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i. INTRODUCTION 

In these lectures, our aim is to describe some problems concerning repre- 

sentations of infinite dimensional Lie algebras, whose solution would be of con- 

siderable interest to physicists. These problems arise quite generally in trying to 

implement the "current algebra" approach to elementary particle physics. However, 

the specific topics we shall discuss here have to do with recent suggestions that 

one might be able to write relativistic theories of hadrons exclusively in terms of 

local observables such as currents [1-4]. 

The talks are organized as follows. First, we shall try to explain briefly 

how our approach fits in with what physicists usually call "current algebra". Sec- 

ondly, we shall rewrite ordinary non-relativistic quantum mechanics in terms of 

local currents, and present the mathematical framework for discussing representa- 

tions of the current algebra thus obtained. This discussion will provide a non- 

trivial example where the idea of working exclusively with local currents can be 

carried out in an explicit and mathematically rigorous way. 

Next, we shall display a representation of the current algebra for a non- 

relativistic system having infinitely many degrees of freedom. This representation 

is obtained by taking the limit of a theory with N identical non-interacting 

bosons in a volume V, as the number of particles and the volume become infinite, 

while the average density (N/V) remains fixed. Finally, we shall briefly discuss 

a relativistic model for charged scalar mesons based on local currents, and mention 

a few of the many questions which remain unanswered in the non-relativistic and 

relativistic theories. 

2. BACKGROUND [5] 

The "currents" which usually appear in relativistic current algebras are 

the weak and electromagnetic currents of the strongly interacting particles or, as 

they are called, the hadrons. 
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The existence and properties of these currents are inferred from experi- 

mental studies of the hadronic weak and electromagnetic interactions. While we have 

been familiar with the basic properties of the electromagnetic four-vector current 

J~M(x) for quite a while, the nature of the vector and axial vector currents which 

play a fundamental role in the weak interactions has become reasonably clear only 

within the past fifteen years or so. 

One of the interesting consequences of the approximate SU(3) invariance 

of the strong interactions is that it allows a certain unification in the descrip- 

tion of the weak and electromagnetic currents. This is achieved by combining the 

various parts of the electromagnetic and vector weak currents into a single object 

having eight components, which we write as 

F~(x); ~ = 0,1,2,3, j = i ..... 8 . (2.1) 
3 

Thls "vector octet" of currents behaves like a 4-vector under Lorentz transforma- 

tions and transforms like an octet under SU(3) rotations. The pieces of the axial 

vector weak currents can likewise be combined into a second eight-component object 

F~ ~(x) , (2.2) 
3 

which is an axial vector and which also transforms like an SU(3) octet. 

In the vector octet, for example, the strangeness-conserving part of the 

vector weak current is proportional to F~ + iF~, the electromagnetic current 

J~M(X) = e(F~(x) + i F~(x)), while F~(x) ..... F~(x) are related to the strange- 
/3 

ness-changing weak currents. 

The space integrals of the time components of the local current densities 

F~(x) and F~P(x)3 define a set of charges, Fj(xo) and F](x o)~ . For j = 1,2,3, 

Fj(x o) = lj, which is the isotopic spin; the hypercharge y = 2 F8 ' and the elec- 
/3 

o i 
tric charge 0 = f JEM(X)d3x = e(l 3 + ~ Y). We remark that the charges F I , F 2 , F 3 , 

and F 8 arise from conserved currents and are thus constants of the motion, where- 

as the other charges may vary with time. 

The local currents F~(x) and F~(x) and their associated charges are 
J 3 

the basic objects of study in "current algebra". 

The fundamental hypothesis of current algebra, due to Gell-Mann [6,7], 

states that the time components of the physical vector and axial vector octet cur- 

rents satisfy the equal-time commutation relations: 

[F~(x) ,F~(y) ]] xO=yO = i6 (x - y) fkf_mF~(x) (2.3a) 
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[F~ (x), F~ ° (y) ] I xO=yO = i6 (x -y) fk£mF~ ° (x) (2.3b) 

[F~ °(x),F~ °(y)]Ixo=yo = i~(x - y)fkf_mF~(x) , (2.3c) 

where the numbers fkf_m are the structure constants of SU(3). We remark that 

these commutation relations define an infinite-dimensional Lie algebra of local cur- 

rents when integrated with a suitable class of testing functions. 

