating observables is negligible. Hence,

λf ≃ ηCP
f e−2iβ (1.61)

Af
CP (t) ≃ −ηCP

f sin(2β) sin(∆Mdt) (1.62)

and β can be cleanly extracted, up to a four-fold ambiguity (β ↔ π/2 − β, β ↔ β + π),
from the coefficent of the sin(∆Mdt) term in the time-dependent CP asymmetry.
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With this method BABAR and Belle find:

sin 2β = 0.722 ± 0.040(stat)± 0.023(syst) (BABAR [20]) (1.63)

sin 2β = 0.728 ± 0.056(stat)± 0.023(syst) (Belle [21]) (1.64)

and the world average is:

sin 2β = 0.726 ± 0.037 [18] (1.65)

One of the four solutions for β, β ≈ 23◦, is in excellent agreement with the value predicted
from the CKM fits to the Unitarity Triangle constraints, unlike the other three. The two
solutions with cos 2β < 0 are excluded by BABAR at 86% C.L. from the study of the time-
and angular-dependent distribution of neutral B decays to the mixed-CP J/ψK∗0(K∗0 →
K0

S
π0) final state [25]. Therefore, at 86% C.L., the two allowed solutions for β are β ≈ 23◦

and β ≈ 203◦.

1.6 Measurement of the angle α

The angle α can be measured from the study of charmless B decays such as ππ, ρπ and
ρρ. At present the decays B → ρρ provide the most accurate information on α.

Originally it was believed that α could be extracted, in a straigthforward way anal-
ogous to that used for β, from the time-dependent evolution of neutral B decays to the
CP -even eigenstate f = π+π−. These decays, as shown in Figure 1.4, originate from
b̄ → ūud̄ quark-level decays and receive contributions from tree (T ) and penguin (P )
amplitudes. The total amplitudes for the B0 → π+π− and B0 → π+π− processes are
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Figure 1.4: Feynman diagrams contributing to B0 → π+π−.

respectively, taking into account the unitarity of the CKM matrix and the Wolfenstein
parameterization,

Aπ+π− ≈ (T + Pu − Pt)V
∗

ubVud

[
1 − aeiδe−iγ

]
(1.66)

Āπ+π− ≈ (T + Pu − Pt)VubV
∗
ud

[
1 − aeiδeiγ

]
(1.67)

where the hadronic parameter measuring the relative strength of the penguin and tree
contributions is now

aeiδ ≡ 1

Rb

Pc − Pt

T + Pu − Pt
. (1.68)

The parameter λf , taking into account that ηCP
π+π− = 1, is therefore

λπ+π− ≈ e−2iβe−2iγ 1 − aeiδeiγ

1 − aeiδe−iγ
= e2iα 1 − aeiδeiγ

1 − aeiδe−iγ
(1.69)

25



where in the last equality we have used α = π−β−γ. At the beginning of the B-factories
era, penguin amplitudes were expected to play a minor role in this decay, therefore a≪ 1
and λπ+π− ≈ e2iα, which would imply that sin 2α could be determined from the time-
dependent CP asymmetry Aπ+π−

CP (t) ≈ sin(2α) sin(∆Mdt).
However, branching fraction measurements of B decays to ππ and Kπ final states

indicate that the penguin contribution is not negligible in the π+π− channel. The time-
dependent CP asymmetry is therefore:

Aπ+π−

CP (t) = −Cπ+π− cos(∆Mdt) + Sπ+π− sin(∆Mdt) (1.70)

where:

Cπ+π− ≡ 1 − |λπ+π− |2
1 + |λπ+π− |2 = − 2a sin δ sin γ

1 − 2a cos δ cos γ + a2
(1.71)

Sπ+π− ≡ 2Imλπ+π−

|λπ+π− |2 + 1
=

sin 2α− 2a cos δ sin(2α+ γ) + a2 sin(2α+ 2γ)

1 − 2a cos δ cos γ + a2
(1.72)

=
√

1 − C2
π+π− sinαππ

eff . (1.73)

Here, αππ
eff is defined by

sin 2αππ
eff ≡ Imλπ+π−

|λπ+π− | (1.74)

and is the experimental quantity that can be measured, up to a four-fold ambiguity
(αeff ↔ π/2 − αeff , αeff ↔ αeff + π), from the sin ∆Mdt term of the time-dependent
CP asymmetry. To extract α from αeff one needs to know a and δ, whose theoretical
estimates are affected by hadronic uncertainties. A way out – neglecting electroweak
penguins, which are expected to be at most at the few percent level in this channel –
would be an isospin analysis of the six amplitudes [26]:

A+− ≡ A(B0 → π+π−) Ā+− ≡ A(B0 → π+π−) (1.75)

A+0 ≡ A(B+ → π+π0) Ā−0 ≡ A(B− → π−π0) (1.76)

A00 ≡ A(B0 → π0π0) Ā00 ≡ A(B0 → π0π0) (1.77)

which would allow, through the isospin triangular relations

(1/
√

2)A+− +A00 = A+0, (1.78)

(1/
√

2)Ā+− + Ā00 = Ā−0, (1.79)

to eliminate a and δ and to extract α. Unfortunately, for this method to be applied one
needs to separately measure the amplitudes A(B0 → π0π0) and A(B0 → π0π0), and the
following experimental difficulties are met:

• the branching fraction B(π0π0) (measured for the first time by the BABAR experi-
ment [27]) is quite small:

B(B0 → π0π0) + B(B0 → π0π0)

2
= (1.51 ± 0.28)× 10−6

and, due to the presence of two neutral pions in the final state, the background
level is rather high and the reconstruction efficiency is correspondingly low, about
15-20%. This implies that, in a dataset of ≈250 million BB pairs produced in four
years of running of a B factory, only ≈ 65 π0π0 events are reconstructed

• to separate A00 and Ā00 a time-dependent analysis must be performed, therefore
the number of reconstructed π0π0 decays must be significantly larger.
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Grossman and Quinn have shown [28] that even without performing the full isospin
analysis, some information on α can be obtained by using the following bound on |α−αππ

eff |:

sin2(α− αππ
eff ) ≤ B(B0 → π0π0) + B(B0 → π0π0)

B(B+ → π+π0) + B(B− → π−π0)
(1.80)

Unfortunately, the branching fraction for the π0π0 decay is too small to perform the full
isospin analysis with the present B factories data, but at the same time is not small
enough to give a stringent bound on |α − αππ

eff |. The current limit is in fact quite weak,

|α− απ+π−

eff | < 30◦ at 68% C.L (35◦ at 90% C.L)
The situation is better when one considers, instead of π+π−, the ρ+ρ− final state. In

principle, since the ρ meson is a vector particle, the final state is not a CP eigenstate, due
to presence of both CP -even (L=0,2) and CP -odd (L=1) final states. However, it turns
out experimentally that the two ρ mesons produced in B0 → ρ+ρ− decays are almost
100% longitudinally polarized and therefore the final state is purely CP -even. A time-
dependent analysis of the decays into ρ+ρ− therefore allows, in analogy to the π+π− case,

to extract the quantities Cρ+ρ− and Sρ+ρ− and the angle αρ+ρ−

eff . The difference with the
π+π− case is that the bound on |α−αeff | in the ρρ channel is significantly tighter, since:

B(B0 → ρ0ρ0) + B(B0 → ρ0ρ0)

2
< 1.1 × 10−6 (90% C.L.)

B(B+ → ρ+ρ0) + B(B− → ρ−ρ0)

2
= (26.4+6.1

−6.4) × 10−6

f+0
L = (0.97 ± 0.07 ± 0.04)

imply

sin2(α− αρρ
eff) ≤ f00

L × B(B0→ρ0ρ0)+B(B0→ρ0ρ0)
2

f+0
L × B(B+→ρ+ρ0)+B(B−→ρ−ρ0)

2

from which

|α− αρρ
eff | ≤ 11◦(68% C.L.). (1.81)

Here, f+0
L is the measured ρ polarization in B+ → ρ+ρ0 decays and the most conservative

limit on |α − αρρ
eff | has been obtained by assuming f00

L = 1. With this bound and the
measured value of αρρ

eff from the time-dependent analysis of B → ρ+ρ− decays, one of the
four solutions for α is

α = (96 ± 10(stat) ± 4(syst) ± 11(peng))◦

where the last error comes from the limit on |α − αρρ
eff |. Like β, α is determined up to a

four-fold ambiguity (α ↔ π/2 − α, α ↔ α + π). Combining this result with those from
B0 → π+π− and B0 → ρπ decays allows to break the two-fold ambiguity α ↔ π/2 − α
and improves the sensitivity to α: the combined constraint [18] is

α mod 180◦ = (101+16
−9 )◦ (1.82)

The solution α ≈ 101◦ is in good agreement with the value predicted from the CKM fits
to the Unitarity Triangle constraints.

1.7 Measurement of the angle γ

The angle γ is considered to be the most difficult to measure of the three angles of the
Unitarity Triangle, since
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• the branching fractions and the reconstruction efficiencies of the B decays that are
useful to extract γ are typically lower than in the charmonium or charmless B decays
used to measure β and α

• in the modes with higher branching fractions, the two amplitudes that give rise
to the interference term which provides sensitivity to γ usually have quite different
magnitudes. Hence, the interference term is small and the sensitivity to γ is reduced.

Several methods have been proposed in the past for the measurement of γ; the strategy
pursued at the B factories is to reconstruct as many as possible γ-related observables and
to combine the information from all of them, to improve the overall accuracy. In this
Section we summarize the various methods that have been proposed so far for measuring
γ, and describe in some detail the ones that look more promising for the extraction of γ
at the present B factory experiments.

In general, we can classify these methods in two classes:

• model-independent techniques, which extract γ from B decays that proceed through
tree diagrams only and for which exact relations11 involving γ can be found between
the measured branching fractions and CP asymmetries of some related channels.
Since no penguin amplitudes are involved, these approaches are unaffected by a
large class of possible new-physics effects that, presumably, can be expected to
show up in this kind of decay mechanism.

• model-dependent methods, where some theoretical assumptions are made for the
extraction of γ. Typically the observables that are needed as input for these ap-
proaches are easier to measure than those relevant to the model-independent meth-
ods, however the final derivation of γ is affected by a significant model-dependent
theoretical uncertainty, which sometimes can also be quite difficult to assess.
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Figure 1.5: Feynman diagrams contributing to B+ → D0K+ and B+ → D0K+.

The model-independent techniques extract γ by exploiting the interference between
the tree processes b → cūq (q = s, d), whose amplitude is proportional to VcbV

∗
uq, and

b → uc̄q, whose amplitude is proportional to VubV
∗
cq. An example of such processes is

shown in Figure 1.5. γ is the relative weak phase between the two diagrams, and in
principle can be probed by measuring CP -violating effects in B decays where the two
amplitudes interfere. In the case q = s, this can happen either in

• charged B− → D(∗)0K(∗)− and B− → D̄(∗)0K(∗)− decays, where the D∗0(D∗0)
eventually undergoes D∗0 → D0π0(D∗0 → D0π0) or D∗0 → D0γ(D∗0 → D0γ) and

11Actually in methods based on charged B → D(∗)0K decays the approximation of neglecting D0–D0

mixing and CP -violation in D0 decays is used. However, the induced bias in the measurement of γ is
expected to be of the order of 1◦ in the so-called “ADS” method of Subsection 1.7.2 and of the order of
0.1◦ in the other approaches described in the text. [29]
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the D0 and D0 mesons are reconstructed through a decay in a common final state.
This can be either:

1. a singly Cabibbo-suppressedCP eigenstate, likeD0 →K+K− (Gronau-London-
Wyler method [30, 31])

2. a doubly Cabibbo-suppressed flavor eigenstate, like D0 → K+π− (Atwood-
Dunietz-Soni method [32])

3. a Cabibbo-allowed self-conjugate multi-body state, like D0 → K0
S
π+π− (Giri-

Grossman-Soffer-Zupan method [33])

• neutral B to D(∗)0K0
S

and D̄(∗)0K0
S

decays [34], where interference between the
B0 → D(∗)0K0

S
and B0 → D(∗)0K0

S
amplitudes (and similarly for the D̄(∗)0K0

S
case)

arises via B0–B0 mixing. In this case time-dependent CP asymmetries must be
measured, which allow to extract the sum 2β + γ, where 2β is carried in by the
mixing parameter q/p = e−2iβ .

Variations of these methods consider color-allowed 3-bodyB decays toDKπ final states [35].
In the case q = d, one can either look at charged B− → D(∗)0π− decays with the same
D(∗)0 final states as before, or neutral B decays to D(∗)±π∓ [36]. More complex tech-
niques involve final states with vector mesons (ρ, a1) replacing the pions [36, 37]. With
respect to the q = s case, the advantage is that the branching fractions are at least an
order of magnitude higher, but the interfering amplitudes b → cūd ∝ VcbV

∗
ud ≈ Aλ2 and

b → uc̄d ∝ VubV
∗
cd ≈ RbAλ

4e−iγ have magnitudes which differ by a factor ≈ O(Rbλ
2) ≈

0.02 and therefore the interference, and therefore the sensitivity to γ, is small.
The most promising model-independent methods, at the moment, seem to be those

based on charged B → D0K or neutral B → D(∗)±π∓ decays, which will be described in
the following sections.

1.7.1 The Gronau-London-Wyler method

The Gronau-London-Wyler (GLW) method [30, 31] is based on the reconstruction of
charged B decays to D0K where the D0 and D0 decay to CP -even (like K+K−) and
CP -odd (like K0

S
π0) eigenstates fCP±. The CKM angle γ can be extracted from the

measurement of the four quantities (see Introduction and Appendix A):

RCP± ≡ B(B → D0
CPK)

B(B → D0K)

≡ B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)

B(B− → D0K−) + B(B+ → D0K+)
(1.83)

= 1 + r2B ± 2rB cos γ cos δB (1.84)

ACP± ≡ B(B− → D0
CP±K

−) − B(B+ → D0
CP±K

+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)
(1.85)

= ±2rB sinγ sin δB/RCP± (1.86)

where rB is the magnitude of the ratio of the color suppressed B− → D0K− amplitude
and the color allowed B− → D0K− amplitude and δB is their relative strong phase:

rBe
iδBe−iγ ≡ A(B− → D0K−)

A(B− → D0K−)
(1.87)

The value of γ obtained with this method is known up to 8 discrete ambiguities, due to
the impossibility to distinguish the solutions

(γ, δB) ↔ (−γ,−δB) (1.88)
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(γ, δB) ↔ (γ + π, δB + π) (1.89)

(γ, δB) ↔ (δB, γ) (1.90)

The main limitations of this method are two:

• the low overall branching fractions of the relevant decays. The branching fraction of
the B− → D0K− process is in fact ≈ 4×10−4 and the branching fractions (including
eventual secondary decays for instanceK0

S
→ π+π−) forD0 decays to CP eigenstates

are at the level of a few parts in 103, with final reconstruction efficiencies varying
between ≈ 5% and 35% based on the number of charged tracks and neutral pions in
the B decay and on the background level. It is therefore necessary to reconstruct as
many as possible fCP± final states to increase the statistics. With the same purpose,
the method can also be applied to B → D∗0

CPK, B → D0
CPK

∗ and B → D∗0
CPK

∗

decays, having different values for rB and δB but the same functional dependence
on γ: this has the effect of increasing the sensitivity to γ and to break the twofold
ambiguity γ ↔ δB, thus reducing the number of discrete ambiguities to four. In the
case of final states containing vector D∗0 mesons, it must be noted [39] that there
is an effective strong phase difference of 180◦ whenever the D∗0 is reconstructed as
D0π0 or D0γ, or equivalently that D∗0

CP± → D0
CP±π

0 while D∗0
CP± → D0

CP∓γ.

• however large the data sample, the sensitivity to γ is essentially proportional to the
value of rB and is therefore limited by the small value of rB , which can be expressed
as [31]:

rB ≈
∣
∣
∣
∣

VubV
∗
cs

VcbV ∗
us

∣
∣
∣
∣

a2

a1
(1.91)

where a2/a1 ≈ 0.26 −0.44 is a color suppression factor estimated from the measured

branching fractions of color-suppressedB decays [31], and
∣
∣
∣
VubV ∗

cs

VcbV ∗
us

∣
∣
∣ ≈ 0.4, from which

rB is expected to be around 0.1 − 0.2.

Depending on the value of δB, if γ ≈ 60◦ and rB ≈ 0.15, CP asymmetries up to
25% may be possible It should be noted, however, that even if δB vanished and the CP
asymmetries were zero, the analysis could still be performed to yield γ: in that case
the unknowns would reduce to two, rB and γ, which could be extracted from the two
observables RCP± = 1 + r2B ± 2rB cos γ, through the relations

RCP+ +RCP−
2

− 1 = r2B (1.92)

RCP+ −RCP−
4

= rB cos γ (1.93)

1.7.2 The Atwood-Dunietz-Soni method

The Atwood-Dunietz-Soni (ADS) method [32] is based on the reconstruction of charged
B decays to D0K where the D0 decays to a doubly-Cabibbo-suppressed (DCS) final state
f , like for instance f = K+π−. In this case a large interference is expected between the
B− → D0K−, D0 → K+π− amplitude, which proceeds through the color-allowed b → c
transition followed by the DCS D0 decay, and the B− → D0K−, D0 → K+π− amplitude,
where the color-suppressed b → u transition is followed by a Cabibbo-allowed (CA) D0

decay:

|A(B− → D0K,D0 → K+π−)| = |A(B− → D0K)|
︸ ︷︷ ︸

∝|VcbV ∗
us|

× |A(D0 → K+π−)|
︸ ︷︷ ︸

∝|V ∗
cd

Vus|
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|A(B− → D0K,D0 → K+π−)| = |A(B− → D0K)|
︸ ︷︷ ︸

∝|VubV ∗
cs|a2/a1

× |A(D0 → K+π−)|
︸ ︷︷ ︸

∝|VcsV ∗
ud

|

= rB |A(D0 → K+π−)|.

Here rB is the ratio of the magnitudes of the B− → D0K− and B− → D0K− defined in
(1.87), therefore:

|A(B− → D0K,D0 → K+π−)|
|A(B− → D0K,D0 → K+π−)| = rB

∣
∣
∣
∣

VcsVud

VusVcd

∣
∣
∣
∣
≈ rBλ

−2 ≈ 2 − 3 (1.94)

Accordingly, the (direct) CP asymmetries are potentially large in these decays, up to
40%, and the sensitivity to γ, which – like in the previous method – is proportional to
the interference term, should be enhanced. Unfortunately, on the other hand, considering
doubly-Cabibbo-suppressedD0 decays instead of singly-Cabibbo-suppressed decays to CP
eigenstates reduces the overall branching fractions by a factor ≈ λ2 and a significantly
larger statistics is needed to perform the measurement. Within the same data sample,
the sensitivities of this and the previous methods are probably comparable.

To extract γ from these decays one needs to measure their branching fractions and
CP asymmetries, which are related to γ through the relations (see Appendix A):

RADS(f) ≡ B(B− → [f ]D0K−) + B(B+ → [f ]D0K+)

B(B− → [f̄ ]D0K−) + B(B+ → [f̄ ]D0K+)

= rf
D

2
+ r2B + 2rf

DrB cos γ cos(δB + δf
D) (1.95)

AADS(f) ≡ B(B− → [f ]D0K−) − B(B+ → [f ]D0K+)

B(B− → [f̄ ]D0K−) + B(B+ → [f̄ ]D0K+)

= 2rf
DrB sin γ sin(δB + δf

D)/RADS(f). (1.96)

Here, f̄ (CP conjugate of f) is the Cabibbo-allowed D0 decay. The notation [f ]D0 means
that the reconstructed final state f must have been produced in a D0 or D0 decay, δB
is the strong phase difference between the B− → D0K− and B− → D0K− amplitudes,
and rf

D and δf
D are the magnitude ratio and the strong phase difference of the doubly-

Cabibbo-suppressed and the Cabibbo-allowed D0 amplitudes:

rf
De

iδf

D ≡ A(D0 → f)

A(D0 → f̄)
(1.97)

Since there are now four unknowns (γ, rB , rf
D and δB+δf

D) and two observables, measuring
γ is not possible with this method if we just reconstruct one D0 decay. If we added n more
D0 channels, the number of observables would increase by 2n (RADS and AADS for each

channel) and the number of unknowns would increase by the same number (rf
D and δB+δf

D

for each channel), therefore the system would remain unconstrained. We therefore need

some additional experimental input to extract γ. In particular, the quantities rf
D can be

measured from D0 decays (for instance, for the K+π− decay rK+π−

D = 0.060±0.003 [38]),
thus reducing the number of unknowns to 2+n. Since the observables are 2n, the minimum
number of D0 channels that is needed to measure γ is therefore n = 2. Moreover, unless
the strong phases δf

D are all the same, which is unlikely, reconstructing more than one

channel breaks the 2-fold ambiguity γ ↔ δB +δf
D contained in equations (1.95) and (1.96)

and reduces the number of discrete ambiguities on γ to four:

(γ, δB, δ
f
D) ↔ (−γ,−δB,−δf

D) (1.98)

(γ, δB, δ
f
D) ↔ (γ + π, δB + π, δf

D + π) (1.99)
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Like the previous one, also this method can be generalized to B → D∗0K, B → D0K∗ and
B → D∗0K∗ decays. Again, when reconstructing D∗0 in D0π0 or D0γ, one needs to take
into account the effective strong phase difference of 180◦ between the B → [D0π0]D∗0K
and the B → [D0γ]D∗0K amplitudes [39], which leads to

RD0π0

ADS (f) = rf
D

2
+ r∗B

2 + 2rf
Dr

∗
B cos γ cos(δ∗B + δf

D) (1.100)

RD0γ
ADS(f) = rf

D

2
+ r∗B

2 − 2rf
Dr

∗
B cos γ cos(δ∗B + δf

D) (1.101)

AD0π0

ADS (f) = +2rf
Dr

∗
B sin γ sin(δ∗B + δf

D)/RD0π0

ADS (f) (1.102)

AD0γ
ADS(f) = −2rf

Dr
∗
B sin γ sin(δ∗B + δf

D)/RD0γ
ADS(f) (1.103)

where r∗B and δ∗B are the analogous of rB and δB for the B → D∗0K decay. Therefore,

the measurement of the four observables RD0π0

ADS (f), AD0π0

ADS (f), RD0γ
ADS(f), AD0γ

ADS(f) (only 3

are independent, since RD0π0

ADS A
D0π0

ADS = −RD0γ
ADSA

D0γ
ADS) for B → D∗0K, with D∗0 → D0π0

and D∗0 → D0γ, and D0 → f , would be enough to extract the three unknowns γ, r∗B and

δ∗B + δf
D, through the relations:

RD0π0

ADS (f) +RD0γ
ADS(f)

2
− rf

D

2
= r∗B

2 (1.104)

RD0π0

ADS (f) −RD0γ
ADS(f)

4rf
D

= r∗B cos γ cos(δ∗B + δf
D) (1.105)

AD0π0

ADS (f)RD0π0

ADS (f) −AD0γ
ADS(f)RD0γ

ADS(f)

4rf
D

= r∗B sinγ sin(δ∗B + δf
D) (1.106)

1.7.3 The Giri-Grossmann-Soffer-Zupan method

The Giri-Grossmann-Soffer-Zupan (GGSZ) method [33] is based on the reconstruction of
B → D0K and B → D0K decays with the D0 and D0 reconstructed into three-body
(or multi-body) self-conjugate final states. We consider here, as an example, the decay
D0 → K0

S
π+π−.

Let us denote with m2
− and m2

+ the squared invariant masses of the K0
S
π− and K0

S
π+

combinations respectively, and

A(D0 → K0
S
π+π−) = f(m2

−,m
2
+) = |f(m2

−,m
2
+)|ei∆(m2

−,m2
+)

the amplitude of the D0 → K0
S
π−π+ decay to the point (m2

−,m
2
+) of the Dalitz plot.

Neglecting CP violation in D0 decays, the amplitude A(D0 → K0
S
π+π−) to the same

point of the Dalitz plot is

A(D0 → K0
S
π+π−) = f(m2

+,m
2
−) = |f(m2

+,m
2
−)|ei∆(m2

+,m2
−).

The total B− and B+ amplitudes for the process B → [K0
S
π−π+]D0K, denoted with A−

and A+, are:

A−(m2
−,m

2
+) = A(B− → D0K−)

[

f(m2
−,m

2
+) + rBe

i(δB−γ)f(m2
+,m

2
−)
]

A+(m2
−,m

2
+) = A(B+ → D0K+)

[

f(m2
+,m

2
−) + rBe

i(δB+γ)f(m2
−,m

2
+)
]

The resulting bi-dimensional Dalitz (m2
−,m

2
+) distributions for negative and positive B

candidates, modulo reconstruction efficiency variations, are proportional to

|A−(m2
−,m

2
+)|2 = |A|2 ×

[

|f(m2
−,m

2
+)|2 + r2B |f(m2

+,m
2
−)|2 +
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2rB|f(m2
−,m

2
+)||f(m2

+,m
2
−)| cos(δB − γ + δD(m2

+,m
2
−))
]

(1.107)

and

|A+(m2
−,m

2
+)|2 = |A|2 ×

[

|f(m2
+,m

2
−)|2 + r2B|f(m2

−,m
2
+)|2 +

2rB |f(m2
+,m

2
−)||f(m2

−,m
2
+)| cos(δB + γ − δD(m2

+,m
2
−)
]

(1.108)

where |A| ≡ |A(B− → D0K−)| = |A(B+ → D0K+)| and

δD(m2
−,m

2
+) ≡ ∆̄(m2

−,m
2
+) − ∆(m2

−,m
2
+) = ∆(m2

+,m
2
−) − ∆(m2

−,m
2
+) (1.109)

is the strong phase difference between the D0 and D0 amplitudes at the point (m2
−,m

2
+)

of the K0
S
π+π− Dalitz plot. It is easy to see that these formulae are just the generalization

of the equations (A.19) and (A.20) for the two-body D0 decays, when the dependence of
the amplitude on the Mandelstam variables for the 3-body decay is introduced.

If the Dalitz structure of the D0 → K0
S
π+π− decay is known, i.e. f(m2

−,m
2
+) is

known (for instance from charm factories), then the Dalitz distribution of the K0
S
π+π−

candidates originating from B+ and B− decays to D0K can be fitted to extract rB, δB
and γ. Like in the ADS case, the presence of a non-trivial (6= 0, π) D0 strong-phase δD
which is different in different regions of the Dalitz plot breaks the exchange ambiguity
γ ↔ δB +δD. Moreover, since δD is known (assuming f(m2

−,m
2
+) to be fully known), also

the sign ambiguity γ ↔ −γ is broken, since the relative sign between γ and δD is different
in the B− and B+ Dalitz distributions in (1.107) and (1.108), respectively. Therefore,
the discrete ambiguity on γ of this method is only twofold:

(γ, δB) ↔ (γ + π, δB + π) (1.110)

The main advantages of this method are that

• the D0 decays that are considered are Cabibbo-allowed, therefore the branching
fractions are about one order of magnitudes higher than in the GLW case (and even
higher with respect to the ADS case)

• the full sub-resonance structure of the three-body (or multi-body) D0 decay is con-
sidered, including interferences that could be used for the GLW (likeK0

S
ρ0) and ADS

methods (like K∗+π−), which allows to reduce the number of discrete ambiguities
and to improve the overall γ sensitivity.

On the other hand, the Dalitz plot (m2
−,m

2
+) of the selected B candidates must be

sufficiently populated to perform the fit, which requires a significant number of B →
[K0

S
π+π−]D0K decays to be reconstructed, and the D0 → K0

S
π+π− amplitude f(m2

−,m
2
+)

must be known. The imprecise knowledge of f can thus lead to a systematic uncertainty
on the measured value of γ.

Like in the previous cases, the method can be generalized to B → D∗0K, B → D0K∗

and B → D∗0K∗ decays.

1.7.4 Measuring sin(2β + γ) in time-dependent B0 → D(∗)π

A different approach for the measurement of γ in a clean model-independent way is
based on the study of the time-dependent evolution of neutral B decays to D(∗)±π∓ final
states [36]. γ is extracted by exploiting the interference between the “unmixed”, b̄ → ū
mediated B0 → D+π− amplitude and the “mixed”, b̄ → c̄ mediated B0 → B0 → D+π−
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Figure 1.6: Feynman diagrams contributing to B0 → D+π− and B0 → D+π−.

amplitude, the former carrying - with respect to the latter - the weak phase 2β + γ. 2β

comes from B0–B0 mixing and γ = arg
V ∗

ubVcd

V ∗
cb

Vud
, see (1.12), is the relative weak phase

between the B0 → D+π− and B0 → D+π− diagrams, which are shown in Figure 1.6.
Since β is accurately known from the time-dependent CP asymmetries of B decays to
charmonium, measuring 2β + γ from the time evolution of the D(∗)±π∓ decays implies a
determination of γ.

The probabilities for the decays B0(t) → D±π∓ and B0(t) → D±π∓ are:

P (B0(t) → D±π∓) ∝ 1 ± 1 − r2

1 + r2
cos(∆Mdt)

− 2r

1 + r2
sin(2β + γ ∓ δ) sin(∆Mdt) (1.111)

P (B0(t) → D±π∓) ∝ 1 ∓ 1 − r2

1 + r2
cos(∆Mdt)

+
2r

1 + r2
sin(2β + γ ± δ) sin(∆Mdt) (1.112)

where r ≡ |A(B0 → D+π−)/A(B0 → D+π−)| and δ ≡ (∆−∆̄) is the relative strong phase
between the doubly CKM-suppressed B0 → D+π+ amplitude (∝ |VubVcd| ≈ Aλ4Rb) and
the CKM-allowed B0 → D+π− amplitude (∝ |VcbVud| ≈ Aλ2):

r ≈ Rbλ
2 ≈ 0.4 × 0.05 = 0.02 (1.113)

Analogous relations hold for the D∗π case, with (r, δ) → (r∗, δ∗ + π).
In principle, one could therefore measure the time-dependent evolution of these decays

and, from the coefficients of the sine and cosine terms, extract 2β + γ, along with the
unknown hadronic paramteres r and δ. However, since r ≈ 0.02 is very small, and
the sensitivity to r comes from the cos(∆Md) terms, where r enters quadratically, it is
impossible - at present B factory experiments - to determine r in this way. The time-
dependent probabilities therefore, neglecting O(r2) terms, take the simpler form

P (B0(t) → D±π∓) ∝ 1 ± cos(∆Mdt) − 2r sin(2β + γ ∓ δ) sin(∆Mdt) (1.114)

(1.115)

P (B0(t) → D±π∓) ∝ 1 ∓ cos(∆Mdt) + 2r sin(2β + γ ± δ) sin(∆Mdt) (1.116)

(1.117)

and to extract 2β + γ and δ from the measured coefficients of the sin(∆Mdt) terms
alternative methods to fix r are required. A possible approach consists in estimating r
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(and r∗) from the SU(3) symmetry relation (neglecting annihilation contributions)

r(∗) = λ

√

B(B0 → D
(∗)+
s π−)

B(B0 → D(∗)+π−)

fD(∗)

f
D

(∗)
s

(1.118)

where λ = 0.2250 ± 0.0027, and the decay constant ratios fDs
/fD = 1.11 ± 0.01 and

fD∗
s
/fD∗ = 1.10 ± 0.02 [40] take into account factorizable SU(3) breaking effects. An

additional, guessed error (typically of the order of 30%) is attributed on r(∗) to take
into account possible non-factorizable SU(3) breaking effects and the unknown size of
annihilation contributions.

Other drawbacks of this method are that:

• a time-dependent analysis must be performed, which is intrinsically more compli-
cated than a time-integrated measurement, and which requires a high signal yield
to give accurate results

• to do a time-dependent analysis, the flavor of the other B at the moment of its
decay must be unambiguously determined (tagged). This is done by looking for a
high pt lepton (from B → Xlν̄l decays) or a kaon in the event. This requirement
reduces the overall selection efficiency, since only about 30% of the neutral B decays
are tagged.

• when the flavor of the other B is tagged through hadronic decays, CP violation
on the tag side may alter, through the coherent evolution of the B0–B0 pair, the
time evolution of P (B0(t) → D±π∓) and P (B0(t) → D±π∓) as shown in [41].
Additional terms of unknown size are introduced in the expression of the time-
dependent probabilities; the measurement of 2β + γ however is not spoiled and can
still be performed, but at the price of using only part of the information contained
in the selected data, thus reducing the sensitivity of the method

• since the ratio of the interfering amplitudes is r ≈ 0.02, the interference and therefore
the sensitivity to 2β + γ are rather small

On the other hand, the main advantage of this method over the previous ones is that
the favored B decay amplitude is Cabibbo-allowed, and so are the D and D∗ secondary
decays that are reconstructed, therefore the number of selected D(∗)π events in a certain
dataset is, ultimately, at least about two orders of magnitude higher than the number
of D0K events selected for the previous methods. Moreover, in the D∗π case, a partial
reconstruction technique may be used, where the B0 → D∗π is not fully reconstructed,
but only the pion from the B and the soft pion from the D∗ → D0π decay are detected.
In that case signal events are selected by requiring that the invariant mass of the unrecon-
structed D0, obtained by applying kinematic constraints consistent with the decay mode,
peak at the nominal D0 mass. The partial reconstruction technique allows a significant
improvement in the number of reconstructed signal events (by a factor 8 − 10), at the
cost of an increased background and a poorer B vertex resolution (the B vertex position
is necessary to measure the proper time difference t between the decays of the two B
mesons). The requirement of a B meson on the tag side helps, in this case, to reduce the
background level.

1.7.5 Current results on γ from model-independent measurements

Several results have been presented at the ICHEP conference in Summer 2004 in the chan-
nels related to the model-independent extraction of γ. Some results have been updated
recently. These results finally offer the first direct constraints on γ.
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B decay mode RCP+ ACP+ RCP− ACP−
D0K 0.87 ± 0.15 0.40 ± 0.17 0.80 ± 0.16 0.21 ± 0.18
D∗0K 1.06 ± 0.28 −0.10± 0.23
D0K∗ 1.96 ± 0.41 −0.08± 0.21 0.65 ± 0.27 −0.26± 0.42

Table 1.1: Measured branching fraction ratios and CP asymmetries in B → D
(∗)0
(CP±)K

(∗)

decays (BABAR).

B decay mode RCP+ ACP+ RCP− ACP−
D0K 0.98 ± 0.21 0.07 ± 0.15 1.29 ± 0.18 −0.11± 0.15
D∗0K 1.43 ± 0.29 −0.27± 0.25 0.94 ± 0.29 0.26 ± 0.26

Table 1.2: Measured branching fraction ratios and CP asymmetries in B → D
(∗)0
(CP±)K

decays (Belle).

Both the BABAR and Belle experiments have presented measurements of the B →
D

(∗)0
CP K(∗) decays, which are summarized in Tables 1.1 and 1.2.
The two experiments have also investigated the mode B− → [K+π−]D0K−; BABAR

has also performed the search in the D∗0K (D∗0 → D0π0 and D∗0 → D0γ) channel [43].
No signal is found in their current data samples, and an upper limit on the hadronic
parameters rB and r∗B is obtained:

rB < 0.23(90%C.L.) BABAR

rB < 0.28(90%C.L.) Belle

r∗B < 0.16(90%C.L.) BABAR

The two experiments have also performed a measurement of γ and the hadronic pa-

rameters r
(∗)
B and δ

(∗)
B by studying the Dalitz distributions of B → D(∗)0K decays with

D0 → K0
S
π+π−, D∗0 → D0π0 and D∗0 → D0γ [44]. The amplitude for the decay

D0 → K0
S
π+π− is described as the sum of a non-resonant term and two-body (Breit-

Wigner) amplitudes, whose magnitudes and phases are determined on a clean, high-
statistics sample of tagged D0 mesons originating in D0π decays of D∗ mesons produced
in e+e− → cc collisions. Their results are summarized in Table 1.3.