Integration of Equations (2.3) over x and y leads to the equal-time 

charge algebra 

[Fk(X°) ,Fl(x°) ] = ifk£mFm(X° ) (2.4a) 

[Fk(X°),F~(x°)] = ifkf_mF~(x °) (2.4b) 

[F~(x°),Fi(x°)] = ifkf_mFm(X°) . (2.4c) 

This weaker version of Gell-Mann's hypothesis is what has actually been used in many 

of the most successful applications of current algebra, as in the derivation of the 

famous Adler-Weisberger relation [8,9]. 

To the physicist, Gell-Mann's hypothesis is very beautiful. The reason for 

this is that it captures so much of what we really think is correct in our under- 

standing of the weak and electromagnetic interactions of hadrons in the form of sim- 

ple, possibly exact, relationships between experimentally observable quantities. 

For example, this idea allows one to formulate the notion of universality of 

strength of the weak interactions in a way that does not require a detailed descrip- 

tion of how the hadronic weak current is built up out of particle fields. Further- 

more, the commutation relations (2.3) and (2.4) specify a mathematical sense in 

which the group SU(3) × SU(3) acts in the strong interactions, even though it is 

not an invariance group. 

These ideas of Gell-Mann are the foundation on which we would like to build. 

An obvious extension of Equations (2.3) is to try to find the commutation relations 

satisfied by the other components of the octet currents, and to extract the physics 

contained in them. But we wish to discuss the possibility that one can go further, 

and write complete relativistic theories in which all of the fundamental dynamical 

variables in the theory are local observables, such as the vector and axial vector 

currents mentioned above. 

To clarify the question, let us recall the canonical field theory of neu- 

tral scalar mesons. As discussed in Todorov's lectures [i0], one has fields ~(x,t) 

and ~(x,t) which satisfy the equal-time commutation relations 

[~(x,t),~(y,t)] = i~(x - y) . (2.5) 

It is assumed that ~(x) and ~(x) form a complete set of operators in the sense 

that the manifold of all states available to the system spans a single irreducible 

representation of the local algebra (2.5). The dynamics of the theory is contained 

in the Hamiltonian 
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H = ~ d3x[~2(x) + V~(x) " V~(x) + p2~2(x)] + H I , (2.6) 

where H I is the interaction Hamiltonian, usually taken to be a polynomial in ~(x) 

Thus H is explicitly a function of ~(x) and ~(x). We are asking whether one 

can repeat this pattern using as "coordinates" local observables such as the cur- 

rents themselves, with a local current algebra replacing Equation (2.5) and with the 

Hamiltonian an explicit function of the currents. 

Remarks. (i) The analogue of the canonical commutation relations in a 

theory based on currents is an equal-time current algebra, such as Equations (2.3). 

In studying the mathematical structure of local current algebras, one is already 

studying relationships between observable quantities which are subject, in principle 

to direct experimental tests. 

(ii) Another familiar point is that, among the hundred-odd known hadrons, 

there are presently no candidates to play the role of "elementary particle", quarks 

not yet having been observed. Since relativistic theories have traditionally been 

written in terms of canonical fields whose quanta may be considered as the building 

blocks of matter, one may be at a loss, when presented with the hadron spectrum, to 

know where to start. 

Local currents treat all particles on an equal footing in the sense that, 

if one starts with the physical current, and postulates various commutation rela- 

tions between its components, one does not have to say anything at the beginning 

about what kinds of particles are present in the theory. All of the different 

charged particles will make their contribution to the electromagnetic current, for 

example, but instead of trying to specify at the outset how the current is consti- 

tuted in terms of particle fields, one can learn this in the process of solving the 

theory. Thus one might hope that the currents could define a theory in which no 

hadron plays a special role. 

(iii) We expect that in theories written in terms of currents, the local 

currents themselves will be fields which satisfy Wightman's axioms [ii]. 

(iv) It is hardly necessary to emphasize how far we are today from being 

able to implement these ideas in situations of immediate relevance to high energy 

particle physics. We face not only the problem of writing down the correct current 

commutation relations and the proper Hamiltonian; we have not even identified with 

any degree of certainty a complete set of local currents in terms of which to de- 

scribe the hadron system. 

To explore the basic ideas, we therefore take various canonical field 

theory models and rewrite them in terms of currents, obtaining a current algebra and 

a formula for the Hamiltonian as a function of the currents. Once one has ab- 

stracted these relationships from the underlying field theory, one is entitled to 

take them as a new starting point for the description of the physical system. In 

the following, we outline some results on representations of the current algebras 
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which arise in non-relativistic quantum mechanics and in a relativistic model for 

charged scalar mesons. 

3. NON-RELATIVISTIC CURRENT ALGEBRA 

3.1. n-Particle Representations of the Current Alsebra [12-16] 

Our starting point is the second-quantized formulation of the quantum me- 

chanics of a system ofspinless particles. In this formalism we introduce a Hilbert space 

H = n=~0Hn , where Hn is the Hilbert space of symmetric (or antisymmetric) L 2 

functions of n vector variables. An element ~ 6 H may be written as 

= (T0,~ I .... ) with (~,T) = Z (T ,~ ) < ~. n=0 n n 

For the commutation re~lations [~(x),~*(y)]_ 

and 

= ~(x - y), the equations 

(~(x)~)n(Xl ..... Xn ) = /n + i ~n+l(~l ..... Xn,X) 

=_!l n ~ ~ ~ 2 
j~i~(x - .,xj, (~*(x)~)n(Xl ..... Xn) ~n xj)~n-l(Xl ....... Xn) (3.1) 

(P(f)~)n = j~If(xj)~n 

(J(g)~)n 1 n . . . .  = -~ jE=l[g(x j) • Vj + Vj • g(xj)]~ n (3.4) 

for the smeared currents P(f) = I p(~)f(x)dx and J(g~) = ~ ~(x) " g(~)dx. 

Restricted to Hn, Equation (3.4) defines an irreducible representation, 

called the n-particle representation, of the non-relativistic current algebra [i] : 

define operator-valued distributions ~(x) and ~*(x) in the Hilbert space of 

symmetric functions. Likewise fields satisfying anticommutation relations, 

[~(x),~*(y)]+ = d(x - y), are defined by the equations 

(~(~)~)n(~l ..... ~n ) = Cn + i ~n+l(~i ..... ~n,~) 

and (3.2) 

_4 (-i) n+i ~i(_l)J+i~( ~ ~ ~ ~ 
(~*(x)T)n(Xl ..... Xn) f~n J= - xj)~n_l(X 1 ..... xj ..... Xn) 

in the Hilbert space of antisymmetric functions. 

Defining the number density of particles as 

p (~ )  = ¢ * ( ~ ) ~ ( ~ )  , 

and the particle flux density by 

~(~) 1 
=" i - i "  [ ~ * ( x ) q ¢ ( x )  - ( V ~ * ( x ) ) ~ ( x ) ]  , (3.3) 

one can obtain by direct calculation from either (3.1) or (3.2) that 
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[p(f),p(g)] = 0 

[p(f),J(g)] = ip(g - Vf) 

[J(D,J(~)] = iJ(~ • v~ - ~ • v~) 

In the representation (3.4), the number operator N °p is a super-selecting 

operator. 

3.2. Exponentiatin$ the Lie Alsebra of Currents [12~13] 

(3.5) 

The currents in (3.5) are in general unbounded operators; thus they are 

defined only on a dense domain D which may depend on the testing function. Under 

these circumstances, current commutators might not always make sense. Therefore we 

look for a group, which we can represent by unitary operators. 

Let ~g" R s K s ~t" ÷ denote the flow for time t by the vector field ~; 

~t (~) = ~( (~)) 

with ~ (~) = ~. If ~ has components in Schwartz' space S, then # exists 
t=0 t 

and is C for all t. 