Parameter BABAR Belle

γ (70 ± 31+12+14
−10−11)

◦ (68 ± 15 ± 13 ± 11)◦

rB 0.118 ± 0.079± 0.034+0.036
−0.034 0.21 ± 0.08 ± 0.03 ± 0.04

δB (104 ± 45+17+16
−21−24)

◦ (157 ± 19 ± 11 ± 21)◦

r∗B 0.169± 0.096+0.030+0.029
−0.028−0.026 0.12+0.16

−0.11 ± 0.02 ± 0.04
δ∗B (296 ± 41+14

−12 ± 15)◦ (321 ± 57 ± 11 ± 21)◦

Table 1.3: Measured values for the angle γ and the hadronic parameters r
(∗)
B and δ

(∗)
B . γ

and δ
(∗)
B are measured up to a discrete ambiguity of 180◦.

When combining all the information coming from the GLW, ADS and GGSZ mea-
surements of the two experiments, the 68% confidence interval for γ is [8]:

γ = (64 ± 18)◦ or γ = (244 ± 18)◦ (1.119)
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The 95% C.L. allowed region is:

γ ∈ [30, 100]◦ or γ ∈ [210, 280]◦ (1.120)

The error is still quite large and needs a significant increase in statistics or in the number
of decay modes that are reconstructed to be significantly improved. The results are
significantly driven by the value of γ measured with B → D(∗)0K,D0 → K0

S
π+π− decays,

which at the moment provide the best sensitivity. It must be noted however that the
error on γ of each method is largely correlated with the value or rB and r∗B , and the

current GGSZ measurements tend to favor a higher value for r
(∗)
B with respect to the

GLW measurements.
The B-factory experiments have also measured the time-dependent evolution of neutral

B decays to Dπ, D∗π and Dρ decays [45]. At present, a combined interpretation of the
measured coefficients of the time-dependent probabilities given in (1.111) and (1.112) is
not yet ready. BABAR sets, using only the sample of D∗π partially reconstructed, the
following lower limit on 2β + γ:

| sin(2β + γ)| > 0.75 (68% C.L.) (1.121)

| sin(2β + γ)| > 0.58 (90% C.L.) (1.122)

1.7.6 Model-dependent methods for extracting γ

Model-dependent techniques try to extract γ, together with some hadronic parameters
that are hard to estimate from the theory, through approximate relations between different
B decay amplitudes containing the weak phase e±iγ . These relations are typically obtained
by making some dynamical assumptions and requiring that strong interaction are invariant
under some flavor simmetries (isospin, SU(3)). Factorizable flavor-symmetry breaking
terms are also included, while non-factorizable corrections are neglected. Two methods
representative of this cathegory are the following:

• the first approach is based on charmless B → ππ, Kπ decays [46]. As we have
seen in Section 1.6, eqs (1.71) and (1.72), the coefficients of the time evolution of
neutral B decays to charged pion pairs π+π− are a function of γ, β and two hadronic
parameters a and δ defined in (1.68):

Cπ+π− = fct(a, δ, γ) (1.123)

Sπ+π− = fct(a, δ, γ, β) (1.124)

If we now consider also B0 → π±K∓ decays, neglect some amplitudes that are ex-
pected to be suppressed (electroweak penguins, penguin annihilation and exchange
topologies), and use the SU(3) isospin symmetry, we arrive to the following relation:

1

ǫ

(
fK

fπ

)2 [ B(B0 → π+π−)

B(B0 → π∓K±)

]

≡ ζ ≈ fct(a, δ, γ) =
1 − 2a cos δ cos γ + a2

ǫ2 + 2ǫa cos δ cos γ + a2
(1.125)

where ǫ ≡ λ2

1−λ2 = 0.053, and the factor fK/fπ, involving the kaon and pion decay
constants, takes into account factorizable SU(3) breaking corrections. If we fix β
to the value measured in time-dependent CP asymmetries to (cc̄)K0, the previous
equalities provide three relations between the three unknowns a, δ and γ, which
can therefore be determined simultaneously. Additional information is provided
by the direct CP asymmetry in B0 → K± π∓, which – with the same theoretical
assumptions – is given by

Adir
CP (B0 → K±π∓) =

2ǫa sin δ sin γ

ǫ2 + 2ǫa cos δ cos γ + a2
(1.126)
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and, since the decay constant ratio cancel, is expected to be affected to a smaller
extent – with respect to ζ – by SU(3)-breaking corrections. It is also possible to
consider charged B decays to π±π0 and π±K0, where again electroweak penguin
are expected to play a minor role. Within the same theoretical framework as before
one can find:

√
2

∣
∣
∣
∣

Vus

Vud

∣
∣
∣
∣

fK

fπ

√

B(B± → π±π0)

B(B± → π±K0)
=
ǫ

a

√

[1 − 2a cos δ cos γ + a2]Rππ
+− (1.127)

where

Rππ
+− ≡ 2

[B(B+ → π+π0) + B(B− → π−π0)

B(B0 → π+π−) + B(B0 → π+π−)

]
τ0
B

τ+
B

(1.128)

With the present measurements of the relevant branching fractions (which are of
the order of 10−5) and CP asymmetries, the authors of [46] find, at 68% C.L, the
value γ = (65 ± 7)◦ or γ = (245 ± 7)◦, in excellent agreement with the indirect
measurements from the CKM fits. However, the uncertainty to be assigned to γ
due to the theoretical assumptions is not included and the quoted error on γ is
likely to be underestimated. Moreover, the likelihood function around the best-fit
solution is significantly non-gaussian, and the 95% C.L. interval for γ is quite worse,
34◦ <∼ γ <∼ 77◦.

• an alternative model-dependent method for measuring γ has been proposed very

recently [47] and is based on B0 → D
(∗)+
(s) D(∗)− decays. The technique is quite

straightforward in the DD case: the total amplitude, receiving contribution from
several processes, tree (T ), exchange (E), QCD penguins (P ) and color-suppressed
electroweak penguins (PC

EW ), is

A(B0 → D+D−) = (T + E + Pc − Pt − PC
EW )V ∗

cbVcd + (Pu − Pt − PC
EW )V ∗

ubVud

≡ Acte
iδct +Aute

iγeiδut , (1.129)

and from a time-dependent measurement three observables can be obtained:

1. the branching fraction:

B ∝ 1

2
(|A|2 + |Ā|2) = A2

ct +A2
ut + 2ActAut cos(δut − δct) cos γ (1.130)

2. the direct CP asymmetry:

Adir
CP ∝ 1

2
(|Ā|2 − |A|2) = 2ActAut sin(δut − δct) sinγ (1.131)

3. the CP asymmetry due to interference:

Ainterf
CP ∝ Im(e−2iβĀA) = −A2

ct sin 2β −A2
ut sin(2β + 2γ)

−2ActAut cos(δut − δct) sin(2β + γ).

(1.132)

The idea is to extract γ from these three observables; however, even after fixing β
to the value measured in time-dependent B0 → (cc̄)K0 decays, there remain four
unknowns, γ and the three hadronic parameters Act, Aut and δut−δct. A theoretical
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input is therefore needed, and comes from the B0 → D+
s D

− decay, whose amplitude
is

A(B0 → D+
s D

−) = (T ′ + E′ + P ′
c − P ′

t − P ′C
EW )V ∗

cbVcs + (P ′
u − P ′

t − P ′C
EW )V ∗

ubVus

≈ A′
cte

iδ′
ct (1.133)

where we have neglected the terms proportional to V ∗
ubVus since |V ∗

ubVus|/|V ∗
cbVcs| ≈

2%. From the branching fraction of B0 → D+
s D

− one can therefore measure A′
ct,

which yields Act neglecting there exchange contributions and assuming flavor SU(3)
invariance of the strong interactions. The number of unknowns is therefore reduced
to three and γ can be extracted (up to a π ambiguity) from the three observables in
B0 → D+D−. The method can be applied, with some additional complexity (and
additional theoretical assumptions), also to the D∗+D− and D∗+D∗− decays. Fac-
torizable SU(3) breaking terms are taken into account through the decay constant
ratios f

D
(∗)
s
/fD(∗) .

Like in the ππ/Kπ case, also in this approach the uncertainty on γ due to some of the
theoretical assumptions is not precisely quantified. Moreover, with the current ex-
perimental results, γ (modulo π) is measured only at 68% C.L. (γ = (50±31)◦ or γ =
(133.5 ± 13.5)◦ or γ = (167 ± 7)◦), while the 95% C.L. for γ is the whole range
[0◦, 360◦].

1.8 Conclusion

B physics offers an excellent field where to look for CP violation and to test the Standard
Model predictions in the CP and flavor sector. In particular, the B-Factory experiments
like BABAR can overconstrain the so-called “Unitarity Triangle”, which is related to one of
the off-diagonal unitarity relations of the CKM matrix V . The most difficult to measure

of the angles of this triangle is γ ≡ arg
[

−VudV ∗
ub

VcdV ∗
cb

]

, due to either small branching fractions

or small interference effects in the B decays that provide sensitivity to it. To improve
the accuracy on γ it is necessary to measure as many as possible γ-related observables in
B → D(∗)K(∗) and B → D(∗)π/ρ decays, following the several methods that have been
proposed in the past years and summarized in Section 1.7. One of the most promising
methods is based on the reconstruction of B → D0K decays with D0 decaying to CP -
eigenstates (Subsection 1.7.1), which is the subject of the work presented in this thesis.
In the next Chapter we shall see why the BABAR experiment is well-suited to perform
B-physics studies and in particular the measurement presented in this work.
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Chapter 2

Experimental Apparatus

BABAR is a high energy physics experiment installed at the Stanford Linear Accelerator
Center (SLAC), California. It was designed and built by a large international team of sci-
entists and engineers in the 90s, with a comprehensive physics program consisting in the
systematic measurement of CP violation in the B meson system, precision measurements
of decays of bottom and charm mesons and of the τ lepton, and search for rare processes.
The experiment consists of a detector (BABAR [48]) built around the interaction region of a
high luminosity e+e− asymmetric collider (PEP-II [49]). In this chapter the main features
of the final designs and the performances of PEP-II and the BABAR detector are described.

2.1 The PEP-II B Factory

The PEP-II B Factory is an asymmetric-energy e+e− collider designed to operate at a
center-of-mass energy of 10.58 GeV, corresponding to the mass of the Υ (4S) =bb̄ vector
meson resonance (see Figure 2.1). The effective cross section1 for the production of the
Υ (4S) at

√
s = 10.58 GeV is about 1.1 nb, and the Υ (4S) decays almost exclusively

into B0B0 or B+B− pairs. The design peak luminosity was foreseen to be L = 3 × 1033

cm−2s−1, but during year 2004 – thanks to higher beam currents, improved beam orbits
and focusing – PEP-II has achieved a stable L = 9 × 1033 cm−2s−1, thus producing B
meson pairs at a rate of about 10 Hz, which translates to about 100 million BB pairs
in one year of continuous running, and providing an ideal laboratory for the study of B
mesons.

The cross sections of the main physics processes in PEP-II are listed in Table 2.1 [14].
At the peak of the Υ (4S) there is a non-negligible amount of continuum e+e− → qq
(q=u,d,s,c) and e+e− → ℓ+ℓ−(l = e, µ, τ) events. To study the background events due to
these processes, part of the data is collected at a CM energy 40 MeV below the Υ (4S)
peak, where BB production is not allowed. This data sample corresponds to about 1/10
of the sample taken at the Υ (4S) peak.

2.1.1 PEP-II layout

In PEP-II, the electron beam of 9.0 GeV collides head-on with the positron beam of
3.1 GeV resulting in a boost to the Υ (4S) resonance of βγ ≈ 0.56 in the laboratory
frame. This boost makes it possible to reconstruct the decay vertices of the two B mesons
and to determine their relative decay times, since the average separation between the two

1This effective cross section is lower (about one third) than the peak cross section (3.6 nb) due to the
energy spread (3-6 MeV) of the beams and to initial state radiation.
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Figure 2.1: The first four S-wave Υ resonances shown with the hadronic cross section
versus center-of-mass energy/c2 in the Υ mass region. The Υ (4S) is the third radial
excitation of the ground state. Its larger width corresponds to the fact that the Υ (4S) is
just above threshold for strongly decaying to B0B0 and B+B− pairs.

Event Cross section (nb)

bb 1.10 (effective) - 3.6 (peak)
cc 1.30
ss 0.35
uu 1.39

dd 0.35
e+e− ∼53
µ+µ− 1.16
τ+τ− 0.94

Table 2.1: Cross sections of the main physics processes at the Υ (4S). The cross section
for e+e− is referred to the volume of the BABAR electromagnetic calorimeter, which is
used to trigger these events.

B vertices is βγcτ ≈ 250µm. One can therefore measure the time dependent decay rates
and CP -asymmetries.

The unequal beam energies require a two rings configuration, as shown in Figure 2.2.
The parameters of PEP-II rings are summarized in Table 2.2. Electrons and positrons
are accelerated from the 3 km long SLAC linac and accumulated into two 2.2 km long
storage rings, called HER (high-energy ring) and LER (low-energy ring) respectively. A
fraction of electrons instead of being delivered to the HER is further accelerated to an
energy of 30 GeV and sent to a target where positrons are produced. In proximity of the
interaction region the beams are focused by a series of offset quadrupoles (Q1, Q2, Q4,
Q5 in Figure 2.5) and bent by means of a pair of samarium-cobalt dipole magnets (B1),
which allow the bunches to collide head-on. The tapered B1 dipoles, located at ± 21 cm
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Parameters Units Design June 2004

Energy (E) HER/LER GeV 9.0/3.1 9.0/3.1

Current (I) HER/LER A 0.75/2.15 1.55/2.45

β∗
y mm 15-25 10.5

ξy HER/LER 0.03/0.03 0.046/0.0.064

σx µm 110 85

σy µm 3.3 3.6

σz mm 11 13

Peak luminosity cm−2s−1 3.0 9.1

Integrated luminosity fb−1/month 3.3 16.0

Table 2.2: PEP-II beam parameters; both design values and values achieved in colliding
beam operation during year 2004 are given. HER and LER refer to the high energy e−

and low energy e+ ring, respectively. σx, σy and σz refer to the horizontal, vertical, and
longitudinal r.m.s. size of the luminous region. The peak luminosity is proportional to
EIξy/β

∗
y

Figure 2.2: PEP-II overview.

on each side of the interaction point (IP), and the Q1 quadrupoles operate inside the field
of the BABAR superconducting solenoid, while Q2, Q4, and Q5, are located outside or in
the fringe field of the solenoid.

The interaction region is enclosed in a water-cooled beam pipe consisting of two thin
layers of beryllium (0.83 mm and 0.53 mm) with a 1.48-mm water channel in between.
To attenuate synchrotron radiation, the inner surface of the pipe is gold-plated (approxi-
mately 4 µm). The total thickness of the central beam pipe section at normal incidence
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corresponds to 1.06 % of a radiation length. The beam pipe, the permanent magnets and
the Silicon Vertex Tracker (SVT) are assembled and aligned and then enclosed in a 4.4-m
long support tube. This rigid structure is inserted into the BABAR detector, spanning the
IP.

2.1.2 PEP-II performances

Collisions in PEP-II started at the end of 1999, and since then BABAR has recorded 21
million Υ (4S) decays in RUN1 (Oct 1999 - Oct 2000), 66 million in RUN2 (Feb 2001 - Jun
2002), 34 million in RUN3 (Dec 2002 - Jun 2003) and 110 million in RUN4 (Sep 2003 -
Jul 2004), for a total of 231 million BB pairs. The corresponding integrated luminosity is
about 211 fb−1, while the luminosity integrated off-peak in the first four runs is 21 fb−1.
The actual BABAR recorded luminosity is shown in Figure 2.3.
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Figure 2.3: PEP-II delivered and BABAR-recorded integrated luminosity in RUN1 to
RUN4 (from october 1999 to July 2004).

As shown in Table 2.2 [49, 50], PEP-II has already surpassed its design performances,
both in terms of the instantaneous luminosity (by a factor 3) and the monthly integrated
luminosity (by a factor 5), with fewer bunches than anticipated. Future upgrades that
are currently being studied are expected to push the peak luminosity up to about 2.2 ×
1034 cm−2s−1 and will eventually allow the experiment to collect about 1 billion BB pairs
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by 2008. With this huge dataset the desired sensitivity for many exciting measurements
of CP -violating and rare B decays will be reached. The progresses in the instantaneous
luminosity are mainly due to the increase of the beam currents and improved focusing and
beam orbits. A significant improvement to the integrated luminosity has been achieved
between December 2003 and March 2004 with the implementation of a novel mode of
operation of PEP-II, called “trickle injection”, which increases the production of BB
pairs by up to 50 percent (Figure 2.4). Until the end of 2003, PEP-II typically operated
in a series of 40 minute fills during which the colliding beams coasted: at the end of each
fill, it took about three to five minutes to replenish the beams for the next fill, and during
this period the BABAR data acquisition system had to be turned off for safety and dead-
time reasons. With the new technique, the BABAR detector can keep taking data virtually
uninterrupted while the linac continuously injects electron and positron bunches (at a rate
up to 10 Hz) into the two PEP-II storage rings to replace those that are lost in collisions
in the BABAR interaction region. After more than a year of testing, trickle injection was
introduced first in the low energy ring in December 2003, bringing the B Factory a 30%
increase in output. In March 2004 also trickle injection for the high energy ring has been
implemented, thus providing an additional 15% increase. The advantages of this novel
mode of operation go beyond just the increase in luminosity: continuous injection makes
the storage of particles more stable, so that PEP-II rings are easier to operate and beam
losses are far less frequent than with the previous operational mode. This result is very
important since, after a loss of the stored beams, it takes approximately 15 minutes to
refill the two beams.

Figure 2.4: Comparison of the best 8-hour periods of data taking for three different mode
of operation of PEP-II: no trickle injection (top), trickle injection of the low energy ring
only (middle), and trickle injection of both beams (bottom).
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2.2 Overview of the BABAR detector

To achieve the goal of performing accurate CP violation measurements there are many
requirements:

• a large and uniform acceptance, in particular down to small polar angles relative to
the boost direction, to avoid particle losses;

• excellent detection efficiency for charged particles down to 60 MeV/c and for photons
down to 25 MeV;

• high momentum resolution to separate small signals from background;

• excellent energy and angular resolution for the detection of photons from π0 and
radiative B decays in the range from 25 MeV to 4 GeV;

• very good vertex resolution, both transverse and parallel to the beam;

• identification of electrons and muons over a range of momentum, primarily for the
detection of semi-leptonic decays used to tag the B flavor and for the study of
semi-leptonic and rare decays;

• identification of hadrons over a wide range of momentum for B flavor tagging as
well as for the separation of pions from kaons in decay modes like B0 → K±π∓ and
B0 → π+π− as well as in charm meson and τ decays;

• a highly efficient, selective trigger system with redundancy so as to avoid significant
signal losses and systematic uncertainties.

The BABAR detector (Figure 2.5), designed and fabricated by a collaboration of 600 physi-
cists of 75 institutions from 9 countries, meets all these requirements, as will be shown in
the next sections of this chapter.

An overview of the polar angle (θ) coverage, the segmentation and performance of
the BABAR detector systems is summarized in Table 2.3. The BABAR superconducting
solenoid, which produces a 1.5 T axial magnetic field, contains a set of nested detectors,
which are – going from inside to outside – a five layers Silicon Vertex Tracker (SVT), a
central Drift Chamber (DCH) for charged particles detection and momentum measure-
ment, a fused-silica Cherenkov radiation detector (DIRC) for particle identification, and
a CsI(Tl) crystal electromagnetic calorimeter for detection of photons and electrons. The
calorimeter has a barrel and an endcap which extends it asymmetrically into the for-
ward direction (e− beam direction), where many of the collision products emerge. All
the detectors located inside the magnet have full acceptance in azimuth (φ). The flux
return outside the cryostat is composed of 18 layers of steel, which increase in thickness
outwards, and are instrumented (IFR) with 19 layers of planar resistive plate chambers
(RPCs) or limited streamer tubes (LSTs) in the barrel and 18 in the end-caps. The IFR
allows the separation of muons and charged hadrons, and also detect penetrating neutral
hadrons. As indicated in Figure 2.5, the right-handed coordinate system is anchored to
the main tracking system, the drift chamber, with the z-axis coinciding with its principal
axis. This axis is offset relative to the beam axis by about 20 mrad in the horizontal
plane. The positive y-axis points upward and the positive x-axis points away from the
center of the PEP-II storage rings.

Since the average momentum of charged particles produced in B meson decay is below
1 GeV/c, the errors on the measured track parameters are dominated by multiple Coulomb
scattering, rather than the intrinsic spatial resolution of the detectors. Similarly, the
detection efficiency and energy resolution of low energy photons are severely impacted by
material in front of the calorimeter. Thus, special care has been given to keep the material
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Table 2.3: Overview of the coverage, segmentation, and performance of the BABAR detector
systems. The notation (C), (F), and (B) refers to the central barrel, forward and backward
components of the system, respectively. Performance numbers are quoted for 1 GeV/c
particles, except where noted.

System Polar angle Channels Layers Segmentation Performance
coverage

SVT [20.1,150.2]◦ 150K 5 50-100 µm r − φ σd0 = 55 µm
100-200 µm z σz0 = 65 µm

DCH [17.2,152.6]◦ 7,104 40 6-8mm σφ = 1 mrad
drift distance σtan λ = 0.001

σpT /pT = 0.47%
σ(dE/dx) = 7.5%

DIRC [25.5,141.4]◦ 10,752 1 35 × 17 mm2 σθC
= 2.5 mrad

(r∆φ × ∆r) per track
144 bars

EMC(C) [27.1,140.8]◦ 2 × 5760 1 47 × 47 mm2 σE/E = 3.0%
5760 cystals σφ = 3.9 mrad

EMC(F) [15.8,27.1]◦ 2 × 820 820 crystals σθ = 3.9 mrad

IFR(C) [47,123]◦ 22K+2K 19+2 20-38 mm 90% µ± eff.
6-8% π± mis-id

IFR(F) [20,47]◦ 14.5K 18 28-38 mm (loose selection,
1.5–3.0 GeV/c)

IFR(B) [123,154]◦ 14.5K 18 28-38 mm

in the active volume of the detector to a minimum. Figure 2.6 shows the distribution of
material in the various detector systems in units of radiation lengths. Specifically, each
curve indicates the material a particle traverses before it reaches the first active element
of a specific detector system.
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Figure 2.5: BABAR detector front view (top) and side view (bottom).
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2.3 The Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) provides a precise measurement of the decay vertices
and of the charged particle trajectories near the interaction region. The mean vertex
resolution along the z-axis for a fully reconstructed B decay must be better than 80 µm
in order to avoid a significant impact on the time-dependent CP asymmetry measurement
precision; a 100µm resolution in the x − y transverse plane is necessary in recostructing
decays of bottom and charm mesons, as well as τ leptons.

The SVT also provides standalone tracking for particles with transverse momentum
too low to reach the outer tracker, like soft pions from D∗ decays and many charged
particles produced in multi-body B meson decays. The choice of a vertex tracker made
of five layers of double-sided silicon strip sensors allows a complete track reconstruction
even in the absence of the drift chamber information.

Finally, the SVT supplies particle identification (PID) information both for low and
high momentum tracks. For low momentum tracks the SVT dE/dx measurement is
the only PID information available, for high momentum tracks the SVT provides the
best measurement of the track angles, required to achieve the design resolution on the
Cherenkov angle measured by the DIRC.

2.3.1 Detector layout

The Silicon Vertex Tracker is composed of five layers of 300 µm thick, double-sided
microstrip detectors [51]. The total active silicon area is 0.96 m2 and the material traversed
by particles at normal incidence is 4% X0. The geometrical acceptance is 90% of the solid
angle in the c.m. system.

The silicon detectors and the associated readout electronics are assembled into me-
chanical units called modules. The inner three layers are barrel-shaped and are composed
by six modules each. They are placed next to the interaction region, at radii 3.3, 4.0 and
5.9 cm from the beam axis (Figures 2.7 and 2.8), and provide an accurate measurement
of the track impact parameters along z and in the x − y plane. The outer two layers,
composed by 16 and 18 modules (Figure 2.8), have a peculiar arch structure to reduce
the incident angles of particles going in the forward and backward direction; their barrel
parts are placed at radii between 12.7 and 14.6 cm from the beam axis. They permit an
accurate polar angle measurement and, along with the inner three layers, enable stand-
alone tracking for particles with low transverse momentum pT . Full azimuthal coverage
is obtained by partially overlapping adjacent modules, either by tilting them in φ by 5◦

(inner layers) or by staggering them (outer layers); this overlap is also advantageous for
alignment. The polar angle coverage is 20.1◦ < θlab < 150.2◦.

Each silicon detector consists of a high-resistivity n− bulk on which are implanted
p+ strips on one side and orthogonally-oriented n+ strips on the other side. The strips
are AC-coupled to the electronics via integrated decoupling capacitor. The detectors are
operated in reverse mode at full depletion, with bias voltage Vbias typically 10 V higher
than the depletion voltage Vdepl (which lies in the range 25 V – 35 V). The strips are
biased through polysilicon resistors (4-20 MΩ) and the detector active area is surrounded
by an implanted guard ring that collects the edge currents and shapes the electric field in
the active region. The n+ strips insulation is provided by surrounding each n+ strip with
a p implant called p-stop, so as to achieve an inter-strip resistance greater than 100 MΩ
at the operating bias voltage. The strip readout pitch varies with the layer (1..5) and the
side of the sensors (z, φ) from a minimum of 50 µm to a maximum of 210 µm.
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Figure 2.7: Schematic view of the SVT: longitudinal section.
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2.3.2 Detector performance

B decay vertex resolution

Figure 2.9 [52] shows the estimated error in the measurement of the difference along the z-
axis between the vertices of two neutral B mesons, one of them being fully reconstructed
and the other one only partially for flavor-tagging purposes. The RMS width of the
distribution, equal to 190µm, meets the design expectation. It is dominated by the
reconstruction of the tagging B vertex, the RMS vertex resolution for fully reconstructed
B mesons being only 70 µm.

Tracking efficiency and track parameter resolution

A comparison of the detected slow pion spectrum with the Monte Carlo prediction is
presented in Figure 2.10 [48]. Based on this very good agreement the detection efficiency is
estimated to be 20% for particles with transverse momenta of 50 MeV/c, rapidly increasing
to over 80% at 70 MeV/c.

For the purpose of most physics analyses, charged tracks are defined by five parameters
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Figure 2.9: Distribution of the error on the difference ∆z between two neutral B meson
vertices for a sample of events in which one B0 is fully reconstructed.

Data
Simulation

Transverse Momentum (GeV/c)

0

0.0

0.4

0.8

0.10.0 0.2 0.3 0.4

4000

8000

b)

a)

T
ra

c
k
s
/1

0
  
M

e
V

/c
E

ff
ic

ie
n
c
y




Figure 2.10: Monte Carlo studies of low momentum tracks in the SVT: (a) comparison
between data and simulation of the transverse momentum spectrum of soft pions in D∗+

→ D0 π+, and (b) efficiency for slow pions detection estimated from simulated events.

(d0, φ0, ω, z0, tanλ) at the track’s point of closest approach (POCA) to the z axis, and
the associated error matrix. d0 and z0 are the distances from the origin to this POCA in
the transverse (x, y) plane and along the z axis respectively. φ0 is the angle between the
transverse component of the track tangent vector at this POCA and the x axis. λ is the
angle between the transverse plane and the track tangent vector at this POCA (the so
called ”dip” angle). ω is the curvature of the track. The charge of the track is incorpo-
rated in the signing convention for ω while the sign of d0 is determined from the angular
momentum of the track w.r.t. the x axis. d0, φ0, z0 and tanλ resolutions are dominated
by the resolution of the SVT, while ω (and therefore pT ) resolution is dominated by the
drift chamber. Track parameter resolution is monitored online in promptly reconstructed
Bhabha and µ+µ− events, and is further investigated offline, after the data is fully recon-
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structed, on tracks in hadronic events or in dedicated cosmic ray runs. Figure 2.11 shows
the d0, z0, φ0 and tanλ resolutions determined from cosmic ray muons with transverse
momenta above 3 GeV/c: they are measured to be

σd0 = 23µm, σφ0 = 0.43 mrad

σz0 = 29µm, σtan λ = 0.53 · 10−3

Figure 2.12 [52] shows the d0 and z0 resolutions as a function of pT as determined from
tracks in hadronic events. The d0 and z0 resolutions so measured are about 25 and 40
µm respectively at pT = 3 GeV/c, in good agreement with resolutions measured in cosmic
ray studies.
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Figure 2.11: Distributions of the differences between the fitted track parameters of the
two halves of cosmic ray muons, with transverse momenta above 3 GeV/c.
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Figure 2.12: Impact parameter resolution of tracks reconstructed in multi-hadron events
in the xy plane and along z for tracks in multi-hadron events as a function of transverse
momentum.

dE/dx resolution

Limited particle ID information for low momentum particles that do not reach the drift
chamber and the Cherenkov detector is provided by the SVT through the measurement
of the specific ionization loss, dE/dx, as derived from the total charge deposited in each
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silicon layer. It is computed as a truncated mean from the lowest 60% of the individual
dE/dx measurements for tracks with at least 4 associated SVT hits. The resulting SVT
dE/dx distribution as a function of momentum is shown in Figure 2.13 [53]. The su-
perimposed Bethe-Bloch curves for the individual particle species have been determined
using various particle control samples. The resolution achieved to date is typically about
14% for minimum ionizing particles, and a 2σ separation between kaons and pions can be
achieved up to momenta of 500 MeV/c.
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Figure 2.13: Energy loss per unit length (dE/dx) as measured in the SVT as a function
of momentum. The enhancement of protons is due to beam-gas interactions. The vertical
scale is arbitrary.

2.4 The Drift Chamber

The Drift Chamber (DCH) is the main tracking device for charged particles with trans-
verse momenta pT above ≈ 120 MeV/c, providing the measurement of pT from the curva-
ture of the particle’s trajectory inside the 1.5 T solenoidal magnetic field.

The DCH also allows the reconstruction of secondary vertices located outside the
silicon detector volume, such as those from K0

S
→ π+π− decays. For this purpose, the

chamber is able to measure not only the transverse coordinate, but also the longitudinal (z)
position of tracks with good (∼ 1 mm) resolution. Good z resolution also aids in matching
DCH and SVT tracks, and in projecting tracks to the DIRC and the calorimeter.

For low momentum particles the DCH provides particle identification by measurement
of ionization loss (dE/dx), thus allowing for K/π separation up to ≈ 700 MeV/c. This
capability is complementary to that of the DIRC in the barrel region, while it is the only
mean to discriminate between different particle hypotheses in the extreme backward and
forward directions which fall outside of the geometric acceptance of the DIRC.

Finally, the DCH provides real-time information to the charged particle trigger.

2.4.1 Detector layout

The final design adopted for the Drift Chamber, illustrated in Figure 2.14, consists of a
280 cm-long cylinder located within the volume inside the DIRC and outside the PEP-II
support tube [54]. The inner radius is 23.6 cm and the outer radius is 80.9 cm. To
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take into account PEP’s asymmetric boost, the center of the chamber is displaced in the
forward direction with respect to the IP by 36.7 cm, thus increasing the acceptance for
forward-going tracks. The active volume provides charged particle tracking over the polar
angle range 17.2◦ < θlab < 152.6◦.
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Figure 2.14: BABAR Drift Chamber side view. Lengths are in mm, angles in degrees.

The drift system consists of 7104 hexagonal cells, approximately 1.8 cm wide by 1.2
cm high, arranged in 40 concentric layers providing up to 40 spatial and ionization loss
measurements for charged particles with pT greater than 180 MeV/c. The main properties
of the gas system are listed in Table 2.4. In order to reduce the impact of multiple
scattering on pT resolution, material within the chamber volume has been minimised
(0.2% X0) using low-mass aluminum field-wires and a helium-based gas mixture. The
inner wall has been kept thin (0.28% X0) to improve the contribution of the high-precision
measurement in the outer layer of the SVT to the pT resolution, and minimize backgrounds
due to photon conversions in the chamber wall. Material in the outer wall has also been
minimised (0.6% X0) so as not to degrade the DIRC and the EMC performances.

Table 2.4: Properties of helium-isobutane gas mixture at atmospheric pressure and 20◦C
(in BABAR the gas is operated at a small over pressure of 4 mbar). The drift velocity is
given for operation without magnetic field, while the Lorentz angle is stated for a 1.5 T
magnetic field. The anode-cathode operating potential difference is 1960 V.

Parameter Values

Mixture He : C4H10 80:20
Radiation Length 807 m
Primary Ions (m.i.p.) 21.2/cm
Drift Velocity 22 µm/ns
Avalanche gain 5 × 104

Lorentz Angle 32◦

dE/dx Resolution 6.9%

2.4.2 Detector performance

Tracking efficiency and resolution

The drift chamber reconstruction efficiency has been measured on data in selected samples
of multi-track events by exploiting the fact that tracks can be reconstructed independently
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Figure 2.15: Track reconstruction efficiency in the drift chamber at operating voltages of
1900 V and 1960 V, as a function of transverse momentum (a) and polar angle (b).

in the SVT and the DCH. The absolute drift chamber tracking efficiency is determined as
the fraction of all tracks detected in the SVT which are also reconstructed by the DCH
when they fall within its acceptance. Its dependency on the transverse momentum and
polar angle is shown in Figure 2.15 [48]. At the design voltage of 1960V the reconstruction
efficiency of the drift chamber averages 98 ± 1% for tracks above 200 MeV/c and polar
angle θ > 500 mrad (29◦). At the typical operating voltage of 1930V it decreases by about
2%.

The pT resolution, directly related to the curvature (ω) resolution, is measured as a
function of pT in cosmic ray studies (see Figure 2.16 [55]). The data are well represented
by a linear function:

σpT

pT
= (0.13 ± 0.01)% · pT + (0.45 ± 0.03)% , (2.1)

where pT is measured in GeV/c. The first contribution, dominating at high pT , comes from
the curvature error due to finite spatial measurement resolution; the second contribution,
dominating at low momenta, is due to multiple Coulomb scattering.

dE/dx Resolution

The specific ionization loss dE/dx for charged particles traversing the drift chamber is
derived from the total charge deposited in each drift cell. It is computed as a truncated
mean from the lowest 80% of the individual dE/dx measurements; various corrections
are applied to remove several sources of bias (such, for instance, changes in gas gain
due to temperature and pressure variations) that would degrade the accuracy of the
primary ionization measurement. The left plot of Figure 2.17 shows the distribution of
the reconstructed and corrected dE/dx from the drift chamber as a function of track
momenta. The superimposed Bethe-Bloch curves for the individual particle species have
been determined using various particle control samples. The resolution achieved to date
is typically about 7.5% (as shown in the right plot of Figure 2.17 for e± from Bhabha
scattering), limited by the number of samplings and Landau fluctuations. A 3σ separation
between kaons and pions can be achieved up to momenta of about 700 MeV/c [55].

2.5 The Cherenkov light detector

The Detector of Internally Reflected Cherenkov radiation (DIRC) is employed primarily
for the separation of pions and kaons from about 500 MeV/c to the kinematic limit of
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Figure 2.17: Left: reconstructed dE/dx as a function of track momenta. Right: difference
between the measured and expected dE/dx for e± from Bhabha scattering.

4 GeV/c. Excellent K/π separation is needed to tag with very low misidentification
probability the flavor of neutral B mesons decaying to final states containing charged
Kaons, where the charge of the Kaon determines the flavor of the B. It is also fundamental
in the analysis described in this thesis, since it allows to discriminate between B decay
channels that are otherwise very similar from a kinematical point of view, like B → D0K
and B → D0π.

2.5.1 Detector layout

The DIRC is a novel type of ring-imaging Cherenkov detector, based on the principle that
the magnitudes of angles are maintained upon reflection from a flat surface [56]. Figure
2.18 shows a schematic of the DIRC geometry, while Figure 2.19 illustrates the principles
of light production, transport, and imaging.

The radiator material of the DIRC is synthetic fused silica (refraction index n = 1.473)
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Figure 2.18: Schematics of the DIRC mechanical support structure.
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Figure 2.19: Schematics of the DIRC fused silica radiator bar and imaging region.

in the form of 144 long, thin bars with regular rectangular cross section. The bars,
which are 17-mm-thick, 35-mm-wide and 4.9-m-long, are arranged in a 12-sided polygonal
barrel, each side being composed of 12 adjacent bars. The solid angle subtended by the
radiator bars corresponds to 94% of the azimuth and 83% of the cosine of the polar
angle in the center-of-mass systen. The total thickness of the DIRC material (bars and
support structure) at normal incidence (θ = 90◦) is only 8 cm, corresponding to 17% X0.
Such a thin Cherenkov detector allows to have, at the same time, a large inner tracking
volume, which is needed to achieve the desired momentum resolution, and a compact
outer electromagnetic calorimeter, with improved angular resolution and limited costs.

The bars serve both as radiators and as light pipes for the portion of the light trapped
in the radiator by total internal reflection (the internal reflection coefficient of the bar
surfaces is greater than 0.9992 per bounce). A charged particle with velocity v > c/n,
traversing the fused silica bar, generates a cone of Cherenkov photons of half-angle θc
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with respect to the particle direction, where cos θc = 1/βn, β = v/c. For particles with
β ≈ 1, some photons will always lie within the total internal reflection limit, and will
be transported to either one or both ends of the bar, depending on the particle incident
angle. To avoid having to instrument both bar ends with photon detectors, a mirror is
placed at the forward end, perpendicular to the bar axis, to reflect incident photons to
the backward (instrumented) bar end.

Once photons arrive at the instrumented end, most of them emerge into an expansion
region filled with 6000 litres of purified water (n = 1.346), called the stand-off box. A
fused silica wedge at the exit of the bar reflects photons at large angles and thereby reduces
the size of the required detection surface. The photons are detected by an array of densely
packed photomultiplier tubes (PMTs), each surrounded by reflecting “light catcher” cones
to capture light which would otherwise miss the PMT active area. The PMTs, arranged in
12 sectors of 896 phototubes each, have a diameter of 29 mm and are placed at a distance
of about 1.2 m from the bar end. The expected Cherenkov light pattern at this surface is
essentially a conic section, whose cone opening-angle is the Cherenkov production angle
modified by refraction at the exit from the fused silica window.

The time taken for the photon to travel from the point of origin to the PMT is
also related to the photon propagation angle (αx, αy, αz) with respect to the bar axis.
As the track position and angles are known from the tracking system, these three α
angles can be used to (over-)determine the Cherenkov angle θc. This over-constraint
on the angles is particularly useful in suppressing hits from beam-generated background
and from other tracks in the same event, and also in resolving some ambiguities in the
association between the PMT hits and the track (for instance, the forward-backward
ambiguity between photons that have or haven’t been reflected by the mirror at the
forward end of the bars). The relevant observable to distinguish between signal and
background photons is the difference between the measured and expected photon time,
δtγ . It is calculated for each photon using the track-time of the PMT and the photon
propagation time within the bar and the water filled standoff box. The resolution on
this quantity, as measured in dimuon events (Figure 2.21(b) [48]), is 1.7 ns, close to the
intrinsic 1.5 ns transit time spread of the photoelectrons in the PMTs. Applying the
time information substantially improves the correct matching of photons with tracks and
reduces the number of accelerator induced background hits by approximately a factor 40,
as can be seen in Figure 2.20 [57].

2.5.2 Detector performance

In the absence of correlated systematic errors the resolution σθC ,track on the track Cherenkov
angle scale as

σθC ,track = σθC ,γ/
√

Nγ , (2.2)

where σθC ,γ is the single photon Cherenkov angle resolution and Nγ is the number of
photons detected.

The single photon Cherenkov angle resolution has been measured in dimuon events to
be 10.2 mrad (Figure 2.21(a) [48]). The main contributions to it come from the geometry
of the detector (the size of the bars, the diameter of the PMTs and the distance between
the bars and the PMTs give a 7 mrad contribution) and from the spread of the photon
production angle, dominated by a 5.4 mrad chromatic term.

Figure 2.22 shows the number of photons detected as a function of the polar angle. It
increases from a minimum of about 20 at the center of the barrel (θ ≈ 90◦) to well over
50 in the forward and backward directions, corresponding to the fact that the pathlength
in the radiator is longer for tracks emitted at large dip angles (therefore the number of
Cherenkov photons produced in the bars is greater) and the fraction of photons trapped
by total internal reflection rises. This feature is very useful in the BABAR environment,
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Figure 2.20: Display of one e+e− → µ+µ− event reconstructed in BABAR with two
different time cuts. On the left, all DIRC PMTs that were hit within the ±300 ns trigger
window are shown. On the right, only those PMTs that were hit within 8 ns of the
expected Cherenkov photon arrival time are displayed.
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Figure 2.21: Difference between (a) the measured and the expected Cherenkov angle for
single photons and (b) the measured and expected photon arrival time, as measured in
muons produced in dimuon events.

where - due to the boost of the center-of-mass - particles are emitted preferentially in
the forward direction. The bump at cos θ = 0 is a result of the fact that for tracks at
small angles internal reflection of the Cherenkov photons occurs in both the forward and
backward direction. The small decrease of the number of photons from the backward
direction to the forward one is a consequence of the photon absorption along the bar
before reaching the stand-off box in the backward end.

The combination of the single photon Cherenkov angle resolution, the distribution of
the number of detected photons versus polar angle and the polar angle distribution of
charged tracks yields a typical track Cherenkov angle resolution which is about 2.5 mrad
for muons in di-muon events. A similar average resolution is found for charged kaons and
pions in a sample of 430000 D∗+ → D0π+(D0 → K−π+) decays reconstructed in data,
where K∓/π± tracks are identified through the charge correlation with the π± from the
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D∗± decay. From the measured single track resolution vs. momentum and the difference
between the expected Cherenkov angles of charged pions (θπ

C) and kaons (θK
C ), the pion-

kaon separation power of the DIRC, |θK
C − θπ

C |/σthetaC
, can be inferred. As shown in

Figure 2.23, the separation between kaons and pions at 3 GeV/c is about 4.3 σ.
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Figure 2.23: (a) The measured Cherenkov angle for pions (upper band) and kaons (lower
band) from D∗ → D0π,D0 → Kπ decays reconstructed in data. The curves show the ex-
pected angle θC as a function of laboratory momentum, for the K and π mass hypothesis.
(b) The average difference between the expected value of θC for kaons and pions, divided
by the uncertainty, as a function of momentum.
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2.6 The Electromagnetic Calorimeter

The BABAR electromagnetic calorimeter (EMC) is designed to detect and measure electro-
magnetic showers with high efficiency and very good energy and angular resolution over
an energy range between 20 MeV (low-energy photons from π0 mesons originating in B
decays) and 9 GeV (electrons from Bhabha scattering). It is also the primary sub-detector
providing electron-hadron separation.

Energy deposit clusters in the EMC with lateral shape consistent with the expected
pattern from an electromagnetic shower are identified as photons when they are not
associated to any charged tracks extrapolated from the SVT and the drift chamber, and
as electrons if they are matched to a charged track and the ratio between the energy E
measured in the EMC and the momentum p measured by the tracking system is E/p ≈ 1.

The efficient reconstruction of extremely rare decays of B mesons containing π0s (e.g.
B0 → π0π0) poses the most stringent design requirements on energy resolution of order
1% while excellent photon efficiency at low energy (∼ 20 MeV) is required for efficient
reconstruction of B meson decays containing multiple π0 and η. Similar precision is
required for efficient separation of electrons and hadrons with purities required at the
0.1% level for momentum as low as 500 MeV/c. The π0 mass resolution is dominated by
the energy resolution at low energies (below 2 GeV) and by the angular resolution at high
energies (above 2 GeV). The angular resolution is required to be a few milliradians in
order to maintain good m0

π resolution (σm0
π
≈ 6.5 MeV) at all energies. The need for high

efficiency requires hermetic coverage of the acceptance region while excellent resolution is
achieved by minimising the material in front of and between the active detector elements.

2.6.1 Detector layout

The BABAR electromagnetic calorimeter (Figure 2.24) is a total-absorption calorimeter
composed of 6580 CsI crystals doped with thallium iodide at about 1000 ppm [58]. The
main properties of CsI(Tl) are summarized in Table 2.5: the high light yield and small
Molière radius give the excellent energy and angular resolution required, while the short
radiation length guarantees complete shower containment at BABAR energies with a rela-
tively compact design. Furthermore, the high light yield and peak of the emission spec-
trum permit an efficient use of a silicon photodiode readout.

Each crystal is a truncated trapezoidal pyramid, with thickness between 29.6 cm (16
X0) and 32.4 cm (17.5 X0) and typical front face area 5×5 cm2. The crystals are arranged
quasi-projectively in a barrel structure of 48 θ rows by 120 crystals in azimuth (φ), with
an inner radius of 90 cm. The forward end is closed by a separable end-cap capable
of holding nine additional rows. This geometry provides full azimuthal coverage, while
the polar angle coverage is 15.8◦ < θlab < 140.8◦. To minimize the material in front
of the calorimeter, the support structure of the crystals (which is made in carbon fiber)
and the front-end electronics are located at the outer radius of the EMC. To recover the
small fraction of light that is not internally reflected by the crystal surface, each crystal
is wrapped with a diffuse reflective material (TYVEK). The scintillation light generated
inside each crystal is detected by two independent 2 × 1 cm2 silicon PIN photodiodes
epoxied to its rear face.

2.6.2 Detector performance

Energy resolution

The limiting energy resolution of a homogeneous calorimeter is determined by fluctuations
in the electromagnetic shower propagation and in the case of the BABAR crystal detector
is empirically described as the quadratic sum of a stochastic term σ1 and a constant term
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Figure 2.24: The crystal geometry of the Electromagnetic Calorimeter.

Parameter Value

Radiation Length 1.86 cm

Molière Radius 3.8 cm

Density 4.53 g/ cm3

Light Yield 50000 γ/MeV

Light Yield Temperature Coefficient 0.28 %/◦C

Peak Emission λmax 565 nm

Refractive Index (λmax) 1.79

Table 2.5: Properties of CsI(Tl).
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Figure 2.25: Left: the energy resolution for the electromagnetic calorimeter measured
using photon and electron candidates. The solid curve is a fit to equation 2.3 and the
shaded area denotes the one sigma error on the fit.
Right: the angular resolution for the electromagnetic calorimeter measured using photon
candidates originating in π0 and η decays. The solid curve is a fit to equation 2.5.

σ2:
σE

E
= σ1 E

− 1
4 ⊕ σ2 (2.3)

63



The stochastic term σ1E
− 1

4 , which is dominant at low energies, arises primarily from
fluctuations in photon statistics, but depends also on electronic noise in the readout chain
and on the presence of beam-generated background. The constant term σ2, dominant at
higher energies, arises from several effects of which the main are fluctuations in shower
containment due to leakage out the rear of the crystal or absorption in the material
between and in front of the crystals, and uncertainties in the calibrations.

In BABAR the energy resolution as a function of energy is measured on data on selected
control samples, including electrons and positrons from Bhabha scattering (energies be-
tween 3 and 9 GeV), photons from π0 and η decays (energies below 2 GeV) and from the
decay χc1 → J/ψγ (E ≈ 500 MeV). At low energies the resolution is determined through
weekly calibrations performed with a radioactive source (16O∗) of 6.13 MeV photons. A
fit to the resolution dependence on the energy with the empirical parameterization of
Eqn 2.3, shown in Figure 2.25(a) [58], yields:

σE

E
=

(2.32 ± 0.30)%
4
√

E(GeV)
⊕ (1.85 ± 0.12)%, (2.4)

The stochastic term is dominant for energies below about 2.5 GeV; above 2.5 GeV the
constant term starts to be the limiting factor for the energy resolution.

Angular resolution

The angular resolution is determined by the transverse crystal size and the distance from
the interaction point, and improves as the transverse size of the crystal decreases. On the
other hand, since the electromagnetic shower has a natural lateral spread of the order of
the Molière radius, the energy resolution would degrade if the transverse crystal size were
chosen significantly smaller than the Molière radius, due to summing of the electronic
noise from several crystals. The best compromise is obtained by choosing the transverse
size of the crystals to be comparable to the Molière radius: this choice allows to achieve
the required angular resolution2 at low energies while maintaining the total number of
crystals and readout channels limited to an acceptable noise and cost level.

Figure 2.25(b) [58] shows the angular resolution measured as a function of energy. The
decays of π0 and η candidates in which the two photons in the decay have approximately
equal energy are used to infer angular resolution. It varies between about 12 milliradians at
low energies and 3 milliradians at high energy. The data fit the empirical parameterisation:

σθ,φ =

(

(3.87 ± 0.07)
√

E(GeV)
+ (0.00 ± 0.04)

)

mrad (2.5)

π0 Mass and Width

Figure 2.26 [48] shows the two-photon invariant mass for π0 candidates. The π0 candidates
are taken from hadronic B meson decays. The invariant mass is stable to less than 1 %
over the full photon energy range. The width of 6.9 MeV/c2 compares to a Monte Carlo
estimate of 6.8 MeV/c2 in hadronic B meson events.

Electron-Hadron separation

Electron-hadron separation is accomplished by use of the shower energy, lateral shower
shape and incident track parameters. The comparison of shower energy and incident
momentum (E/p) is the most significant separation variable. Figure 2.27 [48] shows the
electron efficiency and pion misidentification rate for different momenta using a very tight

2Few milliradians
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Figure 2.26: The π0 mass peak reconstructed from photon candidates in hadronic events.
The photon candidates are required to have an energy of at least 30 MeV and the energy
of the π0 must be greater than 300 MeV to reduce combinatoric backgrounds. The solid
line is a fit to the data.

selection algorithm. The efficiency of electron identification is measured using electrons
from radiative Bhabhas and γγ → e+e− events. The pion misidentification probability is
measured in three-prong τ decays. For momenta above 1 GeV/c the electron identification
efficiency of this algorithm is 90.8 % with an average pion misidentification of 0.2 %.
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Figure 2.27: The electron efficiency and pion mis-identification rate for different momenta
(left) and polar angles (right).

2.7 The Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed to identify muons and neutral hadrons
(primarily K0

L
and neutrons). The principal requirements for IFR are large solid angle

coverage, good efficiency and high background rejection for muons down to momenta
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below 1 GeV/c. For neutral hadrons, high efficiency and good angular resolution are
most important.

2.7.1 Detector layout

The IFR uses the steel flux return of the magnet as muon filter and hadron absorber. Sin-
gle gap resistive plate chambers (RPC) with two-coordinate readout, operated in limited
streamer mode constitute the active part of the detector [59]. The RPC are installed in
the gaps of the finely segmented steel of the six barrel sectors and the two end-doors of
the flux return, as illustrated in Figure 2.28. The steel segmentation has been optimised
on the basis of Monte Carlo studies of muon penetration and charged and neutral hadron
interactions. The steel is segmented into 18 plates, increasing in thickness from 2 cm of
the inner 9 plates to 10 cm of outermost plates for a total 65 cm. In addition, two layers
of cylindrical RPCs are installed between the EMC and the magnet cryostat to detect
particles exiting the EMC.

Barrel


342 RPC


Modules

432 RPC


Modules


End Doors

19 Layers

18 Layers
BW

FW

3200

3200

920

1250
1940




Figure 2.28: Overview of the IFR Barrel sectors and forward and backward end-doors;
the shape of the RPC modules and the way they are stratified is shown.

Soon after the installation (which took place in Summer 1999), the efficiency of a
significant fraction of the chambers (initially greater then 90%) has started to deteriorate
at a rate of 0.5-1%/month. In order to solve some of the inefficiency problems an extensive
improvement program has been developed and is making relevant advances. The RPCs
in the forward end-cap region have been replaced in Summer 2002 with new ones based
on the same base concept but with improved fabrication technique and quality controls:
their efficiency has not significantly decreased over 2 years of running. The RPCs in
the barrel region are being replaced with limited streamer tube (LST) detectors: two of
the six sextants of the barrel have been replaced in Summer 2004 while the remaining
four sextants should be replaced next year. Extensive quality control studies have been
performed to check the reliability of these detectors, which are expected to operate until
the end of the experiment with ≈ 90% efficiency, as measured in cosmic ray runs.

2.7.2 Detector performance

Muon Identification

Charged particles that are reconstructed in the tracking systems and meet the criteria
for minimum ionising particles in the EMC (i.e. tracks not depositing large amounts of
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energy) are potential muon candidates. Their trajectories are extrapolated to the IFR
taking into account the non-uniform magnetic field, multiple scattering and the average
energy loss. The projected intersections with the RPC or LST planes are computed and
for each readout plane all clusters (groups of adjacent hits in one of the two readout
coordinates) detected within a maximum distance from the predicted intersection are
associated with the track. For each cluster in the IFR associated with a charged track a
number of variables are combined in a global likelihood function to discriminate muons
from charged hadrons:

• the total number of interaction lengths traversed from the IP to the last RPC or
LST layer with an associated cluster

• the difference between this measured number of interaction lengths and the number
of interaction lengths predicted for a muon of the same momentum and angle

• the average number and the r.m.s. of the distribution of RPC or LST hits per layer

• the χ2 for the geometric match between the projected track and the centroids of
clusters in different RPC or LST layers

The performance of muon selection has been tested on samples of muons from µµee and
µµγ final states and pions from 3-prong τ decays andK0

S
→ π+π− decays. The selection of

these control samples is based on kinematic variables, and not on variables used for muon
selection. The muon identification efficiency and the pion misidentification probability as
a function of the track momentum and polar angle are compared in Figure 2.29 for a loose
selection criteria applied to the global likelihood: above 1 GeV/c the muon efficiency is
greater than 80% with a pion misidentification probability between 5 and 10%.
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Figure 2.29: The muon efficiency and pion mis-identification rate for different momenta
(left) and polar angles (right) obtained with loose selection criteria.

K0
L

and Neutral Hadron Detection

K0
L

and other neutral hadrons interact in the steel of the IFR and can be identified
as clusters that are not associated with a charged track. Since neutral hadrons can
interact also in the electromagnetic calorimeter, information from the EMC and the IFR
is combined: neutral showers in the EMC are associated with the neutral hadrons detected
in the IFR if their production angles, taken from the first interaction point in the detector,
are constistent with each other.
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TheK0
L

detection efficiency and angular resolution are measured on a control sample of
K0

L
produced in e+e− → φγ → K0

L
K0

S
γ processes, where the true K0

L
direction is inferred

from the missing momentum calculated from the particles that are reconstructed in the
final state (γ and K0

S
). The K0

L
reconstruction efficiency increases roughly linearly with

momentum between 20% at 1 GeV/c and 40% at 4 GeV/c (EMC and IFR combined),
and the angular resolution is of the order of 50 mrad.

2.8 The BABAR Trigger

The BABAR trigger is designed to select a large variety of physics processes rejecting
background events and keeping the total event rate under 280 Hz so as not to overload
the downstream processing. The trigger must select the physics events of interest with
very high and/or well understood efficiency, depending on the particular mode. Efficiency,
diagnostic and background studies require the trigger to be able to select prescaled samples
of Bhabha, di-muon and cosmic events. This kind of studies also demand random beam
crossings and events that fail the trigger selection criteria.

The trigger system operates as a sequence of two independent stages, the second
conditional upon the first. The Level 1 (L1) hardware trigger is performed first at the
machine crossing rate. Its goal is to sufficiently reduce that rate to a level acceptable
for the Level 3 (L3)3 software trigger which runs on a farm of commercial processors.
The L1 trigger is optimised for simplicity and speed. It consists of a pipelined hardware
processor. It is designed to provide an output trigger rate of the order of 2 kHz or less.
The L1 trigger selection is based on a reduced data set from the DCH, EMC and IFR. Its
maximum L1 response latency for a given collision is 12 µs. Based on both the complete
event and L1 trigger information, the L3 software algorithms select events of interest
allowing them to be transferred to mass storage for further analysis. Dedicated L1 trigger
processors receive data which is continuously clocked in from the DCH, EMC and IFR
detector subsystems. The L1 trigger processor produces a 30 MHz clocked output to
the Fast Control and Timing System (FCTS) that can optionally mask or prescale input
triggers. The arrival of a L1-Accept signal by the data acquisition system causes a window
of each subsystem’s L1 latency buffer to be read out.

The Level 3 trigger is implemented as a software that makes use of the complete event
information for taking its decision, including the output of the L1 trigger processors and
of the FCTS. The selection decision is primarily taken by two set of orthogonal filters, one
exclusively based on the DCH information, the other based on the EMC data only. The
drift chamber filters select events containing at least one high pT track (pT > 600 MeV/c)
or two low pT tracks, originating from the interaction point. The EMC filters look for
events characterized by an effective mass greater than 1.5 GeV. The effective mass is
calculated from the cluster energy sums and the energy weighted centroid positions of all
clusters in the event in the massless particles hypothesis. The events must also contain
at least two clusters with c.m. energy greater than 350 MeV or at least four clusters.
Table 2.6 shows the L3 and L1+L3 trigger efficiency for some relevant physics processes,
derived from Monte Carlo simulation.

2.9 Conclusion

The BABAR detector, at the PEP-II B-Factory, is optimized for the study of B physics,
with a large B meson sample (the number of BB pairs, 232× 106, is expected to increase
up to > 109 in year 2008) and excellent vertex resolution, track and photon reconstruction

3An intermediate Level 2 software trigger was originally foreseen in the very early step of BABAR

design, but it was soon merged in the L3 trigger
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L3 Trigger ǫbb ǫB→π0π0 ǫB→τν ǫcc ǫuds ǫττ

1 track filter 89.9 69.9 86.5 89.2 88.2 94.1
2 track filter 98.9 84.1 94.5 96.1 93.2 87.6
Combined DCH filters 99.4 89.1 96.6 97.1 95.4 95.5

2 cluster filter 25.8 91.2 14.5 39.2 48.7 34.3
4 cluster filter 93.5 95.2 62.3 87.4 85.5 37.8
Combined EMC filters 93.5 95.7 62.3 87.4 85.6 46.3

Combined DCH+EMC filters >99.9 99.3 98.1 99.0 97.6 97.3

Combined L1+L3 >99.9 99.1 97.8 98.9 95.8 92.0

Table 2.6: L3 trigger efficiency (%) for various physics processes, derived from Monte
Carlo simulation.

efficiency and charged particle identification. In particular, the large data sample, high
reconstruction efficiency of charged and neutral particles produced in B and D decays and
pion/kaon separation greater than 3σ over the momentum range 1.5 − 3.5 GeV/c allow
to measure the rare B → D0K decays where the D0 decays to a Cabibbo-suppressed CP
eigenstate, as described in the next two Chapters.
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Chapter 3

B → D0
(CP )

K and B → D0
(CP )

π

selection

As stated in the Introduction to this manuscript, the goal of the analysis presented here
is the reconstruction of the Cabibbo-suppressed B → D0K decay and of the Cabibbo-
allowed B → D0π decay, with the D0 decaying to CP -even, CP -odd and non-CP flavor
eigenstates. The purpose is the measurement of the direct CP asymmetries ACP± and
the charge-averaged branching fraction ratios R± defined in Equations (1) and (2). The
analysis is performed in two logical steps:

• the reconstruction of the B → D0K and B → D0π candidates (which will some-
times generically referred to as B → D0h, h = π, K) from the charged and neutral
particles in the final state detected by BABAR, and the application of selection cri-
teria to remove or reduce the largest sources of background. These criteria are
of different types: kinematical, topological, particle-identification, best candidate
selection algorithms for events with multiple candidates, and so on.

• the extraction of the signal yields from the selected data sample by means of an
unbinned maximum likelihood fit to two variables (∆E and θC , defined later) whose
probability density functions (PDFs) are different between B → D0π, B → D0K
and background events.

From the final yields and the selection efficiencies the branching fraction ratios and CP
asymmetries are determined.

In this Chapter we describe the first step, that is the criteria used to reconstruct
the B → D0h candidates and to suppress background due to mis-reconstructed e+e− →
Υ (4S) → BB or e+e− → qq (q = u, d, s, c) events. The second step, the extraction of the
signal yields from the selected sample and the measurement of the observables R± and
ACP±, is discussed in next Chapter. The outline of the current Chapter is the following:

• in Section 3.1 we describe theD0 decay modes that have been studied in this analysis
and report the most updated measurements of their branching fractions.

• in Section 3.2 we summarize the amount of data and simulated events that have
been used for the measurements presented in this thesis.

• in Section 3.3 we describe the selection of photons and charged pions and kaons that
are produced in the final states of the B → D0h decay chain.

• in Section 3.4 we describe the reconstruction and selection criteria of short-lived
particles (π0, K0

S
, φ, ω, D0 mesons) produced in the B → D0h decay chain.
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• in Section 3.5 we describe B reconstruction and selection criteria.

• in Section 3.6 we show how background events due to random combinations of
particles produced in e+e− → qq collisions can be further suppressed by making use
of some shape variables that exploit the different topologies, in the center-of-mass
frame, of the e+e− → qq and e+e− → Υ (4S) → BB processes.

• in Section 3.7 a criterion to remove multiple selected candidates in the same event
is studied and applied.

• in Section 3.8 the complete summary of the selection criteria, with the final selection
efficiency for signal events, is provided.

The selection criteria have been optimized on simulated events, after scaling the lumi-
nosity of the generated samples to that of the data collected at the Υ (4S), by maximizing
– separately for each D0 decay mode – the ratio:

S√
S +B

(3.1)

where S is the expected number of signal B → D0K events in the final sample, and
B is the expected number of background events in the final sample which populate the
same (∆E, θC) region as the signal. This corresponds to minimizing the final statistical
uncertainties on the B → D0K yields, and therefore on R± and ACP±, estimated through
the unbinned maximum likelihood fit described in the following Chapter. The reliability
of the simulation in estimating background level and signal and background efficiencies
of the selection criteria has been checked by comparing data and simulated events after
vetoing the B → D0K signal, as discussed in Section 3.9.

3.1 D0 decay modes that have been studied and overall
B → D0h branching fractions

In this study we have chosen to reconstruct the D0 decay modes that are expected to
be easier to identify, thanks to higher efficiencies or lower backgrounds, and have larger
branching fractions (including secondary branching fractions of short-lived unstable par-
ticles produced in the D0 decay). Based on these considerations, we have decided to
reconstruct the D0 candidates in the CP -even eigenstates K+K−, π+π−, in the CP -odd
eigenstates K0

S
π0, K0

S
φ and K0

S
ω,1 and in the non-CP eigenstate K−π+. Examples of D0

decay modes that have been discarded are the CP -even K0
S
K0

S
and π0π0, and the CP -odd

K0
S
η and K0

S
η′. The branching fractions for the decay modes of K0

S
, π0, φ, ω that have

been reconstructed in this analysis are listed in Table 3.1 The branching fractions for the
D0 decay modes that have been considered are listed in Table 3.2.

Decay mode Measured branching fraction

K0
S → π+π− (68.95 ± 0.14)%

π0 → γγ (98.798 ± 0.032)%
φ → K+K− (49.1 ± 0.6)%
ω → π+π−π0 (89.1 ± 0.7)%

Table 3.1: Branching fractions of decay modes for the resonances produced in the
D0

CP−decays [16].

1With K0
S decaying to π+π−, and π0→γγ, φ→K+K−, ω→π+π−π0
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D0 decay mode Primary branching fraction (10−3) Overall B.F. (10−3)

K−π+ 38.0 ± 0.9 38.0 ± 0.9
K+K− 3.89 ± 0.14 3.89 ± 0.14
π+π− 1.38 ± 0.05 1.38 ± 0.05
K0

S π0 11.5 ± 1.1 7.83 ± 0.75
K0

S φ 4.70 ± 0.55 1.62 ± 0.21
K0

S ω 11.5 ± 2.0 7.15 ± 1.40

Table 3.2: Branching fractions of the D0
(CP±) decays that have been studied in this anal-

ysis [16]. In the third column the D0 branching fractions have been multiplied by the
branching fractions of the K0

S
, π0, φ and ω decays that are reconstructed in this analysis

(see Table 3.1).

The branching fraction for the B−→D0π− process is B(B− → D0π−) = (4.98±0.29)×
10−3 [16] and the weighted average of the BABAR, Belle and Cleo measurements for the
ratio B(B− → D0K−)/B(B− → D0π−) is (8.19±0.28)%, therefore the branching fraction
for the B− → D0K− decay is B(B− → D0K−) = (4.08 ± 0.27) × 10−4. The branching
fractions for the B → D0

CP±K processes are B(B → D0
CP±K) = B(B− → D0K−)×RCP±,

where RCP± = 1+r2B ±2rB cos δB cos γ: the current measurements of rB and γ [2, 3, 7, 8]
favour RCP± ≈ 0.85 − 1.15, depending on the value of δB. Taking into account these
numbers and the branching fractions listed in Tables 3.1 and 3.2, the total branching
fractions for the B → D0

(CP )K decays that are reconstructed in this analysis are in the

range 5× 10−7 − 2× 10−5: they are listed in Table 3.3, and should be compared with the
total number of B± decays collected so far (232 × 106) by the BABAR detector (see next
Section).

D0 decay mode Overall B(B− → D0π−) Overall B(B− → D0K−)

K−π+ (18.9 ± 1.2) × 10−5 (15.5 ± 1.1) × 10−6

K+K− (19.4 ± 1.3) × 10−6 RCP+ × (15.9 ± 1.2) × 10−7

π+π− (6.9 ± 0.5) × 10−6 RCP+ × (5.6 ± 0.4) × 10−7

K0
S(π+π−)π0(γγ) (39.0 ± 4.4) × 10−6 RCP− × (31.9 ± 3.8) × 10−7

K0
S(π+π−)φ(K+K−) (8.1 ± 1.2) × 10−6 RCP− × (6.6 ± 1.0) × 10−7

K0
S(π+π−)ω(π+π−π0(γγ)) (35.6 ± 7.3) × 10−6 RCP− × (29.2 ± 5.8) × 10−7

Table 3.3: Total branching fractions (including D0, K0
S
, π0, φ and ω branching fractions)

for the B → D0h decays that are reconstructed in this analysis. RCP+ and RCP− are
expected to lie approximately in the range 0.85-1.15.

3.2 Data and Monte Carlo sample

The analysis has been performed on the whole data sample collected by BABAR in the years
1999-2004, corresponding to (231.8 ± 2.6) × 106 BB pairs. The integrated luminosity of
the data samples used to perform the analysis, the data taking periods and the number of
collected BB pairs are summarized in Table 3.4, where we report both data collected at
the Υ (4S) peak (on-resonance data,

√
s = 10.58 GeV) and data, used to study e+e− → qq

background events, collected 40 MeV below the Υ (4S) peak (off-resonance data,
√
s =

10.54 GeV).
To study the properties of background and signal events before looking at data, large

samples of simulated (Monte Carlo) events have been analyzed, thus performing a so-called
“blind” analysis, a technique largely in use in BABAR which allows to avoid introducing
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Sample Data taking period Luminosity N(BB)/106

( fb−1)

RUN1 on-resonance Oct. 1999 - Oct. 2000 19.5 21.2 ± 0.2
RUN1 off-resonance 2.3
RUN2 on-resonance Feb. 2001 - Jun. 2002 60.3 66.4 ± 0.7
RUN2 off-resonance 6.9
RUN3 on-resonance Nov. 2002 - Jul. 2003 31.1 34.1 ± 0.4
RUN3 off-resonance 2.4
RUN4 on-resonance Sep. 2003 - Jul. 2004 99.8 110.1 ± 1.2
RUN4 off-resonance 9.9

RUN1-4 on-resonance Oct. 1999 - Jul. 2004 210.5 231.8 ± 2.6
RUN1-4 off-resonance 21.6

Table 3.4: Data sample used for the analysis. The effective BB cross section is 1.1 nb.
The method used to evaluate the number of collected BB meson pairs is described in [61].

experimenter’s (subconscious) artificial biases in the measurement [60]. Selection criteria
have been therefore optimized on Monte Carlo, and the reliability of the simulation has
been checked by comparing its predictions with real data after explicitly vetoing, in the
latter, signal B → D0h events. For the simulation of the physics of BB pair production
and B decays the EvtGen package [62], designed by the CLEO and BABAR Collabora-
tions, has been used. The branching fractions used in the simulation are taken from
the most updated experimental measurements (where available), or from theoretical es-
timates. e+e− → qq collisions and quark fragmentation in general have been simulated
with the JetSet generator [63]. The GEANT [64] software has been used to simulate
interactions of particles traversing the BABAR detector, taking properly into account the
varying accelerator and detector conditions.

Table 3.5 lists the generic e+e− → qq and e+e− → Υ (4S) → BB Monte Carlo samples
used to characterize background events, and the equivalent integrated luminosity. In the
latter, signal events (B → D0K and B → D0π decays with D0 decaying to the relevant
final states) have been removed. Table 3.6 lists the exclusive Monte Carlo events that
were generated and reconstructed in order to study the properties of the signal (about
54,000 signal events, 250 events/ fb−1, for each D0 decay mode): in these events both a
B+ and a B− mesons are generated, one decaying to D0h, and the other one decaying
generically according to its known or estimated branching fraction ratios.

Sample Events Cross section (nb) Luminosity ( fb−1)

e+e−→qq, q = u, d, s 322 ×106 2.09 154
e+e−→cc 196 ×106 1.30 150

e+e−→Υ (4S)→B0B0 346 ×106 0.55 629
e+e−→Υ (4S)→B+B− 341 ×106 0.55 620

Table 3.5: Generic Monte Carlo sample used for the analysis.

3.3 Reconstruction of charged and neutral particles in
the final state

In this Section we describe how we select charged and neutral particles that are produced
in the final state of the B → D0h decay chain and are detected in the BABAR tracking
systems or calorimeters. In Figure 3.1 we show the π±, K± and π0 expected momentum
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D0 mode B → D0K B → D0π
Events Lumi ( fb−1) Events Lumi ( fb−1)

K−π+ 53960 ≈ 3164 53960 ≈ 259
K+K− 53960 ≈ 30908 53960 ≈ 2532
π+π− 53960 ≈ 87124 53960 ≈ 610
K0

Sπ0, K0
S→π+π− 53960 ≈ 15171 53960 ≈ 1243

K0
Sφ, K0

S→π+π−, φ→K+K− 53960 ≈ 74217 53960 ≈ 6080
K0

Sω, K0
S→π+π−, ω→π+π−π0 53960 ≈ 16614 53960 ≈ 1361

Table 3.6: Exclusive Monte Carlo samples used for the analysis

distributions in the laboratory frame as predicted by simulation.