It turns out that the correct objects to define are U(f) = e ip(f) and 

V($~) = e itJ(~) where 
L 

U(fl)V(~I)U(f2)V(~2) = U(fl + f2 o ~11V(72 o 71) . (3.6) 

One can prove this by studying the n-particle representation, which becomes 

n 

U(f)Pn = exp[ij~If(~j)]Pn 

V(~)~n(X-~l .... x~) ~ni~(Xl)-- ..... ~(~n)) ~ Vdet~3~ (~j~ (3.7) 
j=1 \~x £ 

From (3.7) one can verify (3.4) and hence (3.5) using Stone's theorem; therefore 

(3.6) is the correct group law to study. 

Thus we must consider representations of the semidirect product S A K, 

where S is Schwartz' space, and K is the group of C diffeomorphisms from 

~s ÷ ~s generated by the flows ~ under composition. K may be appropriately 

topologized. It may be pointed out that S is needed in order to be able to take 

successive derivatives in (3.5). 

3.3. The Gel'fand-Vilenkin Formalism [12,13] 

The Gel'fand-Vilenkin formalism [17] is suitable for the study of repre- 

sentations of groups such as S A K, in which an abelian subgroup is a nuclear 

space. Such groups also occur in relativistic models [1-4,12]. We assume famili- 

arity with the topology of S and remark that S' denotes the continuous dual of 

S, with (F,f) the value of F E S' at f C $. 
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A cylinder set in S' is a set of the form 

{F 6 S'I((F,fl),...,(F,fn) ) E A} for A ~n. A is called the base of the 

cylinder set. 

A cylindrical measure ~ on S' is a countably additive normalized 

measure ~ on the o-algebra generated by all cylinder sets with Borel base. 

An important result is expressed in the following Theorem (Bochner's 

theorem for nuclear spaces): 

If L(f) is a continuous functional on S, with L(0) = i, which satis- 

fies the "positivity condition" 

n 

Z ~k C L(f ~ 0 (3.8) j,k=l j j - fk ) 

fj 6 S and C. 6 ~ then there exists a unique cylindrical measure U such 
3 

for 

that 

L(f) = ~S' ei(F'f)d~(F) " (3.9) 

If U is a strongly continuous cyclic representation of S in H with 

cyclic vector ~, we can let L(f) = (~,U(f)~) define a cylindrical measure 

according to Equation (3.9). Then H can be realized as L2(S ') with ~(F) H i, 

U(f)T(F) = ei(F'f)~(F) . (3.10) and 

If U(f)V(~) is a representation of S A K, with ~ 6 H cyclic for U, 

then ~ is quasi-invariant for K in the following sense: if we define 

(~*F,f) = (F,f o ~) and ~(X) = ~(~*X), then ~ and ~ have the same sets of 

measure zero. Along with (3.10), we have 

V(~)~(F) = X~(F)T(~*F) (F) (3.11) 

dp ~ 
where ~ (F) is the Radon-Nikodym derivative. 

The "multiplier" x~(F) is a complex-valued function of modulus one. 

While x~(F) ~ i is always a possibility, one can obtain nontrivial inequivalent 
i 

representations with the same p from different families of X'S. The X's 

satisfy 

X~2(F) x~I(~F) = X~lo~e(F) . (3.12) 

Many deep parallels with Mackey's theory [18] of representations of semi- 

Gel fand-Vilenkin formalism. direct products of locally compact groups inhere in the 

For the n-particle representation (3.7), ~ is concentrated on the set 

F = {F~I + ... + F~ ; xj # Xk }, where (F~,f) = f(x), with 
n 

• " "  e-Xn d~l "'" n" d~(F~l + ... + F~ ) ~ e -x~ d~ In the symmetric case, x~(F)~ i, 
n 

while in the antisymmetric case, this is no longer true. The two cases are uni- 

tarily inequivalent in more than one spatial dimension. This method of describing 

particle statistics is discussed in detail in [13-15]. 
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3.4. Representations of the Non-Relativistic Current Alsebra 
in the "N/V" Limit [19] 

The n-particle representations of S A K are of course a mere restatement 

of the ordinary quantum mechanics of n identical particles; i.e., a system of 

finitely many degrees of freedom. Here we see how this reformulation leads to some 

particularly simple expressions in the limit of infinitely many noninteracting 

identical particles at constant average density. 