3.3.1 Charged tracks selection

Charged particle tracks are reconstructed from the spatial hits in the SVT and the DCH:
an iterative fitting algorithm based on the Kalman filter technique [65] performs pattern
recognition and determines for each track the 5 parameters defined in Section 2.3.2. The
full map of the magnetic field, the detailed distribution of the material in the detector
and the expected energy loss of the particle as it traverses the detector are taken into
account. Track parameter resolutions and reconstruction efficiency are shown in Sec-
tion 2.3.2 and 2.4.2.

In this analyisis all the charged tracks are required to be reconstructed in the fiducial
volume of the tracking systems (0.41 < θlab < 2.41). The geometrical acceptance is
85% in the CM frame, and the tracking efficiency is about 97% for momenta greater
than 200 MeV/c. With the exception of the pions from K0

S
decays, which are typically

originated 5-10 cm away from the primary interaction point (the K0
S

mean energy in
the D0 decays considered here ranges between 1.3 GeV, in D0→K0

S
φ, and 2.0 GeV,

in D0→K0
S
π0), all other charged particles produced in the B → D0h decay chains are

generated from very short-lived particles (B, D0, φ, ω) which travel at most few hundred
microns from the IP: we therefore apply to their tracks the requirements |d0| < 1.5 cm,
|z0| < 10 cm.

3.3.2 Charged particle identification

The charged particle identification system (PID) plays a crucial role in reducing the
combinatorial background in the B, D0, K0

S
, φ and ω reconstruction, and in discriminating

– together with the invariant mass of the D0 candidate – between similar D0 decays, like
D0→K−π+, D0→K+K− and D0→π+π−. It is also used, as will be described in next
Chapter, to separate B → D0K and B → D0π candidates.

π/K/p separation is achieved by means of the specific ionization loss dE/dx measured
in the Silicon Vertex Tracker and in the Drift Chamber, and the Cherenkov angle θC and
the number Nγ of Cherenkov photons reconstructed in the Detector of Internally Reflected
Cherenkov light. The three sub-detectors are to a large extent complementary, in the
sense that they exhibit their maximum π/K/p discriminating power at different particle
momentum ranges. The particle ID information from each of the three subdetectors is
used to calculate a likelihood, for a given particle hypothesis. A subsystem provides
particle information for a charged track if a number of minimal requirements are satisfied.
The global likelihood for a given particle hypothesis is thus given by the product of the
likelihoods of the subsystems that pass the requirements for that track. The requirements
and momentum ranges are listed in Table 3.7: they are optimized to keep a very high
acceptance efficiency.
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Figure 3.1: Momentum distribution of charged and neutral pions and charged kaons
produced in the B → D0K decay chain. [Simulated B → D0K events]

The SVT and DCH likelihoods [66] are gaussian probability density functions (PDFs)
whose mean and width are given by the expected central value and the estimated res-
olution of the truncated dE/dx mean. Both these parameters depend on the particle
momentum. The DIRC likelihood [66] is expressed as the product of a Gaussian PDF
associated to the measured Cherenkov angle θC and a Poissonian PDF for the number
Nγ of detected Cherenkov photons. The mean and width of the Gaussian θC PDFs
are given by the expected Cherenkov angle and the corresponding resolution, the mean
of the Poissonian Nγ PDF is the expected number of photons: all these parameters
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Figure 3.2: Efficiency of the four kaon and pion selectors used in this analysis: from top
to bottom, KaonLHNotAPion (first row), KaonLHVeryLoose (second row), PionLHVery-
Loose (third row), PionLHLoose (last row). The efficiencies of the kaon selectors are
measured on a control sample of kinematically selected kaons, the efficiencies of the pion
selectors are measured on a control sample of kinematically selected pions.

depend on the particle momentum and polar angle. The parameters entering the like-
lihood functions are determined on pure control samples of pions, kaons (typically from
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Figure 3.3: Mis-identification rate of the four kaon and pion selectors used in this analy-
sis: from top to bottom, KaonLHNotAPion (first row), KaonLHVeryLoose (second row),
PionLHVeryLoose (third row), PionLHLoose (last row). The mis-identification rates of
the kaon selectors are measured on the pion control sample and viceversa.

D∗+→D0(→K−π+)π+) and protons selected with kinematical requirements that do not
make use of the PID information. Additional information from the EMC, as described
in Section 2.6.2, or from the IFR, as described in Section 2.7.2, is used to compute the
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detector measured quantities momentum range requirements

SVT dE/dx 0.025 < p < 0.7 GeV/c > 3 dE/dx samplings
p > 1.5 GeV/c

DCH dE/dx 0.090 < p < 0.7 GeV/c > 10 dE/dx samplings
p > 1.5 GeV/c

DIRC Nγ 0.6 < p < 10 GeV/c expected number of
θC photons > 0

Table 3.7: Momentum domains and requirements that a charged track must satisfy in
order that a subsystem provide particle information.

global likelihood for electrons and muons respectively.
In BABAR several “PID selectors” are defined, which – by applying requirements on

likelihood ratios – allow to select charged particles with known efficiency ε and mis-
identification rate r. Several selection criteria are provided, which are characterized
by different combinations of (ε, r) (in general, the lower r, the lower ε). We make
use of two kaon selectors, called KaonLHNotAPion and KaonLHV eryLoose, and two
pion selectors, called PionLHV eryLoose and PionLHLoose. These selectors are op-
timized for high efficiency: the PionLHLoose and KaonLHV eryLoose, compared to
the PionLHV eryLoose and KaonLHNotAPion, adopt more stringent criteria and have
lower mis-identification rates, at the price of slightly lower efficiencies. The criteria used
by these selectors are summarized in Table 3.8, where the likelihoods for the pion, kaon
and proton hypothesis are indicated with Lπ, LK and Lp, respectively. The efficiency of

Selector K/π p e

KaonLHNotAPion LK/Lπ > 0.2 - -
KaonLHVeryLoose LK/Lπ > 0.5 LK/Lp > 0.018 |p|<0.4 GeV/c or Le/Lπ < 0.95
PionLHVeryLoose LK/Lπ < 0.98 Lp/Lπ < 0.98 -

PionLHLoose LK/Lπ < 0.82 Lp/Lπ < 0.98 Le/Lπ < 0.95

Table 3.8: Criteria applied for the identification of charged kaon and pions by four “se-
lectors” provided in the BABAR analysis framework.

these selectors as a function of laboratory momentum p of the charged track is shown in
Figure 3.2, while their mis-identification rate as a function of p is shown in Figure 3.3 [67].

3.3.3 Photon selection

Photon candidates are reconstructed in the electromagnetic calorimeter as reported in
Section 2.6. In this analysis photons are required to have energy greater than 30 MeV
and a lateral shower shape consistent with the expected pattern of energy deposit from an
electromagnetic shower (LAT< 0.8).2 The geometrical acceptance of the electromagnetic
calorimeter is 90% in the center-of-mass frame, and the photon reconstruction efficiency
of these selection criteria is above 96% for momenta greater than 600 MeV/c, and falls to
88-91% at lower momenta, as shown in Figure 3.4 [69].

2The lateral energy distribution LAT [68] is defined as

LAT =

Pn
i=3 Eir2

i
Pn

i=3 Eir2
i + E1r2

0 + E2r2
0

, E1 > E2 > . . . > En (3.2)

where the sum extends over all crystals in a shower, r0 = 5 cm is the average distance between two
crystals frontfaces, and ri is the distance between crystal i and the shower center (calculated as the
center of gravity with linear energy-weighting of every crystal).
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Figure 3.4: Efficiency, as a function of laboratory momentum, of the photon selection
described in the text, as measured in a pure control sample of photons from π0→γγ
decays isolated in τ→ρ(→π0π) decays. Blue dots correspond to the efficiency measured
in real data, red dots represent the expected efficiency from simulation.

3.4 “Composite” candidates reconstruction

In this Section we describe how very short-lived particles (π0, φ, ω and D0 mesons) and
short-lived K0

S
mesons (which do not interact with the tracking systems, but decay before

reaching the outer calorimeters), produced in the B → D0h decay chain, are identified by
means of their charged and neutral decay products, selected with the criteria defined in the
previous subsections. Background from random combinations of charged tracks or photons
in the event is typically suppressed by selecting only the combinations which emerge from
a common space-point (decay vertex) and whose invariant mass is sufficiently close to the
known mean mass of the particle. Additional information such as, for instance, angular
correlations due to the spin of the particles, can be used to further suppress background
events.

3.4.1 π0 reconstruction

π0 candidates are reconstructed in the decay mode γγ, from photon pairs with total energy
greater than 200 MeV and invariant mass mπ0 (computed assuming that the photons
are originated in proximity of the primary vertex) in the range 115–150 MeV/c2. This
corresponds to a ±2.5σmπ0 window around the mean value 〈mπ0〉, where σmπ0 ≈ 7 MeV/c2

is the π0 mass resolution, as shown in Figure 3.5(a).
Photon pairs that pass the selection criteria, and are used in the D0→K0

S
π0 and

ω→π+π−π0 reconstruction, are kinematically fit [72] with their invariant mass constrained
to the nominal π0 mass [16]: the π0 RMS momentum resolution is thus improved from
22.5 MeV/c to 19.0 MeV/c.

3.4.2 K0
S

reconstruction

K0
S

candidates are reconstructed in the decay mode π+π−, from pairs of oppositely-
charged tracks. The π+π− invariant mass mK0

S
– computed by assigning the pion mass to

both tracks – must be within a ±7.8 MeV/c2 window around the mean value 〈mK0
S
〉: this

corresponds to a ±3σm
K0

S

window, where σm
K0

S

≈2.6 MeV/c2 is the K0
S

mass resolution,

as shown in Figure 3.5(b). The efficiency of this cut is 94% due to the presence of
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Figure 3.5: Invariant mass distribution of correctly-identified π0 → γγ (left) and
K0

S
→π+π− decays (right) in B → D0K, D0→K0

S
π0 simulated events.

non-Gaussian tails in the mK0
S

distribution of true K0
S

candidates. The two pions are
constrained to originate from the same point. We require that this point be significantly
displaced, along the direction of the total momentum of the two pions, from the D0 decay
vertex, by retaining only candidates for which the ratio between the separation dxy of the
decay vertices of the K0

S
and the D0 in the transverse plane and its error σdxy

is greater
than 2, and the angle between the flight direction of the K0

S
and the total momentum of

the two pions in the transverse plane is lower than 90◦. After having applied the previous
criteria, fake K0

S
candidates in which at least one of the two charged tracks does not

correspond to a pion are negligible so we do not apply any PID requirement to the K0
S

daughters.

3.4.3 φ reconstruction

φ candidates are reconstructed in the decay mode K+K−, from pairs of oppositely charged
tracks with invariant mass mφ – computed by assigning the kaon mass to both – within a
±12 MeV/c2 window3 around the mean value 〈mφ〉. The two kaons are required to pass
the KaonLHNotAPion PID selector and are constrained to originate from the same point.

The mφ distribution of true φ→K+K− that are correctly reconstructed can be pa-
rameterized by means of a Breit-Wigner PDF, with mean 〈mφ〉 = 1019.42± 0.03 MeV/c2

and width (fixed to the PDG value) Γφ = 4.26 MeV/c2, convolved with a Gaussian reso-
lution function with width σmφ

= 1.07 ± 0.06 MeV/c2 (see Figure 3.8). The requirement
|mφ−〈mφ〉| < 12 MeV/c2 has therefore an efficiency around 93% for true φ candidates. A
comparison of the invariant mass distribution of φ candidates selected in the B → D0K,
D0→K0

S
φ analysis in signal and background simulated events is shown in the right plot

of Figure 3.6.
Angular momentum conservation in the decay of a pseudoscalarD0 meson to the vector

φ and a pseudoscalar K0
S

requires that the φ be produced with helicity 0. The subsequent
decay of the φ into two kaons then yields a distribution of the cosine of the φ decay angle
θhel(φ) (the angle of the kaon in the φ rest frame with respect to the direction of the φ
in the D0 rest frame) which shows a characteristic cos2 θhel(φ) behaviour. In background
events the cos θhel(φ) distribution is flat for fake φ candidates reconstructed from random
combinations of charged tracks, and is a sum of a constant and a cos2 θhel(φ) distribution
- due to partial polarization - for true φ candidates. The cos θhel(φ) distribution for signal

3The φ width is Γφ = 4.26 ± 0.05 MeV/c2
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Figure 3.6: Left: invariant mass (mφ) distribution of correctly identified φ → K+K−

mesons in B → D0K, D0 → K0
S
φ simulated events. Right: mφ distributions of φ can-

didates reconstructed in the B → D0K, D0 → K0
S
φ analysis in signal (B → D0K) and

background (qq and BB) simulated events.

and background events (normalized to the same integral) is shown in Figure 3.7. We
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Figure 3.7: Helicity angle distribution of φ → K+K− candidates reconstructed in the
B− → D0K−, D0→K0

S
φ analysis, in signal B → D0K, qq and BB simulated events.

Left: correctly-identified φ → K+K− decays. Right: fake φ candidates.

require:
|cos(θhel(φ))| > 0.4, (3.3)

thus rejecting 40% of fake φ candidates, while retaining about 94% of the true φ candidates
reconstructed in B → D0h, D0 → K0

S
φ events.

3.4.4 ω reconstruction

ω candidates are reconstructed in the decay mode π+π−π0 from combinations of two
oppositely-charged tracks and a neutral π0 with invariant mass mω – computed by as-
signing the pion mass to the two charged particles – inside a ±18 MeV/c24 around the

4The ω width is Γω = 8.49 ± 0.08 MeV/c2

82



mean value 〈mω〉. The two charged pions are required to pass the PionLHVeryLoose PID
selector and are constrained to have a common vertex.

A comparison of the ω invariant mass in signal and background events on Monte Carlo
is shown in Figure 3.8. Themω distribution in true ω→π+π−π0 decays can be described as
the convolution of a Breit-Wigner, with mean 〈mω〉 = 781.4±0.2 MeV/c2 and width (fixed
to the PDG value) Γω = 8.49 MeV/c2, and a Gaussian resolution function with width
σmω

= 6.9 ± 0.2 MeV/c2 (see Figure 3.8). The requirement |mω − 〈mω〉| < 18 MeV/c2

has therefore an efficiency around 87% for true ω candidates.
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Figure 3.8: Left: invariant mass (mω) distribution of correctly identified ω → π+π−π0

mesons in B → D0K, D0 → K0
S
ω simulated events. Right: mω distributions of ω

candidates reconstructed in the B → D0K, D0 → K0
S
ω analysis in signal (B → D0K)

and background (qq and BB) simulated events.

In the ω→π+π−π0 decay the three daughter pions are produced, in the ω rest frame,
in a plane. The normal helicity angle θN is the angle between the normal to this plane
and the direction of the ω in the D0 rest frame: for ω mesons produced in D0 → K0

S
ω

decays, which have helicity 0, cos θN follows a cos2 θN distribution, while for unpolarized
ω mesons or for fake ω candidates reconstructed from random combinations of two tracks
and a π0 the cos θN distribution is roughly flat (see Figure 3.9). Another angular vari-
able which characterizes the three-pion system is the Dalitz angle θππ between the flight
direction of one of the three pions in the ω rest frame and the flight direction of one of
the two other pions in their center-of-mass frame. In true ω→π+π−π0 decays (indepen-
dently of the ω polarization) cos θππ is distributed like sin2 θππ, while fake ω candidates
reconstructed from random combinations of two tracks and a π0 exhibit an almost flat
cos θππ distribution (see Figure 3.9). We require

cos2 θN sin2 θππ > 0.08, (3.4)

thus rejecting 45% of fake ω candidates while keeping 95% of the true ones selected in
B → D0K, D0 → K0

S
ω decays.

3.4.5 D0 reconstruction

D0 candidates are reconstructed in the CP -odd eigenstates K0
S
π0, K0

S
φ, K0

S
ω, in the CP -

even eigenstates K+K− and π+π− and in the non-CP eigenstate K−π+. Charged kaons
and pions and neutral K0

S
, π0, φ and ω mesons are selected according to the criteria de-

scribed in the previous sections, and every two-body combination of these which is consis-
tent with one of the sixD0 decay modes under study, with total center-of-mass momentum
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Figure 3.9: Distribution of the Dalitz angle cos θππ (left column) and of the normal helicity
angle cos θN (right column) in signal and background simulated events reconstructed in
the B− → D0K−,D0→K0

S
ω analysis. The top plots correspond to correctly identified ω

candidates: in background events cos θN does not follow a pure cos θ2N distribution since
the ω is only partially polarized. The bottom plots correspond to fake ω candidates

p∗ > 1.3 GeV/c and invariant mass mD0 within a ±2.5σmD0 window around the mean
value 〈mD0〉, is considered a D0 candidate. With the exception of the D0→K0

S
π0 case, the

two D0 daughters are constrained to have a common vertex. Kaons from D0→K−π+ and
D0→K+K− are required to pass the KaonLHVeryLoose PID selector, pions from D0 →
π+π− are required to pass the PionLHLoose PID selector. The decay angle θhel(D

0) of the
D0, defined as the angle between the direction of one D0 daughter in the D0 rest frame
and the direction of the D0 in the B rest frame, is expected from angular momentum
conservation to follow a flat cos θhel(D

0) distribution, while cos θhel(D
0) is peaked at ±1

in background e+e−→qq events where a fake D0 is picked from a random combinations of
tracks and neutral objects in the two light quark jets, as shown for instance in Figure 3.10
for the D0→π+π− mode. In D0 decay modes (π+π−, K0

S
π0 and K0

S
ω) which are affected

by a higher e+e−→qq combinatorial background we require | cos θhel(D
0)| < 0.9.

The mean D0 invariant mass 〈mD0〉 and its resolution σm
D0 , determined from Gaus-

sian fits to the invariant mass distributions of true reconstructed D0 candidates in simu-
lated B → D0K events are summarized in Table 3.9. A comparison of the D0 invariant
mass in signal and background events on Monte Carlo is shown in Figure 3.11.

With a mass-constraint refit of the D0 candidates, where m0
D is fixed to the nominal

D0 mass [16], the D0 RMS momentum resolution is improved by about 35% in the K−π+,

84



))
0

(Dhelθcos(
-1 -0.5 0 0.5 1

0

0.02

0.04

0.06

0.08

0.1

0.12

))
0

(Dhelθcos(
-1 -0.5 0 0.5 1

0

0.02

0.04

0.06

0.08

0.1

0.12 -K0 D→-B

qq

BB
-π+π → 0D

Figure 3.10: Distribution of the decay angle of the candidate D0 reconstructed in the
B → D0K,D0 → π+π− analysis in signal (B− → D0K−) and background (qq and BB)
simulated events.

D0 mode 〈m0
D〉 ( MeV/c2) σm0

D
( MeV/c2)

K−π+ 1864.5 ± 0.1 7.2 ± 0.1
K+K− 1864.6 ± 0.1 6.5 ± 0.1
π+π− 1864.5 ± 0.1 7.9 ± 0.1
K0

Sπ0 1864.1 ± 0.3 20.0 ± 0.2
K0

Sφ 1865.4 ± 0.1 4.1 ± 0.1
K0

Sω 1864.2 ± 0.2 9.2 ± 0.2

Table 3.9: D0 invariant mass mean value 〈mD0〉 and resolution σm
D0 in simulated B →

D0K events.

K+K−, π+π− (from ≈ 20 MeV/c to ≈ 13 MeV/c) and K0
S
π0 (from 31 to 20 MeV/c) decay

modes, and by about 15% in the K0
S
φ and K0

S
ω modes (from 22 to 19 MeV/c and from

24 to 20 MeV/c respectively).

3.5 B reconstruction

B mesons are reconstructed by combining aD0 candidate with a charged track (“bachelor”
or “prompt”) h. With the exception of the D0→K0

S
π0 case, the prompt track and the D0

are constrained to have a common vertex. The prompt particle is required to be detected
by the DIRC with at least 5 Cherenkov photons (Nγ ≥ 5), and its measured Cherenkov
angle θC must be within 4 σθC

from the expected mean angle in the pion (θexp
C (π)) or kaon

(θexp
C (K)) hypotheses, where σθC

is the Cherenkov angle resolution. Information from the
ElectroMagnetic Calorimeter and from the Instrumented Flux Return is used to reject
tracks that are identified as electrons and muons, with very low pion mis-identification
rates: 0.3% and 2% for e± and µ±, respectively [70, 71, 67].

One of the advantages of studying B physics in an e+e− collider at the Υ (4S) resonance
is the kinematic constraint provided by the initial state. The energy of each B meson in
the Υ (4S) frame must be equal to

√
s/2, where

√
s is the total e+e− CM energy. This

constraint is exploited by introducing two almost uncorrelated kinematical variables [73],
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Figure 3.11: Invariant mass distribution of D0 candidates reconstructed in signal (B →
D0K) and background (qq and BB) simulated events, in each of the six decay D0 modes
under study. The distributions are normalized to the same area.

the energy-substituted mass:

mES ≡
√

(
1

2
s+ p0 · pB)2/E2

0 − p2
B. (3.5)

and the energy difference ∆E:

∆E ≡ E∗
B − E∗

beam (3.6)
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The physical quantities pi (i = 0, B) and E0 in (3.5) are measured in the laboratory
frame and the subscript 0 and B refer to the e+e− system and the reconstructed B meson,
respectively; E∗

B is the reconstructed CM energy of the candidate B. E∗
beam =

√
s/2 is the

reconstructed CM beam energy. For correctly reconstructed B decays mES peaks at the
B mass, as shown in Figure 3.12(a), while ∆E peaks at zero, as shown in Figure 3.12(b):
their correlation is ≈ −8%, as shown in Figure 3.13.
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Figure 3.12: mES (left) and ∆E (right) distributions of B candidates reconstructed, in
the B → D0K, D0 → K+K− analysis, in signal (B− → D0K−) and background (qq and
BB) simulated events. The distributions are normalized to the same area.
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Figure 3.13: 2-dimensional {mES,∆E} distribution of correctly identified B mesons re-
constructed in the B → D0K, D0 → K+K− analysis

By definition, mES depends on the B momentum in the laboratory frame but not on
its energy, and is therefore independent of the mass hypothesis of the prompt particle, as
shown in Figure 3.14(a). On the other hand, ∆E depends on the B energy and thus on the
mass assignment of the prompt track h, as shown in Figure 3.14(b). When not explicitly
stated, we reconstruct the ∆E variable by assigning the kaon mass to the bachelor track,
otherwise the mass hypothesis of the prompt track will be explicitly indicated by writing
∆Eh, where h = π or K. The dependence of ∆E on the mass of the prompt particle will
be used in the unbinned maximum likelihood fit of Chapter 4 as a means to separate
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Figure 3.14: mES (left) and ∆E (right) distributions of correctly identified B → D0K
and B → D0π decays in B− → D0h− simulated events.

B− → D0π− from B− → D0K− decays.

The mES resolution, σmES , is determined by the B meson true energy spread, which
depends on event-by-event beam energy variations, σE∗

beam
≈ 2.6 MeV [48], and by the B

momentum measurement error in the Υ (4S) frame, σp∗
B
≈ 16 MeV/c:

σ2
mES

≈ σ2
E∗

beam
+

(
p∗B
MB

)2

σ2
p∗

B
. (3.7)

Since in the Υ (4S) frame p∗B/MB ≃ 0.06, σ2
mES

is dominated by the beam energy fluc-

tuations: the mES distribution of correctly reconstructed B → D0K decays is there-
fore independent of the D0 decay mode, as observed in simulated signal events. The
mES distribution of correctly identified B → D0K (D0 → K+K−) decays is shown in
Figure 3.15(a). It has been parameterized with the sum of two Gaussian functions,

N

(

f1× 1√
2πσ1

e
− 1

2

“

mES−µ1
σ1

”2

+ (1 − f1)× 1√
2πσ2

e
− 1

2

“

mES−µ2
σ2

”2
)

, since for a small fraction

(1 − f1 ≈ 4%) of the candidates the B energy is slightly underestimated due to photon
radiation in the final state. The width of the core Gaussian function is σmES ≡ σ1 =
(2.51 ± 0.03) MeV/c2. We select B candidates with mES within a ±3 σmES range from
the mean value 〈mES〉 ≡ µ1, where – since the mES distribution for signal events is the
same in all channels – we use the values of 〈mES〉 and σmES determined on B− → D0π−,
D0→K−π+ candidates. In off-resonance data, which are collected at a center-of-mass
energy 40 MeV below the Υ (4S) peak, the mES distribution is shifted – with respect to
that of qq events in on-resonance data – by -20 MeV: for this reason, the off-resonance
sample is selected by requiring |mES + 20 MeV − 〈mES〉| < 3σmES .

The r.m.s. spread of the ∆E distribution in B → D0K decays depends on the B
energy measurement resolution σE∗

B
and on the spread in E∗

beam:

σ2
∆E = σ2

E∗
beam

+ σ2
E∗

B
. (3.8)

Since σE∗
B
≈ 17 MeV for B mesons reconstructed in the decay modes studied in the anal-

ysis, while σE∗
beam

≈ 2.6 MeV, σ∆E is dominated by the energy measurement error. Due

to the D0 mass-constraint, σE∗
B

is almost independent on the D0 channel, and the final

∆E resolution for correctly reconstructed B− → D0K− candidates is almost the same
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Figure 3.15: mES (left) and ∆E (right) distribution for true reconstructed B− → D0K−,
D0→K+K− decays.

in every channel, σ∆E ≈ 17 MeV (Figure 3.15(b)). Like the mES one, also the ∆E
distribution of true B → D0K candidates has been parameterized with the sum of two

Gaussian functions, N

(

f1× 1√
2πσ1

e
− 1

2

“

∆E−µ1
σ1

”2

+(1−f1)× 1√
2πσ2

e
− 1

2

“

∆E−µ2
σ2

”2
)

, to take

into account the small fraction 1− f1 of B candidates whose energy is slightly underesti-
mated. The width of the core Gaussian function is σ∆E ≡ σ1 = (16.6 ± 0.1) MeV.

For true B− → D0π− decays the assignment of the kaon mass to the prompt pion
leads to overestimate its center-of-mass energy and therefore its measured ∆E is shifted
by a quantity

∆Eshift ≡ ∆EK − ∆Eπ = γ

(√

m2
K + p2 −

√

m2
π + p2

)

(3.9)

with respect to the true value, where γ ≡ EΥ (4S)/MΥ (4S) ≈ 1.144 and p is the bachelor
track momentum in the lab frame. As the momenta of the reconstructed prompt tracks
are almost equivalently distributed in the range [1.5, 4.0] GeV/c, it follows: 5

∆Eshift ∈ [30, 85] MeV

〈∆Eshift〉 ≃ 50 MeV

σ∆E (B → D0π) ≈ 21 MeV (3.12)

This is shown in Figure 3.14, where the ∆EK distributions of correctly identified B →
D0π and B → D0K candidates in simulated B → D0h events are overlaid, and in
Figure 3.16.

Since ∆E is used as a discriminating variable in the final fit, only a loose cut is applied
to it: B candidates with ∆E in the range [−160, 230] MeV are selected. The asymmetry
of the selection cut takes into account the shift from zero by ≈ 50 MeV of the B → D0π
∆E distribution.

5It is easily seen that ∆Eshift can be written

∆Eshift = γp

„

q

1 + (mK/p)2 −

q

1 + (mπ/p)2
«

(3.10)

≈ γp

  

1 +
1

2

m2
K

p2

!

−

„

1 +
1

2

m2
π

p2

«

!

=
γ

2p

`

m2
K − m2

π

´

≈
0.128 GeV/c

p
(3.11)
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Figure 3.16: ∆E distribution for true reconstructed B− → D0π−, D0→K+K− decays.
The distribution has been parameterized (solid line) with the sum of two Gaussian func-
tions. The width of the core Gaussian is σ∆E = σ1 = (20.9 ± 0.2) MeV.

3.5.1 Additional selection criteria

In the channelB− → D0K−, D0→π+π−, a significant contribution to theBB background
in the ∆E signal region ([-50,50] MeV) comes from the much more abundant processes
B− → D0π−, D0→K−π+, and B− → K̄∗0

X [K−π+]π− (where K∗0
X can be K∗0(892),

K∗0(1430) or nearby resonances), where the prompt pion is incorrectly identified as a
D0 daughter and the charged kaon from the D0 or K∗0

X is incorrectly identified as a B
daughter. We remove this background contributions by requiring that the invariant mass
of the system given by the prompt track and the pion from D0 with opposite charge be
greater than 1.9 GeV/c2.

3.6 Continuum background suppression through event-

shape variables

After having reconstructed and selected B → D0h, D0 → X1X2 candidates (X1X2 =
K−π+, K+K−, ...) as described in previous Sections, surviving background candidates
arise primarily from e+e−→qq (q = u, d, s, c) events, in which random combinations
of tracks and photons in the event are picked up in the reconstruction, and from mis-
reconstructed e+e−→Υ (4S)→BB events. In this section we describe how qq background
is further (partially) suppressed: its final separation from the signal is done in the final
fit, described in Chapter 4, together with the BB background measurement.

We reduce fake B candidates from qq events by making use of some event shape
variables that exploit the different topologies of e+e−→qq and BB events in the center-
of-mass frame, the Υ (4S) rest frame. The two B mesons produced in Υ (4S)→BB decays
are in fact almost at rest in the center-of-mass frame, there is no direction preferred
by their decay products and the BB events are thus spherical. On the other hand, the
light quarks from e+e−→qq are produced with a significant momentum and their decay
products are contained in two more or less collimated back-to-back jets.

All the shape variables that we have investigated are defined in terms of quantities
(momenta and angles) measured in the center-of-mass (CM) frame. Two recurring con-
cepts in their definitions are those of:

• rest-of-event (ROE), i.e. the set of all detected tracks and photons in the event that
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have not been used to reconstruct the B → D0h candidate.

• thrust axis (T̂ ) and thrust (T ) [74]. The thrust axis is the direction T̂ , in the CM
frame, that maximizes the thrust:

T = max

(∑

i |T̂ · p∗
i |

∑

i |p∗
i |

)

(3.13)

p∗
i is the center-of-mass momentum of the i-th (charged or neutral) particle. The

thrust can be computed by summing over all tracks and photons in the event (T ), or
considering only objects belonging to the B decay tree (TB) or to the ROE (TROE).

The event-shape variables that we have considered are:

• The Legendre monomials, a set of momentum-weighted sums of the tracks and
neutrals in the ROE [75]:

Lj =
ROE∑

i

p∗i × |cos(θ∗i )|j (3.14)

θ∗i is the CM angle between p∗
i and the thrust axis T̂B of the B candidate. We have

considered only the L0, L2 pair, since many analyses in BABAR have shown that
adding other Lj (j 6= 0, 2) to the set of discriminating variables does not improve
its signal/background separating power.

• the thrust computed using tracks and photons in the rest-of-event, TROE.

• RROE
2 , the ratio of the Fox-Wolfram moments HROE

2 /HROE
0 , computed using tracks

and photons in the rest-of-event. HROE
l is defined as [76] :

HROE
l ≡

ROE∑

i,j

|p∗
i ||p∗

j |
E∗2

vis

Pl(cos θ∗ij) (3.15)

Pl are the Legendre polynomials, θij is the opening angle between p∗
i and p∗

j , and
E∗

vis is the total visible energy of the event. For jet-like continuum events |x| =
| cos θij | is peaked at zero, while for spherical BB events | cos θij | is more uniformly
distributed: since P2(x) = 1

2 (3x2−1), then RROE
2 is shifted towards one in qq events

and towards zero in BB events.

Other shape variables have been investigated but have not been used since they do not
provide significant signal/background discrimination.

Additional signal/continuum background separation can be gained using quantities
that are known from angular momentum conservation to have different distributions in
signal and qq events. We consider the following two quantities:

• | cos(p∗
B , ẑ)| is the cosine of the angle of the B candidate momentum with respect

to the beam (z) axis. In Υ (4S) → BB decays it follows a sin2(p∗
B, ẑ) distribution

while it is flat in qq events (modulo distortions due to the detector acceptance).

• | cos(T̂B, ẑ)| is the cosine of the angle of the B candidate thrust axis with respect
to the z axis. Modulo acceptance effects, signal events have an almost uniform
distribution6 and background events follow a 1 + cos2(T̂B, ẑ) shape.
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Figure 3.17: Distributions of the six event-shape variables considered in the analysis, in
simulated B− → D0K−, qq and BB simulated events, where the D0 is reconstructed in
the D0 → K+K− decay mode.

The distribution of the six quantities L0, L2, T
ROE, RROE

2 , | cos(T̂B, ẑ)| and | cos(p∗
B , ẑ)|,

for simulatedB → D0K,D0→K+K− and qq events and for events selected in off-resonance
data in the D0 → K+K− analysis, are shown in Figure 3.17.

To take into account the correlations between the event shape variables and achieve
a better signal/continuum background separation we have combined them into a linear

6The distribution is not perfectly flat, within the statistical fluctuations, because of the small – but
not zero – B momentum in the Υ (4S) frame.
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combination (Fisher discriminant [77]). The coefficients of the Fisher discriminant have
been optimised for maximum statistical separation following a standard procedure [78]
using MC samples of true signal events and qq events. Replacing qq simulated events with
off-resonance data has yielded optimized coefficients that are consistent with those found
in the previous case. The statistical separation that has been maximised is defined as:

separation =
µ(signal) − µ(qq background)

√

σ(signal)2 + σ(qq background)2
(3.16)

where µ, σ(signal) and µ, σ(qq background) are the mean and witdh of the Fisher dis-
criminant distributions for the signal and the continuum background, and depend on the
shape variables included in the linear combination and on their coefficients.

We have considered, for all the six decay modes under investigation, seven different
Fisher discriminants with various combinations of discriminating variables:

• F1: L0, L2

• F2: L0, L2, | cos(p∗
B, ẑ)|

• F3: L0, L2, | cos(T̂B, ẑ)|

• F4: L0, L2, R
ROE
2

• F5: L0, L2, T
ROE

• F6: L0, L2, | cos(T̂B, ẑ)|, | cos(p∗
B , ẑ)|

• F7: L0, L2, | cos(T̂B, ẑ)|, | cos(p∗
B , ẑ)|, RROE

2 , TROE

We have studied on Monte Carlo the simultaneous efficiency for signal and for contin-
uum background of different selection criteria for all the Fisher discriminants that have
been described. The signal efficiency versus continuum background efficiency, not very
different among the seven combinations under study, is shown in Figure 3.18.

K0 D→eff. B 
0 0.2 0.4 0.6 0.8 1

K0 D→eff. B 
0 0.2 0.4 0.6 0.8 1

q
e
ff

. 
q

0

0.2

0.4

0.6

0.8

1
F1

F2

F3

F4

F5

F6

F7

+K- K→ 0D

Figure 3.18: Signal efficiency versus continuum background efficiency for different selection
criteria and different combinations of the discriminating shape variables. [Simulated B →
D0K and qq events]

The combination that gives the best discriminating power and is defined with the
minimum number of variables is F ≡ F6, whose distribution in signal and qq background
events is reported in Figure 3.19 for the six D0 decay channels. In all the six decay modes,
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the F distribution of correctly identified B → D0K candidates peaks at µ(signal) ≈ −0.41
and has a width σ(signal) ≈ 0.43, while the F -distribution in qq events peaks at µ(qq) ≈
0.38 and has a width σ(qq) ≈ 0.48: the separation is about 1.23 in all the six cases. We
have required F < 0.28 for events in which the D0 is reconstructed in the K−π+ and K0

S
φ

modes, and F < 0.0 for events in which the D0 is reconstructed in the remaining four
decay modes, where the level of continuum background is higher. The signal selection
efficiency is 93% in the first case and 82% in the second case; the qq background rejection
rates are 58% and 79% for F < 0.28 and F < 0.0, respectively.
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Figure 3.19: Distribution of the Fisher discriminant adopted to reduce the continuum
background in simulated B− → D0K− and qq events and in off-resonance data.
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3.7 Arbitration of multiple candidates

When reconstructing B candidates, it can sometimes happen that more than one com-
bination satisfies the selection criteria in the same event. The rate at which this occurs
depends on the reconstructed decay mode and on the selection cuts. It is very small when
the D0 is selected in the K−π+, K+K−, π+π− and K0

S
φ final states, but it increases

when a D0→K0
S
π0 or D0→K0

S
ω is reconstructed, because the probability to select a fake

candidate (due especially to misreconstructed ω or π0 candidates) is higher.
We define the multiplicity as the ratio of the total number of selected candidates to

the number of events in which at least one candidate is found. Figure 3.20 displays
the distribution of B → D0h candidates per event, selected in data with the standard
selection summarized in Tables 3.11, 3.12,3.13. The resulting multiplicity is reported on
each plot. The multiplicity differs from 1 by less than 1% for the K−π+, K+K−, π+π−,
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Figure 3.20: Distribution of the number of selected B candidates per event, before the
application of the arbitration algorithm. The multiplicity values are shown. The B
candidates are selected in data.

K0
S
φ selection, by 5% for the K0

S
π0 selection and by 7% for the K0

S
ω selection.

In order to select only one candidate per event it is necessary to define a criterion
that permits to identify, as far as possible, the combination with the larger probability
to be a true signal B → D0h decay. The D0 invariant mass and the energy-substituted
mass are chosen as discriminating quantities in all the channels. For the D0→CP -odd
channels we also include, in the set of the discriminating variables, the invariant masses
of the candidate φ, ω and π0. In events with multiplicity greater than one, the candidate
with the minimum value of χ2 is selected, with χ2 defined as:
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• in the D0→K−π+, K+K−, π+π− case:

χ2 =
(mD0 − 〈mD0〉)2

σ2
mD0

+
(mES − 〈mES〉)2

σ2
mES

(3.17)

• in the D0→K0
S
π0 case:

χ2 =
(mD0 − 〈mD0〉)2

σ2
mD0

+
(mES − 〈mES〉)2

σ2
mES

+
(mπ0 − 〈mπ0〉)2

σ2
mπ0

(3.18)

• in the D0→K0
S
φ case:

χ2 =
(mD0 − 〈mD0〉)2

σ2
mD0

+
(mES − 〈mES〉)2

σ2
mES

+
(mφ − 〈mφ〉)2
σ2

mφ
+ Γ2

φ

(3.19)

• in the D0→K0
S
ω case:

χ2 =
(mD0 − 〈mD0〉)2

σ2
mD0

+
(mES − 〈mES〉)2

σ2
mES

+
(mπ0 − 〈mπ0〉)2

σ2
mπ0

+
(mω − 〈mω〉)2
σ2

mω
+ Γ2

ω

(3.20)

The effect of the criterion has been fully investigated on simulated B → D0h decays.
Table 3.10 lists, for all the six D0 decay modes under study, the average multiplicity m in
background events, the fraction f of signal events in which, after all the other selection
criteria have been applied, more than one candidate is found, and the right choice rate

r. The latter is defined as the number of events, with multiplicity greater than one,
in which the true B candidate has been chosen by the arbitration algorithm, divided
by the total number of events, with multiplicity greater than one, in which the true B
candidate is present. In other words, the right choice rate is a measure of how many
times, in events with multiple candidates, the arbitration algorithm selects – if present
– the correct B → D0h candidate. In the end, in the selected samples, the fraction of
rejected background candidates, equal to m-1, is very small (between 0.2 and 0.6%) in the
K−π+, K+K−, π+π− and K0

S
φ modes, while it is about 5% in the K0

S
π0 mode and 8%

in the K0
S
ω mode. The fraction of signal candidates that are removed by the arbitration,

equal to f × (1− r), is about 0.1% in the K−π+, K+K−, π+π− and K0
S
φ modes, 0.7% in

the K0
S
π0 mode and 1.7% in the K0

S
ω mode.

D0 decay Multiplicity in Fraction of B → D0h events right choice
mode bkg events with multiple B candidates rate (%)

K−π+ 1.002 0.5% 68 ± 3
K+K− 1.002 0.3% 78 ± 4
π+π− 1.006 0.4% 71 ± 4
K0

Sπ0 1.049 3.8% 82 ± 2
K0

Sφ 1.004 0.3% 97 ± 2
K0

Sω 1.079 8.7% 81 ± 2

Table 3.10: Average multiplicity m in simulated background events, fraction f of sim-
ulated signal B → D0h events with multiple candidates and right choice rate r of the
arbitration algorithm.
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Parameter Criterion

∆EK (MeV) [−160, 230]
|mES − 〈mES〉| < 3 σ
prompt PID VeryTightElectron=false and VeryTightMuon=false
prompt θC |θC − θC(π)|<4σ or |θC − θC(K)|<4σ
prompt Nγ ≥ 5
|mD0 − 〈mD0〉| < 2.5 σ

Table 3.11: B → D0h selection criteria that are common to all the six D0 decay modes
under investigation. The mean and width of mD0 are listed in Table 3.9.

3.8 Summary of the selection criteria

In this Section we summarize the B → D0h selection criteria, described in the previous
paragraphs. Criteria that are common to all D0 decay modes are listed in Table 3.11. We
report in Tables 3.12 and 3.13 the selection criteria that depend on the D0 decay mode
under study and the final selection efficiencies, evaluated on signal Monte Carlo, for true
B− → D0K− and B− → D0π− candidates: they are approximately 40% in the D0 →
K−π+ mode, 30% in the K+K− and π+π− modes, 20% in the K0

S
π0 and K0

S
φ modes and

7% in the K0
S
ω mode.

D0→K−π+ D0→K+K− D0→π+π−

Fisher discriminant < 0.28 < 0.0 < 0.0
D0 vertex probability > 0.01% > 0.01% > 0.01%
D0 | cos θhel| - - < 0.9
PID 1st D0 daughter KaonLHVeryLoose KaonLHVeryLoose PionLHLoose
PID 2nd D0 daughter - KaonLHVeryLoose PionLHLoose
other requirements - - m(hπ) > 1.9 GeV/c2

(mh=mK)

reco. efficiency

after arbitration
B → D0π 39.90 ± 0.21 % 31.24 ± 0.20 % 30.62 ± 0.20 %
B → D0K 39.49 ± 0.21 % 30.73 ± 0.20 % 30.27 ± 0.20 %

Table 3.12: Selection criteria used to select the candidate samples on which the unbinned
maximum likelihood fit is performed. The mean and width of mD0 are listed in Table 3.9.

3.9 Data-MC comparison

We show in Figures 3.21, 3.22, 3.23, 3.24 and 3.25 a comparison between Monte Carlo and
data for the distributions of the most relevant quantities that are used in the selection
or will be used in the final fit. The distribution of each variable is plotted after applying
the selection criteria to all the other quantities. The Monte Carlo sample is scaled to
the luminosity of the on-resonance data. At this stage we want to remain blind with
respect to the B− → D0K− signal, therefore we select only candidates within a ±50 MeV
∆Eπ window around zero (with the exception of Figure 3.21, where we consider a large
∆Eπ region) and apply a tight kaon veto to the prompt track. The agreement is good:
the overall background and signal normalizations are correctly estimated by the Monte
Carlo, and the small discrepancies in the mean or the width of the distributions of a few
quantities (mES, m(π0), m(D0[→ K0

S
π0])) are easily taken into account by adjusting the

corresponding criteria when selecting the B → D0h candidates on data. We can therefore
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D0→K0
Sπ0 D0→K0

Sφ D0→K0
Sω

Fisher discriminant < 0.0 < 0.28 < 0.0
D0 vertex probability - > 0.01% > 0.01%
D0 | cos θhel| < 0.9 - < 0.9
|mK0

S
−〈mK0

S
〉| (MeV/c2) < 7.8 < 7.8 < 7.8

K0
S signed 2D flight-length > 2σ > 2σ > 2σ

E(π0) ( MeV) > 200 - > 200
m(π0) (MeV/c2) [115, 150] - [115, 150]
|mφ − 〈mφ〉| ( MeV/c2) - < 12 -

| cos θhel(φ)| - > 0.4 -
PID φ daughters - KaonLHNotAPion -
|mω − 〈mω〉| ( MeV/c2) - - < 18
PID ω daughters - - PionLHVeryLoose
ω helicity angles - - cos2 θN sin2 θππ>0.08

reco. efficiency

after arbitration
B → D0π 17.75 ± 0.17 % 20.58 ± 0.17 % 6.99 ± 0.11 %
B → D0K 17.08 ± 0.16 % 20.11 ± 0.17 % 6.94 ± 0.11 %

Table 3.13: Selection criteria used to select the candidate samples on which the unbinned
maximum likelihood fit is performed. The mean and width of mD0 are listed in Table 3.9.

proceed to the signal yield extraction with the final fit.

3.10 Expected signal yields

The B → D0π and B → D0K signal yields expected, from Monte Carlo simulation,
in a statistics corresponding to that of the on-resonance data sample (L = 210.7 fb−1,
N(B±) = 231.8 × 106) are given in Table 3.14. The uncertainties from the number
of B± (1.1% [61], see Table 3.4) and from B, D0 and secondary branching fractions
(from PDG) are included (see Table 3.3). We also take into account uncertainties in
the estimated efficiencies, due to the limited statistics of the Monte Carlo samples and
to possible discrepancies between simulated and real events. Since absolute efficiencies
are not relevant for the final measurements presented in this thesis, as we quote only
asymmetries and branching fraction ratios in which most of the systematic errors on the
efficiencies cancel, we do not go into details in the treatment of these uncertainties, which
are summarized in Table 3.15. The tracks, π0, K0

S
reconstruction efficiency and PID

selection efficiency uncertainties have been evaluated according to the recipes provided by
BABAR collaborators who have compared pure control samples selected in data and Monte
Carlo [79, 80, 81]. The uncertainty on the efficiency of the selection criteria has been
estimated through a comparison with the similar B → D0

(CP±)K
∗ analysis that has been

performed in BABAR. About 150 B± → D0
CP+K

± and 200 B± → D0
CP−K

± are expected.
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Figure 3.21: ∆Eπ distribution of B → D0h candidates selected in data and in Monte
Carlo. All the selection criteria listed in Tables 3.11, 3.12 and 3.13 have been applied. In
addition a tight kaon veto has been applied to the prompt track h.
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Figure 3.22: mES distribution of B → D0h candidates selected in data and in Monte
Carlo. All the selection criteria listed in Tables 3.11, 3.12 and 3.13 have been applied,
with the exception of that on mES. In addition a tight kaon veto has been applied to the
prompt track h, and ∆Eπ has been required to be in the range [-50,50] MeV.
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Figure 3.23: D0 invariant mass distribution of B → D0h candidates selected in data
and in Monte Carlo. All the selection criteria listed in Tables 3.11, 3.12 and 3.13 have
been applied, with the exception of that on the D0 mass. In addition a tight kaon veto
has been applied to the prompt track h, and ∆Eπ has been required to be in the range
[-50,50] MeV.
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Figure 3.24: Fisher discriminant (F ) and D0 helicity angle (θhel(D
0)) distributions of

B → D0h, D0 → K−π+ candidates selected in data and in Monte Carlo. All the selection
criteria listed in Tables 3.11, 3.12 and 3.13 have been applied, with the exception of those
on the plotted quantities. In addition a tight kaon veto has been applied to the prompt
track h, and ∆Eπ has been required to be in the range [-50,50] MeV.

D0 decay mode N(D0K) N(D0π)

K−π+ 1419 ± 38 ± 84 ± 34 ± 89 17502 ± 132 ± 1033 ± 415 ± 932
K+K− 113 ± 11 ± 7 ± 4 ± 8 1403 ± 37 ± 83 ± 50 ± 80
π+π− 39 ± 6 ± 2 ± 1 ± 3 488 ± 22 ± 29 ± 18 ± 28
K0

Sπ0 126 ± 11 ± 7 ± 12 ± 10 1604 ± 40 ± 95 ± 154 ± 116
K0

Sφ 31 ± 6 ± 2 ± 4 ± 3 385 ± 20 ± 23 ± 50 ± 29
K0

Sω 47 ± 7 ± 3 ± 9 ± 4 577 ± 24 ± 34 ± 113 ± 51

Table 3.14: B → D0K and B → D0π signal yields expected from simulation, for each
of the six D0 decay modes under study, in a statistics corresponding to that of the on-
resonance data sample. The four uncertainties on the yields come respectively from (1)
statistical fluctuations, (2) number of B± and B(B → D0π), (3) D0 branching fraction
ratios, (4) uncertainties on the selection efficiency and, for the B → D0K yield, B(B →
D0K)/B(B → D0π). Here we have assumed B(B → D0K)/B(B → D0π) = 8.19%, and
RCP+ = RCP− = 1.

K−π+ K+K− π+π− K0
Sπ0 K0

Sφ K0
Sω

Tracks selection 2.1% 2.1% 2.1% 2.1% 2.7% 2.7%
PID efficiency 2.8% 3.5% 3.5% 2.0% 3.5% 3.5%
K0

S reconstruction - - - 3.0% 3.0% 3.0%
π0 reconstruction - - - 3.0% - 3.0%
All other selection criteria 4.0% 4.0% 4.0% 5.0% 5.0% 6.0%
MC stat. 0.5% 0.6% 0.7% 0.9% 0.8% 1.6%

Total 5.4% 5.7% 5.8% 7.2% 7.4% 8.7%

Table 3.15: Breakdown of the different contributions to the systematic uncertainty on the
absolute B → D0K and B → D0π efficiencies.
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Figure 3.25: Distributions, for B → D0h candidates selected in data and in Monte Carlo,
of (from top to bottom, left to right): K0

S
invariant mass and flight length significance,

φ invariant mass and helicity angle, π0 invariant mass, ω invariant mass and helicity and
Dalitz angles. All the selection criteria listed in Tables 3.11, 3.12 and 3.13 have been
applied, with the exception of those on the plotted quantities. In addition a tight kaon
veto has been applied to the prompt track h, and ∆Eπ has been required to be in the
range [-50,50] MeV.
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Chapter 4

Measurement of the
B± → D0

(CP )
h± yields and of the

GLW observables

In this Chapter the B → D0K and B → D0π yields are extracted, performing a maximum
likelihood fit to two discriminating variables, the energy difference ∆E ≡ ∆EK of the
B candidate and the Cherenkov angle θC of the prompt track h. Fits are done for
each of the six samples of B → D0h, D0 → X1X2 candidates (X1X2=K

−π+, K+K−,
π+π−, K0

S
π0, K0

S
φ, K0

S
ω) that have been selected with the criteria described in the

previous Chapter. Correcting the yields with the different B → D0K and B → D0π
selection efficiencies, the branching fraction ratios B(B → D0

(CP±)K)/B(B → D0
(CP±)π)

and the double ratios R± are determined. Performing the fits separately to the B+ and
B− samples allows to measure the yields for B+ → D0

CP±K
+ and B− → D0

CP±K
−

and thus the CP asymmetries ACP±. To most effectively use all available information,
we choose to perform an unbinned fit, since this approach is known to yield smaller
statistical uncertainties on the fit parameters than a corresponding binned fit. Moreover,
the choice of the unbinned fit allows us to use probability density functions which depend
on parameters that are computed on a event-by-event basis (for instance the mean of the
θC distribution, which is the expected angle and therefore depends on the momentum p
of the prompt track in the selected event).

Here is the outline of the Chapter:

• we first investigate, in Section 4.1, the composition of background events that pass
our selection criteria. These events are classified, according to their ∆E and θC

distributions, in different background categories.

• in Section 4.2 we describe the unbinned maximum likelihood fit procedure used to
extract the signal (B → D0K and B → D0π) yields.

• in Sections 4.3 and 4.4 we describe the parameterization respectively of the θC and
∆E probability density functions for the two signals and the various background
categories.

• in Section 4.5 the unbinned maximum likelihood fit reliability to return unbiased
estimates of the signal yields is validated by means of extensive Monte Carlo studies.

• in Section 4.6 we perform the unbinned maximum likelihood fit, for the six D0

decay channels, on the samples selected in BABAR simulated events, and compare
the results with expectations.
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• in Section 4.7 the yields of the B → D0π and B → D0K signals in the six D0 decay
channels, resulting from the maximum likelihood fit on data, are quoted.

• in Section 4.8 we summarize the results of the fits performed, as a control check, on
background samples.

• in Section 4.9 the main systematic errors are discussed and evaluated.

• finally, in Sections 4.10 and 4.11, the GLW observables ACP± and R± are evaluated
and discussed.

4.1 Background characterization

In order to measure B → D0π, B → D0K and background yields through a maximum
likelihood fit, an accurate knowledge of the background sources and how the discriminating
variables are distributed in background events is required. To this purpose we have
studied the nature of the background candidates selected in about 150 fb−1 of e+e− → qq
simulated events and about 620 fb−1 of e+e− → BB simulated events (Section 3.2,
Table 3.5), and in the off-resonance data sample (21.6 fb−1, see Section 3.2, Table 3.4).

After having applied the selection criteria of the previous Chapter we find from these
studies that only in 2% or less of the background B candidates in the final sample the
prompt track is neither a pion nor a kaon. In these rare cases the prompt track is
typically a mis-identified high-momentum lepton (a muon in 80-90% of the times), whose
Cherenkov angle usually differs by less than one σθC

(where σθC
is the θC resolution)

from the expected value in the pion hypothesis, while it differs by more than four σθC

(typically about 6-7 standard deviations) from the expected value in the kaon hypotesis.
When exploiting the Cherenkov angle measurement, therefore, these background events
can be assimilated to those where the prompt track is a true pion, and we can distinguish,
according to the nature of the bachelor track, the following two background categories:
the background in which the bachelor track is a real kaon, which will be denoted as
“B → D0K background”, and the background in which the bachelor track is not a kaon,
usually a pion (or in a few cases, as stated above, a lepton), which will be denoted as
“B → D0π background”. The θC probability density function (PDF) of the B → D0K
background is identical to that of the B → D0K signal, and the θC PDF of the B → D0π
background is identical to that of the B → D0π signal: they will be discussed in detail
in Section 4.3. Separation between the B → D0K signal and the B → D0K background
(and, similarly, between the B → D0π signal and the B → D0π background) is achieved
by exploiting, in the fit, their different ∆E distributions.

The nature of the B → D0π and B → D0K backgrounds is substantially similar: both
of them are composed by two main sources, one coming from continuum production of
light quark pairs and one coming from the misreconstructed decays of B mesons produced
in e+e− → BB collisions. These two background sources are characterized by quite
different ∆E distributions and for this reason they are treated separately. Whenever the
distinction of the nature of the bachelor track will be necessary, the continuum and BB
backgrounds will be labeled with qq(h) (h = π,K) and BB(h) (h = π,K), respectively.
In BB events there are special sources of background that are particularly difficult to deal
with, backgrounds that are peaking in the ∆E signal region. In the following we shall
refer to this effect as “peaking” BB background.

qq and BB (non-peaking) backgrounds

Figures 4.1(a-f) show the ∆E distribution of the B → D0π background, as obtained from
generic Monte Carlo events with the standard selection criteria and an additional tight
kaon veto applied to the bachelor track. Figures 4.2(a-f) show the ∆E distribution of

106



the B → D0K distribution, as obtained from generic Monte Carlo events selected with
the same standard criteria and the additional requirement that the kaon veto fails for the
prompt track. BB peaking backgrounds have been removed. In all these figures both the
continuum and BB components are shown, normalized to the same integrated luminosity
(corresponding to the luminosity of the data sample) in order to compare their relative
magnitude. As can be seen, background B candidates selected in e+e− → qq events
are characterized by a linear ∆E distribution, since they are reconstructed from random
combinations of tracks and (true or fake) D0 candidates: their ∆E PDF parameterization
will be discussed in detail in Section 4.4.2. The ∆E distribution of the BB background,
as can be seen in Figures 4.1 and 4.2, has a more complex structure, concentrating at
negative ∆E values, and can be understood by looking in detail at the composition of the
background from BB events. The main contributions originate in fact from the processes:

• B−→D∗0 h−, D∗0→D0π0 or D∗0→D0γ, D0→X1X2, in which the π0 or γ from the
D∗0 is missed

• B−→D0ρ−, D0→X1X2, ρ
−→π−π0, and B−→D0K∗−, D0→X1X2, K

∗−→K− π0,
in which the π0 from the ρ− or K∗− is missed

These types of BB background events are characterized by the fact that a neutral pion
or a photon is not assigned to the candidate B, therefore the reconstructed B energy is
lower than the true value, and ∆E is shifted towards negative values. Let us consider,
as an example, a B− → D∗0K−, D∗0 → D0π0, D0 → K−π+ decay characterized by a
typical π0 momentum pπ0 = 110 MeV/c in the Υ (4S) CM frame. If the π0 is missed and
the decay is identified as a B → D0K, the energy E∗

B of the reconstructed B candidate

is shifted by −E∗
π0 = −

√

m2
π0 + p2

π0 ≈ −175 MeV and its momentum lies in the range

∼ [230, 350] MeV/c (B mesons have a momentum of about 340 MeV/c in the Υ (4S) frame).
Consequently, ∆E is shifted by −175 MeV, apart from the reconstruction uncertainties,
andmES lies in the range [5.270, 5.285] GeV/c2. Only a fraction of these background events
is thus removed by the requirements ∆E > −0.160 GeV and |mES − 〈mES〉| < 3σmES

(〈mES〉 ≈ 5.280 GeV/c2, σmES ≈ 2.5 MeV/c2): the remaining ones tend to accumulate
near the low ∆E boundary, −160 MeV. The ∆E distribution of the BB(π) background
is similar in shape to the corresponding BB(K) background: however, because of the
difference between the kaon and pion mass, the distribution is shifted by about 50 MeV
in the positive direction. This consideration explains why the BB(π) background is
concentrated around ∆E ≈ −0.125 MeV.

The amount of BB background with a correctly reconstructed D0 candidate rapidly
drops down as the ∆E increases, and it is usually quite small in the B → D0h signal
region. However, in a small fraction of BB events background B candidates are selected
from a random combination of a charged track and a fake D0 candidate, reconstructed
with one or more tracks or neutral objects not belonging to a real D0 decay. In this case
the B candidate can have larger values of ∆E: as for the qq background, these events are
spread throughout the whole ∆E region, therefore a fraction of them occupies the ∆E
signal region.

As a last comment on Figures 4.1 and 4.2, we can observe that data-MC agreement is
very good, giving us a high confidence in the background comprehension.

BB peaking backgrounds

A first, but small and irreducible type of peaking background arises from charmless
B−→X1X2h

− decays, which have the same final states as the B−→D0(→ X1X2)h
−

signal. This background is therefore undistinguishable from the signal, when exploiting

107



 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

500

1000

1500

2000

2500

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

500

1000

1500

2000

2500

-1
, lumi=210.70 fb+π- K→ 0

D

(a)
 MCqq

 MCBB

on-res DATA

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0
20
40
60
80

100
120
140
160
180
200
220
240

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0
20
40
60
80

100
120
140
160
180
200
220
240

-1
, lumi=210.70 fb+K- K→ 0

D

(b)
 MCqq

 MCBB

on-res DATA

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

-1
, lumi=210.70 fb+π-π → 0

D

(c)
 MCqq

 MCBB

on-res DATA

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

-1
, lumi=210.70 fb0πS

0 K→ 0
D

(d)
 MCqq

 MCBB

on-res DATA

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

-1
, lumi=210.70 fbφS

0 K→ 0
D

(e)
 MCqq

 MCBB

on-res DATA

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

60

70

80

90

 (GeV)KE∆
-0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

60

70

80

90

-1
, lumi=210.70 fbωS

0 K→ 0
D

(f)
 MCqq

 MCBB

on-res DATA

Figure 4.1: ∆E distribution of the B → D0π background (solid histograms). Fake B
candidates have been selected, with the standard criteria of Chapter 3 and an additional
tight kaon veto, in qq and BB background events (i.e., B → D0K and B → D0π events
are explicitely vetoed). Overlaid (red dots) is the distribution of B candidates selected
in data (with the same criteria) outside of the B → D0K and B → D0π signal regions
(∆E < −80 MeV or ∆E > 130 MeV).
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Figure 4.2: ∆E distribution of the B → D0K background. Fake B candidates have been
selected, with the standard criteria of Chapter 3 and requiring that the prompt track fails
a tight kaon veto, in qq and BB background events (i.e., B → D0K and B → D0π events
are explicitely vetoed). Overlaid (red dots) is the distribution of B candidates selected
in data (with the same criteria) outside of the B → D0π and B → D0K signal regions
(∆E < −80 MeV or ∆E > 130 MeV).
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the ∆E and θC variables.1 In the D0 → K−π+ mode the peaking background is to-
tally negligible, because B(B− → K−π+K−) < 1.3 × 10−6 at 90% C.L. and B(B− →
K−π+π−) = (5.7 ± 0.4)× 10−5: taking into account a selection efficiency which is about
0.5%, as evaluated on simulated B− → K−π+h− decays, the expected peaking events
are about 2 for h = K and 66 for h = π, to be compared with more than one thousand
B → D0K and more than fifteen thousand B → D0π expected signal events. In the
other D0 modes, where the signal yields are by a factor more than ten lower than in the
K−π+ case, the upper limits for B− → X1X2h

− are at the 10−5 level, and with selection
efficiencies around 0.5% we cannot exclude a priori a relevant peaking background contri-
bution. We estimate this background by exploiting the D0 mass sidebands and counting
the number of background events that survive our selection (apart from the D0 mass
cut) and for which the invariant mass m(X1X2) lies outside the D0 mass signal window.
This number is scaled by the ratio of the width of the D0 signal window and the width
of the D0 sideband region: these events will be subtracted from the signal inside the fit
procedure (Section 4.2). The counting is done by performing a fit, similar to that used
to extract the signal yields described in next Sections, to the {∆E, θC} distribution of
events in the D0 mass sidebands. The background ∆E PDF is a straight line with floating
slope, because in the D0 mass sidebands there is only combinatorial background, as the
BB background from B → D∗0h and B → D0ρ or B → D0K∗ is removed by vetoing the
D0 mass signal window. The X1X2h ∆E PDFs and the kaon and pion θC PDFs are the
same as the ones used in the final fit and are described in Sections 4.4.3 and 4.3.

The sideband region definitions are reported in Table 4.1, together with the number
of events that survive the selection. The number of peaking events has a certain relevance
only for the B → D0K, D0 → K+K− mode, where (64 ± 14) × 0.34 = (21 ± 5) events
will be subtracted in the fit. The sideband window choice is determined from three
considerations:

• In the pre-selection of D0 candidates, only the ones with invariant mass inside the
range [1774.5 − 1.9145] MeV/c2 are reconstructed in the K+K−, π+π− and K0

S
π0

modes, and the range is reduced to [1794.5− 1.8945] MeV/c2 in the K0
S
φ and K0

S
ω

modes.

• It is necessary to avoid contamination from signalB → D0h events withD0 invariant
mass in the tails of the m(D0) distribution, so, the larger the m(D0) resolution, the
narrower the available sideband.

• in the K+K− mode, there is a not negligible number of B → D0h, D0 → K−π+

decays (due to the higher D0 → K−π+ branching fraction) selected in the upper
D0 sideband, around 1.94 GeV/c2, arising from misidentification of the pion from
D0 as a kaon. The ∆E distribution of these events is partially peaked in the signal
region and would lead to an overestimate of the K+K−h background, and therefore
we veto the region m(D0) > 1.9145 GeV/c2 in this mode. Analogously, in the π+π−

mode B → D0h, D0 → K−π+ decays where the D0 kaon is misidentified as a pion
are selected in the lower D0 mass sideband, around 1.78 GeV/c2, and therefore we
veto the region m(D0) < 1.8145 GeV/c2.

A second type of peaking background affects only the B → D0h,D0 → K0
S
φ(→

K+K−) and B → D0h,D0 → K0
S
ω(→ π+π−π0) channels, and is constituted by B → D0h

decays followed by a D0 decay to the same final states that we reconstruct, K0
S
K+K−

and K0
S
π+π−π0, without the intermediate production of a φ or a ω resonance. This

1Actually, the ∆E distribution of the B− → X1X2K− background is about 75% larger than the one
of the B → D0K signal. This is due to the fact that in the reconstruction of the signal decay chain a mass
fit is performed on the X1X2 system forming the D0. The D0 mass fit improves the energy resolution of
the X1X2 system if it originates from a true D0, otherwise it worsens the resolution.
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D0 m(D0) sideband region peaking peaking scale
mode ( MeV/c2) events (K) events (π) factor

K+K− [1774.5 − 1834.5], [1884.5 − 1914.5] 64 ± 14 0+15
−0 0.34

π+π− [1814.5 − 1839.5], [1889.5 − 1954.5] 12 ± 12 0+7
−0 0.38

K0
Sπ0 [1774.5 − 1804.5], [1924.5 − 1954.5] 0+6

−0 0+5
−0 1.67

K0
Sφ [1794.5 − 1834.5], [1894.5 − 1934.5] 0+2

−0 0+1
−0 0.28

K0
Sω [1794.5 − 1829.5], [1899.5 − 1934.5] 9 ± 8 0+4

−0 0.69

Table 4.1: D0 mass sideband region definitions and number of peaking background events.
The expected yields in the signal D0 window are obtained by multiplying these yields for
the scale factor, which is defined as the ratio of the widths of the D0 mass signal and
sideband regions.

background is potentially very dangerous since the D0 final state can have opposite CP
with respect to that of our signal (the s-wave, non-resonant amplitudes D0 → K0

S
K+K−

and D0 → K0
S
π+π−π0 are CP -even) and therefore dilutes the measured CP asymmetries.

This effect can be monitored and subtracted using the B → D0π, D0 → K0
S
φ and B →

D0π, D0 → K0
S
ω as control samples, as explained in Section 4.9.5.

4.2 Fit procedure

The B → D0K, B → D0π and background yields in the event sample selected with the
criteria described in the previous Chapter are determined through an unbinned maximum
likelihood fit. The likelihood L for the selected sample is given by the product of the
probabilities for each individual candidate and a Poisson factor:

L =
e−N ′

(N ′)N

N !

N∏

i=1

Pi. (4.1)

The probability Pi for a candidate in the event i is the sum of the signal and back-
ground terms:

Pi(∆E, θC) =
ND0π

N ′ PD0π
i +

ND0K

N ′ PD0K
i + (4.2)

Nqq̄(π)

N ′ Pqq̄(π)
i +

Nqq̄(K)

N ′ Pqq̄(K)
i +

NBB̄(π)

N ′ PBB̄(π)
i +

NBB̄(K)

N ′ PBB̄(K)
i +

NX1X2K

N ′ PX1X2K
i .

where N ′ = ND0π+ND0K+Nqq̄(π)+Nqq̄(K)+NBB̄(π)+NBB̄(K)+NX1X2K . Each adden-
dum on the right-hand side of equation (4.2) is the product of two different terms. The
ratio NJ/N

′ (J = D0π,D0K, ...) represents the probability to choose a candidate of type
J after the selection criteria are applied; the term PJ

i is the probability density function
for measuring the particular set of physical quantities {∆E, θC}i in the ith event, once
the candidate of type J has been selected:

PJ
i = PJ

∆E,i PJ
θC ,i. (4.3)

Here and from now on, unless otherwise stated, BB(π) and BB(K) are referred to the
non-peaking BB component.
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The first factor in the likelihood definition (equation 4.1) is a poissonian term de-
scribing the probability of observing N events (the number of candidates of the sample
on which the fit is performed) when N ′ is the expected number. It correctly takes into
account the statistical fluctuations in the estimate of the a priori composition of each
type of candidate after the selection criteria are applied. If the poissonian term were not
present, the fit would estimate the composition of that particular selected sample, and not

the a priori composition after the application of the selection criteria. This is reflected
in a different estimation of the errors of the parameters NJ : in fact we must note that
the presence of the poissonian term also constrains the sum N ′ of the extracted number
of candidates to be equal to N , the total number of selected candidates. The likelihood
defined in (4.1) is called an extended maximum likelihood [82]. The fits are performed
using the MINUIT package[83].

In the fit, the free parameters are the six signal and background yields: ND0π, ND0K ,
Nqq(π), Nqq(K), NBB(π), NBB(K), and two parameters of the ∆E signal PDF, PD0K

∆E , as
it will be shown in Section 4.4.1. The number of peaking background events NX1X2K is
fixed to the values in the third column of Table 4.1, scaled by the corresponding value in
the last column of the same Table. When performing the fit to the B+ and B− samples
separately, to extract the signal asymmetries, the number of peaking events is fixed to
half the values in Table 4.1 (i.e. we assume no charge asymmetry in this background and
equal statistical fluctuations for positive and negative X1X2K decays): the corresponding
systematic uncertainty is evaluated in Section 4.9. All other parameters contained in all
other PDFs (but PD0K

∆E ) are fixed: the way they are obtained is described in the next two
Sections.

4.3 Particle ID probability density functions

The probabilily PJ
θC ,i is defined as:

PJ
θC ,i =

{ PK
θC ,i J = D0K, qq̄(K), BB̄(K) or X1X2K

Pπ
θC ,i J = D0π, qq̄(π) or BB̄(π)

(4.4)

where PK
θC

and Pπ
θC

are the probability density functions for the Cherenkov angle in the
hypothesis that the prompt track be either a charged kaon or pion. These probability
density functions are derived from the value of the Cherenkov angle (θC) as measured in
the DIRC. The parameterization is the same as developed in BABAR for the B0 → K−π+

analysis [22], and has been determined on kaon and pion tracks from D0 decays in a
D∗+ → D0π+, D0 → K−π+ control sample. The correlation between the charge of the
D0 daughters and that of the D∗ is exploited: the π(K) track is always the one with the
same (opposite) charge as the D∗. Only the tracks from the D0 decay have been used,
as the soft pion momentum is well below the interesting kinematic range. The control
sample is selected by means of kinematic criteria only (invariant masses of the D0 and
D∗+ candidates, D∗+–D0 mass difference, χ2 probabilities of the vertex fit to the D0 and
D∗0 daughters) and has a purity around 96%. Only tracks that are reconstructed in the
DIRC are used to form the D0 candidate. The same “quality” cuts that have been used
in this analysis to select the candidate prompt tracks are applied to the kaon and pion
candidates in the control sample: the number of observed signal photons in the DIRC
must be greater than 5, in order to decrease the number of poor θC fits and hence improve
the θC resolution, the measured Cherenkov angle must be consistent within 4σ with that
expected either for a kaon or a pion of same momentum, and tracks identified as leptons
by the VeryTight electron and muon BABAR selectors are rejected. From the selected
control sample, the θC PDFs are determined with the following method, detailed in [85]:

• the θC pulls, (θC − θexp
C ) /σθC

, in bins of both momentum and cos θ, are computed. θ
is the polar angle of the track, θexp

C = cos−1 1
βn is the expected Cherenkov angle given
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Figure 4.3: Final θC pull distributions for pions (left) and kaons (right).

the refraction index n = 1.473 of the DIRC radiator material and the velocity β =
p/E of the track, and σθC

is the expected Cherenkov angle resolution stored in the
BABAR database. The data are binned in 20 cos θ bins and 20 momentum bins from
0.5 GeV/c to 7 GeV/c. The pull distributions of tracks in sidebands of the D∗+ −D0

mass difference and D0 invariant mass distributions are subtracted from the pull
distributions of tracks in the signal regions in order to remove contributions from
background tracks. The background-subtracted pull distribution in each p − cos θ
bin is then fit to a single Gaussian. The means and widths of these Gaussian fits are
tabulated as correction parameters (“offsets”, µθC

, and “scale factors”, sθC
) that

are henceforth used to correct the measurements of θC and σθC
(a bi-dimensional

linear interpolation between the values found in adjacent bins is used to smooth the
binning effects).