To consider N bosons in a volume V, we impose periodic boundary condi- 

tions on the wave functions P(~l,...~n), which are symmetric with respect to in- 

terchange of particle coo=dinates. This corresponds to a representation of 

C (T s) A K(T s) where T s is the s-torus, C (T s) is topologized like a nuclear 

space, and K(T s) is the group of C diffeomorphisms from T s ÷ T s. 

We know that the state of lowest energy is ~N,V(~I,...,~)_ = i(--~) L~. 
\¢V! 

,~ ip(f)~ " becomes Thus LN,V(f) = ~N,V,e uN,V) 

1 .~N i "~ [~ ~ d~e If(x)] = [i + V ~ d~[elf(x) - I]]N 

Setting ~ = N/V and taking the limit as N,V ÷ ~, one obtains 

L(f) = exp[~ ~ (e if(~) - l)d~] . (3.13) 

One can check that if L(f) is given by Equation (3.13) it is continuous, posi- 

tive, and satisfies L(0) = i. Thus, L(f) is the Fourier transform of a cylindri- 

cal measure ~ in S', and defines a representation of S. 

By the same procedure, one can obtain 

(g,U(f)V(~) = exp[~ ~ (eif(x~- l)d~] , (3.14) L(f,~) 

where J~(x) = det(~ (~)) is the Jacobian of ~. From (3.14), one can compute 
~x J 

all of the n-point ground-state expectation functions of the currents. 

<P(f)> = ~ ~ f(~)d~ , 

<J(~)> = 0 , 

<P(f)p(g)> = <0(fg)> + <p(f)> <p(g)> , (3.15) 

<p (f)j(~)> i = --~<0(~ " Vf)> 

i 
<J(~)J(~)> = 7 <0(v • ~v • ~)> , 

and so on. Equation (3.14) is equivalent to (3.13) together with the commutation 

relations (3.5) and the equation 

(Vp + 2i~)(~)g = 0 , (3.16) 

which is true for every N,V. Since the kinetic energy piece of the Hamiltonian 

For example~ 
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density can be written in terms of currents as [1,14,15] 

=i 
H(~) ~-~ (Vp - 2iJ~(x~ ~ (Vp + 2if)(~) (3.17) ~(~) 

Equation (3.16) implies that H~ = 0. We shall discuss apparently singular Hamil- 

tonians such as (3.17) in Section (3.5). 

It is also possible to carry out an "N/V" limit for non-interacting par- 

ticles satisfying Fermi statistics. The results are described in [19]. 

3.5. "Singular" Hamiltonians 

The Hamiltonian density (3.17) seems to contain the singular expression 

p-l(~). It has been shown [14,15] that in an irreducible n-particle representa- 

tion of (3.5) the factor (Vp + 2i~)(x~ appearing in H(~) is proportional to 

p(x~. Thus the factor p-l(~) is explicitly cancelled in (3.17)with the result 

that H(f) = ~ f(x)H(x~d~ is actually a well-defined operator in Hilbert space. 

Here we shall indicate how the quantity p-l(~) can be given a direct mathematical 

definition. 

Suppose we are given a Hilbert space H, an operator valued distribution 

p(x~ in H and a dense domain D for O with p(f)D ~ D for all f 6 S. 

Define V to be the linear span of {f(~)p(x~#l~ 6 D,f 6 0M} , where 0 M denotes 

the real-valued C functions which, together with all derivatives, are of poly- 

nomial growth at ~. Thus V is a family of vector-valued distributions. It may 

well be the case that for distinct choices of # and f, e.g., ~I' ~2' and fl' f2, 

one can have fl(~)p(x~ I = f2(~)p(x~2. Then p-l(~): V x V ÷ S' is given by 

(f(~)p(xl#,p l(xlg(x)p(x)~) = (~,f(~lo(x)g(~)~) , (3.18) 

ment that 

map from 

in H. 

extended sesqui-linearly to V x V. It is now an easy lemma to show that p-l(~) 

is well-defined. One should note that p-l(~) is not well-defined by the require- 

%-I~x): V ÷ V" be given by f(~)p(~)} = f(~)~. Thus p-l(~) is a 

V x V ÷ S', although of course it is not an operator-valued distribution 

Let 

in H on D, with K(~)D and K*(~)D contained in V. Then K 

p in a certain sense, and one can define the matrix elements of 

H(x~ = K*(~)p-I(~)K(~) by 

(~,H(x)~) = (K(~)~,p-I(x~K(~)~) 

In the "N/V" example above, ~(~) = (Vp + 2i~)(x) is related to 

tation relations together with Equation (3.16). 