• After correction, the new pull θpull
C ≡ (θC − θexp

C − sθC
µθC

)/sθC
σθC

does not depend
anymore on momentum and polar angle. The corrected pulls for kaons and pions are
therefore integrated over polar angle and momentum, and fit to a double-Gaussian
function of the form:

f1×
1√

2πσ1

e
− 1

2

 

θ
pull
C

−µ1
σ1

!2

+(1−f1)×
1√

2πσ2

e
− 1

2

 

θ
pull
C

−µ2
σ2

!2

. (4.5)

The results of these fit, which are shown in Figure 4.3, give us the parameters of
our kaon and pion θC pull PDFs, and are summarized in Table 4.2.

The same procedure is performed on control samples derived from Monte Carlo in order
to produce the PDFs we use in fits to simulated events.

Parameter pions kaons

µ1 0.0091 ± 0.0018 −0.0160 ± 0.0021
σ1 0.9581 ± 0.0020 0.9139 ± 0.0029
µ2 −0.407 ± 0.020 0.150 ± 0.010
σ2 2.427 ± 0.030 1.728 ± 0.017
f1 0.9704 ± 0.0022 0.9149 ± 0.0037

Table 4.2: Parameters of the double-Gaussian PDFs used to describe the distributions of
the corrected θC pull of pions and kaons, obtained from the D∗+ → D0π+, D0 → K−π+

control sample.
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4.4 ∆E probability density function

4.4.1 Signal ∆E parameterization

The B → D0K signal is parameterized with a single Gaussian, whose mean and sigma are
denoted in the following with µ(D0K) and σ(D0K). The B → D0π ∆E PDF would be
the same as the B → D0K one if the prompt track would be assigned the pion mass; since
∆E is computed by assigning the kaon mass, it is shifted by a quantity ∆Eshift(γ, p) =

γ
(√

m2
K + p2 −

√

m2
π + p2

)

which depends on the momentum ~p of the prompt track in

the lab frame. Therefore we parameterize the B → D0π ∆E PDF with a single Gaussian
whose mean is computed, event-per-event, as µ(D0π) = µ(D0K) + ∆Eshift(γ, p), and
whose width is the same as that of the B → D0K PDF (σ(D0π) = σ(D0K)). We are
thus left with only two parameters, µ(D0K) and σ(D0K). These are left floating in the
fit, and are directly determined from the same data used to extract the yields.

We have anticipated in the previous Chapter that the ∆E distribution of selected
signal B candidates, at the end of the selection, is distributed according to a double-
Gaussian function. We are allowed to use in the fit a single Gaussian, instead of a more
complex double-Gaussian PDF, provided we scale the selection efficiency ε to ε̃ ≡ ε× f1,
where f1 is the fraction of events in the main Gaussian. The validity of this assumption
has been checked with detailed Monte Carlo studies, as described in Section 4.5. f1 values
are in the range 90-96% for B → D0K candidates, as estimated from simulated signal
events: these values are summarized in Tables 4.3 and 4.4.

In Figures 4.4 and 4.5 the ∆Eπ distribution of the selected B → D0π Monte Carlo
events and the ∆EK distribution of selected B → D0K Monte Carlo events is shown,
with the superimposed fit to a double-Gaussian function.

K−π+ K+K− π+π− K0
Sπ0 K0

Sφ K0
Sω

f1 (%) 94.19±0.33 95.08±0.33 94.99±0.33 92.18±0.63 94.08±0.47 87.1±1.1
µ1(MeV) −0.44±0.13 −0.53±0.14 −0.12±0.14 −0.77±0.22 0.52±0.18 −0.28±0.37
σ1(MeV) 16.94±0.11 17.15±0.12 16.96±0.12 19.15±0.21 17.58±0.17 18.62±0.35
µ2(MeV) −32.8±2.4 −34.6±3.2 −38.4±3.4 −26.9±3.4 −33.3±3.6 −25.1±4.1
σ2(MeV) 62.6±1.7 67.5±2.4 69.4±2.5 70.4±3.0 64.4±2.5 72.0±3.6

Table 4.3: Parameters of the double-Gaussian PDF used to fit the ∆Eπ distribution of
selected B → D0π events.

K−π+ K+K− π+π− K0
Sπ0 K0

Sφ K0
Sω

f1 (%) 96.35±0.24 96.97±0.25 96.94±0.24 95.31±0.43 96.18±0.36 90.6±0.9
µ2(MeV/c) −19.7±3.5 −22.8±4.3 −17.7±4.5 −21.6±5.1 −9.9±4.1 −13.7±4.8
σ2( MeV/c) 74.1±3.3 72.0±3.9 77.1±4.4 76.1±4.9 69.5±4.0 73.3±4.7

Table 4.4: Parameters of the double-Gaussian PDF used to fit the ∆EK distribution of
selected B → D0K events. The mean and sigma of the core Gaussian function are fixed
to the values of the B → D0π ∆Eπ core Gaussian PDF.

4.4.2 qq background ∆E parameterization

Background e+e− → qq events have a flat ∆E distribution, because the candidate B is
reconstructed from random combinations of tracks and photons, therefore we parameter-
ize the ∆E PDF of the qq background with a first order polynomial. The B → D0K
continuum background is expected to have the same ∆E shape than the B → D0π con-
tinuum background, as they differ only in the nature of the bachelor track. This has been

114



 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000  0.00013 GeV± = -0.000439 1µ

 0.0024 GeV± = -0.03282 2µ

 0.00011 GeV± =  0.01694 1σ

 0.0017 GeV± =  0.0626 2σ

 0.0033± =  0.9419 1f

 signalπ0 D→B 
+π- K→ 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600  0.00014 GeV± = -0.000533 1µ

 0.0032 GeV± = -0.03459 2µ

 0.00012 GeV± =  0.01715 1σ

 0.0024 GeV± =  0.0675 2σ

 0.0033± =  0.9508 1f

 signalπ0 D→B 
+K- K→ 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600
 0.00014 GeV± = -0.000119 1µ

 0.0034 GeV± = -0.03841 2µ

 0.00012 GeV± =  0.01696 1σ

 0.0025 GeV± =  0.0694 2σ

 0.0033± =  0.9499 1f

 signalπ0 D→B 
+π-π → 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

1200

1400

1600

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

100

200

300

400

500

600

700

800
 0.00022 GeV± = -0.000774 1µ

 0.0034 GeV± = -0.02693 2µ

 0.00021 GeV± =  0.01915 1σ

 0.0030 GeV± =  0.0704 2σ

 0.0063± =  0.9218 1f

 signalπ0 D→B 
0πS

0 K→ 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

100

200

300

400

500

600

700

800

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000  0.00018 GeV± =  0.00052 1µ

 0.0036 GeV± = -0.03325 2µ

 0.00017 GeV± =  0.01758 1σ

 0.0025 GeV± =  0.0644 2σ

 0.0047± =  0.9408 1f

 signalπ0 D→B 
φS

0 K→ 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

200

400

600

800

1000

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

50

100

150

200

250

300
 0.00037 GeV± = -0.000282 1µ

 0.0041 GeV± = -0.02513 2µ

 0.00035 GeV± =  0.01862 1σ

 0.0036 GeV± =  0.0720 2σ

 0.011± =  0.871 1f

 signalπ0 D→B 
ωS

0 K→ 0D

 (GeV)πE∆
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

4
 G

e
V

 )

0

50

100

150

200

250

300

Figure 4.4: ∆Eπ distribution of true B → D0π candidates selected in B → D0π simulated
events for each of the six D0 decay modes under study. All selection criteria have been
applied. The results of a double-Gaussian fit are overlaid.

confirmed by looking separately at qq(π) and qq(K) background events in the selected
samples and comparing the fit slopes of their distributions: as shown in Figure 4.6 and in
Table 4.5 they are consistent with each other. Therefore in the final fit the ∆E qq(π) and
qq(K) probability density functions are parameterized by means of the same function, a
straight line with a fixed slope, whose shape is determined with the following methods:

• for Monte Carlo samples, the slope is fixed to the value determined from a linear
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Figure 4.5: ∆EK distribution of true B → D0K candidates selected in B → D0K
simulated events for each of the six D0 decay modes under study. All selection criteria
have been applied. The results of a double-Gaussian fit (with the mean and width of
the core Gausssian fixed to the same values of the B → D0π ∆Eπ core Gaussian) are
overlaid.

fit to the ∆E distribution of the B candidates, selected with the standard criteria
of Chapter 3 in simulated qq events. Final values are reported in the last row of
Table 4.5, corresponding to the plots in Figure 4.7.

• for data samples, the slope is fixed to the value determined from a linear fit to the
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Figure 4.6: ∆E distribution and straight line fit for fake B candidates selected in qq(π)
(left) and qq(K) events. D0 candidates are reconstructed in the K−π+ channel. All
selection criteria have been applied.

MC Slope (GeV−1)
sample D0→K−π+ D0→K+K− D0→π+π− D0→K0

Sπ0 D0→K0
Sφ D0→K0

Sω
qq(π) −0.65 ± 0.18 −0.6 ± 0.6 −0.9 ± 0.5 −1.5 ± 0.5 −1.5 ± 1.3 −1.3 ± 0.8
qq(K) −0.63 ± 0.36 −1.0 ± 0.6 −1.5 ± 0.6 −0.7 ± 0.7 −1.6 ± 1.7 −0.5 ± 1.0
qq(π+K) −0.65 ± 0.16 −0.80 ± 0.42 −1.07 ± 0.37 −1.17 ± 0.38 −1.5 ± 1.0 −0.9 ± 0.6

Table 4.5: Slope of the linear PDF used to parameterize the ∆E distribution of B can-
didates selected, for each of the six D0 decay modes under study, in the simulated qq
sample. The standard selection criteria of Chapter 3 have been applied.

∆E distribution of (fake) B candidates selected in the off-resonance data-sample,
which – having been collected below the BB production threshold – does not include
misreconstructed B candidates. All the selection criteria of Chapter 3 are applied,
with the exception of the mES cut. The release of the mES requirement, because of
the negligible correlation (below 2%) betweenmES and ∆E in qq events (Figure 4.8),
does not affect significantly the ∆E distribution, and at the same time allows to
reduce by a factor 3 the uncertainty on the slope, which is quite large due to the
poor statistics of the off-resonance data sample. The results of such fits are shown
in Figure 4.9 and are summarized in the last row of Table 4.6.

The parameters are found to be consistent between positive and negative B candidates.

off-res. Slope (GeV−1)
sample D0→K−π+ D0→K+K− D0→π+π− D0→K0

Sπ0 D0→K0
Sφ D0→K0

Sω
all cuts −0.9±0.5 −0.3±1.5 −0.3±1.1 −1.6±1.0 4.7±5.3 −1.6±1.9
no mES cut −0.50±0.16 −0.2±0.5 −1.25±0.34 −1.15±0.35 −1.4±0.8 −1.6±0.5

Table 4.6: Slope of the linear PDF used to parameterize the ∆E distribution of B candi-
dates selected, for each of the six D0 decay modes under study, in the off-resonance data
sample.
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Figure 4.7: ∆E distribution and straight line fit for fake B candidates selected in qq
simulated events for each of the six D0 decay modes under study. All selection criteria
have been applied.

4.4.3 BB background ∆E parameterization

The ∆E shapes of the BB(h) non-peaking components are parameterized from the generic
Monte Carlo, which – as shown in Figures 4.1 and 4.2 – is found to correctly reproduce
the behaviour observed in real data, apart from a small shift (≈ +2 MeV with respect
to data). We find that a good empirical parameterization of the ∆E distribution of
the BB̄(π) background is given by a “Crystal-Ball” lineshape [84], a Gaussian with an
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Figure 4.8: mES vs ∆E distribution of fake B candidates selected in qq events. D0

candidates are reconstructed in the K−π+ channel. All selection criteria but the mES one
have been applied.

exponential tail at higher ∆E values:

fCB(∆E) = N ×







e−
1
2 (

∆E−µ
σ )2

∆E−µ
σ < −α

(
n
|α|

)n

e−
α2

2 ×
[

n
|α| + α+ ∆E−µ

σ

]−n
∆E−µ

σ > −α
(4.6)

The Gaussian takes into account the increase of the background at negative values of ∆E
(≈ −125 MeV for the BB(π) background and ≈ −175 MeV for the BB(K) background),
while the exponential tail describes the ∆E distribution at positive values of BB combina-
torial background candidates. The parameters are estimated on generic BB Monte Carlo,
after having removed peaking backgrounds with the same final state as the signal, and
requiring that the prompt track be a true kaon (for the BB(K) background, Figure 4.10)
or not (for the BB(π) background, Figure 4.11). The values of the parameters µ, σ, α
and n are reported in Tables 4.7 and 4.8. For the K0

S
φ channel the combinatorial BB(K)

background at the end of the selection is found to be negligible and only the gaussian
part is relevant (see again the K0

S
φ plot in Figure 4.10), so the parameters α and n are

not computed. When performing the fit on data we shift the mean of the BB ∆E PDFs,
determined on Monte Carlo, by -2 MeV as suggested by the data-MC comparison. The
other parameters remain the same. The parameters are found to be consistent between
positive and negative B candidates.

In addition, the contributions from charmless peaking backgrounds B → X1X2K are
included, as reported in Section 4.1. The shape of the ∆E distributions of these peaking
backgrounds is parameterized as a Gaussian, with same mean as the B → D0K signal,
and width σ(X1X2K) = f×σ(D0K), where the scale factor f (1.80±0.10) is determined
from samples of simulated B → X1X2K events.

4.5 Fit validation with Monte Carlo studies

In order to evaluate the reliability of the fit to return unbiased values for the signal yields
and asymmetries we have performed intensive Monte Carlo studies. In detail, we have
implemented a “toy” Monte Carlo that generates 500 “experiments”, in which the ∆E
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Figure 4.9: ∆E distribution and straight line fit for fake B candidates selected in off-
resonance data for each of the six D0 decay modes under study. All selection criteria but
the mES one have been applied.

and θC distributions of B → D0π, B → D0K and background (both qq and BB) events
are simulated, according to their distribution as determined on Monte Carlo. The number
of “candidates” of each contribution in an experiment is similar to the number expected
(from Monte Carlo) with the same integrated luminosity as that of the data sample. We
have performed these studies for two D0 modes, the K+K− and K0

S
π0 ones, which are

the most relevant CP -even and CP -odd channels considered here.
For each experiment the distribution of {p, θ, σθC

} (respectively the momentum, po-
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Figure 4.10: ∆E distribution of fake B candidates selected in e+e− → BB(K) simulated
events for each of the six D0 decay modes under study. Signal and peaking background
events have been explicitely vetoed. All selection criteria have been applied. The results of
a fit with a Crystal Ball lineshape have been overlaid. The values of the parameters µ, σ, α
and n are reported in Tables 4.7 and 4.8. For the K0

S
φ channel the combinatorial BB(K)

background is negligible and the ∆E distribution has been fit with a single Gaussian
PDF.

lar angle and expected Cherenkov angle resolution of the prompt track) is taken from
randomly selected events in the generic Monte Carlo, then ∆E and θC are generated
according to the type of candidate:
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Figure 4.11: ∆E distribution of fake B candidates selected in e+e− → BB(π) simulated
events for each of the six D0 decay modes under study. Signal events have been explicitely
vetoed. All selection criteria have been applied. The results of a fit with a Crystal Ball
lineshape have been overlaid.

• The B → D0K ∆E is generated from a double-Gaussian function

f1×
1√

2πσ1

e
− 1

2

“

∆E−µ1
σ1

”2

+(1−f1)×
1√

2πσ2

e
− 1

2

“

∆E−µ2
σ2

”2

(4.7)

with the parameters µ1, σ1 listed in Table 4.3 and the parameters f1, µ2 and σ2

listed in Table 4.4.
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D0 mode µ (MeV) σ (MeV) α n

K−π+ −179.8 ± 1.0 20.7 ± 1.7 −0.84 ± 0.08 3.56 ± 0.46
K+K− −174.5 ± 2.6 22.4 ± 2.7 −1.45 ± 0.18 0.83 ± 0.21
π+π− −188 ± 13 31 ± 12 −1.27 ± 0.32 0.71 ± 0.28
K0

Sπ0 −177.0 ± 3.9 24 ± 6 −0.81 ± 0.21 1.79 ± 0.52
K0

Sφ −179 ± 8 26 ± 5 - -
K0

Sω −185 ± 8 24 ± 7 −1.49 ± 0.32 0.51 ± 0.27

Table 4.7: Parameters of the Crystal Ball PDF used to fit the ∆E distribution of B
candidates selected, for each of the six D0 decay modes under study, in simulated BB(K)
background (non-peaking) events. For the K0

S
φ channel the combinatorial BB(K) back-

ground is negligible and only the gaussian part is relevant, so the parameters α and n are
not computed.

D0 mode µ (MeV) σ (MeV) α n

K−π+ −130.4 ± 0.3 30.8 ± 0.4 −1.33 ± 0.03 4.95 ± 0.30
K+K− −130.0 ± 1.0 30.4 ± 1.5 −1.26 ± 0.09 2.49 ± 0.31
π+π− −129.8 ± 2.4 35.5 ± 4.0 −1.34 ± 0.20 1.37 ± 0.34
K0

Sπ0 −135.1 ± 1.9 36.2 ± 2.2 −1.37 ± 0.11 2.42 ± 0.35
K0

Sφ −129.1 ± 1.6 26.1 ± 2.1 −1.21 ± 0.17 4.0 ± 1.2
K0

Sω −135.4 ± 2.5 31.9 ± 3.8 −1.01 ± 0.12 1.64 ± 0.25

Table 4.8: Parameters of the Crystal Ball PDF used to fit the ∆E distribution of B
candidates selected, for each of the six D0 decay modes under study, in simulated BB(π)
background (non-peaking) events.

• The B → D0π ∆E is generated from a double-Gaussian function with parameters
µ1, σ1, µ2, σ2 and f1 listed in Table 4.3 and shifted event-by-event by a momentum-
dependent quantity, according to Eq. (3.9) discussed in the previous Chapter

• the continuum ∆E is generated as a linear polynomial distribution with slope taken
from the last row of Table 4.5

• the BB(K) and BB(π) ∆E are generated from Crystal Ball functions (Eq. 4.6)
with the parameters reported in Table 4.7 and 4.8

• the B → D0K, qq(K) and BB(K) θC are simulated by first generating the corrected

pull θpull
C from a double-Gaussian function (Eq. 4.5) with the parameters in the right

column of Table 4.2, and then computing θC from θC = θexp
C +sθC

µθC
+sθC

σθC
θpull

C ,
where θexp

C is the expected Cherenkov angle for a given momentum p in the kaon
hypothesis

• the B → D0π, qq(π) and BB(π) θC are generated similarly to the B → D0K,

qq(K) andBB(K) θC , with obvious substitutions (the parameters of the θpull
C double

Gaussian PDF are those in the middle column of Table 4.2, the expected Cherenkov
angle θexp

C is computed with the pion hypothesis, and the correction parameters µθC

and sθC
are those determined on the pion control sample).

For these studies we have not included a peaking background B → X1X2h component.
A set of 500 toy experiments have been simulated, each one containing the sum of six

populations with the above ∆E and θC distributions. The number of candidates of each
contribution in a toy experiment is generated from a Poisson distribution with a fixed
mean for each type of population, which is simply the expected number of candidates
for that population as predicted from the BABAR simulation (the numbers in the second
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column of Tables 4.12 and 4.18). The sample generated in each experiment is fit with
the same PDFs used to generate the sample, with the exception of the B → D0π and
B → D0K ∆E distribution, which are fit – like in our nominal fit – with a single Gaussian
PDF. In each experiment the pulls δJ = (Nfit

J −Ngen
J )/σJ are built, where J = D0π,D0K.

Ngen
J is the mean value of the poissonian generator of J-type candidates, scaled by the

mean value f1 of the core ∆E B → D0h Gaussian, Nfit
J is the fit value of the number of

candidates J and σJ is the associated error.
The distribution of δDπ and δDK obtained in the 500 toy experiments are shown

in Figure 4.12. The distributions are fit with a gaussian. The means are compatible
with zero and the widths are compatible with one, as expected in the case where the fit
result is unbiased. The same behavior is observed in the pulls of the D0K and D0π yield

asymmetries δAJ = (Afit
J −Agen

J )/σAJ
, where J = D0π,D0K, AD0h ≡ N(D0h−)−N(D0h+)

N(D0h−)+N(D0h+) ,

as shown in Figure 4.13.
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Figure 4.12: Pulls of the signal yields, δD0K = (Nfit
D0K −Ngen

D0K)/σD0K (top) and δD0π =

(Nfit
D0π − Ngen

D0π)/σD0π (bottom), obtained with 500 toy experiments. The results of a
Gaussian fit are overlaid.
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Figure 4.13: Pulls of the charge asymmetries of the B → D0h signals, A(D0K) (top) and
A(D0π) (bottom), obtained with 500 toy experiments. The results of a Gaussian fit are
overlaid.

4.6 Fit to generic Monte Carlo

Before moving to the final fit on data, the analysis has been performed on the generic
Monte Carlo in order to check the B → D0K and B → D0π yield extraction with a
much more complete simulation with respect to the “toy” Monte Carlo described in the
previous Section. The particle-identification PDF used for this analysis has been tuned
on simulated D∗+ → D0π+, D0 → K−π+ events, and the Monte Carlo sample has been
scaled to the same luminosity of the data sample (210.7 fb−1). In the following Tables
(4.9-4.24) we summarize for each channel the number of expected signal and background
events and their asymmetries, and we report the fit results. For the expected signal
B → D0π and B → D0K yields we report in parentheses the numbers scaled by the
main ∆E Gaussian fraction f1 defined in 4.4.1. From these checks we shall see that the
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parameters of the ∆E Gaussian PDF for the D0K signal are correctly estimated from
the final fit, and so are the signal yields, provided we compare them with the expected
number of events scaled by f1.

K−π+

generic Monte Carlo – Fit Results (K−π+)

Parameter True value Fitted value B+ B−

µ(D0K) −0.44 ± 0.13 −0.47 ± 0.14 - -
σ(D0K) 16.94 ± 0.11 17.11 ± 0.12 - -
ND0π 17502 (16485 ± 53) 16755 ± 138 8479 ± 97 8277 ± 96
ND0K 1419 (1367 ± 3) 1409 ± 43 723 ± 30 686 ± 30
Nqq(π) 3076 3758 ± 107 1899 ± 73 1858 ± 72
Nqq(K) 760 914 ± 46 464 ± 33 450 ± 32
NBB(π) 12532 12432 ± 126 6286 ± 898 6144 ± 89

NBB(K) 292 366 ± 31 193 ± 23 172 ± 22

Table 4.9: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → K−π+ analysis.

generic Monte Carlo – Fit Results (K−π+)

Species True asymmetry Fitted asymmetry

D0π −1.0% −(1.2 ± 0.8)%
D0K −1.3% −(2.6 ± 3.0)%
qq(π) −3.7% −(1.1 ± 2.7)%
qq(K) −3.8% −(1.5 ± 5.0)%

BB(π) −0.9% −(1.1 ± 1.0)%

BB(K) 0.0% −(5.7 ± 8.7)%

Table 4.10: True and fitted asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → K−π+ analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.038 -0.024 0.032 0.015 -0.018 0.007 0.011
σ(D0K) -0.038 1.000 0.155 0.055 -0.288 -0.056 0.072 0.011
ND0π -0.024 0.155 1.000 -0.002 -0.208 -0.020 0.055 0.005
ND0K 0.032 0.055 -0.002 1.000 -0.018 -0.202 0.005 0.048
Nqq(π) 0.015 -0.288 -0.208 -0.018 1.000 0.012 -0.326 0.010
Nqq(K) -0.018 -0.056 -0.020 -0.202 0.012 1.000 0.002 -0.428
NBB(π) 0.007 0.072 0.055 0.005 -0.326 0.002 1.000 -0.030

NBB(K) 0.011 0.011 0.005 0.048 0.010 -0.428 -0.030 1.000

Table 4.11: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K−π+ MC sample.
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K+K−

generic Monte Carlo – Fit Results (K+K−)

Parameter True value Fitted value B+ B−

µ(D0K) −0.53 ± 0.14 −0.5 ± 0.5 - -
σ(D0K) 17.15 ± 0.12 17.0 ± 0.5 - -
ND0π 1403 (1334 ± 5) 1330 ± 40 656 ± 28 674 ± 28
ND0K 113 (110 ± 1) 99 ± 14 53 ± 10 46 ± 9
Nqq(π) 321 400 ± 37 221 ± 26 179 ± 24
Nqq(K) 226 249 ± 26 142 ± 19 107 ± 17
NBB(π) 1229 1205 ± 42 609 ± 30 596 ± 29

NBB(K) 46 62 ± 18 31 ± 13 31 ± 12

Table 4.12: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → K+K− analysis.

generic Monte Carlo – Fit Results (K+K−)

Species True asymmetry Fitted asymmetry

D0π 1.0% (1.4 ± 3.0)%
D0K −1.0% −(1 ± 14)%
qq(π) −9% −(11 ± 9)%
qq(K) −12% −(15 ± 10)%

BB(π) −2.2% −(1.1 ± 3.5)%

BB(K) −8% (0 ± 29)%

Table 4.13: True and fitted asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → K+K− analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.019 0.020 -0.044 0.002 -0.021 -0.015 -0.011
σ(D0K) -0.019 1.000 -0.194 -0.087 0.292 -0.056 -0.077 -0.013
ND0π 0.020 -0.194 1.000 0.008 -0.236 0.017 0.064 0.004
ND0K -0.044 -0.087 0.008 1.000 -0.026 0.252 0.007 0.073
Nqq(π) 0.002 0.292 -0.236 -0.026 1.000 0.018 -0.399 0.014
Nqq(K) -0.021 -0.056 0.017 0.252 0.018 1.000 -0.008 0.608
NBB(π) -0.015 -0.077 0.064 0.007 -0.399 -0.008 1.000 -0.025

NBB(K) -0.011 -0.013 0.004 0.073 0.014 0.608 -0.025 1.000

Table 4.14: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K+K− MC sample.
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π+π−

generic Monte Carlo – Fit Results (π+π−)

Parameter True value Fitted value B+ B−

µ(D0K) (MeV) −0.12 ± 0.14 −0.4 ± 0.9 - -
σ(D0K) (MeV) 16.96 ± 0.12 15.4 ± 0.9 - -

ND0π 488(463 ± 1) 443 ± 26 215 ± 17 228 ± 18
ND0K 39(38 ± 1) 44 ± 10 23 ± 7 21 ± 7
Nqq(π) 473 540 ± 41 261 ± 27 279 ± 28
Nqq(K) 201 182 ± 30 65 ± 20 117 ± 18
NBB(π) 459 434 ± 33 211 ± 23 223 ± 23

NBB(K) 30 38+25
−18 38 ± 18 0+17

−0

Table 4.15: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → π+π− analysis.

generic Monte Carlo – Fit Results (π+π−)

Species True asymmetry Fitted asymmetry

D0π 1.4% (3 ± 6)%
D0K 0.7% −(5 ± 24)%
qq(π) 11% (3 ± 7)%
qq(K) 11% (29 ± 16)%

BB(π) 5% (2 ± 7)%

BB(K) −1% −(100+0
−89)%

Table 4.16: True and fitted asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → π+π− analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.012 -0.020 0.047 0.003 0.025 0.009 -0.017
σ(D0K) -0.012 1.000 0.298 0.126 -0.285 0.058 0.121 -0.018
ND0π -0.020 0.298 1.000 0.035 -0.313 0.019 0.134 -0.006
ND0K 0.047 0.126 0.035 1.000 -0.041 0.230 0.018 -0.091
Nqq(π) 0.003 -0.285 -0.313 -0.041 1.000 0.012 -0.573 -0.014
Nqq(K) 0.025 0.058 0.019 0.230 0.012 1.000 -0.014 -0.816
NBB(π) 0.009 0.121 0.134 0.018 -0.573 -0.014 1.000 0.027

NBB(K) -0.017 -0.018 -0.006 -0.091 -0.014 -0.816 0.027 1.000

Table 4.17: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ π+π− MC sample.
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K0
S
π0

generic Monte Carlo – Fit Results (K0
Sπ0)

Parameter True value Fitted value B+ B−

µ(D0K) (MeV) −0.77 ± 0.22 −0.3 ± 0.6 - -
σ(D0K) (MeV) 19.15 ± 0.21 19.0 ± 0.5 - -

ND0π 1604(1479 ± 10) 1471 ± 43 749 ± 30 722 ± 29
ND0K 126(120 ± 1) 122 ± 15 65 ± 11 57 ± 10
Nqq(π) 392 524 ± 45 259 ± 30 265 ± 30
Nqq(K) 251 285 ± 27 153 ± 20 132 ± 19
NBB(π) 1163 1156 ± 43 568 ± 30 588 ± 31

NBB(K) 42 21 ± 17 9+13
−9 12 ± 12

Table 4.18: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → K0

S
π0 analysis.

generic Monte Carlo – Fit Results (K0
Sπ0)

Species True asymmetry Fitted asymmetry

D0π −1.7% −(1.8 ± 2.8)%
D0K −0.5% −(7 ± 12)%
qq(π) 3% (1 ± 8)%
qq(K) −7% −(7 ± 10)%

BB(π) 1.0% (1.7 ± 3.7)%

BB(K) −1% (14+7
−9)%

Table 4.19: True and fitted asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → K0

S
π0 analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 0.007 0.015 0.043 0.010 0.027 0.020 0.017
σ(D0K) 0.007 1.000 0.237 -0.080 -0.341 -0.054 -0.116 -0.018
ND0π 0.015 0.237 1.000 -0.009 -0.288 -0.021 -0.101 -0.008
ND0K 0.043 -0.080 -0.009 1.000 0.028 0.295 0.011 0.109
Nqq(π) 0.010 -0.341 -0.288 0.028 1.000 -0.007 0.466 -0.011
Nqq(K) 0.027 -0.054 -0.021 0.295 -0.007 1.000 -0.005 0.647
NBB(π) 0.020 -0.116 -0.101 0.011 0.466 -0.005 1.000 -0.027

NBB(K) 0.017 -0.018 -0.008 0.109 -0.011 0.647 -0.027 1.000

Table 4.20: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
π0 MC sample.
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K0
S
φ

generic Monte Carlo – Fit Results (K0
Sφ)

Parameter True value Fit value B+ B−

µ(D0K) (MeV) 0.52 ± 0.18 0.43 ± 0.98 - -
σ(D0K) (MeV) 17.58 ± 0.17 17.91 ± 0.85 - -

ND0π 399(375 ± 2) 380 ± 21 189 ± 14 191 ± 15
ND0K 33(32 ± 1) 33 ± 6 18 ± 5 15 ± 4
Nqq(π) 45 58 ± 14 31 ± 10 27 ± 10
Nqq(K) 24 22 ± 6 8 ± 4 14 ± 5
NBB(π) 252 258 ± 18 122 ± 13 136 ± 13

NBB(K) 5 6 ± 3 2 ± 2 4 ± 3

Table 4.21: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → K0

S
φ analysis.

generic Monte Carlo – Fit Results (K0
Sφ)

Species True asymmetry Fit asymmetry

D0π 0.7% (1 ± 5)%
D0K −1.0% −(9 ± 19)%
qq(π) 29% −(7 ± 24)%
qq(K) 8.3% (27 ± 28)%

BB(π) 0% (5 ± 7)%

BB(K) 0% (33 ± 56)%

Table 4.22: True and fit asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → K0

S
φ analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) N(BB(K))

µ(D0K) 1.000 0.120 0.049 0.028 -0.061 0.011 -0.000 0.002
σ(D0K) 0.120 1.000 0.162 -0.033 -0.313 -0.043 0.068 -0.009
ND0π 0.049 0.162 1.000 0.006 -0.209 -0.016 0.051 -0.003
ND0K 0.028 -0.033 0.006 1.000 0.020 0.206 -0.005 0.046
Nqq(π) -0.061 -0.313 -0.209 0.020 1.000 -0.022 -0.325 -0.011
Nqq(K) 0.011 -0.043 -0.016 0.206 -0.022 1.000 -0.012 0.224
NBB(π) -0.000 0.068 0.051 -0.005 -0.325 -0.012 1.000 0.035

NBB(K) 0.002 -0.009 -0.003 0.046 -0.011 0.224 0.035 1.000

Table 4.23: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
φ MC sample.
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K0
S
ω

generic Monte Carlo – Fit Results (K0
Sω)

Parameter True value Fit value B+ B−

µ(D0K) (MeV) −0.28 ± 0.37 0.0 ± 1.0 - -
σ(D0K) (MeV) 18.62 ± 0.35 18.3 ± 0.9 - -

ND0π 590(515 ± 7) 515 ± 26 263 ± 18 252 ± 18
ND0K 47(43 ± 1) 39 ± 9 17 ± 6 22 ± 6
Nqq(π) 133 229 ± 35 131 ± 24 98 ± 23
Nqq(K) 105 131 ± 25 74 ± 18 57 ± 17
NBB(π) 492 465 ± 32 235 ± 23 230 ± 22

NBB(K) 17 5+23
−5 1+16

−1 4+16
−4

Table 4.24: True yields and maximum likelihood fit results in the generic Monte Carlo
analysis of the B− → D0K−, D0 → K0

S
ω analysis.

generic Monte Carlo – Fit Results (K0
Sω)

Species True asymmetry Fit asymmetry

D0π −2.0% −(2 ± 5)%
D0K 1.2% (13 ± 22)%
qq(π) −5.3% −(14 ± 15)%
qq(K) −16% −(13 ± 19)%

BB(π) −4.5% −(1 ± 7)%

BB(K) 5.9% (60+40
−160)%

Table 4.25: True and fit asymmetries in the generic Monte Carlo analysis of the B− →
D0K−, D0 → K0

S
ω analysis.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 0.009 -0.023 0.061 0.006 -0.032 0.022 0.017
σ(D0K) 0.009 1.000 -0.261 -0.092 -0.309 0.051 -0.119 -0.023
ND0π -0.023 -0.261 1.000 0.015 0.294 -0.018 0.116 0.008
ND0K 0.061 -0.092 0.015 1.000 0.028 -0.281 0.012 0.129
Nqq(π) 0.006 -0.309 0.294 0.028 1.000 0.015 0.613 -0.015
Nqq(K) -0.032 0.051 -0.018 -0.281 0.015 1.000 0.016 -0.837
NBB(π) 0.022 -0.119 0.116 0.012 0.613 0.016 1.000 -0.028

NBB(K) 0.017 -0.023 0.008 0.129 -0.015 -0.837 -0.028 1.000

Table 4.26: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
ω MC sample.
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In conclusion, the signal yields and asymmetries returned from the fit are consistent,
within the estimated uncertainties, with the expected values from the simulation. We
summarize them in Tables 4.27 and 4.28. BB(π) and BB(K) yields are also correctly
estimated. qq(π) and qq(K) yields are overestimated, because the fraction 1 − f1 of
B → D0h events that are not contained in the main ∆E Gaussian is mis-identified as a
qq(h) background in the fit: this behaviour has also been observed in the “toy” Monte
Carlo studies, and is not a concern since for our measurements we are interested only in
the signal yields. In all the fits a significant (20-30%) correlation between the B → D0h
and the qq(h) fit yields is observed: this correlation has also been reproduced in the Monte
Carlo pseudo-experiments described in previous Section, which have shown that – even in
the presence of such a correlation – the signal yields are not biased and their uncertainties
are correctly estimated.

D0 mode D0π yield D0K yield
True Fit True Fit

K−π+ 16485 ± 53 16755 ± 138 1367 ± 3 1409 ± 43
K+K− 1334 ± 5 1330 ± 40 110 ± 1 99 ± 14
π+π− 463 ± 1 443 ± 26 38 ± 1 42 ± 10
K0

Sπ0 1479 ± 10 1471 ± 43 120 ± 1 122 ± 15
K0

Sφ 375 ± 2 379 ± 21 32 ± 1 32 ± 6
K0

Sω 515 ± 7 515 ± 26 43 ± 1 39 ± 9

Table 4.27: True versus fit B → D0π and B → D0K yields, for each of the six D0

modes, in the analysis performed on BABAR simulated events scaled to the same integrated
luminosity as the data sample.

D0 mode D0π asymmetry (%) D0K asymmetry (%)
True Fit True Fit

K−π+ -1.0 −1.2 ± 0.8 -1.3 −2.6 ± 3.0
K+K− 1.0 1.4 ± 3.0 -1.0 −1 ± 14
π+π− 1.4 3 ± 6 0.7 −5 ± 24
K0

Sπ0 -1.7 −1.8 ± 2.8 -0.5 −7 ± 12
K0

Sφ 0.7 1 ± 5 -1.0 −9 ± 19
K0

Sω -2.0 −2 ± 5 1.2 13 ± 22

Table 4.28: True versus fit B → D0π and B → D0K asymmetries, for each of the six D0

modes, in the analysis performed on BABAR simulated events scaled to the same integrated
luminosity as the data sample.
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4.7 Fit results on data

In this section we report the results of the measurement of the B → D0K and B → D0π
yields on data after the unblinding.
In Tables 4.29, 4.31, 4.33, 4.35, 4.37 and 4.39 we summarize the fit yields for each
D0 mode with their uncertainties. In the last column the charge asymmetries of each
signal and background category, defined as the ratio between the difference and the sum
of negative and positive B candidates in each category, are shown.
In Tables 4.30, 4.32, 4.34, 4.36, 4.38, 4.40 we put the correlation matrices of the fit
parameters.
The ∆E and θC distributions of the selected samples with the projection of the fit result
for each D0 mode are shown in the two top plots of Figures 4.14-4.19.
The ∆E distributions, with the projection of the fit result, for each D0 mode for the
separate B+ and B− samples are shown in the two plots in the middle row of the same
Figures.
In order to provide the evidence of the presence of the B → D0K signal, and to see what
the components of the event sample look like in the ∆E variable when integrating over
θC , we use the following weighting technique [86]. For each event, a weight for h to be
a kaon or a pion is derived from the numbers N(π) ≡ N(D0π) +N(qq(π)) +N(BB(π))
and N(K) ≡ N(D0K) + N(qq(K)) + N(BB(K)) + N(X1X2K) estimated from the fit
and from the probability distributions in the θC variable. Using these weights, the data
is then plotted in the ∆E variable. These plots, called “sPlots”, are shown in the bottom
row of the Figures already introduced. For comparison, also shown are the sum of the
D0π, qq(π) and BB(π) contributions (estimated from the nominal fit) in the case where
the h = π weight is used, and the sum of the D0K, qq(K), BB(K) and X1X2K in the
case where the h = K weight is used.

4.7.1 K−π+

on-resonance data – Fit Results (K−π+)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −2.62 ± 0.14 - -
σ(D0K)(MeV) 16.74 ± 0.12 - -

ND0π 16050 ± 135 8151 ± 95 7899 ± 93 −1.6 ± 0.8
ND0K 1260 ± 40 649 ± 29 611 ± 28 −3.0 ± 3.2
Nqq(π) 3590 ± 104 1922 ± 73 1668 ± 68 −7.1 ± 2.8
Nqq(K) 669 ± 42 317 ± 30 352 ± 30 5 ± 6
NBB(π) 12660 ± 127 6420 ± 90 6238 ± 88 −1.4 ± 1.0

NBB(K) 386 ± 32 217 ± 23 169 ± 22 −12 ± 8

Table 4.29: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → K−π+ candidates.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 101.3% (4.8)

and the correlation between the B → D0π and B → D0K yields returned from the fit
(Table 4.30), is

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (7.75 ± 0.26(stat))% (4.9)
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Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.038 -0.026 0.040 0.013 -0.017 0.008 0.012
σ(D0K) -0.038 1.000 0.159 0.050 -0.291 -0.054 0.068 0.006
ND0π -0.026 0.159 1.000 -0.005 -0.205 -0.021 0.051 0.004
ND0K 0.040 0.050 -0.005 1.000 -0.018 -0.191 0.004 0.035
Nqq(π) 0.013 -0.291 -0.205 -0.018 1.000 -0.033 -0.312 0.020
Nqq(K) -0.017 -0.054 -0.021 -0.191 -0.033 1.000 0.010 -0.419
NBB(π) 0.008 0.068 0.051 0.004 -0.312 0.010 1.000 -0.049

NBB(K) 0.012 0.006 0.004 0.035 0.020 -0.419 -0.049 1.000

Table 4.30: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K−π+ on-resonance sample.

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(1.6 ± 0.8(stat))% (4.10)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= −(3.0 ± 3.2(stat))% (4.11)
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Figure 4.14: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 →
K−π+ events in the on-resonance data sample. Middle: ∆E distribution of positive (left)
and negative (right) B candidates. Bottom: ∆E distribution of selected events that have
been weighted based on the probability, computed according to the θC measured value
and its PDF, of h = K (left) or h = π (right). In the first four plots, the blue solid line
represents the projection of the likelihood in the plotted variable. In the top-left and the
two central plots the red solid line, the green solid line and the blue dashed line represent
the ∆E projection of the B → D0π, B → D0K and background components of the
likelihood. In the top-right plot, the red and the green lines represent the θC projection
of the “pion” (B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K), BB(K))
of the likelihood. In the two bottom plots, the solid lines represent the ∆E projections
of the kaon component (left) and the pion component (right) of the likelihood, while the
dashed lines represent the projections of the background kaon or pion components.
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4.7.2 K+K−

on-resonance data – Fit Results (K+K−)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −2.7 ± 0.5 - -
σ(D0K)(MeV) 17.3 ± 0.5 - -

ND0π 1395 ± 40 705 ± 28 690 ± 28 −1.1 ± 2.8
ND0K 96 ± 13 26 ± 9 70 ± 10 46 ± 15
Nqq(π) 273 ± 33 130 ± 22 143 ± 24 5 ± 12
Nqq(K) 185 ± 23 118 ± 18 67 ± 15 −28 ± 13
NBB(π) 1188 ± 41 588 ± 28 600 ± 29 1.0 ± 3.3

NBB(K) 34 ± 16 14 ± 12 20 ± 12 18 ± 51

Table 4.31: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → K+K− candidates.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.034 0.024 0.025 -0.003 0.010 -0.015 -0.008
σ(D0K) -0.034 1.000 -0.163 0.105 0.280 0.067 -0.070 -0.018
ND0π 0.024 -0.163 1.000 -0.008 -0.213 -0.021 0.055 0.007
ND0K 0.025 0.105 -0.008 1.000 0.033 0.267 -0.009 -0.080
Nqq(π) -0.003 0.280 -0.213 0.033 1.000 -0.012 -0.401 0.013
Nqq(K) 0.010 0.067 -0.021 0.267 -0.012 1.000 0.007 -0.625
NBB(π) -0.015 -0.070 0.055 -0.009 -0.401 0.007 1.000 -0.036

NBB(K) -0.008 -0.018 0.007 -0.080 0.013 -0.625 -0.036 1.000

Table 4.32: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K+K− on-resonance sample.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 100.3% (4.12)

and the correlation between the B → D0π and B → D0K yields returned from the fit, is:

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (6.9 ± 1.0(stat))% (4.13)

The double branching fraction ratio is:

B(B→D0K,D0→K+K−)
B(B→D0π,D0→K+K−)

B(B→D0K,D0→K−π+)
B(B→D0π,D0→K−π+)

= (89 ± 13(stat))% (4.14)

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(1.1 ± 2.8(stat))% (4.15)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= (46 ± 15(stat))% (4.16)
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Figure 4.15: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 →
K+K− events in the on-resonance data sample. Middle: ∆E distribution of positive
(left) and negative (right) B candidates. Bottom: ∆E distribution of selected events that
have been weighted based on the probability, computed according to the θC measured
value and its PDF, of h = K (left) or h = π (right). In the first four plots, the blue
solid line represents the projection of the likelihood in the plotted variable. In the top-left
and the two central plots the red solid line, the green solid line and the blue dashed line
represent the ∆E projection of the B → D0π, B → D0K and background components
of the likelihood. In the top-right plot, the red and the green lines represent the θC

projection of the “pion” (B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K),
BB(K) and X1X2K) of the likelihood. In the two bottom plots, the solid lines represent
the ∆E projections of the kaon component (left) and the pion component (right) of the
likelihood, while the dashed lines represent the projections of the background kaon or
pion components.

137



4.7.3 π+π−

on-resonance data – Fit Results (π+π−)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −1.6 ± 1.0 - -
σ(D0K)(MeV) 16.9 ± 0.9 - -

ND0π 475 ± 26 256 ± 18 219 ± 17 −8 ± 5
ND0K 35 ± 10 18 ± 7 17 ± 7 −3 ± 28
Nqq(π) 415 ± 38 206 ± 25 209 ± 26 1 ± 9
Nqq(K) 215 ± 32 112 ± 11 103 ± 11 −4 ± 7
NBB(π) 485 ± 33 240 ± 23 245 ± 23 1 ± 7

NBB(K) 32 ± 26 17+20
−17 15+19

−15 −6+80
−77

Table 4.33: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → π+π− candidates.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 0.083 -0.046 -0.017 -0.034 0.016 0.000 -0.011
σ(D0K) 0.083 1.000 -0.296 0.039 -0.305 -0.018 0.116 0.006
ND0π -0.046 -0.296 1.000 -0.009 0.318 0.015 -0.124 -0.007
ND0K -0.017 0.039 -0.009 1.000 -0.014 -0.272 0.007 0.112
Nqq(π) -0.034 -0.305 0.318 -0.014 1.000 -0.024 -0.553 0.018
Nqq(K) 0.016 -0.018 0.015 -0.272 -0.024 1.000 0.018 -0.817
NBB(π) 0.000 0.116 -0.124 0.007 -0.553 0.018 1.000 -0.031

NBB(K) -0.011 0.006 -0.007 0.112 0.018 -0.817 -0.031 1.000

Table 4.34: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ π+π− on-resonance sample.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 100.9% (4.17)

and the correlation between the B → D0π and B → D0K yields returned from the fit, is:

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (7.3 ± 2.1(stat))% (4.18)

The double branching fraction ratio is:

B(B→D0K,D0→π+π−)
B(B→D0π,D0→π+π−)

B(B→D0K,D0→K−π+)
B(B→D0π,D0→K−π+)

= (94 ± 28(stat))% (4.19)

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(8 ± 5(stat))% (4.20)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= −(3 ± 28(stat))% (4.21)
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Figure 4.16: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 → π+π−

events in the on-resonance data sample. Middle: ∆E distribution of positive (left) and
negative (right) B candidates. Bottom: ∆E distribution of selected events that have been
weighted based on the probability, computed according to the θC measured value and its
PDF, of h = K (left) or h = π (right). In the first four plots, the blue solid line represents
the projection of the likelihood in the plotted variable. In the top-left and the two central
plots the red solid line, the green solid line and the blue dashed line represent the ∆E
projection of the B → D0π, B → D0K and background components of the likelihood. In
the top-right plot, the red and the green lines represent the θC projection of the “pion”
(B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K), BB(K) and X1X2K)
of the likelihood. In the two bottom plots, the solid lines represent the ∆E projections
of the kaon component (left) and the pion component (right) of the likelihood, while the
dashed lines represent the projections of the background kaon or pion components.
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4.7.4 K0
Sπ0

on-resonance data – Fit Results (K0
Sπ0)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −1.6 ± 0.6 - -
σ(D0K)(MeV) 17.6 ± 0.5 - -

ND0π 1384 ± 42 707 ± 29 677 ± 29 −2.2 ± 3.0
ND0K 81 ± 13 39 ± 9 42 ± 9 4 ± 16
Nqq(π) 545 ± 46 250 ± 30 295 ± 31 8 ± 8
Nqq(K) 227 ± 27 90 ± 18 137 ± 21 21 ± 12
NBB(π) 1315 ± 46 684 ± 33 631 ± 32 −4.0 ± 3.5

NBB(K) 57 ± 20 34 ± 14 23 ± 15 −19 ± 37

Table 4.35: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → K0

S
π0 candidates.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.055 0.034 0.044 0.018 0.025 0.010 0.015
σ(D0K) -0.055 1.000 -0.250 0.034 -0.337 0.026 0.106 0.007
ND0π 0.034 -0.250 1.000 0.001 0.281 -0.018 -0.092 -0.007
ND0K 0.044 0.034 0.001 1.000 -0.014 0.289 0.005 0.096
Nqq(π) 0.018 -0.337 0.281 -0.014 1.000 0.033 -0.453 0.024
Nqq(K) 0.025 0.026 -0.018 0.289 0.033 1.000 -0.019 0.663
NBB(π) 0.010 0.106 -0.092 0.005 -0.453 -0.019 1.000 -0.046

NBB(K) 0.015 0.007 -0.007 0.096 0.024 0.663 -0.046 1.000

Table 4.36: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
π0 on-resonance sample.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 99.5% (4.22)

and the correlation between the B → D0π and B → D0K yields returned from the fit, is:

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (5.9 ± 1.0(stat))% (4.23)

The double branching fraction ratio is:

B(B→D0K,D0→K0
Sπ0)

B(B→D0π,D0→K0
S

π0)

B(B→D0K,D0→K−π+)
B(B→D0π,D0→K−π+)

= (76 ± 13(stat))% (4.24)

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(2.2 ± 3.0(stat))% (4.25)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= −(4 ± 16(stat))% (4.26)
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Figure 4.17: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 → K0
S
π0

events in the on-resonance data sample. Middle: ∆E distribution of positive (left) and
negative (right) B candidates. Bottom: ∆E distribution of selected events that have been
weighted based on the probability, computed according to the θC measured value and its
PDF, of h = K (left) or h = π (right). In the first four plots, the blue solid line represents
the projection of the likelihood in the plotted variable. In the top-left and the two central
plots the red solid line, the green solid line and the blue dashed line represent the ∆E
projection of the B → D0π, B → D0K and background components of the likelihood. In
the top-right plot, the red and the green lines represent the θC projection of the “pion”
(B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K), BB(K) and X1X2K)
of the likelihood. In the two bottom plots, the solid lines represent the ∆E projections
of the kaon component (left) and the pion component (right) of the likelihood, while the
dashed lines represent the projections of the background kaon or pion components.
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4.7.5 K0
Sφ

on-resonance data – Fit Results (K0
Sφ)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −2.1 ± 1.0 - -
σ(D0K)(MeV) 17.2 ± 0.8 - -

ND0π 333 ± 20 176 ± 14 157 ± 13 −6 ± 6
ND0K 28 ± 6 15 ± 5 13 ± 4 −7 ± 23
Nqq(π) 80 ± 17 32 ± 10 48 ± 12 20 ± 19
Nqq(K) 41 ± 8 27 ± 7 14 ± 5 −32 ± 20
NBB(π) 272 ± 19 132 ± 13 140 ± 14 3 ± 7

NBB(K) 3+3
−2 3+3

−2 0+1
−0 −100+67

−0

Table 4.37: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → K0

S
φ candidates.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 0.054 0.003 -0.073 -0.034 0.035 -0.022 -0.009
σ(D0K) 0.054 1.000 -0.161 -0.047 -0.294 0.041 -0.090 -0.011
ND0π 0.003 -0.161 1.000 -0.009 0.223 -0.021 0.068 0.005
ND0K -0.073 -0.047 -0.009 1.000 0.012 -0.250 0.008 0.069
Nqq(π) -0.034 -0.294 0.223 0.012 1.000 0.020 0.373 -0.010
Nqq(K) 0.035 0.041 -0.021 -0.250 0.020 1.000 -0.012 -0.275
NBB(π) -0.022 -0.090 0.068 0.008 0.373 -0.012 1.000 -0.029

NBB(K) -0.009 -0.011 0.005 0.069 -0.010 -0.275 -0.029 1.000

Table 4.38: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
φ on-resonance sample.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 99.9% (4.27)

and the correlation between the B → D0π and B → D0K yields returned from the fit, is:

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (8.4 ± 1.9(stat))% (4.28)

The double branching fraction ratio is:

B(B→D0K,D0→K0
Sφ)

B(B→D0π,D0→K0
S

φ)

B(B→D0K,D0→K−π+)
B(B→D0π,D0→K−π+)

= (109 ± 25(stat))% (4.29)

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(6 ± 6(stat))% (4.30)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= −(7 ± 23(stat))% (4.31)
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Figure 4.18: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 → K0
S
φ

events in the on-resonance data sample. Middle: ∆E distribution of positive (left) and
negative (right) B candidates. Bottom: ∆E distribution of selected events that have been
weighted based on the probability, computed according to the θC measured value and its
PDF, of h = K (left) or h = π (right). In the first four plots, the blue solid line represents
the projection of the likelihood in the plotted variable. In the top-left and the two central
plots the red solid line, the green solid line and the blue dashed line represent the ∆E
projection of the B → D0π, B → D0K and background components of the likelihood. In
the top-right plot, the red and the green lines represent the θC projection of the “pion”
(B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K), BB(K) and X1X2K)
of the likelihood. In the two bottom plots, the solid lines represent the ∆E projections
of the kaon component (left) and the pion component (right) of the likelihood, while the
dashed lines represent the projections of the background kaon or pion components.
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4.7.6 K0
Sω

on-resonance data – Fit Results (K0
Sω)

Parameter Fitted value B+ B− Asym(%)

µ(D0K)(MeV) −2.6 ± 1.0 - -
σ(D0K)(MeV) 17.6 ± 0.9 - -

ND0π 465 ± 25 235 ± 17 230 ± 17 −1 ± 5
ND0K 39 ± 9 25 ± 7 14 ± 6 −28 ± 24
Nqq(π) 211 ± 34 84 ± 23 127 ± 24 20 ± 16
Nqq(K) 126 ± 26 59 ± 20 67 ± 10 6 ± 18
NBB(π) 547 ± 34 294 ± 24 253 ± 24 −8 ± 6

NBB(K) 18+23
−16 18+20

−16 0+6
−0 −100200

−0

Table 4.39: Maximum likelihood fit results in the on-resonance data sample of selected
B− → D0K−, D0 → K0

S
ω candidates.

Param. µ(D0K) σ(D0K) ND0π ND0K Nqq(π) Nqq(K) NBB(π) NBB(K)

µ(D0K) 1.000 -0.003 -0.012 0.057 -0.024 -0.026 -0.029 0.015
σ(D0K) -0.003 1.000 -0.255 -0.129 0.286 0.071 0.102 -0.030
ND0π -0.012 -0.255 1.000 0.021 -0.285 -0.025 -0.102 0.011
ND0K 0.057 -0.129 0.021 1.000 -0.037 -0.279 -0.016 0.123
Nqq(π) -0.024 0.286 -0.285 -0.037 1.000 -0.020 0.602 0.020
Nqq(K) -0.026 0.071 -0.025 -0.279 -0.020 1.000 -0.016 -0.826
NBB(π) -0.029 0.102 -0.102 -0.016 0.602 -0.016 1.000 0.036

NBB(K) 0.015 -0.030 0.011 0.123 0.020 -0.826 0.036 1.000

Table 4.40: Correlation coefficients of parameters from the fit on the B− → D0K−, D0

→ K0
S
ω on-resonance sample.

The measured branching fraction ratio, taking into account selection and fit efficiency:

ε̃(B → D0K)/ε̃(B → D0π) = 103.3%. (4.32)

and the correlation between the B → D0π and B → D0K yields returned from the fit, is:

B(B → D0K)

B(B → D0π)
=
N(B → D0K)/N(B → D0π)

ε̃(B → D0K)/ε̃(B → D0π)
= (8.2 ± 1.9(stat))% (4.33)

The double branching fraction ratio is:

B(B→D0K,D0→K0
Sω)

B(B→D0π,D0→K0
S

ω)

B(B→D0K,D0→K−π+)
B(B→D0π,D0→K−π+)

= (105 ± 25(stat))% (4.34)

The B → D0h charge asymmetries are

A(D0π) =
N(D0π−) −N(D0π+)

N(D0π−) +N(D0π+)
= −(1 ± 5(stat))% (4.35)

A(D0K) =
N(D0K−) −N(D0K+)

N(D0K−) +N(D0K+)
= −(28 ± 24(stat))% (4.36)
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Figure 4.19: Top: ∆E (left) and θC (right) distribution of selected B → D0h,D0 → K0
S
ω

events in the on-resonance data sample. Middle: ∆E distribution of positive (left) and
negative (right) B candidates. Bottom: ∆E distribution of selected events that have been
weighted based on the probability, computed according to the θC measured value and its
PDF, of h = K (left) or h = π (right). In the first four plots, the blue solid line represents
the projection of the likelihood in the plotted variable. In the top-left and the two central
plots the red solid line, the green solid line and the blue dashed line represent the ∆E
projection of the B → D0π, B → D0K and background components of the likelihood. In
the top-right plot, the red and the green lines represent the θC projection of the “pion”
(B → D0π, qq(π) and BB(π)) and “kaon” (B → D0K, qq(K), BB(K) and X1X2K)
of the likelihood. In the two bottom plots, the solid lines represent the ∆E projections
of the kaon component (left) and the pion component (right) of the likelihood, while the
dashed lines represent the projections of the background kaon or pion components.
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4.8 Fit on background-only data samples

If the fit behaves properly, it must give a number of signal candidates compatible with zero
when it is performed on a sample of candidates selected in off-resonance data, or in on-
resonance data after vetoing signal events. We have thus performed the nominal {∆E, θC}
fit on each of the six samples of B → D0h candidates selected in off-resonance data, after
all selection criteria described in the previous Chapter have been applied (sample A)
and also after having loosened or completely removed some selection criteria in order
to increase the statistics of the selected sample (B-E). We have also performed the fit to
selected candidates in on-resonance data, limiting ourselves to the region ∆E > 0.14 GeV
(sample F) or mES < 5.26 GeV/c2 (samples G and H) where no B → D0h events are
expected. In all the eight cases, for each of the sixD0 modes, the B → D0π andB → D0K
fit yields have been found to be consistent with zero. Also the number of BB(π) and
BB(K) returned from the fit is consistent with zero. We have then redone the fits after
fixing the B → D0h and BB(h) yields to zero, to measure the charge asymmetries of
the background and check whether asymmetries significantly different from zero (which
would indicate a detector charge bias) are seen. The results of these fits are listed in
Table 4.41: no significant charge asymmetry is observed either in the qq(π) or in the
qq(K) background.

sample K−π+ K+K− π+π−

A(qq(π))(%) A(qq(K))(%) A(qq(π))(%) A(qq(K))(%) A(qq(π))(%) A(qq(K))(%)
A 2.8±6.3 −11±15 33±27 −20±34 5±15 9±39
B 2.4±2.1 0.6±4.9 4±8 −14±9 10±5 5±8
C −2.4±5.0 −20±10 7±10 −18±16 11±7 −2±13
D 1.0±1.6 0.9±3.5 −0.8±3.5 −1.4±4.7 2.8±2.5 −1.1±4.1
E 1.6±4.2 −13±9 −3±10 11±14 −1±5 0±9
F −0.5±1.2 −3.8±2.5 −0.7±2.4 −1.1±3.6 0.9±1.8 −4.8±3.0
G −0.8±0.6 −1.0±1.3 −0.9±1.1 −1.5±1.7 −0.3±0.9 0.6±1.4
H −1.2±0.8 −0.1±1.7 −1.8±2.5 4.1±3.4 0.1±1.8 0.3±2.7

sample K0
Sπ0 K0

Sφ K0
Sω

A(qq(π))(%) A(qq(K))(%) A(qq(π))(%) A(qq(K))(%) A(qq(π))(%) A(qq(K))(%)

A −20±21 −31±20 −33+67
−51 60+29

−47 0±35 −29±24
B −1±6 −2±7 −20±14 27±16 −4±9 −3±11
C −14±16 −28±17 −50±42 43±48 5±17 −18±22
D 5.8±4.4 0±6 −7±10 13±14 −3±6 −2±7
E −2±5 −5±7 11±39 27±30 −4±11 −5±14
F 0.3±3.1 −0.9±4.4 −7±8 −7±9 −1.2±3.8 −1±5
G 0.5±1.5 −3.8±2.1 4.2±3.6 −9±5 −1.1±1.8 −0.5±2.6
H 0.2±1.9 −3.8±2.7 2±5 −16±7 −3.7±2.9 −0.7±3.7

Table 4.41: Charge asymmetries of the qq(π) and qq(K) backgrounds estimated from a
{∆E, θC} fit to several background samples. The uncertainties are statistical only, as
obtained from the errors on the fit yields. The sample that have been considered are the
following:
A = off-res data after final selection.
B = off-res data, mES cut removed.
C = off-res data, m(D0) cut removed.
D = off-res data, no mES and m(D0) cuts.
E = off-res data, no event shape cuts.
F = on-res data, no mES and m(D0) cuts, ∆E > 0.14 GeV.
G = on-res data, mES ≤ 5.26 GeV/c2, no m(D0) cuts.
H = on-res data, mES ≤ 5.26 GeV/c2.
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4.9 Systematic errors evaluation

The main sources of systematic uncertainty on the yields and derived quantities (the CP
asymmetry and the ratio of the branching fraction) are listed in the following.

4.9.1 Parameterization of the ∆E BB and qq distribution

The PDFs describing the probability associated to the value of ∆E for the different back-
ground contributions depend on a number of parameters. The way these parameters
are estimated has been described in section 4.4. All the PDF parameters have been de-
termined through a fit on the ∆E distributions obtained on real data or Monte Carlo
samples. Thus each value has its own associated error. Each PDF parameter is increased
or decreased by 1 σ, while all the others are kept fixed at their central value. The resulting
change of each fit parameter is considered as the associated systematic error. In the eval-
uation of the total systematic error the single contributions are considered uncorrelated,
and the square of the total error is computed as the sum of the squares of the single
contributions.

4.9.2 Parameterization of PDF(θC)

The parameterization of the particle-identification PDF is performed by fitting with a
double-Gaussian function the background-subtracted distribution of the corrected pull
θpull

C . Therefore, the significant parameters for the θC PDFs are the two sets of five param-
eters listed in Table 4.2. The systematic error associated with the particle-identification
PDF is estimated by varying by ±1σ the double-Gaussian parameters of the kaon and
pion θC distributions and taking the sum in quadrature of the resulting shifts in ACP±
and R± as the systematic errors.

4.9.3 Evaluation of the peaking backgrounds

The uncertainties on the number of peaking background events (B → X1X2K) estimated
from the D0 mass sidebands are listed in Table 4.1 and take into account possible sta-
tistical fluctuations of the B → X1X2K yield. These fluctuations introduce a systematic
uncertainty on the B → D0

CP±K yield and therefore on R±: therefore we perform the fit
after floating the B → X1X2K yield by its uncertainty and take the shift in R± as the
associated systematic uncertainty. The uncertainties on the asymmetries are evaluated
from the observed shifts in ACP± when the fits to the B+ and B− samples are redone after
allowing independent Poisson fluctuations of the B+ → X1X2K

+ and B− → X1X2K
−

candidates, and also allowing a 20% CP asymmetry for the peaking backgrounds. Fi-
nally, we take into account the uncertainty on the ∆E shape of the peaking background
by adding in quadrature to the systematic uncertainty on R± and ACP± the shift that is
obtained after repeating the fit with the parameters of the ∆E distribution of the peaking
background varied by ±1σ.

4.9.4 Detector charge asymmetry

A source of bias that must be investigated arises from a potential charge asymmetry of
the BABAR detector, due to a possible charge bias in tracking efficiency (e.g., K+ vs K−)
and/or particle identification. In order to understand if this effect can bring a significant
bias to the asymmetry measurement a number of control samples, from both Monte Carlo
and real data, are studied. When we say “significant bias” we must keep in mind that the
statistical uncertainty on the B → D0K, D0 → K+K− asymmetry is of the order of 15%.
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The charge asymmetry has been measured on data for the processes B → D0π [D0 →
K−π+ ], B → D0K [D0 → K−π+], B → D0π [D0 → K+K− ], B → D0π [D0 → π+π−

], B → D0π [D0 → K0
S
π0 ], B → D0π [D0 → K0

S
φ ], B → D0π [D0 → K0

S
ω ], where

the CP asymmetry is expected to be negligible; the same check has been performed on
Monte Carlo for the same control samples and for the signal B → D0K [D0 → K−π+

]. The results of the measured charge asymmetries are reported in table 4.42; all the
results show that there is no evidence of a charge asymmetry of the BABAR detector. The
average asymmetry found in Monte Carlo is −(0.4± 0.3)%, while in data control samples
it is (−1.8 ± 0.9)%. Hence no corrections are applied to the measured CP asymmetries:
we just add (in quadrature) an extra contribution (1.8 + 0.9)% = 2.7% to the systematic
error on them.

decay mode ACP (%)

B → D0π, D0 → K+K− signal MC +0.7 ± 0.8
B → D0π, D0 → π+π− signal MC +1.1 ± 0.8
B → D0π, D0 → K0

Sπ0 signal MC −1.5 ± 1.0
B → D0π, D0 → K0

Sφ signal MC +0.7 ± 0.9
B → D0π, D0 → K0

Sω signal MC −2.0 ± 1.6
B → D0π, D0 → K−π+ signal MC −1.0 ± 0.7
B → D0K, D0 → K−π+ signal MC −1.3 ± 0.7

B → D0π, D0 → K+K− DATA −1.1 ± 2.8
B → D0π, D0 → π+π− DATA −7.8 ± 5.2
B → D0π, D0 → K0

Sπ0 DATA −2.2 ± 3.0
B → D0π, D0 → K0

Sφ DATA −5.7 ± 5.7
B → D0π, D0 → K0

Sω DATA −1.1 ± 5.2
B → D0π, D0 → K−π+ DATA −1.6 ± 0.8
B → D0K, D0 → K−π+ DATA −3.0 ± 3.2

Table 4.42: Charge asymmetries measured on signal Monte Carlo or data for different B
decays.

4.9.5 S-wave Pollution in B → D0K, D0 → K0
Sφ and B → D0K, D0 →

K0
S
ω

The measured CP asymmetry in B → D0K, D0 → K0
S
φ can be diluted by the presence,

in the selected sample, of B → D0K decays with D0 decaying to the same final state
K0

S
K+K− as K0

S
φ, φ → K+K− but with opposite CP content. The same can happen

in the B → D0K, D0 → K0
S
ω analysis with backgrounds from B → D0K, D0 →

K0
S
π+π−π0. Moreover, as will be shown later, also the measured ratio R− is, to a small

extent, affected by the presence of this peculiar background. The Dalitz plot for the D0 →
K0

S
K+K− decay has been studied in detail in BABAR in D0 produced in D∗+ → D0π+

decays [87] and from these it is found that theD0 → K0
S
K+K− amplitude can be described

as the sum of only two amplitudes, D0 → K0
S
φ (CP = −1) and D0 → K0

S
a0 (CP = +1,

since the a0 is scalar). On the other hand, the full amplitude of D0 → K0
S
π+π−π0 is

not known yet, although it could be measured either in BABAR or in charm factories like
CLEO-c.