K(~) be a (not necessarily Hermitian) operator-valued distribution 

is related to 

(3.19) 

@ by the commu- 
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4. A RELATIVISTIC MODEL FOR CHARGED SCALAR MESONS [2~20] 

The charged scalar model was originally defined [2] in terms of the 

operators 

j~(x) = i[~*(x)~ ~(x) - (~ ~*(x))~(x)] 

S(x) = ~*(x)m(x) 

~0~ = ~*" 

(4. i) 

~(x) = m*(x)~*(x) + ~(x)~(x) , 

The fields are assumed to satisfy the canonical equal-time com- where 

mutation relations 

[~(~),~(y~] = [~*(~),~*(~)] = i~(~ - ~)y , (4.2) 

with all of the other commutators vanishing. This leads to the current commutation 

relations 

[J0 (f) 'j (g~ ] = -2iS(g • Vf) (4.3a) 

[S(f),S(g)] = 2iS(fg) (4.3b) 

[j(g),S(f)] = 2ij(fg) . (4.3c) 

All of the other commutators vanish. 

Setting K (x)  = ~ S ( x )  - i j ~ ( x ) ,  t h e  ene rgy -momen tum t e n s o r  i n  t h i s  

model is (without interactions) 

i K* i i K* i i K* i K ~ _ 0 (x) = ~ ~ ~ K v + ~ ~ ~ K - g~[~ ~ ~ m2S] . (4.4) 

Let us emphasize that we do not actually know any representations in which 

(4.1) and (4.3) together make literal sense. We are indeed considering a situation 

where, having guessed the' current algebra, it is taken as the fundamental starting 

point of a theory based solely on currents. 

One may choose to look at the subalgebra of (4.1) consisting of j~ and 

S. It is then consistent to represent S by a multiple of the identity [20]: 

C 
S(x) = ~ I. Of course S then equals zero, and the commutation relations (4.3b) 

and (4.3c) must be abandoned. If S = 0, Equation (4.4) implies that [H,S(f)] = 0, 

so this is at least a consistent model. It is in fact Sugawara's model [4] for the 

case of a trivial internal symmetry group. The Hamiltonian density becomes [20] 

1 
H(x) = ~ [j0(~)j0(7) + ~(~) • ~(~)] + m 2 (4.5) 

which is the same as in the Sugawara model. 

The choice S(x) = cI might at first be regarded as natural for it makes 
1 

unambiguous sense out of S(~) in (4.4) and the Hamiltonian becomes bilinear in 

the currents. But we know that products of distributions at a point rarely make 

mathematical sense, while we have seen in the non-relativistic model how the 

"inverse of an operator-valued distribution" can make sense when appropriately 



3JO 

sandwiched between vector-valued distributions. In fact (4,4) may be less singular 
1 

than a bilinear expression; the factor ~ might cancel something in the numerator. 

5. QUESTIONS 

Now it is time Zo reveal the extent of our ignorance by mentioning a few 

of the questions to which we don't have answers. 

A complete classification of the irreducible representations of S A K 

would presumably amount to solving the many-body problem, at least in the "N/V" 

limit, and is therefore very likely a forlorn hope. However, any examples of 

representations beyond those mentioned would be extremely interesting. To con- 

struct such examples, it would be helpful to know something about the measurability 

of the orbits in S' under the action of K. 

We would like to have a way to determine the functional L(f) in the N/V 

limit directly, without first having to start from the form of the functional in a 

box. Preliminary results in this direction have been obtained, using functional 

differential equations [19,21]. Furthermore, one would like to have techniques for 

the approximate determination of L(f), in view of the fact that it is unlikely 

that this functional can be calculated exactly in most situations of practical 

interest. 

Finally, we reiterate that we have no concrete representations of the 

charged scalar algebra, or any other interesting local, relativistic current 

algebras, at this time. To construct such representations may be a crucial step 

in extending the results described here to the domain of particle physics. 
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