Let us see how the presence of the CP -even D0 → K0
S
a0 affects the CP -asymmetry

and the branching fraction ratio measured in the K0
S
φ channel. Neglecting CP violation

in the D0 system, the K0
S
φ final state is accessible only to D2 ≡ D0−D0

√
2

, while K0
S
a0 is

accessible only to D1 ≡ D0+D0
√

2
. The B− → K0

S
K+K−π− amplitude is therefore:

A−
π ≡ A(B− → K0

S
K+K−π−)
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= A(B− → D0π−) ×A(D0 → K0
S
K+K−)

= A(B− → D0π−) × A(D1 → K0
S
a0) +A(D2 → K0

S
φ)√

2
(4.37)

Here we have neglected the term A(B− → D̄0π−) × A(D̄0 → K0
S
K+K−) since it is

suppressed by a factor rBλ
2 ≈ 0.5 − 1% with respect to the term A(B− → D0π−) ×

A(D0 → K0
S
K+K−). Since the a0 is scalar and the φ is a vector, the amplitudes for the

D decays, in terms of the helicity angle θH of the two kaons,2 can be written: [88]

A(D1 → a0K
0
S
) = A1 (4.38)

A(D2 → φK0
S
) = A2

√
3 cos θH (4.39)

Therefore:

A−
π = A(B− → D0π−) × A1 +A2

√
3 cos θH√

2

=
AπA2√

2
× [z +

√
3 cos θH ] (4.40)

where

z ≡ A1

A2
(4.41)

is a complex number and

Aπ ≡ A(B− → D0π−) (4.42)

Similarly, the B+ → K0
S
K+K−π+ amplitude is:

A+
π ≡ A(B+ → K0

S
K+K−π+)

= A(B+ → D̄0π+) ×A(D̄0 → K0
S
K+K−)

= A(B+ → D̄0π+) × A(D1 → K0
S
a0) −A(D2 → K0

S
φ)√

2

=
AπA2√

2
× [z −

√
3 cos θH ] (4.43)

with the phase convention such that A(B+ → D0π+) = A(B− → D0π−).
Now let us turn to the B± → K0

S
K+K−K± amplitudes. Here we take into account

also the terms that we have neglected in the B → Dπ case, since suppression is much
weaker:

A−
K ≡ A(B− → K0

S
K+K−K−)

= A(B− → D0K−) ×A(D0 → K0
S
K+K−) +

A(B− → D̄0K−) ×A(D̄0 → K0
S
K+K−)

= A(B− → D0K−) ×
[A(D1 → K0

S
a0) +A(D2 → K0

S
φ)√

2
+

rBe
i(δB−γ)A(D1 → K0

S
a0) −A(D2 → K0

S
φ)√

2

]

=
AKA2√

2
× [z(1 + rBe

i(δB−γ)) +
√

3 cos θH(1 − rBe
i(δB−γ))] (4.44)

2In Chapter 3 this angle was denoted with θhel(φ)
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where have used:

A(B− → D̄0K−)

A(B− → D0K−)
= rBe

i(δB−γ) (4.45)

For the B+ amplitude we must take into account that

A(B+ → D0K+)

A(B+ → D̄0K+)
= rBe

i(δB+γ) (4.46)

and find, with the phase choice such that A(B+ → D̄0K+) = A(B− → D0K−) = AK ,

A+
K ≡ A(B+ → K0

S
K+K−K+)

= A(B+ → D̄0K+) ×A(D̄0 → K0
S
K+K−) +

A(B+ → D0K+) ×A(D0 → K0
S
K+K−)

= A(B+ → D̄0K+) ×
[A(D1 → K0

S
a0) −A(D2 → K0

S
φ)√

2
+

rBe
i(δB+γ)A(D1 → K0

S
a0) +A(D2 → K0

S
φ)√

2

]

=
AKA2√

2
× [z(1 + rBe

i(δB+γ)) −
√

3 cos θH(1 − rBe
i(δB+γ))] (4.47)

We then compute |A|2 = AA∗:

|A−
π |2 =

|AπA2|2
2

[

|z|2 + 3 cos2 θH + 2
√

3 cos θHℜz
]

(4.48)

|A+
π |2 =

|AπA2|2
2

[

|z|2 + 3 cos2 θH − 2
√

3 cos θHℜz
]

(4.49)

|A−
K |2 = |AKA2|2

2

[ (
1 + r2B + 2rB cos(δB − γ)

)
|z|2 +

(
1 + r2B − 2rB cos(δB − γ)

)
3 cos2 θH +

(
(1 − r2B)ℜz − 2rB sin(δB − γ)ℑz)

)
2
√

3 cos θH

]

(4.50)

|A+
K |2 = |AKA2|2

2

[ (
1 + r2B + 2rB cos(δB + γ)

)
|z|2 +

(
1 + r2B − 2rB cos(δB + γ)

)
3 cos2 θH −

(
(1 − r2B)ℜz − 2rB sin(δB + γ)ℑz)

)
2
√

3 cos θH

]

(4.51)

Therefore:

|A−
π |2 + |A+

π |2 = |AπA2|2 × [|z|2 + 3 cos2 θH ] (4.52)

|A−
π |2 − |A+

π |2 = |AπA2|2 × 2
√

3ℜz cos θH (4.53)

|A−
K |2 + |A+

K |2 = |AKA2|2
[

(1 + r2B + 2rB cos δB cos γ)|z|2 +

(1 + r2B − 2rB cos δB cos γ)3 cos2 θH +

−4rB cos δB sin γℑz
√

3 cos θH)
]

(4.54)

|A−
K |2 − |A+

K |2 = |AKA2|2
[

rB sin δB sin γ(|z|2 − 3 cos2 θH) +

((1 − r2B)ℜz − 2rB sin δB cos γℑz)
√

3 cos θH

]
(4.55)
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If we integrate the above expressions in cos θH over a symmetric cos θH range, [±∆,±1]
(in this analysis ∆ = 0.4), the linear terms in cos θH , which are also linear in z, cancel.
The observed CP asymmetry in the DK channel is therefore:

Aobs
CP−(DK) =

∫ [
|A−

K |2 − |A+
K |2
]
d(cos θH)

∫ [
|A−

K |2 + |A+
K |2
]
d(cos θH)

= − 2rB sin δB sin γ(A−B|z|2)
A(1 + r2B − 2rB cos δB cos γ) +B|z|2(1 + r2B + 2rB cos δB cos γ)

= − 2rB sin δB sinγ

1 + r2B − 2rB cos δB cos γ

1 −B/A |z|2

1 +B/A |z|2 1+r2
B

+2rB cos δB cos γ

1+r2
B−2rB cos δB cos γ

= ACP−
1 −B/A |z|2

1 +B/A |z|2 RCP+

RCP−

(4.56)

where

A ≡
∫ 1

∆

3 cos2 θHd cos θH = 1 − ∆3 (4.57)

B ≡
∫ 1

∆

d cos θH = 1 − ∆ (4.58)

If ∆ = 0.4 then B/A = 0.64 and

Aobs
CP− = ACP−

1 − 0.64|z|2

1 + 0.64|z|2 RCP+

RCP−

(4.59)

For the branching fraction ratio we have:

N(D0π) ∝
∫

|A−
π |2 + |A+

π |2 = |AπA2|2
∫

[|z|2 + 3 cos2 θH ]d cos θH

= |AπA2|2 ×
(

1 +

∫
|z|2d cos θH

∫
3 cos2 θHd cos θH

)

= |AπA2|2(1 +B/A |z|2) (4.60)

and

N(D0K) ∝
∫

|A−
K |2 + |A+

K |2 = |AKA2|2
∫
[
(1 + r2B + 2rB cos δB cos γ)|z|2 +

(1 + r2B − 2rB cos δB cos γ)3 cos2 θH

]
d cos θH

= |AKA2|2(1 + r2B − 2rB cos δB cos γ) ×
(

1 +
1 + r2B + 2rB cos δB cos γ

1 + r2B − 2rB cos δB cos γ

∫
|z|2d cos θH

∫
3 cos2 θHd cos θH

)

= |AKA2|2(1 + r2B − 2rB cos δB cos γ) ×
(

1 +B/A |z|2RCP+

RCP−

)

(4.61)

Therefore the observed branching fraction ratio is

Robs
− =

N(D0K)
N(D0π)

|AK/Aπ|2
= (1 + r2B − 2rB cos δB cos γ) ×

1 +B/A |z|2 RCP+

RCP−

1 +B/A |z|2

= RCP− ×
1 +B/A |z|2 RCP+

RCP−

1 +B/A |z|2
(4.62)
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In the case ∆ = 0.4, B/A = 0.64:

Robs
− = = RCP− ×

1 + 0.64|z|2 RCP+

RCP−

1 + 0.64|z|2 (4.63)

We can thus correct, with the expressions (4.59) and (4.63), the CP -asymmetry ACP−
and the double branching fraction ratio R− in the K0

S
φ channel and determine the true

values, which are related to γ, rB and δB through the standard GLW relations (Introduc-
tion, Eqs. (3) and (4)). To this extent we use the value of R+ measured with the CP -even
modes K+K− and π+π− (0.90 ± 0.12) and the value of R− measured with the CP -odd
mode K0

S
π0 (0.76±0.13), which are not affected by this dilution effect. |z|2 has been esti-

mated by one of the BABAR collaborators working on the D0 → K0
S
K+K− Dalitz analysis

to be (25± 1)% [89]: this is consistent with the value that we find (33± 9%) by studying
the distribution of the number of D0π candidates as a function of cos θH . B → D0π can-
didates selected in our sample are in fact expected to follow a |z|2 +3 cos2 θH distribution
(Eq. (4.52)), from which |z|2 can be extracted. To this purpose we select in data a pure
sample of B → D0π, D0 → K0

S
φ decays by applying all the standard criteria described in

the previous Chapter (but the cos θhel(φ) one), plus a 2.5σ cut on ∆Eπ around zero and
the request that the prompt track h fails the KaonLHVeryTight selector, and plot their
cos θH distribution after having subtracted the expected cos θH distribution of continuum
and BB (non-peaking) backgrounds obtained from Monte Carlo. The distribution is then
fit with a |z|2 + 3 cos2 θH PDF, and |z|2 = 0.33 ± 0.09 is found, as shown in Figure 4.20.
We have checked on simulated signal B → D0π, D0 → K0

S
φ events that the acceptance
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Figure 4.20: cos θH distribution of B → D0π, D0 → K0
S
φ candidates selected in data.

Background expected from qq and BB (non peaking) simulated events has been sub-
tracted.

is uniform as a function of cos θH and therefore the cos θH distribution is parabolic by
fitting it with a |z|2 + 3 cos θ2H PDF: in that case we find indeed |z|2 = 0.0032 ± 0.0029,
which is consistent with zero.

We therefore have, for the K0
S
φ channel:

Aobs
CP− = Atrue

CP− × 1 − 0.64 × (0.25 ± 0.01)

1 + 0.64 × (0.25 ± 0.01)× 0.90±0.12
0.76±0.13

= Atrue
CP × (0.71 ± 0.03) (4.64)
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Robs
− = Rtrue

− ×
1 + 0.64 × (0.25 ± 0.01)× 0.90±0.12

0.76±0.13

1 + 0.64 × (0.25 ± 0.01)

= Rtrue
− × (1.03 ± 0.04) (4.65)

For the K0
S
ω channel the situation, unfortunately, is complicated by the fact that

the full structure of the D0 → K0
S
π+π−π0 decay amplitude is not known at present.

We therefore proceed in the following way. In the worst scenario, the B → D0h,D0 →
K0

S
π+π−π0 background has CP = +1 and the asymmetry is maximally diluted, by

Aobs
CP = Atrue

CP (D0K)
1 − f |z|2

1 + f |z|2 R+

R−

(4.66)

where f = 0.55/0.95 = 0.58 is the ratio of D0 → K0
S
π+π−π0 and D0 → K0

S
ω efficiencies

of the selection criterion cos2 θN sin2 θππ > 0.08 applied to our final sample (see Sub-
section 3.4.4). |z|2 can be extracted from a |z|2 + 3 cos2N fit to the dipion helicity angle
(cos θN ) distribution of the ω candidate in the B → D0π, D0 → K0

S
ω control sample,

selected with the standard selection criteria (but the cos2 θN sin2 θππ one) of the previous
Chapter, plus a 2.5σ cut on ∆Eπ around zero and the request that the prompt track h
fails the KaonLHVeryTight selector. As shown in Figure 4.21, we find |z|2 = 42 ± 8%,
and the corresponding asymmetry dilution would be:

Aobs
CP− = Atrue

CP− × 1 − 0.58 × (0.42 ± 0.08)

1 + 0.58 × (0.42 ± 0.08)× 0.90±0.12
0.76±0.13

= Atrue
CP × (0.59 ± 0.05)
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Figure 4.21: cos θN distribution of B → D0π, D0 → K0
S
ω candidates selected in data.

Background expected from qq and BB (non peaking) simulated events has been sub-
tracted.

However, the D0 → K0
S
π+π−π0 decay can have mixed CP content due to the presence

of intermediate K∗ or ρ resonances. Therefore the dilution will be somewhere in between
0.59 ± 0.05 and 1: we assume here the average value 0.8 and assign to it an uncertainty
±0.2, therefore in the K0

S
ω channel:

Aobs
CP− = Atrue

CP × (0.8 ± 0.2) (4.67)
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For the ratio R−, in presence of a pure CP = +1 D0 → K0
S
π+π−π0 background we would

have Robs
− = Rtrue

− × (1.03 ± 0.08): here we assume therefore

Robs
CP− = Rtrue

CP × (1.02 ± 0.09) (4.68)

As for the K0
S
φ channel, also in this case uniformity of acceptance as a function of cos θN

has been evaluated by fitting the cos θN distribution of signal B → D0π, D0 → K0
S
ω with

a |z|2 + 3 cos θ2N PDF: in this case we find |z|2 = 0.0000 ± 0.0018, consistent with a pure
parabolic distribution which would be obtained if the acceptance were uniform in cos θN .

For both the K0
S
φ and K0

S
ω channels, the central value and the statistical errors of the

CP -asymmetries and the branching fraction ratios are scaled by the mean values of the
correction factors computed in this Section: the uncertainties on the correction factors
are taken into account in the systematic errors.

4.10 Measurement of the direct CP asymmetry

One of the main goals of this analysis is to perform a measurement of the direct CP
asymmetry

ACP±
def
=

B(B− → D0
CP±K

−) − B(B+ → D0
CP±K

+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)
. (4.69)

The measurement of the CP asymmetry is performed by using the measured yields of
positive and negative B → D0K decays in the CP -eigenstates K+K−, π+π−,K0

S
π0, K0

S
φ

and K0
S
ω that are listed in Tables 4.31, 4.33, 4.35, 4.37 and 4.39. The asymmetries in the

K0
S
φ and K0

S
ω are corrected according to (4.64) and (4.67), respectively.

The systematic errors associated to this measurement arise from the uncertainties in
the parameterization of the signal and background ∆E shape and from the evaluation of
the particle ID probability. An important contribution is given by the intrinsic charge
asymmetry of the detector. One must also take into account possible charge asymmetries
in the peaking background that is being subtracted to determine the signal yield. The
main systematic uncertainties (in %) on the measurement of the CP asymmetry are re-
ported in Tables 4.43 and 4.44. The details on how such uncertainties are evaluated have
been described in Section 4.9.

The resulting asymmetries are

ACP+(K+K−) = +0.46± 0.15(stat) ± 0.05(syst) (4.70)

ACP+(π+π−) = −0.03± 0.28(stat) ± 0.03(syst) (4.71)

ACP−(K0
S
π0) = +0.04± 0.16(stat) ± 0.04(syst) (4.72)

ACP−(K0
S
φ) = −0.10± 0.32(stat) ± 0.03(syst) (4.73)

ACP−(K0
S
ω) = −0.35± 0.30(stat) ± 0.08(syst) (4.74)

The combination of the two CP -even measurements gives:

ACP+ = 0.35 ± 0.13(stat) ± 0.04(syst) (4.75)

The χ2/ndf is 2.3/1, the corresponding probability is 13%.
The combination of the three CP -odd measurements gives:

ACP− = −0.06 ± 0.13(stat)± 0.04(syst) (4.76)

The χ2/ndf is 1.2/2, the corresponding probability is 55%.
The systematic error of the combined asymmetry has been evaluated by assuming all

the systematic uncertainties on the various asymmetries uncorrelated, with the exception
of the contributions due to the detector charge asymmetry and to the Cherenkov angle
PDFs, which are 100% correlated between the different channels.
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Syst. Error on ACP+ (%)

Parameter D0 → K+K− D0 → π+π−

qq bkg ∆E ±1.3 ±0.6

BB(π) bkg ∆E ±0.1 ±0.3

BB(K) bkg ∆E ±0.2 ±0.9

PID ±0.1 ±0.1

peaking X1X2K bkg ±3.3 ±1.8

Total ±3.6 ±2.1

Detector charge asymmetry ±2.7 ±2.7

Table 4.43: Systematic errors on the CP asymmetry of the B → D0K, D0 → K+K− and
D0 → π+π− modes.

Syst. Error on ACP− (%)

Parameter D0 → K0
Sπ0 D0 → K0

Sφ D0 → K0
Sω

qq bkg ∆E ±0.3 ±0.9 ±0.9

BB(π) bkg ∆E ±0.1 ±0.2 ±0.2

BB(K) bkg ∆E ±0.4 ±0.2 ±1.0

PID ±0.2 ±0.1 ±0.3

peaking X1X2K bkg ±3.4 ±0.1 ±2.3

peaking B → D0K bkg - ±0.3 ±8.8

Total ±3.4 ±1.0 ±9.2

Detector charge asymmetry ±2.7 ±2.7 ±2.7

Table 4.44: Systematic errors on the CP asymmetry of the B → D0K, D0 → K0
S
π0, D0

→ K0
S
φ and D0 → K0

S
ω modes.

4.11 Measurement of the ratio R±

The double branching fraction ratio

R± ≡
B(B→D0

CP K)

B(B→D0
CP

π)

B(B→D0K)
B(B→D0π)

(4.77)

is separately calculated for the five CP D0 decay channels. The double ratio is computed
with the number of B → D0

(CP )K and B → D0
(CP )π mesons estimated with the maximum

likelihood fit listed in Tables 4.29, 4.31, 4.33, 4.35, 4.37 and 4.39. The resulting double ra-
tios are scaled by a correction factor taking into account small differences in the selection
efficiency between B → D0K and B → D0π in the D0

CP and in the K−π+ modes. Such
correction factors are estimated from the efficiencies evaluated with signal Monte Carlo
samples, and are listed in Table 4.45. In these correction factors, which are efficiency
double ratios, all systematic uncertainties arising from possible data-Monte Carlo dis-
crepancies of from unkwnown D0 branching fractions cancel, and only two contributions
survive:
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• the uncertainty on selection efficiencies due to the limited statistics of the Monte
Carlo, listed in the last two rows of Tables 3.12 and 3.13.

• the uncertainty on fit efficiencies due to the imperfect kwowledge of the double-
Gaussian ∆E distribution of signal events, in particular of the fraction f1 of signal
events in the main Gaussian. These uncertainties are listed in Tables 4.3 and 4.4.

These two contributions are added in quadrature and reported in Table 4.45.

D0
CP mode

ε̃(D0
CP K)/ε̃(D0

CP π)

ε̃(D0K)/ε̃(D0π)

K+K− 99.0 ± 1.3
π+π− 99.6 ± 1.3
K0

Sπ0 98.2 ± 1.8
K0

Sφ 98.6 ± 1.6
K0

Sω 102.0 ± 3.1

Table 4.45: Ratio of the final efficiencies for true B− → D0K− and B− → D0π− candi-
dates, evaluated on Monte Carlo

The errors on the ratio are evaluated by using the statistical and the systematic errors
on the signal rates. The correlation between the B → D0π and B → D0K fit yields, listed
in Tables 4.30, 4.32, 4.34, 4.36, 4.38 and 4.40 are taken into account in the statistical error
on R±.

The main systematic uncertainties on the measurement of these ratios are reported in
Tables 4.46 and 4.47. The resulting double ratios are:

R+(K+K−) = 0.89 ± 0.13(stat)± 0.04(syst) (4.78)

R+(π+π−) = 0.94 ± 0.28(stat)± 0.08(syst) (4.79)

R−(K0
S
π0) = 0.76 ± 0.13(stat)

+0.02
−0.06(syst) (4.80)

R−(K0
S
φ) = 1.06 ± 0.24(stat)± 0.05(syst) (4.81)

R−(K0
S
ω) = 1.03 ± 0.25(stat)± 0.14(syst) (4.82)

The combination of the two CP -even measurements gives:

R+ = 0.90 ± 0.12(stat)± 0.03(syst) (4.83)

The χ2/ndf is 0.026/1, the corresponding probability is 87%.
The combination of the three CP -odd measurements gives:

R− = 0.86 ± 0.11(stat) ± 0.03(syst) (4.84)

The χ2/ndf is 1.78/2, the corresponding probability is 41%.

4.12 Constraints on the CKM angle γ

As stated in the Introduction and in Section 1.7.1, the measurement of the four observ-
ables RCP±, ACP± can in principle constrain the CKM angle γ (up to eight discrete
ambiguities). We shall see in this Section that the measurements presented here do not
allow in practice to pose a constraint on γ, since the sensitivity is too low. However, these
measurements can be combined with the results obtained in other analyses (the most
powerful of which is the Dalitz analysis of B → D0K, D0 → K0

S
π+π− decays described

in Section 1.7.3) to improve our knowledge of γ.
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Syst. Error on R+ (%)

Parameter D0 → K+K− D0 → π+π−

qq bkg ∆E ±1.5 ±2.7

BB(π) bkg ∆E ±0.2 ±0.3

BB(K) bkg ∆E ±0.3 ±1.1

PID ±0.0 ±0.1

peaking X1X2K bkg ±3.3 ±7.9

Efficiency corr. factor ±1.2 ±1.2

Total ±3.8 ±8.4

Table 4.46: Systematic errors on R+ in B → D0K, D0 → K+K− and D0 → π+π−.

Syst. Error on R− (%)

Parameter D0 → K0
Sπ0 D0 → K0

Sφ D0 → K0
Sω

qq bkg ∆E ±1.3 ±1.4 ±3.2

BB(π) bkg ∆E ±0.2 ±0.3 ±0.3

BB(K) bkg ∆E ±0.5 ±0.3 ±0.8

PID ±0.1 ±0.2 ±0.1

peaking X1X2K bkg +0.0
−6.0

+0.3
−1.5 ±10.2

peaking B → D0h bkg - ±4.2 ±8.2

Efficiency corr. factor ±1.4 ±1.8 ±3.2

Total +1.9
−6.3 ±5 ±14

Table 4.47: Systematic errors (%) on R− in B → D0K, D0 → K0
S
π0, D0 → K0

S
φ and D0

→ K0
S
ω.

The extraction of γ, together with the other two unknowns δB and rB , is in principle
allowed by the relations:

RCP+ −RCP−
4

= rB cos δB cos γ (4.85)

RCP+ACP+ −RCP−ACP−
4

= rB sin δB sin γ (4.86)

RCP+ +RCP− − 2

2
= r2B. (4.87)

In theory, one would fix rB from the third equation and then would solve the first two for
the remaining unknowns γ and δB: in practice this is not feasible with our measurements,
since the uncertainties on RCP± are at the level of 12% and therefore we do not have
enough sensivity to the very small values of r2B that are expected (rB < 0.2 implies
r2B < 0.04). Indeed, from our values of R± we can only infer:

r2B = −0.12 ± 0.08 (4.88)

However, we can still derive some interesting relations that, combined with the results of
the B → D0K, D0 → K0

S
π+π− analysis allow to reduce the uncertainty on γ from the
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latter. To this purpose, following [2], we introduce the CP -violating parameters:

x± ≡ rB cos(δB ± γ) (4.89)

y± ≡ rB sin(δB ± γ) (4.90)

and we note that once these four quantities are known, then γ, rB and δB can be extracted:
this is essentially the way γ is measured in the BABARB → D0K, D0 →K0

S
π+π− analysis

in [2], where x± and y± are determined from the D0 → K0
S
π+π− Dalitz distribution. The

results of the Dalitz analysis, with the same data sample used here, are:

x+ = −0.129 ± 0.070± 0.030 ± 0.032

y+ = 0.019 ± 0.079 ± 0.023± 0.021

x− = 0.077 ± 0.069 ± 0.026± 0.019

y− = 0.064 ± 0.092 ± 0.037± 0.042

where the first error is statistical, the second is the experimental systematic uncertainty
and the third arises from the choice of the Dalitz model assumed for the D0 → K0

S
π+π−

amplitude. The measurements presented in this thesis can contribute to improve the
accuracy on the two quantities x± and thus on γ, once the following relations (which
can be deduced from (4.85) and (4.86) using the ordinary trigonometric relations) are
exploited:

RCP+(1 −ACP+) −RCP−(1 −ACP−)

4
= x+ (4.91)

RCP+(1 +ACP+) −RCP−(1 +ACP−)

4
= x− (4.92)

From our measured values of RCP± and ACP± we have in fact

x+ = −0.082± 0.053(stat)± 0.016(syst) (4.93)

x− = +0.102± 0.063(stat)± 0.018(syst) (4.94)

and we see that the errors on x± are competitive with those obtained from the Dalitz anal-
ysis. On the other hand, the quantities y± cannot be measured since the only “handles”
we have on them are the relations

RCP+ +RCP− − 2

2
= r2B = x2

± + y2
± (4.95)

where y± enter in a quadratic way and are affected by the large uncertainties (12%) on
RCP±. The combination of the Dalitz results and those presented in this thesis has not
been performed yet, but from initial estimates [90] we expect to improve the sensitivity
on γ by 10-15%.
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4.13 Conclusions

In this thesis we have reconstructed the Cabibbo-suppressed B → D0K and the Cabibbo-
allowedB → D0π decays, withD0 decaying to non-CP (K−π+), CP -even (K+K−, π+π−)
and CP -odd (K0

S
π0, K0

S
φ, K0

S
ω) final states. Previously only the Belle experiment had

reconstructed the B → D0K decays, with D0 decaying to CP -eigenstates, that have been
considered here. The measurement is particularly challenging from the experimental side
since the branching fractions involved are very low, at the level of 10−6 − 10−7, a large
data sample is therefore needed and the analysis must be optimized in order to mantain a
high efficiency for the signal while rejecting most of the background. Moreover, excellent
kaon/pion separation is needed in order to distinguish B → D0K decays from the twelve
times more abundantB → D0π decays, which are kinematically very similar. The analysis
has been performed on a sample of 232 × 106 charged B meson decays collected by the
BABAR experiment at the SLAC PEP-II B Factory. We have searched for direct CP -
violation by measuring the two CP asymmetries:

ACP±(B → D0K) ≡ B(B− → D0
CP±K

−) − B(B+ → D0
CP±K

+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)

Our results are:

ACP+(B → D0K) = +0.35 ± 0.13(stat)± 0.04(syst)

ACP−(B → D0K) = −0.06 ± 0.13(stat)± 0.04(syst)

No evidence for direct CP violation is found within the present data sample: the positive
CP asymmetry is 2.5σ far from zero, and the negative one is consistent with zero within
one standard deviation. If we extrapolate the current experimental errors, we can expect
to reach a sensitivity σ(ACP±) ≈ 0.06 with 5 times more data, which BABAR should be
able to collect by the year 2008, and σ(ACP±) ≈ 0.04 in the (unlikely) case that BABAR

will continue keeping data until 2010. In the former hypothesis, an asymmetry (either
ACP+ or ACP−) greater than 20% (which is allowed for rB ≈ 0.15 for a significant range
of possible values of the strong phase δB, see the Introduction) can be observed at > 3σ
level. In the latter case, even smaller asymmetries (of the order of 12%, which should be
expected if rB ≈ 0.1) could be observed. In this work have also measured the two double
branching fraction ratios:

R± ≡
B(B−→D0

CP±K−)+B(B+→D0
CP±K+)

B(B−→D0
CP±

π−)+B(B+→D0
CP±

π+)

B(B−→D0K−)+B(B+→D0K+)

B(B−→D0π−)+B(B+→D0π+)

Our results are:

R+ = 0.90 ± 0.12(stat) ± 0.03(syst)

R− = 0.86 ± 0.11(stat) ± 0.03(syst)

These quantities are expected to be equivalent, up to 1-2%, to the branching fraction
ratios:

RCP± ≡ B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)

B(B− → D0K−) + B(B+ → D0K+)
,

which – together with ACP± – constitute the four so-called “GLW” observables from which
the CKM angle γ can in principle be constrained. At present, however, the statistics is
too low to put a significant constraint on γ with these numbers only, as described in the
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previous Section: to this purpose we would need to measure R± at the % level, which is
out of reach. However we can still provide useful information on γ, in the form of two
CP -violating parameters x± defined in (4.89), which have been measured to be:

x+ = −0.082± 0.053(stat)± 0.016(syst)

x− = +0.102± 0.063(stat)± 0.018(syst).

These can be combined with those measured in the B → D0K, D0 → K0
S
π+π− analysis

in [2], and are expected to increase the sensitivity on γ by 10-15%: however, this has not
been done yet.

We have been working on the field of B → D0K and B → D0π reconstruction over
the years 2001-2005. The measurement of R+ and ACP+, with the partial data sample
collected by BABAR in the first 2 runs of data taking (≈ 89 × 106 charged B mesons),
has already been published in Spring 2004 in the journal “Physics Review Letters” [6],
and preliminary results on R± and ACP± obtained with 92% of the data sample used
in this analysis have been approved by the BABAR Collaboration and presented at the
ICHEP 2004 Conference in Summer 2004 [42]. The results presented here update those
results and are going to be submitted to the journal “Physics Review D” for publication.
They constitute the world most precise measurements of ACP± and R±, the other only
determination being the ones from Belle, which – although on a larger sample of 274×106

charged B mesons – are less accurate then ours, as shown in Table 4.48.

BABAR (This analysis) Belle

N(B±) 232 × 106 274 × 106

ACP+(B → D0K) +0.35 ± 0.13(stat)± 0.04(syst) +0.07 ± 0.14(stat)± 0.06(syst)

ACP−(B → D0K) −0.06 ± 0.13(stat)± 0.04(syst) −0.11 ± 0.14(stat)± 0.05(syst)

R+ 0.90 ± 0.12(stat) ± 0.03(syst) 0.98 ± 0.18(stat)± 0.10(syst)

R− 0.86 ± 0.11(stat) ± 0.03(syst) 1.29 ± 0.16(stat)± 0.08(syst)

Table 4.48: Comparison between the data sample used and the results for the four quanti-
ties (CP asymmetries and branching fraction ratios) ACP±(B → D0K) and R± measured
in this analysis and in the only other one previously performed.
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Appendix A

γ and charged B± →
(−)

D0 K±

decays

With the diagrams of Figure 1.5 in mind, we can write the following amplitudes for the
B → DK decay:

A(B− → D0K−) = |A|eiδ (A.1)

A(B− → D0K−) = |Ā|eiδ̄e−iγ (A.2)

A(B+ → D0K+) = |A|eiδ (A.3)

A(B+ → D0K+) = |Ā|eiδ̄e+iγ (A.4)

We can also write the amplitudes for the D → fi decay:

A(D0 → fi) = |Ai|ei∆i (A.5)

A(D0 → f̄i) = |Āi|ei∆̄i (A.6)

A(D0 → f̄i) = |Ai|ei∆i (A.7)

A(D0 → fi) = |Āi|ei∆̄i (A.8)

where δ, δ̄, ∆i and ∆̄i are strong (CP -conserving) phases.
When considering B− → [fi]D0K− (the notation [fi]D0 means that the final state fi

is originated from a D0 or D0 decay) and its conjugate process, the amplitudes B− →
D0K−, D0 → fi and B− → D0K−, D0 → fi interfere, and, neglecting tiny D0– D0

mixing, the total amplitudes are:

A(B− → [fi]D0K−) = A(B− → D0K−)A(D0 → fi) +

A(B− → D0K−)A(D0 → fi)

= |A||Ai|ei(δ+∆i) + |Ā||Āi|ei(δ̄+∆̄i−γ) (A.9)

A(B+ → [f̄i]D0K+) = A(B+ → D0K+)A(D0 → f̄i) +

A(B+ → D0K+)A(D0 → f̄i)

= |A||Ai|ei(δ+∆i) + |Ā||Āi|ei(δ̄+∆̄i+γ) (A.10)

The partial widths are:

Γ(B− → [fi]D0K−) = |A|2|Ai|2 + |Ā|2|Āi|2 + 2|A||Ā||Ai||Āi| cos(ξi − γ) (A.11)

Γ(B+ → [f̄i]D0K+) = |A|2|Ai|2 + |Ā|2|Āi|2 + 2|A||Ā||Ai||Āi| cos(ξi + γ) (A.12)
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where

ξi ≡ δB + δi (A.13)

δB ≡ δ̄ − δ (A.14)

δi ≡ ∆̄i − ∆i (A.15)

Let us define:

rB ≡
∣
∣A(B− → D0K−)/A(B− → D0K−)

∣
∣ (A.16)

rD
fi

≡
∣
∣A(D0 → fi)/A(D0 → f̄i)

∣
∣ (A.17)

The quantity rB is expected to be:

rB ≈
∣
∣
∣
∣

VubVcs

VcbVus

∣
∣
∣
∣
× a2

a1
(A.18)

where a2/a1 ≈ 0.26 − 0.44 is a color suppression factor and
∣
∣
∣
VubV ∗

cs

VcbV ∗
us

∣
∣
∣ ≈ 0.4, from which

rB is expected to be around 0.1 − 0.2. rD
fi

depends on the D0 final state.
Omitting common phase-space factors we have:

B(B− → [fi]D0K−) ∝ |A|2|Āi|2
(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi − γ)

)

(A.19)

B(B+ → [f̄i]D0K+) ∝ |A|2|Āi|2
(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi + γ)

)

(A.20)

The direct CP asymmetry is therefore:

ACP =
B(B− → [fi]D0K−) − B(B+ → [f̄i]D0K+)

B(B− → [fi]D0K−) + B(B+ → [f̄i]D0K+)

=

(

rD
fi

2
+ r2 + 2rD

fi
rB cos(ξi − γ)

)

−
(

rD
fi

2
+ r2 + 2rD

fi
rB cos(ξi + γ)

)

(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi − γ)

)

+
(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi + γ)

)

=
2rD

fi
rB sin ξi sin γ

rD
fi

2
+ r2B + 2rD

fi
rB cos ξi cos γ

(A.21)

and the average (overall) branching fraction is

〈B(B → [fi]D0K)〉 ≡ B(B− → [fi]D0K−) + B(B+ → [f̄i]D0K+)

2

=
1

2

(

rD
fi

2
+ r2 + 2rD

fi
rB cos(ξi − γ)

)

+
(

rD
fi

2
+ r2 + 2rD

fi
rB cos(ξi + γ)

)

(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi − γ)

)

+
(

rD
fi

2
+ r2B + 2rD

fi
rB cos(ξi + γ)

)

∝ |A|2|Āi|2
(

rD
fi

2
+ r2B + 2rD

fi
rB cos ξi cos γ)

)

(A.22)

Let us consider 3 cases:

• fi = fCA is a Cabibbo-allowed (CA) D0 decay final state like for instance K−π+. In
that case rD

fCA
≈ λ−2 ≈ 1/0.05 (indeed, the ratio |A(D0 → K+π−)/(D0 → K−π+)|

has been measured to be 0.060± 0.003 [38]). Since rB ≈ 0.1 − 0.2, the rD
fi

2
terms

are dominant and the CP asymmetry and average branching fraction are:

ACP = 2
rB

rD
fCA

sin ξCA sinγ <∼ 0.3% (A.23)

〈B(B → [fCA]D0K)〉 ∝ |A|2|ĀCA|2rD
fCA

2
= |A|2|ACA|2

= 〈B(B → D0K)〉B(D0 → fCA) (A.24)
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• fi = fCP± is a CP -eigenstate, f̄CP± = ±fCP±. In that case Āi = Ai and ∆̄i = ∆i

(if the final state is CP -even, fCP+) or ∆̄i = ∆i + π (if the final state is CP -odd,
fCP−), therefore rD

fCP±
= 1, δCP+ = 0 and δCP− = π and the CP asymmetry and

average branching fraction are:

ACP± = ± 2rB sin δB sin γ

1 + r2B ± 2rB cos δB cos γ
(A.25)

〈B(B → [fCP±]D0K)〉 ∝ |A|2|Ai|2(1 + r2B ± 2rB cos δB cos γ)

∝ |A|2B(D0 → fCP±)(1 + r2B ± 2rB cos δB cos γ)

= 〈B(B → D0K)〉B(D0 → fCP±)(1 + r2B ± 2rB cos δB cos γ)

(A.26)

where the + sign applies to CP -even decays and the − sign applies to CP -odd
decays. Dividing by B(D0 → fCP±), which is equal to B(D0

CP± → fCP±):

〈B(B → D0
CP±K)〉 =

〈B(B → [fCP±]D0K)

B(D0 → fCP±)

= 〈B(B → D0K)〉(1 + r2B ± 2rB cos δB cos γ)

(A.27)

thus

〈B(B → D0
CP±K)〉

〈B(B → D0K)〉 = 1 + r2B ± 2rB cos δB cos γ (A.28)

• fi = fDCS is a doubly-Cabibbo-suppressed (DCS) D0 decay final state like for
instance K+π−. In that case rD

fDCS
≈ λ2 ≈ 0.05 and, since rB ≈ 0.1 − 0.2, the

r2B , (rD
fDCS

)2 and rBr
D
fDCS

terms are of the same order of magnitude, and the whole
expressions for the CP asymmetry and the branching fraction must be retained.
In this case the final state f̄D

DCS is Cabibbo-allowed, therefore |ĀDCS|2 ∝ 〈B(B →
f̄DCSK)〉/|A|2 and we can write:

〈B(B → [fDCS]D0K)〉 = B(B− → D0K−)B(D0 → f̄DCS) ×
(

rD
fDCS

2
+ r2B + 2rD

fDCS
rB cos ξfDCS cos γ

)

= 〈B(B → [f̄DCS]D0K)〉 ×
(

rD
fDCS

2
+ r2B + 2rD

fDCS
rB cos ξfDCS cos γ

)

(A.29)

thus

〈B(B → [fDCS]D0K)〉
〈B(B → [f̄DCS]D0K)〉 = rD

fDCS

2
+ r2B + 2rD

fDCS
rB cos ξfDCS cos γ (A.30)
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